Liu, Kaihua; Zhang, Bin; Teng, Zhaochun; Wang, Youtao; Dong, Guodong; Xu, Cong; Qin, Bo; Song, Chunlian; Chai, Jun; Li, Yang; Shi, Xianwei; Shu, Xianghua; Zhang, Yifang
2017-03-01
We investigated the associations between SLC11A1 polymorphisms and susceptibility to tuberculosis (TB) in Chinese Holstein cattle, using a case-control study of 136 animals that had positive reactions to TB tests and showed symptoms and 96 animals that had negative reactions to tests and showed no symptoms. Polymerase chain reaction (PCR) sequencing and the restriction fragment length polymorphism (RFLP) technique were used to detect and determine SLC11A1 polymorphisms. Association analysis identified significant correlations between SLC11A1 polymorphisms and susceptibility/resistance to TB, and two genetic markers for SLC11A1 were established using PCR-RFLP. Sequence alignment of SLC11A1 revealed seven single-nucleotide polymorphisms (SNPs). This is the first report of MaeII PCR-RFLP markers for the SLC11A1-SNP3 site and PstI PCR-RFLP markers for the SLC11A1-SNP5 and SLC11A1-SNP6 sites in Chinese Holstein cattle. Logistic regression analysis indicated that SLC11A1-SNP1, SLC11A1-SNP3, and SLC11A1-SNP5 were significantly associated with susceptibility/resistance to TB. Two genotypes of SLC11A1-SNP3 were susceptible to TB, whereas one genotype of SLC11A1-SNP1 and two genotypes of SLC11A1-SNP5 were resistant. Haplotype analysis showed that nine haplotypes were potentially resistant to TB. After Bonferroni correction, three of the haplotypes remained significantly associated with TB resistance. SLC11A1 is a useful candidate gene related to TB in Chinese Holstein cattle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies
Gimode, Davis; Odeny, Damaris A.; de Villiers, Etienne P.; Wanyonyi, Solomon; Dida, Mathews M.; Mneney, Emmarold E.; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M.
2016-01-01
Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional breeding programs in order to efficiently optimize productivity. PMID:27454301
Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M
2016-01-01
Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional breeding programs in order to efficiently optimize productivity.
Duellman, Tyler; Warren, Christopher; Yang, Jay
2014-01-01
Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221
Khrustaleva, A M; Volkov, A A; Stoklitskaia, D S; Miuge, N S; Zelenina, D A
2010-11-01
Sockeye salmon samples from five largest lacustrine-riverine systems of Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and five single nucleotide polymorphism (SNP) loci. Statistically significant genetic differentiation among local populations from this part of the species range examined was demonstrated. The data presented point to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. For sockeye salmon, the individual identification test accuracy was higher for microsatellites compared to similar number of SNP markers. Pooling of the STR and SNP allele frequency data sets provided the highest accuracy of the individual fish population assignment.
Polymorphism in ovine ANXA9 gene and physic-chemical properties and the fraction of protein in milk.
Pecka-Kiełb, Ewa; Czerniawska-Piątkowska, Ewa; Kowalewska-Łuczak, Inga; Vasil, Milan
2018-04-16
Annexin A9 (ANXA9) is a specific fatty acid transport protein. ANXA9 gene is expressed in various tissues, including secretory tissue and mammary glands. The association between three SNPs of the ANXA9 gene and sheep's milk compositions was assessed. Genotype analysis was performed with the use of PCR-RFLP method. The studied ANXA9 polymorphisms had the following MAF (Major Allele Frequency): SNP1: allele G 0,66; SNP2: allele G 0,54; SNP3: allele C 0,57. The study found the most desired profile of protein fractions, namely an increased kappa-casein fractions and a decreased level of whey protein in sheep's milk for SNP1 and SNP3 polymorphisms. Sheep with the SNP1 GA genotype had the highest (P <0.05) content of fat and dry matter in milk. AXNA9 gene polymorphism did not influence the levels of protein, lactose or urea in sheep's milk. The information contained in this study may be useful for determining the impact of the ANXA9 gene on sheep's milk. The ANXA9 SNP1 and SNP3 polymorphisms results could be included in the breeding programs to select the sheep with the genotypes ensuring the highest kappa-casein levels in milk. However, it is worth conducting further research on ANXA9 and milk composition in larger herds of animals and various breeds of sheep. This article is protected by copyright. All rights reserved.
Miyakawa, Hiroe; Miyamoto, Toshinobu; Koh, Eitetsu; Tsujimura, Akira; Miyagawa, Yasushi; Saijo, Yasuaki; Namiki, Mikio; Sengoku, Kazuo
2012-01-01
Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, 10 novel genes involved in human spermatogenesis, including human SEPTIN12, were identified by expression microarray analysis of human testicular tissue. Septin12 is a member of the septin family of conserved cytoskeletal GTPases that form heteropolymeric filamentous structures in interphase cells. It is expressed specifically in the testis. Therefore, we hypothesized that mutation or polymorphisms of SEPTIN12 participate in male infertility, especially Sertoli cell-only syndrome (SCOS). To investigate whether SEPTIN12 gene defects are associated with azoospermia caused by SCOS, mutational analysis was performed in 100 Japanese patients by direct sequencing of coding regions. Statistical analysis was performed in patients with SCOS and in 140 healthy control men. No mutations were found in SEPTIN12 ; however, 8 coding single-nucleotide polymorphisms (SNP1-SNP8) could be detected in the patients with SCOS. The genotype and allele frequencies in SNP3, SNP4, and SNP6 were notably higher in the SCOS group than in the control group (P < .001). These results suggest that SEPTIN12 might play a critical role in human spermatogenesis.
Nandi, Shyam Sundar; Sharma, Deepa Kailash; Deshpande, Jagadish M
2016-07-01
It is important to understand the role of cell surface receptors in susceptibility to infectious diseases. CD155 a member of the immunoglobulin super family, serves as the poliovirus receptor (PVR). Heterozygous (Ala67Thr) polymorphism in CD155 has been suggested as a risk factor for paralytic outcome of poliovirus infection. The present study pertains to the development of a screening test to detect the single nucleotide (SNP) polymorphism in the CD155 gene. New primers were designed for PCR, sequencing and SNP analysis of Exon2 of CD155 gene. DNAs extracted from either whole blood (n=75) or cells from oral cavity (n=75) were used for standardization and validation of the SNP assay. DNA sequencing was used as the gold standard method. A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150) of DNA samples tested by both SNP detection assay and sequencing. The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.
CD44 Gene Polymorphisms in Breast Cancer Risk and Prognosis: A Study in North Indian Population
Tulsyan, Sonam; Agarwal, Gaurav; Lal, Punita; Agrawal, Sushma; Mittal, Rama Devi; Mittal, Balraj
2013-01-01
Background Cell surface biomarker CD44 plays an important role in breast cancer cell growth, differentiation, invasion, angiogenesis and tumour metastasis. Therefore, we aimed to investigate the role of CD44 gene polymorphisms in breast cancer risk and prognosis in North Indian population. Materials & Methods A total of 258 breast cancer patients and 241 healthy controls were included in the case-control study for risk prediction. According to RECIST, 114 patients who received neo-adjuvant chemotherapy were recruited for the evaluation of breast cancer prognosis. We examined the association of tagging SNP (rs353639) of Hapmap Gujrati Indians in Houston (GIH population) in CD44 gene along with a significant reported SNP (rs13347) in Chinese population by genotyping using Taqman allelic discrimination assays. Statistical analysis was done using SPSS software, version 17. In-silico analysis for prediction of functional effects was done using F-SNP and FAST-SNP. Results No significant association of both the genetic variants of the CD44 gene polymorphisms was found with breast cancer risk. On performing univariate analysis with clinicopathological characteristics and treatment response, we found significant association of genotype (CT+TT) of rs13347 polymorphism with earlier age of onset (P = 0.029, OR = 0.037). However, significance was lost in multivariate analysis. For rs353639 polymorphism, significant association was seen with clinical tumour size, both at the genotypic (AC+CC) (P = 0.039, OR = 3.02) as well as the allelic (C) (P = 0.042, OR = 2.87) levels. On performing multivariate analysis, increased significance of variant genotype (P = 0.017, OR = 4.29) and allele (P = 0.025, OR = 3.34) of rs353639 was found with clinical tumour size. In-silico analysis using F-SNP, showed altered transcriptional regulation for rs353639 polymorphism. Conclusions These findings suggest that CD44 rs353639 genetic variants may have significant effect in breast cancer prognosis. However, both the polymorphisms- rs13347 and rs353639 had no effect on breast cancer susceptibility. PMID:23940692
Analysis of population structure and genetic history of cattle breeds based on high-density SNP data
USDA-ARS?s Scientific Manuscript database
Advances in single nucleotide polymorphism (SNP) genotyping microarrays have facilitated a new understanding of population structure and evolutionary history for several species. Most existing studies in livestock were based on low density SNP arrays. The first wave of low density SNP studies on cat...
Single-feature polymorphism discovery in the barley transcriptome
Rostoks, Nils; Borevitz, Justin O; Hedley, Peter E; Russell, Joanne; Mudie, Sharon; Morris, Jenny; Cardle, Linda; Marshall, David F; Waugh, Robbie
2005-01-01
A probe-level model for analysis of GeneChip gene-expression data is presented which identified more than 10,000 single-feature polymorphisms (SFP) between two barley genotypes. The method has good sensitivity, as 67% of known single-nucleotide polymorphisms (SNP) were called as SFPs. This method is applicable to all oligonucleotide microarray data, accounts for SNP effects in gene-expression data and represents an efficient and versatile approach for highly parallel marker identification in large genomes. PMID:15960806
Phetsuksiri, Benjawan; Srisungngam, Sopa; Rudeeaneksin, Janisara; Bunchoo, Supranee; Lukebua, Atchariya; Wongtrungkapun, Ruch; Paitoon, Soontara; Sakamuri, Rama Murthy; Brennan, Patrick J; Vissa, Varalakshmi
2012-01-01
Based on the discovery of three single nucleotide polymorphisms (SNPs) in Mycobacterium leprae, it has been previously reported that there are four major SNP types associated with different geographic regions around the world. Another typing system for global differentiation of M. leprae is the analysis of the variable number of short tandem repeats within the rpoT gene. To expand the analysis of geographic distribution of M. leprae, classified by SNP and rpoT gene polymorphisms, we studied 85 clinical isolates from Thai patients and compared the findings with those reported from Asian isolates. SNP genotyping by PCR amplification and sequencing revealed that all strains like those in Myanmar were SNP type 1 and 3, with the former being predominant, while in Japan, Korea, and Indonesia, the SNP type 3 was found to be more frequent. The pattern of M. leprae distribution in Thailand and Myanmar is quite similar, except that SNP type 2 was not found in Thailand. In addition, the 3-copy hexamer genotype in the rpoT gene is shared among the isolates from these two neighboring countries. On the basis of these two markers, we postulate that M. leprae in leprosy patients from Myanmar and Thailand has a common historical origin. Further differentiation among Thai isolates was possible by assessing copy numbers of the TTC sequence, a more polymorphic microsatellite locus.
Babushok, Daria V.; Xie, Hongbo M.; Roth, Jacquelyn J.; Perdigones, Nieves; Olson, Timothy S.; Cockroft, Joshua D.; Gai, Xiaowu; Perin, Juan C.; Li, Yimei; Paessler, Michele E.; Hakonarson, Hakon; Podsakoff, Gregory M.; Mason, Philip J.; Biegel, Jaclyn A.; Bessler, Monica
2013-01-01
Summary The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12.2, p<0.01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. PMID:24116929
Babushok, Daria V; Xie, Hongbo M; Roth, Jacquelyn J; Perdigones, Nieves; Olson, Timothy S; Cockroft, Joshua D; Gai, Xiaowu; Perin, Juan C; Li, Yimei; Paessler, Michele E; Hakonarson, Hakon; Podsakoff, Gregory M; Mason, Philip J; Biegel, Jaclyn A; Bessler, Monica
2014-01-01
The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12·2, P < 0·01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. © 2013 John Wiley & Sons Ltd.
Li, Su-Xia
2004-12-01
Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.
Soler, Stephan; Rittore, Cécile; Touitou, Isabelle; Philibert, Laurent
2011-02-20
From the wide range of methods currently available for genotyping, we wished to identify a quick, reliable and affordable approach for routine use in our laboratory for LTA+252 C>T SNP screening. We set up and compared three genotyping methods for SNP detection: restriction fragment length polymorphism (RFLP), tetra primer amplification refractory mutation system PCR (TPAP) and unlabeled probe melting analysis (UPMA). The SNP model used was LTA+252 C>T, a cytokine gene polymorphism that has been associated with response to treatment in rheumatoid arthritis. The study was performed using 46 samples from healthy Caucasian volunteers. Allele and genotype distribution was similar to that previously described in the same population. All three genotyping methods showed good reproducibility and are suitable for a medium scale throughput molecular platform. UPMA was the most cost effective, reliable and safe method since it required the shortest technician time, could be performed in a single closed tube and involved automatic data analysis. This work is the first to compare these three genotyping techniques and provides evidence for UPMA being the method of choice for LTA+252 C>T SNP genotyping. Copyright © 2010 Elsevier B.V. All rights reserved.
Yang, Zhe; Zhou, Lin; Wu, Li-Ming; Xie, Hai-Yang; Zhang, Feng; Zheng, Shu-Sen
2010-12-01
Histone deacetylases (HDACs) have been reported to be poor prognostic indicators in patients with cancer. However, no data are available for the role of single nucleotide polymorphism (SNP) of class I HDAC in hepato-cellular carcinoma (HCC). Therefore, we investigated the association of class I HDAC isoforms genomic polymorphisms with risk of HCC and tumor recurrence following liver transplantation (LT). One hundred and ninety-six Chinese subjects consisting of 97 HCC patients and 99 controls were enrolled in this study. Nine polymorphisms of the HDAC1, HDAC2, and HDAC3 gene (rs2530223, rs1741981, rs2547547, rs13204445, rs6568819, rs10499080, rs11741808, rs2475631, rs11391) were examined using Applied Biosystems SNaP-Shot and TaqMan technology. We found no significant difference in genotype frequencies between the HCC cases and controls. In terms of tumor recurrence following LT, patients carrying the T allele of HDAC1 SNP rs1741981 showed a favorable outcome for recurrence free survival when compared with patients homozygous for CC. In addition, the same significant trend was observed in HDAC3 SNP rs2547547. Kaplan-Meier analysis showed that the combination of the T variant allele (CT+TT) of HDAC1 SNP rs1741981 and the homozygous TT variant allele of HDAC3 SNP rs2547547 was the most favorable prognostic factor. The risk for postoperative tumor recurrence was about 2.2-fold lower for patients with this genotype combination compared with carriers of the HDAC1 SNP rs1741981 CC and HDAC3 SNP rs2547547 CT genotype combination (hazard ratio: 2.235, p=0.003). Our data suggest that combined analysis of HDAC1 SNP rs1741981 and HDAC3 SNP rs2547547 may be a potential genetic marker for HCC recurrence in LT patients.
Mullen, M P; Berry, D P; Howard, D J; Diskin, M G; Lynch, C O; Berkowicz, E W; Magee, D A; MacHugh, D E; Waters, S M
2010-12-01
Growth hormone, produced in the anterior pituitary gland, stimulates the release of insulin-like growth factor-I from the liver and is of critical importance in the control of nutrient utilization and partitioning for lactogenesis, fertility, growth, and development in cattle. The aim of this study was to discover novel polymorphisms in the bovine growth hormone gene (GH1) and to quantify their association with performance using estimates of genetic merit on 848 Holstein-Friesian AI (artificial insemination) dairy sires. Associations with previously reported polymorphisms in the bovine GH1 gene were also undertaken. A total of 38 novel single nucleotide polymorphisms (SNP) were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5' promoter, intronic, exonic, and 3' regulatory regions, encompassing approximately 7 kb of the GH1 gene. Following multiple regression analysis on all SNP, associations were identified between 11 SNP (2 novel and 9 previously identified) and milk fat and protein yield, milk composition, somatic cell score, survival, body condition score, and body size. The G allele of a previously identified SNP in exon 5 at position 2141 of the GH1 sequence, resulting in a nonsynonymous substitution, was associated with decreased milk protein yield. The C allele of a novel SNP, GH32, was associated with inferior carcass conformation. In addition, the T allele of a previously characterized SNP, GH35, was associated with decreased survival. Both GH24 (novel) and GH35 were independently associated with somatic cell count, and 3 SNP, GH21, 2291, and GH35, were independently associated with body depth. Furthermore, 2 SNP, GH24 and GH63, were independently associated with carcass fat. Results of this study further demonstrate the multifaceted influences of GH1 on milk production, fertility, and growth-related traits in cattle. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rong, E G; Yang, H; Zhang, Z W; Wang, Z P; Yan, X H; Li, H; Wang, N
2015-10-01
Methionine synthase (MTR) plays a crucial role in maintaining homeostasis of intracellular methionine, folate, and homocysteine, and its activity correlates with DNA methylation in many mammalian tissues. Our previous genomewide association study identified that 1 SNP located in the gene was associated with several wool production and quality traits in Chinese Merino. To confirm the potential involvement of the gene in sheep wool production and quality traits, we performed sheep tissue expression profiling, SNP detection, and association analysis with sheep wool production and quality traits. The semiquantitative reverse transcription PCR analysis showed that the gene was differentially expressed in skin from Merino and Kazak sheep. The sequencing analysis identified a total of 13 SNP in the gene from Chinese Merino sheep. Comparison of the allele frequencies revealed that these 13 identified SNP were significantly different among the 6 tested Chinese Merino strains ( < 0.001). Linkage disequilibrium analysis showed that SNP 3 to 11 were strongly linked in a single haplotype block in the tested population. Association analysis showed that SNP 2 to 11 were significantly associated with the average wool fiber diameter and the fineness SD and that SNP 4 to 11 were significantly associated with the CV of fiber diameter trait ( < 0.05). Single nucleotide polymorphism 2 and SNP 5 to 12 were weakly associated with wool crimp. Similarly, the haplotypes derived from these 13 identified SNP were also significantly associated with the average wool fiber diameter, fineness SD, and the CV of fiber diameter ( < 0.05). Our results suggest that is a candidate gene for sheep wool production and quality traits, and the identified SNP might be used in sheep breeding.
Dar, Sajad Ahmad; Akhter, Naseem; Haque, Shafiul; Singh, Taru; Mandal, Raju Kumar; Ramachandran, Vishnampettai Ganapathysubramanian; Bhattacharya, Sambit Nath; Banerjee, Basu Dev; Das, Shukla
2016-01-01
Pemphigus is an autoimmune blistering disorder of skin and/or mucosal surfaces characterized by intraepithelial lesions and immunoglobulin-G autoantibodies against desmogleins (proteins critical in cell-to-cell adhesion). Genetic, immunological, hormonal, and environmental factors are known to contribute to its etiology. Tumor necrosis factor-alpha (TNF-α) which plays a key role in pathogenesis of many infectious and inflammatory diseases has been found in high levels in lesional skin and sera of pemphigus patients. However, studies on association of single nucleotide polymorphism (SNP) in promoter region of TNF-α at position -308 affecting G to A transition with pemphigus has been scarce. This study was conducted to evaluate the TNF-α -308G/A SNP distribution in North Indian cohort, and to define the association between the TNF-α -308G/A SNP distribution and pemphigus, globally, by means of meta-analysis. TNF-α -308G/A SNP in pemphigus patients was investigated by cytokine genotyping using genomic DNA by PCR with sequence-specific primers. Meta-analysis of the data, including four previously published studies from other populations, was performed to generate a meaningful relationship. The results of our case-control study indicate non-significant differences between patients and controls in TNF-α -308G/A SNP. The meta-analysis also revealed that TNF-α -308G/A SNP is not associated with pemphigus risk in population at large; however, it may be contributing towards autoimmune phenomenon in pemphigus by being a part of its multi-factorial etiology. This study provides evidence that the TNF-α -308G/A polymorphism is not associated with overall pemphigus susceptibility. Nevertheless, further studies on specific ethnicity and pemphigus variants are necessary to validate the findings.
NASA Astrophysics Data System (ADS)
He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping
2010-12-01
Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.
Chen, Ying; Zhang, Zhijun; Xu, Zhi; Pu, Mengjia; Geng, Leiyu
2015-12-01
To explore the influence of interleukin-1 beta (IL1B) gene polymorphism and childhood maltreatment on antidepressant treatment. Two hundred and four patients with major depressive disorder (MDD) have received treatment with single antidepressant drugs and were followed up for 8 weeks. Hamilton depression scale-17 (HAMD-17) was used to evaluate the severity of depressive symptoms and therapeutic effect. Childhood maltreatment was assessed using Childhood Trauma Questionnaire, a 28-item Short Form (CTQ-SF). Single nucleotide polymorphism (SNP) of the IL1B gene was determined using a SNaPshot method. Correlation of rs16944 gene polymorphism with response to treatment was analyzed using Unphased 3.0.13 software. The main and interactive effects of SNP and childhood maltreatment on the antidepressant treatment were analyzed using Logistic regression analysis. No significant difference of gender, age, year of education, family history, episode time, and antidepressant agents was detected between the remitters and non-remitters. Association analysis has found that the SNP rs16944 in the IL1B AA genotype carriers antidepressant response was poorer (χ2=3.931, P=0.047). No significant difference was detected in the CTQ scores between the two groups. Genetic and environmental interaction analysis has demonstrated a significant correlation between rs16944 AA genotype and childhood maltreatment and poorer response to antidepressant treatment. The SNP rs16944 in the IL1B gene and its interaction with childhood maltreatment may influence the effect of antidepressant treatment for patients with MDD.
Krawczyk, Paweł; Kucharczyk, Tomasz; Kowalski, Dariusz M; Powrózek, Tomasz; Ramlau, Rodryg; Kalinka-Warzocha, Ewa; Winiarczyk, Kinga; Knetki-Wróblewska, Magdalena; Wojas-Krawczyk, Kamila; Kałakucka, Katarzyna; Dyszkiewicz, Wojciech; Krzakowski, Maciej; Milanowski, Janusz
2014-12-01
We presented retrospective analysis of up to five polymorphisms in TS, MTHFR and ERCC1 genes as molecular predictive markers for homogeneous Caucasian, non-squamous NSCLC patients treated with pemetrexed and platinum front-line chemotherapy. The following polymorphisms in DNA isolated from 115 patients were analyzed: various number of 28-bp tandem repeats in 5'-UTR region of TS gene, single nucleotide polymorphism (SNP) within the second tandem repeat of TS gene (G>C); 6-bp deletion in 3'-UTR region of the TS (1494del6); 677C>T SNP in MTHFR; 19007C>T SNP in ERCC1. Molecular examinations' results were correlated with disease control rate, progression-free survival (PFS) and overall survival. Polymorphic tandem repeat sequence (2R, 3R) in the enhancer region of TS gene and G>C SNP within the second repeat of 3R allele seem to be important for the effectiveness of platinum and pemetrexed in first-line chemotherapy. The insignificant shortening of PFS in 3R/3R homozygotes as compared to 2R/2R and 2R/3R genotypes were observed, while it was significantly shorter in patients carrying synchronous 3R allele and G nucleotide. The combined analysis of TS VNTR and MTHFR 677C>T SNP revealed shortening of PFS in synchronous carriers of 3R allele in TS and two C alleles in MTHFR. The strongest factors increased the risk of progression were poor PS, weight loss, anemia and synchronous presence of 3R allele and G nucleotide in the second repeat of 3R allele in TS. Moreover, lack of application of second-line chemotherapy, weight loss and poor performance status and above-mentioned genotype of TS gene increased risk of early mortality. The examined polymorphisms should be accounted as molecular predictor factors for pemetrexed- and platinum-based front-line chemotherapy in non-squamous NSCLC patients.
Li, Hong; Sun, Gui-Rong; Tian, Ya-Dong; Han, Rui-Li; Li, Guo-Xi; Kang, Xiang-Tao
2013-05-01
In the present study, a total of 860 chickens from a Gushi-Anka F2 resource population were used to evaluate the genetic effect of the gga-miR-1614-3p gene. A novel, silent, single nucleotide polymorphism (SNP, +5 C>T) was detected in the gga-miR-1614-3p gene seed region through AvaII polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR products sequencing methods. Associations between the SNP and chicken growth, meat quality and carcass traits were performed by association analysis. The results showed that the SNP was significantly associated with breast muscle shear force and leg muscle water loss rate, wing weight, liver weight and heart weight (p<0.05), and highly significantly associated with the weight of the abdominal fat (p<0.01). The secondary structure of gga-miR-1614 and the free energy were altered due to the variation predicted by the M-fold program.
SNPServer: a real-time SNP discovery tool.
Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David
2005-07-01
SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.
Lavania, M; Jadhav, R S; Turankar, R P; Chaitanya, V S; Singh, M; Sengupta, U
2013-11-01
Earlier studies indicate that genotyping of Mycobaterium leprae based on single-nucleotide polymorphisms (SNPs) is useful for analysis of the global spread of leprosy. In the present study, we investigated the diversity of M. leprae at eight SNP loci using 180 clinical isolates obtained from patients with leprosy residing mainly in Delhi and Purulia (West Bengal) regions. It was observed that the frequency of SNP type 1 and subtype D was most predominant in the Indian population. Further, the SNP type 2 subtype E was noted only from East Delhi region and SNP type 2 subtype G was noted only from the nearby areas of Hoogly district of West Bengal. These results indicate the occurrence of focal transmission of M. leprae infection and demonstrate that analysis by SNP typing has great potential to help researchers in understanding the transmission of M. leprae infection in the community. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Bungartz, Annemarie; Klaus, Marius; Mathew, Boby; Léon, Jens; Naz, Ali Ahmad
2016-03-01
The aim of the present study was to develop a new cost effective PCR based CAPS marker set using advantages of high-throughput SNP genotyping. Initially, SNP survey was made using 20 diverse barley genotypes via 9k iSelect array genotyping that resulted in 6334 polymorphic SNP markers. Principle component analysis using this marker data showed fine differentiation of barley diverse gene pool. Till this end, we developed 200 SNP derived CAPS markers distributed across the genome covering around 991cM with an average marker density of 5.09cM. Further, we genotyped 68 CAPS markers in an F2 population (Cheri×ICB181160) segregating for seed color variation in barley. Genetic mapping of seed color revealed putative linkage of single nuclear gene on chromosome 1H. These findings showed the proof of concept for the development and utility of a newer cost effective genomic tool kit to analyze broader genetic resources of barley worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.
Discovery of 100K SNP array and its utilization in sugarcane
USDA-ARS?s Scientific Manuscript database
Next generation sequencing (NGS) enable us to identify thousands of single nucleotide polymorphisms (SNPs) marker for genotyping and fingerprinting. However, the process requires very precise bioinformatics analysis and filtering process. High throughput SNP array with predefined genomic location co...
SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping.
Chang, Hsueh-Wei; Cheng, Yu-Huei; Chuang, Li-Yeh; Yang, Cheng-Hong
2010-04-08
PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2.
Demirci, F Yesim K; Manzi, Susan; Ramsey-Goldman, Rosalind; Kenney, Margaret; Shaw, Penny S; Dunlop-Thomas, Charmayne M; Kao, Amy H; Rhew, Elisa Y; Bontempo, Franklin; Kammerer, Candace; Kamboh, M Ilyas
2007-08-01
Toll-like receptors (TLR) play an important role in both adaptive and innate immunity. Variations in TLR genes have been shown to be associated with various infectious and inflammatory diseases. We investigated the association of TLR5 (Arg392Stop, rs5744168) and TLR9 (-1237T-->C, rs5743836) single nucleotide polymorphisms (SNP) with systemic lupus erythematosus (SLE) in Caucasian American subjects. We performed a case-control association study and genotyped 409 Caucasian women with SLE and 509 Caucasian healthy female controls using TaqMan allelic discrimination (rs5744168) or polymerase chain reaction-restriction fragment length polymorphism analysis (rs5743836). None of the 2 TLR SNP showed a statistically significant association with SLE risk in our cohort. Our results do not indicate a major influence of these putative functional TLR SNP on the susceptibility to (or protection from) SLE.
Pan, Zhi-Wen; Lou, Jintu; Luo, Chunfen; Yu, Linjun; Li, Ji-Cheng
2011-10-01
Hirschsprung disease (HSCR, Online Mendelian Inheritance in Man 142623) is a typical developmental disorder of the enteric nervous system in which ganglion cells fail to innervate the lower gastrointestinal tract during embryonic development. SOX10 gene is involved in the normal development of the enteric nervous system. Heterozygous SOX10 mutations have been identified in patients with syndromic HSCR. However, no mutations have been reported to date to be associated to isolated HSCR patient. We thus sought to investigate whether mutations in the SOX10 are associated with isolated HSCR in the Chinese population. Polymerase chain reaction amplification and direct sequencing were used to screen 4 exons of the SOX10 gene for mutations and polymorphisms in 104 patients with sporadic HSCR and 96 ethnically matched controls in Han Chinese populations. In this study, 4 single nucleotide polymorphisms (SNPs) were identified: SNP1: c.18C>T (GAC→GAT) in exon 2; SNP2: c.122G>T (GGC→GTC) in exon 2; SNP3: IVS2+10 (C→G) in intron 2; and SNP4: c.927T>C (CAT→CAC) in exon 4. SNP1 and SNP2 were novel described polymorphisms in the Chinese population. No SOX10 mutations were found in Han Chinese with isolated HSCR. Our results revealed that there was no association between the 4 SNPs of the SOX10 gene and HSCR. This study showed that the SOX10 gene is unlikely to be a major HSCR gene in the Chinese Han population. Copyright © 2011. Published by Elsevier Inc.
Clinical relevance of IL-6 gene polymorphism in severely injured patients
Jeremić, Vasilije; Alempijević, Tamara; Mijatović, Srđan; Šijački, Ana; Dragašević, Sanja; Pavlović, Sonja; Miličić, Biljana; Krstić, Slobodan
2014-01-01
In polytrauma, injuries that may be surgically treated under regular circumstances due to a systemic inflammatory response become life-threatening. The inflammatory response involves a complex pattern of humoral and cellular responses and the expression of related factors is thought to be governed by genetic variations. This aim of this paper is to examine the influence of interleukin (IL) 6 single nucleotide polymorphism (SNP) -174C/G and -596G/A on the treatment outcome in severely injured patients. Forty-seven severely injured patients were included in this study. Patients were assigned an Injury Severity Score. Blood samples were drawn within 24 h after admission (designated day 1) and on subsequent days (24, 48, 72 hours and 7days) of hospitalization. The IL-6 levels were determined through ELISA technique. Polymorphisms were analyzed by a method of Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR). Among subjects with different outcomes, no statistically relevant difference was found with regards to the gene IL-6 SNP-174G/C polymorphism. More than a half of subjects who died had the SNP-174G/C polymorphism, while this polymorphism was represented in a slightly lower number in survivors. The incidence of subjects without polymorphism and those with heterozygous and homozygous gene IL-6 SNP-596G/A polymorphism did not present statistically significant variations between survivors and those who died. The levels of IL-6 over the observation period did not present any statistically relevant difference among subjects without the IL-6 SNP-174 or IL-6 SNP -596 gene polymorphism and those who had either a heterozygous or a homozygous polymorphism. PMID:24856384
Zhou, Hongbin; Wu, Yinfang; Jin, Yan; Zhou, Jiesen; Zhang, Chao; Che, Luanqing; Jing, Jiyong; Chen, Zhihua; Li, Wen; Shen, Huahao
2013-10-02
Matrix metalloproteinase (MMP) family is considered to be associated with chronic obstructive pulmonary disease (COPD) pathogenesis, however, no consistent results have been provided by previous studies. In this report, we performed Meta analysis to investigate the association between four kinds of MMP single nucleotide polymorphisms (SNP, MMP1 -1607 1G/2G, MMP3 -1171 5A/6A, MMP9 -1562 C/T, MMP12 -82 A/G) and COPD risk from 21 studies including 4184 cases and 5716 controls. Both overall and subgroup association between SNP and COPD susceptibility were tested. There was no evident association between MMP polymorphisms and COPD susceptibility in general population. On the other hand, subgroup analysis suggested that MMP9 -1562 C/T polymorphism was related to COPD, as we found that C allele carriers were at lower risk in some subgroups stratified by lung function, age and genotype identification method, compared with TT homozygotes. Our results indicated the genotype TT might be one genetic risk factor of severe COPD.
Miyamoto, T; Koh, E; Tsujimura, A; Miyagawa, Y; Saijo, Y; Namiki, M; Sengoku, K
2014-04-01
Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, ten novel genes involved in human spermatogenesis, including human LRWD1, have been identified by expression microarray analysis of human testictissue. The human LRWD1 protein mediates the origin recognition complex in chromatin, which is critical for the initiation of pre-replication complex assembly in G1 and chromatin organization in post-G1 cells. The Lrwd1 gene expression is specific to the testis in mice. Therefore, we hypothesized that mutation or polymorphisms of LRWD1 participate in male infertility, especially azoospermia. To investigate whether LRWD1 gene defects are associated with azoospermia caused by SCOS and meiotic arrest (MA), mutational analysis was performed in 100 and 30 Japanese patients by direct sequencing of the coding regions, respectively. Statistical analysis was performed for patients with SCOS and MA and in 100 healthy control men. No mutations were found in LRWD1; however, three coding single-nucleotide polymorphisms (SNP1-SNP3) could be detected in the patients. The genotype and allele frequencies in SNP1 and SNP2 were notably higher in the SCOS group than in the control group (P < 0.05). These results suggest the critical role of LRWD1 in human spermatogenesis. © 2013 Blackwell Verlag GmbH.
SNP discovery through de novo deep sequencing using the next generation of DNA sequencers
USDA-ARS?s Scientific Manuscript database
The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....
Analysis of genetic diversity using SNP markers in oat
USDA-ARS?s Scientific Manuscript database
A large-scale single nucleotide polymorphism (SNP) discovery was carried out in cultivated oat using Roche 454 sequencing methods. DNA sequences were generated from cDNAs originating from a panel of 20 diverse oat cultivars, and from Diversity Array Technology (DArT) genomic complexity reductions fr...
Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun
2015-01-01
Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283
2011-01-01
Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across multiple Eucalyptus species is feasible, although strongly dependent on having a representative and sufficiently deep collection of sequences from many individuals of each target species. A higher density SNP platform will be instrumental to undertake genome-wide phylogenetic and population genomics studies and to implement molecular breeding by Genomic Selection in Eucalyptus. PMID:21492434
Standardization of PCR-RFLP analysis of nsSNP rs1468384 of NPC1L1 gene
Balgir, Praveen P.; Khanna, Divya; Kaur, Gurlovleen
2008-01-01
Niemann-Pick C1-like 1 (NPC1L1) protein, a newly identified sterol influx transporter, located at the apical membrane of the enterocyte, which may actively facilitate the uptake of cholesterol by promoting the passage of sterols across the brush border membrane of the enterocyte. It effects intestinal cholesterol absorption and intracellular transport and as such is an integral part of complex process of cholesterol homeostasis. The study of population data for the distribution of these single nucleotide polymorphisms (SNP) of NPC1L1 has lead to the identification of six non-synonymous single nucleotide polymorphisms (nsSNP). The in vitro analysis using the software MuPro and StructureSNP shows that nsSNP M510I (rs1468384), which involves A→G base pair change leads to decrease in the stability of the protein. A reproducible and a cost-effective PCR-RFLP based assay was developed to screen for the SNP among population data. This SNP has been studied in Caucasian, Asian, and African American populations. Till date, no data is available on Indian population. The distribution of M510I NPC1L1 genotype was estimated in the North Western Indian Population as a test case. The allele distribution in Indian Population differs significantly from that of other populations. The methodology thus proved to be robust enough to bring out these differences. PMID:20300301
Courivaud, Cécile; Ferrand, Christophe; Deschamps, Marina; Tiberghien, Pierre; Chalopin, Jean-Marc; Duperrier, Anne; Saas, Philippe; Ducloux, Didier
2006-01-01
Stable renal transplant recipients (RTR) display high rates of atherosclerotic events (AE). Innate immunity and especially vascular inflammation play a role in the pathogenesis of atherosclerosis. It is illustrated both by an increased occurrence of post-renal transplant cardiovascular events in patients with elevated levels of C-reactive protein and by a correlation between post-transplant AE and Toll-like receptor-4 Asp299Gly polymorphism. Here, we analyze the influence NOD2/CARD15 gene polymorphism since NOD2 can modulate macrophage pro-inflammatory activity and macrophage is present in early atherosclerotic lesions. The incidence of single nucleotide polymorphism (SNP) in the three major polymorphic region of NOD2 gene (SNP8, SNP12 and SNP13) was assessed in 182 RTR and the correlation between such polymorphism and the development of AE was analyzed. No correlation was observed between NOD2 gene polymorphism and the occurrence of AE after renal transplantation. NOD2 gene polymorphism thus does not appear to influence cardiovascular complications in RTR. PMID:16641610
Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia
2007-01-01
Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544
BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT.
Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro; Gregori, Silvia; Bacchetta, Rosa
2014-11-01
The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic SCT (allo-HSCT). We applied whole-genome analysis to investigate genetic variants-other than HLA class I and II-associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single-nucleotide polymorphisms (SNPs) in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong linkage disequilibrium between each other (R(2)=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P<0.00001 for BAT2 SNP rs11538264, and P<0.0001 for BAT3 SNP rs10484558), whereas the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs 2.6%, nominal P=1.15 × 10(-8); and adjusted P=0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent a novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT.
Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro
2014-01-01
The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We applied a whole genome analysis to investigate genetic variants - other than HLA class I and II - associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single nucleotide polymorphisms in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong Linkage Disequilibrium between each other (R2=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P < 0.00001 for BAT2 SNP rs11538264, and P < 0.0001 for BAT3 SNP rs10484558). Whereas, the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs. 2.6%, nominal P = 1.15×10−8; and adjusted P = 0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT. PMID:25111513
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
Kongchum, Pawapol; Palti, Yniv; Hallerman, Eric M; Hulata, Gideon; David, Lior
2010-08-01
Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers for susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpesvirus 3 (CyHV-3) is highly contagious and virulent in common carp (Cyprinus carpio). With the aim to develop molecular tools for breeding CyHV-3-resistant carp, we have amplified and sequenced 11 candidate genes for viral disease resistance including TLR2, TLR3, TLR4ba, TLR7, TLR9, TLR21, TLR22, MyD88, TRAF6, type I IFN and IL-1beta. For each gene, we initially cloned and sequenced PCR amplicons from 8 to 12 fish (2-3 fish per strain) from the SNP discovery panel. We then identified and evaluated putative SNPs for their polymorphisms in the SNP discovery panel and validated their usefulness for linkage analysis in a full-sib family using the SNaPshot method. Our sequencing results and phylogenetic analyses suggested that TLR3, TLR7 and MyD88 genes are duplicated in the common carp genome. We, therefore, developed locus-specific PCR primers and SNP genotyping assays for the duplicated loci. A total of 48 SNP markers were developed from PCR fragments of the 13 loci (7 single-locus and 3 duplicated genes). Thirty-nine markers were polymorphic with estimated minor allele frequencies of more than 0.1. The utility of the SNP markers was evaluated in one full-sib family and revealed that 20 markers from 9 loci segregated in a disomic and Mendelian pattern and would be useful for linkage analysis. Published by Elsevier Ltd.
Zhou, Hongfei; Diao, Mengyuan; Zhang, Mingyue
2016-08-01
The associations of ANXA11 gene polymorphisms and susceptibility to sarcoidosis have been evaluated in recent years. However, the results remain controversial, especially in different ethnicity. To assess the associations between ANXA11 and sarcoidosis, we conducted this meta-analysis. Articles were searched in MEDLINE, EMBASE and PubMed from their establishment date to August of 2014, and 4,567 sarcoidosis patients and 4,278 controls from 6 studies were included. The strength of associations was determined by ORs with 95% CIs. The associations between ANXA11 SNP rs1049550, rs2573346, rs2789679 polymorphisms and sarcoidosis risk were assessed using additive, recessive and dominant models. ANXA11 SNP rs2573346 and rs2789679 T allele conferred protection against sarcoidosis (OR: 0.664, 95% CI: 0.607-0.726 for rs2573346, and OR: 0.698, 95% CI: 0.640-0.762 for rs2789679). For SNP rs1049550, individuals carrying the ''T'' allele (TT+CT) had a nearly 46% increased risk for the development of sarcoidosis, when compared with CC homozygotes (OR: 1.461, 95% CI: 1.183-1.803) in overall population. A significant association was also found in additive model (OR: 1.477, 95% CI: 1.328-1.642 for CC vs. CT; OR: 0.610, 95% CI: 0.412-0.905 for TT vs. CC). In addition, ethnicity factors may contribute to the disease risk. The meta-analysis revealed that ''T'' allele of ANXA11 SNP rs2573346 and rs2789679 conferred protection against sarcoidosis. ''C'' allele of SNP rs1049550 may be a risk factor for sarcoidosis in overall population. Our study shows that ANXA11 closely associated with the development of sarcoidosis but further studies in different ethnicity were needed.
Gao, Guangtu; Nome, Torfinn; Pearse, Devon E; Moen, Thomas; Naish, Kerry A; Thorgaard, Gary H; Lien, Sigbjørn; Palti, Yniv
2018-01-01
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout ( Oncorhynchus mykiss ), SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL) and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway) that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU) and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1) which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup , followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs) and multi-sequence variants (MSVs). Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25). The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and heterozygosity within each population. We also provide functional annotation based on the genome position of each SNP and evaluate the use of clonal lines for filtering of PSVs and MSVs. These SNPs form a new database, which provides an important resource for a new high density SNP array design and for other SNP genotyping platforms used for genetic and genomics studies of this iconic salmonid fish species.
Kato, Hideaki; Ohata, Aya; Samukawa, Sei; Ueda, Atsuhisa; Ishigatsubo, Yoshiaki
2016-04-01
To investigate the association between single nucleotide polymorphisms (SNPs) in the adiponectin-encoding gene ADIPOQ and changes in serum lipid levels in HIV-1-infected patients after antiretroviral therapy (ART). ART-naïve HIV-1-infected patients were recruited to this prospective analysis. SNP +45 and SNP +276 genotype was determined by direct sequencing. Multivariate linear regression analysis was performed to analyse the effects of genotype, and predisposing conditions on serum total cholesterol and triglyceride in the 4 months before and after ART initiation. The study enrolled 78 patients with HIV-1-infection (73 male, five female; age range 22-67 years). HIV-1 viral load ≥5 log10 copies/ml, baseline total cholesterol ≥160 mg/dl, and CD4(+) lymphocyte count <200/µl were associated with increased serum total cholesterol levels after ART initiation. Protease inhibitor treatment and body mass index ≥25 kg/m(2) were associated with increased triglyceride levels after ART initiation. There were no significant associations between SNP +45 or SNP +276 genotype and serum total cholesterol or triglyceride levels. SNP +45 and SNP +276 genotype is not associated with changes in serum total cholesterol or triglyceride levels after ART initiation. © The Author(s) 2016.
Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.
Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu
2017-01-01
RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments.
Kurt, Ozlem; Yilmaz-Aydogan, Hulya; Uyar, Mehmet; Isbir, Turgay; Seyhan, Mehmet Fatih; Can, Ayse
2012-06-01
It has been suggested that the estrogen receptor alpha (ERα) and vitamin D receptor (VDR) genes as possibly implicated in reduced bone mineral density (BMD) in osteoporosis. The present study investigated the relation of ERα PvuII/XbaI polymorphisms and VDR FokI/TaqI polymorphisms with BMD in Turkish postmenopausal women. Eighty-one osteoporotic and 122 osteopenic postmenopausal women were recruited. For detection of the polymorphisms, polymerase chain reaction-restriction fragment lenght polymorphism techniques have been used. BMD was measured at the lumbar spine and hip by dual-energy X-ray absorptiometry. Distributions of ERα (PvuII dbSNP: rs2234693, XbaI dbSNP: rs9340799) and VDR genotypes (FokI dbSNP rs10735810, TaqI dbSNP: rs731236) were similar in study population. Although overall prevalence of osteoporosis had no association with these genotypes, the prevalence of decreased femoral neck BMD values were higher in the subjects with ERα PvuII "PP" and ERα XbaI "XX" genotypes than in those with "Pp/pp" genotypes and "xx" genotype, respectively (P < 0.05). Furthermore, subjects with VDR FokI "FF" genotype had lower BMD values of femoral neck and total hip compared to those with "Ff" genotype (P < 0.05). In the logistic regression analysis, we confirmed the presence of relationships between the VDR FokI "FF" genotypes, BMI ≤ 27.5, age ≥ 55 and the increased risk of femoral neck BMD below 0.8 value in postmenopausal women. The present data suggests that the ERα PvuII/XbaI and VDR FokI polymorphisms may contribute to the determination of bone mineral density in Turkish postmenopausal women.
Mei, C G; Gui, L S; Fu, C Z; Wang, H C; Wang, J L; Cheng, G; Zan, L S
2015-08-07
Previous studies have shown that the cell death-inducing DFF45-like effector-C (CIDEC) gene is involved in lipid storage and energy metabolism, suggesting that it is a potential candidate gene that affects body measurement traits (BMTs) and meat quality traits (MQTs). The aim of this study was to identify polymorphisms of the bovine CIDEC gene and analyze their possible associations with BMTs and MQTs in 531 randomly selected Qinchuan cattle aged between 18 and 24 months. DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism were employed to detect CIDEC single nucleotide polymorphisms (SNPs). We found five SNPs: two in exon 5 (SNP1, g.9815G>A and SNP2, g.9924C>T) and three in the 3'-untranslated region (SNP3, g.13281C>T; SNP4, g.13297A>G; and SNP5, g.13307G>A). SNP1 was a missense mutation that resulted in an arginine to glutamine amino acid change, and exhibited two genotypes (GG and AG). SNP2 was a synonymous mutation that exhibited three genotypes (CC, CT, and TT). SNP3, 4, and 5 were completely linked, and only exhibited two genotypes (CC-AA-GG and CT-AG-GA). We found significant associations between these polymorphisms and BMTs and MQTs (P < 0.05); GG, CT, and CT-AG-GA appeared to be the most beneficial genotypes. Therefore, CIDEC may affect BMTs and MQTs in Qinchuan cattle, and could be used in marker-assisted selection.
Analysis of high-order SNP barcodes in mitochondrial D-loop for chronic dialysis susceptibility.
Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei
2016-10-01
Positively identifying disease-associated single nucleotide polymorphism (SNP) markers in genome-wide studies entails the complex association analysis of a huge number of SNPs. Such large numbers of SNP barcode (SNP/genotype combinations) continue to pose serious computational challenges, especially for high-dimensional data. We propose a novel exploiting SNP barcode method based on differential evolution, termed IDE (improved differential evolution). IDE uses a "top combination strategy" to improve the ability of differential evolution to explore high-order SNP barcodes in high-dimensional data. We simulate disease data and use real chronic dialysis data to test four global optimization algorithms. In 48 simulated disease models, we show that IDE outperforms existing global optimization algorithms in terms of exploring ability and power to detect the specific SNP/genotype combinations with a maximum difference between cases and controls. In real data, we show that IDE can be used to evaluate the relative effects of each individual SNP on disease susceptibility. IDE generated significant SNP barcode with less computational complexity than the other algorithms, making IDE ideally suited for analysis of high-order SNP barcodes. Copyright © 2016 Elsevier Inc. All rights reserved.
Genetic polymorphisms for estimating risk of atrial fibrillation: a literature-based meta-analysis
Smith, J. Gustav; Almgren, Peter; Engström, Gunnar; Hedblad, Bo; Platonov, Pyotr G.; Newton-Cheh, Christopher; Melander, Olle
2013-01-01
Objectives Genome-wide association studies have recently identified genetic polymorphisms associated with common, etiologically complex diseases, for which direct-to-consumer genetic testing with provision of absolute genetic risk estimates is marketed by commercial companies. Polymorphisms associated with atrial fibrillation (AF) have shown relatively large risk estimates but the robustness of such estimates across populations and study designs has not been studied. Design A systematic literature review with meta-analysis and assessment of between-study heterogeneity was performed for single nucleotide polymorphisms (SNPs) in the six genetic regions associated with AF in genome-wide or candidate gene studies. Results Data from 18 samples of European ancestry (n=12,100 cases; 115,702 controls) were identified for the SNP on chromosome 4q25 (rs220733), 16 samples (n=12,694 cases; 132,602 controls) for the SNP on 16q22 (rs2106261) and 4 samples (n=5,272 cases; 59,725 controls) for the SNP in KCNH2 (rs1805123). Only the discovery studies were identified for SNPs on 1q21 and in GJA5 and IL6R, why no meta-analyses were performed for those SNPs. In overall random-effects meta-analyses, association with AF was observed for both SNPs from genome-wide studies on 4q25 (OR 1.67, 95% CI=1.50–1.86, p=2×10−21) and 16q22 (OR 1.21, 95% CI=1.13–1.29, p=1×10−8), but not the SNP in KCNH2 from candidate gene studies (p=0.15). There was substantial effect heterogeneity across case-control and cross-sectional studies for both polymorphisms (I2=0.50–0.78, p<0.05), but not across prospective cohort studies (I2=0.39, p=0.15). Both polymorphisms were robustly associated with AF for each study design individually (p<0.05). Conclusions In meta-analyses including up to 150,000 individuals, polymorphisms in two genetic regions were robustly associated with AF across all study designs but with substantial context-dependency of risk estimates. PMID:22690879
Arenillas, Leonor; Mallo, Mar; Ramos, Fernando; Guinta, Kathryn; Barragán, Eva; Lumbreras, Eva; Larráyoz, María-José; De Paz, Raquel; Tormo, Mar; Abáigar, María; Pedro, Carme; Cervera, José; Such, Esperanza; José Calasanz, María; Díez-Campelo, María; Sanz, Guillermo F; Hernández, Jesús María; Luño, Elisa; Saumell, Sílvia; Maciejewski, Jaroslaw; Florensa, Lourdes; Solé, Francesc
2013-12-01
Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients. Copyright © 2013 Wiley Periodicals, Inc.
SNP Discovery and Linkage Map Construction in Cultivated Tomato
Shirasawa, Kenta; Isobe, Sachiko; Hirakawa, Hideki; Asamizu, Erika; Fukuoka, Hiroyuki; Just, Daniel; Rothan, Christophe; Sasamoto, Shigemi; Fujishiro, Tsunakazu; Kishida, Yoshie; Kohara, Mitsuyo; Tsuruoka, Hisano; Wada, Tsuyuko; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi
2010-01-01
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/. PMID:21044984
Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.
2015-01-01
P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416
Onel, K B; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, M K; Onel, K
2009-01-01
The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE.
Loan, Huynh Thi Phuong; Muráni, Eduard; Maak, Steffen; Ponsuksili, Siriluck; Wimmers, Klaus
2014-03-01
The UBX domain containing protein 1-like gene (UBXN1) promotes the protein degradation that affects meat quality, in particular traits related to water holding capacity. The aim of our study was to identify UBXN1 polymorphisms and to analyse their association with meat quality traits. Moreover, the relationship of UBXN1 polymorphisms and its transcript abundance as well as the link between UBXN1 expression and water holding capacity were addressed. Pigs of the breed German landrace (GL) and the commercial crossbreed of Pietrain × [German large white × GL] (PiF1) were used for this study. In GL, the novel SNP c.355 C > T showed significant association with conductivity and drip loss (P ≤ 0.05). Another SNP at nt 674 of the coding sequence [SNP c.674C>T (p.Thr225Ile)] was associated with drip loss (P ≤ 0.05) and pH1 (P ≤ 0.1). In PiF1, the SNP UBXN1 c.674C>T was associated with conductivity (P ≤ 0.01). Moreover, the haplotype combinations showed effects on conductivity within both commercial populations at P ≤ 0.1. In both populations, high expression of UBXN1 tended to decrease water holding capacity in the early post mortem period. The analysis of triangular relationship of UBXN1 polymorphism, transcript abundance, and water holding capacity evidences the existence of a causal polymorphism in cis-regulatory regions of UBXN1 that influences its expression.
Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C
2015-07-01
To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal cytogenetic results. Recommended recurrent pregnancy loss screening was unnecessary in almost half the patients in our study. II.
Analysis of single nucleotide polymorphisms in case-control studies.
Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer
2011-01-01
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.
Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R. K.; Singh, N. K.; Singh, Rakesh
2013-01-01
Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis. PMID:24367635
Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng
2015-01-01
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559
Lijavetzky, Diego; Cabezas, José Antonio; Ibáñez, Ana; Rodríguez, Virginia; Martínez-Zapater, José M
2007-01-01
Background Single-nucleotide polymorphisms (SNPs) are the most abundant type of DNA sequence polymorphisms. Their higher availability and stability when compared to simple sequence repeats (SSRs) provide enhanced possibilities for genetic and breeding applications such as cultivar identification, construction of genetic maps, the assessment of genetic diversity, the detection of genotype/phenotype associations, or marker-assisted breeding. In addition, the efficiency of these activities can be improved thanks to the ease with which SNP genotyping can be automated. Expressed sequence tags (EST) sequencing projects in grapevine are allowing for the in silico detection of multiple putative sequence polymorphisms within and among a reduced number of cultivars. In parallel, the sequence of the grapevine cultivar Pinot Noir is also providing thousands of polymorphisms present in this highly heterozygous genome. Still the general application of those SNPs requires further validation since their use could be restricted to those specific genotypes. Results In order to develop a large SNP set of wide application in grapevine we followed a systematic re-sequencing approach in a group of 11 grape genotypes corresponding to ancient unrelated cultivars as well as wild plants. Using this approach, we have sequenced 230 gene fragments, what represents the analysis of over 1 Mb of grape DNA sequence. This analysis has allowed the discovery of 1573 SNPs with an average of one SNP every 64 bp (one SNP every 47 bp in non-coding regions and every 69 bp in coding regions). Nucleotide diversity in grape (π = 0.0051) was found to be similar to values observed in highly polymorphic plant species such as maize. The average number of haplotypes per gene sequence was estimated as six, with three haplotypes representing over 83% of the analyzed sequences. Short-range linkage disequilibrium (LD) studies within the analyzed sequences indicate the existence of a rapid decay of LD within the selected grapevine genotypes. To validate the use of the detected polymorphisms in genetic mapping, cultivar identification and genetic diversity studies we have used the SNPlex™ genotyping technology in a sample of grapevine genotypes and segregating progenies. Conclusion These results provide accurate values for nucleotide diversity in coding sequences and a first estimate of short-range LD in grapevine. Using SNPlex™ genotyping we have shown the application of a set of discovered SNPs as molecular markers for cultivar identification, linkage mapping and genetic diversity studies. Thus, the combination a highly efficient re-sequencing approach and the SNPlex™ high throughput genotyping technology provide a powerful tool for grapevine genetic analysis. PMID:18021442
Dettogni, Raquel Spinassé; Sá, Ricardo Tristão; Tovar, Thaís Tristão; Louro, Iúri Drumond
2013-08-01
Mapping single nucleotide polymorphisms (SNPs) in genes potentially involved in immune responses may help understand the pathophysiology of infectious diseases in specific geographical regions. In this context, we have aimed to analyze the frequency of immunogenetic markers, focusing on genes CD209 (SNP -336A/G), FCγRIIa (SNP -131H/R), TNF-α (SNP -308A/G) and VDR (SNP Taq I) in two populations of the Espirito Santo State (ES), Brazil: general and Pomeranian populations. Peripheral blood genomic DNA was extracted from one hundred healthy individuals of the general population and from 59 Pomeranians. Polymorphic variant identification was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). SNP genotype frequencies were in Hardy-Weinberg Equilibrium. There was no statistically significant difference in allelic and genotypic distributions between the two populations studied. Statistically significant differences were observed for SNP genotype distribution in genes CD209, TNF-α and VDR when comparing the ES populations with other Brazilian populations. This is the first report of CD209, FcγRIIa, TNF-α and VDR allelic frequencies for the general and Pomeranian populations of ES.
A meta-analysis of Th2 pathway genetic variants and risk for allergic rhinitis.
Bunyavanich, Supinda; Shargorodsky, Josef; Celedón, Juan C
2011-06-01
There is a significant genetic contribution to allergic rhinitis (AR). Genetic association studies for AR have been performed, but varying results make it challenging to decipher the overall potential effect of specific variants. The Th2 pathway plays an important role in the immunological development of AR. We performed meta-analyses of genetic association studies of variants in Th2 pathway genes and AR. PubMed and Phenopedia were searched by double extraction for original studies on Th2 pathway-related genetic polymorphisms and their associations with AR. A meta-analysis was conducted on each genetic polymorphism with data meeting our predetermined selection criteria. Analyses were performed using both fixed and random effects models, with stratification by age group, ethnicity, and AR definition where appropriate. Heterogeneity and publication bias were assessed. Six independent studies analyzing three candidate polymorphisms and involving a total of 1596 cases and 2892 controls met our inclusion criteria. Overall, the A allele of IL13 single nucleotide polymorphism (SNP) rs20541 was associated with increased odds of AR (estimated OR=1.2; 95% CI 1.1-1.3, p-value 0.004 in fixed effects model, 95% CI 1.0-1.5, p-value 0.056 in random effects model). The A allele of rs20541 was associated with increased odds of AR in mixed age groups using both fixed effects and random effects modeling. IL13 SNP rs1800925 and IL4R SNP 1801275 did not demonstrate overall associations with AR. We conclude that there is evidence for an overall association between IL13 SNP rs20541 and increased risk of AR, especially in mixed-age populations. © 2011 John Wiley & Sons A/S.
Bai, Xianan; Xie, Jingjing; Sun, Shanshan; Zhang, Xianyu; Jiang, Yongdong; Pang, Da
2017-01-01
Background Cytochrome P450 (CYP) 1A2 and CYP3A4 may play a role in the differentiation of clinical outcomes among breast cancer women. This study aimed to analyze the association of genetic polymorphisms in the CYP1A2 and CYP3A4 genes with clinicopathological features, protein expression and prognosis of breast cancer in the northern Chinese population. Results Firstly, SNP rs11636419, rs17861162 and rs2470890 in the CYP1A2 were significantly associated with age and menstruation status. And SNP rs11636419 and rs17861162 were associated with the P53 status. Secondly, SNP rs2470890 was correlated with CYP1A2 protein expression under the co-dominant and dominant model (P = 0.017, P = 0.006, respectively). Thirdly, for SNP rs2470890, the Kaplan–Meier 5 year survival curves showed that patients carrying genotypes CT or TT had a worse OS compared with the genotype CC carriers under both codominant and dominant model (P < 0.001, P < 0.001, respectively). Materials and Methods Four single nucleotide polymorphisms (SNPs) were successfully genotyped in 459 breast cancer patients using the SNaPshot method. The associations of four polymorphisms with protein expression and clinicopathological characteristics were evaluated by Pearson's chi-square test. The Cox hazard regression analysis and Kaplan–Meier survival analysis were performed to evaluate the relationship between the SNPs and overall survival (OS) of breast cancer. Conclusions CYP1A2 rs2470890 was significantly associated with the prognosis of patients with breast cancer and could serve as an independent impact factor of prognosis of breast carcinoma. PMID:28418906
Dereeper, Alexis; Nicolas, Stéphane; Le Cunff, Loïc; Bacilieri, Roberto; Doligez, Agnès; Peros, Jean-Pierre; Ruiz, Manuel; This, Patrice
2011-05-05
High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats. Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.SNiPlay is available at: http://sniplay.cirad.fr/.
Efficient selection of tagging single-nucleotide polymorphisms in multiple populations.
Howie, Bryan N; Carlson, Christopher S; Rieder, Mark J; Nickerson, Deborah A
2006-08-01
Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.
Polymorphism of MDM2 promoter 309 (rs 2279744) and the risk of PCOS.
Chan, Ying; Jiang, Hongguo; Yang, Xiaoling; Li, Dongya; Ma, Lan; Luo, Ying; Tang, Wenru
2016-01-01
This study aimed at evaluating possible association between MDM2 SNP309 polymorphism (rs 2279744) and polycystic ovary syndrome (PCOS). One hundred and twenty-five women with PCOS and two hundred and fifty women without PCOS were collected from the department of reproductive medicine of college hospital in this case-control study. Peripheral blood samples were collected from all participants and DNA was extracted, MDM2 SNP309 polymorphism (rs 2279744) was determined from the 125 cases and 250 controls. Women were grouped into PCOS (n = 125) group and control group (n = 250). Odds ratios (OR) and 95% confidence intervals (CI) were used to evaluate the association between MDM2 SNP309 polymorphism (rs 2279744) and PCOS. The distribution of T allele was significant higher in PCOS cases than controls. MDM2 SNP 309 T allele is associated with PCOS.
Ruan, Li; Zhu, Jian-guo; Pan, Cong; Hua, Xing; Yuan, Dong-bo; Li, Zheng-ming; Zhong, Wei-de
2015-01-01
Background. The aim of the study was to investigate the association between single nucleotide polymorphism (SNP) of vitamin D receptor (VDR) gene and clinical progress of benign prostatic hyperplasia (BPH) in Chinese men. Methods. The DNA was extracted from blood of 200 BPH patients with operation (progression group) and 200 patients without operation (control group), respectively. The genotypes of VDR gene FokI SNP represented by “F/f” were identified by PCR-restriction fragment length polymorphism. The odds ratio (OR) of having progression of BPH for having the genotype were calculated. Results. Our date indicated that the f alleles of the VDR gene FokI SNP associated with the progression of BPH (P = 0.009). Conclusion. For the first time, our study demonstrated that VDR gene FokI SNP may be associated with the risk of BPH progress. PMID:25685834
Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter
2014-09-28
New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.
Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing
Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele
2007-01-01
Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300
Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA
Watson, Claire L.; Lockwood, Diana N. J.
2009-01-01
Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306
Fontanesi, L; Galimberti, G; Calò, D G; Fronza, R; Martelli, P L; Scotti, E; Colombo, M; Schiavo, G; Casadio, R; Buttazzoni, L; Russo, V
2012-08-01
Combining different approaches (resequencing of portions of 54 obesity candidate genes, literature mining for pig markers associated with fat deposition or related traits in 77 genes, and in silico mining of porcine expressed sequence tags and other sequences available in databases), we identified and analyzed 736 SNP within candidate genes to identify markers associated with back fat thickness (BFT) in Italian Large White sows. Animals were chosen using a selective genotyping approach according to their EBV for BFT (276 with most negative and 279 with most positive EBV) within a population of ≈ 12,000 pigs. Association analysis between the SNP and BFT has been carried out using the MAX test proposed for case-control studies. The designed assays were successful for 656 SNP: 370 were excluded (low call rate or minor allele frequency <5%), whereas the remaining 286 in 212 genes were taken for subsequent analyses, among which 64 showed a P(nominal) value <0.1. To deal with the multiple testing problem in a candidate gene approach, we applied the proportion of false positives (PFP) method. Thirty-eight SNP were significant (P(PFP) < 0.20). The most significant SNP was the IGF2 intron3-g.3072G>A polymorphism (P(nominal) < 1.0E-50). The second most significant SNP was the MC4R c.1426A>G polymorphism (P(nominal) = 8.0E-05). The third top SNP (P(nominal) = 6.2E-04) was the intronic TBC1D1 g.219G>A polymorphic site, in agreement with our previous results obtained in an independent study. The list of significant markers also included SNP in additional genes (ABHD16A, ABHD5, ACP2, ALMS1, APOA2, ATP1A2, CALR, COL14A1, CTSF, DARS, DECR1, ENPP1, ESR1, GH1, GHRL, GNMT, IKBKB, JAK3, MTTP, NFKBIA, NT5E, PLAT, PPARG, PPP2R5D, PRLR, RRAGD, RFC2, SDHD, SERPINF1, UBE2H, VCAM1, and WAT). Functional relationships between genes were obtained using the Ingenuity Pathway Analysis (IPA) Knowledge Base. The top scoring pathway included 19 genes with a P(nominal) < 0.1, 2 of which (IKBKB and NFKBIA) are involved in the hypothalamic IKKβ/NFκB program that could represent a key axis to affect fat deposition traits in pigs. These results represent a starting point to plan marker-assisted selection in Italian Large White nuclei for BFT. Because of similarities between humans and pigs, this study might also provide useful clues to investigate genetic factors affecting human obesity.
Onel, KB; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, MK; Onel, K
2009-01-01
The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE. PMID:19074170
Huang, Zhen; Peng, Gary; Liu, Xunjia; Deora, Abhinandan; Falk, Kevin C.; Gossen, Bruce D.; McDonald, Mary R.; Yu, Fengqun
2017-01-01
Clubroot, caused by Plasmodiophora brassicae, is an important disease of canola (Brassica napus) in western Canada and worldwide. In this study, a clubroot resistance gene (Rcr2) was identified and fine mapped in Chinese cabbage cv. “Jazz” using single-nucleotide polymorphisms (SNP) markers identified from bulked segregant RNA sequencing (BSR-Seq) and molecular markers were developed for use in marker assisted selection. In total, 203.9 million raw reads were generated from one pooled resistant (R) and one pooled susceptible (S) sample, and >173,000 polymorphic SNP sites were identified between the R and S samples. One significant peak was observed between 22 and 26 Mb of chromosome A03, which had been predicted by BSR-Seq to contain the causal gene Rcr2. There were 490 polymorphic SNP sites identified in the region. A segregating population consisting of 675 plants was analyzed with 15 SNP sites in the region using the Kompetitive Allele Specific PCR method, and Rcr2 was fine mapped between two SNP markers, SNP_A03_32 and SNP_A03_67 with 0.1 and 0.3 cM from Rcr2, respectively. Five SNP markers co-segregated with Rcr2 in this region. Variants were identified in 14 of 36 genes annotated in the Rcr2 target region. The numbers of poly variants differed among the genes. Four genes encode TIR-NBS-LRR proteins and two of them Bra019410 and Bra019413, had high numbers of polymorphic variants and so are the most likely candidates of Rcr2. PMID:28894454
Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology
Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N.; Kumar, Dibyendu
2017-01-01
Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. Results The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. Conclusions This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments. PMID:28234981
GrigoraSNPs: Optimized Analysis of SNPs for DNA Forensics.
Ricke, Darrell O; Shcherbina, Anna; Michaleas, Adam; Fremont-Smith, Philip
2018-04-16
High-throughput sequencing (HTS) of single nucleotide polymorphisms (SNPs) enables additional DNA forensic capabilities not attainable using traditional STR panels. However, the inclusion of sets of loci selected for mixture analysis, extended kinship, phenotype, biogeographic ancestry prediction, etc., can result in large panel sizes that are difficult to analyze in a rapid fashion. GrigoraSNP was developed to address the allele-calling bottleneck that was encountered when analyzing SNP panels with more than 5000 loci using HTS. GrigoraSNPs uses a MapReduce parallel data processing on multiple computational threads plus a novel locus-identification hashing strategy leveraging target sequence tags. This tool optimizes the SNP calling module of the DNA analysis pipeline with runtimes that scale linearly with the number of HTS reads. Results are compared with SNP analysis pipelines implemented with SAMtools and GATK. GrigoraSNPs removes a computational bottleneck for processing forensic samples with large HTS SNP panels. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
LD2SNPing: linkage disequilibrium plotter and RFLP enzyme mining for tag SNPs
Chang, Hsueh-Wei; Chuang, Li-Yeh; Chang, Yan-Jhu; Cheng, Yu-Huei; Hung, Yu-Chen; Chen, Hsiang-Chi; Yang, Cheng-Hong
2009-01-01
Background Linkage disequilibrium (LD) mapping is commonly used to evaluate markers for genome-wide association studies. Most types of LD software focus strictly on LD analysis and visualization, but lack supporting services for genotyping. Results We developed a freeware called LD2SNPing, which provides a complete package of mining tools for genotyping and LD analysis environments. The software provides SNP ID- and gene-centric online retrievals for SNP information and tag SNP selection from dbSNP/NCBI and HapMap, respectively. Restriction fragment length polymorphism (RFLP) enzyme information for SNP genotype is available to all SNP IDs and tag SNPs. Single and multiple SNP inputs are possible in order to perform LD analysis by online retrieval from HapMap and NCBI. An LD statistics section provides D, D', r2, δQ, ρ, and the P values of the Hardy-Weinberg Equilibrium for each SNP marker, and Chi-square and likelihood-ratio tests for the pair-wise association of two SNPs in LD calculation. Finally, 2D and 3D plots, as well as plain-text output of the results, can be selected. Conclusion LD2SNPing thus provides a novel visualization environment for multiple SNP input, which facilitates SNP association studies. The software, user manual, and tutorial are freely available at . PMID:19500380
Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar).
Houston, Ross D; Taggart, John B; Cézard, Timothé; Bekaert, Michaël; Lowe, Natalie R; Downing, Alison; Talbot, Richard; Bishop, Stephen C; Archibald, Alan L; Bron, James E; Penman, David J; Davassi, Alessandro; Brew, Fiona; Tinch, Alan E; Gharbi, Karim; Hamilton, Alastair
2014-02-06
Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection.
Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)
2014-01-01
Background Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. Results SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. Conclusions This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection. PMID:24524230
Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila
2017-04-01
Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Qing; Mei, Gui; Sun, Dongxiao; Zhang, Qin; Zhang, Yuan; Yin, Cengceng; Chen, Huiyong; Ding, Xiangdong; Liu, Jianfeng
2012-11-02
We previously localized a quantitative trait locus (QTL) on bovine chromosome 6 affecting milk production traits to a 1.5-Mb region between BMS483 and MNB-209 via genome scanning followed by fine mapping. Totally 15 genes were mapped within such linkage region through bioinformatic analysis of the cattle-human comparative map and bovine genome assembly. Of them, the UDP-glucose dehydrogenase (UGDH) was suggested as a potential positional candidate gene for milk production traits based on its corresponding physiological and biochemical functions and genetic effects. By sequencing all the coding exons and the untranslated regions in UGDH with pooled DNA of 8 sires represented the separated families detected in our previous studies, a total of ten SNPs were identified and genotyped in 1417 Holstein cows of 8 separation families. Individual SNP-based association analysis revealed 4 significant associations of SNP Ex1-1, SNP Int3-1, SNP Int5-1, and SNP Ex12-3 with milk yield (P < 0.05), and 2 significant associations of SNP Ex1-1 and SNP Ex12-3 with protein yield (P < 0.05). Furthermore, our haplotype-based association analyses indicated that haplotypes G-C-C, formed by SNP Ex12-2-SNP Int11-1-SNP Ex11-1, T-G, formed by SNP Int9-3-SNP Int9-2, and C-C, formed by SNP Int5-1-SNP Int3-1, are significantly associated with protein percentage (F=4.15; P=0.0418) and fat percentage (F=5.18~7.25; P=0.0072~0.0231). Finally, by using an in vitro expression assay, we demonstrated that the A allele of SNP Ex1-1 and T allele of SNP Ex11-1of UGDH significantly decreases the expression of UGDH by 68.0% at the RNA, and 50.1% at the protein level, suggesting that SNP Ex1-1 and Ex11-1 represent two functional polymorphisms affecting expression of UGDH and may partly contributed to the observed association of the gene with milk production traits in our samples. Taken together, our findings strongly indicate that UGDH gene could be involved in genetic variation underlying the QTL for milk production traits.
Cohort analysis of a single nucleotide polymorphism on DNA chips.
Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F
2004-11-15
A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.
TNF-308 G/A polymorphism and risk of systemic lupus erythematosus in the Polish population.
Piotrowski, Piotr; Wudarski, Mariusz; Sowińska, Anna; Olesińska, Marzena; Jagodziński, Paweł P
2015-09-01
Numerous studies have been performed with TNF-α-308 G/A (rs1800629) single nuclear polymorphism (SNP) to evaluate the risk of SLE in various ethnicities. However, the significance of TNF-α-308 G/A in both clinical and laboratory studies of the disease remains unclear. Using a high-resolution melting curve analysis, we assessed the prevalence of TNF-α-308 G/A SNP in SLE patients (n = 262) and controls (n = 528) in a Polish population. We also assessed the contribution of this SNP to various clinical symptoms and the presence of autoantibodies in SLE patients. The p-value obtained using a χ(2) test for the trend of TNF-α-308 G/A was statistically significant (ptrend = 0.0297). However, using logistic regression analysis for the presence of the HLA-DRB1*03:01 haplotype, we observed that the TNF-α-308 G/A SNP may be the DRB1*03:01-dependent risk factor of SLE in the Polish population. There was a significant contribution of TNF-α-308 A/A and A/G genotypes to arthritis OR = [2.692 (1.503-4.822, p = 0.0007, pcorr = 0.0119)] as well as renal SLE manifestation OR = [2.632 (1.575-4.397, p = 0.0002, pcorr = 0.0034)]. There was a significant association between TNF-α-308 A/A and A/G genotypes and the presence of anti-Ro antibodies (Ab) OR = 3.375(1.711-6.658, p = 0.0003, pcorr = 0.0051). However, the logistic regression analysis revealed that only renal manifestations and the presence of anti-anti-Ro antibodies remained significant after adjustment to the presence of the HLA-DRB1*03:01 haplotype. Our studies indicate that the TNF-α-308 G/A polymorphism may be a DRB1*03:01 haplotype-dependent genetic risk factor for SLE. However, this SNP was independently associated with renal manifestations and production of anti-Ro Ab.
NASA Astrophysics Data System (ADS)
Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng
2017-02-01
Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.
DNAzyme based gap-LCR detection of single-nucleotide polymorphism.
Zhou, Li; Du, Feng; Zhao, Yongyun; Yameen, Afshan; Chen, Haodong; Tang, Zhuo
2013-07-15
Fast and accurate detection of single-nucleotide polymorphism (SNP) is thought more and more important for understanding of human physiology and elucidating the molecular based diseases. A great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. However most of those methods developed to date incorporate complicated probe labeling and depend on advanced equipment. The DNAzyme based Gap-LCR detection method averts any chemical modification on probes and circumvents those problems by incorporating a short functional DNA sequence into one of LCR primers. Two kinds of exonuclease are utilized in our strategy to digest all the unreacted probes and release the DNAzymes embedded in the LCR product. The DNAzyme applied in our method is a versatile tool to report the result of SNP detection in colorimetric or fluorometric ways for different detection purposes. Copyright © 2013 Elsevier B.V. All rights reserved.
Joint Identification of Genetic Variants for Physical Activity in Korean Population
Kim, Jayoun; Kim, Jaehee; Min, Haesook; Oh, Sohee; Kim, Yeonjung; Lee, Andy H.; Park, Taesung
2014-01-01
There has been limited research on genome-wide association with physical activity (PA). This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP) markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY) was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA. PMID:25026172
Li, Jie; Chen, Yang; Mo, Sien; Nai, Donghong
2017-07-01
In order to discover the potential genetic risks associated with recurrent pregnancy loss (RPL), this meta-analysis was conducted to assess the association between CYP1A1 gene polymorphism and RPL. Studies were retrieved from the databases PubMed, Embase, HuGENet, and CNKI. Four models were then applied. Seven studies, including three datasets for the rs1048943 and five for the rs4646903 single-nucleotide polymorphism (SNP), were included in this analysis, involving 613 cases and 398 controls for the rs1048943; and 864 cases and 842 controls for the rs4646903 SNP. After comprehensive analysis, we found that rs4646903 was significantly associated with RPL [recessive (OR = 1.72, 95%CI: 1.13-2.61); codominant (CC vs TT; OR = 1.74, 95%CI: 1.12-2.71), (CC vs CT; OR = 1.67, 95%CI: 1.07-2.62) and allele analysis (OR = 1.27, 95%CI: 1.07-1.50)]. In the following subgroup analysis, a positive association was also discovered among people of Asian descent, especially South Asians. However, there was no obvious association between rs1048943 and RPL. In summary, our results suggest that CYP1A1 gene polymorphism (particularly for rs4646903) might be associated with RPL risk, especially among South Asians. Further studies are required to confirm this association. © 2017 John Wiley & Sons Ltd/University College London.
Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong
2016-01-01
Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455
Toward optimal set of single nucleotide polymorphism investigation before IVF.
Ivanov, A V; Dedul, A G; Fedotov, Y N; Komlichenko, E V
2016-10-01
At present, the patient preparation for IVF needs to undergo a series of planned tests, including the genotyping of single nucleotide polymorphism (SNP) alleles of some genes. In former USSR countries, such investigation was not included in overwhelming majority of health insurance programs and paid by patient. In common, there are prerequisites to the study of more than 50 polymorphisms. An important faced task is to determine the optimal panel for SNP genotyping in terms of price/number of SNP. During 2009-2015 in the University Hospital of St. Petersburg State University, blood samples were analyzed from 550 women with different reproductive system disorders preparing for IVF and 46 healthy women in control group. In total, 28 SNP were analyzed in the genes of thrombophilia factors, folic acid cycle, detoxification system, and the renin-angiotensin system. The method used was real-time PCR. A significant increase in the frequency of pathological alleles of some polymorphisms in patients with habitual failure of IVF was shown, compared with the control group. As a result, two options defined panels for optimal typing SNP before IVF were composed. Standard panel includes 8 SNP, 5 in thromborhilic factors, and 3 in folic acid cycle genes. They are 20210 G > A of FII gene, R506Q G > A of FV gene (mutation Leiden), -675 5G > 4G of PAI-I gene, L33P T > C of ITGB3 gene, -455 G > A of FGB gene, 667 C > T of MTHFR gene, 2756 A > G of MTR gene, and 66 A > G of MTRR gene. Extended panel of 15 SNP also includes 807 C > T of ITGA2 gene, T154M C > T of GP1BA gene, second polymorphism 1298 A > C in MTHFR gene, polymorphisms of the renin-angiotensin gene AGT M235T T > C and -1166 A > C of AGTR1 gene, polymorphisms I105V A > G and A114V C > T of detoxification system gene GSTP. The results of SNP genotyping can be adjusted for treatment tactics and IVF, and also medical support getting pregnant. The success rate of IVF is increased as the result, especially in the group with the usual failure of IVF.
A functional polymorphism of the TNF-{alpha} gene that is associated with type 2 DM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susa, Shinji; Daimon, Makoto; Sakabe, Jun-Ichi
2008-05-09
To examine the association of the tumor necrosis factor-{alpha} (TNF-{alpha}) gene region with type 2 diabetes (DM), 11 single-nucleotide polymorphisms (SNPs) of the region were analyzed. The initial study using a sample set (148 cases vs. 227 controls) showed a significant association of the SNP IVS1G + 123A of the TNF-{alpha} gene with DM (p = 0.0056). Multiple logistic regression analysis using an enlarged sample set (225 vs. 716) revealed the significant association of the SNP with DM independently of any clinical traits examined (OR: 1.49, p = 0.014). The functional relevance of the SNP were examined by the electrophoreticmore » mobility shift assays using nuclear extracts from the U937 and NIH3T3 cells and luciferase assays in these cells with Simian virus 40 promoter- and TNF-{alpha} promoter-reporter gene constructs. The functional analyses showed that YY1 transcription factor bound allele-specifically to the SNP region and, the IVS1 + 123A allele had an increase in luciferase expression compared with the G allele.« less
Zhang, Qin; Huang, Wei-Dong; Lv, Xue-Ying; Yang, Yun-Mei
2011-04-01
To investigate the association of coronary artery disease (CAD) and ischemic heart failure (IHF) with polymorphisms of the ghrelin gene in elderly Chinese patients. Fifty-six patients with ischemic heart failure, sixty patients with coronary artery disease without heart failure, and one hundred healthy control subjects participated in the study. The polymorphisms were evaluated by polymerase chain reaction, sequencing, and fragment length polymorphism analysis. Only one single nucleotide polymorphism (SNP), Leu72Met (408C/A), was observed across all samples. Gene frequencies of CC and allele frequencies of C were significantly greater in the CAD with IHF group than those in the CAD without IHF group (p=0.025, p=0.011). There was no significant association between the Leu72Met SNP with coronary artery disease risk factors. Our results suggest that a C allele at position 408 of the ghrelin gene is associated with genetic susceptibility to ischemic heart failure in Chinese elders. Copyright © 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene.
Silva, Deborah S B S; Sawitzki, Fernanda R; De Toni, Elisa C; Graebin, Pietra; Picanco, Juliane B; Abujamra, Ana Lucia; de Farias, Caroline B; Roesler, Rafael; Brunetto, Algemir L; Alho, Clarice S
2012-11-10
We aimed to investigate single nucleotide polymorphisms (SNPs) in the EWS gene breaking region in order to analyze Ewing's sarcoma susceptibility. The SNPs were investigated in a healthy subject population and in Ewing's sarcoma patients from Southern Brazil. Genotyping was performed by TaqMan® assay for allelic discrimination using Real-Time PCR. The analysis of incidence of SNPs or different SNP-arrangements revealed a higher presence of homozygote TT-rs4820804 in Ewing's sarcoma patients (p=0.02; Chi Square Test). About 300 bp from the rs4820804 SNP lies a palindromic hexamer (5'-GCTAGC-3') and three nucleotides (GTC), which were previously identified to be in close vicinity of the breakpoint junction in both EWS and FLI1 genes. This DNA segment surrounding the rs4820804 SNP is likely to indicate a breakpoint region. If the T-rs4820804 allele predisposes a DNA fragment to breakage, homozygotes (TT-rs4820804) would have double the chance of having a chromosome break, increasing the chances for a translocation to occur. In conclusion, the TT-rs4820804 EWS genotype can be associated with Ewing's sarcoma and the SNP rs4820804 can be a candidate marker to understand Ewing's sarcoma susceptibility. Copyright © 2012 Elsevier B.V. All rights reserved.
Apalasamy, Y D; Moy, F M; Rampal, S; Bulgiba, A; Mohamed, Z
2014-07-04
A genome-wide association study showed that the tagging single nucleotide polymorphism (SNP) rs7566605 in the insulin-induced gene 2 (INSIG2) was associated with obesity. Attempts to replicate this result in different populations have produced inconsistent findings. We aimed to study the association between the rs7566605 SNP with obesity and other metabolic parameters in Malaysian Malays. Anthropometric and obesity-related metabolic parameters and DNA samples were collected. We genotyped the rs7566605 polymorphism in 672 subjects using real-time polymerase chain reaction. No significant associations were found between the rs7566605 tagging SNP of INSIG2 with obesity or other metabolic parameters in the Malaysian Malay population. The INSIG2 rs7566605 SNP may not play a role in the development of obesity-related metabolic traits in Malaysian Malays.
Yuan, Youhua; Wen, Yan; You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying
2015-01-01
Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China.
USDA-ARS?s Scientific Manuscript database
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...
Xu, C; Yang, X; Wang, Y; Ding, N; Han, R; Sun, Y; Wang, Y
2017-07-01
Frequencies of two glucose transporter 1 (GLUT1) single-nucleotide polymorphisms (SNPs) (XbaI G>T and HaeIII T>C) were studied with urothelial cell carcinomas of the bladder (UCC) and 204 normal persons. And the expression of the p53, Ki67 and GLUT1 was assayed by immunohistochemistry. The frequency of the TT genotype and T allele of the XbaI G>T SNP was decreased in the patients with UCC. The frequency of the CC genotype and C allele of the HaeIII T>C SNP was decreased in the patients with UCC. The GLUT1 XbaI genotype GG was more frequent in higher tumor stage and higher tumor grade patients. In the XbaI G>T SNP, the GG genotype was significantly related to higher Remmele immunoreactive score (IRS) of Ki67 and higher IRS of GLUT1. In conclusion, the TT genotype in XbaI G>T SNP and CC genotype of HaeIII T>C SNP may have protective effect in the carcinogenesis process of UCC. In the XbaI G>T SNP, the GG genotype of was positively related to tumor proliferation, glucose metabolism, tumor grade and stage. Therefore, the variant might become a possible proliferation-related prognostic factor for UCC.
Castro-Martínez, Anna Gabriela; Sánchez-Corona, José; Vázquez-Vargas, Adriana Patricia; García-Zapién, Alejandra Guadalupe; López-Quintero, Andres; Villalpando-Velazco, Héctor Javier; Flores-Martínez, Silvia Esperanza
2018-02-28
Gestational diabetes mellitus (GDM) is a metabolically complex disease with major genetic determinants. GDM has been associated with insulin resistance and dysfunction of pancreatic beta cells, so the GDM candidate genes are those that encode proteins modulating the function and secretion of insulin, such as that for calpain 10 (CAPN10). This study aimed to assess whether single nucleotide polymorphism (SNP)-43, SNP-44, SNP-63, and the indel-19 variant, and specific haplotypes of the CAPN10 gene were associated with gestational diabetes mellitus. We studied 116 patients with gestational diabetes mellitus and 83 women with normal glucose tolerance. Measurements of anthropometric and biochemical parameters were performed. SNP-43, SNP-44, and SNP-63 were identified by polymerase chain reaction (PCR)-restriction fragment length polymorphisms, while the indel-19 variant was detected by TaqMan qPCR assays. The allele, genotype, and haplotype frequencies of the four variants did not differ significantly between women with gestational diabetes mellitus and controls. However, in women with gestational diabetes mellitus, glucose levels were significantly higher bearing the 3R/3R genotype than in carriers of the 3R/2R genotype of the indel-19 variant (p = 0.006). In conclusion, the 3R/3R genotype of the indel-19 variant of the CAPN-10 gene influenced increased glucose levels in these Mexican women with gestational diabetes mellitus.
Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, S; Jaing, C
2012-03-27
The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interimmore » report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.« less
Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias
2015-01-01
Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.
Lutkowska, Anna; Roszak, Andrzej; Lianeri, Margarita; Sowińska, Anna; Sotiri, Emianka; Jagodziński, Pawel P
2017-04-01
We studied the role of the NC_000017.10:g.38051348A>G (rs8067378) single nucleotide polymorphism (SNP) located 9.5 kb downstream of gasdermin B (GSDMB), in the development and progression of cervical squamous cell carcinomas (SCC). Using high-resolution melting curve analysis, we genotyped this SNP in patients with cervical SCC (n = 486) and controls (n = 511) from the Polish Caucasian population. Logistic regression analysis was used to adjust for the effect of confounders such as age, parity, oral contraceptive use, tobacco smoking, and menopausal status. The effect of this SNP on the expression of GSDMB was studied by reverse transcription and quantitative real-time polymerase chain reaction analysis of GSDMB transcript levels in SCC tissues. For all patients with SCC, the p trend value calculated for rs8067378 was statistically significant (p trend = 0.0019). The adjusted odds ratio for the G/G vs. A/A genotype was 1.304 (95% confidence interval 1.080-1.574, p = 0.0057) and the adjusted odds ratio for the G/A + G/G vs. A/A genotype was 1.444 (95% confidence interval 1.064-1.959, p = 0.0181). We also found a significant association of the rs8067378 SNP with tumor stages III, IV, and grade of differentiation G3, and with parity, oral contraceptive use, smoking, and women of postmenopausal age. We found increased GSDMB1 isoform transcripts in the cancerous and non-cancerous tissues from carriers of the G allele vs. carriers of the A/A genotype. The rs8067378 SNP variants may increase the expression of GSDMB and the risk of the development and progression of cervical SCC.
Tong, Steven Y C; Xie, Shirley; Richardson, Leisha J; Ballard, Susan A; Dakh, Farshid; Grabsch, Elizabeth A; Grayson, M Lindsay; Howden, Benjamin P; Johnson, Paul D R; Giffard, Philip M
2011-01-01
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.
Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi
2015-01-01
The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.
Steinbacher, Peter; Feichtinger, René G; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne
2015-01-01
PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.
Steinbacher, Peter; Feichtinger, René G.; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M.; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne
2015-01-01
PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation. PMID:25886402
Calpain-10 gene polymorphism in type 2 diabetes mellitus patients in the Gaza Strip.
Zaharna, Mazen M; Abed, Abdalla A; Sharif, Fadel A
2010-01-01
To examine the role of calpain-10 SNP-44, -43, -63 and del/ins-19 in genetic susceptibility to type 2 diabetes mellitus (T2DM) and associations with triglycerides and total cholesterol in a group of subjects residing in the Gaza Strip. Ninety-six individuals were examined: 48 T2DM patients and 48 controls. The groups were genotyped for calpain-10 SNP-44, -43, -63, and del/ins-19. Mutagenically separated polymerase chain reaction was used to examine SNP-44; del/ins-19 was examined by electrophoresis of the PCR product on agarose gel, while the restriction fragment length polymorphism method was used for SNP-43 and -63. There was evidence that the C allele at SNP-44 played a possible role in susceptibility to T2DM (p = 0.01). T2DM patients with G/A genotype were found to have higher levels of total cholesterol in comparison to those homozygous for allele 1 (G/G) in SNP-43. Total cholesterol levels increased in T2DM patients who are homozygous for del/ins-19 allele 2, in T2DM patients with the 121/221 haplotype combination, and in control subjects with the haplotype combination 111/121. SNP-44 polymorphism of the calpain-10 gene has a significant association with T2DM patients in the Gaza strip. Certain polymorphisms of calpain-10 also have associations with the levels of total cholesterol in both T2DM patients and controls. Copyright © 2010 S. Karger AG, Basel.
USDA-ARS?s Scientific Manuscript database
Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...
USDA-ARS?s Scientific Manuscript database
Objectives were to: 1) identify single nucleotide polymorphisms (SNP) located in the promoter region of the bovine heat shock protein 70 gene, and 2) evaluate associations between Hsp70 SNP and calving rates of Brahman-influenced cows. Specific primers were designed for PCR amplification of a 539 b...
Valenzuela-Muñoz, Valentina; Araya-Garay, José Miguel; Gallardo-Escárate, Cristian
2013-06-01
The California red abalone, Haliotis rufescens that belongs to the Haliotidae family, is the largest species of abalone in the world that has sustained the major fishery and aquaculture production in the USA and Mexico. This native mollusk has not been evaluated or assigned a conservation category even though in the last few decades it was heavily exploited until it disappeared in some areas along the California coast. In Chile, the red abalone was introduced in the 1970s from California wild abalone stocks for the purposes of aquaculture. Considering the number of years that the red abalone has been cultivated in Chile crucial genetic information is scarce and critical issues remain unresolved. This study reports and validates novel single nucleotide polymorphisms (SNP) markers for the red abalone H. rufescens using cDNA pyrosequencing. A total of 622 high quality SNPs were identified in 146 sequences with an estimated frequency of 1 SNP each 1000bp. Forty-five SNPs markers with functional information for gene ontology were selected. Of these, 8 were polymorphic among the individuals screened: Heat shock protein 70 (HSP70), vitellogenin (VTG), lysin, alginate lyase enzyme (AL), Glucose-regulated protein 94 (GRP94), fructose-bisphosphate aldolase (FBA), sulfatase 1A precursor (S1AP) and ornithine decarboxylase antizyme (ODC). Two additional sequences were also identified with polymorphisms but no similarities with known proteins were achieved. To validate the putative SNP markers, High Resolution Melting Analysis (HRMA) was conducted in a wild and hatchery-bred population. Additionally, SNP cross-amplifications were tested in two further native abalone species, Haliotis fulgens and Haliotis corrugata. This study provides novel candidate genes that could be used to evaluate loss of genetic diversity due to hatchery selection or inbreeding effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Wu, Linlin; Hu, Yi; Li, Dange; Jiang, Weili; Xu, Biao
2015-04-01
We investigated whether polymorphisms in the toll-like receptor genes or gene-gene interactions are associated with susceptibility to latent tuberculosis infection (LTBI) or subsequent pulmonary tuberculosis (PTB) in a Chinese population. Two matched case-control studies were undertaken. Previously reported polymorphisms in the toll-like receptors (TLRs) were compared between 422 healthy controls (HC) and 205 LTBI patients and between 205 LTBI patients and 109 PTB patients, to assess whether these polymorphisms and their interactions are associated with LTBI or PTB. A PCR-based restriction fragment length polymorphism analysis was used to detect genetic polymorphisms in the TLR genes. Nonparametric multifactor dimensionality reduction (MDR) was used to analyze the effects of interactions between complex disease genes and other genes or environmental factors. Sixteen markers in TLR1, TLR2, TLR4, TLR6, TLR8, TLR9, and TIRAP were detected. In TLR2, the frequencies of the CC genotype (OR = 2.262; 95% CI: 1.433-3.570) and C allele (OR = 1.566; 95% CI: 1.223-1.900) in single-nucleotide polymorphism (SNP) rs3804100 were significantly higher in the LTBI group than in the HC group, whereas the GA genotype of SNP rs5743708 was associated with PTB (OR = 6.087; 95% CI: 1.687-21.968). The frequencies of the GG genotype of SNP rs7873784 in TLR4 (OR = 2.136; 95% CI: 1.312-3.478) and the CC genotype of rs3764879 in TLR8 (OR = 1.982; 95% CI: 1.292-3.042) were also significantly higher in the PTB group than in the HC group. The TC genotype frequency of SNP rs5743836 in TLR9 was significantly higher in the LTBI group than in the HC group (OR = 1.664; 95% CI: 1.201-2.306). An MDR analysis of gene-gene and gene-environment interactions identified three SNPs (rs10759932, rs7873784, and rs10759931) that predicted LTBI with 84% accuracy (p = 0.0004) and three SNPs (rs3804100, rs1898830, and rs10759931) that predicted PTB with 80% accuracy (p = 0.0001). Our results suggest that genetic variation in TLR2, 4, 8 and 9, implicating TLR-related pathways affecting the innate immunity response, modulate LTBI and PTB susceptibility in Chinese.
Gil, F M M; de Camargo, G M F; Pablos de Souza, F R; Cardoso, D F; Fonseca, P D S; Zetouni, L; Braz, C U; Aspilcueta-Borquis, R R; Tonhati, H
2013-05-01
Ghrelin is a gastrointestinal hormone that acts in releasing growth hormone and influences the body general metabolism. It has been proposed as a candidate gene for traits such as growth, carcass quality, and milk production of livestock because it influences feed intake. In this context, the aim of this study was to verify the existence of polymorphisms in the ghrelin gene and their associations with milk, fat and protein yield, and percentage in water buffaloes (Bubalus bubalis). A group of 240 animals was studied. Five primer pairs were used and 11 single nucleotide polymorphisms (SNP) were found in the ghrelin gene by sequencing. The animals were genotyped for 8 SNP by PCR-RFLP. The SNP g.960G>A and g.778C>T were associated with fat yield and the SNP g.905T>C was associated with fat yield and percentage and protein percentage. These SNP are located in intronic regions of DNA and may be in noncoding RNA sites or affect transcriptional efciency. The ghrelin gene in buffaloes influences milk fat and protein synthesis. The polymorphisms observed can be used as molecular markers to assist selection. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kumar, Amit; Misra, Shubham; Kumar, Pradeep; Sagar, Ram; Gulati, Arti; Prasad, Kameshwar
2017-08-01
Stroke remains a leading cause of death and disability worldwide. Ischemic stroke (IS) accounts for around 80-85% of total stroke and is a complex polygenic multi-factorial disorder which is affected by a complex combination of vascular, environmental, and genetic factors. The study was conducted with an aim to examine the relationship of single nucleotide polymorphisms (SNPs) of PDE4D (T83C, C87T, and C45T) gene with increasing risk of IS in patients in North Indian population. In this hospital-based case-control study, 250 IS subjects and 250 age-and sex-matched control subjects were enrolled from the Neurosciences Centre, A.I.I.M.S., New Delhi, India. Deoxyribonucleic acids (DNAs) were extracted using the conventional Phenol-Chloroform isolation method. Different genotypes were determined by Polymerase chain reaction- Restriction fragment length polymorphism method. Odds ratio (OR) and 95% Confidence Interval (CI) of relationship of polymorphisms with risk of IS were calculated by conditional multivariable regression analysis. High blood pressure, low socioeconomic status, dyslipidemia, diabetes, and family history of stroke were observed to be statistically significant risk factors for IS. Multivariable adjusted analysis demonstrated a statistically significant relationship between SNP 83 of PDE4D gene polymorphism and increasing odds of IS under the dominant model of inheritance (OR, 1.59; 95% CI, 1.02 to 2.50; p value = 0.04) after adjustment of potential confounding variables. Stratified analysis on the basis of TOAST classification demonstrated a statistically significant association for increasing 2.73 times odds for developing large vessel disease stroke as compared to controls (OR, 2.73; 95% CI, 1.16 to 0.02; p value = 0.02). We did not find any significant association of SNPs (C87T and C45T) of the PDE4D gene with the risk of IS. SNP 83 of PDE4D gene may increase the risk for developing IS whereas SNP 87 and SNP45 of PDE4D may not be associated with the risk of IS in the North Indian population. Prospective cohort studies are required to corroborate these findings.
Association of the polymorphisms 292 C>T and 1304 G>A in the SLC38A4 gene with hyperglycaemia.
González-Renteria, Siblie Marbey; Loera-Castañeda, Verónica; Chairez-Hernández, Isaías; Sosa-Macias, Martha; Paniagua-Castro, Norma; Lares-Aseff, Ismael; Rodríguez-Moran, Martha; Guerrero-Romero, Fernando; Galaviz-Hernández, Carlos
2013-01-01
The SLC38A4 gene is related to system 'A' activity, which seems to be related to impaired gluconeogenesis. The objective of this study was to determine whether the 292 C>T and 1304 G>A polymorphisms of SLC38A4 gene are associated with hyperglycaemia in humans. A total of 227 individuals were enrolled in a case-control study, in which hyperglycaemia was defined by plasma glucose levels ≥95 mg/dL. Genotyping was carried out by using real-time polymerase chain reaction. The frequency of mutant alleles of SLC38A4 gene for single-nucleotide polymorphism (SNP) 1304 G>A was 23.6% and 30.2% for SNP 292 C>T. The frequency of allele T for the SNP 292 C>T in the case and control groups did not show significant differences, whereas the frequency of allele A for the SNP 1304 G>A was significantly higher in the case group than in the control group (p = 0.04). In the logistic regression analysis, the SNP 1304 G>A [odds ratio (OR) 1.78; 95%CI 1.04-3.05, p = 0.03] but not SNP 292 C>T (OR 1.41; 95%CI 0.80-2.47, p = 0.23) showed a significant association with hyperglycaemia. After adjusting by body mass index, waist circumference and triglycerides, the SNP 1304 G>A remained significantly associated with hyperglycaemia (OR 2.13; 95%CI 1.18-3.83, p = 0.03). Pair wise linkage disequilibrium showed correlation (D' > 0.82) between 292 C>T and 1304 G>A SNPs. Haplotype association with hyperglycaemia also showed significant association between both homozygous mutant alleles (A/T) and hyperglycaemia (OR 1.68; 95%CI 1.01-2.79, p = 0.048). Our results suggest that mutant allele A for SNP 1304 G>A of SLC38A4 gene is associated with hyperglycaemia. Copyright © 2012 John Wiley & Sons, Ltd.
Jiang, Rong; French, John E.; Stober, Vandy P.; Kang-Sickel, Juei-Chuan C.; Zou, Fei
2012-01-01
Background: Individual genetic variation that results in differences in systemic response to xenobiotic exposure is not accounted for as a predictor of outcome in current exposure assessment models. Objective: We developed a strategy to investigate individual differences in single-nucleotide polymorphisms (SNPs) as genetic markers associated with naphthyl–keratin adduct (NKA) levels measured in the skin of workers exposed to naphthalene. Methods: The SNP-association analysis was conducted in PLINK using candidate-gene analysis and genome-wide analysis. We identified significant SNP–NKA associations and investigated the potential impact of these SNPs along with personal and workplace factors on NKA levels using a multiple linear regression model and the Pratt index. Results: In candidate-gene analysis, a SNP (rs4852279) located near the CYP26B1 gene contributed to the 2-naphthyl–keratin adduct (2NKA) level. In the multiple linear regression model, the SNP rs4852279, dermal exposure, exposure time, task replacing foam, age, and ethnicity all were significant predictors of 2NKA level. In genome-wide analysis, no single SNP reached genome-wide significance for NKA levels (all p ≥ 1.05 × 10–5). Pathway and network analyses of SNPs associated with NKA levels were predicted to be involved in the regulation of cellular processes and homeostasis. Conclusions: These results provide evidence that a quantitative biomarker can be used as an intermediate phenotype when investigating the association between genetic markers and exposure–dose relationship in a small, well-characterized exposed worker population. PMID:22391508
Sarkar, Jayanta; Dominguez, Emily; Li, Guojun; Kusewitt, Donna F; Johnson, David G
2014-08-01
A large number of epidemiological studies have linked a common single-nucleotide polymorphism (SNP) in the human p53 gene to risk for developing a variety of cancers. This SNP encodes either an arginine or proline at position 72 (R72P) of the p53 protein, which can alter the apoptotic activity of p53 via transcriptional and non-transcriptional mechanisms. This SNP has also been reported to modulate the development of human papilloma virus (HPV)-driven cancers through differential targeting of the p53 variant proteins by the E6 viral oncoprotein. Mouse models for the p53 R72P polymorphism have recently been developed but a role for this SNP in modifying cancer risk in response to viral and chemical carcinogens has yet to be established experimentally. Here, we demonstrate that the p53 R72P polymorphism modulates the hyperprolferative, apoptotic and inflammatory phenotypes caused by expression of the HPV16 E6 and E7 oncoproteins. Moreover, the R72P SNP also modifies the carcinogenic response to the chemical carcinogen 4NQO, in the presence and absence of the HPV16 transgene. Our findings confirm several human epidemiological studies associating the codon 72 proline variant with increased risk for certain cancers but also suggest that there are tissue-specific differences in how the R72P polymorphism influences the response to environmental carcinogens. © 2013 Wiley Periodicals, Inc.
Zeron-Medina, Jorge; Wang, Xuting; Repapi, Emmanouela; Campbell, Michelle R.; Su, Dan; Castro-Giner, Francesc; Davies, Benjamin; Peterse, Elisabeth F.P.; Sacilotto, Natalia; Walker, Graeme J.; Terzian, Tamara; Tomlinson, Ian P.; Box, Neil F.; Meinshausen, Nicolai; De Val, Sarah; Bell, Douglas A.; Bond, Gareth L.
2014-01-01
SUMMARY The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans. PMID:24120139
Chan, Ying; Zhu, Baosheng; Jiang, Hongguo; Zhang, Jinman; Luo, Ying; Tang, Wenru
2016-01-01
To evaluate the association of the TP53 codon 72 (rs 1042522) alone or in combination with HDM2 SNP309 (rs 2279744) polymorphisms with human infertility and IVF outcome, we collected 1450 infertility women undergoing their first controlled ovarian stimulation for IVF treatment and 250 fertile controls in the case-control study. Frequencies, distribution, interaction of genes, and correlation with infertility and IVF outcome of clinical pregnancy were analyzed. We found a statistically significant association between TP53 codon 72 polymorphism and IVF outcome (52.10% vs. 47.40%, OR = 0.83, 95%CI:0.71-0.96, p = 0.01). No significant difference was shown between TP53 codon 72, HDM2 SNP309 polymorphisms, human infertility, and between the combination of two genes polymorphisms and the clinical pregnancy outcome of IVF. The data support C allele as a protective factor for IVF pregnancy outcome. Further researches should be focused on the mechanism of these associations.
Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Bellato, Cláudia M; Motilal, Lambert; Zhang, Dapeng
2014-01-15
Cacao (Theobroma cacao L.), the source of cocoa, is an economically important tropical crop. One problem with the premium cacao market is contamination with off-types adulterating raw premium material. Accurate determination of the genetic identity of single cacao beans is essential for ensuring cocoa authentication. Using nanofluidic single nucleotide polymorphism (SNP) genotyping with 48 SNP markers, we generated SNP fingerprints for small quantities of DNA extracted from the seed coat of single cacao beans. On the basis of the SNP profiles, we identified an assumed adulterant variety, which was unambiguously distinguished from the authentic beans by multilocus matching. Assignment tests based on both Bayesian clustering analysis and allele frequency clearly separated all 30 authentic samples from the non-authentic samples. Distance-based principle coordinate analysis further supported these results. The nanofluidic SNP protocol, together with forensic statistical tools, is sufficiently robust to establish authentication and to verify gourmet cacao varieties. This method shows significant potential for practical application.
Montanari, Sara; Saeed, Munazza; Knäbel, Mareike; Kim, YoonKyeong; Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E; Crowhurst, Ross N; Chagné, David
2013-01-01
We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.
High-throughput SNP genotyping for breeding applications in rice using the BeadXpress platform
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
Shih, P Betty; Manzi, Susan; Shaw, Penny; Kenney, Margaret; Kao, Amy H; Bontempo, Franklin; Barmada, M Michael; Kammerer, Candace; Kamboh, M Ilyas
2008-11-01
The gene coding for C-reactive protein (CRP) is located on chromosome 1q23.2, which falls within a linkage region thought to harbor a systemic lupus erythematosus (SLE) susceptibility gene. Recently, 2 single-nucleotide polymorphisms (SNP) in the CRP gene (+838, +2043) have been shown to be associated with CRP concentrations and/or SLE risk in a British family-based cohort. Our study was done to confirm the reported association in an independent population-based case-control cohort, and also to investigate the influence of 3 additional CRP tagSNP (-861, -390, +90) on SLE risk and serum CRP concentrations. DNA from 337 Caucasian women who met the American College of Rheumatology criteria for definite (n = 324) or probable (n = 13) SLE and 448 Caucasian healthy female controls was genotyped for 5 CRP tagSNP (-861, -390, +90, +838, +2043). Genotyping was performed using restriction fragment length polymorphism-polymerase chain reaction, pyrosequencing, or TaqMan assays. Serum CRP levels were measured using ELISA. Association studies were performed using the chi-squared distribution, Z-test, Fisher's exact test, and analysis of variance. Haplotype analysis was performed using EH software and the haplo.stats package in R 2.1.2. While none of the SNP were found to be associated with SLE risk individually, there was an association with the 5 SNP haplotypes (p < 0.001). Three SNP (-861, -390, +90) were found to significantly influence serum CRP level in SLE cases, both independently and as haplotypes. Our data suggest that unique haplotype combinations in the CRP gene may modify the risk of developing SLE and influence circulating CRP levels.
Xu, Jin; Lu, Zhigang; Xu, Mingming; Pan, Ling; Deng, Yi; Xie, Xiaohu; Liu, Huifen; Ding, Shixiong; Hurd, Yasmin L.; Pasternak, Gavril W.; Klein, Robert J.; Cartegni, Luca
2014-01-01
Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction. PMID:25122903
Filliol, Ingrid; Motiwala, Alifiya S.; Cavatore, Magali; Qi, Weihong; Hazbón, Manzour Hernando; Bobadilla del Valle, Miriam; Fyfe, Janet; García-García, Lourdes; Rastogi, Nalin; Sola, Christophe; Zozio, Thierry; Guerrero, Marta Inírida; León, Clara Inés; Crabtree, Jonathan; Angiuoli, Sam; Eisenach, Kathleen D.; Durmaz, Riza; Joloba, Moses L.; Rendón, Adrian; Sifuentes-Osornio, José; Ponce de León, Alfredo; Cave, M. Donald; Fleischmann, Robert; Whittam, Thomas S.; Alland, David
2006-01-01
We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis. PMID:16385065
Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease.
Martin, E R; Scott, W K; Nance, M A; Watts, R L; Hubble, J P; Koller, W C; Lyons, K; Pahwa, R; Stern, M B; Colcher, A; Hiner, B C; Jankovic, J; Ondo, W G; Allen, F H; Goetz, C G; Small, G W; Masterman, D; Mastaglia, F; Laing, N G; Stajich, J M; Ribble, R C; Booze, M W; Rogala, A; Hauser, M A; Zhang, F; Gibson, R A; Middleton, L T; Roses, A D; Haines, J L; Scott, B L; Pericak-Vance, M A; Vance, J M
2001-11-14
The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. To investigate whether the tau gene is involved in idiopathic PD. Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Family-based tests of association, calculated using asymptotic distributions. Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P =.03; SNP 9i, P =.04; and SNP 11, P =.04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P =.11, and SNP 9iii, P =.87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P =.009) and a negative association with another haplotype (P =.007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3, 9i, 9ii, and 11). This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD.
Loya Méndez, Yolanda; Reyes Leal, Gilberto; Sánchez González, Adriana; Portillo Reyes, Verónica; Reyes Ruvalcaba, David; Bojórquez Rangel, Guillermo
2014-09-28
Diabetes Mellitus (DM) type 2 is a common pathology with multifactorial etiology, which exact genetic bases remain unknown. Some studies suggest that single nucleotides polymorphisms (SNPs) in the CAPN10 gene (Locus 2q37.3) could be associated with the development of this disease, including the insertion/deletion polymorphism SNP-19 (2R→3R). The present study determined the association between the SNP-19 and the risk of developing DM type 2 in Ciudad Juarez population. For this study 107 participants were selected: 43 diabetics type 2 (cases) and 64 non diabetics with no family history of DM type 2 in first grade (control). Anthropometric studies were realized as well as lipids, lipoproteins and serum glucose biochemical profiles. The genotypification of SNP-19 was performed using peripheral blood lymphocytes DNA, polymerase chain reactions (PCR), and electrophoretic analysis in agarose gels. Once obtained the genotypic and allelic frequencies, the Hardy-Weinberg equilibrium test (GenAlEx 6.4) was also performed. Using the X² analysis it was identified the genotypic differences between cases and control with higher frequency of the homozygous genotype 3R of SNP- 19 in the cases group (0.418) compared to control group (0.265). Also, it was observed an association between genotype 2R/3R with elevated weight, body mass index, and waist and hip circumferences, but only in the diabetic group (P=< 0.05). The findings in this study suggest that SNP-19 in CAPN10 may participate in the development of DM type 2 in the studied population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
SNPConvert: SNP Array Standardization and Integration in Livestock Species.
Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra
2016-06-09
One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.
Miyake, Yoshihiro; Hitsumoto, Shinichi; Tanaka, Keiko; Arakawa, Masashi
2015-08-01
We examined the association between thymic stromal lymphopoietin (TSLP) single nucleotide polymorphisms (SNPs) and eczema in young adult Japanese women. Cases were 188 women who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC) for eczema. Controls were 565 women without eczema according to the ISAAC criteria, who had not been diagnosed with asthma, atopic eczema, and/or allergic rhinitis by a doctor and who had no asthma as defined by the European Community Respiratory Health Survey criteria and no rhinoconjunctivitis according to the ISAAC criteria. Compared with women with the TT genotype of SNP rs1837253, those with the TC or CC genotype had a significantly increased risk of eczema after adjustment for age and smoking, although this association was not significant in crude analysis. There were no relationships between SNP rs3806933 or rs2289276 and eczema. The TC and CC genotypes combined of SNP rs1837253 may be significantly positively associated with eczema.
Jiménez-Jiménez, Félix Javier; García-Martín, Elena; Alonso-Navarro, Hortensia; Martínez, Carmen; Zurdo, Martín; Turpín-Fenoll, Laura; Millán-Pascual, Jorge; Adeva-Bartolomé, Teresa; Cubo, Esther; Navacerrada, Francisco; Rojo-Sebastián, Ana; Rubio, Lluisa; Ortega-Cubero, Sara; Pastor, Pau; Calleja, Marisol; Plaza-Nieto, José Francisco; Pilo-de-la-Fuente, Belén; Arroyo-Solera, Margarita; García-Albea, Esteban; Agúndez, José A G
2017-03-01
A recent meta-analysis suggests an association between the rs11558538 single nucleotide polymorphism in the histamine-N-methyl-transferase (HNMT) gene and the risk for Parkinson's disease. Based on the possible relationship between PD and restless legs syndrome (RLS), we tried to establish whether rs11558538 SNP is associated with the risk for RLS. We studied the genotype and allelic variant frequencies of HNMT rs11558538 SNP 205 RLS patients and 410 healthy controls using a TaqMan assay. The frequencies of the HNMT rs11558538 genotypes allelic variants were similar between RLS patients and controls, and were not influenced by gender, family history of RLS, or RLS severity. RLS patients carrying the genotype rs11558538TT had an earlier age at onset, but this finding was based on three subjects only. These results suggest a lack of major association between HNMT rs11558538 SNP and the risk for RLS.
Wu, Wilfred; Clark, Erin A S; Stoddard, Gregory J; Watkins, W Scott; Esplin, M Sean; Manuck, Tracy A; Xing, Jinchuan; Varner, Michael W; Jorde, Lynn B
2013-04-25
Because of the role of inflammation in preterm birth (PTB), polymorphisms in and near the interleukin-6 gene (IL6) have been association study targets. Several previous studies have assessed the association between PTB and a single nucleotide polymorphism (SNP), rs1800795, located in the IL6 gene promoter region. Their results have been inconsistent and SNP frequencies have varied strikingly among different populations. We therefore conducted a meta-analysis with subgroup analysis by population strata to: (1) reduce the confounding effect of population structure, (2) increase sample size and statistical power, and (3) elucidate the association between rs1800975 and PTB. We reviewed all published papers for PTB phenotype and SNP rs1800795 genotype. Maternal genotype and fetal genotype were analyzed separately and the analyses were stratified by population. The PTB phenotype was defined as gestational age (GA) < 37 weeks, but results from earlier GA were selected when available. All studies were compared by genotype (CC versus CG+GG), based on functional studies.For the maternal genotype analysis, 1,165 PTBs and 3,830 term controls were evaluated. Populations were stratified into women of European descent (for whom the most data were available) and women of heterogeneous origin or admixed populations. All ancestry was self-reported. Women of European descent had a summary odds ratio (OR) of 0.68, (95% confidence interval (CI) 0.51 - 0.91), indicating that the CC genotype is protective against PTB. The result for non-European women was not statistically significant (OR 1.01, 95% CI 0.59 - 1.75). For the fetal genotype analysis, four studies were included; there was no significant association with PTB (OR 0.98, 95% CI 0.72 - 1.33). Sensitivity analysis showed that preterm premature rupture of membrane (PPROM) may be a confounding factor contributing to phenotype heterogeneity. IL6 SNP rs1800795 genotype CC is protective against PTB in women of European descent. It is not significant in other heterogeneous or admixed populations, or in fetal genotype analysis.Population structure is an important confounding factor that should be controlled for in studies of PTB.
El-Sabrout, Karim; Aggag, Sarah A.
2017-01-01
Aim: In this study, we examined parts of six growth genes (growth hormone [GH], melanocortin 4 receptor [MC4R], growth hormone receptor [GHR], phosphorglycerate mutase [PGAM], myostatin [MSTN], and fibroblast growth factor [FGF]) as specific primers for two rabbit lines (V-line, Alexandria) using nucleotide sequence analysis, to investigate association between detecting single nucleotide polymorphism (SNP) of these genes and body weight (BW) at market. Materials and Methods: Each line kits were grouped into high and low weight rabbits to identify DNA markers useful for association studies with high BW. DNA from blood samples of each group was extracted to amplify the six growth genes. SNP technique was used to study the associate polymorphism in the six growth genes and marketing BW (at 63 days) in the two rabbit lines. The purified polymerase chain reaction products were sequenced in those had the highest and lowest BW in each line. Results: Alignment of sequence data from each group revealed the following SNPs: At nucleotide 23 (A-C) and nucleotide 35 (T-G) in MC4R gene (sense mutation) of Alexandria and V-line high BW. Furthermore, we detected the following SNPs variation between the two lines: A SNP (T-C) at nucleotide 27 was identified by MC4R gene (sense mutation) and another one (A-C) at nucleotide 14 was identified by GHR gene (nonsense mutation) of Alexandria line. The results of individual BW at market (63 days) indicated that Alexandria rabbits had significantly higher BW compared with V-line rabbits. MC4R polymorphism showed significant association with high BW in rabbits. Conclusion: The results of polymorphism demonstrate the possibility to detect an association between BW in rabbits and the efficiency of the used primers to predict through the genetic specificity using the SNP of MC4R. PMID:28246458
Nakatochi, Masahiro; Ushida, Yasunori; Yasuda, Yoshinari; Yoshida, Yasuko; Kawai, Shun; Kato, Ryuji; Nakashima, Toru; Iwata, Masamitsu; Kuwatsuka, Yachiyo; Ando, Masahiko; Hamajima, Nobuyuki; Kondo, Takaaki; Oda, Hiroaki; Hayashi, Mutsuharu; Kato, Sawako; Yamaguchi, Makoto; Maruyama, Shoichi; Matsuo, Seiichi; Honda, Hiroyuki
2015-01-01
Although many single nucleotide polymorphisms (SNPs) have been identified to be associated with metabolic syndrome (MetS), there was only a slight improvement in the ability to predict future MetS by the simply addition of SNPs to clinical risk markers. To improve the ability to predict future MetS, combinational effects, such as SNP-SNP interaction, SNP-environment interaction, and SNP-clinical parameter (SNP × CP) interaction should be also considered. We performed a case-control study to explore novel SNP × CP interactions as risk markers for MetS based on health check-up data of Japanese male employees. We selected 99 SNPs that were previously reported to be associated with MetS and components of MetS; subsequently, we genotyped these SNPs from 360 cases and 1983 control subjects. First, we performed logistic regression analyses to assess the association of each SNP with MetS. Of these SNPs, five SNPs were significantly associated with MetS (P < 0.05): LRP2 rs2544390, rs1800592 between UCP1 and TBC1D9, APOA5 rs662799, VWF rs7965413, and rs1411766 between MYO16 and IRS2. Furthermore, we performed multiple logistic regression analyses, including an SNP term, a CP term, and an SNP × CP interaction term for each CP and SNP that was significantly associated with MetS. We identified a novel SNP × CP interaction between rs7965413 and platelet count that was significantly associated with MetS [SNP term: odds ratio (OR) = 0.78, P = 0.004; SNP × CP interaction term: OR = 1.33, P = 0.001]. This association of the SNP × CP interaction with MetS remained nominally significant in multiple logistic regression analysis after adjustment for either the number of MetS components or MetS components excluding obesity. Our results reveal new insight into platelet count as a risk marker for MetS.
SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.
Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H
2014-02-26
Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.
MTHFR gene polymorphism and risk of myeloid leukemia: a meta-analysis.
Dong, Song; Liu, Yueling; Chen, Jieping
2014-09-01
An increasing body of evidence has shown that the amino acid changes at position 1298 might eliminate methylenetetrahydrofolate reductase (MTHFR) enzyme activity, leading to insufficient folic acid and subsequent human chromosome breakage. Epidemiological studies have linked MTHFR single-nucleotide polymorphism (SNP) rs1801131 to myeloid leukemia risk, with considerable discrepancy in their results. We therefore were prompted to clarify this issue by use of a meta-analysis. The search terms were used to cover the possible reports in the MEDLINE, Web of Knowledge, and China National Knowledge Infrastructure (CNKI) databases. Odds ratios were estimated to assess the association of SNP rs1801131 with myeloid leukemia risk. Statistical heterogeneity was detected using the Q-statistic and I (2) metric. Subgroup analysis was performed by ethnicity, histological subtype, and Hardy-Weinberg equilibrium (HWE). This meta-analysis of eight publications with a total of 1,114 cases and 3,227 controls revealed no global association. Nor did the subgroup analysis according to histological subtype and HWE show any significant associations. However, Asian individuals who harbored the CC genotype were found to have 1.66-fold higher risk of myeloid leukemia (odds ratio, 1.66; 95 % confidence interval, 1.10 to 2.49; P h = 0.342; I (2) = 0.114). Our meta-analysis has presented evidence supporting a possible association between the CC genotype of MTHFR SNP rs1801131 and myeloid leukemia in Asian populations.
Szental, Joshua A; Baird, Paul N; Richardson, Andrea J; Islam, F M Amirul; Scholl, Hendrik P N; Charbel Issa, Peter; Holz, Frank G; Gillies, Mark; Guymer, Robyn H
2010-12-01
Recent imaging studies have suggested that macular pigment is decreased centrally in macular telangiectasia type 2 (MT2). The uptake of xanthophyll pigment into the macula is thought to be facilitated by a xanthophyll-binding protein (XBP). The Pi isoform of glutathione S-transferase (GSTP1) represents one such XBP with high binding affinity. This case-control study aimed to determine whether two common single-nucleotide polymorphisms (SNPs) of GSTP1 were associated with MT2. DNA samples from 39 cases and 21 controls were collected. Two polymorphic sites of Ile105Val and Ala114Val in exons 5 and 6 respectively, of the GSTP1 gene were analysed. Comparison of alleles and genotypes between cases and controls indicated that there were no statistically significant differences for either the Ile105Val SNP (P=0.43) or the Ala114Val SNP (P=0.85), or for any combinations; however, the homozygous at-risk genotype (GG) of the Ile105Val SNP was present in 8% of cases but absent in controls. This study found no statistically significant association between two common GSTP1 SNPs and MT2; however, a trend towards a greater frequency of the GG genotype of the Ile105Val SNP in cases is of great interest. The biological plausibility of disturbed macular pigment uptake in MT2 makes GSTP1 an excellent candidate gene. Further investigation is warranted in future studies of MT2.
Tahir, Imtiaz Mahmood; Iqbal, Tahira; Saleem, Sadaf; Perveen, Sofia; Farooqi, Aboubakker
2017-01-01
Interindividual variability in polymorphic uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) ascribed to genetic diversity is associated with relative glucuronidation level among individuals. The present research was aimed to study the effect of 2 important single nucleotide polymorphisms (SNPs; rs8330 and rs10929303) of UGT1A1 gene on glucuronidation status of acetaminophen in healthy volunteers (n = 109). Among enrolled volunteers, 54.13% were male (n = 59) and 45.87% were female (n = 50). The in vivo activity of UGT1A1 was investigated by high-performance liquid chromatography-based analysis of glucuronidation status (ie, acetaminophen and acetaminophen glucuronide) in human volunteers after oral intake of a single dose (1000 mg) of acetaminophen. The TaqMan SNP genotyping assay was used for UGT1A1 genotyping. The wild-type genotype (C/C) was observed the most frequent one for both SNPs (rs8330 and rs10929303) and associated with fast glucuronidator phenotypes. The distribution of variant genotype (G/G) for SNP rs8330 was observed in 5% of male and 8% of the female population; however, for SNP rs10929303, the G/G genotype was found in 8% of both genders. A trimodal distribution (fast, intermediate, and slow) based on phenotypes was observed. Among the male participants, the glucuronidation phenotypes were observed as 7% slow, 37% intermediate, and 56% fast glucuronidators; however, these findings for the females were slightly different as 8%, 32%, and 60% respectively. The k-statistics revealed a compelling evidence for good concordance between phenotype and genotype with a k value of 1.00 for SNP rs8330 and 0.966 for SNP rs10929303 in our population. PMID:28932176
Marvalim, Charlie; Wong, Jing Xiang Gimson; Sutiman, Natalia; Lim, Wan Teck; Tan, Shao Weng; Kanesvaran, Ravindran; Ng, Quan Sing; Jain, Amit; Ang, Mei Kim; Tan, Wan Ling; Toh, Chee Keong; Tan, Eng Huat; Chowbay, Balram
2017-03-01
The critical role of lysine demethylase 4A (KDM4A), in regulating chromatin structure and consequently in driving cellular proliferation and oncogenesis has been the focus of recent studies. Non-small-cell lung cancer (NSCLC) patients with adenocarcinoma histology who were homozygous for KDM4A single nucleotide polymorphism (SNP)-A482 (rs586339) were recently shown to have significantly worse overall survival (OS) compared with patients with the wild-type or the heterozygous genotype at this locus (hazard ratio=1.68, P=0.042). In the current study, we investigated the association between the same polymorphism with OS in our Asian NSCLC-adenocarcinoma patients comprising Chinese (N=572), Malays (N=50), and Indians (N=22). KDM4A SNP-A482 genotype status was determined by Sanger sequencing. OS was calculated from the date of diagnosis to date of death or censored at the date of last follow-up. Kaplan-Meier analysis, log-rank test, and Cox regression methods were utilized to evaluate OS outcomes. KDM4A SNP-A482 had a minor allele (C) frequency of 18.8% and a major allele (A) frequency of 81.2% in our Asian NSCLC (adenocarcinoma) patients. However, the OS in our Asian NSCLC patients homozygous for KDM4A SNP-A482 was not significantly different from those who were wild type or heterozygous at this locus [CC vs. AA/AC: median OS (95% confidence interval): 40.2 (18.7-61.6) vs. 29.6 (26.9-32.3) months; P=0.858]. The results remained statistically nonsignificant even after adjustment for epidermal growth factor receptor mutational status, suggesting that KDM4A SNP-A482 does not significantly influence OS in Asian NSCLC patients.
McCue, Molly E.; Bannasch, Danika L.; Petersen, Jessica L.; Gurr, Jessica; Bailey, Ernie; Binns, Matthew M.; Distl, Ottmar; Guérin, Gérard; Hasegawa, Telhisa; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Penedo, M. Cecilia T.; Røed, Knut H.; Ryder, Oliver A.; Swinburne, June E.; Tozaki, Teruaki; Valberg, Stephanie J.; Vaudin, Mark; Lindblad-Toh, Kerstin
2012-01-01
An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species. PMID:22253606
Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M
2008-08-19
Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. It was found that a SNP set derived from the MLST database on the basis of maximization of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.
Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M
2008-01-01
Background Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. Results It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. Conclusion A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required. PMID:18710585
Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios
2011-01-19
Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food.
Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios
2011-01-01
Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808
USDA-ARS?s Scientific Manuscript database
Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...
Common rs5918 (PlA1/A2) polymorphism in the ITGB3 gene and risk of coronary artery disease
Heidari, Mohammad Mehdi; Soheilyfar, Sorour
2016-01-01
Introduction The T to C transition at nucleotide 1565 of the human glycoprotein IIIa (ITGB3) gene represents a genetic polymorphism (PlA1/A2) that can influence both platelet activation and aggregation and that has been associated with many types of disease. Here, we present a newly designed multiplex tetra-primer amplification refractory mutation system – polymerase chain reaction (T-ARMS-PCR) for genotyping a single nucleotide polymorphism (SNP) (dbSNP ID: rs5918) in the human ITGB3 gene. Material and methods We set up T-ARMS-PCR for the rs5918 SNP in a single-step PCR and the results were validated by the PCR-RFLP method in 132 coronary artery disease (CAD) patients and 122 unrelated healthy individuals. Results Full accordance was found for genotype determination by the PCR-RFLP method. The multiple logistic regression analysis showed a significant association of the rs5918 polymorphism and CAD according to dominant and recessive models (dominant model OR: 2.40, 95% CI: 1.33–4.35; p = 0.003, recessive model OR: 4.71, 95% CI: 1.32–16.80; p = 0.0067). Conclusions Our T-ARMS-PCR in comparison with RFLP and allele-specific PCR is more advantageous because this PCR method allows the evaluation of both the wild type and the mutant allele in the same tube. Our results suggest that the rs5918 (PlA1/A2) polymorphism in the ITGB3 gene may contribute to the susceptibility of sporadic Iranian coronary artery disease (CAD) patients. PMID:28905013
Translational genomics for analysis of complex traits in peanut and sorghum
USDA-ARS?s Scientific Manuscript database
The integration of sequencing and genotype data from natural variation studies (by whole genome resequencing [wgs] or genotype by sequencing [gbs]), transcriptome (RNA-seq) and mutant analysis (also by wgs) facilitated the development of DNA markers in the form of single nucleotide polymorphic (SNP)...
SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel
Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari
2009-01-01
Background Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software. PMID:19852806
SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.
Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari
2009-10-23
Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.
[Genetic analysis of two cases with Dandy-Walker deformed fetus].
Yao, Juan; Fang, Rong; Shen, Xueping; Shen, Guosong; Zhang, Su
2017-10-10
To explore the genetic etiology of two fetuses with Dandy-Walker malformation using single nucleotide polymorphism microarray (SNP-array). The fetuses and their parents were subjected to G banding karyotype analysis. The fetuses were also subjected to SNP-array analysis. The parents of both fetuses showed a normal karyotype. One fetus has a 46,X,?i(X)(q10), while for another conventional cell culture has failed. SNP-array showed that one fetus carried a 6p25.3p25.2 microdeletion, and another carried a Xp22.33p22.2 deletion and a Yq11.221q11 duplication. The abnormal fragments have involved FOXC1, SHOX and STS genes, which are associated with Dandy-Walker malformation. Alteration of 6p25.3p25.2, Xp22.33p22.2 copy numbers probably underlies the Dandy-Walker syndrome in the fetuses. The disorder may be attributed to abnormal expression of FOXC1, SHOX, and STS genes. SNP-array can provide an important supplement for prenatal diagnosis.
Multicapillary gel electrophoresis based analysis of genetic variants in the WFS1 gene.
Elek, Zsuzsanna; Dénes, Réka; Prokop, Susanne; Somogyi, Anikó; Yowanto, Handy; Luo, Jane; Souquet, Manfred; Guttman, András; Rónai, Zsolt
2016-09-01
The WFS1 gene is one of the thoroughly investigated targets in diabetes research, variants of the gene were suggested to be the genetic components of the common forms (type 1 and type 2) of diabetes. Our project focused on the analysis of polymorphisms (rs4689388, rs148797429, rs4273545) localized in the WFS1 promoter region. Although submarine gel electrophoresis based approaches were also employed in the genetic tests, it was demonstrated that multicapillary electrophoresis offers a state of the art approach for reliable high-throughput SNP and VNTR analysis. Association studies were carried out in a case-control setup. Luciferase reporter assay was employed to test the effect of the investigated loci on the activity of gene expression in vitro. Significant association could be demonstrated between all three polymorphisms and type 2 diabetes in both allele- and genotype-wise settings even using Bonferroni correction. It is notable; however, that the three loci were in strong linkage disequilibrium, thus the observed associations cannot be considered as separate effects. Molecular analyses showed that the rs4273545 GT SNP played a role in the regulation of transcription in vitro. However, this effect took place only in the presence of the region including the rs148797429 site, although this latter locus did not have its own impact on the regulation of gene expression. The paper provides genotyping protocols readily applicable in any multiplex SNP and VNTR analyses, moreover confirms and extends previous results about the role of WFS1 polymorphisms in the genetic risk of diabetes mellitus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heat Shock70 Protein Genes and Genetic Susceptibility to Apical Periodontitis
Maheshwari, Kanwal; Silva, Renato M.; Guajardo-Morales, Leticia; Garlet, Gustavo P.; Vieira, Alexandre R.; Letra, Ariadne
2016-01-01
Introduction Heat shock proteins (HSP) protect cells under adverse conditions such as infection, inflammation, and disease. The differential expression of HSPs in human periapical granulomas suggests a potential role for these proteins in periapical lesion development, which may contribute to different clinical outcomes. Therefore, we hypothesize that polymorphisms in HSP genes leading to perturbed gene expression and protein function may contribute to an individual’s susceptibility to periapical lesion development. Methods Subjects with deep carious lesions, with or without periapical lesions (≥ 3 mm) were recruited at the University of Texas School of Dentistry at Houston and at the University of Pittsburgh. Genomic DNA samples of 400 patients were sorted into 2 groups: 183 cases with deep carious lesions and periapical lesions (cases), and 217 cases with deep carious lesions but without periapical lesions (controls). Eight single nucleotide polymorphisms in HSPA4, HSPA6, HSPA1L, HSPA4L and HSPA9 genes were selected for genotyping. Genotypes were generated by endpoint analysis using Taqman chemistry in a real-time polymerase chain reaction assay. Allele and genotype frequencies were compared among cases and controls using chi-square and Fisher Exact tests as implemented in PLINK v.1.07. In silico analysis of SNP function was performed using Polymorphism Phenotyping V2 and MirSNP softwares. Results Overall, SNPs in HSPA1L and HSPA6 showed significant allelic association with cases of deep caries and periapical lesions (P<0.05). We also observed altered transmission of HSPA1L SNP haplotypes (P=0.03). In silico analysis of HSPA1L rs2075800 function showed that this SNP results in a glutamine to lysine substitution at position 602 of the protein and might affect the stability and function of the final protein. Conclusions Variations in HSPA1L and HSPA6 may be associated with periapical lesion formation in individuals with untreated deep carious lesions. Future studies could help predict host susceptibility to developing apical periodontitis. PMID:27567034
Fariña-Sarasqueta, A; Gosens, M J E M; Moerland, E; van Lijnschoten, I; Lemmens, V E P P; Slooter, G D; Rutten, H J T; van den Brule, Adriaan J C
2011-08-01
Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5'untranslated region of the TS gene were genotyped. There was a positive association between tumor T stage and the VNTR genotypes (p = 0.05). In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival.
Fariña-Sarasqueta, A; Gosens, M J E M; Moerland, E; van Lijnschoten, I; Lemmens, V E P P; Slooter, G D; Rutten, H J T; van den Brule, A J C
2010-01-01
Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5'-untranslated region of the TS gene were genotyped. There was a positive association between tumor T stage and the VNTR genotypes (p=0.05).In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival.
Fariña-Sarasqueta, A.; Gosens, M. J. E. M.; Moerland, E.; van Lijnschoten, I.; Lemmens, V. E. P. P.; Slooter, G. D.; Rutten, H. J. T.; van den Brule, A. J. C.
2010-01-01
Aim: Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. Patients and Methods: 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5′-untranslated region of the TS gene were genotyped. Results: There was a positive association between tumor T stage and the VNTR genotypes (p=0.05). In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. Conclusion: We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival. PMID:20966539
New genetic variants associated with prostate cancer
Researchers have newly identified 23 common genetic variants -- one-letter changes in DNA known as single-nucleotide polymorphisms or SNPs -- that are associated with risk of prostate cancer. These results come from an analysis of more than 10 million SNP
Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.
Black, W C; Gorrochotegui-Escalante, N; Duteau, N M
2006-03-01
Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.
Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron
2012-01-01
Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421
Development of genetic markers in abalone through construction of a SNP database.
Kang, J-H; Appleyard, S A; Elliott, N G; Jee, Y-J; Lee, J B; Kang, S W; Baek, M K; Han, Y S; Choi, T-J; Lee, Y S
2011-06-01
In the absence of a reference genome, single-nucleotide polymorphisms (SNP) discovery in a group of abalone species was undertaken by random sequence assembly. A web-based interface was constructed, and 11 932 DNA sequences from the genus Haliotis were assembled, with 1321 contigs built. Of these, 118 contigs that consisted of at least ten annotation groups were selected. The 1577 putative SNPs were identified from the 118 contigs, with SNPs in several HSP70 gene contigs confirmed by PCR amplification of an 809-bp DNA fragment. SNPs in the HSP70 gene were compared across eight abalone species. A total of 129 polymorphic sites, including heterozygote sites within and among species, were observed. Phylogenetic analysis of the partial HSP70 gene region showed separation of the tested abalone into two groups, one reflecting the southern hemisphere species and the other the northern hemisphere species. Interestingly, Haliotis iris from New Zealand showed a closer relationship to species distributed in the northern Pacific region. Although HSP genes are known to be highly conserved among taxa, the validation of polymorphic SNPs from HSP70 in this mollusc demonstrates the applicability of cross-species SNP markers in abalone and the first step towards universal nuclear markers in Haliotis. © 2010 NFRDI, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.
Illescas, Oscar; Gomez-Verjan, Juan C; García-Velázquez, Lizbeth; Govezensky, Tzipe; Rodriguez-Sosa, Miriam
2018-01-01
Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58-0.93], P < 0.01; OR: 0.81 [0.74-0.89], P < 0.0001; and OR: 0.81 [0.76-0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57-0.095], P < 0.01; OR: 0.66 [0.48-0.92], P < 0.0154; and OR: 0.70 [0.60-0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69-0.84], P < 0.0001; OR: 0.77 [0.72-0.83], P < 0.0001; OR: 0.61 [0.44-0.83], P -value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77-0.94], P < 0.0001; OR: 0.80 [0.75-0.86], P < 0.0001; OR: 0.73 [0.63-0.85], P -value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF -173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications.
Lager, Malin; Mernelius, Sara; Löfgren, Sture; Söderman, Jan
2016-01-01
Healthcare-associated infections caused by Escherichia coli and antibiotic resistance due to extended-spectrum beta-lactamase (ESBL) production constitute a threat against patient safety. To identify, track, and control outbreaks and to detect emerging virulent clones, typing tools of sufficient discriminatory power that generate reproducible and unambiguous data are needed. A probe based real-time PCR method targeting multiple single nucleotide polymorphisms (SNP) was developed. The method was based on the multi locus sequence typing scheme of Institute Pasteur and by adaptation of previously described typing assays. An 8 SNP-panel that reached a Simpson's diversity index of 0.95 was established, based on analysis of sporadic E. coli cases (ESBL n = 27 and non-ESBL n = 53). This multi-SNP assay was used to identify the sequence type 131 (ST131) complex according to the Achtman's multi locus sequence typing scheme. However, it did not fully discriminate within the complex but provided a diagnostic signature that outperformed a previously described detection assay. Pulsed-field gel electrophoresis typing of isolates from a presumed outbreak (n = 22) identified two outbreaks (ST127 and ST131) and three different non-outbreak-related isolates. Multi-SNP typing generated congruent data except for one non-outbreak-related ST131 isolate. We consider multi-SNP real-time PCR typing an accessible primary generic E. coli typing tool for rapid and uniform type identification.
Gan, W; Song, Q; Zhang, N N; Xiong, X P; Wang, D M C; Li, L
2015-06-18
The fat mass and obesity-associated gene (FTO) is an excellent candidate gene that affects energy metabolism. Single nucleotide polymorphisms (SNPs) in FTO are associated with carcass and meat quality traits in pigs, cattle, and rabbits. The aim of this study was to investigate the association between novel SNPs in the FTO coding region and carcass and meat quality traits in 95 crossbred ducks, using DNA sequencing. We found two transitions G/A (SNP 387 and 473) within exon 3. SNP 387 was a synonymous mutation, whereas SNP 473 was a missense mutation. Association analysis suggested that SNP g.387G>A was significantly associated with all of the carcass traits measured, the intramuscular fat content (IMF), cooking yield (CY), pH values 45 min after slaughter (pH45m), drip losses from the breast muscle, and the leg muscle (P < 0.05). For SNP g.473G>A, the genotype AA exhibited greater leg muscle weight than the genotypes GG or AG (P < 0.05). The D value suggested that the two SNPs exhibited strong linkage disequilibrium. Three haplotypes (G1G2, G1A2, and A1A2) were significantly associated with IMF, CY, the a* value, and all of the carcass traits measured (P < 0.05). The results suggest that FTO is a candidate locus that affects carcass and meat quality traits in ducks.
USDA-ARS?s Scientific Manuscript database
Background: Our goal is to produce a high-throughput SNP genotyping platform for genomic analyses in rainbow trout that will enable fine mapping of QTL, whole genome association studies, genomic selection for improved aquaculture production traits, and genetic analyses of wild populations that aid ...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to identify single nucleotide polymorphisms (SNP) associated to fertility in female cows raised under a subtropical environment. Re-sequencing of 9 genes associated to GH-IGF endocrine pathway located in bovine chromosome 5, identified 75 SNP useful for associative ge...
Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei
2017-09-01
It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.
Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E.; Crowhurst, Ross N.; Chagné, David
2013-01-01
We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality. PMID:24155917
Bartz, M; Kociucka, B; Mankowska, M; Switonski, M; Szydlowski, M
2014-08-01
Pork quality depends on multiple factors, including fatty acid composition in muscle and fat tissues. The ME1 gene is a strong candidate for fat accumulation, as it encodes the malic enzyme, which is required for fatty acid synthesis. We identified seven new polymorphisms in 3'UTR of the ME1 gene and moreover confirmed the presence of 4 polymorphisms detected previously. Interestingly, the studied Duroc pigs were monomorphic at all these polymorphic sites, while in 3 other breeds (Pietrain, Polish Landrace and Polish Large White), the polymorphisms were unevenly distributed. One of the novel SNPs (c.*488A>G) was found in the Polish Large White and the Polish Landrace only, and the association studies revealed that it was significantly associated with backfat thickness and average daily weight gain in the Polish Landrace (N = 207) and the Polish Large White (N = 157). This SNP was differently associated with ME1 transcript level in muscle and backfat. The in silico analysis of another novel SNP (c.*548C>T) indicated that it is located within a binding sequence conserved among vertebrates for the miR-30 family in 3'UTR of the ME1. It was shown that in the longissimus muscle, but not in adipose tissue, CT gilts compared with CC ones had significantly lower levels of the ME1 transcript. This polymorphism, however, was not associated with production traits. Additionally, we observed that transcript level of the ME1 was significantly higher in subcutaneous fat than in the longissimus muscle, as well as both investigated tissues of the Polish Landrace when compared to the other breeds. However, no association was found between this polymorphism and fatty acid profiles. We conclude that the ME1 gene polymorphism (c.*488A>G) is a potential marker for porcine backfat thickness. © 2013 Blackwell Verlag GmbH.
A false single nucleotide polymorphism generated by gene duplication compromises meat traceability.
Sanz, Arianne; Ordovás, Laura; Zaragoza, Pilar; Sanz, Albina; de Blas, Ignacio; Rodellar, Clementina
2012-07-01
Controlling meat traceability using SNPs is an effective method of ensuring food safety. We have analyzed several SNPs to create a panel for bovine genetic identification and traceability studies. One of these was the transversion g.329C>T (Genbank accession no. AJ496781) on the cytochrome P450 17A1 gene, which has been included in previously published panels. Using minisequencing reactions, we have tested 701 samples belonging to eight Spanish cattle breeds. Surprisingly, an excess of heterozygotes was detected, implying an extreme departure from Hardy-Weinberg equilibrium (P<0.001). By alignment analysis and sequencing, we detected that the g.329C>T SNP is a false positive polymorphism, which allows us to explain the inflated heterozygotic value. We recommend that this ambiguous SNP, as well as other polymorphisms located in this region, should not be used in identification, traceability or disease association studies. Annotation of these false SNPs should improve association studies and avoid misinterpretations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua
2013-03-28
Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.
Amirian, E Susan; Scheurer, Michael E; Liu, Yanhong; D'Amelio, Anthony M; Houlston, Richard S; Etzel, Carol J; Shete, Sanjay; Swerdlow, Anthony J; Schoemaker, Minouk J; McKinney, Patricia A; Fleming, Sarah J; Muir, Kenneth R; Lophatananon, Artitaya; Bondy, Melissa L
2011-08-01
Despite extensive research on the topic, glioma etiology remains largely unknown. Exploration of potential interactions between single-nucleotide polymorphisms (SNP) of immune genes is a promising new area of glioma research. The case-only study design is a powerful and efficient design for exploring possible multiplicative interactions between factors that are independent of one another. The purpose of our study was to use this exploratory design to identify potential pair wise SNP-SNP interactions from genes involved in several different immune-related pathways for investigation in future studies. The study population consisted of two case groups: 1,224 histologic confirmed, non-Hispanic white glioma cases from the United States and a validation population of 634 glioma cases from the United Kingdom. Polytomous logistic regression, in which one SNP was coded as the outcome and the other SNP was included as the exposure, was utilized to calculate the ORs of the likelihood of cases simultaneously having the variant alleles of two different SNPs. Potential interactions were examined only between SNPs located in different genes or chromosomes. Using this data mining strategy, we found 396 significant SNP-SNP interactions among polymorphisms of immune-related genes that were present in both the U.S. and U.K. study populations. This exploratory study was conducted for the purpose of hypothesis generation, and thus has provided several new hypotheses that can be tested using traditional case-control study designs to obtain estimates of risk. This is the first study, to our knowledge, to take this novel approach to identifying SNP-SNP interactions relevant to glioma etiology. ©2011 AACR.
Kim, H; Lee, S K; Hong, M W; Park, S R; Lee, Y S; Kim, J W; Lee, H K; Jeong, D K; Song, Y H; Lee, S J
2013-12-01
The akirin 2 gene, located on chromosome 9 in cattle, was previously reported to be associated with nuclear factor-kappa B (NF-κB), involved in immune reactions and marbling of meat. To determine whether a single nucleotide polymorphism (SNP) in akirin 2 is associated with economically important traits of Korean native cattle, the c.*188G>A SNP DNA marker in the 3'-UTR region of akirin 2 was analyzed for its association with carcass weight, longissimus muscle area and marbling. The c.*188G>A SNP was genotyped by polymerase chain reaction restriction fragment length polymorphism, and the frequency of the AA, AG, and GG genotypes were 6.82%, 71.29% and 21.88% respectively. This SNP was significantly associated with longissimus muscle area (Bonferroni corrected P < 0.05), and marbling score (Bonferroni corrected P < 0.01). These results suggest that the c.*188G>A SNP of akirin 2 might be useful as a DNA marker for longissimus muscle area and marbling scores in Korean native cattle. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.
- 174 G>C IL-6 polymorphism and primary iron overload in male patients.
Tetzlaff, Walter F; Meroño, Tomás; Botta, Eliana E; Martín, Maximiliano E; Sorroche, Patricia B; Boero, Laura E; Castro, Marcelo; Frechtel, Gustavo D; Rey, Jorge; Daruich, Jorge; Cerrone, Gloria E; Brites, Fernando
2018-04-14
Primary iron overload (IO) is commonly associated with mutations in the hereditary hemochromatosis gene (HFE). Nonetheless, other genetic variants may influence the development of IO beyond HFE mutations. There is a single nucleotide polymorphism (SNP) at - 174 G>C of the interleukin (IL)-6 gene which might be associated with primary IO. Our aim was to study the association between the SNP - 174 G>C gene promoter of IL-6 and primary IO in middle-aged male patients. We studied 37 men with primary IO diagnosed by liver histology. Controls were age-matched male volunteers (n = 37). HFE mutations and the SNP - 174 G>C gene promoter of IL-6 were evaluated by PCR-RFLP. Logistic regression was used to evaluate the association between primary IO and SNP - 174 G>C gene promoter of IL-6. Patients and control subjects were in Hardy-Weinberg equilibrium for the SNP - 174 G>C gene promoter of IL-6 (p = 0.17). Significantly different genotype frequencies were observed between patients (43% CC, 43% CG, and 14% GG) and control subjects (10% CC, 41% CG, and 49% GG) (OR = 4.09, 95% CI = 2.06-8.13; p < 0.0001). The multiple logistic regression analysis showed that IO was significantly associated with CC homozygosis in the SNP - 174 G>C gene promoter of IL-6 (OR = 6.3, 95% CI = 1.9-21.4; p < 0.005) in a model adjusted by age and body mass index. In conclusion, CC homozygosis in the SNP - 174 G>C gene promoter of IL-6 can be proposed as one of the gene variants influencing iron accumulation in male adults with HFE mutations. Studies in larger cohorts are warranted.
USDA-ARS?s Scientific Manuscript database
The periodic need to restock reagent pools for genotyping chips provides an opportunity to increase the number of single-nucleotide polymorphisms (SNP) on a chip at no increase in cost. A high-density chip with >140,000 SNP has been developed by GeneSeek Inc. (Lincoln, NE) to increase accuracy of ge...
Yeh, E; Kimura, L; Errera, F I V; Angeli, C B; Mingroni-Netto, R C; Silva, M E R; Canani, L H S; Passos-Bueno, M R
2008-06-01
Association studies between ADIPOR1 genetic variants and predisposition to type 2 diabetes (DM2) have provided contradictory results. We determined if two single nucleotide polymorphisms (SNP c.-8503G>A and SNP c.10225C>G) in regulatory regions of ADIPOR1 in 567 Brazilian individuals of European (EA; N = 443) or African (AfA; N = 124) ancestry from rural (quilombo remnants; N = 439) and urban (N = 567) areas. We detected a significant effect of ethnicity on the distribution of the allelic frequencies of both SNPs in these populations (EA: -8503A = 0.27; AfA: -8503A = 0.16; P = 0.001 and EA: 10225G = 0.35; AfA: 10225G = 0.51; P < 0.001). Neither of the polymorphisms were associated with DM2 in the case-control study in EA (SNP c.-8503G>A: DM2 group -8503A = 0.26; control group -8503A = 0.30; P = 0.14/SNP 10225C>G: DM2 group 10225G = 0.37; control group 10225G = 0.32; P = 0.40) and AfA populations (SNP c.-8503G>A: DM2 group -8503A = 0.16; control group -8503A = 0.15; P = 0.34/SNP 10225C>G: DM2 group 10225G = 0.51; control group 10225G = 0.52; P = 0.50). Similarly, none of the polymorphisms were associated with metabolic/anthropometric risk factors for DM2 in any of the three populations, except for HDL cholesterol, which was significantly higher in AfA heterozygotes (GC = 53.75 +/- 17.26 mg/dL) than in homozygotes. We conclude that ADIPOR1 polymorphisms are unlikely to be major risk factors for DM2 or for metabolic/anthropometric measurements that represent risk factors for DM2 in populations of European and African ancestries.
Construction of a versatile SNP array for pyramiding useful genes of rice.
Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki
2016-01-01
DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
CsSNP: A Web-Based Tool for the Detecting of Comparative Segments SNPs.
Wang, Yi; Wang, Shuangshuang; Zhou, Dongjie; Yang, Shuai; Xu, Yongchao; Yang, Chao; Yang, Long
2016-07-01
SNP (single nucleotide polymorphism) is a popular tool for the study of genetic diversity, evolution, and other areas. Therefore, it is necessary to develop a convenient, utility, robust, rapid, and open source detecting-SNP tool for all researchers. Since the detection of SNPs needs special software and series steps including alignment, detection, analysis and present, the study of SNPs is limited for nonprofessional users. CsSNP (Comparative segments SNP, http://biodb.sdau.edu.cn/cssnp/ ) is a freely available web tool based on the Blat, Blast, and Perl programs to detect comparative segments SNPs and to show the detail information of SNPs. The results are filtered and presented in the statistics figure and a Gbrowse map. This platform contains the reference genomic sequences and coding sequences of 60 plant species, and also provides new opportunities for the users to detect SNPs easily. CsSNP is provided a convenient tool for nonprofessional users to find comparative segments SNPs in their own sequences, and give the users the information and the analysis of SNPs, and display these data in a dynamic map. It provides a new method to detect SNPs and may accelerate related studies.
Dux, Marta; Muranowicz, Magdalena; Siadkowska, Eulalia; Robakowska-Hyżorek, Dagmara; Flisikowski, Krzysztof; Bagnicka, Emilia; Zwierzchowski, Lech
2018-05-01
The objective of the study reported in this Research Communication was to investigate the association of polymorphisms in the insulin-like growth factor receptor 2 (IGF2R) gene with milk traits in 283 Polish Holstein-Friesian (PHF) cows from the IGAB PAS farm in Jastrzębiec. IGF2R regulates the availability of biologically active IGF2 which is considered as a genetic marker for milk or meat production in farm animals. Two novel genetic polymorphisms were identified in the bovine IGF2R gene: a polymorphic TG-repeat in intron 23 (g.72389 (TG)15-67), and a g.72479 G > A SNP RFLP-StyI in exon 24. The following milk traits were investigated: milk yield, protein and fat yield, SCC and lactose content. To determine the influence of the IGF2R STR and SNP genotypes on the milk traits, we used the AI-REML (average information restricted maximum likelihood) method with repeatability, multi-trait animal model based on test-day information using DMU package. Statistical analysis revealed that the G/A genotype (P ≤ 0·01) was associated with milk and protein yield, lactose content and somatic cell count (SCC) in Polish HF cows. TGn (29/22, 28/29, 28/22, 28/28) genotypes were associated with high values for milk, (28/22, 28/23) with protein and fat yield, (25/20) with lactose content, and (29/33, 28/28) with low SCC. We suggest that the IGF2R gene polymorphisms could be useful genetic markers for dairy production traits in cattle.
Genetic analysis of interleukin 18 gene polymorphisms in alopecia areata.
Celik, Sumeyya Deniz; Ates, Omer
2018-06-01
Alopecia areata (AA), which appears as nonscarring hair shedding on any hair-bearing area, is a common organ-specific autoimmune condition. Cytokines have important roles in the development of AA. Interleukin (IL) 18 is a significant proinflammatory cytokine that was found higher in the patients with AA. We aimed to investigate whether the IL-18 (rs187238 and rs1946518) single nucleotide polymorphisms (SNPs) may be associated with AA and/or clinical outcome of patients with AA in Turkish population. Genotyping of rs187238 and rs1946518 SNPs were detected using sequence-specific primer-polymerase chain reaction (SSP-PCR) method in 200 patients with AA and 200 control subjects. The genotype distribution of rs1946518 (-607C>A) SNP was found to be statistically significantly different among patients with AA and controls (P = .0008). Distribution of CC+CA genotypes and frequency of -607/allele C of rs1946518 SNP were higher in patients with AA (P = .001, P = .001, respectively). The genotype distribution of rs187238 (-137G>C) SNP was found to be statistically significantly different among patients with AA and control subjects (P = .0014). Distribution of GG genotype and frequency of -137/allele G of rs187238 SNP were higher in patients with AA (P = .0003, P = .001, respectively). The rs1946518 (-607C>A) and rs187238 (-137G>C) polymorphisms were found associated with alopecia areata disease. The study suggests that IL-18 rs187238 and rs1946518 SNPs may be the cause of the AA susceptibility. © 2018 Wiley Periodicals, Inc.
Randhawa, April Kaur; Horne, David J.; Adams, Mark D.; Shey, Muki; Barnholtz-Sloan, Jill; Mayanja-Kizza, Harriet; Kaplan, Gilla; Hanekom, Willem A.; Boom, W. Henry; Hawn, Thomas R.; Stein, Catherine M.
2012-01-01
Genetic epidemiological studies of complex diseases often rely on data from the International HapMap Consortium for identification of single nucleotide polymorphisms (SNPs), particularly those that tag haplotypes. However, little is known about the relevance of the African populations used to collect HapMap data for study populations conducted elsewhere in Africa. Toll-like receptor (TLR) genes play a key role in susceptibility to various infectious diseases, including tuberculosis. We conducted full-exon sequencing in samples obtained from Uganda (n = 48) and South Africa (n = 48), in four genes in the TLR pathway: TLR2, TLR4, TLR6, and TIRAP. We identified one novel TIRAP SNP (with minor allele frequency [MAF] 3.2%) and a novel TLR6 SNP (MAF 8%) in the Ugandan population, and a TLR6 SNP that is unique to the South African population (MAF 14%). These SNPs were also not present in the 1000 Genomes data. Genotype and haplotype frequencies and linkage disequilibrium patterns in Uganda and South Africa were similar to African populations in the HapMap datasets. Multidimensional scaling analysis of polymorphisms in all four genes suggested broad overlap of all of the examined African populations. Based on these data, we propose that there is enough similarity among African populations represented in the HapMap database to justify initial SNP selection for genetic epidemiological studies in Uganda and South Africa. We also discovered three novel polymorphisms that appear to be population-specific and would only be detected by sequencing efforts. PMID:23112821
Stark, Klaus; Reinhard, Wibke; Grassl, Martina; Erdmann, Jeanette; Schunkert, Heribert; Illig, Thomas; Hengstenberg, Christian
2009-11-05
Recently, a large meta-analysis including over 28,000 participants identified nine different loci with association to serum uric acid (UA) levels. Since elevated serum UA levels potentially cause gout and are a possible risk factor for coronary artery disease (CAD) and myocardial infarction (MI), we performed two large case-control association analyses with participants from the German MI Family Study. In the first study, we assessed the association of the qualitative trait gout and ten single nucleotide polymorphisms (SNP) markers that showed association to UA serum levels. In the second study, the same genetic polymorphisms were analyzed for association with CAD. A total of 683 patients suffering from gout and 1,563 healthy controls from the German MI Family Study were genotyped. Nine SNPs were identified from a recently performed genome-wide meta-analysis on serum UA levels (rs12129861, rs780094, rs734553, rs2231142, rs742132, rs1183201, rs12356193, rs17300741 and rs505802). Additionally, the marker rs6855911 was included which has been associated with gout in our cohort in a previous study. SNPs rs734553 and rs6855911, located in SLC2A9, and SNP rs2231142, known to be a missense polymorphism in ABCG2, were associated with gout (p=5.6*10(-7), p=1.1*10(-7), and p=1.3*10(-3), respectively). Other SNPs in the genes PDZK1, GCKR, LRRC16A, SLC17A1-SLC17A3, SLC16A9, SLC22A11 and SLC22A12 failed the significance level. None of the ten markers were associated with risk to CAD in our study sample of 1,473 CAD cases and 1,241 CAD-free controls. SNP markers in SLC2A9 and ABCG2 genes were found to be strongly associated with the phenotype gout. However, not all SNP markers influencing serum UA levels were also directly associated with the clinical manifestation of gout in our study sample. In addition, none of these SNPs showed association with the risk to CAD in the German MI Family Study.
Granzyme B gene polymorphism associated with subacute sclerosing panencephalitis.
Yentur, Sibel P; Aydin, Hatice Nur; Gurses, Candan; Demirbilek, Veysi; Kuru, Umit; Uysal, Serap; Yapici, Zuhal; Baris, Safa; Yilmaz, Gülden; Cokar, Ozlem; Onal, Emel; Gokyigit, Ayşen; Saruhan-Direskeneli, Güher
2014-10-01
Subacute sclerosing panencephalitis (SSPE) is a late complication of measles infection. Immune dysfunction related to genetic susceptibility has been considered in disease pathogenesis. A functional single nucleotide polymorphism (SNP) of granzyme B gene (GZMB) reported in several pathologies may also be involved in susceptibility to SSPE. An SNP (rs8192917, G → A, R→Q) was screened in 118 SSPE patients and 221 healthy controls (HC) by polymerase chain reaction-restriction fragment length polymorphism. Frequencies were compared between groups. In vitro production of GZMB was measured in controls with different genotypes. The SNP had a minor allele (G) frequency of 0.22 in patients and 0.31 in controls. GG genotype was significantly less frequent in patients (odds ratio, 0.23). G allele carriers produced relatively higher levels of GZMB, when stimulated in vitro. These findings implicate possible effect of this genetic polymorphism in susceptibility to SSPE which needs to be confirmed in bigger populations. Georg Thieme Verlag KG Stuttgart · New York.
Pokorska, J; Dusza, M; Kułaj, D; Żukowski, K; Makulska, J
2016-04-28
The aim of this study was to identify the association between single nucleotide polymorphisms (SNPs) in the bovine chemokine receptor (CXCR1) gene and the resistance or susceptibility of cows to mastitis. The analysis of the CXCR1 polymorphism was carried out using polymerase chain reaction restriction fragment length polymorphism analysis for six SNP mutations (c.+291C>T, c.+365T>C, c.+816C>A, c.+819G>A, +1093C>T, and +1373C>A), of which four were located within the coding region and two in the 3'UTR region of the CXCR1 gene. Genetic material from 146 Polish Holstein-Friesian cows was analyzed after dividing into two groups depending on the incidence of clinical mastitis. Identified polymorphisms were in linkage disequilibrium and formed two linkage groups. Three haplotypes (CCCATA, TTAGCC, CTCGCC), forming six haplotype combinations, were detected. The logistic regression showed a significant association between the CC genotype at c.+365T>C and susceptibility of cows to clinical mastitis (P = 0.047). The frequency of haplotype combination 1/1 (CCCATA/CCCATA) was not significantly higher in cows susceptible to mastitis (P = 0.062). Of the identified SNP mutations, only c.+365T>C is a nonsynonymous mutation that induces a change in the coded protein [GCC (Ala) to GTC (Val) at the 122nd amino acid]. This amino acid change can result in changes in receptor function, which may be a reason for the increased mastitis incidence observed in cows with polymorphism at this site.
Prioritizing individual genetic variants after kernel machine testing using variable selection.
He, Qianchuan; Cai, Tianxi; Liu, Yang; Zhao, Ni; Harmon, Quaker E; Almli, Lynn M; Binder, Elisabeth B; Engel, Stephanie M; Ressler, Kerry J; Conneely, Karen N; Lin, Xihong; Wu, Michael C
2016-12-01
Kernel machine learning methods, such as the SNP-set kernel association test (SKAT), have been widely used to test associations between traits and genetic polymorphisms. In contrast to traditional single-SNP analysis methods, these methods are designed to examine the joint effect of a set of related SNPs (such as a group of SNPs within a gene or a pathway) and are able to identify sets of SNPs that are associated with the trait of interest. However, as with many multi-SNP testing approaches, kernel machine testing can draw conclusion only at the SNP-set level, and does not directly inform on which one(s) of the identified SNP set is actually driving the associations. A recently proposed procedure, KerNel Iterative Feature Extraction (KNIFE), provides a general framework for incorporating variable selection into kernel machine methods. In this article, we focus on quantitative traits and relatively common SNPs, and adapt the KNIFE procedure to genetic association studies and propose an approach to identify driver SNPs after the application of SKAT to gene set analysis. Our approach accommodates several kernels that are widely used in SNP analysis, such as the linear kernel and the Identity by State (IBS) kernel. The proposed approach provides practically useful utilities to prioritize SNPs, and fills the gap between SNP set analysis and biological functional studies. Both simulation studies and real data application are used to demonstrate the proposed approach. © 2016 WILEY PERIODICALS, INC.
Increasing the number of single nucleotide polymorphisms used in genomic evaluations of dairy cattle
USDA-ARS?s Scientific Manuscript database
A small increase in the accuracy of genomic evaluations of dairy cattle was achieved by increasing the number of SNP used to 61,013. All the 45,195 SNP used previously were retained, and 15,818 SNP were selected from higher density genotyping chips if the magnitude of the SNP effect was among the to...
Wang, Lin; Liu, Simin; Niu, Tianhua; Xu, Xin
2005-03-18
Single nucleotide polymorphisms (SNPs) provide an important tool in pinpointing susceptibility genes for complex diseases and in unveiling human molecular evolution. Selection and retrieval of an optimal SNP set from publicly available databases have emerged as the foremost bottlenecks in designing large-scale linkage disequilibrium studies, particularly in case-control settings. We describe the architectural structure and implementations of a novel software program, SNPHunter, which allows for both ad hoc-mode and batch-mode SNP search, automatic SNP filtering, and retrieval of SNP data, including physical position, function class, flanking sequences at user-defined lengths, and heterozygosity from NCBI dbSNP. The SNP data extracted from dbSNP via SNPHunter can be exported and saved in plain text format for further down-stream analyses. As an illustration, we applied SNPHunter for selecting SNPs for 10 major candidate genes for type 2 diabetes, including CAPN10, FABP4, IL6, NOS3, PPARG, TNF, UCP2, CRP, ESR1, and AR. SNPHunter constitutes an efficient and user-friendly tool for SNP screening, selection, and acquisition. The executable and user's manual are available at http://www.hsph.harvard.edu/ppg/software.htm
Development and Applications of a Bovine 50,000 SNP Chip
USDA-ARS?s Scientific Manuscript database
To develop an Illumina iSelect high density single nucleotide polymorphism (SNP) assay for cattle, the collaborative iBMC (Illumina, USDA ARS Beltsville, University of Missouri, USDA ARS Clay Center) Consortium first performed a de novo SNP discovery project in which genomic reduced representation l...
Genomic selection in dairy cattle: the USDA experience
USDA-ARS?s Scientific Manuscript database
Genomic selection has revolutionized dairy cattle breeding. Since 2000, assays have been developed to genotype large numbers of single nucleotide polymorphisms (SNP) at relatively low cost. The first commercial SNP genotyping chip was released with a set of 54,001 SNP in December 2007. Over 15,000 ...
Catalog of MicroRNA Seed Polymorphisms in Vertebrates
Calin, George Adrian; Horvat, Simon; Jiang, Zhihua; Dovc, Peter; Kunej, Tanja
2012-01-01
MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms. In the present study, we developed an online tool for the detection of miRNA polymorphisms (miRNA SNiPer) in vertebrates (http://www.integratomics-time.com/miRNA-SNiPer) and generated a catalog of miRNA seed region polymorphisms (miR-seed-SNPs) consisting of 149 SNPs in six species. Although a majority of detected polymorphisms were due to point mutations, two consecutive nucleotide substitutions (double nucleotide polymorphisms, DNPs) were also identified in nine miRNAs. We determined that miR-SNPs are frequently located within the quantitative trait loci (QTL), chromosome fragile sites, and cancer susceptibility loci, indicating their potential role in the genetic control of various complex traits. To test this further, we performed an association analysis between the mmu-miR-717 seed SNP rs30372501, which is polymorphic in a large number of standard inbred strains, and all phenotypic traits in these strains deposited in the Mouse Phenome Database. Analysis showed a significant association between the mmu-miR-717 seed SNP and a diverse array of traits including behavior, blood-clinical chemistry, body weight size and growth, and immune system suggesting that seed SNPs can indeed have major pleiotropic effects. The bioinformatics analyses, data and tools developed in the present study can serve researchers as a starting point in testing more targeted hypotheses and designing experiments using optimal species or strains for further mechanistic studies. PMID:22303453
Nakatochi, Masahiro; Ushida, Yasunori; Yasuda, Yoshinari; Yoshida, Yasuko; Kawai, Shun; Kato, Ryuji; Nakashima, Toru; Iwata, Masamitsu; Kuwatsuka, Yachiyo; Ando, Masahiko; Hamajima, Nobuyuki; Kondo, Takaaki; Oda, Hiroaki; Hayashi, Mutsuharu; Kato, Sawako; Yamaguchi, Makoto; Maruyama, Shoichi; Matsuo, Seiichi; Honda, Hiroyuki
2015-01-01
Although many single nucleotide polymorphisms (SNPs) have been identified to be associated with metabolic syndrome (MetS), there was only a slight improvement in the ability to predict future MetS by the simply addition of SNPs to clinical risk markers. To improve the ability to predict future MetS, combinational effects, such as SNP—SNP interaction, SNP—environment interaction, and SNP—clinical parameter (SNP × CP) interaction should be also considered. We performed a case-control study to explore novel SNP × CP interactions as risk markers for MetS based on health check-up data of Japanese male employees. We selected 99 SNPs that were previously reported to be associated with MetS and components of MetS; subsequently, we genotyped these SNPs from 360 cases and 1983 control subjects. First, we performed logistic regression analyses to assess the association of each SNP with MetS. Of these SNPs, five SNPs were significantly associated with MetS (P < 0.05): LRP2 rs2544390, rs1800592 between UCP1 and TBC1D9, APOA5 rs662799, VWF rs7965413, and rs1411766 between MYO16 and IRS2. Furthermore, we performed multiple logistic regression analyses, including an SNP term, a CP term, and an SNP × CP interaction term for each CP and SNP that was significantly associated with MetS. We identified a novel SNP × CP interaction between rs7965413 and platelet count that was significantly associated with MetS [SNP term: odds ratio (OR) = 0.78, P = 0.004; SNP × CP interaction term: OR = 1.33, P = 0.001]. This association of the SNP × CP interaction with MetS remained nominally significant in multiple logistic regression analysis after adjustment for either the number of MetS components or MetS components excluding obesity. Our results reveal new insight into platelet count as a risk marker for MetS. PMID:25646961
Mankowska, M; Stachowiak, M; Graczyk, A; Ciazynska, P; Gogulski, M; Nizanski, W; Switonski, M
2016-04-01
Obesity is an emerging health problem in purebred dogs. Due to their crucial role in energy homeostasis control, genes encoding adipokines are considered candidate genes, and their variants may be associated with predisposition to obesity. Searching for polymorphism was carried out in three adipokine genes (TNF, RETN and IL6). The study was performed on 260 dogs, including lean (n = 109), overweight (n = 88) and obese (n = 63) dogs. The largest cohort was represented by Labrador Retrievers (n = 136). Altogether, 24 novel polymorphisms were identified: 12 in TNF (including one missense SNP), eight in RETN (including one missense SNP) and four in IL6. Distributions of five common SNPs (two in TNF, two in RETN and one in IL6) were further analyzed with regard to body condition score. Two SNPs in the non-coding parts of TNF (c.-40A>C and c.233+14G>A) were associated with obesity in Labrador dogs. The obtained results showed that the studied adipokine genes are highly polymorphic and two polymorphisms in the TNF gene may be considered as markers predisposing Labrador dogs to obesity. © 2015 Stichting International Foundation for Animal Genetics.
USDA-ARS?s Scientific Manuscript database
Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...
Miyakura, Yasuyuki; Tahara, Makiko; Lefor, Alan T; Yasuda, Yoshikazu; Sugano, Kokichi
2014-11-24
Methylation of the MLH1 promoter region has been suggested to be a major mechanism of gene inactivation in sporadic microsatellite instability-positive (MSI-H) colorectal cancers (CRCs). Recently, single-nucleotide polymorphism (SNP) in the MLH1 promoter region (MLH1-93G/A; rs1800734) has been proposed to be associated with MLH1 promoter methylation, loss of MLH1 protein expression and MSI-H tumors. We examined the association of MLH1-93G/A and six other SNPs surrounding MLH1-93G/A with the methylation status in 210 consecutive sporadic CRCs in Japanese patients. Methylation of the MLH1 promoter region was evaluated by Na-bisulfite polymerase chain reaction (PCR)/single-strand conformation polymorphism (SSCP) analysis. The genotype frequencies of SNPs located in the 54-kb region surrounding the MLH1-93G/A SNP were examined by SSCP analysis. Methylation of the MLH1 promoter region was observed in 28.6% (60/210) of sporadic CRCs. The proportions of MLH1-93G/A genotypes A/A, A/G and G/G were 26% (n=54), 51% (n=108) and 23% (n=48), respectively, and they were significantly associated with the methylation status (p=0.01). There were no significant associations between genotype frequency of the six other SNPs and methylation status. The A-allele of MLH1-93G/A was more common in cases with methylation than the G-allele (p=0.0094), especially in females (p=0.0067). In logistic regression, the A/A genotype of the MLH1-93G/A SNP was shown to be the most significant risk factor for methylation of the MLH1 promoter region (odds ratio 2.82, p=0.003). Furthermore, a haplotype of the A-allele of rs2276807 located -47 kb upstream from the MLH1-93G/A SNP and the A-allele of MLH1-93G/A SNP was significantly associated with MLH1 promoter methylation. These results indicate that individuals, and particularly females, carrying the A-allele at the MLH1-93G/A SNP, especially in association with the A-allele of rs2276807, may harbor an increased risk of methylation of the MLH1 promoter region.
Calpain-10 gene polymorphisms and risk of type 2 diabetes mellitus in Mexican mestizos.
Picos-Cárdenas, V J; Sáinz-González, E; Miliar-García, A; Romero-Zazueta, A; Quintero-Osuna, R; Leal-Ugarte, E; Peralta-Leal, V; Meza-Espinoza, J P
2015-03-27
The calpain-10 gene is expressed primarily in tissues important in glucose metabolism; thus, some of its polymorphisms have been associated with type 2 diabetes. In this study, we examined the association between the calpain-10 single-nucleotide polymorphism (SNP)-43, SNP-19, and SNP-63 and type 2 diabetes in Mexican mestizos. We included 211 patients and 152 non-diabetic subjects. Polymerase chain reaction was used to identify alleles. We compared allele, genotype, haplotype, and diplotype frequencies between both groups and used the chi-square test to calculate the risk. The allele frequency of SNP-43 allele 1 was 70% in controls and 72% in patients; the GG, GA, and AA genotype frequencies were 48.7, 42.8, and 8.5% in controls and 51.2, 41.7, and 7.1% in patients, respectively. For SNP- 19, the prevalence of allele 1 (2R) was 32% in controls and 39% in patients. In controls, homozygosity (2R/2R) was 10.5%, heterozygosity was 42.8%, and 3R/3R was 46.7%; in cases, these values were 13.3, 50.7, and 36.0%, respectively. For SNP-63, the frequency of allele 1 was 87% in controls and 83% in patients; genotype frequencies in controls were 75.7% (CC), 23% (CT), and 1.3% (TT), and were 69.7, 27.5, and 2.8%, respectively for the cases. Genotype distributions were consistent with Hardy-Weinberg equilibrium. No significant intergroup differences for allele, genotype, haplotype, or diplotype frequencies were observed. We found no association between these polymorphisms and diabetes. However, our sample size was small, so the role of calpain-10 risk alleles should be further examined.
Murakami, Shin-Ichiro; Otsuki, Takemi; Maeda, Megumi; Miura, Yoshie; Morii, Seiko; Kiyokane, Kenji; Hayakawa, Shin-Ichi; Maeda, Atsushi; Imakawa, Takayo; Harada, Shunpei; Handa, Torataro; Nishimura, Yasumitsu; Murakami, Shuko; Kumagai, Naoko; Hayashi, Hiroaki; Chen, Ying; Suemori, Shin-Ichiro; Fukushima, Yumiko; Nishida, Seikoh; Fukushima, Keisuke
2009-01-01
The enhancement and promotion of health is necessary to maintain the quality of life (QOL) of the aged population in developed nations such as Japan where the number of elderly has been increasing rapidly. For this purpose, low-resistance training using exercise machines ('Power Rehabilitation') has been established as a rehabilitation program. To investigate the individual factors which influence the effects of 'Power Rehabilitation', single nucleotide polymorphisms (SNPs) in the vitamin D receptor (VDR) gene and the ciliary neurotrophic factor (CNTF) gene were analyzed, and the relationship between SNP patterns and the effects of 'Power Rehabilitation' was evaluated. 'Power Rehabilitation' had an effect on the physiological functions involved in the activities of daily life (ADL) rather than muscle strength and size. In addition, certain SNP patterns showed better improvement of parameters associated with the effects of 'Power Rehabilitation' as analyzed by comparison between SNP patterns and factor analysis. Large scale analyses are required to ensure this tendency and to discover individual factors which may help to promote the health and QOL of the aged population.
BDNF and TNF-α polymorphisms in memory.
Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R
2013-09-01
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Ren, Yan-Gang; Zhou, Xiao-Ming; Cui, Zhi-Gang; Hou, Gang
2016-06-01
MicroRNAs (miRNAs) may play an important role in organ development, cell differentiation, apoptosis, proliferation, cell growth regulation and act as tumor suppressor genes or proto-oncogenes. Single nucleotide polymorphisms (SNPs) in miRNAs are considered to be genetic factors to influence the susceptibility to lung cancer (LC). Rs2910164 in miR-146a and rs11614913 in miR-196a2 are shown to be associated with increased/decreased LC risk. The aim of this meta-analysis was to systematically summarize the possible association. The relevant articles were retrieved from several important databases. Studies were selected using specific inclusion and exclusion criteria. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the strength of association between miRNA polymorphism and susceptibility to LC. All analyses were performed using the Stata software. Seven studies were included in this meta-analysis. There were 3,225 cases and 3,268 controls for SNP rs2910164 and 2,794 cases and 2,840 controls for SNP rs11614913. The significant associations between SNP rs2910164 and LC risk were observed (CC vs. GG: OR =1.30, 95% CI: 1.13-1.50; CC + GC vs. GG: OR =1.15, 95% CI: 1.02-1.29; CC vs. GC + GG: OR =1.27, 95% CI: 1.13-1.42; C vs. G: OR =1.15, 95% CI: 1.08-1.24). SNP rs11614913 was found to be associated with LC risk in most genetic models (TC vs. TT: OR =1.16, 95% CI: 1.02-1.32; CC vs. TT: OR =1.24, 95% CI: 1.06-1.44; CC + TC vs. TT: OR =1.19, 95% CI: 1.06-1.34; C vs. T: OR =1.11, 95% CI: 1.03-1.20). In the subgroup analysis by ethnicity, genotyping method and control characteristics, significantly affected LC risks were also suggested. The rs2910164 in miR-146a and the rs11614913 in miR-196a2 are likely to be associated with LC risks.
Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.
2013-01-01
Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166
The low single nucleotide polymorphism heritability of plasma and saliva cortisol levels.
Neumann, Alexander; Direk, Nese; Crawford, Andrew A; Mirza, Saira; Adams, Hieab; Bolton, Jennifer; Hayward, Caroline; Strachan, David P; Payne, Erin K; Smith, Jennifer A; Milaneschi, Yuri; Penninx, Brenda; Hottenga, Jouke J; de Geus, Eco; Oldehinkel, Albertine J; van der Most, Peter J; de Rijke, Yolanda; Walker, Brian R; Tiemeier, Henning
2017-11-01
Cortisol is an important stress hormone affected by a variety of biological and environmental factors, such as the circadian rhythm, exercise and psychological stress. Cortisol is mostly measured using blood or saliva samples. A number of genetic variants have been found to contribute to cortisol levels with these methods. While the effects of several specific single genetic variants is known, the joint genome-wide contribution to cortisol levels is unclear. Our aim was to estimate the amount of cortisol variance explained by common single nucleotide polymorphisms, i.e. the SNP heritability, using a variety of cortisol measures, cohorts and analysis approaches. We analyzed morning plasma (n=5705) and saliva levels (n=1717), as well as diurnal saliva levels (n=1541), in the Rotterdam Study using genomic restricted maximum likelihood estimation. Additionally, linkage disequilibrium score regression was fitted on the results of genome-wide association studies (GWAS) performed by the CORNET consortium on morning plasma cortisol (n=12,597) and saliva cortisol (n=7703). No significant SNP heritability was detected for any cortisol measure, sample or analysis approach. Point estimates ranged from 0% to 9%. Morning plasma cortisol in the CORNET cohorts, the sample with the most power, had a 6% [95%CI: 0-13%] SNP heritability. The results consistently suggest a low SNP heritability of these acute and short-term measures of cortisol. The low SNP heritability may reflect the substantial environmental and, in particular, situational component of these cortisol measures. Future GWAS will require very large sample sizes. Alternatively, more long-term cortisol measures such as hair cortisol samples are needed to discover further genetic pathways regulating cortisol concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Prenatal genetic diagnosis for a fetus with atypical neurofibromatosis type 1 microdeletion].
Lin, Shaobin; Wu, Jianzhu; Zhang, Zhiqiang; Ji, Yuanjun; Fang, Qun; Chen, Baojiang; Luo, Yanmin
2016-04-01
To analyze the correlation between atypical neurofibromatosis type 1(NF1) microdeletion and fetal phenotype. Fetal blood sampling was carried out for a woman bearing a fetus with talipes equinovarus. G-banded karyotyping and single nucleotide polymorphism array (SNP-array) were performed on the fetal blood sample. Fluorescence in situ hybridization (FISH) was used to confirm the result of SNP array analysis. FISH assay was also carried out on peripheral blood specimens from the parents to ascertain the origin of mutation. The karyotype of fetus was found to be 46, XY by G-banding analysis. However, a 3.132 Mb microdeletion was detected in chromosome region 17q11.2 by SNP array, which overlaped with the region of NF1 microdeletion syndrome. Analyzing of the specimens from the fetus and its parents with FISH has confirmed it to be a de novo deletion. Talipes equinovarus may be an abnormal sonographic feature of fetus with atypical NF1 microdeletion which can be accurately diagnosed with SNP array.
Ryynänen, Heikki J; Primmer, Craig R
2006-01-01
Background Single nucleotide polymorphisms (SNPs) represent the most abundant type of DNA variation in the vertebrate genome, and their applications as genetic markers in numerous studies of molecular ecology and conservation of natural populations are emerging. Recent large-scale sequencing projects in several fish species have provided a vast amount of data in public databases, which can be utilized in novel SNP discovery in salmonids. However, the suggested duplicated nature of the salmonid genome may hamper SNP characterization if the primers designed in conserved gene regions amplify multiple loci. Results Here we introduce a new intron-primed exon-crossing (IPEC) method in an attempt to overcome this duplication problem, and also evaluate different priming methods for SNP discovery in Atlantic salmon (Salmo salar) and other salmonids. A total of 69 loci with differing priming strategies were screened in S. salar, and 27 of these produced ~13 kb of high-quality sequence data consisting of 19 SNPs or indels (one per 680 bp). The SNP frequency and the overall nucleotide diversity (3.99 × 10-4) in S. salar was lower than reported in a majority of other organisms, which may suggest a relative young population history for Atlantic salmon. A subset of primers used in cross-species analyses revealed considerable variation in the SNP frequencies and nucleotide diversities in other salmonids. Conclusion Sequencing success was significantly higher with the new IPEC primers; thus the total number of loci to screen in order to identify one potential polymorphic site was six times less with this new strategy. Given that duplication may hamper SNP discovery in some species, the IPEC method reported here is an alternative way of identifying novel polymorphisms in such cases. PMID:16872523
A 48 SNP set for grapevine cultivar identification
2011-01-01
Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP markers are bi-allelic, allele identification and genotype naming are extremely simple and genotypes obtained with different equipments and by different laboratories are always fully comparable. PMID:22060012
The SNPforID Assay as a Supplementary Method in Kinship and Trace Analysis
Schwark, Thorsten; Meyer, Patrick; Harder, Melanie; Modrow, Jan-Hendrick; von Wurmb-Schwark, Nicole
2012-01-01
Objective Short tandem repeat (STR) analysis using commercial multiplex PCR kits is the method of choice for kinship testing and trace analysis. However, under certain circumstances (deficiency testing, mutations, minute DNA amounts), STRs alone may not suffice. Methods We present a 50-plex single nucleotide polymorphism (SNP) assay based on the SNPs chosen by the SNPforID consortium as an additional method for paternity and for trace analysis. The new assay was applied to selected routine paternity and trace cases from our laboratory. Results and Conclusions Our investigation shows that the new SNP multiplex assay is a valuable method to supplement STR analysis, and is a powerful means to solve complicated genetic analyses. PMID:22851934
NASA Astrophysics Data System (ADS)
Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli
2013-09-01
Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.
Masking as an effective quality control method for next-generation sequencing data analysis.
Yun, Sajung; Yun, Sijung
2014-12-13
Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).
Willing, Eva-Maria; Bentzen, Paul; van Oosterhout, Cock; Hoffmann, Margarete; Cable, Joanne; Breden, Felix; Weigel, Detlef; Dreyer, Christine
2010-03-01
Adaptation of guppies (Poecilia reticulata) to contrasting upland and lowland habitats has been extensively studied with respect to behaviour, morphology and life history traits. Yet population history has not been studied at the whole-genome level. Although single nucleotide polymorphisms (SNPs) are the most abundant form of variation in many genomes and consequently very informative for a genome-wide picture of standing natural variation in populations, genome-wide SNP data are rarely available for wild vertebrates. Here we use genetically mapped SNP markers to comprehensively survey genetic variation within and among naturally occurring guppy populations from a wide geographic range in Trinidad and Venezuela. Results from three different clustering methods, Neighbor-net, principal component analysis (PCA) and Bayesian analysis show that the population substructure agrees with geographic separation and largely with previously hypothesized patterns of historical colonization. Within major drainages (Caroni, Oropouche and Northern), populations are genetically similar, but those in different geographic regions are highly divergent from one another, with some indications of ancient shared polymorphisms. Clear genomic signatures of a previous introduction experiment were seen, and we detected additional potential admixture events. Headwater populations were significantly less heterozygous than downstream populations. Pairwise F(ST) values revealed marked differences in allele frequencies among populations from different regions, and also among populations within the same region. F(ST) outlier methods indicated some regions of the genome as being under directional selection. Overall, this study demonstrates the power of a genome-wide SNP data set to inform for studies on natural variation, adaptation and evolution of wild populations.
Dai, Yu; Zeng, Tianshu; Xiao, Fei; Chen, Lulu; Kong, Wen
2017-01-01
We conducted a case/control study to assess the impact of SNP rs3087243 and rs231775 within the CTLA4 gene, on the susceptibility to Graves' disease (GD) in a Chinese Han dataset (271 cases and 298 controls). The frequency of G allele for rs3087243 and rs231775 was observed to be significantly higher in subjects with GD than in control subjects (p = 0.005 and p = 0.000, respectively). After logistic regression analysis, a significant association was detected between SNP rs3087243 and GD in the additive and recessive models. Similarly, association for the SNP rs231775 could also be detected in the additive model, dominant model and recessive model. A meta-analysis, including 27 published datasets along with the current dataset, was performed to further confirm the association. Consistent with our case/control results, rs3087243 and rs231775 showed a significant association with GD in all genetic models. Of note, ethnic stratification revealed that these two SNPs were associated with susceptibility to GD in populations of both Asian and European descent. In conclusion, our data support that the rs3087243 and rs231775 polymorphisms within the CTLA4 gene confer genetic susceptibility to GD. PMID:29299173
[Association between single-nucleotide polymorphisms in the IRAK-4 gene and allergic rhinitis].
Zhang, Yuan; Xi, Lin; Zhao, Yan-ming; Zhao, Li-ping; Zhang, Luo
2012-06-01
To investigate the genetic association pattern between single-nucleotide polymorphisms (SNP) in the interleukin-1 receptor-associated kinase 4 (IRAK-4) gene and allergic rhinitis (AR). A population of 379 patients with the diagnosis of AR and 333 healthy controls who lived in Beijing region was recruited. A total of 8 reprehensive marker SNP which were in IRAK-4 gene region were selected according to the Beijing people database from Hapmap website. The individual genotyping was performed by MassARRAY platform. SPSS 13.0 software was used for statistic analysis. Subgroup analysis for the presence of different allergen sensitivities displayed associations only in the house dust mite-allergic cohorts (rs3794262: P = 0.0034, OR = 1.7388; rs4251481: P = 0.0023, OR = 2.6593), but not in subjects who were allergic to pollens as well as mix allergens. The potential genetic contribution of the IRAK-4 gene to AR demonstrated an allergen-dependant association pattern in Chinese population.
Association of Single-Nucleotide Polymorphisms of the Tau Gene With Late-Onset Parkinson Disease
Martin, Eden R.; Scott, William K.; Nance, Martha A.; Watts, Ray L.; Hubble, Jean P.; Koller, William C.; Lyons, Kelly; Pahwa, Rajesh; Stern, Matthew B.; Colcher, Amy; Hiner, Bradley C.; Jankovic, Joseph; Ondo, William G.; Allen, Fred H.; Goetz, Christopher G.; Small, Gary W.; Masterman, Donna; Mastaglia, Frank; Laing, Nigel G.; Stajich, Jeffrey M.; Ribble, Robert C.; Booze, Michael W.; Rogala, Allison; Hauser, Michael A.; Zhang, Fengyu; Gibson, Rachel A.; Middleton, Lefkos T.; Roses, Allen D.; Haines, Jonathan L.; Scott, Burton L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.
2013-01-01
Context The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. Objective To investigate whether the tau gene is involved in idiopathic PD. Design, Setting, and Participants Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Main Outcome Measure Family-based tests of association, calculated using asymptotic distributions. Results Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P = .03; SNP 9i, P = .04; and SNP 11, P = .04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P = .11, and SNP 9iii, P = .87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P = .009) and a negative association with another haplotype (P = .007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3,9i, 9ii, and 11). Conclusions This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD. PMID:11710889
Sharma, Neeraj K; Langberg, Kurt A; Mondal, Ashis K; Das, Swapan K
2013-01-01
Recent studies have identified links between phospholipid composition and altered cellular functions in animal models of obesity, but the involvement of phospholipid biosynthesis genes in human obesity are not well understood. We analyzed the transcript of four phospholipid biosynthesis genes in adipose and muscle from 170 subjects. We examined publicly available genome-wide association data from the GIANT and MAGIC cohorts to investigate the association of SNPs in these genes with obesity and glucose homeostasis traits, respectively. Trait-associated SNPs were genotyped to evaluate their roles in regulating expression in adipose. In adipose tissue, expression of PEMT, PCYT1A, and PTDSS2 were positively correlated and PCYT2 was negatively correlated with percent fat mass and body mass index (BMI). Among the polymorphisms in these genes, SNP rs4646404 in PEMT showed the strongest association (p = 3.07E-06) with waist-to-hip ratio (WHR) adjusted for BMI. The WHR-associated intronic SNP rs4646343 in the PEMT gene showed the strongest association with its expression in adipose. Allele "C" of this SNP was associated with higher WHR (p = 2.47E-05) and with higher expression (p = 4.10E-04). Our study shows that the expression of PEMT gene is high in obese insulin-resistant subjects. Intronic cis-regulatory polymorphisms may increase the genetic risk of obesity by modulating PEMT expression.
Jin, Jia-Li; Sun, Jing; Ge, Hui-Juan; Cao, Yun-Xia; Wu, Xiao-Ke; Liang, Feng-Jing; Sun, Hai-Xiang; Ke, Lu; Yi, Long; Wu, Zhi-Wei; Wang, Yong
2009-12-16
Several studies have reported the association of the SNP rs2414096 in the CYP19 gene with hyperandrogenism, which is one of the clinical manifestations of polycystic ovary syndrome (PCOS). These studies suggest that SNP rs2414096 may be involved in the etiopathogenisis of PCOS. To investigate whetherthe CYP19 gene SNP rs2414096 polymorphism is associated with the susceptibility to PCOS, we designed a case-controlled association study including 684 individuals. A case-controlled association study including 684 individuals (386 PCOS patients and 298 controls) was performed to assess the association of SNP rs2414096 with PCOS. Genotyping of SNP rs2414096 was conducted by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method that was performed on genomic DNA isolated from blood leucocytes. Results were analyzed in respect to clinical test results. The genotypic distributions of rs2414096 (GG, AG, AA) in the CYP19 gene (GG, AG, AA) in women with PCOS (0.363, 0.474, 0.163, respectively) were significantly different from that in controls (0.242, 0.500, 0.258, respectively) (P = 0.001). E2/T was different between the AA and GG genotypes. Age at menarche (AAM) and FSH were also significantly different among the GG, AG, and AA genotypes in women with PCOS (P = 0.0391 and 0.0118, respectively). No differences were observed in body mass index (BMI) and other serum hormone concentrations among the three genotypes, either in the PCOS patients or controls. Our data suggest that SNP rs2414096 in the CYP19 gene is associated with susceptibility to PCOS.
Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio)
2014-01-01
Background A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio. Results The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster. Conclusions The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species. PMID:24762296
Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio).
Xu, Jian; Zhao, Zixia; Zhang, Xiaofeng; Zheng, Xianhu; Li, Jiongtang; Jiang, Yanliang; Kuang, Youyi; Zhang, Yan; Feng, Jianxin; Li, Chuangju; Yu, Juhua; Li, Qiang; Zhu, Yuanyuan; Liu, Yuanyuan; Xu, Peng; Sun, Xiaowen
2014-04-24
A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio. The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster. The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species.
High-resolution melting PCR analysis for rapid genotyping of Burkholderia mallei.
Girault, G; Wattiau, P; Saqib, M; Martin, B; Vorimore, F; Singha, H; Engelsma, M; Roest, H J; Spicic, S; Grunow, R; Vicari, N; De Keersmaecker, S C J; Roosens, N H C; Fabbi, M; Tripathi, B N; Zientara, S; Madani, N; Laroucau, K
2018-05-08
Burkholderia (B.) mallei is the causative agent of glanders. A previous work conducted on single-nucleotide polymorphisms (SNP) extracted from the whole genome sequences of 45 B. mallei isolates identified 3 lineages for this species. In this study, we designed a high-resolution melting (HRM) method for the screening of 15 phylogenetically informative SNPs within the genome of B. mallei that subtype the species into 3 lineages and 12 branches/sub-branches/groups. The present results demonstrate that SNP-based genotyping represent an interesting approach for the molecular epidemiology analysis of B. mallei. Copyright © 2018 Elsevier B.V. All rights reserved.
Adiponectin and resistin gene polymorphisms in association with their respective adipokine levels.
Lau, Cia-Hin; Muniandy, Sekaran
2011-05-01
Single nucleotide polymorphisms (SNPs) at the adiponectin and resistin loci are strongly associated with hypoadiponectinemia and hyperresistinemia, which may eventually increase risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS), and cardiovascular disease. Real-time PCR was used to genotype SNPs of the adiponectin (SNP+45T>G, SNP+276G>T, SNP+639T>C, and SNP+1212A>G) and resistin (SNP-420C>G and SNP+299G>A) genes in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40 and 70 years old. The genotyping results for each SNP marker was verified by sequencing. The anthropometric clinical and metabolic parameters of subjects were recorded. None of these SNPs at the adiponectin and resistin loci were associated with T2DM and MS susceptibility in Malaysian men. SNP+45T>G, SNP+276G>T, and SNP+639T>C of the adiponectin gene did not influence circulating levels of adiponectin. However, the G-allele of SNP+1212A>G at the adiponectin locus was marginally associated (P= 0.0227) with reduced circulating adiponectin levels. SNP-420C>G (df = 2; F= 16.026; P= 1.50×10(-7) ) and SNP+299G>A (df = 2; F= 22.944; P= 2.04×10(-10) ) of the resistin gene were strongly associated with serum resistin levels. Thus, SNP-420C>G and SNP+299G>A of the resistin gene are strongly associated with the risk of hyperresistinemia in Malaysian men. © 2011 The Authors Annals of Human Genetics © 2011 Blackwell Publishing Ltd/University College London.
Large Scale Single Nucleotide Polymorphism Study of PD Susceptibility
2006-03-01
familial PD, the results of intensive investigations of polymorphisms in dozens of genes related to sporadic, late onset, typical PD have not shown...association between classical, sporadic PD and 2386 SNPs in 23 genes implicated in the pathogenesis of PD; (2) construct haplotypes based on the SNP...derived from this study may be applied in other complex disorders for the identification of susceptibility genes , as well as in genome-wide SNP
Lepoittevin, Camille; Frigerio, Jean-Marc; Garnier-Géré, Pauline; Salin, Franck; Cervera, María-Teresa; Vornam, Barbara; Harvengt, Luc; Plomion, Christophe
2010-01-01
Background There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C). Methodology/Principal Findings A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). Conclusions/Significance This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome. PMID:20543950
Linkage disequilibrium between STRPs and SNPs across the human genome.
Payseur, Bret A; Place, Michael; Weber, James L
2008-05-01
Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.
Selection and Management of DNA Markers for Use in Genomic Evaluation
USDA-ARS?s Scientific Manuscript database
A database was constructed to store genotypes for 50,972 single-nucleotide polymorphisms (SNP) from the Illumina BovineSNP50 BeadChip for over 30,000 animals. The database allows storage of multiple samples per animal and stores all SNP genotypes for a sample in a single row. An indicator specifies ...
A Coordinated Approach to Peach SNP Discovery in RosBREED
USDA-ARS?s Scientific Manuscript database
In the USDA-funded multi-institutional and trans-disciplinary project, “RosBREED”, crop-specific SNP genome scan platforms are being developed for peach, apple, strawberry, and cherry at a resolution of at least one polymorphic SNP marker every 5 cM in any random cross, for use in Pedigree-Based Ana...
[Relationship between genetic polymorphisms of 3 SNP loci in 5-HTT gene and paranoid schizophrenia].
Xuan, Jin-Feng; Ding, Mei; Pang, Hao; Xing, Jia-Xin; Sun, Yi-Hua; Yao, Jun; Zhao, Yi; Li, Chun-Mei; Wang, Bao-Jie
2012-12-01
To investigate the population genetic data of 3 SNP loci (rs25533, rs34388196 and rs1042173) of 5-hydroxytryptamine transporter (5-HTT) gene and the association with paranoid schizophrenia. Three SNP loci of 5-HTT gene were examined in 132 paranoid schizophrenia patients and 150 unrelated healthy individuals of Northern Chinese Han population by PCR-RFLP technique. The Hardy-Weinberg equilibrium test was performed using the chi-square test and the data of haplotype frequency and population genetics parameters were statistically analyzed. Among these three SNP loci, four haplotypes were obtained. There were no statistically significant differences between the patient group and the control group (P > 0.05). The DP values of the 3 SNP loci were 0.276, 0.502 and 0.502. The PIC of them were 0.151, 0.281 and 0.281. The PE of them were 0.014, 0.072 and 0.072. The three SNP loci and four haplotypes of 5-HTT gene have no association with paranoid schizophrenia, while the polymorphism still have high potential application in forensic practice.
Bolormaa, Sunduimijid; Pryce, Jennie E.; Reverter, Antonio; Zhang, Yuandan; Barendse, William; Kemper, Kathryn; Tier, Bruce; Savin, Keith; Hayes, Ben J.; Goddard, Michael E.
2014-01-01
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t'V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups. PMID:24675618
Fang, Yan; Gao, Na; Tian, Xin; Zhou, Jun; Zhang, Hai-Feng; Gao, Jie; He, Xiao-Pei; Wen, Qiang; Jia, Lin-Jing; Jin, Han; Qiao, Hai-Ling
2018-06-27
Background/ Aims: Little is known about the effect of P450 oxidoreductase (POR) gene polymorphisms on the activities of CYPs with multiple genotypes. We genotyped 102 human livers for 18 known POR single nucleotide polymorphisms (SNPs) with allelic frequencies greater than 1% as well as for 27 known SNPs in 10 CYPs. CYP enzyme activities in microsomes prepared from these livers were determined by measuring probe substrate metabolism by high performance liquid chromatograph. We found that the effects of the 18 POR SNPs on 10 CYP activities were CYP genotype-dependent. The POR mutations were significantly associated with decreased overall Km for CYP2B6 and 2E1, and specific genotypes within CYP1A2, 2A6, 2B6, 2C8, 2D6 and 2E1 were identified as being affected by these POR SNPs. Notably, the effect of a specific POR mutation on the activity of a CYP genotype could not be predicted from other CYP genotypes of even the same CYP. When combining one POR SNP with other POR SNPs, a hitherto unrecognized effect of multiple-site POR gene polymorphisms (MSGP) on CYP activity was uncovered, which was not necessarily consistent with the effect of either single POR SNP. The effects of POR SNPs on CYP activities were not only CYP-dependent, but more importantly, CYP genotype-dependent. Moreover, the effect of a POR SNP alone and in combination with other POR SNPs (MSGP) was not always consistent, nor predictable. Understanding the impact of POR gene polymorphisms on drug metabolism necessitates knowing the complete SNP complement of POR and the genotype of the relevant CYPs. © 2018 The Author(s). Published by S. Karger AG, Basel.
Weigert, Cora; Thamer, Claus; Brodbeck, Katrin; Guirguis, Alke; Machicao, Fausto; Machann, Jürgen; Schick, Fritz; Stumvoll, Michael; Fritsche, Andreas; Häring, Hans U; Schleicher, Erwin D
2005-03-01
Increases in glutamine:fructose-6-phosphate aminotransferase (GFAT) protein levels directly activate flux through the hexosamine biosynthetic pathway. This pathway has been involved as a fuel sensor in energy metabolism and development of insulin resistance. We screened the 5'-flanking region of the human GFAT gene for polymorphisms and subsequently genotyped 412 nondiabetic, metabolically characterized Caucasians for the two single-nucleotide polymorphisms (SNP) at positions -913 (G/A) and -1412 (C/G) with rare allele frequencies of 42% and 16%, respectively. The -913 G SNP was associated with significantly higher body mass index and percent body fat in men (P = 0.02 and 0.004, respectively), but not in women (P = 0.47 and 0.26, respectively). In the subgroup of individuals (n = 193) who underwent hyperinsulinemic-euglycemic clamp, an association of the -913 G SNP with insulin sensitivity independent of body mass index was not detected. Moreover, the -913 G allele in a group of 71 individuals who had undergone magnetic resonance spectroscopy was associated with higher intramyocellular lipid content (IMCL) in tibialis anterior muscle (4.21 +/- 0.31 vs. 3.36 +/- 0.35; P = 0.04) independent of percent body fat and maximal aerobic power. The -1412 SNP had no effect on percent body fat, insulin sensitivity, or IMCL. In conclusion, we identified two polymorphisms in the 5'-flanking region of GFAT, of which the -913 SNP seems to alter the risk for obesity and IMCL accumulation in male subjects.
Illescas, Oscar; Gomez-Verjan, Juan C.; García-Velázquez, Lizbeth; Govezensky, Tzipe; Rodriguez-Sosa, Miriam
2018-01-01
Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58–0.93], P < 0.01; OR: 0.81 [0.74–0.89], P < 0.0001; and OR: 0.81 [0.76–0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57–0.095], P < 0.01; OR: 0.66 [0.48–0.92], P < 0.0154; and OR: 0.70 [0.60–0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69–0.84], P < 0.0001; OR: 0.77 [0.72–0.83], P < 0.0001; OR: 0.61 [0.44–0.83], P-value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77–0.94], P < 0.0001; OR: 0.80 [0.75–0.86], P < 0.0001; OR: 0.73 [0.63–0.85], P-value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF-173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications. PMID:29545822
Espin-Garcia, Osvaldo; Craiu, Radu V; Bull, Shelley B
2018-02-01
We evaluate two-phase designs to follow-up findings from genome-wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation-maximization-based inference under a semiparametric maximum likelihood formulation tailored for post-GWAS inference. A GWAS-SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT-SNP-dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme-QT strata yields significant power improvements compared to marginal QT- or SNP-based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure. © 2017 The Authors. Genetic Epidemiology Published by Wiley Periodicals, Inc.
Protein-based forensic identification using genetically variant peptides in human bone.
Mason, Katelyn Elizabeth; Anex, Deon; Grey, Todd; Hart, Bradley; Parker, Glendon
2018-04-22
Bone tissue contains organic material that is useful for forensic investigations and may contain preserved endogenous protein that can persist in the environment for extended periods of time over a range of conditions. Single amino acid polymorphisms in these proteins reflect genetic information since they result from non-synonymous single nucleotide polymorphisms (SNPs) in DNA. Detection of genetically variant peptides (GVPs) - those peptides that contain amino acid polymorphisms - in digests of bone proteins allows for the corresponding SNP alleles to be inferred. Resulting genetic profiles can be used to calculate statistical measures of association between a bone sample and an individual. In this study proteomic analysis on rib cortical bone samples from 10 recently deceased individuals demonstrates this concept. A straight-forward acidic demineralization protocol yielded proteins that were digested with trypsin. Tryptic digests were analyzed by liquid chromatography mass spectrometry. A total of 1736 different proteins were identified across all resulting datasets. On average, individual samples contained 454±121 (x¯±σ) proteins. Thirty-five genetically variant peptides were identified from 15 observed proteins. Overall, 134 SNP inferences were made based on proteomically detected GVPs, which were confirmed by sequencing of subject DNA. Inferred individual SNP genetic profiles ranged in random match probability (RMP) from 1/6 to 1/42,472 when calculated with European population frequencies in the 1000 Genomes Project, Phase 3. Similarly, RMPs based on African population frequencies were calculated for each SNP genetic profile and likelihood ratios (LR) were obtained by dividing each European RMP by the corresponding African RMP. Resulting LR values ranged from 1.4 to 825 with a median value of 16. GVP markers offer a basis for the identification of compromised skeletal remains independent of the presence of DNA template. Published by Elsevier B.V.
PP128. Placental Caspase-3 gene polymorphisms is associated with preeclampsia.
Hsu, C-D; Polavarapu, S; Parton, L
2012-07-01
Increased placental trophoblastic apoptosis (programmed cell death) was previously reported in pregnancies complicated by preeclampsia. Caspase-3 is one of the key executioners of apoptosis. Caspase are expressed in many tissues including human placental trophoblast and other tissues. Variations in the promoter area of the Caspase genes may modulate apoptotic signaling, contributing to an increased risk of preeclampsia To determine if gene polymorphisms of Caspase 3 proteins differ between patient with and without preeclampsia. Forty-three singleton placentas were studied. Twenty-two placentas were with preeclampsia and 21 were normotensive controls. DNA was extracted from placentas using QIAAmp DNA Minikit. Genotyping of Caspase 3 +567 was determined by real-time PCR using the Applied Biosystems Prism 7900 HT SDS machine. Chi-square and Fisher's exact tests were used for statistical analysis. There were no significant differences in maternal age, parity or race between the two groups. Preeclamptic placentas had higher frequency of wild type TT of Caspase-3 SNP (+567) as compared with normotensive controls (59% versus 28.5%). Preeclamptic placentas expressed significantly more genotype of TT of Caspase-3 SNP (+567) than normotensive patients when compared to CC (p=0.02). The alle frequencies of the Caspase SNP (+567) in preeclampstic placentas were 0.77 and 0.23 for T and C, respectively, as compared to 0.52 and 0.48, respectively, in placentas from normotensive pregnancies. Immune intolerance of maternal and placental interaction plays an important role in the pathogenesis of preeclampsia. Increased of placental apoptosis was reported in pregnancy complicated with preeclamsia. Our findings indicate placental Caspase 3 (+567) gene polymorphisms is associated with preeclampsia. Altered placental alle frequencies and caspase-3 SNP (+567) in preeclampsia further suggests preeclampsia is a trophoblastic disorder. Copyright © 2012. Published by Elsevier B.V.
Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon
2015-01-01
Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190
Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.
Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross
2016-08-01
High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Hulse-Kemp, Amanda M.; Lemm, Jana; Plieske, Joerg; Ashrafi, Hamid; Buyyarapu, Ramesh; Fang, David D.; Frelichowski, James; Giband, Marc; Hague, Steve; Hinze, Lori L.; Kochan, Kelli J.; Riggs, Penny K.; Scheffler, Jodi A.; Udall, Joshua A.; Ulloa, Mauricio; Wang, Shirley S.; Zhu, Qian-Hao; Bag, Sumit K.; Bhardwaj, Archana; Burke, John J.; Byers, Robert L.; Claverie, Michel; Gore, Michael A.; Harker, David B.; Islam, Md S.; Jenkins, Johnie N.; Jones, Don C.; Lacape, Jean-Marc; Llewellyn, Danny J.; Percy, Richard G.; Pepper, Alan E.; Poland, Jesse A.; Mohan Rai, Krishan; Sawant, Samir V.; Singh, Sunil Kumar; Spriggs, Andrew; Taylor, Jen M.; Wang, Fei; Yourstone, Scott M.; Zheng, Xiuting; Lawley, Cindy T.; Ganal, Martin W.; Van Deynze, Allen; Wilson, Iain W.; Stelly, David M.
2015-01-01
High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community. PMID:25908569
Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H
2011-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.
Schmidt-Lebuhn, Alexander N; Aitken, Nicola C; Chuah, Aaron
2017-11-01
Datasets of hundreds or thousands of SNPs (Single Nucleotide Polymorphisms) from multiple individuals per species are increasingly used to study population structure, species delimitation and shallow phylogenetics. The principal software tool to infer species or population trees from SNP data is currently the BEAST template SNAPP which uses a Bayesian coalescent analysis. However, it is computationally extremely demanding and tolerates only small amounts of missing data. We used simulated and empirical SNPs from plants (Australian Craspedia, Asteraceae, and Pelargonium, Geraniaceae) to compare species trees produced (1) by SNAPP, (2) using SVD quartets, and (3) using Bayesian and parsimony analysis with several different approaches to summarising data from multiple samples into one set of traits per species. Our aims were to explore the impact of tree topology and missing data on the results, and to test which data summarising and analyses approaches would best approximate the results obtained from SNAPP for empirical data. SVD quartets retrieved the correct topology from simulated data, as did SNAPP except in the case of a very unbalanced phylogeny. Both methods failed to retrieve the correct topology when large amounts of data were missing. Bayesian analysis of species level summary data scoring the two alleles of each SNP as independent characters and parsimony analysis of data scoring each SNP as one character produced trees with branch length distributions closest to the true trees on which SNPs were simulated. For empirical data, Bayesian inference and Dollo parsimony analysis of data scored allele-wise produced phylogenies most congruent with the results of SNAPP. In the case of study groups divergent enough for missing data to be phylogenetically informative (because of additional mutations preventing amplification of genomic fragments or bioinformatic establishment of homology), scoring of SNP data as a presence/absence matrix irrespective of allele content might be an additional option. As this depends on sampling across species being reasonably even and a random distribution of non-informative instances of missing data, however, further exploration of this approach is needed. Properly chosen data summary approaches to inferring species trees from SNP data may represent a potential alternative to currently available individual-level coalescent analyses especially for quick data exploration and when dealing with computationally demanding or patchy datasets. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Wang, Chunguang; Li, Hao; Chen, Kang; Wu, Bing; Liu, Haifeng
2017-01-01
It has been reported that the single nucleotide polymorphism (SNP) rs1800012 in COL1A1 might be associated with the susceptibility to sports-related tendon and ligament injuries such as ACL injuries, Achilles tendon injuries, shoulder dislocations and tennis elbow. But the data from different studies have been conflicting. Here we attempted to systematically summarize and clarify the association between the SNP and sports-related tendon and ligament injuries risk. Six eligible studies including 933 cases and 1,381 controls were acquired from PubMed, Web Of Science and Cochrane library databases. Significant association was identified in homozygote model (TT versus GG: OR=0.17, 95%CI 0.08-0.35, PH=0.00) and recessive model (TT versus GT/GG: OR=0.21, 95%CI 0.10-0.44, PH=0.00). Our results indicated that COL1A1 rs1800012 polymorphism may be associated with the reduced risk of sports-related tendon or ligament injuries, especially in ACL injuries, and that rare TT may played as a protective role. PMID:28206959
Association of ADRB2 polymorphism with triglyceride levels in Tongans.
Naka, Izumi; Ohashi, Jun; Kimura, Ryosuke; Inaoka, Tsukasa; Matsumura, Yasuhiro
2013-07-23
Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index.
Alaylıoğlu, Merve; Gezen-Ak, Duygu; Dursun, Erdinç; Bilgiç, Başar; Hanağası, Haşmet; Ertan, Turan; Gürvit, Hakan; Emre, Murat; Eker, Engin; Uysal, Ömer; Yılmazer, Selma
2016-07-01
Previous studies have demonstrated that clusterin (CLU), which is also known as apolipoprotein J, is involved in the pathogenesis of Alzheimer disease (AD). In this study, we investigated the association between rs2279590, rs11136000, and rs9331888 single-nucleotide polymorphisms (SNPs) in CLU and apolipoprotein E (APOE) genotypes in a cohort of Turkish patients with late-onset AD (LOAD). There were 183 patients with LOAD and 154 healthy controls included in the study. The CLU and APOE polymorphisms were genotyped using the LightSNiP assay. The "GG" genotype of rs9331888 was significantly more frequent in patients with LOAD. The "CC" genotype of the SNP was significantly more frequent in controls. The rs9331888 "GG" genotype in patients and the "CC" genotype in controls were significantly higher in non-∊4 allele carriers of APOE The haplotype analysis showed the CLU "GCG" haplotype was a risk haplotype. Our findings indicate the rs9331888 SNP of CLU is associated with LOAD independent of APOE. © The Author(s) 2016.
Sengupta Chattopadhyay, Amrita; Hsiao, Ching-Lin; Chang, Chien Ching; Lian, Ie-Bin; Fann, Cathy S J
2014-01-01
Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods-Gini, absolute probability difference (APD), and entropy-to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (<0.05) compared to GS, APDS, ES (>0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions. © 2013 Elsevier B.V. All rights reserved.
Ling, Kai-Shu; Harris, Karen R; Meyer, Jenelle D F; Levi, Amnon; Guner, Nihat; Wehner, Todd C; Bendahmane, Abdelhafid; Havey, Michael J
2009-12-01
Zucchini yellow mosaic virus (ZYMV) is one of the most economically important potyviruses infecting cucurbit crops worldwide. Using a candidate gene approach, we cloned and sequenced eIF4E and eIF(iso)4E gene segments in watermelon. Analysis of the nucleotide sequences between the ZYMV-resistant watermelon plant introduction PI 595203 (Citrullus lanatus var. lanatus) and the ZYMV-susceptible watermelon cultivar 'New Hampshire Midget' ('NHM') showed the presence of single nucleotide polymorphisms (SNPs). Initial analysis of the identified SNPs in association studies indicated that SNPs in the eIF4E, but not eIF(iso)4E, were closely associated to the phenotype of ZYMV-resistance in 70 F(2) and 114 BC(1R) progenies. Subsequently, we focused our efforts in obtaining the entire genomic sequence of watermelon eIF4E. Three SNPs were identified between PI 595203 and NHM. One of the SNPs (A241C) was in exon 1 and the other two SNPs (C309A and T554G) were in the first intron of the gene. SNP241 which resulted in an amino acid substitution (proline to threonine) was shown to be located in the critical cap recognition and binding area, similar to that of several plant species resistance to potyviruses. Analysis of a cleaved amplified polymorphism sequence (CAPS) marker derived from this SNP in F(2) and BC(1R) populations demonstrated a cosegregation between the CAPS-2 marker and their ZYMV resistance or susceptibility phenotype. When we investigated whether such SNP mutation in the eIF4E was also conserved in several other PIs of C. lanatus var. citroides, we identified a different SNP (A171G) resulting in another amino acid substitution (D71G) from four ZYMV-resistant C. lanatus var. citroides (PI 244018, PI 482261, PI 482299, and PI 482322). Additional CAPS markers were also identified. Availability of all these CAPS markers will enable marker-aided breeding of watermelon for ZYMV resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and treesmore » determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.« less
AGARWAL, SANDEEP K.; GOURH, PRAVITT; SHETE, SANJAY; PAZ, GENE; DIVECHA, DIPAL; REVEILLE, JOHN D.; ASSASSI, SHERVIN; TAN, FILEMON K.; MAYES, MAUREEN D.; ARNETT, FRANK C.
2010-01-01
Objective IL23R has been identified as a susceptibility gene for development of multiple autoimmune diseases. We investigated the possible association of IL23R with systemic sclerosis (SSc), an autoimmune disease that leads to the development of cutaneous and visceral fibrosis. Methods We tested 9 single-nucleotide polymorphisms (SNP) in IL23R for association with SSc in a cohort of 1402 SSc cases and 1038 controls. IL23R SNP tested were previously identified as SNP showing associations with inflammatory bowel disease. Results Case-control comparisons revealed no statistically significant differences between patients and healthy controls with any of the IL23R polymorphisms. Analyses of subsets of SSc patients showed that rs11209026 (Arg381Gln variant) was associated with anti-topoisomerase I antibody (ATA)-positive SSc (p = 0.001)) and rs11465804 SNP was associated with diffuse and ATA-positive SSc (p = 0.0001, p = 0.0026, respectively). These associations remained significant after accounting for multiple comparisons using the false discovery rate method. Wild-type genotype at both rs11209026 and rs11465804 showed significant protection against the presence of pulmonary hypertension (PHT). (p = 3×10−5, p = 1×10−5, respectively). Conclusion Polymorphisms in IL23R are associated with susceptibility to ATA-positive SSc and protective against development of PHT in patients with SSc. PMID:19918037
The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle.
Pang, Yonghong; Wang, Juqiang; Zhang, Chunlei; Lei, Chuzhao; Lan, Xianyong; Yue, Wangping; Gu, Chuanwen; Chen, Danxia; Chen, Hong
2011-02-01
PCR-SSCP and DNA sequencing methods were employed to screen the genetic variation of VEGF gene in 671 individuals belonging to three Chinese indigenous cattle breeds including Nanyang, Jiaxian Red and Qinchuan. Three haplotypes (A, B and C), four observed genotypes (AA, AB, BB and AC) and three new SNPs (6765T>C ss130456744, 6860A>G ss130456745, 6893T>C ss130456746) were detected. The analysis suggested that one SNP (ss130456744) in the bovine VEGF gene had significant effects on birth weight, body weight and heart girth at 6 months old in the Nanyang breed (P < 0.05). The results showed that the SNP (ss130456744) in intron 2 of the VEGF gene is associated with early development and growth of Chinese cattle. These findings raise hope that this polymorphism can be a molecular breeding marker in breeding strategies through marker assisted selection (MAS) in Chinese domestic cattle.
[Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP].
Chen, Rong; Wang, Xiao-Yun; Song, Yu-Ning; Zhu, Yun-feng; Wang, Peng-liang; Li, Min; Zhong, Guo-Yue
2014-12-01
In order to reveal genetic diversity of domestic Andrographis paniculata and its impact on quality, genetic backgrounds of 103 samples from 7 provinces in China were analyzed using SRAP marker and SNP marker. Genetic structures of the A. paniculata populations were estimated with Powermarker V 3.25 and Mega 6.0 software, and polymorphic SNPs were identified with CodonCode Aligner software. The results showed that the genetic distances of domestic A. paniculata germplasm ranged from 0. 01 to 0.09, and no polymorphic SNPs were discovered in coding sequence fragments of ent-copalyl diphosphate synthase. A. paniculata germplasm from various regions in China had poor genetic diversity. This phenomenon was closely related to strict self-fertilization and earlier introduction from the same origin. Therefore, genetic background had little impact on variable qualities of A. paniculata in domestic market. Mutation breeding, polyploid breeding and molecular breeding were proposed as promising strategies in germplasm innovation.
Yang, Ai-Mei; Huang, Rong; Jin, Shi-Jie
2016-04-01
To investigate ORMDL3 polymorphisms in children with asthma in Hunan, China, and to determine the relationship between ORMDL3 polymorphisms and serum osteopontin (OPN) and transforming growth factor-β1 (TGF-β1) levels. Peripheral blood samples were collected in children with asthma (n=98; astma group) or without asthma (n=30; control group) from Hunan, China. The asthma group was subdivided into atopic (n=62) and non-atopic (n=36) subgroups. Single nucleotide polymorphism (SNP) analysis was performed, and serum OPN and TGF-β1 levels were measured. There were no significant differences in genotype and allele frequencies of rs7216389 of the ORMDL3 gene between the asthma and control groups. The serum level of OPN in the asthma group was significantly higher than in the control group (P<0.05). Both the atopic and non-atopic subgroups showed increased serum levels of OPN compared with the control group (P<0.05). The serum level of TGF-β1 in the atopic subgroup was significantly higher than in the control group (P<0.05). The serum levels of OPN and TGF-β1 showed no significant differences in asthmatic children with different genotypes. The serum levels of OPN and TGF-β1 were in a positive linear correlation in the asthma group (r=0.620; P<0.01) and its two subgroups (r=0.734, 0.649 respectively; P<0.01). In children from Hunan, China, the SNP (rs7216389) of ORMDL3 is not related to asthma susceptibility. OPN and TGF-β1 may be involved in the development of asthma, and they are in a positive linear correlation. The SNP (rs7216389) of ORMDL3 does not influence the expression of OPN and TGF-β1, suggesting that it may not be associated with airway remodeling.
Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.
2015-01-01
Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250
MMP9 polymorphisms and breast cancer risk: a report from the Shanghai Breast Cancer Genetics Study.
Beeghly-Fadiel, Alicia; Lu, Wei; Shu, Xiao-Ou; Long, Jirong; Cai, Qiuyin; Xiang, Yongbin; Gao, Yu-Tang; Zheng, Wei
2011-04-01
In addition to tumor invasion and angiogenesis, matrix metalloproteinase (MMP)9 also contributes to carcinogenesis and tumor growth. Genetic variation that may influence MMP9 expression was evaluated among participants of the Shanghai Breast Cancer Genetics Study (SBCGS) for associations with breast cancer susceptibility. In stage 1, 11 MMP9 single nucleotide polymorphisms (SNPs) were genotyped by the Affymetrix Targeted Genotyping System and/or the Affymetrix Genome-Wide Human SNP Array 6.0 among 4,227 SBCGS participants. One SNP was further genotyped using the Sequenom iPLEX MassARRAY platform among an additional 6,270 SBCGS participants. Associations with breast cancer risk were evaluated by odds ratios (OR) and 95% confidence intervals (CI) from logistic regression models that included adjustment for age, education, and genotyping stage when appropriate. In Stage 1, rare allele homozygotes for a promoter SNP (rs3918241) or a non-synonymous SNP (rs2274756, R668Q) tended to occur more frequently among breast cancer cases (P value = 0.116 and 0.056, respectively). Given their high linkage disequilibrium (D' = 1.0, r (2) = 0.97), one (rs3918241) was selected for additional analysis. An association with breast cancer risk was not supported by additional Stage 2 genotyping. In combined analysis, no elevated risk of breast cancer among homozygotes was found (OR: 1.2, 95% CI: 0.8-1.8). Common genetic variation in MMP9 was not found to be significantly associated with breast cancer susceptibility among participants of the Shanghai Breast Cancer Genetics Study.
Lee, Kyoung-Young; Kang, Hyun-Sik; Shin, Yun-A
2013-03-10
The effects of exercise on adiponectin levels have been reported to be variable and may be attributable to an interaction between environmental and genetic factors. The single nucleotide polymorphisms (SNP) 45 (T>G) and SNP276 (G>T) of the adiponectin gene are associated with metabolic risk factors including adiponectin levels. We examined whether SNP45 and SNP276 would differentially influence the effect of exercise training in middle-aged women with uncomplicated obesity. We conducted a prospective study in the general community that included 90 Korean women (age 47.0±5.1 years) with uncomplicated obesity. The intervention was aerobic exercise training for 3 months. Body composition, adiponectin levels, and other metabolic risk factors were measured. Prior to exercise training, only body weight differed among the SNP276 genotypes. Exercise training improved body composition, systolic blood pressure, maximal oxygen consumption, high-density lipoprotein cholesterol, and leptin levels. In addition, exercise improved adiponectin levels irrespective of weight gain or loss. However, after adjustments for age, BMI, body fat (%), and waist circumference, no differences were found in obesity-related characteristics (e.g., adiponectin) following exercise training among the SNP45 and the 276 genotypes. Our findings suggest that aerobic exercise affects adiponectin levels regardless of weight loss and this effect would not be influenced by SNP45 and SNP276 in the adiponectin gene. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Armas, Federica; Camperio, Cristina; Coltella, Luana; Selvaggini, Serena; Boniotti, Maria Beatrice; Pacciarini, Maria Lodovica; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia
2017-08-04
Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson's correlation coefficient. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.
Tang, Shaohua; Lv, Jiaojiao; Chen, Xiangnan; Bai, Lili; Li, Huanzheng; Chen, Chong; Wang, Ping; Xu, Xueqin; Lu, Jianxin
2016-01-01
To evaluate the usefulness of single-nucleotide polymorphism (SNP) array for prenatal genetic diagnosis of congenital heart defect (CHD), we used this approach to detect clinically significant copy number variants (CNVs) in fetuses with CHDs. A HumanCytoSNP-12 array was used to detect genomic samples obtained from 39 fetuses that exhibited cardiovascular abnormalities on ultrasound and had a normal karyotype. The relationship between CNVs and CHDs was identified by using genotype-phenotype comparisons and searching of chromosomal databases. All clinically significant CNVs were confirmed by real-time PCR. CNVs were detected in 38/39 (97.4%) fetuses: variants of unknown significance were detected in 2/39 (5.1%), and clinically significant CNVs were identified in 7/39 (17.9%). In 3 of the 7 fetuses with clinically significant CNVs, 3 rare and previously undescribed CNVs were detected, and these CNVs encompassed the CHD candidate genes FLNA (Xq28 dup), BCOR (Xp11.4 dup), and RBL2 (16q12.2 del). Compared with conventional cytogenetic genomics, SNP array analysis provides significantly improved detection of submicroscopic genomic aberrations in pregnancies with CHDs. Based on these results, we propose that genomic SNP array is an effective method which could be used in the prenatal diagnostic test to assist genetic counseling for pregnancies with CHDs. © 2015 S. Karger AG, Basel.
Gilbey, John; Cauwelier, Eef; Coulson, Mark W.; Stradmeyer, Lee; Sampayo, James N.; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart
2016-01-01
Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations. PMID:27723810
Case-control study of eczema associated with IL13 genetic polymorphisms in Japanese children.
Miyake, Yoshihiro; Kiyohara, Chikako; Koyanagi, Midori; Fujimoto, Takahiro; Shirasawa, Senji; Tanaka, Keiko; Sasaki, Satoshi; Hirota, Yoshio
2011-01-01
Several association studies have investigated the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and eczema, with inconsistent results. We conducted a case-control study of the relationship between the polymorphisms of rs1800925 and rs20541 and the risk of eczema in Japanese children aged 3 years. Included were the 209 cases identified based on criteria of the International Study of Asthma and Allergies in Childhood (ISAAC). Controls were 451 children without eczema based on ISAAC questions who had not been diagnosed by a physician as having asthma or atopic eczema. The minor TT genotype of the rs1800925 SNP and the minor AA genotype of the rs20541 SNP were significantly related to an increased risk of eczema: adjusted odds ratio for the TT genotype was 2.78 (95% confidence interval 1.22-6.30) and that for the AA genotype was 2.38 (95% confidence interval 1.35-4.18). Haplotype analyses showed a protective association between the CG haplotype and eczema, whereas the TA haplotype was positively related to the risk of eczema. Perinatal smoking exposure did not interact with genotypes of the IL13 gene in the etiology of eczema. The significant association of the rs20541 SNP with eczema essentially disappeared after additional adjustment for the rs1800925 SNP, whereas a relationship with the rs1800925 SNP remained significant. A common genetic variation in the IL13 gene at the levels of both single SNPs and haplotypes was associated with eczema. However, the significant association with the rs20541 SNP might be ascribed to the rs1800925 SNP. Copyright © 2010 S. Karger AG, Basel.
Liu, X; Guo, X Y; Xu, X Z; Wu, M; Zhang, X; Li, Q; Ma, P P; Zhang, Y; Wang, C Y; Geng, F J; Qin, C H; Liu, L; Shi, W H; Wang, Y C; Yu, Y
2012-08-16
DNA methylation is essential for adipose deposition in mammals. We screened SNPs of the bovine DNA methyltransferase 3b (DNMT3b) gene in Snow Dragon beef, a commercial beef cattle population in China. Nine SNPs were found in the population and three of six novel SNPs were chosen for genotyping and analyzing a possible association with 16 meat quality traits. The frequencies of the alleles and genotypes of the three SNPs in Snow Dragon beef were similar to those in their terminal-paternal breed, Wagyu. Association analysis disclosed that SNP1 was not associated with any of the traits; SNP2 was significantly associated with lean meat color score and chuck short rib score, and SNP3 had a significant effect on dressing percentage and back-fat thickness in the beef population. The individuals with genotype GG for SNP2 had a 25.7% increase in lean meat color score and a 146% increase in chuck short rib score, compared with genotype AA. The cattle with genotype AG for SNP3 had 35.7 and 24% increases in dressing percentage and 28.8 and 29.2% increases in back-fat thickness, compared with genotypes GG and AA, respectively. Genotypic combination analysis revealed significant interactions between SNP1 and SNP2 and between SNP2 and SNP3 for the traits rib-eye area and live weight. We conclude that there is considerable evidence that DNMT3b is a determiner of beef quality traits.
Haldar, Deepa; Agrawal, Nitin; Patel, Seema; Kambale, Pankaj Ramrao; Arora, Kanchan; Sharma, Aditi; Tripathi, Manish; Batra, Aruna; Kabi, Bhaskar C
2018-03-01
Polycystic ovarian syndrome (PCOS) is the most common endocrine abnormality among women of reproductive age and is usually associated with oligo-ovulation/anovulation, obesity, and insulin resistance. Hypovitaminosis D may also be a primary factor in the initiation and development of PCOS. However, little is known about the role of genetic variation in vitamin D metabolism in PCOS aetiology. Therefore, we studied the genetic polymorphisms of CYP2R1 and vitamin D binding protein (VDBP) in an Indian population. Serum vitamin D was measured by ELISA. Genotyping of VDBP single nucleotide polymorphisms (SNPs) rs7041 (HaeIII; G>T) and rs4588 (StyI; A>C) and CYP2R1 SNP rs2060793 (HinfI; A>G) was carried out by restriction fragment length polymorphism in 50 cases of PCOS that were compared with 50 age-matched healthy women. Vitamin D levels were found to be significantly lower in women with PCOS (p = 0.008) than in age-matched controls. There was no significant difference in genotype frequencies of all three polymorphisms (rs7041, rs4588, and rs2060793) between PCOS and control women. In women with a vitamin D deficiency (<20 ng/ml), the GT allele of the VDBP SNP rs7041 (p value =0.04), the VDBP allelic combination Gc1F/1F (T allele of rs4588 and C allele of rs7041) (p value =0.03), and the GA allele of the CYP2R1 SNP rs2060793 (p = 0.05) were associated with an increased risk of developing PCOS. The present study shows that the GT allele of VDBP SNP rs7041, the VDBP allelic combination (GC1F/1F), and GA allele of CYP2R1 SNP rs2060793 in vitamin D deficient women increase the risk of PCOS.
Kelly, Hilary; Dupras, Andrée Ann; Belanger, Sebastien; Devenish, John
2014-01-01
The lack of a sufficiently discriminatory molecular subtyping tool for Salmonella enterica serovar Enteritidis has hindered source attribution efforts and impeded regulatory actions required to disrupt its food-borne transmission. The underlying biological reason for the ineffectiveness of current molecular subtyping tools such as pulsed-field gel electrophoresis (PFGE) and phage typing appears to be related to the high degree of clonality of S. Enteritidis. By interrogating the organism's genome, we previously identified single nucleotide polymorphisms (SNP) distributed throughout the chromosome and have designed a highly discriminatory PCR-based SNP typing test based on 60 polymorphic loci. The application of the SNP-PCR method to DNA samples from S. Enteritidis strains (n = 55) obtained from a variety of sources has led to the differentiation and clustering of the S. Enteritidis isolates into 12 clades made up of 2 to 9 isolates per clade. Significantly, the SNP-PCR assay was able to further differentiate predominant PFGE types (e.g., XAI.0003) and phage types (e.g., phage type 8) into smaller subsets. The SNP-PCR subtyping test proved to be an accurate, precise, and quantitative tool for evaluating the relationships among the S. Enteritidis isolates tested in this study and should prove useful for clustering related S. Enteritidis isolates involved in outbreaks. PMID:25297333
Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui
2017-01-01
Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.
GESPA: classifying nsSNPs to predict disease association.
Khurana, Jay K; Reeder, Jay E; Shrimpton, Antony E; Thakar, Juilee
2015-07-25
Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs. GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino acids in orthologs and paralogs and supplementing this information with data from medical literature. The development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally, GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in existing software. GESPA's overall accuracy exceeds existing computational methods for predicting nsSNP pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data. GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at http://sourceforge.net/projects/gespa.
Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W
2014-09-01
A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.
Ferchaud, Anne-Laure; Pedersen, Susanne H; Bekkevold, Dorte; Jian, Jianbo; Niu, Yongchao; Hansen, Michael M
2014-10-06
The threespine stickleback (Gasterosteus aculeatus) has become an important model species for studying both contemporary and parallel evolution. In particular, differential adaptation to freshwater and marine environments has led to high differentiation between freshwater and marine stickleback populations at the phenotypic trait of lateral plate morphology and the underlying candidate gene Ectodysplacin (EDA). Many studies have focused on this trait and candidate gene, although other genes involved in marine-freshwater adaptation may be equally important. In order to develop a resource for rapid and cost efficient analysis of genetic divergence between freshwater and marine sticklebacks, we generated a low-density SNP (Single Nucleotide Polymorphism) array encompassing markers of chromosome regions under putative directional selection, along with neutral markers for background. RAD (Restriction site Associated DNA) sequencing of sixty individuals representing two freshwater and one marine population led to the identification of 33,993 SNP markers. Ninety-six of these were chosen for the low-density SNP array, among which 70 represented SNPs under putatively directional selection in freshwater vs. marine environments, whereas 26 SNPs were assumed to be neutral. Annotation of these regions revealed several genes that are candidates for affecting stickleback phenotypic variation, some of which have been observed in previous studies whereas others are new. We have developed a cost-efficient low-density SNP array that allows for rapid screening of polymorphisms in threespine stickleback. The array provides a valuable tool for analyzing adaptive divergence between freshwater and marine stickleback populations beyond the well-established candidate gene Ectodysplacin (EDA).
Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients.
Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Jiménez-Velasco, Antonio; Dolz, Sandra; Ibáñez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Óscar; Oltra, Silvestre; Moscardó, Federico; Martínez-Cuadrón, David; Senent, M Leonor; Gascón, Adriana; Montesinos, Pau; Martín, Guillermo; Bolufer, Pascual; Sanz, Miguel A
2012-12-01
The single nucleotide polymorphism (SNP) rs16754 of the WT1 gene has been previously described as a possible prognostic marker in normal karyotype acute myeloid leukemia (AML) patients. Nevertheless, the findings in this field are not always reproducible in different series. One hundred and seventy-five adult de novo AML patients were screened with two different methods for the detection of SNP rs16754: high-resolution melting (HRM) and FRET hybridization probes. Direct sequencing was used to validate both techniques. The SNP was detected in 52 out of 175 patients (30 %), both by HRM and hybridization probes. Direct sequencing confirmed that every positive sample in the screening methods had a variation in the DNA sequence. Patients with the wild-type genotype (WT1(AA)) for the SNP rs16754 were significantly younger than those with the heterozygous WT1(AG) genotype. No other difference was observed for baseline characteristic or outcome between patients with or without the SNP. Both techniques are equally reliable and reproducible as screening methods for the detection of the SNP rs16754, allowing for the selection of those samples that will need to be sequenced. We were unable to confirm the suggested favorable outcome of SNP rs16754 in de novo AML.
USDA-ARS?s Scientific Manuscript database
Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...
Charoensook, Rangsun; Gatphayak, Kesinee; Sharifi, Ahmad Reza; Chaisongkram, Chavin; Brenig, Bertram; Knorr, Christoph
2012-04-01
Heat shock proteins act as molecular chaperones that have preferentially been transcribed in response to severe perturbations of the cellular homeostasis such as heat stress. Here the traits respiration rate (RR), rectal temperature (RT), pack cell volume (PCV) and the individual heat tolerance coefficient (HTC) were recorded as physiological responses on heat stress (environmental temperatures) in Bos taurus (crossbred Holstein Friesian; HF) and B. indicus (Thai native cattle: White Lamphun; WL and Mountain cattle; MT) animals (n = 47) in Thailand. Polymorphisms of the heat shock protein 90-kDa beta gene (HSP90AB1) were evaluated by comparative sequencing. Nine single nucleotide polymorphisms (SNP) were identified, i.e. three in exons 10 and 11, five in introns 8, 9, 10 and 11, and one in the 3'UTR. The exon 11 SNP g.5082C>T led to a missense mutation (alanine to valine). During the period of extreme heat (in the afternoon) RR and RT were elevated in each of the three breeds, whereas the PCV decreased. Mountain cattle and White Lamphun heifers recorded significantly better physiologic parameters (p < 0.05) in all traits considered, including or particularly HTC than Holstein Friesian heifers. The association analysis revealed that the T allele at SNP g.4338T>C within intron 3 improved the heat tolerance (p < 0.05). Allele T was exclusively found in White Lamphun animals and to 84% in Mountain cattle. Holstein Friesian heifers revealed an allele frequency of only 18%. Polymorphisms within HSP90AB1 were not causative for the physiological responses; however, we propose that they should at least be used as genetic markers to select appropriate breeds for hot climates.
Arshad, S.H.; Karmaus, W.; Kurukulaaratchy, R.; Sadeghnejad, A.; Huebner, M.; Ewart, S.
2009-01-01
Summary Background Atopic eczema is characterized by Th2-dominant immunity with the cytokine interleukin 13 and the transcription factor GATA binding protein 3 playing a critical role. Objectives We assessed the association of polymorphisms in the IL13 and GATA3 genes with childhood eczema. Methods A birth cohort (n = 1456) was established on the Isle of Wight in 1989 and followed at the ages of 1 (n = 1167), 2 (n = 1174), 4 (n = 1218) and 10 years (n = 1373) to determine the prevalence of allergic disease including eczema. At 4 and 10 years, skin prick testing was performed. Whole blood samples (n = 923) were obtained at the 10-year assessment, stored frozen, and genotyped. Five polymorphisms from IL13 and seven from GATA3 were genotyped for this analysis. Repeated measurement analyses were conducted for the occurrence of eczema at ages 1, 2, 4 and 10 years. All analyses were adjusted for maternal and paternal eczema, low birth weight (< 2500 g), breastfeeding ≥ 3 months and age. Results IL13 was not associated with childhood eczema. For GATA3, the single nucleotide polymorphism (SNP) rs2275806 (promoter region) showed an increased odds ratio for atopic eczema independent of whether the comparison group had a positive skin prick test. The SNP rs444762 (intron 3 region) was associated with atopic eczema in comparison with children without eczema. The increased relative risks remained significant after adjustment for multiple testing only for rs2275806 (P < 0Æ05). Conclusions A SNP in GATA3 is associated with atopic eczema. This finding highlights the importance of GATA3 as an immune-modulating gene in atopic eczema. PMID:18410415
Schrimpf, Rahel; Dierks, Claudia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar
2014-01-01
A consistently high level of stallion fertility plays an economically important role in modern horse breeding. We performed a genome-wide association study for estimated breeding values of the paternal component of the pregnancy rate per estrus cycle (EBV-PAT) in Hanoverian stallions. A total of 228 Hanoverian stallions were genotyped using the Equine SNP50 Beadchip. The most significant association was found on horse chromosome 6 for a single nucleotide polymorphism (SNP) within phospholipase C zeta 1 (PLCz1). In the close neighbourhood to PLCz1 is located CAPZA3 (capping protein (actin filament) muscle Z-line, alpha 3). The gene PLCz1 encodes a protein essential for spermatogenesis and oocyte activation through sperm induced Ca2+-oscillation during fertilization. We derived equine gene models for PLCz1 and CAPZA3 based on cDNA and genomic DNA sequences. The equine PLCz1 had four different transcripts of which two contained a premature termination codon. Sequencing all exons and their flanking sequences using genomic DNA samples from 19 Hanoverian stallions revealed 47 polymorphisms within PLCz1 and one SNP within CAPZA3. Validation of these 48 polymorphisms in 237 Hanoverian stallions identified three intronic SNPs within PLCz1 as significantly associated with EBV-PAT. Bioinformatic analysis suggested regulatory effects for these SNPs via transcription factor binding sites or microRNAs. In conclusion, non-coding polymorphisms within PLCz1 were identified as conferring stallion fertility and PLCz1 as candidate locus for male fertility in Hanoverian warmblood. CAPZA3 could be eliminated as candidate gene for fertility in Hanoverian stallions.
Pollex, Erika K; Anger, Gregory; Hutson, Janine; Koren, Gideon; Piquette-Miller, Micheline
2010-05-01
The antidiabetic agent glyburide (glibenclamide) is frequently used for the treatment of type II diabetes and is increasingly being used for the treatment of gestational diabetes. Evidence suggests that breast cancer resistance protein/ATP-binding cassette, subfamily G, member 2 (ABCG2) expressed in the placenta protects the fetus against the accumulation of glyburide. A number of studies have investigated the significance of several single-nucleotide polymorphisms (SNPs) in the ABCG2 gene. Associations between the Q141K (C421A) SNP and ABCG2 protein expression, membrane surface translocation, efflux activity, or ATPase activity have been shown. Therefore, alterations in glyburide transport across the placenta, resulting in increased fetal glyburide exposure, may be seen in individuals carrying the C421A allele. The purpose of this study is to investigate whether the Q141K SNP causes alterations in ABCG2-mediated glyburide transport. Glyburide accumulation assays were carried out with stably transfected human embryonic kidney (HEK)-293 cells expressing wild-type ABCG2 (Arg482) and polymorphic ABCG2 (Q141K). Glyburide kinetic parameters were determined for comparison of wild-type and SNP ABCG2 activity by simultaneously fitting data for ABCG2-expressing cells (saturable transport) and empty vector-expressing cells (nonsaturable transport) by nonlinear regression analysis. The apparent K(t) and V(max) values for the transfected HEK-293 cells expressing the polymorphic variant (Q141K) of ABCG2 were significantly higher than those values determined for the wild-type ABCG2-expressing cells (p < 0.05). Our results indicate that the Q141K variant of ABCG2 may have the potential to alter the placental pharmacokinetics of glyburide used in pregnancy.
Schrimpf, Rahel; Dierks, Claudia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar
2014-01-01
A consistently high level of stallion fertility plays an economically important role in modern horse breeding. We performed a genome-wide association study for estimated breeding values of the paternal component of the pregnancy rate per estrus cycle (EBV-PAT) in Hanoverian stallions. A total of 228 Hanoverian stallions were genotyped using the Equine SNP50 Beadchip. The most significant association was found on horse chromosome 6 for a single nucleotide polymorphism (SNP) within phospholipase C zeta 1 (PLCz1). In the close neighbourhood to PLCz1 is located CAPZA3 (capping protein (actin filament) muscle Z-line, alpha 3). The gene PLCz1 encodes a protein essential for spermatogenesis and oocyte activation through sperm induced Ca2+-oscillation during fertilization. We derived equine gene models for PLCz1 and CAPZA3 based on cDNA and genomic DNA sequences. The equine PLCz1 had four different transcripts of which two contained a premature termination codon. Sequencing all exons and their flanking sequences using genomic DNA samples from 19 Hanoverian stallions revealed 47 polymorphisms within PLCz1 and one SNP within CAPZA3. Validation of these 48 polymorphisms in 237 Hanoverian stallions identified three intronic SNPs within PLCz1 as significantly associated with EBV-PAT. Bioinformatic analysis suggested regulatory effects for these SNPs via transcription factor binding sites or microRNAs. In conclusion, non-coding polymorphisms within PLCz1 were identified as conferring stallion fertility and PLCz1 as candidate locus for male fertility in Hanoverian warmblood. CAPZA3 could be eliminated as candidate gene for fertility in Hanoverian stallions. PMID:25354211
Azevedo, Ana P; Silva, Susana N; De Lima, João P; Reichert, Alice; Lima, Fernando; Júnior, Esmeraldina; Rueff, José
2017-06-01
The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog ( E. coli ) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility.
Azevedo, Ana P.; Silva, Susana N.; De Lima, João P.; Reichert, Alice; Lima, Fernando; Júnior, Esmeraldina; Rueff, José
2017-01-01
The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog (E. coli) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility. PMID:28599464
Abo-Al-Ela, Haitham G; El-Magd, Mohammed Abu; El-Nahas, Abeer F; Mansour, Ali A
2014-08-01
Insulin-like growth factor 2 (IGF2) plays an important role in muscle growth and it might be used as a marker for the growth traits selection strategies in farm animals. The objectives of this study were to detect polymorphisms in exon 10 of IGF2 and to determine associations between these polymorphisms and growth traits in Egyptian water buffalo. PCR-single-strand conformation polymorphism (SSCP) and DNA sequencing methods were used to detect any prospective polymorphism. A novel single nucleotide polymorphism (SNP), C287A, was detected. It was a non-synonymous mutation and led to replacement of glutamine (Q) amino acid (aa) by histidine (H) aa. Three different SSCP patterns were observed: AA, AC, and CC, with frequencies of 0.540, 0.325, and 0.135, respectively. Association analyses revealed that the AA individuals had a higher average daily gain (ADG) than other individuals (CC and AC) from birth to 9 months of age. We conclude that the AA genotype in C287A SNP in the exon 10 of the IGF2 gene is associated with the ADG during the age from birth to 9 months and could be used as a potential genetic marker for selection of growth traits in Egyptian buffalo.
The Discovery of Single-Nucleotide Polymorphisms—and Inferences about Human Demographic History
Wakeley, John; Nielsen, Rasmus; Liu-Cordero, Shau Neen; Ardlie, Kristin
2001-01-01
A method of historical inference that accounts for ascertainment bias is developed and applied to single-nucleotide polymorphism (SNP) data in humans. The data consist of 84 short fragments of the genome that were selected, from three recent SNP surveys, to contain at least two polymorphisms in their respective ascertainment samples and that were then fully resequenced in 47 globally distributed individuals. Ascertainment bias is the deviation, from what would be observed in a random sample, caused either by discovery of polymorphisms in small samples or by locus selection based on levels or patterns of polymorphism. The three SNP surveys from which the present data were derived differ both in their protocols for ascertainment and in the size of the samples used for discovery. We implemented a Monte Carlo maximum-likelihood method to fit a subdivided-population model that includes a possible change in effective size at some time in the past. Incorrectly assuming that ascertainment bias does not exist causes errors in inference, affecting both estimates of migration rates and historical changes in size. Migration rates are overestimated when ascertainment bias is ignored. However, the direction of error in inferences about changes in effective population size (whether the population is inferred to be shrinking or growing) depends on whether either the numbers of SNPs per fragment or the SNP-allele frequencies are analyzed. We use the abbreviation “SDL,” for “SNP-discovered locus,” in recognition of the genomic-discovery context of SNPs. When ascertainment bias is modeled fully, both the number of SNPs per SDL and their allele frequencies support a scenario of growth in effective size in the context of a subdivided population. If subdivision is ignored, however, the hypothesis of constant effective population size cannot be rejected. An important conclusion of this work is that, in demographic or other studies, SNP data are useful only to the extent that their ascertainment can be modeled. PMID:11704929
Genetic Association Study of KCNQ5 Polymorphisms with High Myopia.
Liao, Xuan; Yap, Maurice K H; Leung, Kim Hung; Kao, Patrick Y P; Liu, Long Qian; Yip, Shea Ping
2017-01-01
Identification of genetic variations related to high myopia may advance our knowledge of the etiopathogenesis of refractive error. This study investigated the role of potassium channel gene (KCNQ5) polymorphisms in high myopia. We performed a case-control study of 1563 unrelated Han Chinese subjects (809 cases of high myopia and 754 emmetropic controls). Five tag single-nucleotide polymorphisms (SNPs) of KCNQ5 were genotyped, and association testing with high myopia was conducted using logistic regression analysis adjusted for sex and age to give P asym values, and multiple comparisons were corrected by permutation test to give P emp values. All five noncoding SNPs were associated with high myopia. The SNP rs7744813, previously shown to be associated with refractive error and myopia in two GWAS, showed an odds ratio of 0.75 (95% CI 0.63-0.90; P emp = 0.0058) for the minor allele. The top SNP rs9342979 showed an odds ratio of 0.75 (95% CI 0.64-0.89; P emp = 0.0045) for the minor allele. Both SNPs are located within enhancer histone marks and DNase-hypersensitive sites. Our data support the involvement of KCNQ5 gene polymorphisms in the genetic susceptibility to high myopia and further exploration of KCNQ5 as a risk factor for high myopia.
Wang, Wen-Chung; Chen, Hui-Ju; Shu, Wei-Pang; Tsai, Yi-Chang; Lai, Yen-Chein
2011-10-01
The von Hippel-Lindau (VHL) tumor suppressor gene located on chromosome 3p25-26 is implicated in VHL disease. Two informative single nucleotide polymorphisms are at positions 19 and 1149 on the nucleotide sequence from Gene Bank NM_000551. In this study we examined the allele frequencies at these two loci in the Taiwanese population and compared the results to those from European ethnic populations. The allele frequency was examined in 616 healthy individuals including 301 university students and 315 neonates. Both A/G polymorphisms were investigated using restriction fragment length polymorphism analysis created by restriction enzymes, BsaJ I and Acc I. Among these subjects, the allele frequencies at 19 SNP and 1149 SNP for variant G were 0.130 and 0.133, respectively. And these results were significant differences from those of the Caucasian populations. In addition, 90% of the tested subjects had identical genotypes at these two loci suggesting the existence of nonrandom association of alleles. We found that the G allele frequency at these two loci in the Taiwanese population is much lower than that in people from Western countries. This phenomenon may be attributed to ethnic effects. Copyright © 2011. Published by Elsevier B.V.
SNP ID-info: SNP ID searching and visualization platform.
Yang, Cheng-Hong; Chuang, Li-Yeh; Cheng, Yu-Huei; Wen, Cheng-Hao; Chang, Phei-Lang; Chang, Hsueh-Wei
2008-09-01
Many association studies provide the relationship between single nucleotide polymorphisms (SNPs), diseases and cancers, without giving a SNP ID, however. Here, we developed the SNP ID-info freeware to provide the SNP IDs within inputting genetic and physical information of genomes. The program provides an "SNP-ePCR" function to generate the full-sequence using primers and template inputs. In "SNPosition," sequence from SNP-ePCR or direct input is fed to match the SNP IDs from SNP fasta-sequence. In "SNP search" and "SNP fasta" function, information of SNPs within the cytogenetic band, contig position, and keyword input are acceptable. Finally, the SNP ID neighboring environment for inputs is completely visualized in the order of contig position and marked with SNP and flanking hits. The SNP identification problems inherent in NCBI SNP BLAST are also avoided. In conclusion, the SNP ID-info provides a visualized SNP ID environment for multiple inputs and assists systematic SNP association studies. The server and user manual are available at http://bio.kuas.edu.tw/snpid-info.
Piedra, María; Berja, Ana; Ramos, Laura; García-Unzueta, María Teresa; Morán, Jesús Manuel; Ruiz, David; Amado, José Antonio
2017-12-01
The receptor of parathyroid hormone and parathyroid hormone-related-protein (PTH/PTHrp) is located in the cell membrane of target tissues - kidney and osteoblasts. It is a G protein-coupled-receptor whose G s α subunit is encoded by the GNAS gene. Our aim was to study whether the single nucleotide polymorphism (SNP) T393C of the GNAS gene is associated with renal stones, bone mineral density (BMD), or bone remodelling markers in primary hyperparathyroidism (PHPT). An analysis was made of clinical and biochemical parameters and densitometric values in three areas and their relationship with the T393C SNP of the GNAS gene in 261 patients with primary hyperparathyroidism and in 328 healthy controls. Genotyping was performed using the Custom Taqman ® SNP Genotyping assay. The genotype frequencies of GNAS T/C 393 were similar in the control and PHPT groups. No association was found between genotypes and clinical expression of PHPT (renal stones and bone fractures). A nonstatistically significant trend was seen to lower BMD in the lumbar spine, femoral neck, and total hip in both PHPT and control C homozygote subjects. Genetic susceptibility to PHPT related to the GNAS T393C polymorphism or a major influence in its development and clinical expression were found. A C allele-related susceptibility to lower BMD in trabecular bone in both PHPT and control subjects is not sufficient to suggest a more severe clinical expression of PHPT. This trend may be considered as a basis for further studies with larger sample sizes and complementary functional evaluation. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.
High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis
Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E.M.; Huizinga, Tom W.J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I.W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane
2012-01-01
Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations. PMID:23143596
SNP-Based Typing: A Useful Tool to Study Bordetella pertussis Populations
van der Heide, Han G. J.; Heuvelman, Kees J.; Kallonen, Teemu; He, Qiushui; Mertsola, Jussi; Advani, Abdolreza; Hallander, Hans O.; Janssens, Koen; Hermans, Peter W.; Mooi, Frits R.
2011-01-01
To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). In this study, a single nucleotide polymorphism (SNP) typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in the Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis. PMID:21647370
Yu, M Y; Zhao, P Q; Yan, X H; Liu, B; Zhang, Q Q; Wang, R; Ma, C H; Liang, X H; Zhu, F L; Gao, L F
2013-09-10
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is expressed in different tissues and cells, including the pancreas and lymphocytes, and it can selectively induce apoptosis in tumor cells but not in most normal cells. TRAIL plays critical roles in type 1 diabetes mellitus, and is involved in type 2 diabetes mellitus (T2DM). We recently discovered the association of nonalcoholic fatty liver disease, a risk factor for T2DM, with a single nucleotide polymorphism (SNP) in the TRAIL (TNFSF10) gene at site 1595C/T (rs1131580), indicating the possible association of T2DM with this TRAIL polymorphism. The aim of this study was to investigate the relationship of the TRAIL SNP at site 1595C/T (rs1131580) with T2DM susceptibility and the biometabolic parameters of T2DM in a Han Chinese population. The polymerase chain reaction-restriction fragment length polymorphism method was used to genotype SNP rs1131580 in 292 patients with T2DM and 266 healthy controls. We found that the frequency of the CC genotype and that of the C allele of rs1131580 were significantly higher in T2DM patients than in the control group. Additionally, the triglyceride and serum creatinine levels of T2DM patients with the CC genotype were significantly higher than those of patients with the TT genotype. Thus, the CC genotype of the TRAIL SNP at 1595C/T (rs1131580) confers increased susceptible to T2DM in a Han Chinese population from Shandong Province. These data suggest that the CC genotype at this SNP is related to diabetic severity and it might be a candidate for the prognostic assessment of T2DM.
Association between IL2/IL21 and SH2B3 polymorphisms and risk of celiac disease: a meta-analysis.
Guo, C C; Huang, W H; Zhang, N; Dong, F; Jing, L P; Liu, Y; Ye, X G; Xiao, D; Ou, M L; Zhang, B H; Wang, M; Liang, W K; Yang, G; Jing, C X
2015-10-27
Celiac disease (CD) is a common autoimmune disorder characterized by heightened immunological response to ingested gluten. Certain gene polymorphisms of IL2/IL21 (rs6822844 and rs6840978) and SH2B3 (rs3184504) may influence susceptibility to CD, although the effects remain unclear. We performed a meta-analysis of the associations between rs6822844, rs6840978, and rs3184504 polymorphisms and CD risk. PubMed, EMBASE, and the China National Knowledge Infrastructure were searched. ORs and 95%CIs of each single nucleotide polymorphism (SNP) were estimated using the fixed-effect model if I(2) < 50% in the test of heterogeneity; otherwise, the random-effect model was used. Our meta-analysis included 12,986 CD cases and 28,733 controls from 16 independent samples, and the analysis of each SNP contained a subset of the total. We found that the minor allele T of both rs6822844 (T vs G, OR = 0.72, 95%CI = 0.67-0.78, P < 0.001) and rs6840978 (T vs C, OR = 0.76, 95%CI = 0.71-0.83, P < 0.001) in IL2/IL21 significantly decreased the risk of CD. However, the minor allele A of rs3184504 (A vs G, OR = 1.18, 95%CI = 1.12-1.24, P < 0.001) in SH2B3 significantly increased CD susceptibility. The estimated lambda values were 0.49, 0.50, and 0.53 for rs6822844, rs6840978, and rs3184504, respectively, suggesting that a co-dominant model of genotype effect was most appropriate for the three SNPs. Our results support associations between the three SNPs and CD and provide a strong argument for further research.
Association of SSTR2 Polymorphisms and Glucose Homeostasis Phenotypes
Sutton, Beth S.; Palmer, Nicholette D.; Langefeld, Carl D.; Xue, Bingzhong; Proctor, Alexandria; Ziegler, Julie T.; Haffner, Steven M.; Norris, Jill M.; Bowden, Donald W.
2009-01-01
OBJECTIVE This study evaluated the influence of somatostatin receptor type 2 (SSTR2) polymorphisms on measures of glucose homeostasis in the Insulin Resistance Atherosclerosis Family Study (IRASFS). SSTR2 is a G-protein–coupled receptor that, in response to somatostatin, mediates inhibition of insulin, glucagon, and growth hormone release and thus may affect glucose homeostasis. RESEARCH DESIGN AND METHODS Ten single nucleotide polymorphisms (SNPs) spanning the gene were chosen using a SNP density selection algorithm and genotyped on 1,425 Hispanic-American individuals from 90 families in the IRASFS. These families comprised two samples (set 1 and set 2), which were analyzed individually and as a combined set. Single SNP tests of association were performed for four glucose homeostasis measures—insulin sensitivity (SI), acute insulin response (AIR), disposition index (DI), and fasting blood glucose (FBG)—using generalized estimating equations. RESULTS The SSTR2 locus was encompassed by a single linkage disequilibrium (LD) block (D′ = 0.91–1.00; r2 = 0.09–0.97) that contained four of the ten SNPs evaluated. Within the SSTR2-containing LD block, evidence of association was observed in each of the two sets and in a combined analysis with decreased SI(βhomozygous = −0.16; Pmeta-analysis = 0.0024–0.0030), decreased DI (βhomozygous = −0.35 to −5.16; Pmeta-analysis = 0.0075–0.027), and increased FBG (βhomozygous = 2.30; Pmeta-analysis = 0.045). SNPs outside the SSTR2-containing LD block were not associated with measures of glucose homeostasis. CONCLUSIONS We observed evidence for association of SSTR2 polymorphisms with measures of glucose homeostasis. Thus, variants in SSTR2 may influence pathways of SIto modulate glucose homeostasis. PMID:19324939
[C677T-SNP of methylenetetrahydrofolate reductase gene and breast cancer in Mexican women].
Calderón-Garcidueñas, Ana Laura; Cerda-Flores, Ricardo Martín; Castruita-Ávila, Ana Lilia; González-Guerrero, Juan Francisco; Barrera-Saldaña, Hugo Alberto
2017-01-01
Low-penetrance susceptibility genes such as 5,10-methylenetetrahydrofolate reductase gene (MTHFR) have been considered in the progression of breast cancer (BC). Cancer is a result of genetic, environmental and epigenetic interactions; therefore, these genes should be studied in environmental context, because the results can vary between populations and even within the same country. The objective was to analyze the allelic and genotypic frequencies of the MTHFR C667T SNP in Mexican Mestizo patients with BC and controls from Northeastern Mexico. 243 patients and 118 healthy women were studied. The analysis of the polymorphism was performed with a DNA microarray. Once the frequency of the polymorphism was obtained, Hardy-Weinberg equilibrium test was carried out for the genotypes. Chi square test was used to compare the distribution of frequencies. The allele frequency in patients was: C = 0.5406; T = 0.4594 and in controls C = 0.5678, T = 0.4322. Genotype in BC patients was: C / C = 29.9%, C / T = 48.3% and T / T = 21.8. The distribution in controls was: C / C = 31.4%, C / T = 50.8%, T / T = 17.8% (chi squared 0.77, p = 0.6801). Northeastern Mexican women in this study showed no association between MTFHR C667T SNP and the risk of BC. It seems that the contribution of this polymorphism to BC in Mexico varies depending on various factors, both genetic and environmental.
Ghrelin gene polymorphisms in rheumatoid arthritis.
Ozgen, Metin; Koca, Suleyman Serdar; Etem, Ebru Onalan; Yuce, Huseyin; Aydin, Suleyman; Isik, Ahmet
2011-07-01
Ghrelin, an endogenous orexigenic peptide, has anti-inflammatory effects, down-regulates pro-inflammatory cytokines, and its altered levels are reported in various inflammatory diseases. The human preproghrelin (ghrelin/obestatin) gene shows several single nucleotide polymorphisms (SNPs) including Arg51Gln, Leu72Met, Gln90Leu, and A-501C. The aim of this study was to investigate the frequency, and clinical significance, of these four SNPs in a small cohort of Turkish patients with rheumatoid arthritis (RA). The study included 103 patients with RA and 103 healthy controls. In the RA group, disease activity and disease-related damage were assessed using the Disease Activity Score-28 (DAS-28), and the modified Larsen scoring (MLS) methods. In all the participants, genomic DNA was isolated and genotyped by polymerase chain reaction and restriction fragment length polymorphism analysis. The frequencies of ghrelin gene SNPs were 82.5 and 79.6% in the RA and control groups, respectively, and there were no significant differences in terms of genotype distributions and allele frequencies for these four SNPs between the groups. However, the A-501C SNP was found to be associated with early disease onset, and Gln90Leu SNP with less frequent rheumatoid factor positivity, in the RA group. A-501C SNP is associated with earlier onset of RA suggesting that genetic variations in the ghrelin gene may have an impact on RA. Copyright © 2010 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Ruiqin; He, Feng; Wen, Haishen; Li, Jifang; Shi, Bao; Shi, Dan; Liu, Miao; Mu, Weijie; Zhang, Yuanqing; Hu, Jian; Han, Weiguo; Zhang, Jianan; Wang, Qingqing; Yuan, Yuren; Liu, Qun
2012-03-01
As a specific gene of fish, cytochrome P450c17-II ( CYP17-II) gene plays a key role in the growth, development an reproduction level of fish. In this study, the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17-II gene in a population of 75 male Japanese flounder ( Paralichthys olivaceus). Three single nucleotide polymorphisms (SNPs) were identified in CYP17-II gene of Japanese flounder. They were c.G594A (p.G188R), c.G939A and c.G1502A (p.G490D). SNP1 (c.G594A), located in exon 4 of CYP17-II gene, was significantly associated with gonadosomatic index (GSI). Individuals with genotype GG of SNP1 had significantly lower GSI ( P < 0.05) than those with genotype AA or AG. SNP2 (c.G939A) located at the CpG island of CYP17-II gene. The mutation changed the methylation of exon 6. Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG. The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder. However, the SNP3 (c.G1502A) located in exon 9 did not affect the four measured reproductive traits. This study showed that CYP17-II gene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.
Feltus, F Alex; Wan, Jun; Schulze, Stefan R; Estill, James C; Jiang, Ning; Paterson, Andrew H
2004-09-01
Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% +/- 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% +/- 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp.
Feltus, F. Alex; Wan, Jun; Schulze, Stefan R.; Estill, James C.; Jiang, Ning; Paterson, Andrew H.
2004-01-01
Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% ± 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% ± 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp. PMID:15342564
Zhang, Han; Wheeler, William; Song, Lei; Yu, Kai
2017-07-07
As meta-analysis results published by consortia of genome-wide association studies (GWASs) become increasingly available, many association summary statistics-based multi-locus tests have been developed to jointly evaluate multiple single-nucleotide polymorphisms (SNPs) to reveal novel genetic architectures of various complex traits. The validity of these approaches relies on the accurate estimate of z-score correlations at considered SNPs, which in turn requires knowledge on the set of SNPs assessed by each study participating in the meta-analysis. However, this exact SNP coverage information is usually unavailable from the meta-analysis results published by GWAS consortia. In the absence of the coverage information, researchers typically estimate the z-score correlations by making oversimplified coverage assumptions. We show through real studies that such a practice can generate highly inflated type I errors, and we demonstrate the proper way to incorporate correct coverage information into multi-locus analyses. We advocate that consortia should make SNP coverage information available when posting their meta-analysis results, and that investigators who develop analytic tools for joint analyses based on summary data should pay attention to the variation in SNP coverage and adjust for it appropriately. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.
Shalia, Kavita; Saranath, Dhananjaya; Rayar, Jaipreet; Shah, Vinod K.; Mashru, Manoj R.; Soneji, Surendra L.
2017-01-01
Background & objectives: Acute myocardial infarction (AMI) is a major health concern in India. The aim of the study was to identify single nucleotide polymorphisms (SNPs) associated with AMI in patients using dedicated chip and validating the identified SNPs on custom-designed chips using high-throughput microarray analysis. Methods: In pilot phase, 48 AMI patients and 48 healthy controls were screened for SNPs using human CVD55K BeadChip with 48,472 SNP probes on Illumina high-throughput microarray platform. The identified SNPs were validated by genotyping additional 160 patients and 179 controls using custom-made Illumina VeraCode GoldenGate Genotyping Assay. Analysis was carried out using PLINK software. Results: From the pilot phase, 98 SNPs present on 94 genes were identified with increased risk of AMI (odds ratio of 1.84-8.85, P=0.04861-0.003337). Five of these SNPs demonstrated association with AMI in the validation phase (P<0.05). Among these, one SNP rs9978223 on interferon gamma receptor 2 [IFNGR2, interferon (IFN)-gamma transducer 1] gene showed a significant association (P=0.00021) with AMI below Bonferroni corrected P value (P=0.00061). IFNGR2 is the second subunit of the receptor for IFN-gamma, an important cytokine in inflammatory reactions. Interpretation & conclusions: The study identified an SNP rs9978223 on IFNGR2 gene, associated with increased risk in AMI patient from India. PMID:29434065
Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição
2013-01-01
The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785
Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat.
Qiao, Xian; Su, Rui; Wang, Yang; Wang, Ruijun; Yang, Ting; Li, Xiaokai; Chen, Wei; He, Shiyang; Jiang, Yu; Xu, Qiwu; Wan, Wenting; Zhang, Yaolei; Zhang, Wenguang; Chen, Jiang; Liu, Bin; Liu, Xin; Fan, Yixing; Chen, Duoyuan; Jiang, Huaizhi; Fang, Dongming; Liu, Zhihong; Wang, Xiaowen; Zhang, Yanjun; Mao, Danqing; Wang, Zhiying; Di, Ran; Zhao, Qianjun; Zhong, Tao; Yang, Huanming; Wang, Jian; Wang, Wen; Dong, Yang; Chen, Xiaoli; Xu, Xun; Li, Jinquan
2017-08-17
Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.
Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A
2009-01-01
The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.
snpTree--a web-server to identify and construct SNP trees from whole genome sequence data.
Leekitcharoenphon, Pimlapas; Kaas, Rolf S; Thomsen, Martin Christen Frølund; Friis, Carsten; Rasmussen, Simon; Aarestrup, Frank M
2012-01-01
The advances and decreasing economical cost of whole genome sequencing (WGS), will soon make this technology available for routine infectious disease epidemiology. In epidemiological studies, outbreak isolates have very little diversity and require extensive genomic analysis to differentiate and classify isolates. One of the successfully and broadly used methods is analysis of single nucletide polymorphisms (SNPs). Currently, there are different tools and methods to identify SNPs including various options and cut-off values. Furthermore, all current methods require bioinformatic skills. Thus, we lack a standard and simple automatic tool to determine SNPs and construct phylogenetic tree from WGS data. Here we introduce snpTree, a server for online-automatic SNPs analysis. This tool is composed of different SNPs analysis suites, perl and python scripts. snpTree can identify SNPs and construct phylogenetic trees from WGS as well as from assembled genomes or contigs. WGS data in fastq format are aligned to reference genomes by BWA while contigs in fasta format are processed by Nucmer. SNPs are concatenated based on position on reference genome and a tree is constructed from concatenated SNPs using FastTree and a perl script. The online server was implemented by HTML, Java and python script.The server was evaluated using four published bacterial WGS data sets (V. cholerae, S. aureus CC398, S. Typhimurium and M. tuberculosis). The evaluation results for the first three cases was consistent and concordant for both raw reads and assembled genomes. In the latter case the original publication involved extensive filtering of SNPs, which could not be repeated using snpTree. The snpTree server is an easy to use option for rapid standardised and automatic SNP analysis in epidemiological studies also for users with limited bioinformatic experience. The web server is freely accessible at http://www.cbs.dtu.dk/services/snpTree-1.0/.
Falvey, James D; Bentley, Robert W; Merriman, Tony R; Hampton, Mark B; Barclay, Murray L; Gearry, Richard B; Roberts, Rebecca L
2013-10-21
To investigate the association of macrophage migration inhibitory factor (MIF) promoter polymorphisms with inflammatory bowel disease (IBD) risk. One thousand and six New Zealand Caucasian cases and 540 Caucasian controls were genotyped for the MIF SNP -173G > C (rs755622) and the repeat polymorphism CATT₅₋₈ (rs5844572) using a pre-designed TaqMan SNP assay and capillary electrophoresis, respectively. Data were analysed for single site and haplotype association with IBD risk and phenotype. Meta-analysis was employed, to assess cumulative evidence of association of MIF -173G > C with IBD. All published genotype data for MIF -173G > C in IBD were identified using PubMed and subsequently searching the references of all PubMed-identified studies. Imputed genotypes for MIF -173G > C were generated from the Wellcome Trust Case Control Consortium (and National Institute of Diabetes and Digestive and Kidney Diseases). Separate meta-analyses were performed on Caucasian Crohn's disease (CD) (3863 patients, 6031 controls), Caucasian ulcerative colitis (UC) (1260 patients, 1987 controls), and East Asian UC (416 patients and 789 controls) datasets using the Mantel-Haenszel method. The New Zealand dataset had 93% power, and the meta-analyses had 100% power to detect an effect size of OR = 1.40 at α = 0.05, respectively. In our New Zealand dataset, single-site analysis found no evidence of association of MIF polymorphisms with overall risk of CD, UC, and IBD or disease phenotype (all P values > 0.05). Haplotype analysis found the CATT₅/-173C haplotype occurred at a higher frequency in New Zealand controls compared to IBD patients (0.6 vs 0.01; P = 0.03, OR = 0.22; 95%CI: 0.05-0.99), but this association did not survive bonferroni correction. Meta-analysis of our New Zealand MIF -173G > C data with data from seven additional Caucasian datasets using a random effects model found no association of MIF polymorphisms with CD, UC, or overall IBD. Similarly, meta-analysis of all published MIF -173G > C data from East Asian datasets (416 UC patients, 789 controls) found no association of this promoter polymorphism with UC. We found no evidence of association of MIF promoter polymorphisms with IBD.
Bias due to two-stage residual-outcome regression analysis in genetic association studies.
Demissie, Serkalem; Cupples, L Adrienne
2011-11-01
Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.
The role of TNF alpha polymorphism and expression in susceptibility to nasal polyposis.
Zhang, Guimin; Zhang, Jinmei; Kuang, Manbao; Lin, Peng
2018-05-01
In this study, we first performed a meta-analysis to assess the role of single-nucleotide polymorphism (SNP) within tumor necrosis factor alpha (TNF alpha) gene and TNF alpha expression in the risk of nasal polyposis. STATA 12.0 software was utilized to conduct the Mantel-Haenszel statistics, Cohen statistics, Begg's test, Egger's tests and sensitivity analysis. We systemically carried out the database retrieval and initially identified 486 articles. After screening, 15 articles were included in our meta-analysis. For TNF alpha rs1800629 G/A SNP, compared with control group, an increased risk of nasal polyposis of case group was observed in the models of A vs. G [p (P value of association) = 0.009, OR (odds ratio) = 1.35], GA vs. GG (p = 0.001, OR = 1.69), GA+AA vs. GG (p = 0.010, OR = 1.47). The similar results were observed in Caucasian subgroup (p < 0.05, OR > 1). For TNF alpha rs361525 G/A SNP, no significant difference between control and case group was detected (all p > 0.05). In addition, a significant difference exists between case and control groups in the meta-analyses of TNF alpha expression in nasal mucosal cells, secreted TNF alpha (p < 0.05, OR > 1), but not serum TNF alpha (p = 0.090). The present meta-analysis revealed that TNF alpha rs1800629, increased TNF alpha expression and secretion of nasal mucosal cells were associated with an increased risk of nasal polyposis.
SNPdbe: constructing an nsSNP functional impacts database.
Schaefer, Christian; Meier, Alice; Rost, Burkhard; Bromberg, Yana
2012-02-15
Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. http://www.rostlab.org/services/snpdbe.
Identification of SNP Haplotypes and Prospects of Association Mapping in Watermelon
USDA-ARS?s Scientific Manuscript database
Watermelon is the fifth most economically important vegetable crop cultivated world-wide. Implementing Single Nucleotide Polymorphism (SNP) marker technology in watermelon breeding and germplasm evaluation programs holds a key to improve horticulturally important traits. Next-generation sequencing...
DoGSD: the dog and wolf genome SNP database.
Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping
2015-01-01
The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A
2002-06-01
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.
Kaya, Hilal Betul; Cetin, Oznur; Kaya, Hulya; Sahin, Mustafa; Sefer, Filiz; Kahraman, Abdullah; Tanyolac, Bahattin
2013-01-01
Background The olive tree (Olea europaea L.) is a diploid (2n = 2x = 46) outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP) discovery in olive. The objectives of this study were (1) to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2) to characterize 96 olive genotypes originating from different regions of Turkey. Methodology/Principal Findings Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers. Conclusions/Significance This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL) analysis, association mapping and map-based gene cloning in the olive. High levels of genetic variation among Turkish olive genotypes revealed by SNPs, AFLPs and SSRs allowed us to characterize the Turkish olive genotype. PMID:24058483
Association Analysis of the Ephrin-B2 Gene in African-Americans with End-Stage Renal Disease
Hicks, Pamela J.; Staten, Jennifer L.; Palmer, Nicholette D.; Langefeld, Carl D.; Ziegler, Julie T.; Keene, Keith L.; Sale, Michele M.; Bowden, Donald W.; Freedman, Barry I.
2008-01-01
Background Genome scans in African-Americans with end-stage renal disease (ESRD) identified linkage on chromosome 13q33 in the region containing the ephrin-B2 ligand (EFNB2) genes. Interactions between the ephrin-B2 receptor and ephrin-B2 ligand play essential roles in renal angiogenesis, blood vessel maturation, and kidney disease. Methods The EFNB2 gene was evaluated as a positional candidate for non-diabetic and diabetic ESRD susceptibility in 1,071 unrelated African-American subjects; 316 with non-diabetic etiologies of ESRD, 394 with type 2 diabetes-associated ESRD and 361 healthy controls. Single nucleotide polymorphism (SNP) genotyping was performed on the Sequenom Mass Array System. Statistical analyses were computed using Dandelion version 1.26, Snpaddmix version 1.4 and Haploview version 3.32. Results Twenty-eight HapMap tag SNPs were genotyped spanning the 39 kilobases (kb) of the EFNB2 coding region, with average spacing of 1.43 kb. Analysis of 710 ESRD patient samples and 361 controls provided no evidence of single SNP associations in either diabetic or non-diabetic ESRD; although nominal evidence of association with all-cause ESRD was observed with a two SNP (p = 0.022) and three SNP (p = 0.023) haplotype, both containing SNPs rs7490924 and rs2391335 in intron 1. Conclusions Although an attractive positional candidate gene, polymorphisms in the EFNB2 gene do not appear to contribute in a substantial way to non-diabetic, diabetic or all-cause ESRD susceptibility in African-Americans. Additional genes within the chromosome 13q33 linkage interval are likely contributors to African-American non-diabetic ESRD. PMID:18580054
Loughlin, J; Sinsheimer, J S; Mustafa, Z; Carr, A J; Clipsham, K; Bloomfield, V A; Chitnavis, J; Bailey, A; Sykes, B; Chapman, K
2000-03-01
Evidence has accumulated supporting a role for genes in the etiology of osteoarthritis (OA). Several candidates have been targeted as potential susceptibility loci including genes that are involved in the regulation of bone density. Genetic association analysis has suggested a role for the vitamin D receptor gene (VDR) and the estrogen receptor gene (ER) in susceptibility. Such findings must be tested in additional independent cohorts. We tested for association of these 2 genes, plus a third gene implicated in bone density, COL1A1, with idiopathic OA. A case-control cohort of 371 affected probands and 369 unaffected spouses was used. Association was tested using 4 intragenic single nucleotide polymorphisms (SNP), one each for the VDR and COL1A1 genes, and 2 for the ER gene. The VDR and ER SNP are the same SNP that have been associated with OA. All 4 SNP affect restriction enzyme sites and were genotyped using polymerase chain reaction and enzyme digestion. Allele and genotype distributions for each SNP were compared between cases and controls and analyzed using Fisher's exact test. There was no evidence of association of the VDR or the ER gene SNP to OA. There was weak evidence of association of the COL1A1 SNP in female cases (p = 0.017), reflected by a difference in the distribution of genotypes at this SNP between female cases and controls (p = 0.027). However, when corrected for multiple testing, these results were not significant. If the VDR, ER, or COL1A1 genes do encode predisposition to OA then the 4 SNP tested are not associated with major susceptibility alleles at these 3 loci.
2010-01-01
Background The information provided by dense genome-wide markers using high throughput technology is of considerable potential in human disease studies and livestock breeding programs. Genome-wide association studies relate individual single nucleotide polymorphisms (SNP) from dense SNP panels to individual measurements of complex traits, with the underlying assumption being that any association is caused by linkage disequilibrium (LD) between SNP and quantitative trait loci (QTL) affecting the trait. Often SNP are in genomic regions of no trait variation. Whole genome Bayesian models are an effective way of incorporating this and other important prior information into modelling. However a full Bayesian analysis is often not feasible due to the large computational time involved. Results This article proposes an expectation-maximization (EM) algorithm called emBayesB which allows only a proportion of SNP to be in LD with QTL and incorporates prior information about the distribution of SNP effects. The posterior probability of being in LD with at least one QTL is calculated for each SNP along with estimates of the hyperparameters for the mixture prior. A simulated example of genomic selection from an international workshop is used to demonstrate the features of the EM algorithm. The accuracy of prediction is comparable to a full Bayesian analysis but the EM algorithm is considerably faster. The EM algorithm was accurate in locating QTL which explained more than 1% of the total genetic variation. A computational algorithm for very large SNP panels is described. Conclusions emBayesB is a fast and accurate EM algorithm for implementing genomic selection and predicting complex traits by mapping QTL in genome-wide dense SNP marker data. Its accuracy is similar to Bayesian methods but it takes only a fraction of the time. PMID:20969788
Genetic and clinical risk factors of root resorption associated with orthodontic treatment.
Guo, Yujiao; He, Shushu; Gu, Tian; Liu, Yi; Chen, Song
2016-08-01
External apical root resorption (EARR) is a common complication in orthodontic treatment. Despite many studies on EARR, great controversies remain with regard to its risk factors. The objective of this study was to explore the relationship among sex, root movement, IL-1RN single nucleotide polymorphism (SNP) rs419598, IL-6 SNP rs1800796, and EARR associated with orthodontic treatment. Altogether 174 patients (with 174 maxillary left central incisors) were selected for this study. Cone-beam computed tomography was performed before the start of the treatment and at the end of the treatment. Cone-beam computed tomography data were used to reconstruct a 3-dimensional image of each tooth; the volume and the root resorption volume of each tooth were calculated. Three-dimensional matching was used to measure the amount of movement of each root. Genomic DNA was extracted from buccal swabs, and genotypes of SNP rs419598 and SNP rs1800796 of each subject were determined using TaqMan polymerase chain reaction genotyping (Applied Biosystems, Foster City, Calif). The data were analyzed with multiple linear regression analysis. The statistical analysis indicated no relationship between sex, tooth movement amount, and IL-1RN SNP rs419598 with EARR. The IL-6 SNP rs1800796 GC was associated with EARR, and root resorption differed significantly between SNP rs1800796 GC and CC. IL-6 SNP rs1800796 GC is a risk factor for EARR. The amount of root movement, IL-1RN SNP rs419598, and sex as risk factors for EARR need further study. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela
2014-01-01
High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.
Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela
2014-01-01
High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088
Balasubbu, Suganthalakshmi; Sundaresan, Periasamy; Rajendran, Anand; Ramasamy, Kim; Govindarajan, Gowthaman; Perumalsamy, Namperumalsamy; Hejtmancik, J Fielding
2010-11-10
Diabetic retinopathy (DR) is classically defined as a microvasculopathy that primarily affects the small blood vessels of the inner retina as a complication of diabetes mellitus (DM).It is a multifactorial disease with a strong genetic component. The aim of this study is to investigate the association of a set of nine candidate genes with the development of diabetic retinopathy in a South Indian cohort who have type 2 diabetes mellitus (T2DM). Seven candidate genes (RAGE, PEDF, AKR1B1, EPO, HTRA1, ICAM and HFE) were chosen based on reported association with DR in the literature. Two more, CFH and ARMS2, were chosen based on their roles in biological pathways previously implicated in DR. Fourteen single nucleotide polymorphisms (SNPs) and one dinucleotide repeat polymorphism, previously reported to show association with DR or other related diseases, were genotyped in 345 DR and 356 diabetic patients without retinopathy (DNR). The genes which showed positive association in this screening set were tested further in additional sets of 100 DR and 90 DNR additional patients from the Aravind Eye Hospital. Those which showed association in the secondary screen were subjected to a combined analysis with the 100 DR and 100 DNR subjects previously recruited and genotyped through the Sankara Nethralaya Hospital, India. Genotypes were evaluated using a combination of direct sequencing, TaqMan SNP genotyping, RFLP analysis, and SNaPshot PCR assays. Chi-square and Fisher exact tests were used to analyze the genotype and allele frequencies. Among the nine loci (15 polymorphisms) screened, SNP rs2070600 (G82S) in the RAGE gene, showed significant association with DR (allelic P = 0.016, dominant model P = 0.012), compared to DNR. SNP rs2070600 further showed significant association with DR in the confirmation cohort (P = 0.035, dominant model P = 0.032). Combining the two cohorts gave an allelic P < 0.003 and dominant P = 0.0013). Combined analysis with the Sankara Nethralaya cohort gave an allelic P = 0.0003 and dominant P = 0.00011 with an OR = 0.49 (0.34 - 0.70) for the minor allele. In HTRA1, rs11200638 (G>A), showed marginal significance with DR (P = 0.055) while rs10490924 in LOC387715 gave a P = 0.07. No statistical significance was observed for SNPs in the other 7 genes studied. This study confirms significant association of one polymorphism only (rs2070600 in RAGE) with DR in an Indian population which had T2DM.
2009-01-01
Background Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation between species allowed synteny comparisons to be made to sequenced genomes. This synteny analysis may support positional cloning of target genes in common bean through the use of genomic information from these other legumes. PMID:20030833
Zhang, Jie; Chen, Yuewen; Shao, Yong; Wu, Qi; Guan, Ming; Zhang, Wei; Wan, Jun; Yu, Bo
2012-01-01
Background. TNFα-induced protein 3 (TNFAIP3) interacting with protein 1 (TNIP1) acts as a negative regulator of NF-κB and plays an important role in maintaining the homeostasis of immune system. A recent genome-wide association study (GWAS) showed that the polymorphism of TNIP1 was associated with the disease risk of SLE in Caucasian. In this study, we investigated whether the association of TNIP1 with SLE was replicated in Chinese population. Methods. The association of TNIP1 SNP rs7708392 (G/C) was determined by high resolution melting (HRM) analysis with unlabeled probe in 285 SLE patients and 336 healthy controls. Results. A new SNP rs79937737 located on 5 bp upstream of rs7708392 was discovered during the HRM analysis. No association of rs7708392 or rs79937737 with the disease risk of SLE was found. Furthermore, rs7708392 and rs79937737 were in weak linkage disequilibrium (LD). Hypotypes analysis of the two SNPs also showed no association with SLE in Chinese population. Conclusions. High resolution melting analysis with unlabeled probes proves to be a powerful and efficient genotyping method for identifying and screening SNPs. No association of rs7708392 or rs79937737 with the disease risk of SLE was observed in Chinese population. PMID:22852072
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl; Krześlak, Anna; Forma, Ewa
2014-10-15
Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determinedmore » by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.« less
A novel approach to analyzing fMRI and SNP data via parallel independent component analysis
NASA Astrophysics Data System (ADS)
Liu, Jingyu; Pearlson, Godfrey; Calhoun, Vince; Windemuth, Andreas
2007-03-01
There is current interest in understanding genetic influences on brain function in both the healthy and the disordered brain. Parallel independent component analysis, a new method for analyzing multimodal data, is proposed in this paper and applied to functional magnetic resonance imaging (fMRI) and a single nucleotide polymorphism (SNP) array. The method aims to identify the independent components of each modality and the relationship between the two modalities. We analyzed 92 participants, including 29 schizophrenia (SZ) patients, 13 unaffected SZ relatives, and 50 healthy controls. We found a correlation of 0.79 between one fMRI component and one SNP component. The fMRI component consists of activations in cingulate gyrus, multiple frontal gyri, and superior temporal gyrus. The related SNP component is contributed to significantly by 9 SNPs located in sets of genes, including those coding for apolipoprotein A-I, and C-III, malate dehydrogenase 1 and the gamma-aminobutyric acid alpha-2 receptor. A significant difference in the presences of this SNP component is found between the SZ group (SZ patients and their relatives) and the control group. In summary, we constructed a framework to identify the interactions between brain functional and genetic information; our findings provide new insight into understanding genetic influences on brain function in a common mental disorder.
Zhang, RuiJie; Li, Xia; Jiang, YongShuai; Liu, GuiYou; Li, ChuanXing; Zhang, Fan; Xiao, Yun; Gong, BinSheng
2009-02-01
High-throughout single nucleotide polymorphism detection technology and the existing knowledge provide strong support for mining the disease-related haplotypes and genes. In this study, first, we apply four kinds of haplotype identification methods (Confidence Intervals, Four Gamete Tests, Solid Spine of LD and fusing method of haplotype block) into high-throughout SNP genotype data to identify blocks, then use cluster analysis to verify the effectiveness of the four methods, and select the alcoholism-related SNP haplotypes through risk analysis. Second, we establish a mapping from haplotypes to alcoholism-related genes. Third, we inquire NCBI SNP and gene databases to locate the blocks and identify the candidate genes. In the end, we make gene function annotation by KEGG, Biocarta, and GO database. We find 159 haplotype blocks, which relate to the alcoholism most possibly on chromosome 1 approximately 22, including 227 haplotypes, of which 102 SNP haplotypes may increase the risk of alcoholism. We get 121 alcoholism-related genes and verify their reliability by the functional annotation of biology. In a word, we not only can handle the SNP data easily, but also can locate the disease-related genes precisely by combining our novel strategies of mining alcoholism-related haplotypes and genes with existing knowledge framework.
Association of ADRB2 polymorphism with triglyceride levels in Tongans
2013-01-01
Background Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. Methods To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. Results A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. Conclusions In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index. PMID:23875540
TPH2 polymorphisms and alcohol-related suicide.
Zupanc, Tomaž; Pregelj, Peter; Tomori, Martina; Komel, Radovan; Paska, Alja Videtič
2011-02-18
Substantial evidence from family, twin, and adoption studies corroborates implication of genetic and environmental factors, as well as their interactions, on suicidal behavior and alcoholism risk. Serotonergic disfunction seems to be involved in the pathophysiology of substance abuse, and has also an important role in suicidal behavior. Recent studies of the tryptophan hydroxylase 2 showed mild or no association with suicide and alcohol-related suicide. We performed SNP and alcohol analysis on 388 suicide victims and 227 controls. The results showed association between suicide (Pχ²=0.043) and alcohol-related suicide (Pχ²=0.021) for SNP Rs1843809. A tendency for association was determined also for polymorphism Rs1386493 (Pχ²=0.055) and alcohol-related suicide. Data acquired from psychological autopsies in a subsample of suicide victims (n=79) determined more impulsive behavior (Pχ²=0.016) and verbal aggressive behavior (Pχ²=0.025) in the subgroup with alcohol misuse or dependency. In conclusion, our results suggest implication of polymorphisms in suicide and alcohol-related suicide, but further studies are needed to clarify the interplay among serotonergic system disfunction, suicide, alcohol dependence, impulsivity and the role of TPH2 enzyme. © 2010 Elsevier Ireland Ltd. All rights reserved.
Kambeitz, Joseph P; Bhattacharyya, Sagnik; Kambeitz-Ilankovic, Lana M; Valli, Isabel; Collier, David A; McGuire, Philip
2012-10-01
Brain derived neurotrophic factor (BDNF) is a critical component of the molecular mechanism of memory formation. Variation in the BDNF gene, particularly the rs6265 (val(66)met) single nucleotide polymorphism (SNP), has been linked to variability in human memory performance and to both the structure and physiological response of the hippocampus, which plays a central role in memory processing. However, these effects have not been consistently reported, which may reflect the modest size of the samples studied to date. Employing a meta-analytic approach, we examined the effect of the BDNF val(66)met polymorphism on human memory (5922 subjects) and hippocampal structure (2985 subjects) and physiology (362 subjects). Our results suggest that variations in the rs6265 SNP of the BDNF gene have a significant effect on memory performance, and on both the structure and physiology of the hippocampus, with carriers of the met allele being adversely affected. These results underscore the role of BDNF in moderating variability between individuals in human memory performance and in mediating some of the neurocognitive impairments underlying neuropsychiatric disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips.
Zhong, Xiao-Bo; Reynolds, Robert; Kidd, Judith R; Kidd, Kenneth K; Jenison, Robert; Marlar, Richard A; Ward, David C
2003-09-30
Single-nucleotide polymorphisms (SNPs) constitute the bulk of human genetic variation and provide excellent markers to identify genetic factors contributing to complex disease susceptibility. A rapid, sensitive, and inexpensive assay is important for large-scale SNP scoring. Here we report the development of a multiplex SNP detection system using silicon chips coated to create a thin-film optical biosensor. Allele-discriminating, aldehyde-labeled oligonucleotides are arrayed and covalently attached to a hydrazinederivatized chip surface. Target sequences (e.g., PCR amplicons) then are hybridized in the presence of a mixture of biotinylated detector probes, one for each SNP, and a thermostable DNA ligase. After a stringent wash (0.01 M NaOH), ligation of biotinylated detector probes to perfectly matched capture oligomers is visualized as a color change on the chip surface (gold to blue/purple) after brief incubations with an anti-biotin IgG-horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate. Testing of PCR fragments is completed in 30-40 min. Up to several hundred SNPs can be assayed on a 36-mm2 chip, and SNP scoring can be done by eye or with a simple digital-camera system. This assay is extremely robust, exhibits high sensitivity and specificity, and is format-flexible and economical. In studies of mutations associated with risk for venous thrombosis and genotyping/haplotyping of African-American samples, we document high-fidelity analysis with 0 misassignments in 500 assays performed in duplicate.
Association of Phosphodiesterase 4D with ischemic stroke: a population-based case-control study.
Woo, Daniel; Kaushal, Ritesh; Kissela, Brett; Sekar, Padmini; Wolujewicz, Michael; Pal, Prodipto; Alwell, Kathleen; Haverbusch, Mary; Ewing, Irene; Miller, Rosie; Kleindorfer, Dawn; Flaherty, Matthew; Chakraborty, Ranajit; Deka, Ranjan; Broderick, Joseph
2006-02-01
The Phosphodiesterase 4D (PDE4D) gene was reported recently to be associated with ischemic stroke in an Icelandic population. The association was found predominately with large vessel and cardioembolic stroke. However, 2 recent reports were unable to confirm this association, although a trend toward association with cardioembolic stroke was reported. None of the reports included significant proportions of blacks. We tested for genotype and haplotype association of polymorphisms of the PDE4D gene with ischemic stroke in a population-based, biracial, case-control study. A total of 357 cases of ischemic stroke and 482 stroke-free controls from the same community were examined. Single nucleotide polymorphisms (SNPs) were chosen based on significant associations reported previously. Linkage disequilibrium (LD), SNP, and haplotype association analysis was performed using PHASE 2.0 and Haploview 3.2. Although several univariate associations were identified, only 1 SNP (rs2910829) was found to be significantly associated with cardioembolic stroke among both whites and blacks. The rs152312 SNP was associated with cardioembolic stroke among whites after multiple comparison corrections. The same SNP was not associated with cardioembolic stroke among blacks. However, significant haplotype association was identified for both whites and blacks for all ischemic stroke, cardioembolic stroke, and stroke of unknown origin. Haplotype association was identified for small vessel stroke among whites. PDE4D is a risk factor for ischemic stroke and, in particular, for cardioembolic stroke, among whites and blacks. Further study of this gene is warranted.
Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2015-02-02
BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.
Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band
2015-01-01
BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency. PMID:25640280
CBS mutations and MTFHR SNPs causative of hyperhomocysteinemia in Pakistani children.
Ibrahim, Shahnaz; Maqbool, Saadia; Azam, Maleeha; Iqbal, Mohammad Perwaiz; Qamar, Raheel
2018-03-29
Three index patients with hyperhomocysteinemia and ocular anomalies were screened for cystathionine beta synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Genotyping of hyperhomocysteinemia associated MTHFR polymorphisms C677T (rs1801133) and A1298C (rs1801131) was done by PCR-restriction fragment length polymorphism. Sanger sequencing was performed for CBS exonic sequences along with consensus splice sites. In the case of MTHFR polymorphisms, all the patients were heterozygous CT for the single nucleotide polymorphism (SNP) C677T and were therefore carriers of the risk allele (T), while the patients were homozygous CC for the risk genotype of the SNP A1298C. CBS sequencing resulted in the identification of two novel mutations, a missense change (c.467T>C; p.Leu156Pro) in exon 7 and an in-frame deletion (c.808_810del; p.Glu270del) in exon 10. In addition, a recurrent missense mutation (c.770C>T; p.Thr257Met) in exon 10 of the gene was also identified. The mutations were present homozygously in the patients and were inherited from the carrier parents. This is the first report from Pakistan where novel as well as recurrent CBS mutations causing hyperhomocysteinemia and lens dislocation in three patients from different families are being reported with the predicted effect of the risk allele of the MTHFR SNP in causing hyperhomocysteinemia.
Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K
2014-12-01
Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.
High-Density SNP Genotyping to Define β-Globin Locus Haplotypes
Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S.; Quinn, Charles T.; Onyekwere, Onyinye C.; Pace, Betty S.
2014-01-01
Five major β-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, β-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the β-locus, which consists of five functional β-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the β-locus using DNA samples from either healthy African Americans with normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the β-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Gγ-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high density SNP mapping may be required to accurately define β-haplotypes that correlate with the different clinical phenotypes observed in SCD. PMID:18829352
Shimosako, Nana; Kerr, Jonathan R
2014-12-01
We have reported gene expression changes in patients with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) and the fact that such gene expression data can be used to identify subtypes of CFS/ME with distinct clinical phenotypes. Due to the difficulties in using a comparative gene expression method as an aid to CFS/ME disease and subtype-specific diagnosis, we have attempted to develop such a method based on single-nucleotide polymorphism (SNP) analysis. To identify SNP allele associations with CFS/ME and CFS/ME subtypes, we tested genomic DNA of patients with CFS/ME (n=108), patients with endogenous depression (n=17) and normal blood donors (n=68) for 504 human SNP alleles located within 88 CFS-associated human genes using the SNP Genotyping GoldenGate Assay (Illumina, San Diego, California, USA). 360 ancestry informative markers (AIM) were also examined. 21 SNPs were significantly associated with CFS/ME compared with depression and normal groups. 148 SNP alleles had a significant association with one or more CFS/ME subtypes. For each subtype, associated SNPs tended to be grouped together within particular genes. AIM SNPs indicated that 4 subjects were of Asian origin while the remainder were Caucasian. Hierarchical clustering of AIM data revealed the relatedness between 2 couples of patients with CFS only and confirmed the overall heterogeneity of all subjects. This study provides evidence that human SNPs located within CFS/ME associated genes are associated with particular genomic subtypes of CFS/ME. Further work is required to develop this into a clinically useful subtype-specific diagnostic test. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Sun, Yueying; Lu, Xiaohui; Su, Fengxia; Wang, Limei; Liu, Chenghui; Duan, Xinrui; Li, Zhengping
2015-12-15
Most of practical methods for detection of single nucleotide polymorphism (SNP) need at least two steps: amplification (usually by PCR) and detection of SNP by using the amplification products. Ligase chain reaction (LCR) can integrate the amplification and allele discrimination in one step. However, the detection of LCR products still remains a great challenge for highly sensitive and quantitative SNP detection. Herein, a simple but robust strategy for real-time fluorescence LCR has been developed for highly sensitive and quantitative SNP detection. A pair of LCR probes are firstly labeled with a fluorophore and a quencher, respectively. When the pair of LCR probes are ligated in LCR, the fluorophore will be brought close to the quencher, and thus, the fluorescence will be specifically quenched by fluorescence resonance energy transfer (FRET). The decrease of fluorescence intensity resulted from FRET can be real-time monitored in the LCR process. With the proposed real-time fluorescence LCR assay, 10 aM DNA targets or 100 pg genomic DNA can be accurately determined and as low as 0.1% mutant DNA can be detected in the presence of a large excess of wild-type DNA, indicating the high sensitivity and specificity. The real-time measuring does not require the detection step after LCR and gives a wide dynamic range for detection of DNA targets (from 10 aM to 1 pM). As LCR has been widely used for detection of SNP, DNA methylation, mRNA and microRNA, the real-time fluorescence LCR assay shows great potential for various genetic analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?
Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F
2006-06-01
Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.
Bose, Nikhil; Carlberg, Katie; Sensabaugh, George; Erlich, Henry; Calloway, Cassandra
2018-05-01
DNA from biological forensic samples can be highly fragmented and present in limited quantity. When DNA is highly fragmented, conventional PCR based Short Tandem Repeat (STR) analysis may fail as primer binding sites may not be present on a single template molecule. Single Nucleotide Polymorphisms (SNPs) can serve as an alternative type of genetic marker for analysis of degraded samples because the targeted variation is a single base. However, conventional PCR based SNP analysis methods still require intact primer binding sites for target amplification. Recently, probe capture methods for targeted enrichment have shown success in recovering degraded DNA as well as DNA from ancient bone samples using next-generation sequencing (NGS) technologies. The goal of this study was to design and test a probe capture assay targeting forensically relevant nuclear SNP markers for clonal and massively parallel sequencing (MPS) of degraded and limited DNA samples as well as mixtures. A set of 411 polymorphic markers totaling 451 nuclear SNPs (375 SNPs and 36 microhaplotype markers) was selected for the custom probe capture panel. The SNP markers were selected for a broad range of forensic applications including human individual identification, kinship, and lineage analysis as well as for mixture analysis. Performance of the custom SNP probe capture NGS assay was characterized by analyzing read depth and heterozygote allele balance across 15 samples at 25 ng input DNA. Performance thresholds were established based on read depth ≥500X and heterozygote allele balance within ±10% deviation from 50:50, which was observed for 426 out of 451 SNPs. These 426 SNPs were analyzed in size selected samples (at ≤75 bp, ≤100 bp, ≤150 bp, ≤200 bp, and ≤250 bp) as well as mock degraded samples fragmented to an average of 150 bp. Samples selected for ≤75 bp exhibited 99-100% reportable SNPs across varied DNA amounts and as low as 0.5 ng. Mock degraded samples at 1 ng and 10 ng exhibited >90% reportable SNPs. Finally, two-person male-male mixtures were tested at 10 ng in contributor varying ratios. Overall, 85-100% of alleles unique to the minor contributor were observed at all mixture ratios. Results from these studies using the SNP probe capture NGS system demonstrates proof of concept for application to forensically relevant degraded and mixed DNA samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhong, Binlong; Huang, Donghua; Ma, Kaige; Deng, Xiangyu; Shi, Deyao; Wu, Fashuai; Shao, Zengwu
2017-01-01
It has been reported that the single nucleotide polymorphism (SNP) rs1800012 in COL1A1 gene might be linked to the susceptibility of musculoskeletal degenerative diseases, such as osteoarthritis (OA) and intervertebral disc degeneration (IVDD). However, the data from different studies is contradictory. Here we aimed to comprehensively summarize and clarify the relationship between the SNP and musculoskeletal degenerative diseases. Seven eligible studies including 1339 cases and 5406 controls were screened out from PubMed, Web Of Science and Cochrane library databases. Significant association was identified in sub group analysis of IVDD in homozygote model (GG versus TT: OR = 0.33, 95% CI 0.14–0.78, P = 0.012), heterozygote model (GT versus TT: OR = 0.29, 95% CI 0.11–0.72, P = 0.008) and dominant model (GG/GT versus TT: OR = 0.31, 95% CI 0.13–0.74, P = 0.008). Additionally, significant relationship was also found in sub group analysis of severe degree of IVDD in homozygote model (GG versus TT: OR = 0.37, 95% CI 0.15–0.91, P = 0.031), heterozygote model (GT versus TT: OR = 0.33, 95% CI 0.13–0.87,P = 0.024) and dominant model (GG/GT versus TT: OR = 0.36, 95% CI 0.14–0.88, P = 0.025). Although no significance was observed, there is a trend that the more G allele at COL1A1 rs1800012 site, the less possibility of IVDD and severe IVDD would happen. Our results indicate that COL1A1 rs1800012 polymorphism associates with the susceptibility of IVDD. However, this polymorphism may not be associated with OA risk. PMID:29088884
Zhang, Ruixing; Wang, Rui; Zhang, Fengbin; Wu, Chensi; Fan, Haiyan; Li, Yan; Wang, Cuiju; Guo, Zhanjun
2010-11-26
Accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) has been described for different types of cancers and might be associated with cancer risk and disease outcome. We used a population-based series of esophageal squamous cell carcinoma (ESCC) patients for investigating the prediction power of SNPs in mitochondrial D-loop. The D-loop region of mtDNA was sequenced for 60 ESCC patients recorded in the Fourth Hospital of Hebei Medical University between 2003 and 2004. The 5 year survival curve were calculated with the Kaplan-Meier method and compared by the log-rank test at each SNP site, a multivariate survival analysis was also performed with the Cox proportional hazards method. The SNP sites of nucleotides 16274G/A, 16278C/T and 16399A/G were identified for prediction of post-operational survival by the log-rank test. In an overall multivariate analysis, the 16278 and 16399 alleles were identified as independent predictors of ESCC outcome. The length of survival of patients with the minor allele 16278T genotype was significantly shorter than that of patients with 16278C at the 16278 site (relative risk, 3.001; 95% CI, 1.029 - 8.756; p = 0.044). The length of survival of patients with the minor allele 16399G genotype was significantly shorter than that of patients with the more frequent allele 16399A at the 16399 site in ESCC patients (relative risk, 3.483; 95% CI, 1.068 - 11.359; p = 0.039). Genetic polymorphisms in the D-loop are independent prognostic markers for patients with ESCC. Accordingly, the analysis of genetic polymorphisms in the mitochondrial D-loop can help identify patient subgroups at high risk of a poor disease outcome.
Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Nakamura, Shingo
2015-03-01
In the wheat (Triticum aestivum L.) cultivar 'Zenkoujikomugi', a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the 'Zenkoujikomugi'-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, 'Iwainodaichi' (Kyushu), 'Junreikomugi' (Kinki-Chugoku-Shikoku), 'Kinuhime' (Kanto-Tokai), 'Nebarigoshi' (Tohoku-Hokuriku), and 'Kitamoe' (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for 'Kitamoe', were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region.
Cronin, Matthew A; Cánovas, Angela; Bannasch, Danika L; Oberbauer, Anita M; Medrano, Juan F
2015-01-01
There is considerable interest in the genetics of wolves (Canis lupus) because of their close relationship to domestic dogs (C. familiaris) and the need for informed conservation and management. This includes wolf populations in Southeast Alaska for which we determined genotypes of 305 wolves at 173662 single nucleotide polymorphism (SNP) loci. After removal of invariant and linked SNP, 123801 SNP were used to quantify genetic differentiation of wolves in Southeast Alaska and wolves, coyotes (C. latrans), and dogs from other areas in North America. There is differentiation of SNP allele frequencies between the species (wolves, coyotes, and dogs), although differentiation is relatively low between some wolf and coyote populations. There are varying levels of differentiation among populations of wolves, including low differentiation of wolves in interior Alaska, British Columbia, and the northern US Rocky Mountains. There is considerable differentiation of SNP allele frequencies of wolves in Southeast Alaska from wolves in other areas. However, wolves in Southeast Alaska are not a genetically homogeneous group and there are comparable levels of genetic differentiation among areas within Southeast Alaska and between Southeast Alaska and other geographic areas. SNP variation and other genetic data are discussed regarding taxonomy and management. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Soria, L A; Corva, P M; Branda Sica, A; Villarreal, E L; Melucci, L M; Mezzadra, C A; Papaleo Mazzucco, J; Fernández Macedo, G; Silvestro, C; Schor, A; Miquel, M C
2009-12-01
The PPARGC1A gene (peroxysome proliferator-activated receptor-gamma coactivator 1alpha gene) controls muscle fiber type and brown adipocyte differentiation; therefore, it is a candidate gene for beef quality traits (tenderness and fat content). Two SNPs (Single Nucleotide Polymorphisms) were identified within exon 8 by multiple alignment of DNA sequences obtained from 24 bulls: a transition G/A (SNP 1181) and a transversion A/T (SNP 1299). The SNP 1181 is a novel SNP, corresponding to a non-conservative substitution (AGT/AAT) that could be the cause of amino acid substitution ((364)Serine/(364)Asparagine). A Mismatch PCR method was designed to determine genotypes of 73 bulls and 268 steers for SNP 1181. Growth, slaughter and meat quality information were available for the group of steers. Allele A of SNP 1181 was not found in Angus. In 243 steers, no significant differences (P > 0.05) were found for either final live body weight, gain in backfat thickness in Spring, kidney fat weight, kidney fat percentage, Warner-Bratzler shear force at 7 days postmortem, intramuscular fat percentage or meat colour between genotype GG and AG. This SNP could be included in breed composition and population admixture analyses because there are marked differences in allelic frequencies between Bos taurus and Bos indicus breeds.
Sub-micro-liter Electrochemical Single-Nucleotide-Polymorphism Detector for Lab-on-a-Chip System
NASA Astrophysics Data System (ADS)
Tanaka, Hiroyuki; Fiorini, Paolo; Peeters, Sara; Majeed, Bivragh; Sterken, Tom; de Beeck, Maaike Op; Hayashi, Miho; Yaku, Hidenobu; Yamashita, Ichiro
2012-04-01
A sub-micro-liter single-nucleotide-polymorphism (SNP) detector for lab-on-a-chip applications is developed. This detector enables a fast, sensitive, and selective SNP detection directly from human blood. The detector is fabricated on a Si substrate by a standard complementary metal oxide semiconductor/micro electro mechanical systems (CMOS/MEMS) process and Polydimethylsiloxane (PDMS) molding. Stable and reproducible measurements are obtained by implementing an on-chip Ag/AgCl electrode and encapsulating the detector. The detector senses the presence of SNPs by measuring the concentration of pyrophosphoric acid generated during selective DNA amplification. A 0.5-µL-volume detector enabled the successful performance of the typing of a SNP within the ABO gene using human blood. The measured sensitivity is 566 pA/µM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less
HRM and SNaPshot as alternative forensic SNP genotyping methods.
Mehta, Bhavik; Daniel, Runa; McNevin, Dennis
2017-09-01
Single nucleotide polymorphisms (SNPs) have been widely used in forensics for prediction of identity, biogeographical ancestry (BGA) and externally visible characteristics (EVCs). Single base extension (SBE) assays, most notably SNaPshot® (Thermo Fisher Scientific), are commonly used for forensic SNP genotyping as they can be employed on standard instrumentation in forensic laboratories (e.g. capillary electrophoresis). High resolution melt (HRM) analysis is an alternative method and is a simple, fast, single tube assay for low throughput SNP typing. This study compares HRM and SNaPshot®. HRM produced reproducible and concordant genotypes at 500 pg, however, difficulties were encountered when genotyping SNPs with high GC content in flanking regions and differentiating variants of symmetrical SNPs. SNaPshot® was reproducible at 100 pg and is less dependent on SNP choice. HRM has a shorter processing time in comparison to SNaPshot®, avoids post PCR contamination risk and has potential as a screening tool for many forensic applications.
Maternal grandsire confirmation and discovery in dairy cattle
USDA-ARS?s Scientific Manuscript database
Accurate pedigree information is essential for selecting dairy animals to improve economically important traits. Two methods of maternal grandsire (MGS) discovery were compared. The first compared one single nucleotide polymorphism (SNP) at a time using a genotype from one or both parents (SNP metho...
HDC gene polymorphisms are associated with age at natural menopause in Caucasian women
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Feng; Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE 68131; Xiong Donghai
2006-10-06
Histidine decarboxylase gene (HDC) encodes histidine decarboxylase which is the crucial enzyme for the biosynthesis of histidine. Studies have shown that histamine is likely to be involved in the regulation of reproduction system. To find the possible correlation between HDC gene and AANM (age at natural menopause), we selected 265 postmenopausal women from 131 nuclear families and performed a transmission disequilibrium test. Significant within-family associations with AANM for SNP rs854163 and SNP rs854158 of HDC gene were observed (P values = 0.0018 and 0.0197, respectively). After 1000 permutations, SNP rs854163 still remained significant within-family association with AANM. Consistently, we alsomore » detected a significant within-family association between haplotype block 2 (defined by SNP rs854163 and rs860526) and AANM in the haplotype analyses (P value = 0.0397). Our results suggest that the HDC gene polymorphisms are significantly associated with AANM in Caucasian women.« less
Wu, Qiuyue; Zhang, Jing; Zhu, Peiran; Jiang, Weijun; Liu, Shuaimei; Ni, Mengxia; Zhang, Mingchao; Li, Weiwei; Zhou, Qing; Cui, Yingxia; Xia, Xinyi
2017-08-01
Male infertility is a complex disorder caused by genetic, developmental, endocrine, or environmental factors as well as unknown etiology. Polymorphisms in the follicle stimulating hormone beta subunit (FSHB) (rs10835638, c.-211G > T) and follicle stimulating hormone receptor (FSHR) (rs1394205, c.-29G > A; rs6165, c.919A > G; rs6166, c.2039 A > G) genes might disturb normal spermatogenesis and affect male reproductive ability. To further ascertain the aforementioned effects, we conducted a case-control study of 255 infertile men and 340 fertile controls from South China using the Mass ARRAY method, which was analyzed by the t-tests and logistic regression analysis using SPSS for Windows 14.0. In addition, a meta-analysis was performed by combining our results with previous reports using STATA 12.0. In the FSHB or FSHR gene single nucleotide polymorphism (SNP) evaluation, no statistically-significant difference was found in the frequency of allelic variants or in genotype distribution between cases and controls. However, a significant association for the comparison of GAA (P: 0.022, OR: 0.63, 95%CI: 0.43-0.94) was seen between the oligozoospermia and controls in haplotype analysis of rs1394205/rs6165/rs6166. In the meta-analysis, rs6165G allele and rs6166 GG genotype were associated with increased risk of the male infertility. This study suggested that FSHR GAA haplotype would exert protective effects against male sterility, which indicated that the combination of three SNP genotypes of FSHR was predicted to have a much stronger impact than either one alone. Then in the meta-analysis, a significant association was seen between FSHR rs6165, rs6166 polymorphisms and male infertility. In terms of male infertility with multifactorial etiology, further studies with larger sample sizes and different ethnic backgrounds or other risk factors are warranted to clarify the potential role of FSHB and FSHR polymorphisms in the pathogenesis of male infertility.
Gardner, Shea N.; Hall, Barry G.
2013-01-01
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four “raw read” genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths. PMID:24349125
Gardner, Shea N; Hall, Barry G
2013-01-01
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four "raw read" genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.
Vallejo, Roger L; Silva, Rafael M O; Evenhuis, Jason P; Gao, Guangtu; Liu, Sixin; Parsons, James E; Martin, Kyle E; Wiens, Gregory D; Lourenco, Daniela A L; Leeds, Timothy D; Palti, Yniv
2018-06-05
Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree-based prediction (0.50-0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL-flanking SNP (0.65-0.72) was similar to the panel with 35K SNP (0.65-0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r 2 ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long-range LD likely contributed to the accurate genomic predictions with the low-density SNP panels. Population structure analysis supported the hypothesis that long-range LD in this population may be caused by admixture. Results suggest that lower-cost, low-density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs. © 2018 The Authors. This article is a U.S. Government work and is in the public domain in the USA. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.
Chaaba, Raja; Attia, Nebil; Hammami, Sonia; Smaoui, Maha; Mahjoub, Sylvia; Hammami, Mohamed; Masmoudi, Ahmed Slaheddine
2005-01-01
Background Apolipoprotein A-V (Apo A-V) gene has recently been identified as a new apolipoprotein involved in triglyceride metabolism. A single nucleotide polymorphism (SNP3) located in the gene promoter (-1131) was associated with triglyceride variation in healthy subjects. In type 2 diabetes the triglyceride level increased compared to healthy subjects. Hypertriglyceridemia is a risk factor for coronary artery disease. We aimed to examine the interaction between SNP3 and lipid profile and coronary artery disease (CAD) in Tunisian type 2 diabetic patients. Results The genotype frequencies of T/T, T/C and C/C were 0.74, 0.23 and 0.03 respectively in non diabetic subjects, 0.71, 0.25 and 0.04 respectively in type 2 diabetic patients. Triglyceride level was higher in heterozygous genotype (-1131 T/C) of apo A-V (p = 0.024). Heterozygous genotype is more frequent in high triglyceride group (40.9%) than in low triglyceride group (18.8%) ; p = 0.011. Despite the relation between CAD and hypertriglyceridemia the SNP 3 was not associated with CAD. Conclusion In type 2 diabetic patients SNP3 is associated with triglyceride level, however there was no association between SNP3 and coronary artery disease. PMID:15636639
Chen, Xing; Zhang, Shujun; Cheng, Zhangrui; Cooke, Jessica S.; Werling, Dirk
2017-01-01
Selectins are adhesion molecules, which mediate attachment between leucocytes and endothelium. They aid extravasation of leucocytes from blood into inflamed tissue during the mammary gland’s response to infection. Selectins are also involved in attachment of the conceptus to the endometrium and subsequent placental development. Poor fertility and udder health are major causes for culling dairy cows. The three identified bovine selectin genes SELP, SELL and SELE are located in a gene cluster. SELP is the most polymorphic of these genes. Several SNP in SELP and SELE are associated with human vascular disease, while SELP SNP rs6127 has been associated with recurrent pregnancy loss in women. This study describes the results of a gene association study for SNP in SELP (n = 5), SELL (n = 2) and SELE (n = 1) with fertility, milk production and longevity traits in a population of 337 Holstein Friesian dairy cows. Blood samples for PCR-RFLP were collected at 6 months of age and animals were monitored until either culling or 2,340 days from birth. Three SNP in SELPEx4-6 formed a haplotype block containing a Glu/Ala substitution at rs42312260. This region was associated with poor fertility and reduced survival times. SELPEx8 (rs378218397) coded for a Val475Met variant locus in the linking region between consensus repeats 4 and 5, which may influence glycosylation. The synonymous SNP rs110045112 in SELEEx14 deviated from Hardy Weinberg equilibrium. For both this SNP and rs378218397 there were too few AA homozygotes present in the population and AG heterozygotes had significantly worse fertility than GG homozygotes. Small changes in milk production associated with some SNP could not account for the reduced fertility and only SELPEx6 showed any association with somatic cell count. These results suggest that polymorphisms in SELP and SELE are associated with the likelihood of successful pregnancy, potentially through compromised implantation and placental development. PMID:28419109
2013-01-01
Background Insulin-like growth factor 1 (IGF-1) gene is considered as a promising candidate for the identification of polymorphisms affecting cattle performance. The objectives of the current study were to determine the association of the single nucleotide polymorphism (SNP) IGF-1/SnaBI with fertility, milk production and body condition traits in Holstein-Friesian dairy cows under grazing conditions. Methods Seventy multiparous cows from a commercial herd were genotyped for the SNP IGF-1/SnaBI. Fertility measures evaluated were: interval to commencement of luteal activity (CLA), calving to first service (CFS) and calving to conception (CC) intervals. Milk production and body condition score were also evaluated. The study period extended from 3 wk before calving to the fourth month of lactation. Results and discussion Frequencies of the SNP IGF-1/SnaBI alleles A and B were 0.59 and 0.41, respectively. Genotype frequencies were 0.31, 0.54 and 0.14 for AA, AB and BB, respectively. Cows with the AA genotype presented an early CLA and were more likely to resume ovarian cyclicity in the early postpartum than AB and BB ones. No effect of the SNP IGF-1/SnaBI genotype was evidenced on body condition change over the experimental period, suggesting that energy balance is not responsible for the outcome of postpartum ovarian resumption in this study. Traditional fertility measures were not affected by the SNP IGF-1/SnaBI. Conclusion To our knowledge this is the first report describing an association of the SNP IGF-1/SnaBI with an endocrine fertility measure like CLA in cattle. Results herein remark the important role of the IGF-1gene in the fertility of dairy cows on early lactation and make the SNP IGF-1/SnaBI an interesting candidate marker for genetic improvement of fertility in dairy cattle. PMID:23409757
Kawaguchi, Fuki; Kigoshi, Hiroto; Nakajima, Ayaka; Matsumoto, Yuta; Uemoto, Yoshinobu; Fukushima, Moriyuki; Yoshida, Emi; Iwamoto, Eiji; Akiyama, Takayuki; Kohama, Namiko; Kobayashi, Eiji; Honda, Takeshi; Oyama, Kenji; Mannen, Hideyuki; Sasazaki, Shinji
2018-05-17
Fatty acid composition is an important indicator of beef quality. The objective of this study was to search the potential candidate region for fatty acid composition. We performed pool-based genome-wide association studies (GWAS) for oleic acid percentage (C18:1) in a Japanese Black cattle population from the Hyogo prefecture. GWAS analysis revealed two novel candidate regions on BTA9 and BTA14. The most significant single nucleotide polymorphisms (SNPs) in each region were genotyped in a population (n = 899) to verify their effect on C18:1. Statistical analysis revealed that both SNPs were significantly associated with C18:1 (p = .0080 and .0003), validating the quantitative trait loci (QTLs) detected in GWAS. We subsequently selected VNN1 and LYPLA1 genes as candidate genes from each region on BTA9 and BTA14, respectively. We sequenced full-length coding sequence (CDS) of these genes in eight individuals and identified a nonsynonymous SNP T66M on VNN1 gene as a putative candidate polymorphism. The polymorphism was also significantly associated with C18:1, but the p value (p = .0162) was higher than the most significant SNP on BTA9, suggesting that it would not be responsible for the QTL. Although further investigation will be needed to determine the responsible gene and polymorphism, our findings would contribute to development of selective markers for fatty acid composition in the Japanese Black cattle of Hyogo. © 2018 Japanese Society of Animal Science.
USDA-ARS?s Scientific Manuscript database
Cowpea (Vigna unguiculata (L) Walp.) is an important legume and the antioxidants in cowpea seeds have been recognized as health-promoting compounds for human. The objectives of this study were to analyze the population structure of cowpea collections using single nucleotide polymorphism (SNP) and to...
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such ...
NASA Astrophysics Data System (ADS)
Liu, Hongna; Li, Song; Wang, Zhifei; Li, Zhiyang; Deng, Yan; Wang, Hua; Shi, Zhiyang; He, Nongyue
2008-11-01
Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome wide codominant SNPs identification. Therefore, large-scale codominant SNPs identification, especially for those associated with complex diseases, has induced the need for completely high-throughput and automated SNP genotyping method. Herein, we present an automated detection system of SNPs based on two kinds of functional magnetic nanoparticles (MNPs) and dual-color hybridization. The amido-modified MNPs (NH 2-MNPs) modified with APTES were used for DNA extraction from whole blood directly by electrostatic reaction, and followed by PCR, was successfully performed. Furthermore, biotinylated PCR products were captured on the streptavidin-coated MNPs (SA-MNPs) and interrogated by hybridization with a pair of dual-color probes to determine SNP, then the genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. This system provided a rapid, sensitive and highly versatile automated procedure that will greatly facilitate the analysis of different known SNPs in human genome.
Hirayama, Atsuhiro; Joshita, Satoru; Kitahara, Kei; Mukawa, Kenji; Suga, Tomoaki; Umemura, Takeji; Tanaka, Eiji; Ota, Masao
2016-01-01
Recent genome-wide association studies have rapidly improved our understanding of the molecular pathways leading to inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC). Although several reports have demonstrated that gene single nucleotide polymorphisms (SNPs) are associated with susceptibility to IBD, its precise genetic factors have not been fully clarified. Here, we performed an association analysis between lymphocyte antigen 75 ( LY75 ) genetic variations and IBD susceptibility or phenotype. SNPs were genotyped in 51 CD patients, 94 UC patients, and 269 healthy controls of Japanese ethnicity. We detected a significant relationship with CD susceptibility for the rs16822581 LY75 SNP ( P = 0.045). One haplotype (GT, P = 0.042) was also associated with CD susceptibility, while another carrying the opposite SNP (CA) was linked to an absence of surgical history for CD. Our findings confirm that LY75 is involved in CD susceptibility and may play a role in disease activity in the Japanese population.
Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng
2015-01-01
Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.
McClure, Matthew C; Bickhart, Derek; Null, Dan; Vanraden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B; Van Tassell, Curtis P; Sonstegard, Tad S
2014-01-01
The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.
McClure, Matthew C.; Bickhart, Derek; Null, Dan; VanRaden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B.; Van Tassell, Curtis P.; Sonstegard, Tad S.
2014-01-01
The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array. PMID:24667746
Wieczorek, Stefan; Holle, Julia U; Bremer, Jan P; Wibisono, David; Moosig, Frank; Fricke, Harald; Assmann, Gunter; Harper, Lorraine; Arning, Larissa; Gross, Wolfgang L; Epplen, Joerg T
2010-05-01
There is evidence that the leptin/ghrelin system is involved in T-cell regulation and plays a role in (auto)immune disorders such as SLE, RA and ANCA-associated vasculitides (AAVs). Here, we evaluate the genetic background of this system in WG. We screened variations in the genes encoding leptin, ghrelin and their receptors, the leptin receptor (LEPR) and the growth hormone secretagogue receptor (GHSR). Three single nucleotide polymorphisms (SNPs) in each gene region were analysed in 460 German WG cases and 878 ethnically matched healthy controls. A three-SNP haplotype of GHSR was significantly associated with WG [P = 0.0067; corrected P-value (P(c)) = 0.026; odds ratio (OR) = 1.30; 95% CI 1.08, 1.57], as was one non-synonymous SNP in LEPR (Lys656Asn, P = 0.0034; P(c) = 0.013; OR = 0.72; 95% CI 0.58, 0.90). These four SNPs were re-analysed in independent cohorts of 226 German WG cases and 519 controls. While the GHSR association was not confirmed, allele frequencies of the LEPR SNP were virtually identical to those from the initial cohorts. Analysis of this SNP in the combined WG and control panels revealed a significant association of the LEPR 656Lys allele with WG (P = 0.00032; P(c) = 0.0013; OR = 0.72; 95% CI 0.60, 0.86). Remarkably, the Lys656Asn SNP showed contrasting allele distribution in two cohorts of 108 and 88 German cases diagnosed with Churg-Strauss syndrome (CSS, combined P = 0.0067; OR = 1.41; 95% CI 1.10, 1.81), whereas identical allele frequencies were revealed when comparing British WG and microscopic polyangiitis cases. While GHSR has to be further evaluated, these data provide profound evidence for an association of the LEPR Lys656Asn SNP with AAV, resulting in opposing effects in WG and CSS.
Laios, Eleftheria; Drogari, Euridiki
2006-12-01
Three mutations in the low density lipoprotein receptor (LDLR) gene account for 49% of familial hypercholesterolemia (FH) cases in Greece. We used the microelectronic array technology of the NanoChip Molecular Biology Workstation to develop a multiplex method to analyze these single-nucleotide polymorphisms (SNPs). Primer pairs amplified the region encompassing each SNP. The biotinylated PCR amplicon was electronically addressed to streptavidin-coated microarray sites. Allele-specific fluorescently labeled oligonucleotide reporters were designed and used for detection of wild-type and SNP sequences. Genotypes were compared to PCR-restriction fragment length polymorphism (PCR-RFLP). We developed three monoplex assays (1 SNP/site) and an optimized multiplex assay (3SNPs/site). We performed 92 Greece II, 100 Genoa, and 98 Afrikaner-2 NanoChip monoplex assays (addressed to duplicate sites and analyzed separately). Of the 580 monoplex genotypings (290 samples), 579 agreed with RFLP. Duplicate sites of one sample were not in agreement with each other. Of the 580 multiplex genotypings, 576 agreed with the monoplex results. Duplicate sites of three samples were not in agreement with each other, indicating requirement for repetition upon which discrepancies were resolved. The multiplex assay detects common LDLR mutations in Greek FH patients and can be extended to accommodate additional mutations.
Shu, Jing-Ting; Bao, Wen-Bin; Zhang, Hong-Xia; Zhang, Xue-Yu; Ji, Cong-Liang; Chen, Guo-Hong
2007-03-01
This study investigates single nucleotide polymorphism (SNP) of the adenylosuccinate lyase(ADSL) gene in variety chicken breeds, including Recessive White chickens, Silkies chickens, Baier chickens, Tibetan chickens and two red jungle fowls. Primers for exon 2 in ADSL gene were designed based on the chicken genomic sequence and a SNP(C/T at 3484) was detected by PCR-SSCP and DNA sequencing. Three genotypes within all breeds were found and least square analysis showed that TT genotype birds had a significant higher inosine monophosphate acid (IMP) content than TC (P < 0.01) and CC (P < 0.05) genotype birds, TC genotype birds had a little higher IMP content than CC genotype birds, but the difference was not significant. We proposed this SNP site correlated with IMP content in chickens. A neighbour-joining dendrogram was constructed based on the Nei's genentic distance. The genetic relationship between Chinese red jungle fowl and Tibetan chickens was the nearest, whereas Baier chickens were more closer to Silkies chickens. The Chinese red jungle fowls were relatively closer to the domestic fowls, whereas Thailand red jungle fowls were relatively diverging to the Chinese native breeds. These results supported the theory concerning the independent origins of Chinese native fowl breeds.
Rao, Shuquan; Ghani, Mahdi; Guo, Zhiyun; Deming, Yuetiva; Wang, Kesheng; Sims, Rebecca; Mao, Canquan; Yao, Yao; Cruchaga, Carlos; Stephan, Dietrich A; Rogaeva, Ekaterina
2018-06-01
Although multiple susceptibility loci for late-onset Alzheimer's disease (LOAD) have been identified, a large portion of the genetic risk for this disease remains unexplained. LOAD risk may be associated with single-nucleotide polymorphisms responsible for changes in gene expression (eSNPs). To detect eSNPs associated with LOAD, we integrated data from LOAD genome-wide association studies and expression quantitative trait loci using Sherlock (a Bayesian statistical method). We identified a cis-regulatory eSNP (rs2927438) located on chromosome 19q13.32, for which subsequent analyses confirmed the association with both LOAD risk and the expression level of several nearby genes. Importantly, rs2927438 may represent an APOE-independent LOAD eSNP according to the weak linkage disequilibrium of rs2927438 with the 2 polymorphisms (rs7412 and rs429358) defining the APOE-ε2, -ε3, and -ε4 alleles. Furthermore, rs2927438 does not influence chromatin interaction events at the APOE locus or cis-regulation of APOE expression. Further exploratory analysis revealed that rs2927438 is significantly associated with tau levels in the cerebrospinal fluid. Our findings suggest that rs2927438 may confer APOE-independent risk for LOAD. Copyright © 2017 Elsevier Inc. All rights reserved.
Elbaz, Alexis; Nelson, Lorene M; Payami, Haydeh; Ioannidis, John P A; Fiske, Brian K; Annesi, Grazia; Belin, Andrea Carmine; Factor, Stewart A; Ferrarese, Carlo; Hadjigeorgiou, Georgios M; Higgins, Donald S; Kawakami, Hideshi; Krüger, Rejko; Marder, Karen S; Mayeux, Richard P; Mellick, George D; Nutt, John G; Ritz, Beate; Samii, Ali; Tanner, Caroline M; Van Broeckhoven, Christine; Van Den Eeden, Stephen K; Wirdefeldt, Karin; Zabetian, Cyrus P; Dehem, Marie; Montimurro, Jennifer S; Southwick, Audrey; Myers, Richard M; Trikalinos, Thomas A
2013-01-01
Summary Background A genome-wide association study identified 13 single-nucleotide polymorphisms (SNPs) significantly associated with Parkinson’s disease. Small-scale replication studies were largely non-confirmatory, but a meta-analysis that included data from the original study could not exclude all SNP associations, leaving relevance of several markers uncertain. Methods Investigators from three Michael J Fox Foundation for Parkinson’s Research-funded genetics consortia—comprising 14 teams—contributed DNA samples from 5526 patients with Parkinson’s disease and 6682 controls, which were genotyped for the 13 SNPs. Most (88%) participants were of white, non-Hispanic descent. We assessed log-additive genetic effects using fixed and random effects models stratified by team and ethnic origin, and tested for heterogeneity across strata. A meta-analysis was undertaken that incorporated data from the original genome-wide study as well as subsequent replication studies. Findings In fixed and random-effects models no associations with any of the 13 SNPs were identified (odds ratios 0·89 to 1·09). Heterogeneity between studies and between ethnic groups was low for all SNPs. Subgroup analyses by age at study entry, ethnic origin, sex, and family history did not show any consistent associations. In our meta-analysis, no SNP showed significant association (summary odds ratios 0·95 to 1.08); there was little heterogeneity except for SNP rs7520966. Interpretation Our results do not lend support to the finding that the 13 SNPs reported in the original genome-wide association study are genetic susceptibility factors for Parkinson’s disease. PMID:17052658
Chou, Chi-Hung; Ueng, Kwo-Chang; Liu, Yu-Fan; Wu, Chih-Hsien; Yang, Shun-Fa; Wang, Po-Hui
2015-01-01
The principal pathogenesis of coronary artery disease (CAD) is coronary artery atherosclerosis, a chronic inflammatory disease of the vessel walls of the coronary artery. Intercellular adhesion molecule-1 (ICAM-1) displays an important role in the development of the inflammation reaction and atherosclerosis. Few studies report the association of ICAM-1 genetic polymorphisms with CAD in Taiwanese subjects. Therefore, we conducted a study to associate the single nucleotide polymorphisms (SNPs) of ICAM-1, rs5491, rs5498, rs281432 and rs3093030 with CAD. Five hundred and twenty-five male and female subjects, who received elective coronary angiography in Taiwan Chung Shan Medical University Hospital, were recruited to determine four ICAM-1 SNPs by real time-polymerase chain reaction and genotyping. The relationships among ICAM-1 SNPs, haplotypes, demographic and characteristics and CAD were analyzed. This study showed that rs281432 (C8823G) was the only ICAM-1 SNP which affect the development of CAD. Multivariate analysis revealed that ICAM-1 SNP rs281432 CC/CG [p=0.016; odds ratio (OR): 2.56, 95% confidence interval (CI): 1.19-5.56], male gender (p=0.018; OR: 1.66, 95% CI: 1.09-2.51), aspirin use in the past 7 days (p=0.001; OR: 2.05, 95% CI: 1.33-3.14), hypertension (p<0.001; OR: 2.15, 95% CI: 1.42-3.25), serum cardiac troponin I elevation (p<0.001; OR: 2.14, 95% CI: 1.47-3.24) and severe angina in recent 24 hours (p=0.001; OR: 1.97, 95% CI: 1.31- 2.95) increase the risk of CAD. In conclusion, ICAM-1 SNP rs281432 is an independent factor to predict the development of CAD. ICAM-1 SNP rs281432 homozygotic mutant GG can reduce the susceptibility to the CAD in Taiwanese subjects.
Tamburino, L; La Vignera, S; Tomaselli, V; Condorelli, R A; Cannarella, R; Mongioì, L M; Calogero, A E
2017-10-01
The functional role of the FSHR promoter -29G/A polymorphism (rs1394205) in men is not clear. Some studies failed to find a relationship between the FSHR -29G/A and follicle-stimulating hormone (FSH) levels and did not associate the SNP with male infertility. Only one study showed that the FSHR -29 SNP modulates serum FSH levels in Baltic young male cohort. Because the SNP -29G/A has to be shown to have a strong effect on in vitro transcription activity of the FSHR promoter and the activation of FSHR is necessary for a normal FSH function, this study was undertaken to assess whether the FSHR -29G/A SNP modulates the gonadal endocrine function in men. A total of 200 men with alteration of conventional sperm parameters or normozoospermia (according to the parameters WHO 2010), were genotyped by TaqMan Assay. Hormone levels were measured by immunoassay, and sperm analysis was performed according to the World Health Organization criteria. A significant gradient of increasing FSH levels across the FSHR -29G/A genotypes was observed (p < 0.01). Among normozoospermic men (n = 110), those with FSHR -29A-allele carriers (GA + AA and AA) had higher serum FSH (p < 0.01) and LH levels (p < 0.05) and higher body mass index (BMI) (p < 0.01) compared to men with the GG genotype. The carrier status of rs1394205 genotypes did not affect the other endocrine parameters neither in men with altered sperm parameters nor in normozoospermic men. The FSHR -29G/A polymorphism modulates FSH and, for the first time, LH serum levels and BMI in normozoospermic men. These findings underline the importance to pay close attention to the studies of genetic variations associated with clinical-endocrine parameters.
Kawasaki, Eiji; Awata, Takuya; Ikegami, Hiroshi; Kobayashi, Tetsuro; Maruyama, Taro; Nakanishi, Koji; Shimada, Akira; Uga, Miho; Uga, Mho; Kurihara, Susumu; Kawabata, Yumiko; Tanaka, Shoichiro; Kanazawa, Yasuhiko; Lee, Inkyu; Eguchi, Katsumi
2006-03-15
The protein tyrosine phosphatase, nonreceptor 22 gene (PTPN22) maps to human chromosome 1p13.3-p13.1 and encodes an important negative regulator of T-cell activation, lymphoid-specific phosphatase (Lyp). Recently, the minor allele of a single-nucleotide polymorphism (SNP) at nucleotide position 1858 (rs2476601, +1858C > T) was found to be associated with type 1 diabetes. However, the degree of the association is variable among ethnic populations, suggesting the presence of other disease-associated variants in PTPN22. To examine this possibility, we carried out a systemic search for PTPN22 using direct sequencing of PCR-amplified products in the Japanese population. Association and linkage studies were also conducted in 1,690 Japanese samples, 180 Korean samples, and 472 Caucasian samples from 95 nuclear families. We identified five novel SNPs, but not the +1858C > T SNP. Of these two frequent SNPs, -1123G > C, and +2740C > T were in strong linkage disequilibrium (LD), and the -1123G > C promoter SNP was associated with acute-onset but not slow-onset type 1 diabetes in the Japanese population (odds ratio [OR] = 1.42, 95% CI = 1.07-1.89, P = 0.015). This association was observed also in Korean patients with type 1 diabetes (Mantel-Haenszel chi2= 6.543, P = 0.0105, combined OR = 1.41 95% CI = 1.09-1.82). Furthermore, the affected family-based control (AFBAC) association test and the transmission disequilibrium analysis of multiplex families of European descent from the British Diabetes Association (BDA) Warren Repository indicated that the association was stronger in -1123G > C compared to +1858C > T. In conclusion, the type 1 diabetes association with PTPN22 is confirmed, but it cannot be attributed solely to the +1858C > T variant. The promoter -1123G > C SNP is a more likely causative variant in PTPN22. 2006 Wiley-Liss, Inc.
Han, Fuyan; Wang, Guanghai; Li, Yuantang; Tian, Wenjun; Dong, Zhenfang; Cheng, Shiqing; Liu, Yiqing; Qu, Teng; Wang, Xiaoying; Wang, Yong; Zhang, Bingchang; Ju, Ying
2017-07-01
T-cell immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3) is preferentially expressed on terminally differentiated Th1 cells and inhibits their IFN-γ production. It has been reported that chronic inflammation may be an important driving force for myeloproliferative neoplasms (MPNs). Therefore, we hypothesized that as an important inflammation regulator, TIM-3 may be involved in essential thrombocythaemia (ET). The goal of this study was to investigate whether the -1516G > T, -574G > T and +4259T > G single-nucleotide polymorphisms (SNPs) within the TIM-3 gene contribute to the genetic susceptibility of individuals to ET. Genotyping of the TIM-3 -1516G > T, -574G > T and + 4259T > G SNPs was performed in 175 patients with ET and in 151 controls via a polymerase chain reaction-restriction fragment length polymorphism assay. We also investigated the relationships between the genotypes of each SNP and the risk factors of ET such as routine blood indexes, age and JAK2 V617F mutation. The genotype and allele frequencies of the -1516G > T SNP (p = 0.016 and 0.019, respectively), the -574G > T SNP (p = 0.035 and 0.038, respectively) and the +4259T > G SNP (p = 0.036 and 0.038, respectively) of the ET patients and the controls were significantly different. A haplotype analysis found that the GGT and TGT haplotypes had significantly different distributions between ET and controls (p = 0.041 and 0.041, respectively). However, no significant differences were detected between the genotypes of all SNPs and routine blood indexes, age and JAK2V617F mutation. The -1516G > T, -574G > T and +4259T > G SNPs within TIM-3 gene might play an important role as a genetic risk factor in the pathogenesis of ET.
2011-09-01
Almasy, L, Blangero, J. (2009) Human QTL linkage mapping. Genetica 136:333-340. Amos, CI. (2007) Successful design and conduct of genome-wide...quantitative trait loci. Genetica 136:237-243. Skol AD, Scott LJ, Abecasis GR, Boehnke M. (2006) Joint analysis is more efficient than replication
Dardennes, Roland M; Zizzari, Philippe; Tolle, Virginie; Foulon, Christine; Kipman, Amélie; Romo, Lucia; Iancu-Gontard, Dana; Boni, Claudette; Sinet, Pierre-Marie; Thérèse Bluet, Marie; Estour, Bruno; Mouren, Marie-Christine; Guelfi, Julien-Daniel; Rouillon, Frédéric; Gorwood, Philip; Epelbaum, Jacques
2007-02-01
Anorexia nervosa (AN) affects 0.3% of young girls with a mortality of 6%/decade and is strongly familial with genetic factors. Ghrelin is an upstream regulator of the orexigenic peptides NPY and AgRP and acts as a natural antagonist to leptin's effects on NPY/AgRP-expressing neurons, resulting in an increase in feeding and body weight. Obestatin which counteracts ghrelin action on feeding is derived from the same propeptide than ghrelin. BDNF has been involved in body weight regulation and its Val66Met polymorphism associated with AN. We therefore re-investigated the association between AN and the Leu72Met and Gln90Leu polymorphisms of the prepro-ghrelin/obestatin gene, the Ala67Thr polymorphism of AgRP and the Val66Met polymorphism of BDNF taking into account clinical subtypes (restrictive--ANR--and bingeing/purging--ANB--subtypes). Family trios study of these 4 single nucleotide polymorphisms were performed in 114 probands with AN and both their parents recruited in two specialized French centres. A transmission disequilibrium was observed for the Leu72Met SNP of the preproghrelin gene and for the Ala67Thr SNP of the AgRP gene. When stratified by clinical subtype, these two polymorphisms were preferentially transmitted for the trios with a bingeing/purging proband. An excess of transmission of the Gln90Leu72 preproghrelin/obestatin haplotype in patients with AN was observed. These results do not provide evidence for a preferential transmission of the 66Met allele of BDNF but support the hypothesis that ghrelin and AGRP polymorphisms confers susceptibility to AN. Further simultaneous analysis of genetic variants of the biological determinants of energy metabolism and feeding behaviour in very large populations should contribute to the understanding of the high degree of heritability of eating disorders and to the description of pathophysiological patterns leading to life-threatening conditions in a highly redundant system.
Kim, Yong-Ku; Hwang, Jung-A; Lee, Heon-Jeong; Yoon, Ho-Kyoung; Ko, Young-Hoon; Lee, Bun-Hee; Jung, Han-Yong; Hahn, Sang-Woo; Na, Kyoung-Sae
2014-04-01
Although several studies have investigated possible associations between norepinephrine neurotransmitter transporter gene (SLC6A2) polymorphisms and depression, few studies have examined associations between SLC6A2 polymorphisms and suicide. Three single-nucleotide polymorphisms (rs2242446, rs28386840, and rs5569) were measured in 550 patients: 201 with major depressive disorder (MDD) and suicide attempt/s, 160 with MDD without suicide attempts, and 189 healthy controls. Analysis of single-nucleotide polymorphisms (SNPs) and haplotype was conducted for the three groups. Subsequently, multivariate logistic regression analysis adjusting for age and gender was conducted to identify independent influences of each SNP. A possible association between suicide lethality and SLC6A2 polymorphisms was also investigated. In the genotype and allele frequency analysis, there were significant differences in rs28386840 between suicidal MDD patients and healthy controls. In the haplotype analysis, TAA (rs2242446-rs28386840-rs5569, from left to right) was associated with suicide attempts in MDD, although the significance (p=0.043) disappeared after Bonferroni correction. There were no relationships between lethality scores and SLC6A2 polymorphisms in suicidal MDD. Modest sample size and a single type of neurotransmitter analyzed (norepinephrine) are the primary limitations. Our results suggest that SLC6A2 polymorphisms were associated with suicide risk in patients with MDD. Future studies are warranted to elucidate possible mechanisms by which SLC6A2 polymorphisms influence suicide risk. Copyright © 2014 Elsevier B.V. All rights reserved.
A meta-analysis of interleukin-10-1082 promoter polymorphism associated with gastric cancer risk.
Ni, Peihua; Xu, Hong; Xue, Huiping; Lin, Bing; Lu, Yang
2012-04-01
We aimed to explore the role of allele A/G single nucleotide polymorphism (SNP) of gene Interleukin 10 (IL-10) promoter-1082 in the susceptibility to gastric cancer through a systematic review and meta-analysis. Each initially included article was scored for quality appraisal. Desirable data were extracted and registered into databases. Twenty studies were ultimately eligible for the meta-analysis of IL-10-1082 A/G SNP. We adopted the most probably appropriate genetic model (dominant model), with the combined group of GG-plus-GA genotypes compared with the AA genotype. Potential sources of heterogeneity were sought out via subgroup analyses and sensitivity analyses, and publication biases were estimated. Between IL-10-1082 GG-plus-GA genotypes with the risk of developing gastric cancer, statistically significant association could be noted with overall gastric cancer, being mainly in Asian subgroup, large sample subgroup, high quality subgroup, intestinal-type subgroup, cardia-type subgroup, and some genotyping method subgroups. Our meta-analysis indicates that IL-10-1082 GG-plus-GA genotypes are associated with the overall risk of developing gastric cancer and seem to be more susceptible to overall gastric cancer in Asian populations. IL-10-1082 GG-plus-GA genotypes are more associated with the pathologically intestinal-type gastric cancer or anatomically cardia-type gastric cancer.
A Meta-Analysis of Interleukin-10-1082 Promoter Polymorphism Associated with Gastric Cancer Risk
Ni, Peihua; Xu, Hong; Xue, Huiping; Lin, Bing
2012-01-01
We aimed to explore the role of allele A/G single nucleotide polymorphism (SNP) of gene Interleukin 10 (IL-10) promoter-1082 in the susceptibility to gastric cancer through a systematic review and meta-analysis. Each initially included article was scored for quality appraisal. Desirable data were extracted and registered into databases. Twenty studies were ultimately eligible for the meta-analysis of IL-10-1082 A/G SNP. We adopted the most probably appropriate genetic model (dominant model), with the combined group of GG-plus-GA genotypes compared with the AA genotype. Potential sources of heterogeneity were sought out via subgroup analyses and sensitivity analyses, and publication biases were estimated. Between IL-10-1082 GG-plus-GA genotypes with the risk of developing gastric cancer, statistically significant association could be noted with overall gastric cancer, being mainly in Asian subgroup, large sample subgroup, high quality subgroup, intestinal-type subgroup, cardia-type subgroup, and some genotyping method subgroups. Our meta-analysis indicates that IL-10-1082 GG-plus-GA genotypes are associated with the overall risk of developing gastric cancer and seem to be more susceptible to overall gastric cancer in Asian populations. IL-10-1082 GG-plus-GA genotypes are more associated with the pathologically intestinal-type gastric cancer or anatomically cardia-type gastric cancer. PMID:22335769
Welderufael, B G; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L G; Fikse, W F
2018-01-01
Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to - but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t -test and a genome-wide significance level of P -value < 10 -4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to - or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2 ) and genes involved in macrophage recruitment and regulation of inflammations ( PDGFD and PTX3 ) were suggested as possible causal genes for susceptibility to - and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to - and recoverability from mastitis.
Wang, Yi-Ting; Sung, Pei-Yuan; Lin, Peng-Lin; Yu, Ya-Wen; Chung, Ren-Hua
2015-05-15
Genome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which may contain only a portion of SNPs with effects on the disease. Therefore, a challenge for the multi-SNP analysis is how to effectively select a subset of SNPs with promising association signals from the SNP set. We developed the Optimal P-value Threshold Pedigree Disequilibrium Test (OPTPDT). The OPTPDT uses general nuclear families. A variable p-value threshold algorithm is used to determine an optimal p-value threshold for selecting a subset of SNPs. A permutation procedure is used to assess the significance of the test. We used simulations to verify that the OPTPDT has correct type I error rates. Our power studies showed that the OPTPDT can be more powerful than the set-based test in PLINK, the multi-SNP FBAT test, and the p-value based test GATES. We applied the OPTPDT to a family-based autism GWAS dataset for gene-based association analysis and identified MACROD2-AS1 with genome-wide significance (p-value=2.5×10(-6)). Our simulation results suggested that the OPTPDT is a valid and powerful test. The OPTPDT will be helpful for gene-based or pathway association analysis. The method is ideal for the secondary analysis of existing GWAS datasets, which may identify a set of SNPs with joint effects on the disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Asim; Mukhopadhyay, Nitai D.; Ning, Yi
Purpose: This study tested whether racial differences in genetic polymorphisms of 4 genes involved in wound repair and response to radiation can be used to predict the occurrence of normal tissue late effects of radiation therapy and indicate potential therapeutic targets. Methods and Materials: This prospective study examined genetic polymorphisms that modulate the expression of 4 genes involved in inflammation and fibrosis and response to radiation (HMOX1, NFE2L2, NOS3, and TGFβ1). DNA from blood samples of 179 patients (∼80% breast and head and neck) collected at the time of diagnosis by their radiation oncologist as exhibiting late normal tissue toxicitymore » was used for the analysis. Patient demographics were as follows: 56% white, 43% African American, 1% other. Allelic frequencies of the different polymorphisms of the participants were compared with those of the general American population stratified by race. Twenty-six additional patients treated with radiation, but without toxicity at 3 months or later after therapy, were also analyzed. Results: Increased frequency of a long GT repeat in the HMOX1 promoter was associated with late effects in both African American and white populations. The single nucleotide polymorphisms (SNP) rs1800469 in the TGFβ1 promoter and the rs6721961 SNP in the NFE2L2 promoter were also found to significantly associate with late effects in African Americans but not whites. A combined analysis of these polymorphisms revealed that >90% of African American patients with late effects had at least 1 of these minor alleles, and 58% had 2 or more. No statistical significance was found relating the studied NOS3 polymorphisms and normal tissue toxicity. Conclusions: These results support a strong association between wound repair and late toxicities of radiation. The presence of these genetic risk factors can vary significantly among different ethnic groups, as demonstrated for some of the SNPs. Future studies should account for the possibility of such ethnic heterogeneity in the late toxicities of radiation.« less
An innovative SNP genotyping method adapting to multiple platforms and throughputs
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are highly abundant, distributed throughout the genome in various species, and therefore they are widely used as genetic markers. However, the usefulness of this genetic tool relies heavily on the availability of user-friendly SNP genotyping methods. We have d...
Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications
USDA-ARS?s Scientific Manuscript database
Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...
USDA-ARS?s Scientific Manuscript database
Microsatellite markers (MS) have traditionally been used for parental verification and are still the international standard in spite of their higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP)-based assays. Despite domestic and international demands fro...
Transcriptome-based differentiation of closely-related Miscanthus lines.
Chouvarine, Philippe; Cooksey, Amanda M; McCarthy, Fiona M; Ray, David A; Baldwin, Brian S; Burgess, Shane C; Peterson, Daniel G
2012-01-01
Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus × giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations. A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three Miscanthus × giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant miscanthus plants exhibit considerable sequence divergence. Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation.
Nakajima, Ayaka; Kawaguchi, Fuki; Uemoto, Yoshinobu; Fukushima, Moriyuki; Yoshida, Emi; Iwamoto, Eiji; Akiyama, Takayuki; Kohama, Namiko; Kobayashi, Eiji; Honda, Takeshi; Oyama, Kenji; Mannen, Hideyuki; Sasazaki, Shinji
2018-05-01
The objective of this study was to identify genomic regions associated with fat-related traits using a Japanese Black cattle population in Hyogo. From 1836 animals, those with high or low values were selected on the basis of corrected phenotype and then pooled into high and low groups (n = 100 each), respectively. DNA pool-based genome-wide association study (GWAS) was performed using Illumina BovineSNP50 BeadChip v2 with three replicate assays for each pooled sample. GWAS detected that two single nucleotide polymorphisms (SNPs) on BTA7 (ARS-BFGL-NGS-35463 and Hapmap23838-BTA-163815) and one SNP on BTA12 (ARS-BFGL-NGS-2915) significantly affected fat percentage (FAR). The significance of ARS-BFGL-NGS-35463 on BTA7 was confirmed by individual genotyping in all pooled samples. Moreover, association analysis between SNP and FAR in 803 Japanese Black cattle revealed a significant effect of SNP on FAR. Thus, further investigation of these regions is required to identify FAR-associated genes and mutations, which can lead to the development of DNA markers for marker-assisted selection for the genetic improvement of beef quality. © 2018 Japanese Society of Animal Science.
2012-01-01
Background Mycobacterium avium subspecies paratuberculosis (Map) is the aetiological agent of Johne’s disease or paratuberculosis and is included within the Mycobacterium avium complex (MAC). Map strains are of two major types often referred to as ‘Sheep’ or ‘S-type’ and ‘Cattle’ or ‘C-type’. With the advent of more discriminatory typing techniques it has been possible to further classify the S-type strains into two groups referred to as Type I and Type III. This study was undertaken to genotype a large panel of S-type small ruminant isolates from different hosts and geographical origins and to compare them with a large panel of well documented C-type isolates to assess the genetic diversity of these strain types. Methods used included Mycobacterial Interspersed Repetitive Units - Variable-Number Tandem Repeat analysis (MIRU-VNTR), analysis of Large Sequence Polymorphisms by PCR (LSP analysis), Single Nucleotide Polymorphism (SNP) analysis of gyr genes, Pulsed-Field Gel Electrophoresis (PFGE) and Restriction Fragment Length Polymorphism analysis coupled with hybridization to IS900 (IS900-RFLP) analysis. Results The presence of LSPA4 and absence of LSPA20 was confirmed in all 24 Map S-type strains analysed. SNPs within the gyr genes divided the S-type strains into types I and III. Twenty four PFGE multiplex profiles and eleven different IS900-RFLP profiles were identified among the S-type isolates, some of them not previously published. Both PFGE and IS900-RFLP segregated the S-type strains into types I and III and the results concurred with those of the gyr SNP analysis. Nine MIRU-VNTR genotypes were identified in these isolates. MIRU-VNTR analysis differentiated Map strains from other members of Mycobacterium avium Complex, and Map S-type from C-type but not type I from III. Pigmented Map isolates were found of type I or III. Conclusion This is the largest panel of S-type strains investigated to date. The S-type strains could be further divided into two subtypes, I and III by some of the typing techniques (IS900-RFLP, PFGE and SNP analysis of the gyr genes). MIRU-VNTR did not divide the strains into the subtypes I and III but did detect genetic differences between isolates within each of the subtypes. Pigmentation is not exclusively associated with type I strains. PMID:23164429
Multi-locus variable number tandem repeat analysis of 7th pandemic Vibrio cholerae
2012-01-01
Background Seven pandemics of cholera have been recorded since 1817, with the current and ongoing pandemic affecting almost every continent. Cholera remains endemic in developing countries and is still a significant public health issue. In this study we use multilocus variable number of tandem repeats (VNTRs) analysis (MLVA) to discriminate between isolates of the 7th pandemic clone of Vibrio cholerae. Results MLVA of six VNTRs selected from previously published data distinguished 66 V. cholerae isolates collected between 1961–1999 into 60 unique MLVA profiles. Only 4 MLVA profiles consisted of more than 2 isolates. The discriminatory power was 0.995. Phylogenetic analysis showed that, except for the closely related profiles, the relationships derived from MLVA profiles were in conflict with that inferred from Single Nucleotide Polymorphism (SNP) typing. The six SNP groups share consensus VNTR patterns and two SNP groups contained isolates which differed by only one VNTR locus. Conclusions MLVA is highly discriminatory in differentiating 7th pandemic V. cholerae isolates and MLVA data was most useful in resolving the genetic relationships among isolates within groups previously defined by SNPs. Thus MLVA is best used in conjunction with SNP typing in order to best determine the evolutionary relationships among the 7th pandemic V. cholerae isolates and for longer term epidemiological typing. PMID:22624829
Sivaprasad, Siddapuram; Rao, Padaki Nagaraja; Gupta, Rajesh; Ashwini, Kaitha; Reddy, Duvvuru Nageshwar
2012-01-01
Background The single nucleotide polymorphism (SNP) of IL28B gene on chromosome 19, encoding for the interferon (IFN)-λ-3 is strongly associated with treatment response to pegylated-IFN and ribavirin in patients infected with different genotypes of hepatitis C virus (HCV). Difference between ethnicity and treatment response rates suggesting a key role of host genetics. The IL28B polymorphism (rs12979860C/T) shows a marked differential distribution between racial groups. Aim The present study is aimed to evaluate genotype and allelic frequency of IL28B gene polymorphism (rs12979860C/T) in Andhra Pradesh, India. Methods A total of 220 healthy controls were recruited for the study. The genotyping of SNP rs12979860C/T on IL28B gene was performed by polymerase chain reaction-direct sequencing method. Result The frequency of CC genotype was found to be significantly (59.09%) higher compared to CT (34.09%) and TT (6.81%) genotypes, respectively. The frequency of major allele C is 0.762 whereas minor allele T is 0.238. Conclusion The higher distribution of genotype ‘CC’ of SNP, rs12979860C/T of IL28B gene in study subjects is suggestive of better response of HCV patients to standard anti-HCV therapy. PMID:25755419
Apalasamy, Yamunah Devi; Ming, Moy Foong; Rampal, Sanjay; Bulgiba, Awang; Mohamed, Zahurin
2015-03-01
Recent findings have shown that the rs1042714 (Gln27Glu) single-nucleotide polymorphism (SNP) on the β2-adrenoceptor gene may predispose to obesity. The findings from other studies carried on different populations, however, have been inconsistent. The authors investigated the association between the rs1042714 SNP with obesity-related parameters. DNA of 672 Malaysian Malays was analyzed using real-time polymerase chain reaction. Univariate and multivariate linear regression analyses revealed significant associations between rs1042714 and diastolic blood pressure in the pooled Malaysian Malay subjects under additive and recessive models. After gender stratification, however, a significant association was found between the rs1042714 and triglyceride and the rs1042714 and log-transformed high-density lipoprotein cholesterol levels in Malaysian Malay men. No significant association was found between the SNP and log-transformed body mass index. This polymorphism may have an important role in the development of obesity-related traits in Malaysian Malays. Gender is an effect modifier for the effect of the rs1042714 polymorphism on obesity-related traits in Malaysian Malays. © 2011 APJPH.
Apalasamy, Yamunah Devi; Ming, Moy Foong; Rampal, Sanjay; Bulgiba, Awang; Mohamed, Zahurin
2013-01-01
Melanocortin-4 receptor (MC4R) is an important regulator of body weight and energy intake. Genetic polymorphisms of the MC4R gene have been found to be linked to obesity in many recent studies across the globe. This study aimed to examine the effects of MC4R polymorphisms on obesity parameters, Linkage disequilibrium (LD) pattern and haplotypes in Malaysian Malays. The study subjects were 652 Malaysian Malays. Genomic DNA was extracted from buccal swabs. Genotyping was performed using Sequenom MassARRAY® iPLEX platform. Anthropometric and blood lipid profiles were measured. MC4R rs571312 SNP was associated with logBMI (p = 0.008) and systolic blood pressure (p = 0.005), while MC4R rs2229616 SNP was associated with total cholesterol (TC) levels (p = 0.016). The MC4R rs7227255 SNP did not show any association with obesity parameters. The strength of LD of the MC4R gene region is low and the haplotypes were not associated with obesity in Malaysian Malays.
Ajayi, Oyeyemi O; Adefenwa, Mufliat A; Agaviezor, Brilliant O; Ikeobi, Christian O N; Wheto, Matthew; Okpeku, Moses; Amusan, Samuel A; Yakubu, Abdulmojeed; De Donato, Marcos; Peters, Sunday O; Imumorin, Ikhide G
2014-02-01
The tenascin-XB (TNXB) gene has antiadhesive effects, functions in matrix maturation in connective tissues, and localizes to the major histocompatibility complex class III region. We hypothesized that it may influence adaptive physiological response through an effect on blood vessel function. We identified a novel g.1324 A→G polymorphism at a TaqI recognition site in a 454 bp fragment of ovine TNXB and genotyped it in 150 Nigerian sheep using PCR-RFLP. The missense mutation changes glutamic acid (GAA) to glycine (GGA). Among SNP genotypes, significant differences (P < 0.05) were observed in body weight and fore cannon bone length. Interaction effects of breed, SNP genotype, and geographic location had a significant effect (P < 0.05) on chest girth. The SNP genotype was significantly (P < 0.05) associated with physiological traits of pulse rate and skin temperature. The observed effect of this novel polymorphism may be mediated through its role in connective tissue biology, requiring further association and functional studies.
Jiménez-Jiménez, Félix Javier; Alonso-Navarro, Hortensia; García-Martín, Elena; Agúndez, José A.G.
2016-01-01
Abstract Background/aims: Several neuropathological, biochemical, and pharmacological data suggested a possible role of histamine in the etiopathogenesis of Parkinson disease (PD). The single nucleotide polymorphism (SNP) rs11558538 in the histamine N-methyltransferase (HNMT) gene has been associated with the risk of developing PD by several studies but not by some others. We carried out a systematic review that included all the studies published on PD risk related to the rs11558538 SNP, and we conducted a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Methods: We used several databases to perform the systematic review, the software Meta-DiSc 1.1.1 to perform the meta-analysis of the eligible studies, and the Q-statistic to test heterogeneity between studies. Results: The meta-analysis included 4 eligible case–control association studies for the HNMT rs11558538 SNP and the risk for PD (2108 patients, 2158 controls). The frequency of the minor allele positivity showed a statistically significant association with a decreased risk for PD, both in the total series and in Caucasians. Although homozygosity for the minor allele did not reach statistical significance, the test for trend indicates the occurrence of a gene–dose effect. Global diagnostic odds ratios (95% confidence intervals) for rs11558538T were 0.61 (0.46–0.81) for the total group, and 0.63 (0.45–0.88) for Caucasian patients. Conclusion: The present meta-analysis confirms published evidence suggesting that the HNMT rs11558538 minor allele is related to a reduced risk of developing PD. PMID:27399132
The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.
Chen, Linjun; Diao, Zhenyu; Xu, Zhipeng; Zhou, Jianjun; Yan, Guijun; Sun, Haixiang
2018-05-15
Osteogenesis imperfecta (OI) is a genetically heterogeneous disorder, presenting either autosomal dominant, autosomal recessive or X-linked inheritance patterns. The majority of OI cases are autosomal dominant and are caused by heterozygous mutations in either the COL1A1 or COL1A2 gene. In these dominant disorders, allele dropout (ADO) can lead to misdiagnosis in preimplantation genetic diagnosis (PGD). Polymorphic markers linked to the mutated genes have been used to establish haplotypes for identifying ADO and ensuring the accuracy of PGD. However, the haplotype of male patients cannot be determined without data from affected relatives. Here, we developed a method for single-sperm-based single-nucleotide polymorphism (SNP) haplotyping via next-generation sequencing (NGS) for the PGD of OI. After NGS, 10 informative polymorphic SNP markers located upstream and downstream of the COL1A1 gene and its pathogenic mutation site were linked to individual alleles in a single sperm from an affected male. After haplotyping, a normal blastocyst was transferred to the uterus for a subsequent frozen embryo transfer cycle. The accuracy of PGD was confirmed by amniocentesis at 19 weeks of gestation. A healthy infant weighing 4,250 g was born via vaginal delivery at the 40th week of gestation. Single-sperm-based SNP haplotyping can be applied for PGD of any monogenic disorders or de novo mutations in males in whom the haplotype of paternal mutations cannot be determined due to a lack of affected relatives. ADO: allele dropout; DI: dentinogenesis imperfect; ESHRE: European Society of Human Reproduction and Embryology; FET: frozen embryo transfer; gDNA: genomic DNA; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; MDA: multiple displacement amplification; NGS: next-generation sequencing; OI: osteogenesis imperfect; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PGD: preimplantation genetic diagnosis; SNP: single-nucleotide polymorphism; STR: short tandem repeat; TE: trophectoderm; WGA: whole-genome amplification.
Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang
2008-01-01
Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146
Comparison of three PCR-based assays for SNP genotyping in sugar beet
USDA-ARS?s Scientific Manuscript database
Background: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved t...
A web-based genome browser for 'SNP-aware' assay design
USDA-ARS?s Scientific Manuscript database
Human and animal genomes contain an abundance of single nucleotide polymorphisms (SNPs) that are useful for genetic testing. However, the relatively large number of SNPs present in diverse populations can pose serious problems when designing assays. It is important to “mask” some SNP positions so ...
Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle
USDA-ARS?s Scientific Manuscript database
Effects of individual single nucleotide polymorphisms (SNP), and variation explained by sets of SNP associated with dry matter intake (DMI), metabolic mid-test weight (MBW), BW gain (GN) and feed efficiency expressed as phenotypic and genetic residual feed intake (RFIp; RFIg) were estimated from wei...
2011-01-01
Background Six previous studies have examined the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and allergic rhinitis, but the results have been inconsistent. However, a recent meta-analysis using data from these 6 studies has shown that the A allele of IL13 SNP rs20541 was associated with an increased risk of allergic rhinitis, whereas no such relationship existed between IL13 SNP rs1800925 and allergic rhinitis. We investigated the associations between IL13 SNPs rs1800925 and rs20541 and the risk of rhinoconjunctivitis in Japanese women. Methods Included were 393 cases who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC) for rhinoconjunctivitis. Control subjects were 767 women without rhinoconjunctivitis according to the ISAAC criteria, who had also not been diagnosed with allergic rhinitis by a doctor. Adjustment was made for age, region of residence, presence of older siblings, smoking, family history of allergic rhinitis, and education. Results Compared with the GG genotype of IL13 SNP rs20541, the AA genotype, occurring in 7.1% of control subjects, was significantly positively related to the risk of rhinoconjunctivitis: the adjusted odds ratio was 1.65 (95% confidence interval: 1.05 - 2.60). SNP rs1800925 was not associated with rhinoconjunctivitis. The haplotype comprising the rs1800925 C allele and the rs20541 A allele was significantly positively related to rhinoconjunctivitis. The multiplicative interactions between the two SNPs under study and smoking on the risk of rhinoconjunctivitis were not statistically significant. Based on the recessive model, however, the additive interaction between SNP rs1800925, but not rs20541, and smoking was significant. Conclusions This study suggests that the minor genotype of IL13 SNP rs20541 and the CA haplotype are significantly positively associated with the risk of rhinoconjunctivitis. In addition, a new pattern of biological interaction that affects the risk of rhinoconjunctivitis is described between SNP rs1800925 and smoking. PMID:22023794
Peeters, H; Vander, C; Laukens, D; Coucke, P; Marichal, D; Van Den Berghe, M; Cuvelier, C; Remaut, E; Mielants, H; De Keyser, F; Vos, M
2004-01-01
Background: Sacroiliitis is a common extraintestinal manifestation of Crohn's disease but its association with the HLA-B27 phenotype is less evident. Polymorphisms in the CARD15 gene have been linked to higher susceptibility for Crohn's disease. In particular, associations have been found with ileal and fibrostenosing disease, young age at onset of disease, and familial cases. Objectives: To investigate whether the presence of sacroiliitis in patients with Crohn's disease is linked to the carriage of CARD15 polymorphisms. Methods: 102 consecutive patients with Crohn's disease were clinically evaluated by a rheumatologist. Radiographs of the sacroiliac joints were taken and assessed blindly by two investigators. The RFLP-PCR technique was used to genotype all patients for three single nucleotide polymorphisms (SNP) in the CARD15 gene. Every SNP was verified by direct sequencing. The HLA-B27 phenotype was determined. Results: Radiological evidence of sacroiliitis with or without ankylosing spondylitis was found in 23 patients (23%), of whom only three were HLA-B27 positive. In contrast, 78% of patients with sacroiliitis carried a CARD15 variant v 48% of those without sacroiliitis (p = 0.01; odds ratio 3.8 (95% confidence interval, 1.3 to 11.5)). Multivariate analysis (logistic regression) showed that the association between sacroiliitis and CARD15 polymorphisms was independent of other CARD15 related phenotypes (ileal and fibrostenosing disease, young age at onset of disease, familial Crohn's disease) (p = 0.039). Conclusions: CARD15 variants were identified as genetic predictors of Crohn's disease related sacroiliitis. An association was demonstrated between these polymorphisms and an extraintestinal manifestation of Crohn's disease. PMID:15308523
Bodal, Vijay Kumar; Sangwan, Shruti; Bal, Manjit Singh; Kaur, Mohanvir; Sharma, Sidarth; Kaur, Bhavleen
2017-09-27
Background: Micro RNAs (miRNAs) are small, noncoding RNA molecules. They can function as either oncogenes or tumor suppressor genes. Single nucleotide polymorphisms (SNP) present in the pre-miRNA region could affect the processing of miRNA and thus alter mature miRNA expression. The studies done so far had shown conflicting results regarding association of two common polymorphisms i.e.hsa-miR-146 rs2910164 and hsa-miR-196a2 rs11614913 with breast cancer. OBJECTIVE: In the study, we examined the hsa-miR-146 rs2910164 and hsa-miR-196a2 rs11614913 SNP association with breast cancer patients in north Indian women. Materials and Methods: This study included 100 breast cancer patients and 100 controls and was done over a period of two years. Genotypes of the hsa-miR-146 (rs2910164 G>C) and hsa-miR-196a2 (rs11614913 C>T) were identified by polymerase chain reaction – restriction length polymorphism (PCR-RFLP) technique in peripheral blood DNA samples. Statistical analysis: We assessed the strength of association of miRNA polymorphisms with breast cancer using Odds ratio (OR) along with 95% confidence intervals. Results: Heterozygous genotypes of hsa-miR-196a2 rs11614913 and combined hsa-miR-146 rs2910164 & hsa-miR-196a2 polymorphism were associated with significantly increased risk of breast cancer (OR-1.7, 95% CI–1.00-3.18) and (OR-1.9, 95% CI-0.85-4.46) respectively. Conclusion: Our study suggests that rs2910164 GC and rs11614913 CT genotypes may contribute to breast cancer susceptibility in north Indian women. Creative Commons Attribution License
USDA-ARS?s Scientific Manuscript database
Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...
Zhou, Juan; Song, Bingxin; Duan, Xiaomei; Long, Yuming; Lu, Jinfeng; Li, Zhibin; Zeng, Sian; Zhan, Qiong; Yuan, Mei; Yang, Qidong; Xia, Jian
2014-10-01
The Basigin (BSG, also known as CD147/extracellular matrix metalloproteinase inducer) belongs to the immunoglobulin superfamily (IgSF). It is a cellular receptor for cyclophilin A (CypA), and is originally known as tumor cell collagenase stimulatory factor (TCSF), which could abundantly expressed on the surface of tumor cells, haematopoietic, monocytes, epithelial endothelial cells and smooth muscle cells. Accumulating evidence showed that BSG played an important role in stimulating the secretion of matrix metalloproteinases (MMPs), which has been reported to be involved in the development of atherosclerosis. Since atherosclerosis is an important risk factor for atherosclerotic cerebral infarction (ACI), we speculate that BSG genetic polymorphisms may influence formation of atherosclerosis and then development of ACI. This study aimed to detect the potential association of the single nucleotide polymorphisms (SNP, -631 G > T, -318 G > C, 10141 G > A and 10826 G > A) of BSG gene in Hunan Han Chinese population with ACI. We genotyped 199 ACI patients and 188 matched healthy controls for the four BSG SNP by method of matrix-assisted laser desorption/ionization-time-offlight mass spectrometry (MALDI-TOF MS). Our results suggested that all the polymorphisms were observed in the subjects from Changsha area of Hunan Province. However, no significant difference was observed between the distribution of these SNP in cases and controls. Therefore, we speculate that BSG genetic polymorphisms might not be an important factor in the development of ACI in our Chinese Han population.
Genetic polymorphisms in the ESR1 gene and cerebral infarction risk: a meta-analysis.
Gao, Hong-Hua; Gao, Lian-Bo; Wen, Jia-Mei
2014-09-01
A number of studies have documented that estrogen receptor α (ESR1) may play an important role in the development and progression of cerebral infarction, but many existing studies have yielded inconclusive results. This meta-analysis was performed to evaluate the relationships between ESR1 genetic polymorphisms and cerebral infarction risk. The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases were searched for relevant articles published before October 1, 2013, without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Seven case-control studies were included with a total of 1471 patients with cerebral infarction and 4688 healthy control subjects. Two common single-nucleotide polymorphisms (SNPs) in the ESR1 gene (rs2234693 T>C and rs9340799 A>G) were assessed. Our meta-analysis results revealed that ESR1 genetic polymorphisms might increase the risk of cerebral infarction. Subgroup analysis by SNP type indicated that both rs2234693 and rs9340799 polymorphisms in the ESR1 gene were strongly associated with an increased risk of cerebral infarction. Further subgroup analysis by ethnicity showed significant associations between ESR1 genetic polymorphisms and increased risk of cerebral infarction among both Asians and Caucasians. In the stratified subgroup analysis by gender, the results suggested that ESR1 genetic polymorphisms were associated with an increased risk of cerebral infarction in the female population. However, there were no statistically significant associations between ESR1 genetic polymorphisms and cerebral infarction risk in the male population. Meta-regression analyses also confirmed that gender might be a main source of heterogeneity. Our findings indicate that ESR1 genetic polymorphisms may contribute to the development of cerebral infarction, especially in the female population.
A TaqI PCR-RFLP detecting a novel SNP in exon 2 of the bovine POU1F1 gene.
Pan, Chuanying; Lan, Xianyong; Chen, Hong; Guo, Yikun; Shu, Jianhong; Lei, Chuzhao; Wang, Xinzhuang
2008-08-01
PCR-SSCP and DNA sequencing methods were applied to reveal three novel single nucleotide polymorphisms (SNPs) in exon 2 of the POU1F1 gene in 963 Chinese cattle belonging to eight breeds. Among them, a silent SNP (NM_174579:c.545G > A) detected by TaqI endonuclease is described. Frequencies of the POU1F1-G allele varied from 0.685 to 1.000. The association of TaqI polymorphism with growth traits was analyzed in 251 Nanyang cattle. No significant associations of the TaqI polymorphism with body weight and average daily gain for different growth periods (6, 12, 18, and 24 months old) were observed (P > 0.05), as well as for body sizes (P > 0.05).
Telfer, Emily J; Stovold, Grahame T; Li, Yongjun; Silva-Junior, Orzenil B; Grattapaglia, Dario G; Dungey, Heidi S
2015-01-01
Pedigree reconstruction using molecular markers enables efficient management of inbreeding in open-pollinated breeding strategies, replacing expensive and time-consuming controlled pollination. This is particularly useful in preferentially outcrossed, insect pollinated Eucalypts known to suffer considerable inbreeding depression from related matings. A single nucleotide polymorphism (SNP) marker panel consisting of 106 markers was selected for pedigree reconstruction from the recently developed high-density Eucalyptus Infinium SNP chip (EuCHIP60K). The performance of this SNP panel for pedigree reconstruction in open-pollinated progenies of two Eucalyptus nitens seed orchards was compared with that of two microsatellite panels with 13 and 16 markers respectively. The SNP marker panel out-performed one of the microsatellite panels in the resolution power to reconstruct pedigrees and out-performed both panels with respect to data quality. Parentage of all but one offspring in each clonal seed orchard was correctly matched to the expected seed parent using the SNP marker panel, whereas parentage assignment to less than a third of the expected seed parents were supported using the 13-microsatellite panel. The 16-microsatellite panel supported all but one of the recorded seed parents, one better than the SNP panel, although there was still a considerable level of missing and inconsistent data. SNP marker data was considerably superior to microsatellite data in accuracy, reproducibility and robustness. Although microsatellites and SNPs data provide equivalent resolution for pedigree reconstruction, microsatellite analysis requires more time and experience to deal with the uncertainties of allele calling and faces challenges for data transferability across labs and over time. While microsatellite analysis will continue to be useful for some breeding tasks due to the high information content, existing infrastructure and low operating costs, the multi-species SNP resource available with the EuCHIP60k, opens a whole new array of opportunities for high-throughput, genome-wide or targeted genotyping in species of Eucalyptus.
Pourvali, Katayoun; Abbasi, Mehrnaz; Mottaghi, Azadeh
2016-01-01
Diabetes Mellitus (DM) is a chronic heterogeneous disorder and oxidative stress is a key participant in the development and progression of it and its complications. Anti-oxidant status can affect vulnerability to oxidative damage, onset and progression of diabetes and diabetes complications. Superoxide dismutase 2 (SOD2) is one of the major antioxidant defense systems against free radicals. SOD2 is encoded by the nuclear SOD2 gene located on the human chromosome 6q25 and the Ala16Val polymorphism has been identified in exon 2 of the human SOD2 gene. Ala16Val (rs4880) is the most commonly studied SOD2 single nucleotide polymorphism (SNP) in SOD2 gene. This SNP changes the amino acid at position 16 from valine (Val) to alanine (Ala), which has been shown to cause a conformational change in the target sequence of manganese superoxide dismutase (MnSOD) and also affects MnSOD activity in mitochondria. Ala16Val SNP and changes in the activity of the SOD2 antioxidant enzyme have been associated with altered progression and risk of different diseases. Association of this SNP with diabetes and some of its complications have been studied in numerous studies. This review evaluated how rs4880, oxidative stress and antioxidant status are associated with diabetes and its complications although some aspects of this line still remain unclear. PMID:27141263
Scurrah, Katrina J; Lamantia, Angela; Ellis, Justine A; Harrap, Stephen B
2017-06-01
Renin-angiotensin-aldosterone system genes have been inconsistently associated with blood pressure, possibly because of unrecognized influences of sex-dependent genetic effects or gene-gene interactions (epistasis). We tested association of systolic blood pressure with single-nucleotide polymorphisms (SNPs) at renin ( REN ), angiotensinogen ( AGT ), angiotensin-converting enzyme ( ACE ), angiotensin II type 1 receptor ( AGTR1 ), and aldosterone synthase ( CYP11B2 ), including sex-SNP or SNP-SNP interactions. Eighty-eight tagSNPs were tested in 2872 white individuals in 809 pedigrees from the Victorian Family Heart Study using variance components models. Three SNPs (rs8075924 and rs4277404 at ACE and rs12721297 at AGTR1 ) were individually associated with lower systolic blood pressure with significant ( P <0.00076) effect sizes ≈1.7 to 2.5 mm Hg. Sex-specific associations were seen for 3 SNPs in men (rs2468523 and rs2478544 at AGT and rs11658531 at ACE ) and 1 SNP in women (rs12451328 at ACE ). SNP-SNP interaction was suggested ( P <0.005) for 14 SNP pairs, none of which had shown individual association with systolic blood pressure. Four SNP pairs were at the same gene (2 for REN , 1 for AGT , and 1 for AGTR1 ). The SNP rs3097 at CYP11B2 was represented in 5 separate pairs. SNPs at key renin-angiotensin-aldosterone system genes associate with systolic blood pressure individually in both sexes, individually in one sex only and only when combined with another SNP. Analyses that incorporate sex-dependent and epistatic effects could reconcile past inconsistencies and account for some of the missing heritability of blood pressure and are generally relevant to SNP association studies for any phenotype. © 2017 American Heart Association, Inc.
The hOGG1 Ser326Cys Gene Polymorphism and Breast Cancer Risk in Saudi Population.
Alanazi, Mohammed; Pathan, Akbar Ali Khan; Shaik, Jilani P; Alhadheq, Abdullah; Khan, Zahid; Khan, Wajahatullah; Al Naeem, Abdulrahman; Parine, Narasimha Reddy
2017-07-01
The purpose of this study was to test the association between human 8-oxoguanine glycosylase 1 (hOGG1) gene polymorphisms and susceptibility to breast cancer in Saudi population. We have also aimed to screen the hOGG1 Ser326Cys polymorphism effect on structural and functional properties of the hOGG1 protein using in silico tools. We have analyzed four SNPs of hOGG1 gene among Saudi breast cancer patients along with healthy controls. Genotypes were screened using TaqMan SNP genotype analysis method. Experimental data was analyzed using Chi-square, t test and logistic regression analysis using SPSS software (v.16). In silco analysis was conducted using discovery studio and HOPE program. Genotypic analysis showed that hOGG1 rs1052133 (Ser326Cys) is significantly associated with breast cancer samples in Saudi population, however rs293795 (T >C), rs2072668 (C>G) and rs2075747 (G >A) did not show any association with breast cancer. The hOGG1 SNP rs1052133 (Ser326Cys) minor allele T showed a significant association with breast cancer samples (OR = 1.78, χ2 = 7.86, p = 0.02024). In silico structural analysis was carried out to compare the wild type (Ser326) and mutant (Cys326) protein structures. The structural prediction studies revealed that Ser326Cys variant may destabilize the protein structure and it may disturb the hOGG1 function. Taken together this is the first In silico study report to confirm Ser326Cys variant effect on structural and functional properties of hOGG1 gene and Ser326Cys role in breast cancer susceptibility in Saudi population.
Babanejad, Mojgan; Moein, Hamidreza; Akbari, Mohammad R; Badiei, Azadeh; Yaseri, Mehdi; Soheilian, Masoud; Najmabadi, Hossein
2016-06-01
Age-related macular degeneration (AMD) is a complex disorder which results in irreversible vision loss and progressive impairment of central vision. Disease susceptibility is influenced by multiple genetic and environmental factors. Single nucleotide polymorphisms (SNP) in the complement factor H gene are the most important genetic risk factors. We conducted a case-control study to investigate the association four SNPs (dbSNP ID: rs800292, rs1061170, rs2274700 and rs3753395) of CFH gene with AMD in the Iranian population. We recruited 100 AMD patients and 100 age- and sex-matched normal controls. Direct sequencing for three SNPs (rs800292, rs2274700 and rs3753395) and restriction fragment length polymorphism utilized for rs1061170. Allele and genotype frequencies of SNPs were calculated and tested for departure from Hardy-Weinberg equilibrium using the Chi-square test. An allelic and genotypic association was compared by logistic regression analysis using the SNPassoc. According to our results, the frequencies of risk allele for all SNPs (G, G, A, and C alleles of rs800292, rs2274700, rs3753395 and rs1061170, respectively) were significantly higher in AMD patients (p value < 0.001). AMD individuals who had at least one copy of the C allele of rs1061170 had an increased risk of disease compared with cases with the T allele. Other studied polymorphisms showed the same association. Our results suggest the contribution of all four predicted CFH polymorphisms in AMD susceptibility among the Iranian population. This association with CFH may lead to early detection and new strategies for prevention and treatment of AMD.
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are the marker of choice for many researchers due to their abundance and the high-throughput methods available for their multiplex analysis. Only recently have SNP markers been available to researchers in soybean [Glycine max (L.) Merr.] with the release of th...
USDA-ARS?s Scientific Manuscript database
Cowpea is a legume widely grown in Africa, North, Central and South America, and Asia. The Cowpea plant growth habits consist of erect, semi-prostrate, and prostrate types. Developing a cultivar while considering plant growth habit is essential within a breeding program since the need for a particul...
2011-04-01
critical. 5. REFERENCES Almasy, L, Blangero, J. (2009) “Human QTL linkage mapping.” Genetica 136:333-340. Amos, CI. (2007) “Successful...quantitative trait loci.” Genetica 136:237-243. Ward, JH, Hook, ME. “A Hierarchical Grouping Procedure Applied to a Problem of Grouping Profiles
Guzman-Ornelas, Milton-Omar; Chavarria-Avila, Efrain; Munoz-Valle, Jose-Francisco; Armas-Ramos, Laura-Elizabeth; Castro-Albarran, Jorge; Aldrete, Maria Elena Aguilar; Oregon-Romero, Edith; Mercado, Monica Vazquez-Del; Navarro-Hernandez, Rosa-Elena
2012-01-01
Purpose Obesity is a disease with genetic susceptibility characterized by an increase in storage and irregular distribution of body fat. In obese patients, the decrease in the Adiponectin gene (ADIPOQ) expression has been associated with a systemic low-grade inflammatory state. Our aim was to investigate the relationship between ADIPOQ +45T>G gene simple nucleotide polymorphism (SNP rs2241766) with serum adiponectin (sAdiponectin), distribution of body fat storage, and inflammation markers. Subjects and methods In this cross-sectional study, 242 individuals from Western Mexico characterized as Mexican-Mestizo and classified by body mass index (BMI), were included. Anthropometrics, body composition, body fat distribution, and inflammation markers were measured by routine methods. Genotypes were characterized using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and sAdiponectin by the ELISA method. A P-value <0.05 was considered the statistically significant threshold. Results sAdiponectin is associated with BMI (P < 0.001) and the genotypes (P < 0.001 to 0.0046) GG (8169 ± 1162 ng/mL), TG (5189 ± 501 ng/mL), and TT (3741 ± 323 ng/mL), but the SNP ADIPOQ +45T>G is not associated with BMI. However, the detailed analysis showed association of this SNP with a pattern of fat distribution and correlations (P < 0.05) with inflammation markers and distribution of body fat storage (Pearson’s r = −0.169 to −0.465) were found. Conclusion In this study, we have suggested that the ADIPOQ +45G allele could be associated with distribution of body fat storage in obesity. On the other hand, as no association was observed between ADIPOQ +45T>G gene polymorphism and obesity, it cannot be concluded that the ADIPOQ +45G allele is responsible for the increase of adiponectin levels. PMID:23118546
Guzman-Ornelas, Milton-Omar; Chavarria-Avila, Efrain; Munoz-Valle, Jose-Francisco; Armas-Ramos, Laura-Elizabeth; Castro-Albarran, Jorge; Aguilar Aldrete, Maria Elena; Oregon-Romero, Edith; Vazquez-Del Mercado, Monica; Navarro-Hernandez, Rosa-Elena
2012-01-01
Obesity is a disease with genetic susceptibility characterized by an increase in storage and irregular distribution of body fat. In obese patients, the decrease in the Adiponectin gene (ADIPOQ) expression has been associated with a systemic low-grade inflammatory state. Our aim was to investigate the relationship between ADIPOQ +45T>G gene simple nucleotide polymorphism (SNP rs2241766) with serum adiponectin (sAdiponectin), distribution of body fat storage, and inflammation markers. In this cross-sectional study, 242 individuals from Western Mexico characterized as Mexican-Mestizo and classified by body mass index (BMI), were included. Anthropometrics, body composition, body fat distribution, and inflammation markers were measured by routine methods. Genotypes were characterized using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and sAdiponectin by the ELISA method. A P-value <0.05 was considered the statistically significant threshold. sAdiponectin is associated with BMI (P < 0.001) and the genotypes (P < 0.001 to 0.0046) GG (8169 ± 1162 ng/mL), TG (5189 ± 501 ng/mL), and TT (3741 ± 323 ng/mL), but the SNP ADIPOQ +45T>G is not associated with BMI. However, the detailed analysis showed association of this SNP with a pattern of fat distribution and correlations (P < 0.05) with inflammation markers and distribution of body fat storage (Pearson's r = -0.169 to -0.465) were found. In this study, we have suggested that the ADIPOQ +45G allele could be associated with distribution of body fat storage in obesity. On the other hand, as no association was observed between ADIPOQ +45T>G gene polymorphism and obesity, it cannot be concluded that the ADIPOQ +45G allele is responsible for the increase of adiponectin levels.
Meza-Velázquez, R; López-Márquez, F; Espinosa-Padilla, S; Rivera-Guillen, M; Ávila-Hernández, J; Rosales-González, M
2017-10-01
Low histamine metabolism has been suggested to play a role in the pathogenesis of allergy and migraine. We investigated the possible association between 2 single-nucleotide polymorphisms (SNP), C314T HNMT and C2029G DAO, and the presence and severity of migraine and migraine-related disability. We studied the frequency of C314T HNMT and C2029G DAO allelic variants in 162 mothers of children with allergies (80 with migraine and 82 without) using a TaqMan-based qPCR Assay and a case-control model. We conducted a logistic regression analysis to examine the association between migraine and the allelic and haplotype variants. Mutant C2029G DAO SNP was found significantly more frequently in the group of women with migraine than in controls (OR, 1.6; 95% CI, 1.1-2.1). No significant differences were found in frequencies of genotypes or alleles in the case of C314T HNMT SNP. Both mutated alleles were associated with migraine-related disability. Coexistence of alleles for both SNPs (haplotypes) showed a strong association with migraine. Haplotypes containing both mutated alleles (either heterozygous or homozygous) were very strongly associated with MIDAS grade iv migraine (OR, 45.0; 95% CI, 5.2-358). This suggests that mutant alleles of C314T for HNMT and C2029G for DAO polymorphisms may interact in a way that increases the risk and impact of migraine. We suggest a synergistic association between HNMT and DAO functional polymorphisms and migraine; this hypothesis must be further confirmed by larger studies. However, the characteristics and ethnic differences between analysed populations should be considered when interpreting the results. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Haralambieva, Iana H.; Ovsyannikova, Inna G.; Umlauf, Benjamin J.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.
2014-01-01
Host antiviral genes are important regulators of antiviral immunity and plausible genetic determinants of immune response heterogeneity after vaccination. We genotyped and analyzed 307 common candidate tagSNPs from 12 antiviral genes in a cohort of 745 schoolchildren immunized with two doses of measles-mumps-rubella vaccine. Associations between SNPs/haplotypes and measles virus-specific immune outcomes were assessed using linear regression methodologies in Caucasians and African-Americans. Genetic variants within the DDX58/RIG-I gene, including a coding polymorphism (rs3205166/Val800Val), were associated as single-SNPs (p≤0.017; although these SNPs did not remain significant after correction for false discovery rate/FDR) and in haplotype-level analysis, with measles-specific antibody variations in Caucasians (haplotype allele p-value=0.021; haplotype global p-value=0.076). Four DDX58 polymorphisms, in high LD, demonstrated also associations (after correction for FDR) with variations in both measles-specific IFN-γ and IL-2 secretion in Caucasians (p≤0.001, q=0.193). Two intronic OAS1 polymorphisms, including the functional OAS1 SNP rs10774671 (p=0.003), demonstrated evidence of association with a significant allele-dose-related increase in neutralizing antibody levels in African-Americans. Genotype and haplotype-level associations demonstrated the role of ADAR genetic variants, including a non-synonymous SNP (rs2229857/Arg384Lys; p=0.01), in regulating measles virus-specific IFN-γ Elispot responses in Caucasians (haplotype global p-value=0.017). After correction FDR, 15 single-SNP associations (11 SNPs in Caucasians and 4 SNPs in African-Americans) still remained significant at the q-value<0.20. In conclusion, our findings strongly point to genetic variants/genes, involved in antiviral sensing and antiviral control, as critical determinants, differentially modulating the adaptive immune responses to live attenuated measles vaccine in Caucasians and African-Americans. PMID:21939710
Blanco-Marchite, Cristina; Sánchez-Sánchez, Francisco; López-Garrido, María-Pilar; Iñigez-de-Onzoño, Mercedes; López-Martínez, Francisco; López-Sánchez, Enrique; Alvarez, Lydia; Rodríguez-Calvo, Pedro-Pablo; Méndez-Hernández, Carmen; Fernández-Vega, Luis; García-Sánchez, Julián; Coca-Prados, Miguel; García-Feijoo, Julián
2011-01-01
Purpose. To investigate the role of WDR36 and P53 sequence variations in POAG susceptibility. Methods. The authors performed a case-control genetic association study in 268 unrelated Spanish patients (POAG1) and 380 control subjects matched for sex, age, and ethnicity. WDR36 sequence variations were screened by either direct DNA sequencing or denaturing high-performance liquid chromatography. P53 polymorphisms p.R72P and c.97–147ins16bp were analyzed by single-nucleotide polymorphism (SNP) genotyping and PCR, respectively. Positive SNP and haplotype associations were reanalyzed in a second sample of 211 patients and in combined cases (n = 479). Results. The authors identified almost 50 WDR36 sequence variations, of which approximately two-thirds were rare and one-third were polymorphisms. Approximately half the variants were novel. Eight patients (2.9%) carried rare mutations that were not identified in the control group (P = 0.001). Six Tag SNPs were expected to be structured in three common haplotypes. Haplotype H2 was consistently associated with the disease (P = 0.0024 in combined cases). According to a dominant model, genotypes containing allele P of the P53 p.R72P SNP slightly increased glaucoma risk. Glaucoma susceptibility associated with different WDR36 genotypes also increased significantly in combination with the P53 RP risk genotype, indicating the existence of a genetic interaction. For instance, the OR of the H2 diplotype estimated for POAG1 and combined cases rose approximately 1.6 times in the two-locus genotype H2/RP. Conclusions. Rare WDR36 variants and the P53 p.R72P polymorphism behaved as moderate glaucoma risk factors in Spanish patients. The authors provide evidence for a genetic interaction between WDR36 and P53 variants in POAG susceptibility, although this finding must be confirmed in other populations. PMID:21931130
X-linked infantile spinal muscular atrophy: clinical definition and molecular mapping.
Dressman, Devin; Ahearn, Mary Ellen; Yariz, Kemal O; Basterrecha, Hugo; Martínez, Francisco; Palau, Francesc; Barmada, M Michael; Clark, Robin Dawn; Meindl, Alfons; Wirth, Brunhilde; Hoffman, Eric P; Baumbach-Reardon, Lisa
2007-01-01
X-linked infantile spinal-muscular atrophy (XL-SMA) is a rare disorder, which presents with the clinical characteristics of hypotonia, areflexia, and multiple congenital contractures (arthrogryposis) associated with loss of anterior horn cells and death in infancy. We have previously reported a single family with XL-SMA that mapped to Xp11.3-q11.2. Here we report further clinical description of XL-SMA plus an additional seven unrelated (XL-SMA) families from North America and Europe that show linkage data consistent with the same region. We first investigated linkage to the candidate disease gene region using microsatellite repeat markers. We further saturated the candidate disease gene region using polymorphic microsatellite repeat markers and single nucleotide polymorphisms in an effort to narrow the critical region. Two-point and multipoint linkage analysis was performed using the Allegro software package. Linkage analysis of all XL-SMA families displayed linkage consistent with the original XL-SMA region. The addition of new families and new markers has narrowed the disease gene interval for a XL-SMA locus between SNP FLJ22843 near marker DXS 8080 and SNP ARHGEF9 which is near DXS7132 (Xp11.3-Xq11.1).
Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Nakamura, Shingo
2015-01-01
In the wheat (Triticum aestivum L.) cultivar ‘Zenkoujikomugi’, a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the ‘Zenkoujikomugi’-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, ‘Iwainodaichi’ (Kyushu), ‘Junreikomugi’ (Kinki-Chugoku-Shikoku), ‘Kinuhime’ (Kanto-Tokai), ‘Nebarigoshi’ (Tohoku-Hokuriku), and ‘Kitamoe’ (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for ‘Kitamoe’, were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region. PMID:25931984
SNPit: a federated data integration system for the purpose of functional SNP annotation.
Shen, Terry H; Carlson, Christopher S; Tarczy-Hornoch, Peter
2009-08-01
Genome wide association studies can potentially identify the genetic causes behind the majority of human diseases. With the advent of more advanced genotyping techniques, there is now an explosion of data gathered on single nucleotide polymorphisms (SNPs). The need exists for an integrated system that can provide up-to-date functional annotation information on SNPs. We have developed the SNP Integration Tool (SNPit) system to address this need. Built upon a federated data integration system, SNPit provides current information on a comprehensive list of SNP data sources. Additional logical inference analysis was included through an inference engine plug in. The SNPit web servlet is available online for use. SNPit allows users to go to one source for up-to-date information on the functional annotation of SNPs. A tool that can help to integrate and analyze the potential functional significance of SNPs is important for understanding the results from genome wide association studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea; Slezak, Tom
With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs. The method is fast to compute, finding SNPs and building a SNP phylogeny in seconds to hours. We use it to identify thousands of putative SNPs from all publicly available Filoviridae, Poxviridae, foot-and-mouth disease virus, Bacillus, and Escherichia coli genomes and plasmids. Themore » SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle as input hundreds of gigabases of sequence in a single run. The algorithm is based on k-mer analysis using a suffix array, so we call it saSNP.« less
Espin‐Garcia, Osvaldo; Craiu, Radu V.
2017-01-01
ABSTRACT We evaluate two‐phase designs to follow‐up findings from genome‐wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation‐maximization‐based inference under a semiparametric maximum likelihood formulation tailored for post‐GWAS inference. A GWAS‐SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT‐SNP‐dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme‐QT strata yields significant power improvements compared to marginal QT‐ or SNP‐based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure. PMID:29239496
Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand
2009-07-01
In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.
Prakash, Jai; Mittal, Balraj; Srivastava, Apurva; Awasthi, Shally; Srivastava, Neena
2016-01-01
Objectives Obesity is a common disorder that has a significant impact on morbidity and mortality. Twin and adoption studies support the genetic influence on variation of obesity, and the estimates of the heritability of body mass index (BMI) is significantly high (30 to 70%). Variants in the fat mass and obesity-associated (FTO) gene have been associated with obesity and obesity-related phenotypes in different populations. The aim of this study was to examine the association of FTO rs9939609 with obesity and related phenotypes in North Indian subjects. Methods Gene variants were investigated for association with obesity in 309 obese and 333 non-obese patients. Genotyping of the FTO rs9939609 single nucleotide polymorphism (SNP) was analyzed using Restriction Fragment Length Polymorphism Analysis of PCR-Amplified Fragments. We also measured participants fasting glucose and insulin levels, lipid profile, percentage body fat, fat mass and fat free mass. Results Waist to hip ratio, systolic blood pressure, diastolic blood pressure, percentage body fat, fat mass, insulin concentration, and homeostasis model assessment index (HOMA-Index) showed a significant difference between the study groups. Significant associations were found for FTO rs9939609 SNP with obesity and obesity-related phenotypes. The significant associations were observed between the rs9939609 SNP and blood pressure, fat mass, insulin, and HOMA-index under a different model. Conclusion This study presents significant association between FTO rs9939609 and obesity defined by BMI and also established the strong association with several measures of obesity in North Indian population. PMID:27168919
Abbey, Darren; Hickman, Meleah; Gresham, David; Berman, Judith
2011-01-01
Phenotypic diversity can arise rapidly through loss of heterozygosity (LOH) or by the acquisition of copy number variations (CNV) spanning whole chromosomes or shorter contiguous chromosome segments. In Candida albicans, a heterozygous diploid yeast pathogen with no known meiotic cycle, homozygosis and aneuploidy alter clinical characteristics, including drug resistance. Here, we developed a high-resolution microarray that simultaneously detects ∼39,000 single nucleotide polymorphism (SNP) alleles and ∼20,000 copy number variation loci across the C. albicans genome. An important feature of the array analysis is a computational pipeline that determines SNP allele ratios based upon chromosome copy number. Using the array and analysis tools, we constructed a haplotype map (hapmap) of strain SC5314 to assign SNP alleles to specific homologs, and we used it to follow the acquisition of loss of heterozygosity (LOH) and copy number changes in a series of derived laboratory strains. This high-resolution SNP/CGH microarray and the associated hapmap facilitated the phasing of alleles in lab strains and revealed detrimental genome changes that arose frequently during molecular manipulations of laboratory strains. Furthermore, it provided a useful tool for rapid, high-resolution, and cost-effective characterization of changes in allele diversity as well as changes in chromosome copy number in new C. albicans isolates. PMID:22384363
Wu, Xiaoping; Guldbrandtsen, Bernt; Lund, Mogens Sandø; Sahana, Goutam
2016-09-01
Identification of genetic variants associated with feet and legs disorders (FLD) will aid in the genetic improvement of these traits by providing knowledge on genes that influence trait variations. In Denmark, FLD in cattle has been recorded since the 1990s. In this report, we used deregressed breeding values as response variables for a genome-wide association study. Bulls (5,334 Danish Holstein, 4,237 Nordic Red Dairy Cattle, and 1,180 Danish Jersey) with deregressed estimated breeding values were genotyped with the Illumina Bovine 54k single nucleotide polymorphism (SNP) genotyping array. Genotypes were imputed to whole-genome sequence variants, and then 22,751,039 SNP on 29 autosomes were used for an association analysis. A modified linear mixed-model approach (efficient mixed-model association eXpedited, EMMAX) and a linear mixed model were used for association analysis. We identified 5 (3,854 SNP), 3 (13,642 SNP), and 0 quantitative trait locus (QTL) regions associated with the FLD index in Danish Holstein, Nordic Red Dairy Cattle, and Danish Jersey populations, respectively. We did not identify any QTL that were common among the 3 breeds. In a meta-analysis of the 3 breeds, 4 QTL regions were significant, but no additional QTL region was identified compared with within-breed analyses. Comparison between top SNP locations within these QTL regions and known genes suggested that RASGRP1, LCORL, MOS, and MITF may be candidate genes for FLD in dairy cattle. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.
Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal
2014-12-01
Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.
Różycka, Agata; Słopień, Radosław; Słopień, Agnieszka; Dorszewska, Jolanta; Seremak-Mrozikiewicz, Agnieszka; Lianeri, Margarita; Maciukiewicz, Małgorzata; Warenik-Szymankiewicz, Alina; Grzelak, Teresa; Kurzawińska, Grażyna; Drews, Krzysztof; Klejewski, Andrzej; Jagodziński, Paweł P
2016-02-01
The aim of the study was assessment of a possible relationship between the polymorphisms of the candidate genes participating in the etiology of some neurological and psychiatric disorders and the risk of depression in perimenopausal and postmenopausal women. A total of 167 (54 perimenopausal and 113 postmenopausal) Caucasian women from western Poland, aged 42-67, were recruited as the patient group in the study because of depressive symptoms, and another 321 healthy women (102 perimenopausal and 219 postmenopausal) served as the controls. All study participants were evaluated for climacteric and depressive disorders according to the Kupperman index and Hamilton rating scale for depression (HRSD), respectively. The following candidate genes were selected for the study: 5HTR2A, 5HTR1B, 5HTR2C, TPH1, TPH2, MAOA, COMT, NET, GABRB1, ESR1, MTHFR, MTR and MTHFD1. In each group the frequencies of the polymorphisms were determined using PCR-RFLP analysis. After correcting for Bonferroni multiple tests, we found associations between the MAOA c.1460C>T (SNP 1137070), COMT c.472G>A (SNP 4680), MTHFR c.677C>T (SNP 1801133) and ESR1 454(-351) A>G (SNP 9340799) polymorphisms to mild and moderate depressive symptoms in menopausal women. In the perimenopausal and postmenopausal women, genotype association of the MAOA c.1460 CT and c.1460 CT+TT (OR=1.83; pcorr=0.009 and OR=1.85; pcorr=0.003, resp.), and of the MTHFR c.677 TT and c.677 CT+TT (OR=3.52; pcorr=0.00009 and OR=2.06; pcorr=0.0006, resp.), as well as of the COMT c.472 GA and COMT c.472 GA+AA genotypes (OR=2.23; pcorr=0.03 and OR=2.17; pcorr=0.027, resp.) in the postmenopausal women revealed significantly higher frequencies of these variants in depressed female patients than in controls, whereas the ESR1 454(-351) AG and 454(-351) AG+GG genotypes were associated with lower risk of depression in postmenopausal women (OR=0.48; pcorr=0.012, and OR=0.52; pcorr=0.015, resp.). Our study substantiates the involvement of the MAOA and MTHFR polymorphisms in climacteric depression and offers evidence that the COMT and ESR1 genes may also play a role in the susceptibility to depressive mood in postmenopausal women. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Laddha, Naresh C.; Dwivedi, Mitesh; Mansuri, Mohmmad Shoab; Singh, Mala; Patel, Hetanshi H.; Agarwal, Nishtha; Shah, Anish M.; Begum, Rasheedunnisa
2014-01-01
Background Vitiligo is a depigmenting disorder resulting from loss of functional melanocytes in the skin. NPY plays an important role in induction of immune response by acting on a variety of immune cells. NPY synthesis and release is governed by IL1B. Moreover, genetic variability in IL1B is reported to be associated with elevated NPY levels. Objectives Aim of the present study was to explore NPY promoter −399T/C (rs16147) and exon2 +1128T/C (rs16139) polymorphisms as well as IL1B promoter −511C/T (rs16944) polymorphism and to correlate IL1B transcript levels with vitiligo. Methods PCR-RFLP method was used to genotype NPY -399T/C SNP in 454 patients and 1226 controls; +1128T/C SNP in 575 patients and 1279 controls and IL1B −511C/T SNP in 448 patients and 785 controls from Gujarat. IL1B transcript levels in blood were also assessed in 105 controls and 95 patients using real-time PCR. Results Genotype and allele frequencies for NPY −399T/C, +1128T/C and IL1B −511C/T SNPs differed significantly (p<0.0001, p<0.0001; p = 0.0161, p = 0.0035 and p<0.0001, p<0.0001) between patients and controls. ‘TC’ haplotype containing minor alleles of NPY polymorphisms was significantly higher in patients and increased the risk of vitiligo by 2.3 fold (p<0.0001). Transcript levels of IL1B were significantly higher, in patients compared to controls (p = 0.0029), in patients with active than stable vitiligo (p = 0.015), also in female patients than male patients (p = 0.026). Genotype-phenotype correlation showed moderate association of IL1B -511C/T polymorphism with higher IL1B transcript levels. Trend analysis revealed significant difference between patients and controls for IL1B transcript levels with respect to different genotypes. Conclusion Our results suggest that NPY −399T/C, +1128T/C and IL1B −511C/T polymorphisms are associated with vitiligo and IL1B −511C/T SNP influences its transcript levels leading to increased risk for vitiligo in Gujarat population. Up-regulation of IL1B transcript in patients advocates its possible role in autoimmune pathogenesis of vitiligo. PMID:25221996
Ciccacci, C; Perricone, C; Alessandri, C; Latini, A; Politi, C; Delunardo, F; Pierdominici, M; Conti, F; Novelli, G; Ortona, E; Borgiani, P
2018-01-01
Systemic lupus erythematosus (SLE) is a common heterogeneous autoimmune disease that is caused by the involvement both of genetic and environmental factors. There is evidence that autophagy is involved in several aspects of SLE pathogenesis. In particular, polymorphisms in the ATG5 gene have been observed to be associated with disease susceptibility. Our aim was to verify if ATG5 polymorphisms are involved in the susceptibility to disease and its clinical phenotypes in an Italian cohort of SLE patients. This study involved 315 SLE patients and 265 healthy controls. Three polymorphisms in the ATG5 gene (rs573775, rs6568431 and rs2245214) were investigated by allelic discrimination assay. A case-control association study, a genotype/phenotype correlation analysis and a haplotype study were performed. Moreover, an expression study was conducted in peripheral blood mononuclear cells from 15 SLE patients to verify a possible effect of the three SNPs on the expression of ATG5. Among the three investigated SNPs, only the rs573775 SNP was significantly associated with disease susceptibility with the variant allele conferring a higher risk of developing SLE (OR = 1.50, p = 0.018 and OR = 1.48, p = 0.007 at the genotypic and allelic level, respectively). The variant allele of rs6568431 SNP was more present in patients with anemia (OR = 1.86, p = 0.009) and renal involvement (OR = 1.63, p = 0.06), while the variant allele of rs2245214 SNP was significantly associated with a higher risk of producing anti-DNA autoantibodies (OR = 1.66, p = 0.04). Carriers of the rs6568431 variant allele showed higher messenger RNA levels compared to the carriers of the wild-type allele, suggesting also a potential variant allele dose-dependent effect on gene expression. In conclusion, our study confirms a role for ATG5 polymorphisms both in disease susceptibility and in the modulation of clinical phenotypes in an Italian SLE cohort. These results further suggest that genetic variations in autophagy genes could play a role in autoimmune diseases susceptibility and are worth further investigation.
The reduction of Calpain-10 expression is associated with risk polymorphisms in obese children.
Mendoza-Lorenzo, Patricia; Salazar, Ana Maria; Cortes-Arenas, Eladio; Saucedo, Renata; Taja-Chayeb, Lucia; Flores-Dorantes, Maria T; Pánico, Pablo; Sordo, Monserrat; Ostrosky-Wegman, Patricia
2013-03-01
Excessive weight gain and obesity are major public health concerns. Childhood obesity is growing at an alarming rate. Polymorphisms in the Calpain-10 gene and the reduced expression of this gene in muscle cells and adipocytes have been associated with an increased risk of type 2 diabetes mellitus in several populations. In the present study, we explored the contribution of Calpain-10 in the development of metabolic impairment in childhood. We evaluated the presence of risk polymorphisms in the CAPN10 gene (SNP-44, SNP-43, InDel-19 and SNP-63) and the associated changes in the Calpain-10 mRNA levels in a pediatric population. A total of 161 Mexican children between 4 and 18 years old were included in this study. This population was classified into three groups according to international growth references: healthy weight (HW), overweight (OW) and obese (OB). Association studies of the anthropometric data, clinical values, genotyping and expression assays showed a decrease in the Calpain-10 mRNA and protein expression in the OW and OB groups with respect to the HW group. This decrease in the Calpain-10 mRNA expression was more evident in individuals homozygous for SNP-44 (T/T) and InDel-19 (3/3), alone (p<0.001 and p=0.015, respectively) or in combination (p=0.017). These polymorphisms were also associated with elevated BMI, weight percentiles, z-scores, waist circumferences, fasting glucose levels and beta cell functions in the OW and OB groups (p<0.05). Moreover, our results indicate a statistically significant decrease in the expression of the 75-kDa Calpain-10 isoform in the OW+OB group. The presence of polymorphisms and alterations in the expression of the CAPN10 gene at early ages might result in metabolic impairment in adulthood and should be further investigated. Copyright © 2012 Elsevier B.V. All rights reserved.
Lipphardt, Mark F; Deryal, Mustafa; Ong, Mei Fang; Schmidt, Werner; Mahlknecht, Ulrich
2013-01-01
Estrogen and progesterone hormones are key regulators of a wide variety of biological processes. In addition to their influence on reproduction, cell differentiation and apoptosis, they affect inflammatory response, cell metabolism and most importantly, they regulate physiological breast tissue proliferation and differentiation as well as the development and progression of breast cancer. In order to assess whether genetic variants in the steroid hormone receptor gene ESR1 (estrogen receptor alpha) had an effect on sporadic breast cancer susceptibility, we assessed 7 ESR1 single nucleotide polymorphisms (SNPs) for associations with breast cancer susceptibility and clinical parameters in 221 breast cancer patients and 221 controls, respectively. We identified ESR1 intron SNP +2464 C/T (rs3020314) and ESR1 intron SNP -4576 A/C (rs1514348) to correlate with breast cancer susceptibility and progesterone receptor expression status. Patients genotyped CT for ESR1 intron SNP +2464 (rs3020314) (p ≤ 0.045) or genotyped AC for ESR1 intron SNP -4576 (rs1514348) (p ≤ 0.000026) were identified to carry a significant risk as to the development of breast cancer in the Central European Caucasian population (both together: p ≤ 0.000488). Our study could confirm previous associations and revealed new associations of SNP rs1514348 with susceptibility to breast cancer and clinical outcome, which might be used as new additional SNP markers.
Epistasis between polymorphisms in PCSK1 and DBH is associated with premature ovarian failure.
Pyun, Jung-A; Kim, Sunshin; Cha, Dong Hyun; Kwack, KyuBum
2014-11-01
This study examined whether epistasis between single nucleotide polymorphisms (SNPs) within proprotein convertase subtilisin/kexin type 1 (PCSK1) and dopamine β-hydroxylase (DBH) genes is associated with premature ovarian failure (POF). One hundred twenty women with POF and 222 female controls were recruited for this study. To genotype SNPs within PCSK1 and DBH, we used a GoldenGate assay with VeraCode technology, which uses an allele-specific primer extension method. Two SNPs (rs155979 and rs3762986) within PCSK1 and one SNP (rs1611114) within DBH, which were located in the 5' flanking region, were involved in synergistic interactions. The C allele in the rs155979 SNP showed an increased risk of POF in a dominant model when AA genotype in the rs1611114 SNP was present (odds ratio, 3.60; 95% CI, 1.82-7.14; P = 0.00024), whereas the G allele in the rs1611114 SNP showed a reduced risk of POF in a dominant model when at least one C allele at the rs155979 SNP was present (odds ratio, 0.24; 95% CI, 0.11-0.51; P = 0.00018) or one G allele at the rs3762986 SNP was present (odds ratio, 0.33; 95% CI, 0.19-0.60; P = 0.00023). Epistases between SNPs within PCSK1 and DBH genes are significantly associated with susceptibility or resistance to POF.
Roses, A D
2001-10-01
Pharmacogenetics is the variability of drug response due to inherited characteristics in individuals. Drug metabolizing enzymes have been studied for decades, first as chemical reactions and, more recently, as specific polymorphisms of known molecules. With the availability of whole-genome single-nucleotide polymorphism (SNP) maps, it will soon be possible to create an SNP profile for patients who experience adverse events (AEs) or who respond clinically to the medicine (efficacy). Proof-of-principle experiments have demonstrated that high density SNP maps in chromosomal regions of genetic linkage facilitate the identification of susceptibility disease genes. Whole-genome SNP mapping analyses aimed at determining linkage disequilibrium (LD) profiles along an ordered human genome backbone are in progress. SNP 'fingerprints' or SNP PRINTs(sm) will be used to identify patients at greater risk of an AE, or those patients with a greater chance of responding to a medicine. As LD maps for various ethnic populations are constructed, the number of SNPs necessary to measure for an individual will decrease. Standardized pharmacogenetic maps for drug registration and post-marketing surveillance will result in safer, more effective and more cost-efficient medicines. The timing of these pharmacogenetic applications will occur over the next 5 years. In contrast, the benefits of pharmacogenomic applications such as the identification of new tractable targets will not be visible as new medicines for 7-12 years, due to the lengthy drug development and registration processes.
Gu, Jun-dong; Hua, Feng; Mei, Chao-rong; Zheng, De-jie; Wang, Guo-fan; Zhou, Qing-hua
2014-01-01
Aim: Myeloperoxidase (MPO) and glutathione S-transferase pi 1 (GSTP1) are important carcinogen-metabolizing enzymes. The aim of this study was to investigate the association between the common polymorphisms of MPO and GSTP1 genes and lung cancer risk in Chinese Han population. Methods: A total of 266 subjects with lung cancer and 307 controls without personal history of the disease were recruited in this case control study. The tagSNPs approach was used to assess the common polymorphisms of MOP and GSTP1 genes and lung cancer risk according to the disequilibrium information from the HapMap project. The tagSNP rs7208693 was selected as the polymorphism site for MPO, while the haplotype-tagging SNPs rs1695, rs4891, rs762803 and rs749174 were selected as the polymorphism sites for GSTP1. The gene polymorphisms were confirmed using real-time PCR, cloning and sequencing. Results: The four GSTP1 haplotype-tagging SNPs rs1695, rs4891, rs762803 and rs749174, but not the MPO tagSNP rs7208693, exhibited an association with lung cancer susceptibility in smokers in the overall population and in the studied subgroups. When Phase 2 software was used to reconstruct the haplotype for GSTP1, the haplotype CACA (rs749174+rs1695 + rs762803+rs4891) exhibited an increased risk of lung cancer among smokers (adjust odds ratio 1.53; 95%CI 1.04–2.25, P=0.033). Furthermore, diplotype analyses demonstrated that the significant association between the risk haplotype and lung cancer. The risk haplotypes co-segregated with one or more biologically functional polymorphisms and corresponded to a recessive inheritance model. Conclusion: The common polymorphisms of the GSTP1 gene may be the candidates for SNP markers for lung cancer susceptibility in Chinese Han population. PMID:24786234
Safa, Ahmad Hosseini; Harandi, Majid Fasihi; Tajaddini, Mohammadhasan; Rostami-Nejad, Mohammad; Mohtashami-Pour, Mehdi; Pestehchian, Nader
2016-07-22
High-resolution melting (HRM) is a reliable and sensitive scanning method to detect variation in DNA sequences. We used this method to better understand the epidemiology and transmission of Echinococcus granulosus. We tested the use of HRM to discriminate the genotypes of E. granulosus and E. canadensis. One hundred forty-one hydatid cysts were collected from slaughtered animals in different parts of Isfahan-Iran in 2013. After DNA extraction, the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was amplified using PCR coupled with the HRM curve. The result of HRM analysis using partial the sequences of cox1 gene revealed that 93, 35, and 2 isolates were identified as G1, G3, and G6 genotypes, respectively. A single nucleotide polymorphism (SNP) was found in locus 9867 of the cox1 gene. This is a critical locus for the differentiation between the G6 and G7 genotypes. In the phylogenic tree, the sample with a SNP was located between the G6 and G7 genotypes, which suggest that this isolate has a G6/G7 genotype. The HRM analysis developed in the present study provides a powerful technique for molecular and epidemiological studies on echinococcosis in humans and animals.
Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan
Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan
2006-01-01
Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by fluorescence in situ hybridization, and a region of homozygosity in a UPD case was confirmed by sequencing of genomic DNA. Conclusion SNPscan is useful to identify chromosomal abnormalities based on SNP intensity (such as chromosomal copy number changes) and heterozygosity data (including regions of LOH and some cases of UPD). The program and source code are available at the SNPscan website . PMID:16420694
Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing
Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita
2014-01-01
In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279
Salehi, Samaneh; Emadi-Baygi, Modjtaba; Rezaei, Majdaddin; Kelishadi, Roya; Nikpour, Parvaneh
2017-01-01
Metabolic syndrome (MetS) is a common disorder which is a constellation of clinical features including abdominal obesity, increased level of serum triglycerides (TGs) and decrease of serum high-density lipoprotein-cholesterol (HDL-C), elevated blood pressure, and glucose intolerance. The apolipoprotein A5 (APOA5) is involved in lipid metabolism, influencing the level of plasma TG and HDL-C. In the present study, we aimed to investigate the associations between four INDEL variants of APOA5 gene and the MetS risk. In this case-control study, we genotyped 116 Iranian children and adolescents with/without MetS by using Sanger sequencing method for these INDELs. Then, we explored the association of INDELs with MetS risk and their clinical components by logistic regression and one-way analysis of variance analyses. We identified a novel insertion polymorphism, c. *282-283 insAG/c. *282-283 insG variant, which appears among case and control groups. rs72525532 showed a significant difference for TG levels between various genotype groups. In addition, there were significant associations between newly identified single-nucleotide polymorphism (SNP) and rs72525532 with MetS risk. These results show that rs72525532 and the newly identified SNP may influence the susceptibility of the individuals to MetS.
Association of Interleukin-1 Gene cluster polymorphisms with coronary slow flow phenomenon
Mutluer, Ferit Onur; Ural, Dilek; Güngör, Barış; Bolca, Osman; Aksu, Tolga
2018-01-01
Objective: Coronary slow flow phenomenon (CSFP) is characterized by the decreased rate of contrast progression in epicardial coronary arte-ries in the absence of significant coronary stenosis. Mounting evidence has showed a significant association between inflammation and CSFP severity. This study aimed to evaluate possible associations between interleukin-1 receptor antagonist (IL-1ra) gene variable number tandem repeat (VNTR), IL-1β -511 single nucleotide (SNP), and IL-1β+3954 SNP mutations with CSFP. Methods: Forty-eight patients with CSFP and 62 controls with angiographically normal coronary arteries were prospectively enrolled in the study. Genotypes were assessed using the polymerase chain reaction (PCR)-based restriction fragment length polymorphism (PCR-RFLP) technique. Results: Homozygote genotype for allele 2 of+3954 C>T 2/2 genotype was significantly more frequent in patients with CSFP than in the control group, whereas 1/2 genotype was more frequent in the control group (35.4% versus 14.5% for 2/2 genotype and 25% versus 35.5% for 1/2 genotype in CSFP and control groups, respectively, X2=6.6; p=0.04). The allelic frequency of allele 2 of this polymorphism was significantly higher in the CSFP group than in the control group (47.9% versus 28.6% in the control group, X2=5.6; p=0.02). However, there was no significant difference with regard to genotype or allelic frequencies of IL-1ra VNTR or IL-1β -511 SNP polymorphisms between patients with CSFP and controls. Conclusion: IL-1β+3954 SNP mutations are significantly more common in patients with CSFP. It may suggest that the tendency for inflammation may contribute to the presence of this phenomenon. PMID:29339698
Al-Absi, Boshra; Razif, Muhammad F M; Noor, Suzita M; Saif-Ali, Riyadh; Aqlan, Mohammed; Salem, Sameer D; Ahmed, Radwan H; Muniandy, Sekaran
2017-10-01
Genome-wide and candidate gene association studies have previously revealed links between a predisposition to acute lymphoblastic leukemia (ALL) and genetic polymorphisms in the following genes: IKZF1 (7p12.2; ID: 10320), DDC (7p12.2; ID: 1644), CDKN2A (9p21.3; ID: 1029), CEBPE (14q11.2; ID: 1053), and LMO1 (11p15; ID: 4004). In this study, we aimed to conduct an investigation into the possible association between polymorphisms in these genes and ALL within a sample of Yemeni children of Arab-Asian descent. Seven single-nucleotide polymorphisms (SNPs) in IKZF1, three SNPs in DDC, two SNPs in CDKN2A, two SNPs in CEBPE, and three SNPs in LMO1 were genotyped in 289 Yemeni children (136 cases and 153 controls), using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Logistic regression analyses were used to estimate ALL risk, and the strength of association was expressed as odds ratios with 95% confidence intervals. We found that the IKZF1 SNP rs10235796 C allele (p = 0.002), the IKZF1 rs6964969 A>G polymorphism (p = 0.048, GG vs. AA), the CDKN2A rs3731246 G>C polymorphism (p = 0.047, GC+CC vs. GG), and the CDKN2A SNP rs3731246 C allele (p = 0.007) were significantly associated with ALL in Yemenis of Arab-Asian descent. In addition, a borderline association was found between IKZF1 rs4132601 T>G variant and ALL risk. No associations were found between the IKZF1 SNPs (rs11978267; rs7789635), DDC SNPs (rs3779084; rs880028; rs7809758), CDKN2A SNP (rs3731217), the CEBPE SNPs (rs2239633; rs12434881) and LMO1 SNPs (rs442264; rs3794012; rs4237770) with ALL in Yemeni children. The IKZF1 SNPs, rs10235796 and rs6964969, and the CDKN2A SNP rs3731246 (previously unreported) could serve as risk markers for ALL susceptibility in Yemeni children.
2010-01-01
Background Thoroughbred horses have been selected for traits contributing to speed and stamina for centuries. It is widely recognized that inherited variation in physical and physiological characteristics is responsible for variation in individual aptitude for race distance, and that muscle phenotypes in particular are important. Results A genome-wide SNP-association study for optimum racing distance was performed using the EquineSNP50 Bead Chip genotyping array in a cohort of n = 118 elite Thoroughbred racehorses divergent for race distance aptitude. In a cohort-based association test we evaluated genotypic variation at 40,977 SNPs between horses suited to short distance (≤ 8 f) and middle-long distance (> 8 f) races. The most significant SNP was located on chromosome 18: BIEC2-417495 ~690 kb from the gene encoding myostatin (MSTN) [Punadj. = 6.96 × 10-6]. Considering best race distance as a quantitative phenotype, a peak of association on chromosome 18 (chr18:65809482-67545806) comprising eight SNPs encompassing a 1.7 Mb region was observed. Again, similar to the cohort-based analysis, the most significant SNP was BIEC2-417495 (Punadj. = 1.61 × 10-9; PBonf. = 6.58 × 10-5). In a candidate gene study we have previously reported a SNP (g.66493737C>T) in MSTN associated with best race distance in Thoroughbreds; however, its functional and genome-wide relevance were uncertain. Additional re-sequencing in the flanking regions of the MSTN gene revealed four novel 3' UTR SNPs and a 227 bp SINE insertion polymorphism in the 5' UTR promoter sequence. Linkage disequilibrium was highest between g.66493737C>T and BIEC2-417495 (r2 = 0.86). Conclusions Comparative association tests consistently demonstrated the g.66493737C>T SNP as the superior variant in the prediction of distance aptitude in racehorses (g.66493737C>T, P = 1.02 × 10-10; BIEC2-417495, Punadj. = 1.61 × 10-9). Functional investigations will be required to determine whether this polymorphism affects putative transcription-factor binding and gives rise to variation in gene and protein expression. Nonetheless, this study demonstrates that the g.66493737C>T SNP provides the most powerful genetic marker for prediction of race distance aptitude in Thoroughbreds. PMID:20932346
Hill, Emmeline W; McGivney, Beatrice A; Gu, Jingjing; Whiston, Ronan; Machugh, David E
2010-10-11
Thoroughbred horses have been selected for traits contributing to speed and stamina for centuries. It is widely recognized that inherited variation in physical and physiological characteristics is responsible for variation in individual aptitude for race distance, and that muscle phenotypes in particular are important. A genome-wide SNP-association study for optimum racing distance was performed using the EquineSNP50 Bead Chip genotyping array in a cohort of n = 118 elite Thoroughbred racehorses divergent for race distance aptitude. In a cohort-based association test we evaluated genotypic variation at 40,977 SNPs between horses suited to short distance (≤ 8 f) and middle-long distance (> 8 f) races. The most significant SNP was located on chromosome 18: BIEC2-417495 ~690 kb from the gene encoding myostatin (MSTN) [P(unadj.) = 6.96 x 10⁻⁶]. Considering best race distance as a quantitative phenotype, a peak of association on chromosome 18 (chr18:65809482-67545806) comprising eight SNPs encompassing a 1.7 Mb region was observed. Again, similar to the cohort-based analysis, the most significant SNP was BIEC2-417495 (P(unadj.) = 1.61 x 10⁻⁹; P(Bonf.) = 6.58 x 10⁻⁵). In a candidate gene study we have previously reported a SNP (g.66493737C>T) in MSTN associated with best race distance in Thoroughbreds; however, its functional and genome-wide relevance were uncertain. Additional re-sequencing in the flanking regions of the MSTN gene revealed four novel 3' UTR SNPs and a 227 bp SINE insertion polymorphism in the 5' UTR promoter sequence. Linkage disequilibrium was highest between g.66493737C>T and BIEC2-417495 (r² = 0.86). Comparative association tests consistently demonstrated the g.66493737C>T SNP as the superior variant in the prediction of distance aptitude in racehorses (g.66493737C>T, P = 1.02 x 10⁻¹⁰; BIEC2-417495, P(unadj.) = 1.61 x 10⁻⁹). Functional investigations will be required to determine whether this polymorphism affects putative transcription-factor binding and gives rise to variation in gene and protein expression. Nonetheless, this study demonstrates that the g.66493737C>T SNP provides the most powerful genetic marker for prediction of race distance aptitude in Thoroughbreds.
Röper, Andrea; Reichert, Walter; Mattern, Rainer
2007-01-01
In the field of forensic DNA typing, the analysis of Short Tandem Repeats (STRs) can fail in cases of degraded DNA. The typing of coding region Single Nucleotide Polymorphisms (SNPs) of the mitochondrial genome provides an approach to acquire additional information. In the examined case of aggravated theft, both suspects could be excluded of having left the analyzed hair on the crime scene by SNP typing. This conclusion was not possible subsequent to STR typing. SNP typing of the trace on the torch light left on the crime scene increased the likelihood for suspect no. 2 to be the origin of this trace. This finding was already indicated by STR analysis. Suspect no. 1 was excluded for being the origin of this trace by SNP typing which was also indicated by STR analysis. A limiting factor for the analysis of SNPs is the maternal inheritance of mitochondrial DNA. Individualisation is not possible. In conclusion, it can be said that in the case of traces which cause problems with conventional STR typing the supplementary analysis of coding region SNPs from the mitochondrial genome is very reasonable and greatly contributes to the refinement of analysis methods in the field of forensic genetics.
Goodin, Douglas S.; Khankhanian, Pouya
2014-01-01
Background Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms (SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association. Methodology/Principal Findings Here we develop a method to identify the two SNP-haplotypes, which combine to produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic regions were modeled; DRB1 (a Class II molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase that degrades both neuropeptides and β-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding the putative disease-associated gene and spanning ∼200 kb of DNA. The SNP-information was converted into an ordered-set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1), representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that the SNP-string method is more accurate across the entire region. Conclusions/Significance Accurate haplotype identification will enhance the detection of genetic-associations. The SNP-string method provides a simple means to accomplish this and can be extended to cover larger genomic regions, thereby improving a GWAS’s power, even for those published previously. PMID:24727690
An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera)
USDA-ARS?s Scientific Manuscript database
This paper examines whether an abbreviated panel of 37 single nucleotide polymorphisms (SNPs) has the same power as a larger and more expensive panel of 95 SNPs to assign ancestry of honeybees (Apis mellifera) to three ancestral lineages. We selected 37 SNPs from the original 95 SNP panel using alle...
Comparison between genotyping by sequencing and SNP-chip genotyping in QTL mapping in wheat
USDA-ARS?s Scientific Manuscript database
Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to investigate alternative methods for designing and utilizing reduced single nucleotide polymorphism (SNP) panels for imputing SNP genotypes. Two purebred Hereford populations, an experimental population known as Line 1 Hereford (L1, N=240) and registered Hereford wi...
Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.
USDA-ARS?s Scientific Manuscript database
Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ~4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification pr...
USDA-ARS?s Scientific Manuscript database
As an initial step to explore the transcriptome genetic diversity and to discover single nucleotide polymorphic (SNP)-biomarkers for marker assisted breeding within Pima (Gossypium barbadense L.) cotton, leaves from 25 day plants of three diverse genotypes were used to develop cDNA libraries. Using ...
USDA-ARS?s Scientific Manuscript database
Microsatellite markers (MS) have traditionally been used for parental verification and are still the international standard in spite of their higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP) -based assays. Despite domestic and international demands fr...
SEAN: SNP prediction and display program utilizing EST sequence clusters.
Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek
2006-02-15
SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.
A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.
Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie
2011-06-15
A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.
Welderufael, B. G.; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L. G.; Fikse, W. F.
2018-01-01
Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to – but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t-test and a genome-wide significance level of P-value < 10-4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to – or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2) and genes involved in macrophage recruitment and regulation of inflammations (PDGFD and PTX3) were suggested as possible causal genes for susceptibility to – and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to – and recoverability from mastitis. PMID:29755506
Ding, X Z; Liang, C N; Guo, X; Xing, C F; Bao, P J; Chu, M; Pei, J; Zhu, X S; Yan, P
2012-01-01
Lipoprotein lipase (LPL) is considered as a key enzyme in the lipid deposition and metabolism in tissues. It is assumed to be a major candidate gene for genetic markers in lipid deposition. Therefore, the polymorphisms of the LPL gene and associations with carcass traits and viscera fat content were examined in 398 individuals from five yak (Bos grunniens) breeds using PCR-SSCP analysis and DNA sequencing. A novel nucleotide polymorphism (SNP)-C→T (nt19913) was identified located in exon 7 in the coding region of the LPL gene, which replacement was responsible for a Phe-to-Ser substitution at amino acid. Two alleles (A and B) and three genotypes designed as AA, AB and BB were detected in the PCR products. The frequencies of allele A were 0.7928, 0.7421, 0.7357, 0.6900 and 0.7083 for Tianzhu white yak (WY), Gannan yak (GY), Qinghai-Plateau yak (PY), Xinjiang yak (XY) and Datong yak (DY), respectively. The SNP loci was in Hardy-Weinberg equilibrium in five yak populations (P>0.05). Polymorphism of LPL gene was shown to be associated with carcass traits and lipid deposition. Least squares analysis revealed that there was a significant effect on live-weight (LW) (P<0.01), average daily weight gain (ADG) and carcass weight (P<0.05). Individuals with genotype BB had lower mean values than those with genotype AA and AB for loin eye area and viscera fat weight (% of LW) in 25-36 months (P<0.05). The results indicated that LPL gene is a strong candidate gene that affects carcass traits and fat deposition in yak.
PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity.
Stocco, Gabriele; Yang, Wenjian; Crews, Kristine R; Thierfelder, William E; Decorti, Giuliana; Londero, Margherita; Franca, Raffaella; Rabusin, Marco; Valsecchi, Maria Grazia; Pei, Deqing; Cheng, Cheng; Paugh, Steven W; Ramsey, Laura B; Diouf, Barthelemy; McCorkle, Joseph Robert; Jones, Terreia S; Pui, Ching-Hon; Relling, Mary V; Evans, William E
2012-11-01
Treatment-related toxicity can be life-threatening and is the primary cause of interruption or discontinuation of chemotherapy for acute lymphoblastic leukemia (ALL), leading to an increased risk of relapse. Mercaptopurine is an essential component of continuation therapy in all ALL treatment protocols worldwide. Genetic polymorphisms in thiopurine S-methyltransferase (TPMT) are known to have a marked effect on mercaptopurine metabolism and toxicity; however, some patients with wild-type TPMT develop toxicity during mercaptopurine treatment for reasons that are not well understood. To identify additional genetic determinants of mercaptopurine toxicity, a genome-wide analysis was performed in a panel of human HapMap cell lines to identify trans-acting genes whose expression and/or single-nucleotide polymorphisms (SNPs) are related to TPMT activity, then validated in patients with ALL. The highest ranking gene with both mRNA expression and SNPs associated with TPMT activity in HapMap cell lines was protein kinase C and casein kinase substrate in neurons 2 (PACSIN2). The association of a PACSIN2 SNP (rs2413739) with TPMT activity was confirmed in patients and knock-down of PACSIN2 mRNA in human leukemia cells (NALM6) resulted in significantly lower TPMT activity. Moreover, this PACSIN2 SNP was significantly associated with the incidence of severe gastrointestinal (GI) toxicity during consolidation therapy containing mercaptopurine, and remained significant in a multivariate analysis including TPMT and SLCO1B1 as covariates, consistent with its influence on TPMT activity. The association with GI toxicity was also validated in a separate cohort of pediatric patients with ALL. These data indicate that polymorphism in PACSIN2 significantly modulates TPMT activity and influences the risk of GI toxicity associated with mercaptopurine therapy.
PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity
Stocco, Gabriele; Yang, Wenjian; Crews, Kristine R.; Thierfelder, William E.; Decorti, Giuliana; Londero, Margherita; Franca, Raffaella; Rabusin, Marco; Valsecchi, Maria Grazia; Pei, Deqing; Cheng, Cheng; Paugh, Steven W.; Ramsey, Laura B.; Diouf, Barthelemy; McCorkle, Joseph Robert; Jones, Terreia S.; Pui, Ching-Hon; Relling, Mary V.; Evans, William E.
2012-01-01
Treatment-related toxicity can be life-threatening and is the primary cause of interruption or discontinuation of chemotherapy for acute lymphoblastic leukemia (ALL), leading to an increased risk of relapse. Mercaptopurine is an essential component of continuation therapy in all ALL treatment protocols worldwide. Genetic polymorphisms in thiopurine S-methyltransferase (TPMT) are known to have a marked effect on mercaptopurine metabolism and toxicity; however, some patients with wild-type TPMT develop toxicity during mercaptopurine treatment for reasons that are not well understood. To identify additional genetic determinants of mercaptopurine toxicity, a genome-wide analysis was performed in a panel of human HapMap cell lines to identify trans-acting genes whose expression and/or single-nucleotide polymorphisms (SNPs) are related to TPMT activity, then validated in patients with ALL. The highest ranking gene with both mRNA expression and SNPs associated with TPMT activity in HapMap cell lines was protein kinase C and casein kinase substrate in neurons 2 (PACSIN2). The association of a PACSIN2 SNP (rs2413739) with TPMT activity was confirmed in patients and knock-down of PACSIN2 mRNA in human leukemia cells (NALM6) resulted in significantly lower TPMT activity. Moreover, this PACSIN2 SNP was significantly associated with the incidence of severe gastrointestinal (GI) toxicity during consolidation therapy containing mercaptopurine, and remained significant in a multivariate analysis including TPMT and SLCO1B1 as covariates, consistent with its influence on TPMT activity. The association with GI toxicity was also validated in a separate cohort of pediatric patients with ALL. These data indicate that polymorphism in PACSIN2 significantly modulates TPMT activity and influences the risk of GI toxicity associated with mercaptopurine therapy. PMID:22846425
González-Mercado, A; Sánchez-López, J Y; Regla-Nava, J A; Gámez-Nava, J I; González-López, L; Duran-Gonzalez, J; Celis, A; Perea-Díaz, F J; Salazar-Páramo, M; Ibarra, B
2013-07-30
We investigated associations between vitamin D receptor (VDR) gene polymorphisms, FokI T>C (rs2228570), BsmI G>A (rs1544410), ApaI G>T (rs7975232), and TaqI T>C (rs731236), with bone mineral density (BMD) in postmenopausal Mexican-Mestizo women. Three hundred and twenty postmenopausal women participated, who were classified according to World Health Organization criteria as non-osteoporotic (Non-OP; N = 88), osteopenic (Opn; N = 144), and osteoporotic (OP; N = 88). BMD measurements at the lumbar (L1-L4) spine and at the left and right femoral neck were obtained by dual-energy X-ray absorptiometry. Single nucleotide polymorphisms (SNPs) were genotyped using real-time polymerase chain reaction and TaqMan probes. Genotype and allelic frequencies of the 4 VDR SNPs were similar among the 3 groups. Polymorphic allele frequencies were as follows: FokI (C) 0.53, 0.49, 0.56; BsmI (A) 0.26, 0.22, 0.23; ApaI (T) 0.43, 0.39, 0.44; TaqI (C) 0.27, 0.22, 0.23 for the Non-OP, Opn, and OP groups, respectively. Although no associations were found between the SNPs and BMD, based on the putative function of the FokI SNP, we constructed, for the first time, the haplotype with the 4 VDR SNPs, and found that the CGGT haplotype differed between the Non- OP and OP groups (21.8 vs 31.8%, P < 0.05). The risk analysis for this haplotype was nearly significant under the dominant model (OR = 1.783, 95%CI = 0.98-3.25, P = 0.058). This result suggests a possible susceptibility effect of the C allele of the FokI SNP for the development of osteoporosis in postmenopausal Mexican-Mestizo women.
Investigation of inversion polymorphisms in the human genome using principal components analysis.
Ma, Jianzhong; Amos, Christopher I
2012-01-01
Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct "populations" of inversion homozygotes of different orientations and their 1:1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases.
Wujcicka, Wioletta; Wilczyński, Jan; Nowakowska, Dorota
2017-09-01
The research was conducted to evaluate the role of genotypes, haplotypes and multiple-SNP variants in the range of TLR2, TLR4 and TLR9 single nucleotide polymorphisms (SNPs) in the development of Toxoplasma gondii infection among Polish pregnant women. The study was performed for 116 Polish pregnant women, including 51 patients infected with T. gondii, and 65 age-matched control pregnant individuals. Genotypes in TLR2 2258 G>A, TLR4 896 A>G, TLR4 1196 C>T and TLR9 2848 G>A SNPs were estimated by self-designed, nested PCR-RFLP assays. Randomly selected PCR products, representative for distinct genotypes in the studied polymorphisms, were confirmed by sequencing. All the genotypes were calculated for Hardy-Weinberg (H-W) equilibrium and TLR4 variants were tested for linkage disequilibrium. Relationships were assessed between alleles, genotypes, haplotypes or multiple-SNP variants in TLR polymorphisms and the occurrence of T. gondii infection in pregnant women, using a logistic regression model. All the analyzed genotypes preserved the H-W equilibrium among the studied groups of patients (P>0.050). Similar distribution of distinct alleles and individual genotypes in TLR SNPs, as well as of haplotypes in TLR4 polymorphisms, were observed in T. gondii infected and control uninfected pregnant women. However, the GACG multiple-SNP variant, within the range of all the four studied polymorphisms, was correlated with a decreased risk of the parasitic infection (OR 0.52, 95% CI 0.28-0.97; P≤0.050). The polymorphisms, located within TLR2, TLR4 and TLR9 genes, may be involved together in occurrence of T. gondii infection among Polish pregnant women. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.
Liu, Dewu; Zhang, Yushan; Du, Yinjun; Yang, Guanfu; Zhang, Xiquan
2007-06-01
The growth-correlated genes that are part of the neuroendocrine growth axis play crucial roles in the regulation of growth and development of pig. The identification of genetic polymorphisms in these genes will enable the scientist to evaluate the biological relevance of such polymorphisms and to gain a better understanding of quantitative traits like growth. In the present study, seven pairs of primers were designed to obtain unknown sequences of growth-correlated genes, and other 25 pairs of primers were designed to identify single nucleotide polymorphisms (SNP) using the denaturing high-performance liquid chromatography (DHPLC) technology in four pig breeds (Duroc, Landrace, Lantang and Wuzhishan), significantly differing in growth and development characteristics. A total of 101 polymorphisms were discovered in 10,707 base pairs (bp) from six genes of the ghrelin (GHRL), leptin (LEP), insulin-like growth factor II (IGF-II), insulin-like growth factor binding protein 2 (IGFBP-2), insulin-like growth factor binding protein 3 (IGFBP-3), and somatostatin (SS). The observed average distances between the SNP in the 5'UTR, coding regions, introns and 3'UTR were 134, 521, 81 and 92 bp, respectively. Four SNPs were found in the coding regions of IGF-II, IGFBP-2 and LEP, respectively. Two synonymous mutations were obtained in IGF-II and LEP genes respectively, and two non-synonymous were found in IGFBP-2 and LEP genes, respectively. Seven other mutations were also observed. Thirty-two PCR-RFLP markers were found among 101 polymorphisms of the six genes. The SNP discovered in this study would provide suitable markers for association studies of candidate genes with growth related traits in pig.
Wujcicka, Wioletta Izabela; Wilczyński, Jan Szczęsny; Nowakowska, Dorota Ewa
2017-05-01
The study was aimed to estimate the role and prevalence rates of genotypes, haplotypes, and alleles, located within the single-nucleotide polymorphisms (SNPs) of interleukin (IL) 1A, IL1B, and IL6 genes, in the occurrence and development of human cytomegalovirus (HCMV) infection among pregnant women. A research was conducted in 129 pregnant women, out of whom, 65 were HCMV infected and 64 were age-matched control uninfected individuals. HCMV DNA was quantitated for UL55 gene by the real-time Q PCR in the body fluids. The genotypic statuses within the SNPs were determined by nested PCR-RFLP assays and confirmed, by sequencing for randomly selected representative PCR products. A relationship between the genotypes and alleles, as well as haplotypes and multiple variants in the studied polymorphisms, and the occurrence of HCMV infection in pregnant women, was determined using a logistic regression model. TT genotype within IL1A polymorphism significantly decreased the risk of HCMV infection (OR 0.32, 95% CI 0.09-1.05; p ≤ 0.050). Considering IL6 SNP, the prevalence rate of GC genotype was significantly decreased among the HCMV infected, compared to the uninfected control individuals (OR 0.45, 95% CI 0.21-0.99; p ≤ 0.050). Moreover, CC homozygotic status in IL6 SNP, found in pregnant women, significantly decreased the risk of congenital infection with HCMV in their offsprings (OR 0.12; p ≤ 0.050). In multiple SNP analysis, TC haplotype within the IL1 polymorphisms significantly decreased the risk of the infection in pregnant women (OR 0.38 95% CI 0.15-0.96; p ≤ 0.050). In addition, TTG complex variants for all the studied polymorphisms and TG variants for IL1B and IL6 SNPs were significantly more prevalent among the infected offsprings with symptomatic congenital cytomegaly than among the asymptomatic cases (p ≤ 0.050). In conclusion, the analyzed IL1A -889 C>T, IL1B +3954 C>T, and IL6 -174 G>C polymorphisms may be associated with the occurrence and development of HCMV infection among studied patients.
Age-modulated association between prefrontal NAA and the BDNF gene.
Salehi, Basira; Preuss, Nora; van der Veen, Jan Willem; Shen, Jun; Neumeister, Alexander; Drevets, Wayne C; Hodgkinson, Colin; Goldman, David; Wendland, Jens R; Singleton, Andrew; Gibbs, Jesse R; Cookson, Mark R; Hasler, Gregor
2013-07-01
Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of psychiatric and neurological disorders and in the mechanisms of antidepressant pharmacotherapy. Psychiatric and neurological conditions have also been associated with reduced brain levels of N-acetyl-aspartate (NAA), which has been used as a putative marker of neural integrity. However, few studies have explored the relationship between BDNF polymorphisms and NAA levels directly. Here, we present data from a single-voxel proton magnetic resonance spectroscopy study of 64 individuals and explore the relationship between BDNF polymorphisms and prefrontal NAA level. Our results indicate an association between a single nucleotide polymorphism (SNP) within BDNF, known as rs1519480, and reduced NAA level (p = 0.023). NAA levels were further predicted by age and Asian ancestry. There was a significant rs1519480 × age interaction on NAA level (p = 0.031). Specifically, the effect of rs1519480 on NAA level became significant at age ⩾34.17 yr. NAA level decreased with advancing age for genotype TT (p = 0.001) but not for genotype CT (p = 0.82) or CC (p = 0.34). Additional in silico analysis of 142 post-mortem brain samples revealed an association between the same SNP and reduced BDNF mRNA expression in the prefrontal cortex. The rs1519480 SNP influences BDNF mRNA expression and has an impact on prefrontal NAA level over time. This genetic mechanism may contribute to inter-individual variation in cognitive performance seen during normal ageing, as well as contributing to the risk for developing psychiatric and neurological conditions.
Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng
2015-01-01
Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. ‘Cayenne’, ‘Spanish’, ‘Queen’) was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops. PMID:26640697
Kadkhodazadeh, Mahdi; Ebadian, Ahmad Reza; Gholami, Gholam Ali; Khosravi, Alireza; Tabari, Zahra Alizadeh
2013-05-01
RANK/OPG/RANKL pathway plays a significant role in osteoclastogenesis, osteoclast activation, and regulation of bone resorption. The aim of this study was to investigate the association of RANKL gene polymorphisms (rs9533156 and rs2277438) with chronic periodontitis and peri-implantitis in an Iranian population. 77 patients with chronic periodontitis, 40 patients with peri-implantitis and 89 periodontally healthy patients were enrolled in this study. 5cc of blood was obtained from the cephalic vein of subjects arms and transferred into tubes containing EDTA. Genomic DNA was extracted using Miller's Salting Out technique. The DNA was transferred into 96 division plates, transported to Kbioscience Institute in United Kingdom and analyzed using the Kbioscience Competitive Allele Specific PCR (KASP) technique. Differences in the frequencies of genotypes and alleles in the disease and control groups were analyzed using Chi-square and Fisher's exact statistical tests. Comparison of frequency of alleles in SNP rs9533156 of RANKL gene between the chronic periodontitis group with the control and peri-implantitis groups revealed statistically significant differences (P=0.024 and P=0.027, respectively). Comparison of genotype expression of SNP rs9533156 on RANKL gene between the peri-implantitis group with chronic periodontitis and control groups revealed statistically significant differences (P=0.001); the prevalence of CT genotype was significantly higher amongst the chronic periodontitis group. Regarding SNP rs2277438 of RANKL gene, comparison of prevalence of genotypes and frequency of alleles did not reveal any significant differences (P=0.641/P=0.537, respectively). The results of this study indicate that CT genotype of rs9533156 RANKL gene polymorphism was significantly associated with peri-implantitis, and may be considered as a genetic determinant for peri-implantitis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Marrón-Liñares, Grecia M; Núñez, Lucía; Crespo-Leiro, María G; Álvarez-López, Eloy; Barge-Caballero, Eduardo; Barge-Caballero, Gonzalo; Couto-Mallón, David; Pradas-Irun, Concepción; Muñiz, Javier; Tan, Carmela; Rodríguez, E Rene; Vázquez-Rodríguez, José Manuel; Hermida-Prieto, Manuel
2018-04-25
Heart transplantation (HT) is a well-established lifesaving treatment for endstage cardiac failure. Antibody-mediated rejection (AMR) represents one of the main problems after HT because of its diagnostic complexity and the poor evidence for supporting treatments. Complement cascade and B-cells play a key role in AMR and contribute to graft damage. This study explored the importance of variants in genes related to complement pathway and B-cell biology in HT and AMR in donors and in donor-recipient pairs.Methods and Results:Genetic variants in 112 genes (51 complement and 61 B-cell biology genes) were analyzed on next-generation sequencing in 28 donor-recipient pairs, 14 recipients with and 14 recipients without AMR. Statistical analysis was performed with SNPStats, R, and EPIDAT3.1. We identified one single nucleotide polymorphism (SNP) in donors in genes related to B-cell biology,interleukin-4 receptor subunitα (p.Ile75Val-IL4Rα), which correlated with the development of AMR. Moreover, in the analysis of recipient-donor genotype discrepancies, we identified another SNP, in this case inadenosine deaminase(ADA; p.Val178(p=)), which was related to B-cell biology, associated with the absence of AMR. Donor polymorphisms and recipient-donor discrepancies in genes related to the biology of B-cells, could have an important role in the development of AMR. In contrast, no variants in donor or in donor-recipient pairs in complement pathways seem to have an impact on AMR.
Zihlif, Malek; Obeidat, Nathir M; Zihlif, Nadwa; Mahafza, Tareq; Froukh, Tawfiq; Ghanim, Marcel T; Beano, Hamza; Al-Akhras, Fatima M; Naffa, Randa
2016-03-01
Gasdermin A (GSDMA) and gasdermin B (GSDMB) have been associated with childhood, and to a lesser extent with adult, asthma in many populations. In this study, we investigated the association between GSDMA and GSDMB variants and the incidence of adult and childhood asthma among Jordanians. Subjects were divided into two groups: adults and children. Within the adult group there were 129 asthma patients and 111 healthy controls. In the pediatric group there were 98 asthma patients and 112 healthy children. Gasdermin A (GSDMA) (rs7212938, T/G) and Gasdermin B (rs7216389, T/C) polymorphisms were genotyped using the PCR-RFLP method. Three analysis models were applied to the genotype data: co-dominant, dominant and recessive. An association between the GSDMB T/C single nucleotide polymorphism (SNP) genotype and the incidence of childhood asthma was found (< 0.05). GSDMB T/C SNP in children also showed a very high tendency toward significance with p = 0.0532 in the single locus analysis. In adults, no significant differences in the allelic frequencies of any of the SNPs analyzed were found between the case and control populations. At the haplotype level, GC haplotype was found to be associated with the risk of asthma in children while none of the tested haplotypes were found to be associated with asthma risk in adults. The findings of this study confirm the previously reported association between the GSDMB gene and the risk of childhood asthma.
Cole, Shelley A; Voruganti, V Saroja; Cai, Guowen; Haack, Karin; Kent, Jack W; Blangero, John; Comuzzie, Anthony G; McPherson, John D; Gibbs, Richard A
2010-01-01
Background: Melanocortin-4-receptor (MC4R) haploinsufficiency is the most common form of monogenic obesity; however, the frequency of MC4R variants and their functional effects in general populations remain uncertain. Objective: The aim was to identify and characterize the effects of MC4R variants in Hispanic children. Design: MC4R was resequenced in 376 parents, and the identified single nucleotide polymorphisms (SNPs) were genotyped in 613 parents and 1016 children from the Viva la Familia cohort. Measured genotype analysis (MGA) tested associations between SNPs and phenotypes. Bayesian quantitative trait nucleotide (BQTN) analysis was used to infer the most likely functional polymorphisms influencing obesity-related traits. Results: Seven rare SNPs in coding and 18 SNPs in flanking regions of MC4R were identified. MGA showed suggestive associations between MC4R variants and body size, adiposity, glucose, insulin, leptin, ghrelin, energy expenditure, physical activity, and food intake. BQTN analysis identified SNP 1704 in a predicted micro-RNA target sequence in the downstream flanking region of MC4R as a strong, probable functional variant influencing total, sedentary, and moderate activities with posterior probabilities of 1.0. SNP 2132 was identified as a variant with a high probability (1.0) of exerting a functional effect on total energy expenditure and sleeping metabolic rate. SNP rs34114122 was selected as having likely functional effects on the appetite hormone ghrelin, with a posterior probability of 0.81. Conclusion: This comprehensive investigation provides strong evidence that MC4R genetic variants are likely to play a functional role in the regulation of weight, not only through energy intake but through energy expenditure. PMID:19889825
El-Magd, Mohammed Abu; Abo-Al-Ela, Haitham G; El-Nahas, Abeer; Saleh, Ayman A; Mansour, Ali A
2014-05-01
Insulin-like growth factor 2 receptor (IGF2R) is responsible for degradation of the muscle development initiator, IGF2, and thus it can be used as a marker for selection strategies in the farm animals. The aim of this study was to search for polymorphisms in three coding loci of IGF2R, and to analyze their effect on the growth traits and on the expression levels of IGF2R and IGF2 genes in the gluteus medius muscle of Egyptian buffaloes. A novel A266C SNP was detected in the coding sequences of the third IGF2R locus (at nucleotide number 51 of exon 23) among Egyptian water buffaloes. This SNP was non-synonymous mutation and led to replacement of Y (tyrosine) amino acid (aa) by D (aspartic acid) aa. Three different single-strand conformation polymorphism patterns were observed in the third IGF2R locus: AA, AC, and CC with frequencies of 0.555, 0.195, and 0.250, respectively. Statistical analysis showed that the homozygous AA genotype significantly associated with the average daily gain than AC and CC genotypes from birth to 9 mo of age. Expression analysis showed that the A266C SNP was correlated with IGF2, but not with IGF2R, mRNA levels in the gluteus medius muscle of Egyptian buffaloes. The highest IGF2 mRNA level was estimated in the muscle of animals with the AA homozygous genotype as compared to the AC heterozygotes and CC homozygotes. We conclude that A266C SNP at nucleotide number 51 of exon 23 of the IGF2R gene is associated with the ADG during the early stages of life (from birth to 9 mo of age) and this effect is accompanied by, and may be caused by, increased expression levels of the IGF2 gene. Copyright © 2014 Elsevier B.V. All rights reserved.
Gao, Z J; Jiang, Q; Cheng, D Z; Yan, X X; Chen, Q; Xu, K M
2016-10-02
Objective: To evaluate the application of single nucleotide polymorphism (SNP)-microarray and target gene sequencing technology in the clinical molecular genetic diagnosis of unexplained intellectual disability(ID) or developmental delay (DD). Method: Patients with ID or DD were recruited in the Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics between September 2015 and February 2016. The intellectual assessment of the patients was performed using 0-6-year-old pediatric examination table of neuropsychological development or Wechsler intelligence scale (>6 years). Patients with a DQ less than 49 or IQ less than 51 were included in this study. The patients were scanned by SNP-array for detection of genomic copy number variations (CNV), and the revealed genomic imbalance was confirmed by quantitative real time-PCR. Candidate gene mutation screening was carried out by target gene sequencing technology.Causal mutations or likely pathogenic variants were verified by polymerase chain reaction and direct sequencing. Result: There were 15 children with ID or DD enrolled, 9 males and 6 females. The age of these patients was 7 months-16 years and 9 months. SNP-array revealed that two of the 15 patients had genomic CNV. Both CNV were de novo micro deletions, one involved 11q24.1q25 and the other micro deletion located on 21q22.2q22.3. Both micro deletions were proved to have a clinical significance due to their association with ID, brain DD, unusual faces etc. by querying Decipher database. Thirteen patients with negative findings in SNP-array were consequently examined with target gene sequencing technology, genotype-phenotype correlation analysis and genetic analysis. Five patients were diagnosed with monogenic disorder, two were diagnosed with suspected genetic disorder and six were still negative. Conclusion: Sequential use of SNP-array and target gene sequencing technology can significantly increase the molecular genetic etiologic diagnosis rate of the patients with unexplained ID or DD. Combined use of these technologies can serve as a useful examinational method in assisting differential diagnosis of children with unexplained ID or DD.
Gardner, Shea N; Wagner, Mark C
2005-01-01
Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes available for multiple strains and isolates of a species, automated, computational approaches such as those described here will be essential to make sense of large amounts of information, and to guide and optimize efforts in the laboratory. The software and source code for SPR Opt is publicly available and free for non-profit use at . PMID:15904493
2011-01-01
Background Disrupted-in-Schizophrenia 1 (DISC1) gene is one of the most promising candidate genes for major mental disorders. In a previous study, a Finnish group demonstrated that DISC1 polymorphisms were associated with autism and Asperger syndrome. However, the results were not replicated in Korean population. To determine whether DISC1 is associated with autism in Chinese Han population, we performed a family-based association study between DISC1 polymorphisms and autism. Methods We genotyped seven tag single nucleotide polymorphisms (SNPs) in DISC1, spanning 338 kb, in 367 autism trios (singleton and their biological parents) including 1,101 individuals. Single SNP association and haplotype association analysis were performed using the family-based association test (FBAT) and Haploview software. Results We found three SNPs showed significant associations with autism (rs4366301: G > C, Z = 2.872, p = 0.004; rs11585959: T > C, Z = 2.199, p = 0.028; rs6668845: A > G, Z = 2.326, p = 0.02). After the Bonferroni correction, SNP rs4366301, which located in the first intron of DISC1, remained significant. When haplotype were constructed with two-markers, three haplotypes displayed significant association with autism. These results were still significant after using the permutation method to obtain empirical p values. Conclusions Our study provided evidence that the DISC1 may be the susceptibility gene of autism. It suggested DISC1 might play a role in the pathogenesis of autism. PMID:21569632
Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes
Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Ángel
2009-01-01
Background Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. Results To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. Conclusion The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest. PMID:19344481
Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes.
Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Angel
2009-03-19
Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest.
Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing.
Wosula, Everlyne N; Chen, Wenbo; Fei, Zhangjun; Legg, James P
2017-11-01
Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Characterization of genetic variability of Venezuelan equine encephalitis viruses
Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.; ...
2016-04-07
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less
Dötsch, Annika; Eisele, Lewin; Rabeling, Miriam; Rump, Katharina; Walstein, Kai; Bick, Alexandra; Cox, Linda; Engler, Andrea; Bachmann, Hagen S; Jöckel, Karl-Heinz; Adamzik, Michael; Peters, Jürgen; Schäfer, Simon T
2017-06-14
Hypoxia-inducible-factor-2α (HIF-2α) and HIF-2 degrading prolyl-hydroxylases (PHD) are key regulators of adaptive hypoxic responses i.e., in acute respiratory distress syndrome (ARDS). Specifically, functionally active genetic variants of HIF-2α (single nucleotide polymorphism (SNP) [ch2:46441523(hg18)]) and PHD2 (C/T; SNP rs516651 and T/C; SNP rs480902) are associated with improved adaptation to hypoxia i.e., in high-altitude residents. However, little is known about these SNPs' prevalence in Caucasians and impact on ARDS-outcome. Thus, we tested the hypotheses that in Caucasian ARDS patients SNPs in HIF-2α or PHD2 genes are (1) common, and (2) independent risk factors for 30-day mortality. After ethics-committee approval, 272 ARDS patients were prospectively included, genotyped for PHD2 (Taqman SNP Genotyping Assay) and HIF-2α -polymorphism (restriction digest + agarose-gel visualization), and genotype dependent 30-day mortality was analyzed using Kaplan-Meier-plots and multivariate Cox-regression analyses. Frequencies were 99.62% for homozygous HIF-2α CC-carriers (CG: 0.38%; GG: 0%), 2.3% for homozygous PHD2 SNP rs516651 TT-carriers (CT: 18.9%; CC: 78.8%), and 3.7% for homozygous PHD2 SNP rs480902 TT-carriers (CT: 43.9%; CC: 52.4%). PHD2 rs516651 TT-genotype in ARDS was independently associated with a 3.34 times greater mortality risk (OR 3.34, CI 1.09-10.22; p = 0.034) within 30-days, whereas the other SNPs had no significant impact ( p = ns). The homozygous HIF-2α GG-genotype was not present in our Caucasian ARDS cohort; however PHD2 SNPs exist in Caucasians, and PHD2 rs516651 TT-genotype was associated with an increased 30-day mortality suggesting a relevance for adaptive responses in ARDS.
McQuaid, Robyn J.; McInnis, Opal A.; Matheson, Kimberly; Anisman, Hymie
2016-01-01
Although the neuropeptide oxytocin has been associated with enhanced prosocial behaviors, it has also been linked to aggression and mental health disorders. Thus, it was suggested that oxytocin might act by increasing the salience of social stimuli, irrespective of whether these are positive or negative, thus increasing vulnerability to negative mental health outcomes. The current study (N = 243), conducted among white university students, examined the relation of trauma, depressive symptoms including suicidal ideation in relation to a single nucleotide polymorphism (SNP) within the oxytocin receptor gene (OXTR), rs53576, and a SNP on the CD38 gene that controls oxytocin release, rs3796863. Individuals with the polymorphism on both alleles (AA genotype) of the CD38 SNP had previously been linked to elevated plasma oxytocin levels. Consistent with the social sensitivity perspective, however, in the current study, individuals carrying the AA genotype displayed elevated feelings of alienation from parents and peers as well as increased levels of suicidal ideation. Moreover, they tended to report elevated depressive symptoms compared to CC homozygotes. It was also observed that the CD38 genotype moderated the relation between trauma and suicidal ideation scores, such that high levels of trauma were associated with elevated suicidal ideation among all CD38 genotypes, but this relationship was stronger among individuals with the AA genotype. In contrast, there was no relationship between the OXTR SNP, rs53576, depression or suicidal ideation. These findings support a social sensitivity hypothesis of oxytocin, wherein the AA genotype of the CD38 SNP, which has been considered the “protective allele” was associated with increased sensitivity and susceptibility to disturbed social relations and suicidal ideation. PMID:27486392
NASA Astrophysics Data System (ADS)
Herron, James N.; Tolley, Samuel E.; Smith, Richard; Christensen, Douglas A.
2006-02-01
Personalized medicine is an emerging field in which clinical diagnostics information about a patient's genotype or phenotype is used to optimize his/her pharmacotherapy. This article evaluates whether planar waveguide fluorescent sensors are suitable for determining such information from patient testing in point-of-care (POC) settings. The model system was Long QT Syndrome, a congenital disease associated with single nucleotide polymorphisms (SNPs) in genes encoding for cardiac ion channels. Three different SNP assay formats were examined: DNA/DNA hybridization, DNA/PNA hybridization (PNA: "peptide nucleic acid"), and single base extension (SBEX). Although DNA/DNA hybridization produced a strong intensity-time response for both wildtype and SNP analytes in a 5-min assay at 32°C, their hybridization rates differed by only 32.7%, which was insufficient for clinical decision-making. Much better differentiation of the two rates was observed at 53°C, where the wildtype's hybridization rate was two-thirds of its maximum value, while that of the SNP was essentially zero. Such all-or-nothing resolution would be adequate for clinical decision-making; however, the elevated temperature and precise temperature control would be hard to achieve in a POC setting. Results from DNA/PNA hybridization studies were more promising. Nearly 20-fold discrimination between wildtype and SNP hybridization rates was observed in a 5-min assay at 30°C, although the low ionic strength conditions required necessitated a de-salting step between sample preparation and SNP detection. SBEX was the most promising of the three, determining the absolute identity of the suspected polymorphism in a 5-min assay at 40°C.
Vicchio, Teresa Manuela; Giovinazzo, Salvatore; Certo, Rosaria; Cucinotta, Mariapaola; Micali, Carmelo; Baldari, Sergio; Benvenga, Salvatore; Trimarchi, Francesco; Campennì, Alfredo; Ruggeri, Rosaria Maddalena
2014-07-01
Mutations of the thyrotropin receptor (TSHR) and/or Gαs gene have been found in a number of, but not all, autonomously functioning thyroid nodules (AFTNs). Recently, in a 15-year-old girl with a hyperfunctioning papillary thyroid carcinoma, we found two somatic and germline single nucleotide polymorphisms (SNPs): a SNP of the TSHR gene (exon 7, codon 187) and a SNP of Gαs gene (exon 8, codon 185). The same silent SNP of the TSHR gene had been reported in patients with AFTN or familial non-autoimmune hyperthyroidism. No further data about the prevalence of the two SNPs in AFTNs as well as in the general population are available in the literature. To clarify the possible role of these SNPs in predisposing to AFTN. Germline DNA was extracted from blood leukocytes of 115 patients with AFTNs (43 males and 72 females, aged 31-85 years, mean ± SD = 64 ± 13) and 100 sex-matched healthy individuals from the same geographic area, which is marginally iodine deficient. The genotype distribution of the two SNPs was investigated by restriction fragment length polymorphism-polymerase chain reaction. The prevalence of the two SNPs in our study population was low and not different to that found in healthy individuals: 8 % of patients vs. 9 % of controls were heterozygous for the TSHR SNP and 4 % patients vs. 6 % controls were heterozygous for the Gαs SNP. One patient harbored both SNPs. These results suggest that these two SNPs do not confer susceptibility for the development of AFTN.
Alfred, Tamuno; Ben-Shlomo, Yoav; Cooper, Rachel; Hardy, Rebecca; Cooper, Cyrus; Deary, Ian J; Elliott, Jane; Gunnell, David; Harris, Sarah E; Kivimaki, Mika; Kumari, Meena; Martin, Richard M; Power, Chris; Sayer, Avan Aihie; Starr, John M; Kuh, Diana; Day, Ian N M
2011-06-01
Several age-related traits are associated with shorter telomeres, the structures that cap the end of linear chromosomes. A common polymorphism near the telomere maintenance gene TERT has been associated with several cancers, but relationships with other aging traits such as physical capability have not been reported. As part of the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, men and women aged between 44 and 90 years from nine UK cohorts were genotyped for the single-nucleotide polymorphism (SNP) rs401681. We then investigated relationships between the SNP and 30 age-related phenotypes, including cognitive and physical capability, blood lipid levels and lung function, pooling within-study genotypic effects in meta-analyses. No significant associations were found between the SNP and any of the cognitive performance tests (e.g. pooled beta per T allele for word recall z-score = 0.02, 95% CI: -0.01 to 0.04, P-value = 0.12, n = 18,737), physical performance tests (e.g. pooled beta for grip strength = -0.02, 95% CI: -0.045 to 0.006, P-value = 0.14, n = 11,711), blood pressure, lung function or blood test measures. Similarly, no differences in observations were found when considering follow-up measures of cognitive or physical performance after adjusting for its measure at an earlier assessment. The lack of associations between SNP rs401681 and a wide range of age-related phenotypes investigated in this large multicohort study suggests that while this SNP may be associated with cancer, it is not an important contributor to other markers of aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Verbeke, Joren; Van Poucke, Mario; Peelman, Luc; Piepers, Sofie; De Vliegher, Sarne
2014-12-01
The CXCR1 gene plays an important role in the innate immunity of the bovine mammary gland. Associations between single nucleotide polymorphisms (SNP) CXCR1c.735C>G and c.980A>G and udder health have been identified before in small populations. A fluorescent multiprobe PCR assay was designed specifically and validated to genotype both SNP simultaneously in a reliable and cost-effective manner. In total, 3,106 cows from 50 commercial Flemish dairy herds were genotyped using this assay. Associations between genotype and detailed phenotypic data, including pathogen-specific incidence rate of clinical mastitis (IRCM), test-day somatic cell count, and test-day milk yield (MY) were analyzed. Staphylococcus aureus IRCM tended to associate with SNP c.735C>G. Cows with genotype c.735GG had lower Staph. aureus IRCM compared with cows with genotype c.735CC (rate ratio = 0.35, 95% confidence interval = 0.14–0.90). Additionally, a parity-specific association between Staph. aureus IRCM and SNP c.980A>G was detected. Heifers with genotype c.980GG had a lower Staph. aureus IRCM compared with heifers with genotype c.980AG (rate ratio = 0.15, 95% confidence interval = 0.04–0.56). Differences were less pronounced in multiparous cows. Associations between CXCR1 genotype and somatic cell count were not detected. However, MY was associated with SNP c.735C>G. Cows with genotype c.735GG out-produced cows with genotype c.735CC by 0.8 kg of milk/d. Results provide a basis for further research on the relation between CXCR1 polymorphism and pathogen-specific mastitis resistance and MY.
Motawi, Tarek; Salman, Tarek; Shaker, Olfat
2015-01-01
Introduction Adiponectin is an adipose tissue-specific protein with insulin-sensitizing properties. Many investigators have explored the association between adiponectin single nucleotide polymorphisms (SNPs) and type 2 diabetes mellitus (T2DM) in different ethnic populations from different regions. Leptin is a protein hormone constituting an important signal in the regulation of adipose tissue mass and body weight. The aim of this study was to explore potential associations between SNP +45 T>G of the adiponectin gene and SNP 2548G/A of leptin with T2DM and the effect of SNPs on serum adiponectin and leptin levels. Material and methods From the Egyptian population, we enrolled 110 T2DM patients and 90 non-diabetic controls. Serum lipid profile, blood glucose, serum adiponectin, and leptin were measured. Genotyping for two common SNPs of the adiponectin and leptin genes was performed by polymerase chain reaction–restriction fragment length polymorphism. Results The G allele and TG/GG genotype of SNP 45 occurred more frequently than the T allele and TT genotype in T2DM patients compares to the controls. Subjects with the GG + TG genotype of SNP 45 were at increased risk for T2DM (OR = 6.476; 95% CI: 3.401–12.33) and associated with a low serum adiponectin level compared with the TT genotype. The serum leptin concentration of GA + AA genotype carriers was not significantly different from that of the GG genotype in the diabetic group. Conclusions The G allele carriers who have reduced plasma concentrations of adiponectin may have an association with T2DM, while leptin SNP 2548 G/A is not associated with the risk of development of T2DM in the Egyptian population. PMID:26528333
Su, Pen-Hua; Yang, Shun-Fa; Yu, Ju-Shan; Chen, Suh-Jen; Chen, Jia-Yuh
2012-12-01
We hypothesized that responses to growth hormone (GH) therapy by idiopathic short stature (ISS) and growth hormone deficiency (GHD) patients were associated with single nucleotide polymorphisms (SNPs) in the leptin (LEP) and leptin receptor (LEPR) genes. We retrospectively enrolled ISS (n = 32) and GHD (n = 38) patients and forty healthy age-and gender-matched children. They were genotyped for the LEP promoter at nt.-2548, and LEPR K109R and LEPR Q223R polymorphisms. Clinical and laboratory variables were determined before and after 2 years of GH treatment. ISS patients with G/A or A/A genotypes of the LEPR Q223R SNP had a significantly higher height velocity (cm/y) than ISS patients with the G/G genotype at 2 years after GH treatment. For GHD patients, G/A or A/A genotype of the LEPR K109R SNP was associated with higher body weight, higher BMI, and higher weight velocity than patients with the G/G genotype before GH treatment, but not after GH treatment. G/A or A/A genotype of the LEPR Q223R SNP was associated with a significantly higher body weight, higher height velocity before treatment, but not after GH treatment. G/A or A/A genotype of the LEPR Q223R SNP was associated with a significantly higher weight velocity before treatment, but a significantly lower weight velocity was found at 2 years after GH treatment. These results suggest LEPR Q223R SNP (rs1137101) is associated with outcomes of GH replacement therapy in ISS and GHD patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Association of HS6ST3 gene polymorphisms with obesity and triglycerides: gene x gender interaction.
Wang, Ke-Sheng; Wang, Liang; Liu, Xuefeng; Zeng, Min
2013-12-01
The heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene is involved in heparan sulphate and heparin metabolism, and has been reported to be associated with diabetic retinopathy in type 2 diabetes.We hypothesized that HS6ST3 gene polymorphisms might play an important role in obesity and related phenotypes (such as triglycerides). We examined genetic associations of 117 single-nucleotide polymorphisms (SNPs) within the HS6ST3 gene with obesity and triglycerides using two Caucasian samples: the Marshfield sample (1442 obesity cases and 2122 controls), and the Health aging and body composition (Health ABC) sample (305 cases and 1336 controls). Logistic regression analysis of obesity as a binary trait and linear regression analysis of triglycerides as a continuous trait, adjusted for age and sex, were performed using PLINK. Single marker analysis showed that six SNPs in the Marshfield sample and one SNP in the Health ABC sample were associated with obesity (P < 0.05). SNP rs535812 revealed a stronger association with obesity in meta-analysis of these two samples (P = 0.0105). The T-A haplotype from rs878950 and rs9525149 revealed significant association with obesity in the Marshfield sample (P = 0.012). Moreover, nine SNPs showed associations with triglycerides in the Marshfield sample (P < 0.05) and the best signal was rs1927796 (P = 0.00858). In addition, rs7331762 showed a strong gene x gender interaction (P = 0.00956) for obesity while rs1927796 showed a strong gene x gender interaction (P = 0.000625) for triglycerides in the Marshfield sample. These findings contribute new insights into the pathogenesis of obesity and triglycerides and demonstrate the importance of gender differences in the aetiology.
Ramos, Antonio M.; Crooijmans, Richard P. M. A.; Affara, Nabeel A.; Amaral, Andreia J.; Archibald, Alan L.; Beever, Jonathan E.; Bendixen, Christian; Churcher, Carol; Clark, Richard; Dehais, Patrick; Hansen, Mark S.; Hedegaard, Jakob; Hu, Zhi-Liang; Kerstens, Hindrik H.; Law, Andy S.; Megens, Hendrik-Jan; Milan, Denis; Nonneman, Danny J.; Rohrer, Gary A.; Rothschild, Max F.; Smith, Tim P. L.; Schnabel, Robert D.; Van Tassell, Curt P.; Taylor, Jeremy F.; Wiedmann, Ralph T.; Schook, Lawrence B.; Groenen, Martien A. M.
2009-01-01
Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs. PMID:19654876
Leyva-Corona, Jose C; Reyna-Granados, Javier R; Zamorano-Algandar, Ricardo; Sanchez-Castro, Miguel A; Thomas, Milton G; Enns, R Mark; Speidel, Scott E; Medrano, Juan F; Rincon, Gonzalo; Luna-Nevarez, Pablo
2018-06-20
Prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) are in hormone-response pathways involved in energy metabolism during thermoregulation processes in cattle. Objective herein was to study the association between single nucleotide polymorphisms (SNP) within genes of the PRL and GH/IGF-1 pathways with fertility traits such as services per conception (SPC) and days open (DO) in Holstein cattle lactating under a hot-humid climate. Ambient temperature and relative humidity were used to calculate the temperature-humidity index (THI) which revealed that the cows were exposed to heat stress conditions from June to November of 2012 in southern Sonora, Mexico. Individual blood samples from all cows were collected, spotted on FTA cards, and used to genotype a 179 tag SNP panel within 44 genes from the PRL and GH/IGF-1 pathways. The associative analyses among SNP genotypes and fertility traits were performed using mixed-effect models. Allele substitution effects were calculated using a regression model that included the genotype term as covariate. Single-SNP association analyses indicated that eight SNP within the genes IGF-1, IGF-1R, IGFBP5, PAPPA1, PMCH, PRLR, SOCS5, and SSTR2 were associated with SPC (P < 0.05), whereas four SNP in the genes GHR, PAPPA2, PRLR, and SOCS4 were associated with DO (P < 0.05). In conclusion, SNP within genes of the PRL and GH/IGF-1 pathways resulted as predictors of reproductive phenotypes in heat-stressed Holstein cows, and these SNP are proposed as candidates for a marker-assisted selection program intended to improve fertility of dairy cattle raised in warm climates.
Nicolazzi, Ezequiel L; Caprera, Andrea; Nazzicari, Nelson; Cozzi, Paolo; Strozzi, Francesco; Lawley, Cindy; Pirani, Ali; Soans, Chandrasen; Brew, Fiona; Jorjani, Hossein; Evans, Gary; Simpson, Barry; Tosser-Klopp, Gwenola; Brauning, Rudiger; Williams, John L; Stella, Alessandra
2015-04-10
In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.
Håkansson, Anna; Westberg, Lars; Nilsson, Staffan; Buervenich, Silvia; Carmine, Andrea; Holmberg, Björn; Sydow, Olof; Olson, Lars; Johnels, Bo; Eriksson, Elias; Nissbrandt, Hans
2005-02-05
The multifunctional cytokine interleukin-6 (IL-6) is involved in inflammatory processes in the central nervous system and increased levels of IL-6 have been found in patients with Parkinson's disease (PD). It is known that estrogen inhibits the production of IL-6, via action on estrogen receptors, thereby pointing to an important influence of estrogen on IL-6. In a previous study, we reported an association between a G/A single nucleotide polymorphism (SNP) at position 1730 in the gene coding for estrogen receptor beta (ERbeta) and age of onset of PD. To investigate the influence of a G/C SNP at position 174 in the promoter of the IL-6 gene, and the possible interaction of this SNP and the ERbeta G-1730A SNP on the risk for PD, the G-174C SNP was genotyped, by pyrosequencing, in 258 patients with PD and 308 controls. A significantly elevated frequency of the GG genotype of the IL-6 SNP was found in the patient group and this was most obvious among patients with an early age of onset (=50 years) of PD. When the GG genotypes of the IL-6 and ERbeta SNPs were combined, the combination was much more robustly associated with PD, and especially with PD with an early age of onset, than respective GG genotype when analyzed separately. Our results indicate that the G-174C SNP in the IL-6 promoter may influence the risk for developing PD, particularly regarding early age of onset PD, and that the effect is modified by interaction of the G-1730A SNP in the ERbeta gene. (c) 2004 Wiley-Liss, Inc.
Association of HTRA1 polymorphism and bilaterality in advanced age-related macular degeneration.
Chen, Haoyu; Yang, Zhenglin; Gibbs, Daniel; Yang, Xian; Hau, Vincent; Zhao, Peiquan; Ma, Xiang; Zeng, Jiexi; Luo, Ling; Pearson, Erik; Constantine, Ryan; Kaminoh, Yuuki; Harmon, Jennifer; Tong, Zongzhong; Stratton, Charity A; Cameron, D Joshua; Tang, Shibo; Zhang, Kang
2008-02-01
Single nucleotide polymorphism (SNP), rs11200638, in the promoter of HTRA1 has recently been shown to increase the risk for AMD. In order to investigate the association of this HTRA1 polymorphism and the bilaterality of AMD, we genotyped rs11200638 in control, unilateral, and bilateral advanced AMD patients. The A allele for SNP rs11200638 in HTRA1, was significantly more prevalent in bilateral wet AMD and GA patients than in unilateral groups (p=.02 and p=.03, respectively). The homozygote odds ratios of bilateral wet AMD and GA are significantly greater than those seen in unilateral groups (twofold and threefold increase, respectively). This finding is consistent with the role of HTRA1 in AMD pathogenesis and will help aid in the clinical management and prognosis of AMD patients.
Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki
2013-09-23
Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.
Hajj, Aline; Halepian, Lucine; Osta, Nada El; Chahine, Georges; Kattan, Joseph; Rabbaa Khabbaz, Lydia
2017-01-01
Despite increased attention on assessment and management, pain remains the most persistent symptom in patients with cancer, in particular in end-of-life settings, with detrimental impact on their quality-of-life (QOL). We conducted this study to evaluate the added value of determining some genetic and non-genetic factors to optimize cancer pain treatment. Eighty-nine patients were included in the study for the evaluation of palliative cancer pain management. The regression analysis showed that age, OPRM1 single nucleotide polymorphism (SNP), as well as the duration of morphine treatment were significantly associated with morphine doses at 24 h (given by infusion pump; p = 0.043, 0.029, and <0.001, respectively). The mean doses of morphine decreased with age but increased with the duration of morphine treatment. In addition, patients with AG genotype c.118A>G OPRM1 needed a higher dose of morphine than AA patients. Moreover, metastases, OPRM1 SNP, age, and gender were significantly associated with the QOL in our population. In particular, AA patients for OPRM1 SNP had significantly lower cognitive function than AG patients, a result not previously reported in the literature. These findings could help increase the effectiveness of morphine treatment and enhance the QOL of patients in regards to personalized medicine. PMID:28346387
Fritz, David T; Jiang, Shan; Xu, Junwang; Rogers, Melissa B
2006-07-01
The bone morphogenetic protein (BMP)2 gene has been genetically linked to osteoporosis and osteoarthritis. We have shown that the 3'-untranslated regions (UTR) of BMP2 genes from mammals to fishes are extraordinarily conserved. This indicates that the BMP2 3'-UTR is under stringent selective pressure. We present evidence that the conserved region is a strong posttranscriptional regulator of BMP2 expression. Polymorphisms in cis-regulatory elements have been proven to influence susceptibility to a growing number of diseases. A common single nucleotide polymorphism (SNP) disrupts a putative posttranscriptional regulatory motif, an AU-rich element, within the BMP2 3'-UTR. The affinity of specific proteins for the rs15705 SNP sequence differs from their affinity for the normal human sequence. More importantly, the in vitro decay rate of RNAs with the SNP is higher than that of RNAs with the normal sequence. Such changes in mRNA:protein interactions may influence the posttranscriptional mechanisms that control BMP2 gene expression. The consequent alterations in BMP2 protein levels may influence the development or physiology of bone or other BMP2-influenced tissues.
Abbasi, Mehrnaz; Daneshpour, Maryam S; Hedayati, Mehdi; Mottaghi, Azadeh; Pourvali, Katayoun; Azizi, Fereidoun
2018-01-01
Several studies have shown significant associations between manganese superoxide dismutase (MnSOD) Val16Ala polymorphism and diabetic complications, but this association has not been explored in relation with chronic kidney disease (CKD) in Type 2 diabetes mellitus (T2DM) patients. Total antioxidant capacity (TAC) level changes in diabetic condition and may play important role in onset or progression of the disease and its complications. The present study investigated the association of MnSOD Val16Ala polymorphism and serum TAC with the risk of CKD in T2DM patients. This nested case-control study included 280 type 2 diabetic patients with CKD and 280 age, sex and diabetes duration-matched control subjects selected from the participants of the Tehran Lipid and Glucose Study. MnSOD val16Ala (rs4880) SNP was genotyped by the Tetra-Primer ARMS-polymerase chain reaction analysis. Serum TAC was measured using ferric-reducing antioxidant power assay. Statistical analysis was performed using STATA statistical package v.12.0 or SPSS (Version 22.0). The Ala allele of the MnSOD Val16Ala polymorphism was associated with a lower risk of CKD (odds ratio (OR), 0.55; 95% confidence interval (CI), 0.36-0.84; P = 0.006). Median serum TAC in CKD group was 920 μmol/L and was significantly lower ( p < 0.001) compared to the control group (1045 μmol/L). Using an adjusted conditional logistic regression, we didn't observe any significant interaction between MnSOD Val16Ala SNP with quartiles of serum TAC in relation to CKD. A significant association was found between the MnSOD Val16Ala polymorphism and CKD, but this association is not affected by serum TAC level in T2DM patients.
High-throughput SNP-genotyping analysis of the relationships among Ponto-Caspian sturgeon species
Rastorguev, Sergey M; Nedoluzhko, Artem V; Mazur, Alexander M; Gruzdeva, Natalia M; Volkov, Alexander A; Barmintseva, Anna E; Mugue, Nikolai S; Prokhortchouk, Egor B
2013-01-01
Abstract Legally certified sturgeon fisheries require population protection and conservation methods, including DNA tests to identify the source of valuable sturgeon roe. However, the available genetic data are insufficient to distinguish between different sturgeon populations, and are even unable to distinguish between some species. We performed high-throughput single-nucleotide polymorphism (SNP)-genotyping analysis on different populations of Russian (Acipenser gueldenstaedtii), Persian (A. persicus), and Siberian (A. baerii) sturgeon species from the Caspian Sea region (Volga and Ural Rivers), the Azov Sea, and two Siberian rivers. We found that Russian sturgeons from the Volga and Ural Rivers were essentially indistinguishable, but they differed from Russian sturgeons in the Azov Sea, and from Persian and Siberian sturgeons. We identified eight SNPs that were sufficient to distinguish these sturgeon populations with 80% confidence, and allowed the development of markers to distinguish sturgeon species. Finally, on the basis of our SNP data, we propose that the A. baerii-like mitochondrial DNA found in some Russian sturgeons from the Caspian Sea arose via an introgression event during the Pleistocene glaciation. In the present study, the high-throughput genotyping analysis of several sturgeon populations was performed. SNP markers for species identification were defined. The possible explanation of the baerii-like mitotype presence in some Russian sturgeons in the Caspian Sea was suggested. PMID:24567827
Yao, Yao; Wen, Yueqiang; Du, Tingfu; Sun, Ning; Deng, Hong; Ryan, Joanne; Rao, Shuquan
2016-03-15
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses with heritability of up to 38%. The fat mass- and obesity-associated (FTO) gene, in particular the single nucleotide polymorphism (SNP) rs9939609, has been identified as a genetic risk loci associated with MDD. However, most prior studies have involved European and American populations. Whether rs9939609 is an true risk SNP for MDD in Asian populations remains inconclusive. In the present study, we conducted a meta-analysis of the association between rs9939609 and MDD in Asian populations by combining 5 available case-control samples totaling 6531 cases and 12,359 controls. Our meta-analysis suggests that rs9939609 is not a risk SNP for MDD in Asian populations by fixed effect model (Z=1.04, P=0.30, OR=0.96, 95% CI=0.90-1.03). The age distribution and gender ratios were not matched well in the combined samples of cases and controls. Publication bias might be also considered with only a relatively small number of association studies of FTO rs9939609 with MDD in Asian populations. The absence of association of rs9939609 with MDD in our Asian populations suggests a potential genetic heterogeneity in the susceptibility of MDD on this locus. Copyright © 2015 Elsevier B.V. All rights reserved.
Pattison, Jillian M.; Posternak, Valeriya; Cole, Michael D.
2016-01-01
It is well established that environmental toxins, such as exposure to arsenic, are risk factors in the development of urinary bladder cancer, yet recent genome-wide association studies (GWAS) provide compelling evidence that there is a strong genetic component associated with disease predisposition. A single nucleotide polymorphism (SNP), rs8102137, was identified on chromosome 19q12, residing 6 kb upstream of the important cell cycle regulator and proto-oncogene, Cyclin E1 (CCNE1). However, the functional role of this variant in bladder cancer predisposition has been unclear since it lies within a non-coding region of the genome. Here, it is demonstrated that bladder cancer cells heterozygous for this SNP exhibit biased allelic expression of CCNE1 with 1.5-fold more transcription occurring from the risk allele. Furthermore, using chromatin immunoprecipitation assays, a novel enhancer element was identified within the first intron of CCNE1 that binds Kruppel-like Factor 5 (KLF5), a known transcriptional activator in bladder cancer. Moreover, the data reveal that the presence of rs200996365, a SNP in high linkage disequilibrium with rs8102137 residing in the center of a KLF5 motif, alters KLF5 binding to this genomic region. Through luciferase assays and CRISPR-Cas9 genome editing, a novel polymorphic intronic regulatory element controlling CCNE1 transcription is characterized. These studies uncover how a cancer-associated polymorphism mechanistically contributes to an increased predisposition for bladder cancer development. Implications A polymorphic KLF5 binding site near the CCNE1 gene explains genetic risk identified through genome wide association studies. PMID:27514407
Peltsverger, Maya Y.; Butler, Peter W.; Alberobello, Anna Teresa; Smith, Sheila; Guevara, Yanina; Dubaz, Ornella M.; Luzon, Javier A.; Linderman, Joyce; Celi, Francesco S.
2012-01-01
Objective Type-2 deiodinase gene (DIO2) polymorphisms have been associated with changes in pituitary-thyroid axis homeostasis. The −258 A/G (SNP rs12885300) polymorphism has been associated with increased enzymatic activity, but data are conflicting. To characterize the effects of the −258 A/G polymorphism on intra-thyroidal T4 to T3 conversion and thyroid hormone secretion pattern we studied the effects of acute, TRH-mediated, TSH stimulation of the thyroid gland. Design Retrospective analysis. Methods The thyroid hormone secretion in response to 500 mcg iv TRH injection was studied in 45 healthy volunteers. Results Twenty-six subjects (16 females, 10 males, 32.8±10.4 years) were homozygous for the ancestral (−258 A/A) allele, 19 (11 females, 8 males, 31.1±10.9 years) were carrier of the (−258 G/x) variant. While no differences in the peak TSH and T3 levels were observed, carriers of the −258G/x allele showed a blunted rise in free T4 (p<0.01). The −258G/x 92Thr/Thr haplotype, compared to the other groups, had lower TSH values at 60' (p<0.03). No differences were observed between genotypes in baseline thyroid hormone levels. Conclusions The −258G/x DIO2 polymorphism variant is associated with a decreased rate of acute TSH-stimulated free T4 secretion with a normal T3 release from the thyroid consistent with a shift in the reaction equilibrium toward the product. These data indicate that the −258G DIO2 polymorphism cause changes in the pattern of hormonal secretion. These findings are a proof-of-concept that common polymorphisms in the DIO2 can subtly affect the circulating levels of thyroid hormone and might modulate the thyroid hormone homeostasis. PMID:22307573
Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian
2012-10-01
Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Using Next Generation Sequencing for Multiplexed Trait-Linked Markers in Wheat
Bernardo, Amy; Wang, Shan; St. Amand, Paul; Bai, Guihua
2015-01-01
With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat ( Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat. PMID:26625271
Gorkhali, Neena Amatya; Dong, Kunzhe; Yang, Min; Song, Shen; Kader, Adiljian; Shrestha, Bhola Shankar; He, Xiaohong; Zhao, Qianjun; Pu, Yabin; Li, Xiangchen; Kijas, James; Guan, Weijun; Han, Jianlin; Jiang, Lin; Ma, Yuehui
2016-07-22
Sheep has successfully adapted to the extreme high-altitude Himalayan region. To identify genes underlying such adaptation, we genotyped genome-wide single nucleotide polymorphisms (SNPs) of four major sheep breeds living at different altitudes in Nepal and downloaded SNP array data from additional Asian and Middle East breeds. Using a di value-based genomic comparison between four high-altitude and eight lowland Asian breeds, we discovered the most differentiated variants at the locus of FGF-7 (Keratinocyte growth factor-7), which was previously reported as a good protective candidate for pulmonary injuries. We further found a SNP upstream of FGF-7 that appears to contribute to the divergence signature. First, the SNP occurred at an extremely conserved site. Second, the SNP showed an increasing allele frequency with the elevated altitude in Nepalese sheep. Third, the electrophoretic mobility shift assays (EMSA) analysis using human lung cancer cells revealed the allele-specific DNA-protein interactions. We thus hypothesized that FGF-7 gene potentially enhances lung function by regulating its expression level in high-altitude sheep through altering its binding of specific transcription factors. Especially, FGF-7 gene was not implicated in previous studies of other high-altitude species, suggesting a potential novel adaptive mechanism to high altitude in sheep at the Himalayas.
Chen, N B; Ma, Y; Yang, T; Lin, F; Fu, W W; Xu, Y J; Li, F; Li, J Y; Gao, S X
2015-08-01
Angiopoietin-like protein 3 (ANGPTL3) is a secreted protein that regulates lipid, glucose and energy metabolism. This study was conducted to better understand the effect of ANGPTL3 on important economic traits in cattle. First, transcript profiles for ANGPTL3 were measured in nine different Jiaxian cattle tissues. Second, polymorphisms were identified in the complete coding region and promoter region of the bovine ANGPTL3 gene in 707 cattle samples. Finally, an association study was carried out utilizing these single nucleotide polymorphisms (SNPs) to determine the effect of these SNPs on the growth and meat quality traits. Quantitative real-time PCR analysis showed that ANGPTL3 was mainly expressed in the liver. The promoter of the bovine ANGPTL3 contained several putative transcription factor binding sites (SF1, HNF-1, LXRα, NFκβ, HNF-3 and C/EBP). In total, four SNPs of the bovine ANGPTL3 gene were identified by direct sequencing. SNP1 (rs469906272: g.-38T>C) was identified in the promoter, SNP2 (rs451104723:g.104A>T) and SNP3 (rs482516226: g.509A>G) were identified in exon 1, and SNP4 (rs477165942: g.8661T>C) was identified in exon 6. Changes in predicted protein structures due to non-synonymous SNPs were analyzed. Haplotype frequencies and linkage disequilibrium were also investigated. Analysis of four SNPs in cattle from different native Chinese breeds (Nanyang (NY) and Jiaxian (JX)) and commercial breeds (Angus (AG), Hereford (HF), Limousin (LM), Luxi (LX), Simmental (ST) and Jinnan (JN)) revealed a significant association with growth traits (including: BW and hipbone width) and meat quality traits (including: Warner-Bratzler shear force and ribeye area). Therefore, implementation of these four mutations in selection indices in the beef industry may be beneficial in selecting individuals with superior growth and meat quality traits.
Chuang, Li-Yeh; Moi, Sin-Hua; Lin, Yu-Da; Yang, Cheng-Hong
2016-10-01
Evolutionary algorithms could overcome the computational limitations for the statistical evaluation of large datasets for high-order single nucleotide polymorphism (SNP) barcodes. Previous studies have proposed several chaotic particle swarm optimization (CPSO) methods to detect SNP barcodes for disease analysis (e.g., for breast cancer and chronic diseases). This work evaluated additional chaotic maps combined with the particle swarm optimization (PSO) method to detect SNP barcodes using a high-dimensional dataset. Nine chaotic maps were used to improve PSO method results and compared the searching ability amongst all CPSO methods. The XOR and ZZ disease models were used to compare all chaotic maps combined with PSO method. Efficacy evaluations of CPSO methods were based on statistical values from the chi-square test (χ 2 ). The results showed that chaotic maps could improve the searching ability of PSO method when population are trapped in the local optimum. The minor allele frequency (MAF) indicated that, amongst all CPSO methods, the numbers of SNPs, sample size, and the highest χ 2 value in all datasets were found in the Sinai chaotic map combined with PSO method. We used the simple linear regression results of the gbest values in all generations to compare the all methods. Sinai chaotic map combined with PSO method provided the highest β values (β≥0.32 in XOR disease model and β≥0.04 in ZZ disease model) and the significant p-value (p-value<0.001 in both the XOR and ZZ disease models). The Sinai chaotic map was found to effectively enhance the fitness values (χ 2 ) of PSO method, indicating that the Sinai chaotic map combined with PSO method is more effective at detecting potential SNP barcodes in both the XOR and ZZ disease models. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...
USDA-ARS?s Scientific Manuscript database
High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...
USDA-ARS?s Scientific Manuscript database
One focus of the Sorghum Translational Genomics Lab (part of sorghum CRIS, PSGD, CSRL, USDA-ARS, Lubbock TX) is to utilize nucleotide variation between sorghum germplasm such as those derived from RNA seq for translation and validation of Single Nucleotide Polymorphism (SNP) into easy access DNA m...
ERIC Educational Resources Information Center
Greenwood, Pamela M.; Sundararajan, Ramya; Lin, Ming-Kuan; Kumar, Reshma; Fryxell, Karl J.; Parasuraman, Raja
2009-01-01
We investigated the relation between the two systems of visuospatial attention and working memory by examining the effect of normal variation in cholinergic and noradrenergic genes on working memory performance under attentional manipulation. We previously reported that working memory for location was impaired following large location precues,…
USDA-ARS?s Scientific Manuscript database
For the first time in many years a comprehensive genome map for cultivated oat has been constructed using a combination of single nucleotide polymorphism (SNP) markers and validated with a collection of cytogenetically defined germplasm lines. The markers were able to help distinguish the three geno...
USDA-ARS?s Scientific Manuscript database
rs17321515 SNP has been associated with variation in LDL-C, high density lipoprotein cholesterol and triglycerides concentrations. This effect has never been studied in patients with severe hypercholesterolemia. Therefore, our aims were to assess the association of the rs17321515 (TRIB1) SNP with pl...
Genetic variations in NADPH-CYP450 oxidoreductase in a Czech Slavic cohort
Tomková, Mária; Panda, Satya Prakash; Šeda, Ondřej; Baxová, Alice; Hůlková, Martina; Masters, Bettie Sue Siler; Martásek, Pavel
2015-01-01
Background Gene polymorphisms encoding the enzyme NADPH–cytochrome P450 oxidoreductase (POR) contribute to inter-individual differences in drug response. Aim To estimate polymorphic allele frequencies of the POR gene in a Czech Slavic population. Materials & Methods The gene POR was analyzed in 322 Czech Slavic individuals from a control cohort by sequencing and HRM analysis. Results Twenty-five SNP genetic variations were identified. Of these variants, 7 were new, unreported SNPs, including two SNPs in the 5´flanking region (g.4965 C>T and g.4994 G>T), one intronic variant (c.1899 −20C>T), one synonymous SNP (p.20Ala=) and three nonsynonymous SNPs (p.Thr29Ser, p.Pro384Leu and p.Thr529Met). The p.Pro384Leu variant exhibited reduced enzymatic activities compared to wild type. Conclusion New POR variant identification indicates that the number of uncommon variants might be specific for each subpopulation being investigated, particularly germane to the singular role that POR plays in providing reducing equivalents to all CYPs in the endoplasmic reticulum. PMID:25712184
Kuhn, Alexandre; Ong, Yao Min; Cheng, Ching-Yu; Wong, Tien Yin; Quake, Stephen R; Burkholder, William F
2014-06-03
Insertions of the human-specific subfamily of LINE-1 (L1) retrotransposon are highly polymorphic across individuals and can critically influence the human transcriptome. We hypothesized that L1 insertions could represent genetic variants determining important human phenotypic traits, and performed an integrated analysis of L1 elements and single nucleotide polymorphisms (SNPs) in several human populations. We found that a large fraction of L1s were in high linkage disequilibrium with their surrounding genomic regions and that they were well tagged by SNPs. However, L1 variants were only partially captured by SNPs on standard SNP arrays, so that their potential phenotypic impact would be frequently missed by SNP array-based genome-wide association studies. We next identified potential phenotypic effects of L1s by looking for signatures of natural selection linked to L1 insertions; significant extended haplotype homozygosity was detected around several L1 insertions. This finding suggests that some of these L1 insertions may have been the target of recent positive selection.
Bazakos, Christos; Khanfir, Emna; Aoun, Mariem; Spano, Thodhoraq; Zein, Zeina El; Chalak, Lamis; Riachy, Milad El; Abou-Sleymane, Gretta; Ali, Sihem Ben; Grati Kammoun, Naziha; Kalaitzis, Panagiotis
2016-07-01
Authentication and traceability of extra virgin olive oil is a challenging research task due to the complexity of fraudulent practices. In this context, the monovarietal olive oils of Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) require new tests and cutting edge analytical technologies to detect mislabeling and misleading origin. Toward this direction, DNA-based technologies could serve as a complementary to the analytical techniques assay. Single nucleotide polymorphisms are ideal molecular markers since they require short PCR analytical targets which are a prerequisite for forensic applications in olive oil sector. In the present study, a small number of polymorphic SNPs were used with an SNP-based PCR-RFLP capillary electrophoresis platform to discriminate six out of 13 monovarietal olive oils of Mediterranean origin from three different countries, Greece, Tunisia, and Lebanon. Moreover, the high sensitivity of capillary electrophoresis in combination with the DNA extraction protocol lowered the limit of detection to 10% in an admixture of Tsounati in a Koroneiki olive oil matrix. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Streit, M; Reinhardt, F; Thaller, G; Bennewitz, J
2013-01-01
Genotype by environment interaction (G × E) has been widely reported in dairy cattle. If the environment can be measured on a continuous scale, reaction norms can be applied to study G × E. The average herd milk production level has frequently been used as an environmental descriptor because it is influenced by the level of feeding or the feeding regimen. Another important environmental factor is the level of udder health and hygiene, for which the average herd somatic cell count might be a descriptor. In the present study, we conducted a genome-wide association analysis to identify single nucleotide polymorphisms (SNP) that affect intercept and slope of milk protein yield reaction norms when using the average herd test-day solution for somatic cell score as an environmental descriptor. Sire estimates for intercept and slope of the reaction norms were calculated from around 12 million daughter records, using linear reaction norm models. Sires were genotyped for ~54,000 SNP. The sire estimates were used as observations in the association analysis, using 1,797 sires. Significant SNP were confirmed in an independent validation set consisting of 500 sires. A known major gene affecting protein yield was included as a covariable in the statistical model. Sixty (21) SNP were confirmed for intercept with P ≤ 0.01 (P ≤ 0.001) in the validation set, and 28 and 11 SNP, respectively, were confirmed for slope. Most but not all SNP affecting slope also affected intercept. Comparison with an earlier study revealed that SNP affecting slope were, in general, also significant for slope when the environment was modeled by the average herd milk production level, although the two environmental descriptors were poorly correlated. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
N'Diaye, Amidou; Haile, Jemanesh K; Cory, Aron T; Clarke, Fran R; Clarke, John M; Knox, Ron E; Pozniak, Curtis J
2017-01-01
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
Tong, B; Li, G P; Sasaki, S; Muramatsu, Y; Ohta, T; Kose, H; Yamada, T
2015-04-01
Growth performance, as well as marbling, is the main breeding objective in Japanese Black (JB) cattle, the major beef breed in Japan. The septin 7 (CDC10) gene, involved in cellular proliferation, is located within a genomic region of a quantitative trait locus for growth-related traits. In this study, we first showed that the expression levels of the CDC10 gene in the skeletal muscle were higher in JB steers with extremely high growth performance than in JB steers with extremely low growth, using real-time PCR. Further, a single nucleotide polymorphism (SNP), NC_007302.5:g.63264949G>C, was detected in the promoter region of the CDC10 gene and genotyped in three Japanese cattle breeds (known as 'Wagyu' in Japan) and the Brown Swiss dairy cattle breed. All four cattle populations showed a moderate genetic diversity at the SNP of the CDC10 gene. An association analysis indicated that the SNP was associated with growth-related traits in JB cattle. These findings suggest possible effects of the expression levels in the skeletal muscle and the SNP of the CDC10 gene on growth-related traits in JB cattle. The CDC10 SNP may be useful for effective marker-assisted selection to increase beef productivity in JB beef cattle. © 2015 Stichting International Foundation for Animal Genetics.
Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers.
Pan, Jin; Wang, Baosheng; Pei, Zhi-Yong; Zhao, Wei; Gao, Jie; Mao, Jian-Feng; Wang, Xiao-Ru
2015-07-01
Flexibility and low cost make genotyping-by-sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI-MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference-free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000-11 000 and 14 751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking. © 2014 John Wiley & Sons Ltd.
Li, Bin; Zhang, Jian; Wang, Lei; Li, Yan; Jin, Juping; Ai, Limei; Li, Chong; Li, Zhe; Mao, Shudan
2014-05-01
Chronic myelogenous leukemia (CML) is a complex disease with a genetic basis. The genetic association studies (GASs) that have investigated the association between adult CML and 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms have produced contradictory and inconclusive results. The aim of this meta-analysis is to provide a relatively comprehensive assessment of the association of these polymorphisms with adult CML risk. A literature search for eligible GAS published before September 15, 2013 was conducted in PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases. Pooled odds ratios (ORs) with their corresponding 95% confidence intervals (95% CIs) were used to evaluate the strength of the association under a fixed or random effect model according to heterogeneity test results. All analyses were performed using the Stata software, version 12.0. Twelve case-control studies were included in this meta-analysis with a total of 932 CML patients and 3,465 healthy controls. For MTHFR C677T (dbSNP: rs1801133, C>T), though the pooled ORs were not significant in the overall population, all the ORs greater than 1 suggested an increased risk of CML for carriers of the risk allele. However, stratified analysis based on genotyping method revealed a significant association in the PCR-restriction fragment length polymorphism (RFLP) subgroup, possibly as a result of heterogeneity. For MTHFR A1298C (dbSNP: rs1801131, A>C), the combined results showed that carriers of the C allele may be associated with a decreased risk of adult CML. Stratified analysis showed that the magnitude of this effect was especially significant among Asians, indicating ethnicity differences in adult CML susceptibility. This meta-analysis shows that the C allele of MTHFR A1298C may be associated with a decreased risk in adult CML, especially among Asians, while MTHFR C677T may not be associated with adult CML risk. However, the development of adult CML may be the result of gene-gene and gene-environment interactions, which should be considered in future individual GAS and subsequent meta-analyses.
Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu
2016-01-01
Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat.
Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu
2016-01-01
Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat. PMID:27486464