Sample records for polymorphisms affect mesolimbic

  1. Sex, Drugs, and Rock ‘N’ Roll: Hypothesizing Common Mesolimbic Activation as a Function of Reward Gene Polymorphisms

    PubMed Central

    Blum, Kenneth; Werner, Tonia; Carnes, Stefanie; Carnes, Patrick; Bowirrat, Abdalla; Giordano, John; Marlene-Oscar-Berman; Gold, Mark

    2014-01-01

    The nucleus accumbens, a site within the ventral striatum, plays a prominent role in mediating the reinforcing effects of drugs of abuse, food, sex, and other addictions. Indeed, it is generally believed that this structure mandates motivated behaviors such as eating, drinking, and sexual activity, which are elicited by natural rewards and other strong incentive stimuli. This article focuses on sex addiction, but we hypothesize that there is a common underlying mechanism of action for the powerful effects that all addictions have on human motivation. That is, biological drives may have common molecular genetic antecedents, which if impaired, lead to aberrant behaviors. Based on abundant scientific support, we further hypothesize that dopaminergic genes, and possibly other candidate neurotransmitter-related gene polymorphisms, affect both hedonic and anhedonic behavioral outcomes. Genotyping studies already have linked gene polymorphic associations with alcohol and drug addictions and obesity, and we anticipate that future genotyping studies of sex addicts will provide evidence for polymorphic associations with specific clustering of sexual typologies based on clinical instrument assessments. We recommend that scientists and clinicians embark on research coupling the use of neuroimaging tools with dopaminergic agonistic agents to target specific gene polymorphisms systematically for normalizing hyper- or hypo-sexual behaviors. PMID:22641964

  2. Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards.

    PubMed

    Damiano, Cara R; Aloi, Joseph; Dunlap, Kaitlyn; Burrus, Caley J; Mosner, Maya G; Kozink, Rachel V; McLaurin, Ralph Edward; Mullette-Gillman, O'Dhaniel A; Carter, Ronald McKell; Huettel, Scott A; McClernon, Francis Joseph; Ashley-Koch, Allison; Dichter, Gabriel S

    2014-01-31

    There has been significant progress in identifying genes that confer risk for autism spectrum disorders (ASDs). However, the heterogeneity of symptom presentation in ASDs impedes the detection of ASD risk genes. One approach to understanding genetic influences on ASD symptom expression is to evaluate relations between variants of ASD candidate genes and neural endophenotypes in unaffected samples. Allelic variations in the oxytocin receptor (OXTR) gene confer small but significant risk for ASDs for which the underlying mechanisms may involve associations between variability in oxytocin signaling pathways and neural response to rewards. The purpose of this preliminary study was to investigate the influence of allelic variability in the OXTR gene on neural responses to monetary rewards in healthy adults using functional magnetic resonance imaging (fMRI). The moderating effects of three single nucleotide polymorphisms (SNPs) (rs1042778, rs2268493 and rs237887) of the OXTR gene on mesolimbic responses to rewards were evaluated using a monetary incentive delay fMRI task. T homozygotes of the rs2268493 SNP demonstrated relatively decreased activation in mesolimbic reward circuitry (including the nucleus accumbens, amygdala, insula, thalamus and prefrontal cortical regions) during the anticipation of rewards but not during the outcome phase of the task. Allelic variation of the rs1042778 and rs237887 SNPs did not moderate mesolimbic activation during either reward anticipation or outcomes. This preliminary study suggests that the OXTR SNP rs2268493, which has been previously identified as an ASD risk gene, moderates mesolimbic responses during reward anticipation. Given previous findings of decreased mesolimbic activation during reward anticipation in ASD, the present results suggest that OXTR may confer ASD risk via influences on the neural systems that support reward anticipation.

  3. Do dopaminergic gene polymorphisms affect mesolimbic reward activation of music listening response? Therapeutic impact on Reward Deficiency Syndrome (RDS).

    PubMed

    Blum, Kenneth; Chen, Thomas J H; Chen, Amanda L H; Madigan, Margaret; Downs, B William; Waite, Roger L; Braverman, Eric R; Kerner, Mallory; Bowirrat, Abdalla; Giordano, John; Henshaw, Harry; Gold, Mark S

    2010-03-01

    Using fMRI, Menon and Levitin [9] clearly found for the first time that listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the nucleus accumbens (NAc) and the ventral tegmental area (VTA), as well as the hypothalamus, and insula, which are thought to be involved in regulating autonomic and physiological responses to rewarding and emotional stimuli. Importantly, responses in the NAc and VTA were strongly correlated pointing to an association between dopamine release and NAc response to music. Listing to pleasant music induced a strong response and significant activation of the VTA-mediated interaction of the NAc with the hypothalamus, insula, and orbitofrontal cortex. Blum et al. [10] provided the first evidence that the dopamine D2 receptor gene (DRD2) Taq 1 A1 allele significantly associated with severe alcoholism whereby the author's suggested that they found the first "reward gene" located in the mesolimbic system. The enhanced functional and effective connectivity between brain regions mediating reward, autonomic, and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. However, little is known about why some people have a more or less powerful mesolimbic experience when they are listening to music. It is well-known that music may induce an endorphinergic response that is blocked by naloxone, a known opioid antagonist (Goldstein [19]). Opioid transmission in the NAc is associated with dopamine release in the VTA. Moreover, dopamine release in the VTA is linked to polymorphisms of the DRD2 gene and even attention-deficit hyperactivity disorder (ADHD), whereby carriers of the DRD2 A1 allele show a reduced NAc release of dopamine (DA). Thus it is conjectured that similar mechanisms in terms of adequate dopamine release and subsequent activation of reward circuitry by listening to music might also be affected by an individual's D2 density in the VTA mediated interaction of the NAc. It is therefore hypothesized that carriers of DRD2 A1 allele may respond significantly differently to carriers of the DRD2 A2 genotype. In this regard, carriers of the D2 A1 allele have a blunted response to glucose and monetary rewards. In contrast powerful D2 agonists like bromocryptine show a heightened activation of the reward circuitry only in DRD2 A1 allele carriers. If music causes a powerful activation in spite of the DRD2 A1 allele due to a strong DA neuronal release which subsequently impinges on existing D2 receptors, then it is reasonable to assume that music is a strong indirect D2 agonist (by virtue of DA neuronal release in the NAc) and may have important therapeutic applicability in Reward Deficiency Syndrome (RDS) related behaviors including Substance Use Disorder (SUD). Ross et al. [18] found that music therapy appears to be a novel motivational tool in a severely impaired inpatient sample of patients with co-occurring mental illness and addiction. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Ghrelin influences novelty seeking behavior in rodents and men.

    PubMed

    Hansson, Caroline; Shirazi, Rozita H; Näslund, Jakob; Vogel, Heike; Neuber, Corinna; Holm, Göran; Anckarsäter, Henrik; Dickson, Suzanne L; Eriksson, Elias; Skibicka, Karolina P

    2012-01-01

    Recent discoveries indicate an important role for ghrelin in drug and alcohol reward and an ability of ghrelin to regulate mesolimbic dopamine activity. The role of dopamine in novelty seeking, and the association between this trait and drug and alcohol abuse, led us to hypothesize that ghrelin may influence novelty seeking behavior. To test this possibility we applied several complementary rodent models of novelty seeking behavior, i.e. inescapable novelty-induced locomotor activity (NILA), novelty-induced place preference and novel object exploration, in rats subjected to acute ghrelin receptor (growth hormone secretagogue receptor; GHSR) stimulation or blockade. Furthermore we assessed the possible association between polymorphisms in the genes encoding ghrelin and GHSR and novelty seeking behavior in humans. The rodent studies indicate an important role for ghrelin in a wide range of novelty seeking behaviors. Ghrelin-injected rats exhibited a higher preference for a novel environment and increased novel object exploration. Conversely, those with GHSR blockade drastically reduced their preference for a novel environment and displayed decreased NILA. Importantly, the mesolimbic ventral tegmental area selective GHSR blockade was sufficient to reduce the NILA response indicating that the mesolimbic GHSRs might play an important role in the observed novelty responses. Moreover, in untreated animals, a striking positive correlation between NILA and sucrose reward behavior was detected. Two GHSR single nucleotide polymorphisms (SNPs), rs2948694 and rs495225, were significantly associated with the personality trait novelty seeking, as assessed using the Temperament and Character Inventory (TCI), in human subjects. This study provides the first evidence for a role of ghrelin in novelty seeking behavior in animals and humans, and also points to an association between food reward and novelty seeking in rodents.

  5. Ghrelin Influences Novelty Seeking Behavior in Rodents and Men

    PubMed Central

    Hansson, Caroline; Shirazi, Rozita H.; Näslund, Jakob; Vogel, Heike; Neuber, Corinna; Holm, Göran; Anckarsäter, Henrik; Dickson, Suzanne L.; Eriksson, Elias; Skibicka, Karolina P.

    2012-01-01

    Recent discoveries indicate an important role for ghrelin in drug and alcohol reward and an ability of ghrelin to regulate mesolimbic dopamine activity. The role of dopamine in novelty seeking, and the association between this trait and drug and alcohol abuse, led us to hypothesize that ghrelin may influence novelty seeking behavior. To test this possibility we applied several complementary rodent models of novelty seeking behavior, i.e. inescapable novelty-induced locomotor activity (NILA), novelty-induced place preference and novel object exploration, in rats subjected to acute ghrelin receptor (growth hormone secretagogue receptor; GHSR) stimulation or blockade. Furthermore we assessed the possible association between polymorphisms in the genes encoding ghrelin and GHSR and novelty seeking behavior in humans. The rodent studies indicate an important role for ghrelin in a wide range of novelty seeking behaviors. Ghrelin-injected rats exhibited a higher preference for a novel environment and increased novel object exploration. Conversely, those with GHSR blockade drastically reduced their preference for a novel environment and displayed decreased NILA. Importantly, the mesolimbic ventral tegmental area selective GHSR blockade was sufficient to reduce the NILA response indicating that the mesolimbic GHSRs might play an important role in the observed novelty responses. Moreover, in untreated animals, a striking positive correlation between NILA and sucrose reward behavior was detected. Two GHSR single nucleotide polymorphisms (SNPs), rs2948694 and rs495225, were significantly associated with the personality trait novelty seeking, as assessed using the Temperament and Character Inventory (TCI), in human subjects. This study provides the first evidence for a role of ghrelin in novelty seeking behavior in animals and humans, and also points to an association between food reward and novelty seeking in rodents. PMID:23227170

  6. Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: Implications for novel schizophrenia treatments.

    PubMed

    Renard, Justine; Norris, Christopher; Rushlow, Walter; Laviolette, Steven R

    2017-04-01

    Growing clinical and pre-clinical evidence points to a critical role for cannabidiol (CBD), the largest phytochemical component of cannabis, as a potential pharmacotherapy for various neuropsychiatric disorders. In contrast to delta-9-tetrahydrocannabinol (THC), which is associated with acute and neurodevelopmental pro-psychotic side-effects, CBD possesses no known psychoactive or dependence-producing properties. However, evidence has demonstrated that CBD strongly modulates the mesolimbic dopamine (DA) system and may possess promising anti-psychotic properties. Despite the psychotropic differences between CBD and THC, little is known regarding their molecular and neuronal effects on the mesolimbic DA system, nor how these differential effects may relate to their potential pro vs. anti-psychotic properties. This review summarizes clinical and pre-clinical evidence demonstrating CBD's modulatory effects on DA activity states within the mesolimbic pathway, functional interactions with the serotonin 5-HT 1A receptor system, and their downstream molecular signaling effects. Together with clinical evidence showing that CBD may normalize affective and cognitive deficits associated with schizophrenia, CBD may represent a promising treatment for schizophrenia, acting through novel molecular and neuronal mesolimbic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Palmitoylethanolamide Modulates GPR55 Receptor Signaling in the Ventral Hippocampus to Regulate Mesolimbic Dopamine Activity, Social Interaction, and Memory Processing.

    PubMed

    Kramar, Cecilia; Loureiro, Michael; Renard, Justine; Laviolette, Steven R

    2017-01-01

    Introduction: The GPR55 receptor has been identified as an atypical cannabinoid receptor and is implicated in various physiological processes. However, its functional role in the central nervous system is not currently understood. The presence of GPR55 receptor in neural regions such as the ventral hippocampus (vHipp), which is critical for cognition, recognition memory, and affective processing, led us to hypothesize that intra-vHipp GPR55 transmission may modulate mesolimbic activity states and related behavioral phenomena. The vHipp is involved in contextual memory and affective regulation through functional interactions with the mesolimbic dopamine system. Materials and Methods: Using a combination of in vivo electrophysiology and behavioral pharmacological assays in rats, we tested whether intra-vHipp activation of GPR55 receptor transmission with the fatty acid amide, palmitoylethanolamide (PEA), a lipid neuromodulator with agonist actions at the GPR55 receptor, may modulate mesolimbic dopaminergic activity states. We further examined the potential effects of intra-vHipp PEA in affective, cognitive and contextual memory tasks. Discussion: We report that intra-vHipp PEA produces a hyper-dopaminergic state in the mesolimbic system characterized by increased firing and bursting activity of ventral tegmental area dopaminergic neuron populations. Furthermore, while PEA-induced activation of GPR55 transmission had no effects on opiate-related reward-related memory formation, we observed strong disruptions in social interaction and recognition memory, spatial location memory, and context-independent associative fear memory formation. Finally, the effects of intra-vHipp PEA were blocked by a selective GPR55 receptor antagonist, CID160 and were dependent upon NMDA receptor transmission, directly in the vHipp. Conclusions: The present results add to a growing body of evidence demonstrating important functional roles for GPR55 signaling in cannabinoid-related neuronal and behavioral phenomena and underscore the potential for GPR55 signaling in the mediation of cannabinoid-related effects independently of the CB1/CB2 receptor systems.

  8. "Liking" and "wanting" linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry.

    PubMed

    Blum, Kenneth; Gardner, Eliot; Oscar-Berman, Marlene; Gold, Mark

    2012-01-01

    In an attempt to resolve controversy regarding the causal contributions of mesolimbic dopamine (DA) systems to reward, we evaluate the three main competing explanatory categories: "liking,"learning," and "wanting" [1]. That is, DA may mediate (a) the hedonic impact of reward (liking), (b) learned predictions about rewarding effects (learning), or (c) the pursuit of rewards by attributing incentive salience to reward-related stimuli (wanting). We evaluate these hypotheses, especially as they relate to the Reward Deficiency Syndrome (RDS), and we find that the incentive salience or "wanting" hypothesis of DA function is supported by a majority of the evidence. Neuroimaging studies have shown that drugs of abuse, palatable foods, and anticipated behaviors such as sex and gaming affect brain regions involving reward circuitry, and may not be unidirectional. Drugs of abuse enhance DA signaling and sensitize mesolimbic mechanisms that evolved to attribute incentive salience to rewards. Addictive drugs have in common that they are voluntarily selfadministered, they enhance (directly or indirectly) dopaminergic synaptic function in the nucleus accumbens (NAC), and they stimulate the functioning of brain reward circuitry (producing the "high" that drug users seek). Although originally believed simply to encode the set point of hedonic tone, these circuits now are believed to be functionally more complex, also encoding attention, reward expectancy, disconfirmation of reward expectancy, and incentive motivation. Elevated stress levels, together with polymorphisms of dopaminergic genes and other neurotransmitter genetic variants, may have a cumulative effect on vulnerability to addiction. The RDS model of etiology holds very well for a variety of chemical and behavioral addictions.

  9. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway.

    PubMed

    Helbing, Cornelia; Brocka, Marta; Scherf, Thomas; Lippert, Michael T; Angenstein, Frank

    2016-12-01

    Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D 1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D 1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses. © The Author(s) 2015.

  10. “Liking” and “Wanting” Linked to Reward Deficiency Syndrome (RDS): Hypothesizing Differential Responsivity in Brain Reward Circuitry

    PubMed Central

    Blum, Kenneth; Gardner, Eliot; Oscar-Berman, Marlene; Gold, Mark

    2013-01-01

    In an attempt to resolve controversy regarding the causal contributions of mesolimbic dopamine (DA) systems to reward, we evaluate the three main competing explanatory categories: “liking,” “learning,” and “wanting” [1]. That is, DA may mediate (a) the hedonic impact of reward (liking), (b) learned predictions about rewarding effects (learning), or (c) the pursuit of rewards by attributing incentive salience to reward-related stimuli (wanting). We evaluate these hypotheses, especially as they relate to the Reward Deficiency Syndrome (RDS), and we find that the incentive salience or “wanting” hypothesis of DA function is supported by a majority of the evidence. Neuroimaging studies have shown that drugs of abuse, palatable foods, and anticipated behaviors such as sex and gaming affect brain regions involving reward circuitry, and may not be unidirectional. Drugs of abuse enhance DA signaling and sensitize mesolimbic mechanisms that evolved to attribute incentive salience to rewards. Addictive drugs have in common that they are voluntarily self-administered, they enhance (directly or indirectly) dopaminergic synaptic function in the nucleus accumbens, and they stimulate the functioning of brain reward circuitry (producing the “high” that drug users seek). Although originally believed simply to encode the set point of hedonic tone, these circuits now are believed to be functionally more complex, also encoding attention, reward expectancy, disconfirmation of reward expectancy, and incentive motivation. Elevated stress levels, together with polymorphisms of dopaminergic genes and other neurotransmitter genetic variants, may have a cumulative effect on vulnerability to addiction. The RDS model of etiology holds very well for a variety of chemical and behavioral addictions. PMID:22236117

  11. Reassessing wanting and liking in the study of mesolimbic influence on food intake

    PubMed Central

    2016-01-01

    Humans and animals such as rats and mice tend to overconsume calorie-dense foods, a phenomenon that likely contributes to obesity. One often-advanced explanation for why we preferentially consume sweet and fatty foods is that they are more “rewarding” than low-calorie foods. “Reward” has been subdivided into three interdependent psychological processes: hedonia (liking a food), reinforcement (formation of associations among stimuli, actions, and/or the food), and motivation (wanting the food). Research into these processes has focused on the mesolimbic system, which comprises both dopamine neurons in the ventral tegmental area and neurons in their major projection target, the nucleus accumbens. The mesolimbic system and closely connected structures are commonly referred to as the brain’s “reward circuit.” Implicit in this title is the assumption that “rewarding” experiences are generally the result of activity in this circuit. In this review, I argue that food intake and the preference for calorie-dense foods can be explained without reference to subjective emotions. Furthermore, the contribution of mesolimbic dopamine to food intake and preference may not be a general one of promoting or coordinating behaviors that result in the most reward or caloric intake but may instead be limited to the facilitation of a specific form of neural computation that results in conditioned approach behavior. Studies on the neural mechanisms of caloric intake regulation must address how sensory information about calorie intake affects not just the mesolimbic system but also many other forms of computation that govern other types of food-seeking and food-oriented behaviors. PMID:27534877

  12. A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System.

    PubMed

    Massaly, Nicolas; Morón, Jose A; Al-Hasani, Ream

    2016-01-01

    Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.

  13. Common Neurogenetic Diagnosis and Meso-Limbic Manipulation of Hypodopaminergic Function in Reward Deficiency Syndrome (RDS): Changing the Recovery Landscape.

    PubMed

    Blum, Kenneth; Febo, Marcelo; Badgaiyan, Rajendra D; Demetrovics, Zsolt; Simpatico, Thomas; Fahlke, Claudia; M, Oscar-Berman; Li, Mona; Dushaj, Kristina; Gold, Mark S

    2017-01-01

    In 1990, Blum and associates provided the first confirmed genetic link between the DRD2 polymorphisms and alcoholism. This finding was based on an earlier conceptual framework, which served as a blueprint for their seminal genetic association discovery they termed "Brain Reward Cascade." These findings were followed by a new way of understanding all addictive behaviors (substance and non-substance) termed "Reward Deficiency Syndrome" (RDS). RDS incorporates a complex multifaceted array of inheritable behaviors that are polygenic. In this review article, we attempt to clarify these terms and provide a working model to accurately diagnose and treat these unwanted behaviors. We are hereby proposing the development of a translational model we term "Reward Deficiency Solution System™" that incorporates neurogenetic testing and meso-limbic manipulation of a "hypodopaminergic" trait/state, which provides dopamine agonistic therapy (DAT) as well as reduced "dopamine resistance," while embracing "dopamine homeostasis." The result is better recovery and relapse prevention, despite DNA antecedents, which could impact the recovery process and relapse. Understanding the commonality of mental illness will transform erroneous labeling based on symptomatology, into a genetic and anatomical etiology. WC: 184.

  14. Cocaine cues drive opposing context-dependent shifts in reward processing and emotional state.

    PubMed

    Wheeler, Robert A; Aragona, Brandon J; Fuhrmann, Katherine A; Jones, Joshua L; Day, Jeremy J; Cacciapaglia, Fabio; Wightman, R Mark; Carelli, Regina M

    2011-06-01

    Prominent neurobiological theories of addiction posit a central role for aberrant mesolimbic dopamine release but disagree as to whether repeated drug experience blunts or enhances this system. Although drug withdrawal diminishes dopamine release, drug sensitization augments mesolimbic function, and both processes have been linked to drug seeking. One possibility is that the dopamine system can rapidly switch from dampened to enhanced release depending on the specific drug-predictive environment. To test this, we examined dopamine release when cues signaled delayed cocaine delivery versus imminent cocaine self-administration. Fast-scan cyclic voltammetry was used to examine real-time dopamine release while simultaneously monitoring behavioral indexes of aversion as rats experienced a sweet taste cue that predicted delayed cocaine availability and during self-administration. Furthermore, the impact of cues signaling delayed drug availability on intracranial self-stimulation, a broad measure of reward function, was assessed. We observed decreased mesolimbic dopamine concentrations, decreased reward sensitivity, and negative affect in response to the cocaine-predictive taste cue that signaled delayed cocaine availability. Importantly, dopamine concentration rapidly switched to elevated levels to cues signaling imminent cocaine delivery in the subsequent self-administration session. These findings show rapid, bivalent contextual control over brain reward processing, affect, and motivated behavior and have implications for mechanisms mediating substance abuse. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Common Neurogenetic Diagnosis and Meso-Limbic Manipulation of Hypodopaminergic Function in Reward Deficiency Syndrome (RDS): Changing the Recovery Landscape

    PubMed Central

    Blum, Kenneth; Febo, Marcelo; Badgaiyan, Rajendra D.; Demetrovics, Zsolt; Simpatico, Thomas; Fahlke, Claudia; Li, Mona; Dushaj, Kristina; Gold, Mark S.

    2017-01-01

    Abstract: Background: In 1990, Blum and associates provided the first confirmed genetic link between the DRD2 polymorphisms and alcoholism. This finding was based on an earlier conceptual framework, which served as a blueprint for their seminal genetic association discovery they termed “Brain Reward Cascade.” These findings were followed by a new way of understanding all addictive behaviors (substance and non-substance) termed “Reward Deficiency Syndrome” (RDS). RDS incorporates a complex multifaceted array of inheritable behaviors that are polygenic. Objective: In this review article, we attempt to clarify these terms and provide a working model to accurately diagnose and treat these unwanted behaviors. Method: We are hereby proposing the development of a translational model we term “Reward Deficiency Solution System™” that incorporates neurogenetic testing and meso-limbic manipulation of a “hypodopaminergic” trait/state, which provides dopamine agonistic therapy (DAT) as well as reduced “dopamine resistance,” while embracing “dopamine homeostasis.” Result: The result is better recovery and relapse prevention, despite DNA antecedents, which could impact the recovery process and relapse. Understanding the commonality of mental illness will transform erroneous labeling based on symptomatology, into a genetic and anatomical etiology. WC: 184. PMID:27174576

  16. THE MYSTERIOUS MOTIVATIONAL FUNCTIONS OF MESOLIMBIC DOPAMINE

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Summary Nucleus accumbens dopamine is known to play a role in motivational processes, and dysfunctions of mesolimbic dopamine may contribute to motivational symptoms of depression and other disorders, as well as features of substance abuse. Although it has become traditional to label dopamine neurons as “reward” neurons, this is an over-generalization, and it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. For example, accumbens dopamine does not mediate primary food motivation or appetite, but is involved in appetitive and aversive motivational processes including behavioral activation, exertion of effort, approach behavior, sustained task engagement, Pavlovian processes and instrumental learning. In this review, we discuss the complex roles of dopamine in behavioral functions related to motivation. PMID:23141060

  17. Stress responses and the mesolimbic dopamine system: social contexts and sex differences

    PubMed Central

    Trainor, Brian C.

    2011-01-01

    Organisms react to threats with a variety of behavioral, hormonal, and neurobiological responses. The study of biological responses to stress has historically focused on the hypothalamic-pituitary-adrenal axis, but other systems such as the mesolimbic dopamine system are involved. Behavioral neuroendocrinologists have long recognized the importance of the mesolimbic dopamine system in mediating the effects of hormones on species specific behavior, especially aspects of reproductive behavior. There has been less focus on the role of this system in the context of stress, perhaps due to extensive data outlining its importance in reward or approach-based contexts. However, there is steadily growing evidence that the mesolimbic dopamine neurons have critical effects on behavioral responses to stress. Most of these data have been collected from experiments using a small number of animal model species under a limited set of contexts. This approach has led to important discoveries, but evidence is accumulating that mesolimbic dopamine responses are context dependent. Thus, focusing on a limited number of species under a narrow set of controlled conditions constrains our understanding of how the mesolimbic dopamine system regulates behavior in response to stress. Both affiliative and antagonistic social interactions have important effects on mesolimbic dopamine function, and there is preliminary evidence for sex differences as well. This review will highlight the benefits of expanding this approach, and focus on how social contexts and sex differences can impact mesolimbic dopamine stress responses. PMID:21907202

  18. Phytocannabinoids modulate emotional memory processing through interactions with the ventral hippocampus and mesolimbic dopamine system: implications for neuropsychiatric pathology.

    PubMed

    Hudson, Roger; Rushlow, Walter; Laviolette, Steven R

    2018-02-01

    Growing clinical and preclinical evidence suggests a potential role for the phytocannabinoid cannabidiol (CBD) as a pharmacotherapy for various neuropsychiatric disorders. In contrast, delta-9-tetrahydrocannabinol (THC), the primary psychoactive component in cannabis, is associated with acute and neurodevelopmental propsychotic side effects through its interaction with central cannabinoid type 1 receptors (CB1Rs). CB1R stimulation in the ventral hippocampus (VHipp) potentiates affective memory formation through inputs to the mesolimbic dopamine (DA) system, thereby altering emotional salience attribution. These changes in DA activity and salience attribution, evoked by dysfunctional VHipp regulatory actions and THC exposure, could predispose susceptible individuals to psychotic symptoms. Although THC can accelerate the onset of schizophrenia, CBD displays antipsychotic properties, can prevent the acquisition of emotionally irrelevant memories, and reverses amphetamine-induced neuronal sensitization through selective phosphorylation of the mechanistic target of rapamycin (mTOR) molecular signaling pathway. This review summarizes clinical and preclinical evidence demonstrating that distinct phytocannabinoids act within the VHipp and associated corticolimbic structures to modulate emotional memory processing through changes in mesolimbic DA activity states, salience attribution, and signal transduction pathways associated with schizophrenia-related pathology.

  19. An Anatomical Basis for Opponent Process Mechanisms of Opiate Withdrawal

    PubMed Central

    Radke, Anna K.; Rothwell, Patrick E.; Gewirtz, Jonathan C.

    2011-01-01

    Opponent process theory predicts that the first step in the induction of drug withdrawal is the activation of reward-related circuitry. Using the acoustic startle reflex as a model of anxiety-like behavior in rats, we show the emergence of a negative affective state during withdrawal after direct infusion of morphine into the ventral tegmental area (VTA), the origin of the mesolimbic dopamine system. Potentiation of startle during withdrawal from systemic morphine exposure requires a decrease in opiate receptor stimulation in the VTA and can be relieved by administration of the dopamine receptor agonist apomorphine. Together, our results suggest that the emergence of anxiety during withdrawal from acute opiate exposure begins with activation of VTA mesolimbic dopamine circuitry, providing a mechanism for the opponent process view of withdrawal. PMID:21593338

  20. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor

    PubMed Central

    Richter, Anni; Barman, Adriana; Wüstenberg, Torsten; Soch, Joram; Schanze, Denny; Deibele, Anna; Behnisch, Gusalija; Assmann, Anne; Klein, Marieke; Zenker, Martin; Seidenbecher, Constanze; Schott, Björn H.

    2017-01-01

    Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory. PMID:28507526

  1. Increased /sup 3/H-spiperone binding sites in mesolimbic area related to methamphetamine-induced behavioral hypersensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, K.; Sato, M.; Otsuki, S.

    1982-02-01

    The specific /sup 3/H-spiperone binding to membrane homogenates of the striatum, mesolimbic area, and frontal cortex was examined in two groups of rats pretreated once daily with saline or 4 mg/kg of methamphetamine (MAP) for 14 days. At 7 days following cessation of chronic pretreatment, all rats received an injection of 4 mg/kg of MAP and were decapitated 1 hr after the injection. In the chronic saline-pretreatment group, the single administration of MAP induced significant changes in the number (Bmax) of specific /sup 3/H-spiperone binding sites (a decrease in the striatum and an increase in the mesolimbic area and frontalmore » cortex), but no significant changes in the affinity (KD) in any brain area. The chronic MAP pretreatment markedly augmented the changes in Bmax in the striatum and mesolimbic area. The increase in specific /sup 3/H-spiperone binding sites in the mesolimbic area is discussed in relation to MAP-induced behavioral hypersensitivity.« less

  2. Modulation of the mesolimbic dopamine system by leptin.

    PubMed

    Opland, Darren M; Leinninger, Gina M; Myers, Martin G

    2010-09-02

    Nutritional status modulates many forms of reward-seeking behavior, with caloric restriction increasing the drive for drugs of abuse as well as for food. Understanding the interactions between the mesolimbic dopamine (DA) system (which mediates the incentive salience of natural and artificial rewards) and the neural and hormonal systems that sense and regulate energy balance is thus of significant importance. Leptin, which is produced by adipocytes in proportion to fat content as a hormonal signal of long-term energy stores, acts via its receptor (LepRb) on multiple populations of central nervous system neurons to modulate neural circuits in response to body energy stores. Leptin suppresses feeding and plays a central role in the control of energy balance. In addition to demonstrating that leptin modulates hypothalamic and brainstem circuits to promote satiety, recent work has begun to explore the mechanisms by which leptin influences the mesolimbic DA system and related behaviors. Indeed, leptin diminishes several measures of drug and food reward, and promotes a complex set of changes in the mesolimbic DA system. While many of the details remain to be worked out, several lines of evidence suggest that leptin regulates the mesolimbic DA system via multiple neural pathways and processes, and that distinct sets of LepRb neurons each modulate unique aspects of the mesolimbic DA system and behavior in response to leptin. 2010 Elsevier B.V. All rights reserved.

  3. Galanin: A Role in Mesolimbic Dopamine-Mediated Instrumental Behavior?

    PubMed Central

    Robinson, John K.; Brewer, Ariel

    2008-01-01

    ROBINSON, J.K. and Brewer, A. Galanin: A Role in Mesolimbic-Dopamine Mediated Instrumental Behavior? NEUROSCI BIOBEHAV REV XX(X) XXX-XXX, 2008. The involvement of the neuropeptide galanin in the consumption of the primary “commodities” of food and water is well established. However, the present review describes anatomical and behavioral evidence that suggests that galanin may also modulate ascending mesolimbic dopamine function and thereby play an inhibitory role in the systems by which instrumental behavior is energized toward acquiring primary commodities. General anatomical frameworks for this interaction are presented and future studies that could evaluate it are discussed. PMID:18632153

  4. Hypersexuality Addiction and Withdrawal: Phenomenology, Neurogenetics and Epigenetics

    PubMed Central

    Badgaiyan, Rajendra D; Gold, Mark S

    2015-01-01

    Hypersexuality has been defined as abnormally increased sexual activity. Epidemiological and clinical studies have shown that this non-paraphilic condition consists of "excessive" sexual behaviors and disorders accompanied by personal distress and social and medical morbidity. It is a very controversial and political topic in terms of how best to categorize it as similar or not similar to addictive behaviors including substance abuse. Hypersexual disorder is conceptualized as a non-paraphilic sexual desire disorder with impulsivity. Pathophysiological perspectives include dysregulation of sexual arousal and desire, sexual impulsivity, and sexual compulsivity. The nucleus accumbens, situated within the ventral striatum, mediates the reinforcing effects of drugs of abuse, such as cocaine, alcohol, nicotine, and food as well as music. Indeed, it is believed that this structure mandates behaviors elicited by incentive stimuli. These behaviors include natural rewards like feeding, drinking, sexual behavior, and exploratory locomotion. An essential rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. Here, we are hypothesizing that there is a common mechanism of action (MOA) for the powerful effects drugs, music, food, and sex have on human motivation. The human drive for the three necessary motivational behaviors "hunger, thirst, and sex" may all have common molecular genetic antecedents that, if impaired, lead to aberrant behaviors. We hypothesize that based on a plethora of scientific support hypersexual activity is indeed like drugs, food, and music that activate brain mesolimbic reward circuitry. Moreover, dopaminergic gene and possibly other candidate neurotransmitter-related gene polymorphisms affect both hedonic and anhedonic behavioral outcomes. There is little known about both the genetics and epigenetics of hypersexuality in the current literature. However, we anticipate that future studies based on assessments with clinical instruments combined with genotyping of sex addicts will provide evidence for specific clustering of sexual typologies with polymorphic associations. There have been some studies using electrophysiological techniques that do not support the view that hypersexuality is indeed similar to substance abuse and other behavioral addictions. The authors are also encouraging both clinical and academic scientists to embark on research using neuroimaging tools to examine natural dopaminergic agonistic agents targeting specific gene polymorphisms to "normalize" hypersexual behavior. PMID:26623203

  5. Modulation of meso-limbic reward processing by motivational tendencies in young adolescents and adults

    PubMed Central

    Joseph, Jane E.; Zhu, Xun; Lynam, Donald; Kelly, Thomas H.

    2015-01-01

    Adolescence is a particularly vulnerable period for the onset of substance use disorders and other psychopathology. Individual variability in motivational tendencies and temperament and significant changes in functional brain organization during adolescence are important factors to consider in the development of substance use and dependence. Recent conceptualizations suggest that sensitivity to reward is heightened in adolescence and that this motivation tendency may precipitate subsequent substance abuse. The present study examined the role of personality traits in mesolimbic neurobehavioral response on a monetary incentive delay (MID) task in young adolescents (11–14 years) and emerging adults (18–25 years) using functional magnetic resonance imaging. As a group, adolescents were not more sensitive to gains than losses compared to adults during either anticipatory and feedback phases; instead, compared to adults they showed less sensitivity to incentive magnitude in mesolimbic circuitry during anticipation and feedback stages. However, personality modulated this response such that adolescents high in impulsivity or low in avoidance tendencies showed greater gain sensitivity and adolescents high in avoidance showed greater loss sensitivity during cue anticipation. In adults, mesolimbic response was modulated by the impulsivity construct such that high-impulsive adults showed reduced magnitude sensitivity during both anticipation and feedback compared to low impulsive adults. The present findings suggest that impulsive personality significantly modulates mesolimbic reward response during both adolescence and adulthood but avoidance and approach tendencies also modulate this response in adolescents. Moreover, personality modulated incentive valence in adolescents but incentive magnitude in adults. Collectively, these findings suggest that mesolimbic reward circuitry function is modulated by somewhat different parameters in adolescence than in adulthood. PMID:26690806

  6. Circadian Rhythms and Substance Abuse: Chronobiological Considerations for the Treatment of Addiction.

    PubMed

    Webb, Ian C

    2017-02-01

    Reward-related learning, including that associated with drugs of abuse, is largely mediated by the dopaminergic mesolimbic pathway. Mesolimbic neurophysiology and motivated behavior, in turn, are modulated by the circadian timing system which generates ∼24-h rhythms in cellular activity. Both drug taking and seeking and mesolimbic dopaminergic neurotransmission can vary widely over the day. Moreover, circadian clock genes are expressed in ventral tegmental area dopaminergic cells and in mesolimbic target regions where they can directly modulate reward-related neurophysiology and behavior. There also exists a reciprocal influence between drug taking and circadian timing as the administration of drugs of abuse can alter behavioral rhythms and circadian clock gene expression in mesocorticolimbic structures. These interactions suggest that manipulations of the circadian timing system may have some utility in the treatment of substance abuse disorders. Here, the literature on bidirectional interactions between the circadian timing system and drug taking is briefly reviewed, and potential chronotherapeutic considerations for the treatment of addiction are discussed.

  7. Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women.

    PubMed

    Hermans, Erno J; Bos, Peter A; Ossewaarde, Lindsey; Ramsey, Nick F; Fernández, Guillén; van Honk, Jack

    2010-08-01

    Correlational evidence in humans shows that levels of the androgen hormone testosterone are positively related to reinforcement sensitivity and competitive drive. Structurally similar anabolic-androgenic steroids (AAS) are moreover widely abused, and animal studies show that rodents self-administer testosterone. These observations suggest that testosterone exerts activational effects on mesolimbic dopaminergic pathways involved in incentive processing and reinforcement regulation. However, there are no data on humans supporting this hypothesis. We used functional magnetic resonance imaging (fMRI) to investigate the effects of testosterone administration on neural activity in terminal regions of the mesolimbic pathway. In a placebo-controlled double-blind crossover design, 12 healthy women received a single sublingual administration of .5 mg of testosterone. During MRI scanning, participants performed a monetary incentive delay task, which is known to elicit robust activation of the ventral striatum during reward anticipation. Results show a positive main effect of testosterone on the differential response in the ventral striatum to cues signaling potential reward versus nonreward. Notably, this effect interacted with levels self-reported intrinsic appetitive motivation: individuals with low intrinsic appetitive motivation exhibited larger testosterone-induced increases but had smaller differential responses after placebo. Thus, the present study lends support to the hypothesis that testosterone affects activity in terminal regions of the mesolimbic dopamine system but suggests that such effects may be specific to individuals with low intrinsic appetitive motivation. By showing a potential mechanism underlying central reinforcement of androgen use, the present findings may moreover have implications for our understanding of the pathophysiology of AAS dependency. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Behavioral Functions of the Mesolimbic Dopaminergic System: an Affective Neuroethological Perspective

    PubMed Central

    Alcaro, Antonio; Huber, Robert; Panksepp, Jaak

    2008-01-01

    The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories have emphasized DA's involvement in the orchestration of goal-directed behaviors, and in the promotion and reinforcement of learning. The affective neuroethological perspective presented here, views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to avoid harms. A description of the anatomical framework in which the ML system is embedded is followed by the argument that the SEEKING disposition emerges through functional integration of ventral basal ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spread into BG, DA transmission promotes the “release” of neural activity patterns that induce active SEEKING behaviors when expressed at the motor level. Reverberation of these patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual representations within the extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention, incentive salience, associative learning, and anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity of the affect. The implications of such a view for understanding addiction are considered, with particular emphasis on factors predisposing individuals to develop compulsive drug seeking behaviors. PMID:17905440

  9. Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective.

    PubMed

    Alcaro, Antonio; Huber, Robert; Panksepp, Jaak

    2007-12-01

    The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories have emphasized DA's involvement in the orchestration of goal-directed behaviors and in the promotion and reinforcement of learning. The affective neuroethological perspective presented here views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to avoid harms. A description of the anatomical framework in which the ML system is embedded is followed by the argument that the SEEKING disposition emerges through functional integration of ventral basal ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spreads into BG, DA transmission promotes the "release" of neural activity patterns that induce active SEEKING behaviors when expressed at the motor level. Reverberation of these patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual representations within the extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention, incentive salience, associative learning, and anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity of the affect. The implications of such a view for understanding addiction are considered, with particular emphasis on factors predisposing individuals to develop compulsive drug seeking behaviors.

  10. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake

    PubMed Central

    Liang, Nu-Chu; Bello, Nicholas T.; Moran, Timothy H.

    2015-01-01

    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) µ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. PMID:25668514

  11. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding

    PubMed Central

    Cansell, Céline; Castel, Julien; Denis, Raphaël G. P.; Rouch, Claude; Delbes, Anne-Sophie; Martinez, Sarah; Mestivier, Denis; Finan, Brian; Maldonado-Aviles, Jaime G.; Rijnsburger, Merel; Tschöp, Matthias H.; DiLeone, Ralph J.; Eckel, Robert H.; la Fleur, Susanne E.; Magnan, Christophe; Hnasko, Thomas S.; Luquet, Serge

    2014-01-01

    Circulating triglycerides (TG) normally increase after a meal but are altered in pathophysiological conditions such as obesity. Although TG metabolism in the brain remains poorly understood, several brain structures express enzymes that process TG-enriched particles, including mesolimbic structures. For this reason, and because consumption of high fat diet alters dopamine signaling, we tested the hypothesis that TG might directly target mesolimbic reward circuits to control reward-seeking behaviors. We found that the delivery of small amounts of TG to the brain through the carotid artery rapidly reduced both spontaneous and amphetamine-induced locomotion, abolished preference for palatable food, and reduced the motivation to engage in food-seeking behavior. Conversely, targeted disruption of the TG-hydrolyzing enzyme lipoprotein lipase specifically in the nucleus accumbens increased palatable food preference and food seeking behavior. Finally, prolonged TG perfusion resulted in a return to normal palatable food preference despite continued locomotor suppression, suggesting that adaptive mechanisms occur. These findings reveal new mechanisms by which dietary fat may alter mesolimbic circuit function and reward seeking. PMID:24732670

  12. Hypothalamic interaction with the mesolimbic DA system in the control of the maternal and sexual behaviors in rats.

    PubMed

    Stolzenberg, Danielle S; Numan, Michael

    2011-01-01

    The medial preoptic area (MPOA) of the hypothalamus regulates maternal behavior, male sexual behavior, and female sexual behavior. Functional neuroanatomical evidence indicates that the appetitive aspects of maternal behavior are regulated through MPOA interactions with the mesolimbic dopamine (DA) system; a major focus of this review is to explore whether or not the MPOA participates in the appetitive aspects of sexual behavior via its interaction with the mesolimbic DA system. A second focus of this review is to examine the extent to which estradiol interactions with DA within this circuit regulate all three reproductive behaviors. One mechanism through which estradiol activates male sexual behavior is through the potentiation of DA activity in the MPOA. In the hypothalamus, estradiol has also been found to act in concert with DA, through the activation of similar intracellular signaling pathways, in order to stimulate female sexual behavior. Finally, recent evidence suggests that some effects of estradiol are mediated by direct action of estradiol on the mesolimbic DA system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Two-week administration of the combined serotonin-noradrenaline reuptake inhibitor duloxetine augments functioning of mesolimbic incentive processing circuits.

    PubMed

    Ossewaarde, Lindsey; Verkes, Robbert J; Hermans, Erno J; Kooijman, Sabine C; Urner, Maren; Tendolkar, Indira; van Wingen, Guido A; Fernández, Guillén

    2011-09-15

    Anhedonia and lack of motivation are core symptoms of major depressive disorder (MDD). Neuroimaging studies in MDD patients have shown reductions in reward-related activity in terminal regions of the mesolimbic dopamine (DA) system, such as the ventral striatum. Monoamines have been implicated in both mesolimbic incentive processing and the mechanism of action of antidepressant drugs. However, not much is known about antidepressant effects on mesolimbic incentive processing in humans, which might be related to the effects on anhedonia. To investigate the short-term effects of antidepressants on reward-related activity in the ventral striatum, we investigated the effect of the combined serotonin-norepinephrine reuptake inhibitor duloxetine. Healthy volunteers underwent functional magnetic resonance imaging in a randomized, double-blind, placebo-controlled, crossover study. After taking duloxetine (60 mg once a day) or placebo for 14 days, participants completed a monetary incentive delay task that activates the ventral striatum during reward anticipation. Our results (n = 19) show enhanced ventral striatal responses after duloxetine administration compared with placebo. Moreover, this increase in ventral striatal activity was positively correlated with duloxetine plasma levels. This is the first study to demonstrate that antidepressants augment neural activity in mesolimbic DA incentive processing circuits in healthy volunteers. These effects are likely caused by the increase in monoamine neurotransmission in the ventral striatum. Our findings suggest that antidepressants may alleviate anhedonia by stimulating incentive processing. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry

    PubMed Central

    Pomeranz, Lisa E.; Ekstrand, Mats I.; Latcha, Kaamashri N.; Smith, Gregory A.; Enquist, Lynn W.

    2017-01-01

    The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits. SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits. PMID:28283558

  15. Investigating the Impact of a Genome-Wide Supported Bipolar Risk Variant of MAD1L1 on the Human Reward System.

    PubMed

    Trost, Sarah; Diekhof, Esther K; Mohr, Holger; Vieker, Henning; Krämer, Bernd; Wolf, Claudia; Keil, Maria; Dechent, Peter; Binder, Elisabeth B; Gruber, Oliver

    2016-10-01

    Recent genome-wide association studies have identified MAD1L1 (mitotic arrest deficient-like 1) as a susceptibility gene for bipolar disorder and schizophrenia. The minor allele of the single-nucleotide polymorphism (SNP) rs11764590 in MAD1L1 was associated with bipolar disorder. Both diseases, bipolar disorder and schizophrenia, are linked to functional alterations in the reward system. We aimed at investigating possible effects of the MAD1L1 rs11764590 risk allele on reward systems functioning in healthy adults. A large homogenous sample of 224 young (aged 18-31 years) participants was genotyped and underwent functional magnetic resonance imaging (fMRI). All participants performed the 'Desire-Reason Dilemma' paradigm investigating the neural correlates that underlie reward processing and active reward dismissal in favor of a long-term goal. We found significant hypoactivations of the ventral tegmental area (VTA), the bilateral striatum and bilateral frontal and parietal cortices in response to conditioned reward stimuli in the risk allele carriers compared with major allele carriers. In the dilemma situation, functional connectivity between prefrontal brain regions and the ventral striatum was significantly diminished in the risk allele carriers. Healthy risk allele carriers showed a significant deficit of their bottom-up response to conditioned reward stimuli in the bilateral VTA and striatum. Furthermore, functional connectivity between the ventral striatum and prefrontal areas exerting top-down control on the mesolimbic reward system was reduced in this group. Similar alterations in reward processing and disturbances of prefrontal control mechanisms on mesolimbic brain circuits have also been reported in bipolar disorder and schizophrenia. Together, these findings suggest the existence of an intermediate phenotype associated with MAD1L1.

  16. Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats.

    PubMed

    Balfour, Margaret E; Yu, Lei; Coolen, Lique M

    2004-04-01

    The mesolimbic system plays an important role in the regulation of both pathological behaviors such as drug addiction and normal motivated behaviors such as sexual behavior. The present study investigated the mechanism by which this system is endogenously activated during sexual behavior. Specifically, the effects of sexual experience and sex-related environmental cues on the activation of several components of the mesolimbic system were studied. The mesolimbic system consists of a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAc). Previous studies suggest that these neurons are under tonic inhibition by local GABA interneurons, which are in turn modulated by mu opioid receptor (MOR) ligands. To test the hypothesis that opioids are acting in the VTA during sexual behavior, visualization of MOR internalization in VTA was used as a marker for ligand-induced activation of the receptor. Significant increases in MOR internalization were observed following copulation or exposure to sex-related environmental cues. The next goal was to determine if sexual behavior activates dopamine neurons in the VTA, using tyrosine hydroxylase as a marker for dopaminergic neurons and Fos-immunoreactivity as a marker for neuronal activation. Significant increases in the percentage of activated dopaminergic neurons were observed following copulation or exposure to sex-related environmental cues. In addition, mating and sex-related cues activated a large population of nondopaminergic neurons in VTA as well as neurons in both the NAc Core and Shell. Taken together, our results provide functional neuroanatomical evidence that the mesolimbic system is activated by both sexual behavior and exposure to sex-related environmental cues.

  17. Delta-9-Tetrahydrocannabinol Potentiates Fear Memory Salience Through Functional Modulation of Mesolimbic Dopaminergic Activity States.

    PubMed

    Fitoussi, Aurelie; Zunder, Jordan; Tan, Huibing; Laviolette, Steven R

    2018-05-18

    Chronic or acute exposure to delta-9-tetrahydrocannabinol (THC), the main psychoactive compound in cannabis, has been associated with numerous neuropsychiatric side-effects, including dysregulation of emotional processing and associative memory formation. Clinical and pre-clinical evidence suggests that the effects of THC are due to the ability to modulate mesolimbic dopamine (DA) activity states in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Nevertheless, the mechanisms by which THC modulates mesolimbic DA function and emotional processing are not well understood. Using an olfactory associative fear memory procedure combined with in vivo neuronal electrophysiology, we examined the effects of direct THC microinfusions targeting the shell region of the NAc (NASh) and examined how THC may modulate the processing of fear-related emotional memory and concomitant activity states of the mesolimbic DA system. We report that intra-NASh THC dose-dependently potentiates the emotional salience of normally sub-threshold fear-conditioning cues. These effects were dependent upon intra-VTA transmission through GABAergic receptor mechanisms and intra-NASh DAergic transmission. Furthermore, doses of intra-NASh THC that potentiated fear memory salience were found to modulate intra-VTA neuronal network activity by increasing the spontaneous firing and bursting frequency of DAergic neurons whilst decreasing the activity levels of a subpopulation of putative GABAergic VTA neurons. These findings demonstrate that THC can act directly in the NASh to modulate mesolimbic activity states and induce disturbances in emotional salience and memory formation through modulation of VTA DAergic transmission. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Adolescent Traumatic Brain Injury Induces Chronic Mesolimbic Neuroinflammation with Concurrent Enhancement in the Rewarding Effects of Cocaine in Mice during Adulthood.

    PubMed

    Merkel, Steven F; Razmpour, Roshanak; Lutton, Evan M; Tallarida, Christopher S; Heldt, Nathan A; Cannella, Lee Anne; Persidsky, Yuri; Rawls, Scott M; Ramirez, Servio H

    2017-01-01

    Clinical psychiatric disorders of depression, anxiety, and substance abuse are most prevalent after traumatic brain injury (TBI). Pre-clinical research has focused on depression and anxiety post-injury; however, virtually no data exist examining whether the preference for illicit drugs is affected by traumatic injury in the developing adolescent brain. Using the controlled cortical impact (CCI) model of TBI and the conditioned place preference (CPP) assay, we tested the underlying hypothesis that brain injury during adolescence exacerbates the rewarding properties of cocaine in adulthood possibly through an active inflammatory status in the mesolimbic pathway. Six-week old, C57BL/6 mice sustained a single CCI-TBI to the right somatosensory cortex. CPP experiments with cocaine began 2 weeks post-TBI. Animals receiving cocaine displayed significant place preference shifts compared to saline controls. Further, within the cocaine-experienced cohort, moderate CCI-TBI during adolescence significantly increased the preference shift in adulthood when compared to naïve controls. Additionally, persistent neuroinflammatory responses were observed in the cortex, nucleus accumbens (NAc), and ventral tegmental area post-CCI-TBI. Significant increases in both astrocytic, glial fibrillary acidic protein, and microglial, ionization basic acid 1, markers were observed in the NAc at the end of CPP testing. Moreover, analysis using focused array gene expression panels identified the upregulation of numerous inflammatory genes in moderate CCI-TBI animals, compared to naïve controls, both in the cortex and NAc at 2 weeks post-TBI, before onset of cocaine administration. These results suggest that sustaining moderate TBI during adolescence may augment the rewarding effects of psychostimulants in adulthood, possibly by induction of chronic mesolimbic neuroinflammation.

  19. Different interactions of prolyl oligopeptidase and neurotensin in dopaminergic function of the rat nigrostriatal and mesolimbic pathways.

    PubMed

    Peltonen, I; Myöhänen, T T; Männistö, P T

    2012-09-01

    Prolyl oligopeptidase (PREP) is an intracellular enzyme digesting small proline-containing peptides. Since PREP resides the same brain areas as neurotensin in the nigrostriatal and mesolimbic dopaminergic pathways, we were interested to study if there is an intracellular interaction between them. A colocalization of PREP with neurotensin and neurotensin receptor 1 (NTS1) in the rat striatum, nucleus accumbens (NAcc), substantia nigra (SN) and ventral tegmental area (VTA) was studied with immunofluorescence. From the same brain areas, the levels of dopamine and its metabolites were measured 1 h after the injection of saline, NTS1 ligands (JMV-449; 5 μg) or antagonist (SR142948; 5 μg) to the rat striatum or NAcc. We also studied whether an intraperitoneal injection of a PREP inhibitor (KYP-2047; 5 mg/kg) affects the levels of dopamine and its metabolites alone or modifies the effects of the NTS1 ligands. PREP was highly colocalized with neurotensin and NTS1 in the VTA, and with NTS1 in the SN. Colocalization was moderate or low in other brain areas. When injected to the striatum, JMV-449 had a tendency to increase dopamine (p = 0.052) and metabolite levels in the striatum and SN, whereas SR142948 did not. After the injection to the NAcc, JMV-449 but not SR142948, increased dopamine levels in the VTA and dopamine metabolite levels in the NAcc and VTA. KYP-2047 decreased the dopamine levels in the striatum, but increased dopamine metabolite levels in the NAcc and VTA. Our results suggest a novel role for PREP in the modulation of dopaminergic transmission, which may be different in nigrostriatal and mesolimbic pathways.

  20. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc).

    PubMed

    Whiting, Lynda; McCutcheon, James E; Boyle, Christina N; Roitman, Mitchell F; Lutz, Thomas A

    2017-07-01

    The pancreatic hormone amylin and its agonist salmon calcitonin (sCT) act via the area postrema (AP) and the lateral parabrachial nucleus (PBN) to reduce food intake. Investigations of amylin and sCT signaling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) suggest that the eating inhibitory effect of amylin is, in part, mediated through the mesolimbic 'reward' pathway. Indeed, administration of the sCT directly to the VTA decreased phasic dopamine release (DA) in the NAc. However, it is not known if peripheral amylin modulates the mesolimbic system directly or whether this occurs via the AP and PBN. To determine whether and how peripheral amylin or sCT affect mesolimbic reward circuitry we utilized fast scan cyclic voltammetry under anesthesia to measure phasic DA release in the NAc evoked by electrical stimulation of the VTA in intact, AP lesioned and bilaterally PBN lesioned rats. Amylin (50μg/kg i.p.) did not change phasic DA responses compared to saline control rats. However, sCT (50μg/kg i.p.) decreased evoked DA release to VTA-stimulation over 1h compared to saline treated control rats. Further investigations determined that AP and bilateral PBN lesions abolished the ability of sCT to suppress evoked phasic DA responses to VTA-stimulation. These findings implicate the AP and the PBN as important sites for peripheral sCT to decrease evoked DA release in the NAc and suggest that these nuclei may influence hedonic and motivational processes to modulate food intake. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Early Iron Deficiency Has Brain and Behavior Effects Consistent with Dopaminergic Dysfunction123

    PubMed Central

    Lozoff, Betsy

    2011-01-01

    To honor the late John Beard’s many contributions regarding iron and dopamine biology, this review focuses on recent human studies that test specific hypotheses about effects of early iron deficiency on dopamine system functioning. Short- and long-term alterations associated with iron deficiency in infancy can be related to major dopamine pathways (mesocortical, mesolimbic, nigrostriatal, tuberohypophyseal). Children and young adults who had iron deficiency anemia in infancy show poorer inhibitory control and executive functioning as assessed by neurocognitive tasks where pharmacologic and neuroimaging studies implicate frontal-striatal circuits and the mesocortical dopamine pathway. Alterations in the mesolimbic pathway, where dopamine plays a major role in behavioral activation and inhibition, positive affect, and inherent reward, may help explain altered social-emotional behavior in iron-deficient infants, specifically wariness and hesitance, lack of positive affect, diminished social engagement, etc. Poorer motor sequencing and bimanual coordination and lower spontaneous eye blink rate in iron-deficient anemic infants are consistent with impaired function in the nigrostriatal pathway. Short- and long-term changes in serum prolactin point to dopamine dysfunction in the tuberohypophyseal pathway. These hypothesis-driven findings support the adverse effects of early iron deficiency on dopamine biology. Iron deficiency also has other effects, specifically on other neurotransmitters, myelination, dendritogenesis, neurometabolism in hippocampus and striatum, gene and protein profiles, and associated behaviors. The persistence of poorer cognitive, motor, affective, and sensory system functioning highlights the need to prevent iron deficiency in infancy and to find interventions that lessen the long-term effects of this widespread nutrient disorder. PMID:21346104

  2. Dopamine signaling in reward-related behaviors.

    PubMed

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  3. Cannabidiol Modulates Fear Memory Formation Through Interactions with Serotonergic Transmission in the Mesolimbic System

    PubMed Central

    Norris, Christopher; Loureiro, Michael; Kramar, Cecilia; Zunder, Jordan; Renard, Justine; Rushlow, Walter; Laviolette, Steven R

    2016-01-01

    Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders. CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems. However, the underlying mechanisms by which CBD may modulate emotional processing are not currently understood. Using a combination of in vivo electrophysiological recording and fear conditioning in rats, the present study aimed to characterize the behavioral, neuroanatomical, and pharmacological effects of CBD within the mesolimbic pathway, and its possible functional interactions with 5-HT and DAergic transmission. Using targeted microinfusions of CBD into the shell region of the mesolimbic nucleus accumbens (NASh), we report that intra-NASh CBD potently blocks the formation of conditioned freezing behaviors. These effects were challenged with DAergic, cannabinoid CB1 receptor, and serotonergic (5-HT1A) transmission blockade, but only 5-HT1A blockade restored associative conditioned freezing behaviors. In vivo intra-ventral tegmental area (VTA) electrophysiological recordings revealed that behaviorally effective doses of intra-NASh CBD elicited a predominant decrease in spontaneous DAergic neuronal frequency and bursting activity. These neuronal effects were reversed by simultaneous blockade of 5-HT1A receptor transmission. Finally, using a functional contralateral disconnection procedure, we demonstrated that the ability of intra-NASh CBD to block the formation of conditioned freezing behaviors was dependent on intra-VTA GABAergic transmission substrates. Our findings demonstrate a novel NAc→VTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signaling. PMID:27296152

  4. Positive symptoms in first-episode psychosis patients experiencing low maternal care and stressful life events: a pilot study to explore the role of the COMT gene.

    PubMed

    Ira, Elisa; De Santi, Katia; Lasalvia, Antonio; Bonetto, Chiara; Zanatta, Gioia; Cristofalo, Doriana; Bertani, Mariaelena; Bissoli, Sarah Saviana; Riolo, Rossana; Gardellin, Francesco; Morandin, Idana; Ramon, Luana; Tansella, Michele; Ruggeri, Mirella; Tosato, Sarah

    2014-09-01

    COMT Val(158)Met moderates the effect of stress on psychotic symptoms. Exposure to stress is also associated with mesolimbic dopamine release in individuals experiencing low maternal care. We therefore test the hypothesis that recent stressful life events are associated with more severe positive symptoms (associated with mesolimbic dopamine release) in first-episode psychosis (FEP) patients who experienced low maternal care during childhood. We hypothesized that COMT Val(158)Met moderates this association. A total of 149 FEP patients recruited within the Psychosis Incident Cohort Outcome Study (PICOS) participated in the present study. Maternal care was assessed by the Parental Bonding Instrument (PBI), stressful life events were collected by the List of Events Scale and positive symptoms were assessed by the Positive and Negative Syndrome Scale (PANSS). We found that low maternal care and recent stressful life events were associated with higher level of positive symptoms at the onset (analysis of variance [ANOVA], p = 0.012), and that patients who were also homozygotes for the COMT Val(158) allele had the highest level of positive symptoms (ANOVA, p = 0.024). Low maternal care and severe stressful life events may contribute to a symptomatology characterized by more severe positive symptoms at the onset, possibly due to an increased mesolimbic dopamine release. Homozygosity for the COMT Val(158) allele seems to confer a biological predisposition to the stress-related hyperactivity of the mesolimbic dopaminergic system. The data imply that the mesolimbic dopaminergic system is involved in the mediation/modulation of the effect of stressful events on the vulnerability for psychosis.

  5. Differences in the time course of dopaminergic supersensitivity following chronic administration of haloperidol, molindone, or sulpiride.

    PubMed

    Prosser, E S; Pruthi, R; Csernansky, J G

    1989-01-01

    The onset and persistence of changes in 3H-spiroperidol binding to dopamine (DA) D2 receptors were examined in rat mesolimbic and striatal brain regions following daily administration of haloperidol, molindone, or sulpiride for 3, 7, 14, or 28 days. Neuroleptic dose equivalencies were determined by inhibition of 3H-spiroperidol in vivo binding in several rat brain regions. Changes in locomotor and stereotyped responses to the specific DA D2 agonist quinpirole were examined 3 days after the last treatment dose. Haloperidol or molindone administration increased mean stereotypy scores and striatal DA D2 receptor densities throughout the 28-day treatment period. In contrast, mesolimbic DA D2 receptor densities were transiently increased and returned to control values, after 28 days of haloperidol or molindone treatment. Sulpiride treatment increased mean stereotypy scores and striatal Bmax values, but had no effect on locomotion or mesolimbic dopamine receptor density. Additionally, the magnitude of change in the various measures of brain DA function varied among the three neuroleptic treatment groups. Results from this study suggest that mesolimbic and striatal brain regions differ in their response to long-term neuroleptic administration and that drug choice may influence the magnitude of neuroleptic-induced dopaminergic supersensitivity.

  6. [Emotion and basal ganglia (I): what can we learn from Parkinson's disease?].

    PubMed

    Dondaine, T; Péron, J

    2012-01-01

    Parkinson's disease provides a useful model for studying the neural substrates of emotional processing. The striato-thalamo-cortical circuits, like the mesolimbic dopamine system that modulates their function, are thought to be involved in emotional processing. As Parkinson's disease is histopathologically characterized by the selective, progressive and chronic degeneration of the nigrostriatal and mesocorticolimbic dopamine systems, it can therefore serve as a model for assessing the functional role of these circuits in humans. In the present review, after a definition of emotional processing from a multicomponential perspective, a synopsis of the emotional disturbances observed in Parkinson's disease is proposed. Note that the studies on the affective consequences of subthalamic nucleus deep brain stimulation in Parkinson's disease were excluded from this review because the subject of a companion paper in this issue. This review leads to the conclusion that several emotional components would be disrupted in Parkinson's disease: subjective feeling, neurophysiological activation, and motor expression. We then discuss the functional roles of the striato-thalamo-cortical and mesolimbic circuits, ending with the conclusion that both these pathways are indeed involved in emotional processing. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Galanin and addiction.

    PubMed

    Picciotto, M R

    2008-06-01

    There has been increasing interest in the ability of neuropeptides involved in feeding to modulate circuits important for responses to drugs of abuse. A number of peptides with effects on hypothalamic function also modulate the mesolimbic dopamine system (ventral tegmental area and nucleus accumbens). Similarly, common stress-related pathways can modulate food intake, drug reward and symptoms of drug withdrawal. Galanin promotes food intake and the analgesic properties of opiates; thus it initially seemed possible that galanin might potentiate opiate reinforcement. Instead, galanin agonists decrease opiate reward, measured by conditioned place preference, and opiate withdrawal signs, whereas opiate reward and withdrawal are increased in knock-out mice lacking galanin. This is consistent with studies showing that galanin decreases activity-evoked dopamine release in striatal slices and decreases the firing rate of noradrenergic neurons in locus coeruleus, areas involved in drug reward and withdrawal, respectively. These data suggest that polymorphisms in genes encoding galanin or galanin receptors might be associated with susceptibility to opiate abuse. Further, galanin receptors might be potential targets for development of novel treatments for addiction.

  8. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    PubMed Central

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  9. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    PubMed

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  10. Changes in mu-opioid receptor expression and function in the mesolimbic system after long-term access to a palatable diet.

    PubMed

    Pitman, Kimberley A; Borgland, Stephanie L

    2015-10-01

    The incidence of obesity in both adults and children is rising. In order to develop effective treatments for obesity, it is important to understand how diet can induce changes in the brain that could promote excessive intake of high-calorie foods and alter the efficacy of therapeutic targets. The mu-opioid receptor is involved in regulating the motivation for and hedonic reaction to food. Here, we review the literature examining changes in the expression and function of mu-opioid receptors in the mesolimbic system of rodents after extended access to a high-fat diet. We also review how maternal diet can induce long-term changes in the expression or function of mu-opioid receptors in the mesolimbic system of offspring. Understanding the behavioural and therapeutic implications of these changes requires further study. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cell-type specific increases in female hamster nucleus accumbens spine density following female sexual experience.

    PubMed

    Staffend, Nancy A; Hedges, Valerie L; Chemel, Benjamin R; Watts, Val J; Meisel, Robert L

    2014-11-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor-expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse.

  12. Cell-Type Specific Increases in Female Hamster Nucleus Accumbens Spine Density following Female Sexual Experience

    PubMed Central

    Staffend, Nancy A.; Hedges, Valerie L.; Chemel, Benjamin R.; Watts, Val J.; Meisel, Robert L.

    2013-01-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse. PMID:23934655

  13. Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway

    PubMed Central

    Renard, Justine; Loureiro, Michael; Rosen, Laura G.; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J.

    2016-01-01

    Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. SIGNIFICANCE STATEMENT The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway. PMID:27147666

  14. Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway.

    PubMed

    Renard, Justine; Loureiro, Michael; Rosen, Laura G; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J; Laviolette, Steven R

    2016-05-04

    Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway. Copyright © 2016 the authors 0270-6474/16/365160-10$15.00/0.

  15. Motor and cognitive performances of parkinsonian patients in the on and off phases of the disease.

    PubMed Central

    Girotti, F; Carella, F; Grassi, M P; Soliveri, P; Marano, R; Caraceni, T

    1986-01-01

    Twenty-one Parkinsonian patients were tested in on and off phases during chronic levodopa therapy for cognitive function, affective status, and evaluation of motor performance with reaction and movement times. A worsening of mood was observed from the on to the off phase. No variation in cognitive performance was observed from the on to the off phase in spite of evident motor changes. Mood changes during on-off variations may reflect involvement of mesocortical and mesolimbic dopaminergic systems. PMID:3734822

  16. Retrieval Demands Adaptively Change Striatal Old/New Signals and Boost Subsequent Long-Term Memory.

    PubMed

    Herweg, Nora A; Sommer, Tobias; Bunzeck, Nico

    2018-01-17

    The striatum is a central part of the dopaminergic mesolimbic system and contributes both to the encoding and retrieval of long-term memories. In this regard, the co-occurrence of striatal novelty and retrieval success effects in independent studies underlines the structure's double duty and suggests dynamic contextual adaptation. To test this hypothesis and further investigate the underlying mechanisms of encoding and retrieval dynamics, human subjects viewed pre-familiarized scene images intermixed with new scenes and classified them as indoor versus outdoor (encoding task) or old versus new (retrieval task), while fMRI and eye tracking data were recorded. Subsequently, subjects performed a final recognition task. As hypothesized, striatal activity and pupil size reflected task-conditional salience of old and new stimuli, but, unexpectedly, this effect was not reflected in the substantia nigra and ventral tegmental area (SN/VTA), medial temporal lobe, or subsequent memory performance. Instead, subsequent memory generally benefitted from retrieval, an effect possibly driven by task difficulty and activity in a network including different parts of the striatum and SN/VTA. Our findings extend memory models of encoding and retrieval dynamics by pinpointing a specific contextual factor that differentially modulates the functional properties of the mesolimbic system. SIGNIFICANCE STATEMENT The mesolimbic system is involved in the encoding and retrieval of information but it is unclear how these two processes are achieved within the same network of brain regions. In particular, memory retrieval and novelty encoding were considered in independent studies, implying that novelty (new > old) and retrieval success (old > new) effects may co-occur in the striatum. Here, we used a common framework implicating the striatum, but not other parts of the mesolimbic system, in tracking context-dependent salience of old and new information. The current study, therefore, paves the way for a more comprehensive understanding of the functional properties of the mesolimbic system during memory encoding and retrieval. Copyright © 2018 the authors 0270-6474/18/380745-10$15.00/0.

  17. Inflammatory Pain Promotes Increased Opioid Self-Administration: Role of Dysregulated Ventral Tegmental Area μ Opioid Receptors

    PubMed Central

    Hipólito, Lucia; Wilson-Poe, Adrianne; Campos-Jurado, Yolanda; Zhong, Elaine; Gonzalez-Romero, Jose; Virag, Laszlo; Whittington, Robert; Comer, Sandra D.; Carlton, Susan M.; Walker, Brendan M.; Bruchas, Michael R.

    2015-01-01

    Pain management in opioid abusers engenders ethical and practical difficulties for clinicians, often resulting in pain mismanagement. Although chronic opioid administration may alter pain states, the presence of pain itself may alter the propensity to self-administer opioids, and previous history of drug abuse comorbid with chronic pain promotes higher rates of opioid misuse. Here, we tested the hypothesis that inflammatory pain leads to increased heroin self-administration resulting from altered mu opioid receptor (MOR) regulation of mesolimbic dopamine (DA) transmission. To this end, the complete Freund's adjuvant (CFA) model of inflammation was used to assess the neurochemical and functional changes induced by inflammatory pain on MOR-mediated mesolimbic DA transmission and on rat intravenous heroin self-administration under fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. In the presence of inflammatory pain, heroin intake under an FR schedule was increased for high, but attenuated for low, heroin doses with concomitant alterations in mesolimbic MOR function suggested by DA microdialysis. Consistent with the reduction in low dose FR heroin self-administration, inflammatory pain reduced motivation for a low dose of heroin, as measured by responding under a PR schedule of reinforcement, an effect dissociable from high heroin dose PR responding. Together, these results identify a connection between inflammatory pain and loss of MOR function in the mesolimbic dopaminergic pathway that increases intake of high doses of heroin. These findings suggest that pain-induced loss of MOR function in the mesolimbic pathway may promote opioid dose escalation and contribute to opioid abuse-associated phenotypes. SIGNIFICANCE STATEMENT This study provides critical new insights that show that inflammatory pain alters heroin intake through a desensitization of MORs located within the VTA. These findings expand our knowledge of the interactions between inflammatory pain and opioid abuse liability, and should help to facilitate the development of novel and safer opioid-based strategies for treating chronic pain. PMID:26338332

  18. Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson's disease.

    PubMed

    Caminiti, Silvia Paola; Presotto, Luca; Baroncini, Damiano; Garibotto, Valentina; Moresco, Rosa Maria; Gianolli, Luigi; Volonté, Maria Antonietta; Antonini, Angelo; Perani, Daniela

    2017-01-01

    A progressive loss of dopamine neurons in the substantia nigra (SN) is considered the main feature of idiopathic Parkinson's disease (PD). Recent neuropathological evidence however suggests that the axons of the nigrostriatal dopaminergic system are the earliest target of α-synuclein accumulation in PD, thus the principal site for vulnerability. Whether this applies to in vivo PD, and also to the mesolimbic system has not been investigated yet. We used [ 11 C]FeCIT PET to measure presynaptic dopamine transporter (DAT) activity in both nigrostriatal and mesolimbic systems, in 36 early PD patients (mean disease duration in months ± SD 21.8 ± 10.7) and 14 healthy controls similar for age. We also performed anatomically-driven partial correlation analysis to evaluate possible changes in the connectivity within both the dopamine networks at an early clinical phase. In the nigrostriatal system, we found a severe DAT reduction in the afferents to the dorsal putamen (DPU) (η 2  = 0.84), whereas the SN was the less affected region (η 2  = 0.31). DAT activity in the ventral tegmental area (VTA) and the ventral striatum (VST) were also reduced in the patient group, but to a lesser degree (VST η 2  = 0.71 and VTA η 2  = 0.31). In the PD patients compared to the controls, there was a marked decrease in dopamine network connectivity between SN and DPU nodes, supporting the significant derangement in the nigrostriatal pathway. These results suggest that neurodegeneration in the dopamine pathways is initially more prominent in the afferent axons and more severe in the nigrostriatal system. Considering PD as a disconnection syndrome starting from the axons, it would justify neuroprotective interventions even if patients have already manifested clinical symptoms.

  19. Pharmacological Modulation of 5-HT2C Receptor Activity Produces Bidirectional Changes in Locomotor Activity, Responding for a Conditioned Reinforcer, and Mesolimbic DA Release in C57BL/6 Mice.

    PubMed

    Browne, Caleb J; Ji, Xiaodong; Higgins, Guy A; Fletcher, Paul J; Harvey-Lewis, Colin

    2017-10-01

    Converging lines of behavioral, electrophysiological, and biochemical evidence suggest that 5-HT 2C receptor signaling may bidirectionally influence reward-related behavior through an interaction with the mesolimbic dopamine (DA) system. Here we directly test this hypothesis by examining how modulating 5-HT 2C receptor activity affects DA-dependent behaviors and relate these effects to changes in nucleus accumbens (NAc) DA release. In C57BL/6 mice, locomotor activity and responding for a conditioned reinforcer (CRf), a measure of incentive motivation, were examined following treatment with three 5-HT 2C receptor ligands: the agonist CP809101 (0.25-3 mg/kg), the antagonist SB242084 (0.25-1 mg/kg), or the antagonist/inverse agonist SB206553 (1-5 mg/kg). We further tested whether doses of these compounds that changed locomotor activity and responding for a CRf (1 mg/kg CP809101, 0.5 mg/kg SB242084, or 2.5 mg/kg SB206553) also altered NAc DA release using in vivo microdialysis in anesthetized mice. CP809101 reduced locomotor activity, responding for a CRf, and NAc DA release. In contrast, both SB242084 and SB206553 enhanced locomotor activity, responding for a CRf, and NAc DA release, although higher doses of SB206553 produced opposite behavioral effects. Pretreatment with the non-selective DA receptor antagonist α-flupenthixol prevented SB242084 from enhancing responding for a CRf. Thus blocking tonic 5-HT 2C receptor signaling can release serotonergic inhibition of mesolimbic DA activity and enhance reward-related behavior. The observed bidirectional effects of 5-HT 2C receptor ligands may have important implications when considering the 5-HT 2C receptor as a therapeutic target for psychiatric disorders, particularly those presenting with motivational dysfunctions.

  20. Mesolimbic effects of the antidepressant fluoxetine in Holtzman rats, a genetic strain with increased vulnerability to stress

    PubMed Central

    Padilla, Eimeira; Shumake, Jason; Barrett, Douglas W.; Sheridan, Eva C.; Gonzalez-Lima, F.

    2011-01-01

    This is the first metabolic mapping study of the effects of fluoxetine after learned helplessness training. Antidepressants are the most commonly prescribed medications, but the regions underlying treatment effects in affectively disordered brains are poorly understood. We hypothesized the antidepressant action of fluoxetine would produce adaptations in mesolimbic regions after two weeks of treatment. We used Holtzman rats, a genetic strain showing susceptibility to novelty-evoked hyperactivity and stress-evoked helplessness, to map regional brain metabolic effects caused by fluoxetine treatment. Animals underwent learned helplessness, and subsequently immobility time was scored in the forced swim test (FST). On the next day, animals began receiving two weeks of fluoxetine (5 mg/kg/day) or vehicle and were retested in the FST at the end of drug treatment. Antidepressant behavioral effects of fluoxetine were analyzed using a ratio of immobility during pre- and post-treatment FST sessions. Brains were analyzed for regional metabolic activity using quantitative cytochrome oxidase histochemistry as in our previous study using congenitally helpless rats. Fluoxetine exerted a protective effect against FST-induced immobility behavior in Holtzman rats. Fluoxetine also caused a significant reduction in the mean regional metabolism of the nucleus accumbens shell and the ventral hippocampus as compared to vehicle-treated subjects. Additional networks affected by fluoxetine treatment included the prefrontal-cingulate cortex and brainstem nuclei linked to depression (e.g. habenula, dorsal raphe and interpeduncular nucleus). We concluded that corticolimbic regions such as the prefrontal-cingulate cortex, nucleus accumbens, ventral hippocampus and key brainstem nuclei represent important contributors to the neural network mediating fluoxetine antidepressant action. PMID:21376019

  1. Mesolimbic confidence signals guide perceptual learning in the absence of external feedback

    PubMed Central

    Guggenmos, Matthias; Wilbertz, Gregor; Hebart, Martin N; Sterzer, Philipp

    2016-01-01

    It is well established that learning can occur without external feedback, yet normative reinforcement learning theories have difficulties explaining such instances of learning. Here, we propose that human observers are capable of generating their own feedback signals by monitoring internal decision variables. We investigated this hypothesis in a visual perceptual learning task using fMRI and confidence reports as a measure for this monitoring process. Employing a novel computational model in which learning is guided by confidence-based reinforcement signals, we found that mesolimbic brain areas encoded both anticipation and prediction error of confidence—in remarkable similarity to previous findings for external reward-based feedback. We demonstrate that the model accounts for choice and confidence reports and show that the mesolimbic confidence prediction error modulation derived through the model predicts individual learning success. These results provide a mechanistic neurobiological explanation for learning without external feedback by augmenting reinforcement models with confidence-based feedback. DOI: http://dx.doi.org/10.7554/eLife.13388.001 PMID:27021283

  2. Influence of neurobehavioral incentive valence and magnitude on alcohol drinking behavior

    PubMed Central

    Joseph, Jane E.; Zhu, Xun; Corbly, Christine R.; DeSantis, Stacia; Lee, Dustin C.; Baik, Grace; Kiser, Seth; Jiang, Yang; Lynam, Donald R.; Kelly, Thomas H.

    2014-01-01

    The monetary incentive delay (MID) task is a widely used probe for isolating neural circuitry in the human brain associated with incentive motivation. In the present functional magnetic resonance imaging (fMRI) study, 82 young adults, characterized along dimensions of impulsive sensation seeking, completed a MID task. fMRI and behavioral incentive functions were decomposed into incentive valence and magnitude parameters, which were used as predictors in linear regression to determine whether mesolimbic response is associated with problem drinking and recent alcohol use. Alcohol use was best explained by higher fMRI response to anticipation of losses and feedback on high gains in the thalamus. In contrast, problem drinking was best explained by reduced sensitivity to large incentive values in meso-limbic regions in the anticipation phase and increased sensitivity to small incentive values in the dorsal caudate nucleus in the feedback phase. Altered fMRI responses to monetary incentives in mesolimbic circuitry, particularly those alterations associated with problem drinking, may serve as potential early indicators of substance abuse trajectories. PMID:25261001

  3. Interactivity and reward-related neural activation during a serious videogame.

    PubMed

    Cole, Steven W; Yoo, Daniel J; Knutson, Brian

    2012-01-01

    This study sought to determine whether playing a "serious" interactive digital game (IDG)--the Re-Mission videogame for cancer patients--activates mesolimbic neural circuits associated with incentive motivation, and if so, whether such effects stem from the participatory aspects of interactive gameplay, or from the complex sensory/perceptual engagement generated by its dynamic event-stream. Healthy undergraduates were randomized to groups in which they were scanned with functional magnetic resonance imaging (FMRI) as they either actively played Re-Mission or as they passively observed a gameplay audio-visual stream generated by a yoked active group subject. Onset of interactive game play robustly activated mesolimbic projection regions including the caudate nucleus and nucleus accumbens, as well as a subregion of the parahippocampal gyrus. During interactive gameplay, subjects showed extended activation of the thalamus, anterior insula, putamen, and motor-related regions, accompanied by decreased activation in parietal and medial prefrontal cortex. Offset of interactive gameplay activated the anterior insula and anterior cingulate. Between-group comparisons of within-subject contrasts confirmed that mesolimbic activation was significantly more pronounced in the active playgroup than in the passive exposure control group. Individual difference analyses also found the magnitude of parahippocampal activation following gameplay onset to correlate with positive attitudes toward chemotherapy assessed both at the end of the scanning session and at an unannounced one-month follow-up. These findings suggest that IDG-induced activation of reward-related mesolimbic neural circuits stems primarily from participatory engagement in gameplay (interactivity), rather than from the effects of vivid and dynamic sensory stimulation.

  4. Interactivity and Reward-Related Neural Activation during a Serious Videogame

    PubMed Central

    Cole, Steven W.; Yoo, Daniel J.; Knutson, Brian

    2012-01-01

    This study sought to determine whether playing a “serious” interactive digital game (IDG) – the Re-Mission videogame for cancer patients – activates mesolimbic neural circuits associated with incentive motivation, and if so, whether such effects stem from the participatory aspects of interactive gameplay, or from the complex sensory/perceptual engagement generated by its dynamic event-stream. Healthy undergraduates were randomized to groups in which they were scanned with functional magnetic resonance imaging (FMRI) as they either actively played Re-Mission or as they passively observed a gameplay audio-visual stream generated by a yoked active group subject. Onset of interactive game play robustly activated mesolimbic projection regions including the caudate nucleus and nucleus accumbens, as well as a subregion of the parahippocampal gyrus. During interactive gameplay, subjects showed extended activation of the thalamus, anterior insula, putamen, and motor-related regions, accompanied by decreased activation in parietal and medial prefrontal cortex. Offset of interactive gameplay activated the anterior insula and anterior cingulate. Between-group comparisons of within-subject contrasts confirmed that mesolimbic activation was significantly more pronounced in the active playgroup than in the passive exposure control group. Individual difference analyses also found the magnitude of parahippocampal activation following gameplay onset to correlate with positive attitudes toward chemotherapy assessed both at the end of the scanning session and at an unannounced one-month follow-up. These findings suggest that IDG-induced activation of reward-related mesolimbic neural circuits stems primarily from participatory engagement in gameplay (interactivity), rather than from the effects of vivid and dynamic sensory stimulation. PMID:22442733

  5. Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation

    PubMed Central

    Green, Sophie; Lambon Ralph, Matthew A.; Moll, Jorge; Stamatakis, Emmanuel A.; Grafman, Jordan; Zahn, Roland

    2010-01-01

    It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.g. “critical” and “faultfinding”). This knowledge is required to make emotional evaluations of social behaviour. In contrast to the context-independent activation of the ATL, there were context-dependent activations within different fronto-mesolimbic regions for guilt and indignation. However, it is unknown whether functional integration occurs between these regions and whether regional patterns of integration are distinctive for the experience of different moral sentiments. Here, we used fMRI and psychophysiological interaction analysis, an established measure of functional integration to investigate this issue. We found selective functional integration between the right superior ATL and a subgenual cingulate region during the experience of guilt and between the right superior ATL and the lateral orbitofrontal cortex for indignation. Our data provide the first evidence for functional integration of conceptual social knowledge representations in the right superior ATL with representations of different feeling contexts in fronto-mesolimbic regions. We speculate that this functional architecture allows for the conceptually differentiated experience of moral sentiments in healthy individuals. PMID:20493953

  6. Long term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway

    PubMed Central

    Greenwood, Benjamin N.; Foley, Teresa E.; Le, Tony V.; Strong, Paul V.; Loughridge, Alice B.; Day, Heidi E.W.; Fleshner, Monika

    2011-01-01

    The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress. PMID:21070820

  7. The neuroscience of positive memory deficits in depression

    PubMed Central

    Dillon, Daniel G.

    2015-01-01

    Adults with unipolar depression typically show poor episodic memory for positive material, but the neuroscientific mechanisms responsible for this deficit have not been characterized. I suggest a simple hypothesis: weak memory for positive material in depression reflects disrupted communication between the mesolimbic dopamine pathway and medial temporal lobe (MTL) memory systems during encoding. This proposal draws on basic research showing that dopamine release in the hippocampus is critical for the transition from early- to late-phase long-term potentiation (LTP) that marks the conversion of labile, short-term memories into stable, long-term memories. Neuroimaging and pharmacological data from healthy humans paint a similar picture: activation of the mesolimbic reward circuit enhances encoding and boosts retention. Unipolar depression is characterized by anhedonia–loss of pleasure–and reward circuit dysfunction, which is believed to reflect negative effects of stress on the mesolimbic dopamine pathway. Thus, I propose that the MTL is deprived of strengthening reward signals in depressed adults and memory for positive events suffers accordingly. Although other mechanisms are important, this hypothesis holds promise as an explanation for positive memory deficits in depression. PMID:26441703

  8. Amylin Modulates the Mesolimbic Dopamine System to Control Energy Balance

    PubMed Central

    Mietlicki-Baase, Elizabeth G; Reiner, David J; Cone, Jackson J; Olivos, Diana R; McGrath, Lauren E; Zimmer, Derek J; Roitman, Mitchell F; Hayes, Matthew R

    2015-01-01

    Amylin acts in the CNS to reduce feeding and body weight. Recently, the ventral tegmental area (VTA), a mesolimbic nucleus important for food intake and reward, was identified as a site-of-action mediating the anorectic effects of amylin. However, the long-term physiological relevance and mechanisms mediating the intake-suppressive effects of VTA amylin receptor (AmyR) activation are unknown. Data show that the core component of the AmyR, the calcitonin receptor (CTR), is expressed on VTA dopamine (DA) neurons and that activation of VTA AmyRs reduces phasic DA in the nucleus accumbens core (NAcC). Suppression in NAcC DA mediates VTA amylin-induced hypophagia, as combined NAcC D1/D2 receptor agonists block the intake-suppressive effects of VTA AmyR activation. Knockdown of VTA CTR via adeno-associated virus short hairpin RNA resulted in hyperphagia and exacerbated body weight gain in rats maintained on high-fat diet. Collectively, these findings show that VTA AmyR signaling controls energy balance by modulating mesolimbic DA signaling. PMID:25035079

  9. Pleasure: The missing link in the regulation of sleep.

    PubMed

    Rial, R V; Canellas, F; Gamundí, A; Akaârir, M; Nicolau, M C

    2018-05-01

    Although largely unrecognized by sleep scholars, sleeping is a pleasure. This report aims first, to fill the gap: sleep, like food, water and sex, is a primary reinforcer. The levels of extracellular mesolimbic dopamine show circadian oscillations and mark the "wanting" for pro-homeostatic stimuli. Further, the dopamine levels decrease during waking and are replenished during sleep, in opposition to sleep propensity. The wanting of sleep, therefore, may explain the homeostatic and circadian regulation of sleep. Accordingly, sleep onset occurs when the displeasure of excessive waking is maximal, coinciding with the minimal levels of mesolimbic dopamine. Reciprocally, sleep ends after having replenished the limbic dopamine levels. Given the direct relation between waking and mesolimbic dopamine, sleep must serve primarily to gain an efficient waking. Pleasant sleep (i.e. emotional sleep), can only exist in animals capable of feeling emotions. Therefore, although sleep-like states have been described in invertebrates and primitive vertebrates, the association sleep-pleasure clearly marks a difference between the sleep of homeothermic vertebrates and cool blooded animals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Pleasure systems in the brain

    PubMed Central

    Berridge, Kent C.; Kringelbach, Morten L.

    2015-01-01

    Pleasure is mediated by well-developed mesocorticolimbic circuitry, and serves adaptive functions. In affective disorders anhedonia (lack of pleasure) or dysphoria (negative affect) can result from breakdowns of that hedonic system. Human neuroimaging studies indicate that surprisingly similar circuitry is activated by quite diverse pleasures, suggesting a common neural currency shared by all. Wanting for rewards is generated by a large and distributed brain system. Liking, or pleasure itself, is generated by a smaller set of hedonic hotspots within limbic circuitry. Those hotspots also can be embedded in broader anatomical patterns of valence organization, such as in a keyboard pattern of nucleus accumbens generators for desire versus dread. In contrast, some of the best known textbook candidates for pleasure generators, including classic pleasure electrodes and the mesolimbic dopamine system, may not generate pleasure after all. These emerging insights into brain pleasure mechanisms may eventually facilitate better treatments for affective disorders. PMID:25950633

  11. Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence.

    PubMed

    Beloate, Lauren N; Omrani, Azar; Adan, Roger A; Webb, Ian C; Coolen, Lique M

    2016-09-21

    Experience with sexual behavior causes cross-sensitization of amphetamine reward, an effect dependent on a period of sexual reward abstinence. We previously showed that ΔFosB in the nucleus accumbens (NAc) is a key mediator of this cross-sensitization, potentially via dopamine receptor activation. However, the role of mesolimbic dopamine for sexual behavior or cross-sensitization between natural and drug reward is unknown. This was tested using inhibitory designer receptors exclusively activated by designer drugs in ventral tegmental area (VTA) dopamine cells. rAAV5/hSvn-DIO-hm4D-mCherry was injected into the VTA of TH::Cre adult male rats. Males received clozapine N-oxide (CNO) or vehicle injections before each of 5 consecutive days of mating or handling. Following an abstinence period of 7 d, males were tested for amphetamine conditioned place preference (CPP). Next, males were injected with CNO or vehicle before mating or handling for analysis of mating-induced cFos, sex experience-induced ΔFosB, and reduction of VTA dopamine soma size. Results showed that CNO did not affect mating behavior. Instead, CNO prevented sexual experience-induced cross-sensitization of amphetamine CPP, ΔFosB in the NAc and medial prefrontal cortex, and decreases in VTA dopamine soma size. Expression of hm4D-mCherry was specific to VTA dopamine cells and CNO blocked excitation and mating-induced cFos expression in VTA dopamine cells. These findings provide direct evidence that VTA dopamine activation is not required for initiation or performance of sexual behavior. Instead, VTA dopamine directly contributes to increased vulnerability for drug use following loss of natural reward by causing neuroplasticity in the mesolimbic pathway during the natural reward experience. Drugs of abuse act on the neural pathways that mediate natural reward learning and memory. Exposure to natural reward behaviors can alter subsequent drug-related reward. Specifically, experience with sexual behavior, followed by a period of abstinence from sexual behavior, causes increased reward for amphetamine in male rats. This study demonstrates that activation of ventral tegmental area dopamine neurons during sexual experience regulates cross-sensitization of amphetamine reward. Finally, ventral tegmental area dopamine cell activation is essential for experience-induced neural adaptations in the nucleus accumbens, prefrontal cortex, and ventral tegmental area. These findings demonstrate a role of mesolimbic dopamine in the interaction between natural and drug rewards, and identify mesolimbic dopamine as a key mediator of changes in vulnerability for drug use after loss of natural reward. Copyright © 2016 the authors 0270-6474/16/369949-13$15.00/0.

  12. Endogenous Cholinergic Neurotransmission Contributes to Behavioral Sensitization to Morphine

    PubMed Central

    Bajic, Dusica; Soiza-Reilly, Mariano; Spalding, Allegra L.; Berde, Charles B.; Commons, Kathryn G.

    2015-01-01

    Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg. PMID:25647082

  13. Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats.

    PubMed

    Vollbrecht, Peter J; Nobile, Cameron W; Chadderdon, Aaron M; Jutkiewicz, Emily M; Ferrario, Carrie R

    2015-12-01

    Obesity is a significant problem in the United States, with roughly one third of adults having a body mass index (BMI) over thirty. Recent evidence from human studies suggests that pre-existing differences in the function of mesolimbic circuits that mediate motivational processes may promote obesity and hamper weight loss. However, few preclinical studies have examined pre-existing neurobehavioral differences related to the function of mesolimbic systems in models of individual susceptibility to obesity. Here, we used selectively bred obesity-prone and obesity-resistant rats to examine 1) the effect of a novel "junk-food" diet on the development of obesity and metabolic dysfunction, 2) over-consumption of "junk-food" in a free access procedure, 3) motivation for food using instrumental procedures, and 4) cocaine-induced locomotor activity as an index of general mesolimbic function. As expected, eating a sugary, fatty, "junk-food" diet exacerbated weight gain and increased fasted insulin levels only in obesity-prone rats. In addition, obesity-prone rats continued to over-consume junk-food during discrete access testing, even when this same food was freely available in the home cage. Furthermore, when asked to press a lever to obtain food in an instrumental task, rates of responding were enhanced in obesity-prone versus obesity-resistant rats. Finally, obesity-prone rats showed a stronger locomotor response to 15 mg/kg cocaine compared to obesity-resistant rats prior to any diet manipulation. This enhanced sensitivity to this dose of cocaine is indicative of basal differences in the function of mesolimbic circuits in obesity-prone rats. We speculate that pre-existing differences in motivational systems may contribute to over-consumption and enhanced motivation in susceptible individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation.

    PubMed

    Green, Sophie; Ralph, Matthew A Lambon; Moll, Jorge; Stamatakis, Emmanuel A; Grafman, Jordan; Zahn, Roland

    2010-10-01

    It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.g. "critical" and "faultfinding"). This knowledge is required to make emotional evaluations of social behaviour. In contrast to the context-independent activation of the ATL, there were context-dependent activations within different fronto-mesolimbic regions for guilt and indignation. However, it is unknown whether functional integration occurs between these regions and whether regional patterns of integration are distinctive for the experience of different moral sentiments. Here, we used fMRI and psychophysiological interaction analysis, an established measure of functional integration to investigate this issue. We found selective functional integration between the right superior ATL and a subgenual cingulate region during the experience of guilt and between the right superior ATL and the lateral orbitofrontal cortex for indignation. Our data provide the first evidence for functional integration of conceptual social knowledge representations in the right superior ATL with representations of different feeling contexts in fronto-mesolimbic regions. We speculate that this functional architecture allows for the conceptually differentiated experience of moral sentiments in healthy individuals. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway.

    PubMed

    Greenwood, Benjamin N; Foley, Teresa E; Le, Tony V; Strong, Paul V; Loughridge, Alice B; Day, Heidi E W; Fleshner, Monika

    2011-03-01

    The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats

    PubMed Central

    Vollbrecht, Peter J.; Nobile, Cameron W.; Chadderdon, Aaron M.; Jutkiewicz, Emily M.; Ferrario, Carrie R.

    2015-01-01

    Obesity is a significant problem in the United States, with roughly one third of adults having a body mass index (BMI) over thirty. Recent evidence from human studies suggests that pre-existing differences in the function of mesolimbic circuits that mediate motivational processes may promote obesity and hamper weight loss. However, few preclinical studies have examined pre-existing neurobehavioral differences related to the function of mesolimbic systems in models of individual susceptibility to obesity. Here, we used selectively bred obesity-prone and obesity-resistant rats to examine 1) the effect of a novel “junk-food” diet on the development of obesity and metabolic dysfunction, 2) over-consumption of “junk-food” in a free access procedure, 3) motivation for food using instrumental procedures, and 4) cocaine-induced locomotor activity as an index of general mesolimbic function. As expected, eating a sugary, fatty, “junk-food” diet exacerbated weight gain and increased fasted insulin levels only in obesity-prone rats. In addition, obesity-prone rats continued to over-consume junk-food during discrete access testing, even when this same food was freely available in the home cage. Furthermore, when asked to press a lever to obtain food in an instrumental task, rates of responding were enhanced in obesity-prone versus obesity-resistant rats. Finally, obesity-prone rats showed a stronger locomotor response to 15 mg/kg cocaine compared to obesity-resistant rats prior to any diet manipulation. This enhanced sensitivity to this dose of cocaine is indicative of basal differences in the function of mesolimbic circuits in obesity-prone rats. We speculate that pre-existing differences in motivational systems may contribute to over-consumption and enhanced motivation in susceptible individuals. PMID:26423787

  17. Neural substrates of trait impulsivity, anhedonia, and irritability: Mechanisms of heterotypic comorbidity between externalizing disorders and unipolar depression.

    PubMed

    Zisner, Aimee; Beauchaine, Theodore P

    2016-11-01

    Trait impulsivity, which is often defined as a strong preference for immediate over delayed rewards and results in behaviors that are socially inappropriate, maladaptive, and short-sighted, is a predisposing vulnerability to all externalizing spectrum disorders. In contrast, anhedonia is characterized by chronically low motivation and reduced capacity to experience pleasure, and is common to depressive disorders. Although externalizing and depressive disorders have virtually nonoverlapping diagnostic criteria in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders, heterotypic comorbidity between them is common. Here, we review common neural substrates of trait impulsivity, anhedonia, and irritability, which include both low tonic mesolimbic dopamine activity and low phasic mesolimbic dopamine responding to incentives during reward anticipation and associative learning. We also consider how other neural networks, including bottom-up emotion generation systems and top-down emotion regulation systems, interact with mesolimbic dysfunction to result in alternative manifestations of psychiatric illness. Finally, we present a model that emphasizes a translational, transdiagnostic approach to understanding externalizing/depression comorbidity. This model should refine ways in which internalizing and externalizing disorders are studied, classified, and treated.

  18. Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.

    PubMed

    Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-25

    Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical subunits of NMDARs and AMPARs expressed either in dopamine neurons or in dopamine receptor D1-containing neurons play an important role in the alcohol deprivation effect (the increase in alcohol intake after a period of abstinence) while having no impact on context- plus cue-induced reinstatement of alcohol-seeking responses. Medications targeting glutamatergic neurotransmission by selective inactivation of these glutamate receptors might have therapeutic efficacy. Copyright © 2015 the authors 0270-6474/15/3515523-16$15.00/0.

  19. Asymmetric Dispersal Can Maintain Larval Polymorphism: A Model Motivated by Streblospio benedicti

    PubMed Central

    Zakas, Christina; Hall, David W.

    2012-01-01

    Polymorphism in traits affecting dispersal occurs in a diverse variety of taxa. Typically, the maintenance of a dispersal polymorphism is attributed to environmental heterogeneity where parental bet-hedging can be favored. There are, however, examples of dispersal polymorphisms that occur across similar environments. For example, the estuarine polychaete Streblospio benedicti has a highly heritable offspring dimorphism that affects larval dispersal potential. We use analytical models of dispersal to determine the conditions necessary for a stable dispersal polymorphism to exist. We show that in asexual haploids, sexual haploids, and in sexual diploids in the absence of overdominance, asymmetric dispersal is required in order to maintain a dispersal polymorphism when patches do not vary in intrinsic quality. Our study adds an additional factor, dispersal asymmetry, to the short list of mechanisms that can maintain polymorphism in nature. The region of the parameter space in which polymorphism is possible is limited, suggesting why dispersal polymorphisms within species are rare. PMID:22576818

  20. Pramipexole enhances disadvantageous decision-making: Lack of relation to changes in phasic dopamine release.

    PubMed

    Pes, Romina; Godar, Sean C; Fox, Andrew T; Burgeno, Lauren M; Strathman, Hunter J; Jarmolowicz, David P; Devoto, Paola; Levant, Beth; Phillips, Paul E; Fowler, Stephen C; Bortolato, Marco

    2017-03-01

    Pramipexole (PPX) is a high-affinity D 2 -like dopamine receptor agonist, used in the treatment of Parkinson's disease (PD) and restless leg syndrome. Recent evidence indicates that PPX increases the risk of problem gambling and impulse-control disorders in vulnerable patients. Although the molecular bases of these complications remain unclear, several authors have theorized that PPX may increase risk propensity by activating presynaptic dopamine receptors in the mesolimbic system, resulting in the reduction of dopamine release in the nucleus accumbens (NAcc). To test this possibility, we subjected rats to a probability-discounting task specifically designed to capture the response to disadvantageous options. PPX enhanced disadvantageous decision-making at a dose (0.3 mg/kg/day, SC) that reduced phasic dopamine release in the NAcc. To test whether these modifications in dopamine efflux were responsible for the observed neuroeconomic deficits, PPX was administered in combination with the monoamine-depleting agent reserpine (RES), at a low dose (1 mg/kg/day, SC) that did not affect baseline locomotor and operant responses. Contrary to our predictions, RES surprisingly exacerbated the effects of PPX on disadvantageous decision-making, even though it failed to augment PPX-induced decreases in phasic dopamine release. These results collectively suggest that PPX impairs the discounting of probabilistic losses and that the enhancement in risk-taking behaviors secondary to this drug may be dissociated from dynamic changes in mesolimbic dopamine release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Paraoxonase 1 polymorphisms and haplotypes and the risk for having offspring affected with spina bifida in Southeast Mexico.

    PubMed

    Gonzalez-Herrera, Lizbeth; Martín Cerda-Flores, Ricardo; Luna-Rivero, Marianne; Canto-Herrera, Jorge; Pinto-Escalante, Doris; Perez-Herrera, Norma; Quintanilla-Vega, Betzabet

    2010-11-01

    Spina bifida (SB) is a common congenital malformation in Southeast Mexico. Parents of children with SB reside in areas with frequent pesticide spraying or have agriculture activities, suggesting potential exposure to pesticides. Paraoxonase 1 (PON1) is the responsible enzyme for deactivation of organophosphates (OP) in the central nervous system. Polymorphisms of PON1 genes influence the catalytic activity and plasma protein level of the enzyme, therefore, genotypic characterization of PON1 gene represents a potential predictor for susceptibility to OP-related effects. The frequency of PON1 haplotypes and polymorphisms (-108CT, L55M, and Q192R) were determined in this study. A case-control study was performed to evaluate the risk for having offspring affected by SB in 152 cases and 160 control parents. Polymorphisms were determined by PCR amplification and restriction fragment length polymorphism and Real Time-PCR. Odds ratios and confidence interval 95% were estimated. Genotype frequencies for the three PON1 polymorphisms were distributed according to Hardy-Weinberg expectations (p > 0.05) and were significantly different between cases and controls (p < 0.05). The heterozygous CT genotype of -108CT polymorphism, the RR genotype of Q192R polymorphism, both LM and MM genotypes of L55M polymorphism, and the haplotypes 221 and 222 (for -108CT, L55M, and Q192R) were associated with the risk for having a child affected by SB (p < 0.02). The heterozygous -108CT genotype was associated only maternally, whereas the heterozygous L55M genotype was relevant only in the fathers. The RR homozygous genotype was relevant both in mothers and fathers, suggesting the importance of this substrate-specific polymorphism. Results suggest that PON1 polymorphisms are relevant risk factors for having offspring affected with SB in this population from Southeast Mexico. © 2010 Wiley-Liss, Inc.

  2. Behavioural and biochemical responses following activation of midbrain dopamine pathways by receptor selective neurokinin agonists.

    PubMed

    Elliott, P J; Mason, G S; Stephens-Smith, M; Hagan, R M

    1991-06-01

    Preferential activation of mesolimbic and nigro-striatal dopamine (DA) pathways by receptor-selective and peptidase-resistant neurokinin (NK) agonists is reported. The DA cell body region of the mesolimbic pathway appears to be activated by NK agonists selective for NK-1 and NK-3 receptors whereas the DA cell bodies in the substantia nigra are under an excitatory NK-2 receptor-mediated influence. Stimulation of the mesolimbic DA pathway by NK-1 (Ava[L-Pro9,N-Me-Leu10]SP (7-11) [GR73632]) or NK-3 (Senktide) agonists increase locomotor activity. Additional studies showed that this elevated motor response observed after intra-VTA infusion of GR73632 was accompanied by a corresponding increase in DA turnover in the terminal fields of this pathway. Similarly, unilateral activation of the nigro-striatal DA pathway by NK-2 selective agonists (Ava (D-Pro9) SP (7-11) [GR51667] or [Lys3,Gly8,R-Lac-Leu9]NKA (3-10) [GR64349]) elicit contralateral rotational activity and an increase in DA turnover in the ipsilateral striatum. The rotational response was attenuated by prior administration of an NK-2 antagonist (cyclo (Gln, Trp, Phe, Gly, Leu, Met)] L-659877]) into the nigra. Peripheral injection of haloperidol, a DA antagonist, also blocked the NK-2 agonist induced rotations.

  3. Involvement of the K+-Cl- co-transporter KCC2 in the sensitization to morphine-induced hyperlocomotion under chronic treatment with zolpidem in the mesolimbic system.

    PubMed

    Shibasaki, Masahiro; Masukawa, Daiki; Ishii, Kazunori; Yamagishi, Yui; Mori, Tomohisa; Suzuki, Tsutomu

    2013-06-01

    Benzodiazepines are commonly used as sedatives, sleeping aids, and anti-anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K(+) -Cl(-) co-transporter 2 (KCC2) in the sensitization to morphine-induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ-aminobutyric acid A-type receptor (GABAA R) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine-induced hyperlocomotion, which is accompanied by the up-regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down-regulation of protein phosphatase-1 (PP-1) as well as the up-regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP-1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre-treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine-induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ-PP-1-KCC2 pathway by chronic treatment with zolpidem. © 2013 International Society for Neurochemistry.

  4. Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits.

    PubMed

    Brocka, Marta; Helbing, Cornelia; Vincenz, Daniel; Scherf, Thomas; Montag, Dirk; Goldschmidt, Jürgen; Angenstein, Frank; Lippert, Michael

    2018-04-30

    Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. We either activated VTA dopaminergic neurons selectively, or dopaminergic and mainly glutamatergic projecting neurons together. We further used electrical stimulation to non-selectively activate neurons in the VTA. All three stimulation conditions effectively activated the mesolimbic dopaminergic system and triggered dopamine releases into the NAcc as measured by in vivo fast-scan cyclic voltammetry. Furthermore, both optogenetic stimulation paradigms led to indistinguishable self-stimulation behavior. In contrast to these similarities, however, the BOLD response pattern differed greatly between groups. In general, BOLD responses were weaker and sparser with increasing stimulation specificity for dopaminergic neurons. In addition, repetitive stimulation of the VTA caused a progressive decoupling of dopamine release and BOLD signal strength, and dopamine receptor antagonists were unable to block the BOLD signal elicited by VTA stimulation. To exclude that the sedation during fMRI is the cause of minimal mesolimbic BOLD in response to specific dopaminergic stimulation, we repeated our experiments using CBF SPECT in awake animals. Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Interactions between the nucleus accumbens and auditory cortices predict music reward value.

    PubMed

    Salimpoor, Valorie N; van den Bosch, Iris; Kovacevic, Natasa; McIntosh, Anthony Randal; Dagher, Alain; Zatorre, Robert J

    2013-04-12

    We used functional magnetic resonance imaging to investigate neural processes when music gains reward value the first time it is heard. The degree of activity in the mesolimbic striatal regions, especially the nucleus accumbens, during music listening was the best predictor of the amount listeners were willing to spend on previously unheard music in an auction paradigm. Importantly, the auditory cortices, amygdala, and ventromedial prefrontal regions showed increased activity during listening conditions requiring valuation, but did not predict reward value, which was instead predicted by increasing functional connectivity of these regions with the nucleus accumbens as the reward value increased. Thus, aesthetic rewards arise from the interaction between mesolimbic reward circuitry and cortical networks involved in perceptual analysis and valuation.

  6. The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex

    PubMed Central

    Pattwell, Siobhan S.; Bath, Kevin G.; Perez-Castro, Rosalia; Lee, Francis S.; Chao, Moses V.; Ninan, Ipe

    2012-01-01

    The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is a common human single nucleotide polymorphism (SNP) that affects the regulated release of BDNF, and has been implicated in affective disorders and cognitive dysfunction. A decreased activation of the infralimbic medial prefrontal cortex (IL-mPFC), a brain region critical for the regulation of affective behaviors, has been described in BDNFMet carriers. However, it is unclear whether and how the Val66Met polymorphism affects the IL-mPFC synapses. Here we report that spike timing-dependent plasticity (STDP) was absent in the IL-mPFC pyramidal neurons from BDNFMet/Met mice, a mouse that recapitulates the specific phenotypic properties of the human BDNF Val66Met polymorphism. Also, we observed a decrease in N-methyl-D-aspartic acid (NMDA) and γ-aminobutyric acid (GABA) receptor-mediated synaptic transmission in the pyramidal neurons of BDNFMet/Met mice. While BDNF enhanced non-NMDA receptor transmission and depressed GABA receptor transmission in the wild-type mice, both effects were absent in BDNFMet/Met mice after BDNF treatment. Indeed, exogenous BDNF reversed the deficits in STDP and NMDA receptor transmission in BDNFMet/Met neurons. BDNF-mediated selective reversal of the deficit in plasticity and NMDA receptor transmission, but its lack of effect on GABA and non-NMDA receptor transmission in BDNFMet/Met mice, suggests separate mechanisms of Val66Met polymorphism upon synaptic transmission. The effect of the Val66Met polymorphism on synaptic transmission and plasticity in the IL-mPFC represents a mechanism to account for this SNP's impact on affective disorders and cognitive dysfunction. PMID:22396415

  7. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens.

    PubMed

    Bardo, M T

    1998-01-01

    Multiple lines of research have implicated the mesolimbic dopamine system in drug reward measured by either the drug self-administration or conditioned place preference paradigm. The present review summarizes recent work that examines the neuropharmacological mechanisms by which drugs impinge on this dopaminergic neural circuitry, as well as other systems that provide input and output circuits to the mesolimbic dopamine system. Studies examining the effect of selective agonist and antagonist drugs administered systemically have indicated that multiple neurotransmitters are involved, including dopamine, serotonin, acetylcholine, glutamate, GABA, and various peptides. Direct microinjection studies have also provided crucial evidence indicating that, in addition to the mesolimbic dopamine system, other structures play a role in drug reward, including the ventral pallidum, amygdala, hippocampus, hypothalamus, and pedunculopontine tegmental nucleus. GABAergic circuitry descending from the nucleus accumbens to the pedunculopontine tegmental nucleus via the ventral pallidum appears to be especially important in directing the behavioral sequelae associated with reward produced by various drugs of abuse. However, activation of the reward circuitry is achieved differently for various drugs of abuse. With amphetamine and cocaine, initiation of reward is controlled within the nucleus accumbens and prefrontal cortex, respectively. With opiates, initiation of reward involves the ventral tegmental area, nucleus accumbens, hippocampus, and hypothalamus. It is not clear presently if these multiple anatomical structures mediate opiate reward by converging on a single output system or multiple output systems.

  8. NORADRENERGIC CONTROL OF CORTICO-STRIATO-THALAMIC AND MESOLIMBIC CROSS-STRUCTURAL SYNCHRONY

    PubMed Central

    Dzirasa, Kafui; Phillips, H. Westley; Sotnikova, Tatyana D.; Salahpour, Ali; Kumar, Sunil; Gainetdinov, Raul R.; Caron, Marc G.; Nicolelis, Miguel A. L.

    2010-01-01

    While normal dopaminergic tone has been shown to be essential for the induction of cortico-striatal and mesolimbic theta oscillatory activity, the influence of norepinephrine on these brain networks remains relatively unknown. To address this question, we simultaneously recorded local field potentials (LFPs) and single neuron activity across ten interconnected brain areas (ventral striatum, frontal association cortex hippocampus, primary motor cortex, orbital frontal cortex, prelimbic cortex, dorsal lateral striatum, medial dorsal nucleus of thalamus, substantia nigra pars reticularis, and ventral tegmental area) in a combined genetically and pharmacologically induced mouse model of hyponoradrenergia. Our results show that norepinephrine (NE) depletion induces a novel state in male mice characterized by a profound disruption of coherence across multiple cortico-striatal circuits, and an increase in mesolimbic cross-structural coherence. Moreover, this brain state is accompanied by a complex behavioral phenotype consisting of transient hyperactivity, stereotypic behaviors, and an acute twelve-fold increase in grooming. Notably, treatment with a norepinephrine precursors (L-DOPA 100mg/kg or L-DOPS 5mg/kg), or a selective serotonin reuptake inhibitor (fluoxetine 20mg/kg) attenuates the abnormal behaviors and selectively reverses the circuit changes observed in NE depleted mice. Together, our results demonstrate that norepinephrine modulates the dynamic tuning of coherence across cortico-striatal-thalamic circuits, and they suggest that changes in coherence across these circuits mediate the abnormal generation of hyperactivity and repetitive behaviors. PMID:20445065

  9. Noradrenergic control of cortico-striato-thalamic and mesolimbic cross-structural synchrony.

    PubMed

    Dzirasa, Kafui; Phillips, H Westley; Sotnikova, Tatyana D; Salahpour, Ali; Kumar, Sunil; Gainetdinov, Raul R; Caron, Marc G; Nicolelis, Miguel A L

    2010-05-05

    Although normal dopaminergic tone has been shown to be essential for the induction of cortico-striatal and mesolimbic theta oscillatory activity, the influence of norepinephrine on these brain networks remains relatively unknown. To address this question, we simultaneously recorded local field potentials and single-neuron activity across 10 interconnected brain areas (ventral striatum, frontal association cortex, hippocampus, primary motor cortex, orbital frontal cortex, prelimbic cortex, dorsal lateral striatum, medial dorsal nucleus of thalamus, substantia nigra pars reticularis, and ventral tegmental area) in a combined genetically and pharmacologically induced mouse model of hyponoradrenergia. Our results show that norepinephrine (NE) depletion induces a novel state in male mice characterized by a profound disruption of coherence across multiple cortico-striatal circuits and an increase in mesolimbic cross-structural coherence. Moreover, this brain state is accompanied by a complex behavioral phenotype consisting of transient hyperactivity, stereotypic behaviors, and an acute 12-fold increase in grooming. Notably, treatment with a norepinephrine precursors (l-3,4-dihydroxyphenylalanine at 100 mg/kg or l-threo-dihydroxyphenylserine at 5 mg/kg) or a selective serotonin reuptake inhibitor (fluoxetine at 20 mg/kg) attenuates the abnormal behaviors and selectively reverses the circuit changes observed in NE-depleted mice. Together, our results demonstrate that norepinephrine modulates the dynamic tuning of coherence across cortico-striato-thalamic circuits, and they suggest that changes in coherence across these circuits mediate the abnormal generation of hyperactivity and repetitive behaviors.

  10. Accelerated Maternal Responding Following Intra-VTA Pertussis Toxin Treatment

    PubMed Central

    Byrnes, John J.; Gleason, Erin D.; Schoen, Mathew K.; Lovelock, Dennis F.; Carini, Lindsay M.; Byrnes, Elizabeth M.; Bridges, Robert S.

    2011-01-01

    Prior studies have supported a role for mesolimbic dopaminergic mechanisms in the regulation of maternal behavior. Accordingly, the ventral tegmental area (VTA) and its dopaminergic projections to the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in both the onset and maintenance of normal maternal behavior. To date, studies of direct manipulation of VTA neurochemistry at the onset of maternal behavior have been limited. The current study was undertaken to directly test the hypothesis that enhancement of dopaminergic transmission in the mesolimbic dopamine system can stimulate maternal activity using a pup-induced virgin model. Nulliparous female rats were stereotaxically infused with pertussis toxin (PTX 0, 0.1, or 0.3 μg/hemisphere) into the VTA to chronically stimulate the activity of dopaminergic projection neurons. After 3 days of recovery, maternal responding to donor pups was tested daily, and latency (in days) to full maternal behavior was recorded. Intra-VTA PTX treatment produced a robust dose-dependent decrease in maternal behavior latency, and a long-lasting increase in locomotor activity. These effects were associated with significantly decreased dopamine D1 receptor mRNA expression in the NAc. No effects of PTX treatment on mesolimbic dopamine utilization or mPFC receptor expression were observed. The findings indicate that chronic neural activation in the VTA accelerates the onset of maternal behavior in virgin female rats via modification of the NAc dopamine D1 receptor. PMID:21571006

  11. Pavlovian valuation systems in learning and decision making

    PubMed Central

    Clark, Jeremy J.; Hollon, Nick G.; Phillips, Paul E. M.

    2012-01-01

    Environmental stimuli guide value-based decision making, but can do so through cognitive representation of outcomes or through general-incentive properties attributed to the cues themselves. We assert that these differences are conferred through the use of alternative associative structures differing in computational intensity. Using this framework, we review scientific evidence to discern the neural substrates of these assumed separable processes. We suggest that the contribution of the mesolimbic dopamine system to Pavlovian valuation is restricted to an affective system that is only updated through experiential feedback of stimulus-outcome pairing, whereas the orbitofrontal cortex contributes to an alternative system capable of inferential reasoning. Finally we discuss the interactions and convergence of these systems and their implications for decision making and its pathology. PMID:22749132

  12. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids.

    PubMed

    Hryhorczuk, Cecile; Florea, Marc; Rodaros, Demetra; Poirier, Isabelle; Daneault, Caroline; Des Rosiers, Christine; Arvanitogiannis, Andreas; Alquier, Thierry; Fulton, Stephanie

    2016-02-01

    Overconsumption of dietary fat is increasingly linked with motivational and emotional impairments. Human and animal studies demonstrate associations between obesity and blunted reward function at the behavioral and neural level, but it is unclear to what degree such changes are a consequence of an obese state and whether they are contingent on dietary lipid class. We sought to determine the impact of prolonged ad libitum intake of diets rich in saturated or monounsaturated fat, separate from metabolic signals associated with increased adiposity, on dopamine (DA)-dependent behaviors and to identify pertinent signaling changes in the nucleus accumbens (NAc). Male rats fed a saturated (palm oil), but not an isocaloric monounsaturated (olive oil), high-fat diet exhibited decreased sensitivity to the rewarding (place preference) and locomotor-sensitizing effects of amphetamine as compared with low-fat diet controls. Blunted amphetamine action by saturated high-fat feeding was entirely independent of caloric intake, weight gain, and plasma levels of leptin, insulin, and glucose and was accompanied by biochemical and behavioral evidence of reduced D1R signaling in the NAc. Saturated high-fat feeding was also tied to protein markers of increased AMPA receptor-mediated plasticity and decreased DA transporter expression in the NAc but not to alterations in DA turnover and biosynthesis. Collectively, the results suggest that intake of saturated lipids can suppress DA signaling apart from increases in body weight and adiposity-related signals known to affect mesolimbic DA function, in part by diminishing D1 receptor signaling, and that equivalent intake of monounsaturated dietary fat protects against such changes.

  13. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway

    PubMed Central

    Dobbs, Lauren K.; Mark, Gregory P.

    2012-01-01

    Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297

  14. Unsupportive social interactions and affective states: examining associations of two oxytocin-related polymorphisms.

    PubMed

    McInnis, Opal A; McQuaid, Robyn J; Matheson, Kimberly; Anisman, Hymie

    2017-01-01

    Two single-nucleotide polymorphisms (SNPs) on oxytocin-related genes, specifically the oxytocin receptor (OXTR) rs53576 and the CD38 rs3796863 variants, have been associated with alterations in prosocial behaviors. A cross-sectional study was conducted among undergraduate students (N = 476) to examine associations between the OXTR and CD38 polymorphisms and unsupportive social interactions and mood states. Results revealed no association between perceived levels of unsupportive social interactions and the OXTR polymorphism. However, A carriers of the CD38 polymorphism, a variant previously associated with elevated oxytocin, reported greater perceived peer unsupportive interactions compared to CC carriers. As expected, perceived unsupportive interactions from peers was associated with greater negative affect, which was moderated by the CD38 polymorphism. Specifically, this relation was stronger among CC carriers of the CD38 polymorphism (a variant thought to be linked to lower oxytocin). When examining whether the OXTR polymorphism moderated the relation between unsupportive social interactions from peers and negative affect there was a trend toward significance, however, this did not withstand multiple testing corrections. These findings are consistent with the perspective that a variant on an oxytocin polymorphism that may be tied to lower oxytocin is related to poor mood outcomes in association with negative social interactions. At the same time, having a genetic constitution presumed to be associated with higher oxytocin was related to increased perceptions of unsupportive social interactions. These seemingly paradoxical findings could be related to previous reports in which variants associated with prosocial behaviors were also tied to relatively more effective coping styles to deal with challenges.

  15. Reward-related genes and personality traits in alcohol-dependent individuals: a pilot case control study.

    PubMed

    Landgren, Sara; Berglund, Kristina; Jerlhag, Elisabet; Fahlke, Claudia; Balldin, Jan; Berggren, Ulf; Zetterberg, Henrik; Blennow, Kaj; Engel, Jörgen A

    2011-01-01

    Components of the brain reward system, i.e. the mesolimbic dopamine, laterodorsal cholinergic and ghrelin signaling systems, have been implicated in alcohol reward in preclinical studies. Genetic variants of these systems have previously been linked to alcohol dependence. Here, we genotyped 31 single nucleotide polymorphisms (SNPs): 1 SNP in the dopamine D₂ receptor (DRD2) gene, 20 SNPs in 5 different nicotinic acetylcholine receptor subunit (CHRN*) genes, and 10 SNPs in the genes encoding pro-ghrelin (GHRL) and its receptor (GHSR), in a pilot study of type 1 alcoholics (n = 84) and healthy controls (n = 32). These individuals were characterized using the Temperament and Character Inventory. None of the SNPs were associated with risk of alcohol dependence in this population. The GG genotype of SNP rs13261190 in the CHRNB3 was associated with increased novelty seeking, while SNPs of the ghrelin signaling system were associated with decreased self-directedness (AA of rs495225, GHSR) and alterations in self-transcendence (AA of both rs42451 and rs35680, GHRL). In conclusion, this pilot study suggests that reward-related genes are associated with altered personality scores in type 1 alcohol dependence, which warrants future studies of these associations in larger study samples. Copyright © 2011 S. Karger AG, Basel.

  16. Blockade of GABA(A) receptors within the extended amygdala attenuates D(2) regulation of alcohol-motivated behaviors in the ventral tegmental area of alcohol-preferring (P) rats.

    PubMed

    Eiler, William J A; June, Harry L

    2007-06-01

    The dopamine (DA) mesolimbic pathway, which originates from DA cell bodies within the ventral tegmental area (VTA), has been shown by various studies to play a role in the mediation of various drugs of abuse including alcohol (EtOH). It has been suggested that the VTA's control of EtOH reward is mediated in part by the D2 receptors within the VTA. These receptors may be under the regulation of reciprocal GABAergic inputs from forebrain components of the mesolimbic path such as the nucleus accumbens (NAcc), a classic EtOH reward substrate, and the bed nucleus of the stria terminalis, a substrate recently implicated in EtOH reinforcement, forming a self-regulating feedback loop. To test this hypothesis, D2 regulation of EtOH self-administration (SA) was evaluated by the microinfusion of the D2 antagonist eticlopride into the VTA of P rats, which produced profound reductions in EtOH SA in the highest (20.0 and 40.0microg) doses tested in both BST/VTA and NAcc/VTA implanted P rats. To determine the role of GABA in the mediation of EtOH SA, a 32.0ng dose the non-selective GABA antagonist SR 95531 was microinfused into the BST producing no effect on responding for EtOH and into the NAcc which lead to a reduction in EtOH responding. Finally, the hypothesis that GABA innervation of the VTA from the mesolimbic forebrain may influence EtOH SA was examined by the simultaneous infusion of eticlopride (40.0microg) into the VTA and SR 95531 (32.0ng) into either the BST or NAcc. This combination infusion completely attenuated the reduction in EtOH SA observed with the 40.0microg dose of eticlopride alone in both groups of animals. These results suggest that while the D2 receptors within the VTA regulate EtOH-motivated behaviors, this is modulated by GABAergic input from the mesolimbic forebrain, specifically from the BST and NAcc.

  17. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system.

    PubMed

    Richard, Jennifer E; Anderberg, Rozita H; Göteson, Andreas; Gribble, Fiona M; Reimann, Frank; Skibicka, Karolina P

    2015-01-01

    The gut/brain peptide, glucagon like peptide 1 (GLP-1), suppresses food intake by acting on receptors located in key energy balance regulating CNS areas, the hypothalamus or the hindbrain. Moreover, GLP-1 can reduce reward derived from food and motivation to obtain food by acting on its mesolimbic receptors. Together these data suggest a neuroanatomical segregation between homeostatic and reward effects of GLP-1. Here we aim to challenge this view and hypothesize that GLP-1 can regulate food reward behavior by acting directly on the hindbrain, the nucleus of the solitary tract (NTS), GLP-1 receptors (GLP-1R). Using two models of food reward, sucrose progressive ratio operant conditioning and conditioned place preference for food in rats, we show that intra-NTS microinjections of GLP-1 or Exendin-4, a stable analogue of GLP-1, inhibit food reward behavior. When the rats were given a choice between palatable food and chow, intra-NTS Exendin-4 treatment preferentially reduced intake of palatable food but not chow. However, chow intake and body weight were reduced by the NTS GLP-1R activation if chow was offered alone. The NTS GLP-1 activation did not alter general locomotor activity and did not induce nausea, measured by PICA. We further show that GLP-1 fibers are in close apposition to the NTS noradrenergic neurons, which were previously shown to provide a monosynaptic connection between the NTS and the mesolimbic system. Central GLP-1R activation also increased NTS expression of dopamine-β-hydroxylase, a key enzyme in noradrenaline synthesis, indicating a biological link between these two systems. Moreover, NTS GLP-1R activation altered the expression of dopamine-related genes in the ventral tegmental area. These data reveal a food reward-suppressing role of the NTS GLP-1R and indicate that the neurobiological targets underlying food reward control are not limited to the mesolimbic system, instead they are distributed throughout the CNS.

  18. Contact lens fitting in a patient with Alport syndrome and posterior polymorphous corneal dystrophy: a case report.

    PubMed

    Rosa, Juliana Maria da Silva; Andrade Sobrinho, Marcelo Vicente de; Lipener, César

    2016-02-01

    Alport Syndrome is a hereditary disease that is caused by a gene mutation and affects the production of collagen in basement membranes; this condition causes hemorrhagic nephritis associated with deafness and ocular changes. The X-linked form of this disease is the most common and mainly affects males. Typical ocular findings are dot-and-fleck retinopathy, anterior lenticonus, and posterior polymorphous corneal dystrophy. Some cases involving polymorphous corneal dystrophy and corneal ectasia have been previously described. Here we present a case report of a 33-year-old female with Alport syndrome, posterior polymorphous corneal dystrophy, and irregular astigmatism, whose visual acuity improved with a rigid gas permeable contact lens.

  19. Polymorphism in endothelin-related genes limits exercise-induced decreases in arterial stiffness in older subjects.

    PubMed

    Iemitsu, Motoyuki; Maeda, Seiji; Otsuki, Takeshi; Sugawara, Jun; Tanabe, Takumi; Jesmin, Subrina; Kuno, Shinya; Ajisaka, Ryuichi; Miyauchi, Takashi; Matsuda, Mitsuo

    2006-05-01

    Increase in arterial stiffness is associated with aging, which is improved by regular exercise. Endothelin (ET) system has crucial roles in regulating vascular tone and in the progression of atherosclerosis. We hypothesized that molecular variations (ie, gene polymorphisms) in ET-related gene might affect exercise-induced improvement in arterial stiffness with age in human subjects. The present study provides a cross-sectional investigation of 191 healthy middle-aged and older (65+/-1 years) human subjects to clarify the relationship between the regular exercise-induced improvement of arterial stiffness and the gene polymorphisms of ET converting enzyme (ECE)-1, ECE-2, ET-A receptor (ET-A), and ET-B receptor (ET-B). The study subjects were divided into active and inactive groups based on the median value (186 kcal/d) of energy expenditure. Brachial-ankle arterial pulse wave velocity (baPWV) was used to evaluate arterial stiffness. All individuals were genotyped for 4 different polymorphisms of the ET system: 2013(+289)A/G in intron 17 of ECE-1, 669(+17)T/C in intron 5 of ECE-2, 958A/G in exon 6 of ET-A, and 831A/G in exon 4 of ET-B. The baseline baPWV was significantly lower in the active group without any change in blood pressure. Polymorphisms in ECE-1 influenced basal blood pressure. Polymorphisms in ECE-1 and ECE-2 had no effect on baPWV between active and inactive groups. However, polymorphisms in both ET-A and ET-B affected baPWV in the 2 groups. The present results suggest that differences in ET-A and ET-B polymorphisms may influence the response of the vascular wall to exercise whereas ECE-1 polymorphisms may affect basal blood pressure.

  20. Association of serum lipids and coronary artery disease with polymorphisms in the apolipoprotein AI-CIII-AIV gene cluster

    PubMed Central

    Rai, Himanshu; Sinha, Nakul; Finn, James; Agrawal, Suraksha; Mastana, Sarabjit

    2016-01-01

    Abstract Genetic variants are considered as one of the main determinants of the concentration of serum lipids and coronary artery disease (CAD). Polymorphisms in the Apolipoprotein (Apo) AI-CIII-AIV gene cluster has been known to affect the concentrations of various lipid sub-fractions and the risk of CAD. The present study assessed associations between polymorphisms of the Apo AI-CIII-AIV gene cluster, [ApoA-I,-75G > A, (rs1799837); ApoC-III 3238C > G, (SstI), (rs5128) and ApoA-IV, Thr347Ser(347A > T), (rs675)] with serum lipids and their contributions to CAD in North Indian population. We recruited age, sex matched, 200 CAD patients and 200 healthy controls and tested them for fasting levels of serum lipids. We genotyped selected polymorphisms using polymerase chain reaction-restriction fragment length polymorphism. There were no statistically significant association of selected polymorphisms (or their combinations) with CAD even after employing additive, dominant and recessive models. However there was significant association of selected polymorphisms with various lipid traits amongst the control cohort (p < 0.05). Mean levels of high density lipoprotein cholesterol and triglycerides were found to be significantly higher among controls carrying at least one mutant allele at ApoA1-75G > A (p = 0.019) and ApoCIII SstI (p < 0.001) polymorphism respectively. Our study observed that the selected polymorphisms in the ApoAI-CIII-AIV gene cluster although significantly affect various lipid traits but this affect does not seem to translate into association with CAD, at least among North Indian population. PMID:28261635

  1. Selective activation of mesolimbic and mesocortical dopamine metabolism in rat brain by infusion of a stable substance P analogue into the ventral tegmental area.

    PubMed

    Elliott, P J; Alpert, J E; Bannon, M J; Iversen, S D

    1986-01-15

    Microinfusion of the metabolically stable substance P (SP) agonist, [pGlu5,MePhe8,Sar9]-SP5-11 (DiMe-C7), into the ventral tegmental area (VTA) of rat brain increased levels of the dopamine (DA) metabolite dihydroxyphenylacetic acid in the prefrontal cortex (+ 120%) and nucleus accumbens (+30%) but not in other regions of forebrain. In contrast, infusions of DiMe-C7 or SP into the lateral ventricles or microinfusions of SP into VTA failed to elicit increases in DOPAC levels in forebrain. DA levels were unaffected by SP or DiMe-C7 regardless of the route of administration. These data and previous studies suggest a role for endogenous SP in the modulation of mesocortical and mesolimbic DA neurones.

  2. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging.

    PubMed

    Due, Deborah L; Huettel, Scott A; Hall, Warren G; Rubin, David C

    2002-06-01

    The authors sought to increase understanding of the brain mechanisms involved in cigarette addiction by identifying neural substrates modulated by visual smoking cues in nicotine-deprived smokers. Event-related functional magnetic resonance imaging (fMRI) was used to detect brain activation after exposure to smoking-related images in a group of nicotine-deprived smokers and a nonsmoking comparison group. Subjects viewed a pseudo-random sequence of smoking images, neutral nonsmoking images, and rare targets (photographs of animals). Subjects pressed a button whenever a rare target appeared. In smokers, the fMRI signal was greater after exposure to smoking-related images than after exposure to neutral images in mesolimbic dopamine reward circuits known to be activated by addictive drugs (right posterior amygdala, posterior hippocampus, ventral tegmental area, and medial thalamus) as well as in areas related to visuospatial attention (bilateral prefrontal and parietal cortex and right fusiform gyrus). In nonsmokers, no significant differences in fMRI signal following exposure to smoking-related and neutral images were detected. In most regions studied, both subject groups showed greater activation following presentation of rare target images than after exposure to neutral images. In nicotine-deprived smokers, both reward and attention circuits were activated by exposure to smoking-related images. Smoking cues are processed like rare targets in that they activate attentional regions. These cues are also processed like addictive drugs in that they activate mesolimbic reward regions.

  3. Volatile Solvents as Drugs of Abuse: Focus on the Cortico-Mesolimbic Circuitry

    PubMed Central

    Beckley, Jacob T; Woodward, John J

    2013-01-01

    Volatile solvents such as those found in fuels, paints, and thinners are found throughout the world and are used in a variety of industrial applications. However, these compounds are also often intentionally inhaled at high concentrations to produce intoxication. While solvent use has been recognized as a potential drug problem for many years, research on the sites and mechanisms of action of these compounds lags behind that of other drugs of abuse. In this review, we first discuss the epidemiology of voluntary solvent use throughout the world and then consider what is known about their basic pharmacology and how this may explain their use as drugs of abuse. We next present data from preclinical and clinical studies indicating that these substances induce common addiction sequelae such as dependence, withdrawal, and cognitive impairments. We describe how toluene, the most commonly studied psychoactive volatile solvent, alters synaptic transmission in key brain circuits such as the mesolimbic dopamine system and medial prefrontal cortex (mPFC) that are thought to underlie addiction pathology. Finally, we make the case that activity in mPFC circuits is a critical regulator of the mesolimbic dopamine system's ability to respond to volatile solvents like toluene. Overall, this review provides evidence that volatile solvents have high abuse liability because of their selective effects on critical nodes of the addiction neurocircuitry, and underscores the need for more research into how these compounds induce adaptations in neural circuits that underlie addiction pathology. PMID:23954847

  4. The effects of gender and COMT Val158Met polymorphism on fearful facial affect recognition: a fMRI study.

    PubMed

    Kempton, Matthew J; Haldane, Morgan; Jogia, Jigar; Christodoulou, Tessa; Powell, John; Collier, David; Williams, Steven C R; Frangou, Sophia

    2009-04-01

    The functional catechol-O-methyltransferase (COMT Val108/158Met) polymorphism has been shown to have an impact on tasks of executive function, memory and attention and recently, tasks with an affective component. As oestrogen reduces COMT activity, we focused on the interaction between gender and COMT genotype on brain activations during an affective processing task. We used functional MRI (fMRI) to record brain activations from 74 healthy subjects who engaged in a facial affect recognition task; subjects viewed and identified fearful compared to neutral faces. There was no main effect of the COMT polymorphism, gender or genotypexgender interaction on task performance. We found a significant effect of gender on brain activations in the left amygdala and right temporal pole, where females demonstrated increased activations over males. Within these regions, Val/Val carriers showed greater signal magnitude compared to Met/Met carriers, particularly in females. The COMT Val108/158Met polymorphism impacts on gender-related patterns of activation in limbic and paralimbic regions but the functional significance of any oestrogen-related COMT inhibition appears modest.

  5. Distinctive striatal dopamine signaling after dieting and gastric bypass.

    PubMed

    Hankir, Mohammed K; Ashrafian, Hutan; Hesse, Swen; Horstmann, Annette; Fenske, Wiebke K

    2015-05-01

    Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Feelings about food: the ventral tegmental area in food reward and emotional eating.

    PubMed

    Meye, Frank J; Adan, Roger A H

    2014-01-01

    Overconsumption of high caloric food plays an important role in the etiology of obesity. Several factors drive such hedonic feeding. High caloric food is often palatable. In addition, when an individual is sated, stress and food-related cues can serve as potent feeding triggers. A better understanding of the neurobiological underpinnings of food palatability and environmentally triggered overconsumption would aid the development of new treatment strategies. In the current review we address the pivotal role of the mesolimbic dopamine reward system in the drive towards high caloric palatable food and its relation to stress- and cue-induced feeding. We also discuss how this system may be affected by both established and potential anti-obesity drug targets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Genetic Contributions to Age-Related Decline in Executive Function: A 10-Year Longitudinal Study of COMT and BDNF Polymorphisms

    PubMed Central

    Erickson, Kirk I.; Kim, Jennifer S.; Suever, Barbara L.; Voss, Michelle W.; Francis, B. Magnus; Kramer, Arthur F.

    2008-01-01

    Genetic variability in the dopaminergic and neurotrophic systems could contribute to age-related impairments in executive control and memory function. In this study we examined whether genetic polymorphisms for catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) were related to the trajectory of cognitive decline occurring over a 10-year period in older adults. A single nucleotide polymorphism in the COMT (Val158/108Met) gene affects the concentration of dopamine in the prefrontal cortex. In addition, a Val/Met substitution in the pro-domain for BDNF (Val66Met) affects the regulated secretion and trafficking of BDNF with Met carriers showing reduced secretion and poorer cognitive function. We found that impairments over the 10-year span on a task-switching paradigm did not vary as a function of the COMT polymorphism. However, for the BDNF polymorphism the Met carriers performed worse than Val homozygotes at the first testing session but only the Val homozygotes demonstrated a significant reduction in performance over the 10-year span. Our results argue that the COMT polymorphism does not affect the trajectory of age-related executive control decline, whereas the Val/Val polymorphism for BDNF may promote faster rates of cognitive decay in old age. These results are discussed in relation to the role of BDNF in senescence and the transforming impact of the Met allele on cognitive function in old age. PMID:18958211

  8. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation

    PubMed Central

    Cork, Simon C.

    2015-01-01

    Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation. PMID:26290108

  9. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.

    PubMed

    Trapp, Stefan; Cork, Simon C

    2015-10-15

    Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation. Copyright © 2015 the American Physiological Society.

  10. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [18F]Fallypride.

    PubMed

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D 2 /D 3 receptor availability in the nonhuman primate brain with the use of the radioligand [ 18 F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D 2 /D 3 antagonist, [ 18 F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUV ROI /SUV cerebellum ) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [ 18 F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  11. HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function.

    PubMed

    Kesby, James P; Najera, Julia A; Romoli, Benedetto; Fang, Yiding; Basova, Liana; Birmingham, Amanda; Marcondes, Maria Cecilia G; Dulcis, Davide; Semenova, Svetlana

    2017-10-01

    Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for methamphetamine abuse in individuals with HIV. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cat odour-induced anxiety--a study of the involvement of the endocannabinoid system.

    PubMed

    Sütt, Silva; Raud, Sirli; Areda, Tarmo; Reimets, Ain; Kõks, Sulev; Vasar, Eero

    2008-07-01

    Recent evidence suggests the involvement of the endocannabinoid (EC) system in the regulation of anxiety. The aim of present work was to study the role of the EC system in cat odour-induced anxiety in rats. Materials and methods Male Wistar rats were exposed to cat odour in home and motility cages. Exposure of rats to elevated zero-maze was used to determine changes in anxiety. Effect of rimonabant (0.3-3 mg/kg), antagonist of CB1 receptors, was studied on cat odour-induced alterations in exploratory behaviour. Real-time PCR was used to determine gene expression levels of EC-related genes in the brain. Anxiogenic-like action of cat odour was evident in the elevated zero-maze. Cat odour increased the expression of FAAH, the enzyme responsible for the degradation of anandamide, in the mesolimbic area. By contrast, in the amygdala and periaqueductal grey (PAG) levels of NAPE-PLD, the enzyme related to the synthesis of anandamide, and FAAH were remarkably decreased. Cat odour also decreased the expression of enzymes related to metabolism of 2-archidonoyl-glycerol in the amygdala and PAG. Pre-treatment of rats with rimonabant (0.3-3 mg/kg) reduced the exploratory behaviour of rats, but did not affect cat odour-induced changes. Exposure to cat odour induces anxiogenic-like effect on the behaviour in rats. Cat odour also causes moderate increase in expression of EC-related genes in the mesolimbic area, whereas significant down-regulation is established in the amygdala and PAG. Relation of predator odour-induced anxiety to the inhibition of the EC system in the amygdala and PAG is supported by behavioural studies where blockade of CB1 receptors by rimonabant induces anxiogenic-like action.

  13. The BDNF Val66Met polymorphism: relation to familiar risk of affective disorder, BDNF levels and salivary cortisol.

    PubMed

    Vinberg, Maj; Trajkovska, Viktorija; Bennike, Bente; Knorr, Ulla; Knudsen, Gitte M; Kessing, Lars V

    2009-10-01

    Brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis are considered to play an important role in the pathophysiology of affective disorders. The aim of the present study was to investigate whether the BDNF Val66Met polymorphism is associated with a familiar risk of affective disorder and whether these genotypes affect whole blood BDNF level and salivary cortisol. In a high-risk study, healthy monozygotic and dizygotic twins with and without a co-twin (high- and low-risk twins, respectively) history of affective disorder were identified through nationwide registers. Familiar predisposition to unipolar and bipolar disorder was not associated with any specific genotype pattern of the BDNF Val66Met polymorphism, not in this sample of 124 val/val, 58 val/met and 8 met/met individuals. However, the combination of having a high familiar risk of affective disorder and the met allele was associated with a higher whole blood BDNF (p=0.02) and a higher evening cortisol level (p=0.01), but not with awakening cortisol. Individuals at high risk of affective disorders and who are carriers of the met allele of the Val66Met polymorphism may present with an enhanced stress response. The presence of a specific genotype alone may not enhance the risk of developing an affective episode. Rather, the altered stress response may be expressed only in combination with other risk variants through interactions with the environment.

  14. Effects of the BDNF Val66Met Polymorphism on Anxiety-Like Behavior Following Nicotine Withdrawal in Mice

    PubMed Central

    Lee, Bridgin G.; Anastasia, Agustin; Hempstead, Barbara L.; Lee, Francis S.

    2015-01-01

    Introduction: Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. Methods: This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNFMet/Met) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Results: Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNFMet/Met mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNFMet/Met mice; and (3) an increase in BDNF prodomain in BDNFMet/Met mice following nicotine withdrawal. Conclusions: Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNFMet/Met mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. PMID:25744957

  15. Alpha-1-antichymotrypsin (ACT or SERPINA3) polymorphism may affect age-at-onset and disease duration of Alzheimer's disease.

    PubMed

    Kamboh, M Ilyas; Minster, Ryan L; Kenney, Margaret; Ozturk, Ayla; Desai, Purnima P; Kammerer, Candace M; DeKosky, Steven T

    2006-10-01

    In addition to genetic effects on disease risk, age-at-onset (AAO) of Alzheimer's disease (AD) is also genetically controlled. Using AAO as a covariate, a linkage signal for AD has been detected on chromosome 14q32 near the alpha1-antichymotrypsin (ACT) gene. Previously, a signal peptide polymorphism (codon -17A>T) in the ACT gene has been suggested to affect AD risk, but with inconsistent findings. Given that a linkage signal for AAO has been detected near ACT, we hypothesized that ACT genetic variation affects AAO rather than disease risk and this may explain the previous inconsistent findings between ACT genetic variation and AD risk. We examined the impact of the ACT signal peptide polymorphism on mean AAO in 909 AD cases. The ACT polymorphism was significantly associated with AAO and this effect was independent of the APOE polymorphism. Mean AAO among ACT/AA homozygotes was significantly lower than that in the combined AT+TT genotype group (p = 0.019) and this difference was confined to male AD patients (p = 0.002). Among male AD patients, the ACT/AA genotype was also associated with shorter disease duration before death as compared to the ACT/AT+TT genotypes (p = 0.012). These data suggest that the ACT gene may affect AAO and disease duration of AD.

  16. Alpha-1-antichymotrypsin (ACT or SERPINA3) polymorphism may affect age-at-onset and disease duration of Alzheimer’s disease

    PubMed Central

    Kamboh, M. Ilyas; Minster, Ryan L.; Kenney, Margaret; Ozturk, Ayla; Desai, Purnima P.; Kammerer, Candace M.; DeKosky, Steven T.

    2006-01-01

    In addition to genetic effects on disease risk, age-at-onset (AAO) of Alzheimer’s disease (AD) is also genetically controlled. Using AAO as a covariate, a linkage signal for AD has been detected on chromosome 14q32 near the a1-antichymotrypsin (ACT) gene. Previously, a signal peptide polymorphism (codon -17A>T) in the ACT gene has been suggested to affect AD risk, but with inconsistent findings. Given that a linkage signal for AAO has been detected near ACT, we hypothesized that ACT genetic variation affects AAO rather than disease risk and this may explain the previous inconsistent findings between ACT genetic variation and AD risk. We examined the impact of the ACT signal peptide polymorphism on mean AAO in 909 AD cases. The ACT polymorphism was significantly associated with AAO and this effect was independent of the APOE polymorphism. Mean AAO among ACT/AA homozygotes was significantly lower than that in the combined AT+TT genotype group (p=0.019) and this difference was confined to male AD patients (p=0.002). Among male AD patients, the ACT/AA genotype was also associated with shorter disease duration before death as compared to the ACT/AT + TT genotypes (p=0.012). These data suggest that the ACT gene may affect AAO and disease duration of AD. PMID:16137793

  17. Association of the serotonin transporter gene promoter region (5-HTTLPR) polymorphism with biased attention for emotional stimuli.

    PubMed

    Beevers, Christopher G; Wells, Tony T; Ellis, Alissa J; McGeary, John E

    2009-08-01

    A deletion polymorphism in the serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with vulnerability to affective disorders, yet the mechanism by which this gene confers vulnerability remains unclear. Two studies examined associations between the 5-HTTLPR polymorphism and attentional bias for emotional stimuli among nondepressed adults. Biased attention, attention engagement, and difficulty with attention disengagement were assessed with a spatial cuing task using emotional stimuli. Results from Study 1 (N = 38) indicated that short 5-HTTLPR allele carriers experienced greater difficulty disengaging their attention from sad and happy stimuli compared with long allele homozygotes. Study 2 participants (N = 144) were genotyped for the 5-HTTLPR polymorphism, including single nucleotide polymorphism rs25531 in the long allele of the 5-HTTLPR. Consistent with Study 1, individuals homozygous for the low-expressing 5-HTTLPR alleles (i.e., S and LG) experienced greater difficulty disengaging attention from sad, happy, and fear stimuli than high-expressing 5-HTTLPR homozygotes. Because this association exists in healthy adults, it may represent a susceptibility factor for affective disorders that becomes problematic during stressful life experiences.

  18. Nociception, pain, negative moods and behavior selection

    PubMed Central

    Baliki, Marwan N.; Apkarian, A. Vania

    2015-01-01

    Recent neuroimaging studies suggest that the brain adapts with pain, as well as imparts risk for developing chronic pain. Within this context we revisit the concepts for nociception, acute and chronic pain, and negative moods relative to behavior selection. We redefine nociception as the mechanism protecting the organism from injury; while acute pain as failure of avoidant behavior; and a mesolimbic threshold process that gates the transformation of nociceptive activity to conscious pain. Adaptations in this threshold process are envisioned to be critical for development of chronic pain. We deconstruct chronic pain into four distinct phases, each with specific mechanisms; and outline current state of knowledge regarding these mechanisms: The limbic brain imparting risk, while mesolimbic learning processes reorganizing the neocortex into a chronic pain state. Moreover, pain and negative moods are envisioned as a continuum of aversive behavioral learning, which enhance survival by protecting against threats. PMID:26247858

  19. Enhanced Control of Attention by Stimulating Mesolimbic-Corticopetal Cholinergic Circuitry

    PubMed Central

    St. Peters, Megan; Demeter, Elise; Lustig, Cindy; Bruno, John P.; Sarter, Martin

    2011-01-01

    Sustaining and recovering attentional performance requires interactions between the brain’s motivation and attention systems. The first experiment demonstrated that in rats performing a sustained attention task (SAT), presentation of a distractor (dSAT) augmented performance-associated increases in cholinergic neurotransmission in prefrontal cortex (PFC). Because stimulation of NMDA receptors in the shell of the nucleus accumbens (NAC) activates PFC cholinergic neurotransmission, a second experiment demonstrated that bilateral infusions of NMDA into the NAC shell, but not core, improved dSAT-performance to levels observed in the absence of a distractor. A third experiment demonstrated that removal of prefrontal or posterior parietal cholinergic inputs, by intra-cortical infusions of the cholinotoxin 192 IgG saporin, attenuated the beneficial effects of NMDA on dSAT perfomance. Mesolimbic activation of cholinergic projections to the cortex benefits the cognitive control of attentional performance by enhancing the detection of cues and the filtering of distractors. PMID:21715641

  20. Human fronto-mesolimbic networks guide decisions about charitable donation.

    PubMed

    Moll, Jorge; Krueger, Frank; Zahn, Roland; Pardini, Matteo; de Oliveira-Souza, Ricardo; Grafman, Jordan

    2006-10-17

    Humans often sacrifice material benefits to endorse or to oppose societal causes based on moral beliefs. Charitable donation behavior, which has been the target of recent experimental economics studies, is an outstanding contemporary manifestation of this ability. Yet the neural bases of this unique aspect of human altruism, which extends beyond interpersonal interactions, remain obscure. In this article, we use functional magnetic resonance imaging while participants anonymously donated to or opposed real charitable organizations related to major societal causes. We show that the mesolimbic reward system is engaged by donations in the same way as when monetary rewards are obtained. Furthermore, medial orbitofrontal-subgenual and lateral orbitofrontal areas, which also play key roles in more primitive mechanisms of social attachment and aversion, specifically mediate decisions to donate or to oppose societal causes. Remarkably, more anterior sectors of the prefrontal cortex are distinctively recruited when altruistic choices prevail over selfish material interests.

  1. Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries.

    PubMed

    Fricchione, Gregory; Stefano, George B

    2005-05-01

    Evidence suggests that the placebo response is related to the tonic effects of constitutive nitric oxide in neural, vascular and immune tissues. Constitutive nitric oxide levels play a role in the modulation of dopamine outflow in the nigrostriatal movement and the mesolimbic and mesocortical reward and motivation circuitries. Endogenous morphine, which stimulates constitutive nitric oxide, may be an important signal molecule working at mu receptors on gamma aminobutyric acid B interneurons to disinhibit nigral and tegmental dopamine output. We surmise that placebo induced belief will activate the prefrontal cortex with downstream stimulatory effects on these dopamine systems as well as on periaqueductal grey opioid output neurons. Placebo responses in Parkinson's disease, depression and pain disorder may result. In addition, mesolimbic/mesocortical control of the stress response systems may provide a way for the placebo response to benefit other medical conditions.

  2. Nipping cue reactivity in the bud: baclofen prevents limbic activation elicited by subliminal drug cues.

    PubMed

    Young, Kimberly A; Franklin, Teresa R; Roberts, David C S; Jagannathan, Kanchana; Suh, Jesse J; Wetherill, Reagan R; Wang, Ze; Kampman, Kyle M; O'Brien, Charles P; Childress, Anna Rose

    2014-04-02

    Relapse is a widely recognized and difficult to treat feature of the addictions. Substantial evidence implicates cue-triggered activation of the mesolimbic dopamine system as an important contributing factor. Even drug cues presented outside of conscious awareness (i.e., subliminally) produce robust activation within this circuitry, indicating the sensitivity and vulnerability of the brain to potentially problematic reward signals. Because pharmacological agents that prevent these early cue-induced responses could play an important role in relapse prevention, we examined whether baclofen-a GABAB receptor agonist that reduces mesolimbic dopamine release and conditioned drug responses in laboratory animals-could inhibit mesolimbic activation elicited by subliminal cocaine cues in cocaine-dependent individuals. Twenty cocaine-dependent participants were randomized to receive baclofen (60 mg/d; 20 mg t.i.d.) or placebo. Event-related BOLD fMRI and a backward-masking paradigm were used to examine the effects of baclofen on subliminal cocaine (vs neutral) cues. Sexual and aversive cues were included to examine specificity. We observed that baclofen-treated participants displayed significantly less activation in response to subliminal cocaine (vs neutral) cues, but not sexual or aversive (vs neutral) cues, than placebo-treated participants in a large interconnected bilateral cluster spanning the ventral striatum, ventral pallidum, amygdala, midbrain, and orbitofrontal cortex (voxel threshold p < 0.005; cluster corrected at p < 0.05). These results suggest that baclofen may inhibit the earliest type of drug cue-induced motivational processing-that which occurs outside of awareness-before it evolves into a less manageable state.

  3. Nipping Cue Reactivity in the Bud: Baclofen Prevents Limbic Activation Elicited by Subliminal Drug Cues

    PubMed Central

    Young, Kimberly A.; Franklin, Teresa R.; Roberts, David C.S.; Jagannathan, Kanchana; Suh, Jesse J.; Wetherill, Reagan R.; Wang, Ze; Kampman, Kyle M.; O'Brien, Charles P.

    2014-01-01

    Relapse is a widely recognized and difficult to treat feature of the addictions. Substantial evidence implicates cue-triggered activation of the mesolimbic dopamine system as an important contributing factor. Even drug cues presented outside of conscious awareness (i.e., subliminally) produce robust activation within this circuitry, indicating the sensitivity and vulnerability of the brain to potentially problematic reward signals. Because pharmacological agents that prevent these early cue-induced responses could play an important role in relapse prevention, we examined whether baclofen—a GABAB receptor agonist that reduces mesolimbic dopamine release and conditioned drug responses in laboratory animals—could inhibit mesolimbic activation elicited by subliminal cocaine cues in cocaine-dependent individuals. Twenty cocaine-dependent participants were randomized to receive baclofen (60 mg/d; 20 mg t.i.d.) or placebo. Event-related BOLD fMRI and a backward-masking paradigm were used to examine the effects of baclofen on subliminal cocaine (vs neutral) cues. Sexual and aversive cues were included to examine specificity. We observed that baclofen-treated participants displayed significantly less activation in response to subliminal cocaine (vs neutral) cues, but not sexual or aversive (vs neutral) cues, than placebo-treated participants in a large interconnected bilateral cluster spanning the ventral striatum, ventral pallidum, amygdala, midbrain, and orbitofrontal cortex (voxel threshold p < 0.005; cluster corrected at p < 0.05). These results suggest that baclofen may inhibit the earliest type of drug cue-induced motivational processing—that which occurs outside of awareness—before it evolves into a less manageable state. PMID:24695721

  4. Oxytocin-induced yawning: sites of action in the brain and interaction with mesolimbic/mesocortical and incertohypothalamic dopaminergic neurons in male rats.

    PubMed

    Sanna, Fabrizio; Argiolas, Antonio; Melis, Maria Rosaria

    2012-09-01

    Oxytocin (80 ng) induces yawning when injected into the caudal part of the ventral tegmental area, the hippocampal ventral subiculum and the posteromedial nucleus of the amygdala of male rats. The behavioural response occurred concomitantly with an increase in the concentration of extracellular dopamine and its main metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the dialysate obtained from the shell of the nucleus accumbens and of the prelimbic medial prefrontal cortex by means of intracerebral microdialysis. Both oxytocin responses were significantly reduced by d(CH₂)₅Tyr(Me)²-Orn⁸-vasotocin, a selective oxytocin receptor antagonist, injected in the above brain areas 15 min before oxytocin. Similar results were obtained by activating central oxytocinergic neurons originating in the paraventricular nucleus of the hypothalamus and projecting to the ventral tegmental area, the hippocampus and the amygdala, with the dopamine agonist apomorphine given at a dose that induces yawning when injected into the paraventricular nucleus. Since oxytocin is considered a key regulator of emotional and social reward that enhances amygdala-dependent, socially reinforced learning and emotional empathy, mesolimbic and mesocortical dopamine neurons play a key role in motivation and reward, and yawning in mammals is considered a primitive, unconscious form of empathy, the present results support the hypothesis that oxytocinergic neurons originating in the paraventricular nucleus of the hypothalamus and projecting to the above brain areas and mesolimbic and mesocortical dopaminergic neurons participate in the complex neural circuits that play a role in the above mentioned functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Effects of haloperidol and aripiprazole on the human mesolimbic motivational system: A pharmacological fMRI study.

    PubMed

    Bolstad, Ingeborg; Andreassen, Ole A; Groote, Inge; Server, Andres; Sjaastad, Ivar; Kapur, Shitij; Jensen, Jimmy

    2015-12-01

    The atypical antipsychotic drug aripiprazole is a partial dopamine (DA) D2 receptor agonist, which differentiates it from most other antipsychotics. This study compares the brain activation characteristic produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist. Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo, and then performed an active aversive conditioning task with aversive and neutral events presented as sounds, while blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was carried out. The fMRI task, targeting the mesolimbic motivational system that is thought to be disturbed in psychosis, was based on the conditioned avoidance response (CAR) animal model - a widely used test of therapeutic potential of antipsychotic drugs. In line with the CAR animal model, the present results show that subjects given haloperidol were not able to avoid more aversive than neutral task trials, even though the response times were shorter during aversive events. In the aripiprazole and placebo groups more aversive than neutral events were avoided. Accordingly, the task-related BOLD-fMRI response in the mesolimbic motivational system was diminished in the haloperidol group compared to the placebo group, particularly in the ventral striatum, whereas the aripiprazole group showed task-related activations intermediate of the placebo and haloperidol groups. The current results show differential effects on brain function by aripiprazole and haloperidol, probably related to altered DA transmission. This supports the use of pharmacological fMRI to study antipsychotic properties in humans. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  6. Virally mediated increased neurotensin 1 receptor in the nucleus accumbens decreases behavioral effects of mesolimbic system activation.

    PubMed

    Cáceda, Ricardo; Kinkead, Becky; Owens, Michael J; Nemeroff, Charles B

    2005-12-14

    Dopamine receptor agonist and NMDA receptor antagonist activation of the mesolimbic dopamine system increases locomotion and disrupts prepulse inhibition of the acoustic startle response (PPI), paradigms frequently used to study both the pharmacology of antipsychotic drugs and drugs of abuse. In rats, virally mediated overexpression of the neurotensin 1 (NT1) receptor in the nucleus accumbens antagonized d-amphetamine- and dizocilpine-induced PPI disruption, hyperlocomotion, and D-amphetamine-induced rearing. The NT receptor antagonist SR 142948A [2-[[5-(2,6-dimethoxyphenyl)-1-(4-N-(3-dimethylaminopropyl)-N-methylcarbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]amino] adamantane-2-carboxylic acid, hydrochloride] blocked inhibition of dizocilpine-induced hyperlocomotion mediated by overexpression of the NT1 receptor. Together, these results suggest that increased nucleus accumbens NT neurotransmission, via the NT1 receptor, can decrease the effects of activation of the mesolimbic dopamine system and disruption of the glutamatergic input from limbic cortices, resembling the action of the atypical antipsychotic drug clozapine. In contrast to clozapine, virally mediated overexpression of the NT1 receptor in the nucleus accumbens had prolonged protective effects (up to 4 weeks after viral injection) without perturbing baseline PPI and locomotor behaviors. These data further confirm the NT1 receptor as the receptor mediating the antistimulant- and antipsychotic-like properties of NT and provide rationale for the development of NT1 receptor agonists as novel antipsychotic drugs. In addition, the NT1 receptor vector might be a valuable tool for understanding the mechanism of action of antipsychotic drugs and drugs of abuse and may have potential therapeutic applications.

  7. Aberrant mesolimbic dopamine-opiate interaction in obesity.

    PubMed

    Tuominen, Lauri; Tuulari, Jetro; Karlsson, Henry; Hirvonen, Jussi; Helin, Semi; Salminen, Paulina; Parkkola, Riitta; Hietala, Jarmo; Nuutila, Pirjo; Nummenmaa, Lauri

    2015-11-15

    Dopamine and opioid neurotransmitter systems share many functions such as regulation of reward and pleasure. μ-Opioid receptors (MOR) modulate the mesolimbic dopamine system in ventral tegmental area and striatum, key areas implicated in reward. We hypothesized that dopamine and opioid receptor availabilities correlate in vivo and that this correlation is altered in obesity, a disease with altered reward processing. Twenty lean females (mean BMI 22) and 25 non-binge eating morbidly obese females (mean BMI 41) underwent two positron emission tomography scans with [(11)C]carfentanil and [(11)C]raclopride to measure the MOR and dopamine D2 receptor (DRD2) availability, respectively. In lean subjects, the MOR and DRD2 availabilities were positively associated in the ventral striatum (r=0.62, p=0.003) and dorsal caudate nucleus (r=0.62, p=0.004). Moreover, DRD2 availability in the ventral striatum was associated with MOR availability in other regions of the reward circuitry, particularly in the ventral tegmental area. In morbidly obese subjects, this receptor interaction was significantly weaker in ventral striatum but unaltered in the caudate nucleus. Finally, the association between DRD2 availability in the ventral striatum and MOR availability in the ventral tegmental area was abolished in the morbidly obese. The study demonstrates a link between DRD2 and MOR availabilities in living human brain. This interaction is selectively disrupted in mesolimbic dopamine system in morbid obesity. We propose that interaction between the dopamine and opioid systems is a prerequisite for normal reward processing and that disrupted cross-talk may underlie altered reward processing in obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Mesolimbic leptin signaling negatively regulates cocaine-conditioned reward.

    PubMed

    Shen, M; Jiang, C; Liu, P; Wang, F; Ma, L

    2016-12-06

    The regulatory mechanisms underlying the response to addictive drugs are complex, and increasing evidence indicates that there is a role for appetite-regulating pathways in substance abuse. Leptin, an important adipose hormone that regulates energy balance and appetite, exerts its physiological functions via leptin receptors. However, the role of leptin signaling in regulating the response to cocaine remains unclear. Here we examined the potential role of leptin signaling in cocaine reward using a conditioned place preference (CPP) procedure. Our results showed that inhibition of leptin signaling by intracerebroventricular infusion of the leptin receptor (LepR) antagonist SMLA during cocaine conditioning increased the cocaine-CPP and upregulated the level of dopamine and its metabolites in the nucleus accumbens (NAc). We then selectively knocked down the LepR in the mesolimbic ventral tegmental area (VTA), NAc core and central amygdala (CeA) by injecting AAV-Cre into Lepr flox/flox mice. LepR deletion in the VTA increased the dopamine levels in the NAc and enhanced the cocaine-conditioned reward. LepR deletion in the NAc core enhanced the cocaine-conditioned reward and impaired the effect of the D2-dopamine receptor on cocaine-CPP, whereas LepR deletion in the CeA had no effect on cocaine-CPP but increased the anxiety level of mice. In addition, prior exposure to saccharin increased LepR mRNA and STAT3 phosphorylation in the NAc and VTA and impaired cocaine-CPP. These results indicate that leptin signaling is critically involved in cocaine-conditioned reward and the regulation of drug reward by a natural reward and that these effects are dependent on mesolimbic LepR.

  9. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos

    SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did notmore » lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs.« less

  10. A translational systems biology approach in both animals and humans identifies a functionally related module of accumbal genes involved in the regulation of reward processing and binge drinking in males.

    PubMed

    Stacey, David; Lourdusamy, Anbarasu; Ruggeri, Barbara; Maroteaux, Matthieu; Jia, Tianye; Cattrell, Anna; Nymberg, Charlotte; Banaschewski, Tobias; Bhattacharyya, Sohinee; Band, Hamid; Barker, Gareth; Bokde, Arun; Buchel, Christian; Carvalho, Fabiana; Conrod, Patricia; Desrivieres, Sylvane; Easton, Alanna; Fauth-Buehler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Frouin, Vincent; Gallinat, Jurgen; Garavanh, Hugh; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Rotter, Andrea; Santos, Eugenio; Smolka, Michael; Sommer, Wolfgang; Mameli, Manuel; Spanagel, Rainer; Girault, Jean-Antoine; Mueller, Christian; Schumann, Gunter

    2016-04-01

    The mesolimbic dopamine system, composed primarily of dopaminergic neurons in the ventral tegmental area that project to striatal structures, is considered to be the key mediator of reinforcement-related mechanisms in the brain. Prompted by a genome-wide association meta-analysis implicating the Ras-specific guanine nucleotide-releasing factor 2 (RASGRF2) gene in the regulation of alcohol intake in men, we have recently shown that male Rasgrf2(-/-) mice exhibit reduced ethanol intake and preference accompanied by a perturbed mesolimbic dopamine system. We therefore propose that these mice represent a valid model to further elucidate the precise genes and mechanisms regulating mesolimbic dopamine functioning. Transcriptomic data from the nucleus accumbens (NAcc) of male Rasgrf2(-/-) mice and wild-type controls were analyzed by weighted gene coexpression network analysis (WGCNA). We performed follow-up genetic association tests in humans using a sample of male adolescents from the IMAGEN study characterized for binge drinking (n = 905) and ventral striatal activation during an fMRI reward task (n = 608). The WGCNA analyses using accumbal transcriptomic data revealed 37 distinct "modules," or functionally related groups of genes. Two of these modules were significantly associated with Rasgrf2 knockout status: M5 (p < 0.001) and M6 (p < 0.001). In follow-up translational analyses we found that human orthologues for the M5 module were significantly (p < 0.01) enriched with genetic association signals for binge drinking in male adolescents. Furthermore, the most significant locus, originating from the EH-domain containing 4 (EHD4) gene (p < 0.001), was also significantly associated with altered ventral striatal activity in male adolescents performing an fMRI reward task (pempirical < 0.001). It was not possible to determine the extent to which the M5 module was dysregulated in Rasgrf2(-/-) mice by perturbed mesolimbic dopamine signalling or by the loss of Rasgrf2 function in the NAcc. Taken together, our findings indicate that the accumbal M5 module, initially identified as being dysregulated in male Rasgrf2(-/-) mice, is also relevant for human alcohol-related phenotypes potentially through the modulation of reinforcement mechanisms in the NAcc. We therefore propose that the genes comprising this module represent important candidates for further elucidation within the context of alcohol-related phenotypes.

  11. Pharmacogenetic Association of the Galanin Receptor (GALR1) SNP rs2717162 with Smoking Cessation

    PubMed Central

    Gold, Allison B; Wileyto, E Paul; Lori, Adriana; Conti, David; Cubells, Joseph F; Lerman, Caryn

    2012-01-01

    Galanin modulates dopaminergic neurotransmission in the mesolimbic dopamine system, thereby influencing the rewarding effects of nicotine. Variants in the galanin receptor 1 (GALR1) gene have been associated with retrospective craving severity and heaviness of smoking in prior research. We investigated pharmacogenetic associations of the previously studied GALR1 polymorphism, rs2717162, in 1217 smokers of European ancestry who participated in one of three pharmacogenetic smoking cessation clinical trials and were treated with nicotine patch (n=623), nicotine nasal spray (n=189), bupropion (n=213), or placebo (n=192). The primary endpoint was abstinence (7-day point prevalence, biochemically confirmed) at the end of treatment. Cravings to smoke were assessed on the target quit day (TQD). The longitudinal regression model revealed a significant genotype by treatment interaction (P=0.03). There was a reduced odds of quitting success with the presence of at least one minor (C) allele in the bupropion-treated group (OR=0.43; 95% CI=0.22–0.77; P=0.005) but equivalent quit rates by genotype in the nicotine-replacement therapy groups. This genotype by treatment interaction was reproduced in a Cox regression model of time to relapse (P=0.04). In the bupropion trial, smokers carrying the C allele also reported more severe TQD cravings. Further research to identify functional variants in GALR1 and to replicate pharmacogenetic associations is warranted. PMID:22373943

  12. WDR1 and CLNK gene polymorphisms correlate with serum glucose and high-density lipoprotein levels in Tibetan gout patients.

    PubMed

    Lan, Bing; Chen, Peng; Jiri, Mutu; He, Na; Feng, Tian; Liu, Kai; Jin, Tianbo; Kang, Longli

    2016-03-01

    Current evidence suggests heredity and metabolic syndrome contributes to gout progression. Specifically, the WDR1 and CLNK genes may play a role in gout progression in European ancestry populations. However, no studies have focused on Chinese populations, especially Tibetan individuals. This study aims to determine whether variations in these two genes correlate with gout-related indices in Chinese-Tibetan gout patients. Eleven single-nucleotide polymorphisms in the WDR1 and CLNK genes were detected in 319 Chinese-Tibetan gout patients and 318 controls. We used one-way analysis of variance to evaluate the polymorphisms' effects on gout based on mean serum levels of metabolism indicators, such as albumin, glucose (GLU), triglycerides, cholesterol, high-density lipoproteins (HDL-C), creatinine, and uric acid, from fasting venous blood samples. All p values were Bonferroni corrected. Polymorphisms of the WDR1 and CLNK genes affected multiple risk factors for gout development. Significant differences in serum GLU levels were detected between different genotypic groups with WDRI polymorphisms rs4604059 (p = 0.005) and rs12498927 (p = 0.005). In addition, significant differences in serum HDL-C levels were detected between different genotypic groups with the CLNK polymorphism rs2041215 (p = 0.001). Polymorphisms of CLNK also affected levels of albumin, triglycerides, and creatinine. This study is the first to investigate and identify positive correlations between WDR1 and CLNK gene polymorphisms in Chinese-Tibetan populations. Our findings provide significant evidence for the effect of genetic polymorphisms on gout-related factors in Chinese-Tibetan populations.

  13. Effects of the BDNF Val66Met Polymorphism on Anxiety-Like Behavior Following Nicotine Withdrawal in Mice.

    PubMed

    Lee, Bridgin G; Anastasia, Agustin; Hempstead, Barbara L; Lee, Francis S; Blendy, Julie A

    2015-12-01

    Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNF(Met/Met)) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNF(Met/Met) mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNF(Met/Met) mice; and (3) an increase in BDNF prodomain in BDNF(Met/Met) mice following nicotine withdrawal. Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNF(Met/Met) mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Decision-making after continuous wins or losses in a randomized guessing task: implications for how the prior selection results affect subsequent decision-making.

    PubMed

    Dong, Guangheng; Lin, Xiao; Zhou, Hongli; Du, Xiaoxia

    2014-04-03

    Human decision-making is often affected by prior selections and their outcomes, even in situations where decisions are independent and outcomes are unpredictable. In this study, we created a task that simulated real-life non-strategic gambling to examine the effect of prior outcomes on subsequent decisions in a group of male college students. Behavioral performance showed that participants needed more time to react after continuous losses (LOSS) than continuous wins (WIN) and discontinuous outcomes (CONTROL). In addition, participants were more likely to repeat their selections in both WIN and LOSS conditions. Functional MRI data revealed that decisions in WINs were associated with increased activation in the mesolimbic pathway, but decreased activation in the inferior frontal gyrus relative to LOSS. Increased prefrontal cortical activation was observed during LOSS relative to WIN and CONTROL conditions. Taken together, the behavioral and neuroimaging findings suggest that participants tended to repeat previous selections during LOSS trials, a pattern resembling the gambler's fallacy. However, during WIN trials, participants tended to follow their previous lucky decisions, like the 'hot hand' fallacy.

  15. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models

    PubMed Central

    Spear, Linda Patia

    2016-01-01

    Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-Methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration have also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects. PMID:27484868

  16. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models.

    PubMed

    Spear, Linda Patia

    2016-11-01

    Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder.

    PubMed

    Marsh, Rachel; Tau, Gregory Z; Wang, Zhishun; Huo, Yuankai; Liu, Ge; Hao, Xuejun; Packard, Mark G; Peterson, Bradley S; Simpson, H Blair

    2015-04-01

    The authors assessed the functioning of mesolimbic and striatal areas involved in reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder (OCD). Functional MRI blood-oxygen-level-dependent response was compared in 33 unmedicated adults with OCD and 33 healthy, age-matched comparison subjects during a reward-based learning task that required learning to use extramaze cues to navigate a virtual eight-arm radial maze to find hidden rewards. The groups were compared in their patterns of brain activation associated with reward-based spatial learning versus a control condition in which rewards were unexpected because they were allotted pseudorandomly to experimentally prevent learning. Both groups learned to navigate the maze to find hidden rewards, but group differences in neural activity during navigation and reward processing were detected in mesolimbic and striatal areas. During navigation, the OCD group, unlike the healthy comparison group, exhibited activation in the left posterior hippocampus. Unlike healthy subjects, participants in the OCD group did not show activation in the left ventral putamen and amygdala when anticipating rewards or in the left hippocampus, amygdala, and ventral putamen when receiving unexpected rewards (control condition). Signal in these regions decreased relative to baseline during unexpected reward receipt among those in the OCD group, and the degree of activation was inversely associated with doubt/checking symptoms. Participants in the OCD group displayed abnormal recruitment of mesolimbic and ventral striatal circuitry during reward-based spatial learning. Whereas healthy comparison subjects exhibited activation in this circuitry in response to the violation of reward expectations, unmedicated OCD participants did not and instead over-relied on the posterior hippocampus during learning. Thus, dopaminergic innervation of reward circuitry may be altered, and future study of anterior/posterior hippocampal dysfunction in OCD is warranted.

  18. PPARα modulation of mesolimbic dopamine transmission rescues depression-related behaviors.

    PubMed

    Scheggi, Simona; Melis, Miriam; De Felice, Marta; Aroni, Sonia; Muntoni, Anna Lisa; Pelliccia, Teresa; Gambarana, Carla; De Montis, Maria Graziella; Pistis, Marco

    2016-11-01

    Depressive disorders cause a substantial burden for the individual and the society. Key depressive symptoms can be modeled in animals and enable the development of novel therapeutic interventions. Chronic unavoidable stress disrupts rats' competence to escape noxious stimuli and self-administer sucrose, configuring a depression model characterized by escape deficit and motivational anhedonia associated to impaired dopaminergic responses to sucrose in the nucleus accumbens shell (NAcS). Repeated treatments that restore these responses also relieve behavioral symptoms. Ventral tegmental area (VTA) dopamine neurons encode reward and motivation and are implicated in the neuropathology of depressive-like behaviors. Peroxisome proliferator-activated receptors type-α (PPARα) acutely regulate VTA dopamine neuron firing via β2 subunit-containing nicotinic acetylcholine receptors (β2*nAChRs) through phosphorylation and this effect is predictive of antidepressant-like effects. Here, by combining behavioral, electrophysiological and biochemical techniques, we studied the effects of repeated PPARα stimulation by fenofibrate on mesolimbic dopamine system. We found decreased β2*nAChRs phosphorylation levels and a switch from tonic to phasic activity of dopamine cells in the VTA, and increased phosphorylation of dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32) in the NAcS. We then investigated whether long-term fenofibrate administration to stressed rats reinstated the decreased DARPP-32 response to sucrose and whether this effect translated into antidepressant-like properties. Fenofibrate restored dopaminergic responses to appetitive stimuli, reactivity to aversive stimuli and motivation to self-administer sucrose. Overall, this study suggests PPARα as new targets for antidepressant therapies endowed with motivational anti-anhedonic properties, further supporting the role of an unbalanced mesolimbic dopamine system in pathophysiology of depressive disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.

    PubMed

    Oginsky, Max F; Maust, Joel D; Corthell, John T; Ferrario, Carrie R

    2016-03-01

    Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. We examined differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity and basal differences in striatal neuron function in adult and in adolescent obesity-prone and obesity-resistant rats. Susceptible and resistant outbred rats were identified based on "junk-food" diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine-induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). In rats that became obese after eating junk-food, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ∼60 % at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals, and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats.

  20. Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward.

    PubMed

    Skibicka, Karolina P; Shirazi, Rozita H; Hansson, Caroline; Dickson, Suzanne L

    2012-03-01

    Ghrelin, a stomach-derived hormone, is an orexigenic peptide that was recently shown to potently increase food reward behavior. The neurochemical circuitry that links ghrelin to the mesolimbic system and food reward behavior remains unclear. Here we examined the contribution of neuropeptide Y (NPY) and opioids to ghrelin's effects on food motivation and intake. Both systems have well-established links to the mesolimbic ventral tegmental area (VTA) and reward/motivation control. NPY mediates the effect of ghrelin on food intake via activation of NPY-Y1 receptor (NPY-Y1R); their connection with respect to motivated behavior is unexplored. The role of opioids in any aspect of ghrelin's action on food-oriented behaviors is unknown. Rats were trained in a progressive ratio sucrose-induced operant schedule to measure food reward/motivation behavior. Chow intake was measured immediately after the operant test. In separate experiments, we explored the suppressive effects of a selective NPY-Y1R antagonist or opioid receptor antagonist naltrexone, injected either intracerebroventricularly or intra-VTA, on ghrelin-induced food reward behavior. The ventricular ghrelin-induced increase in sucrose-motivated behavior and chow intake were completely blocked by intracerebroventricular pretreatment with either an NPY-Y1R antagonist or naltrexone. The intra-VTA ghrelin-induced sucrose-motivated behavior was blocked only by intra-VTA naltrexone. In contrast, the intra-VTA ghrelin-stimulated chow intake was attenuated only by intra-VTA NPY-Y1 blockade. Finally, ghrelin infusion was associated with an elevated VTA μ-opioid receptor expression. Thus, we identify central NPY and opioid signaling as the necessary mediators of food intake and reward effects of ghrelin and localize these interactions to the mesolimbic VTA.

  1. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    PubMed Central

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  2. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice.

    PubMed

    Lippert, Rachel N; Ellacott, Kate L J; Cone, Roger D

    2014-05-01

    The melanocortin-3 receptor (MC3R) and MC4R are known to play critical roles in energy homeostasis. However, the physiological functions of the MC3R remain poorly understood. Earlier reports indicated that the ventral tegmental area (VTA) is one of the highest sites of MC3R expression, and we sought to determine the function of the receptor in this brain region. A MC3R-green-fluorescent protein transgenic mouse and a MC3R knockout mouse strain were used to characterize the neurochemical identity of the MC3R neurons in the VTA and to determine the effects of global MC3R deletion on VTA dopamine (DA) homeostasis. We demonstrate that the MC3R, but not MC4R, is expressed in up to a third of dopaminergic neurons of the VTA. Global deletion of the MC3R increases total dopamine by 42% in the VTA and decreases sucrose intake and preference in female but not male mice. Ovariectomy restores dopamine levels to normal, but aberrant decreased VTA dopamine levels are also observed in prepubertal female mice. Because arcuate Agouti-related peptide/neuropeptide Y neurons are known to innervate and regulate VTA signaling, the MC3R in dopaminergic neurons provides a specific input for communication of nutritional state within the mesolimbic dopamine system. Data provided here suggest that this input may be highly sexually dimorphic, functioning as a specific circuit regulating effects of estrogen on VTA dopamine levels and on sucrose preference. Overall, this data support a sexually dimorphic function of MC3R in regulation of the mesolimbic dopaminergic system and reward.

  3. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    PubMed Central

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  4. The Influence of DAT1, COMT, and BDNF Genetic Polymorphisms on Total and Subregional Hippocampal Volumes in Early Onset Heavy Cannabis Users

    PubMed Central

    Batalla, Albert; Lorenzetti, Valentina; Chye, Yann; Yücel, Murat; Soriano-Mas, Carles; Bhattacharyya, Sagnik; Torrens, Marta; Crippa, José A.S.; Martín-Santos, Rocío

    2018-01-01

    Abstract Introduction: Hippocampal neuroanatomy is affected by genetic variations in dopaminergic candidate genes and environmental insults, such as early onset of chronic cannabis exposure. Here, we examine how hippocampal total and subregional volumes are affected by cannabis use and functional polymorphisms of dopamine-relevant genes, including the catechol-O-methyltransferase (COMT), dopamine transporter (DAT1), and the brain-derived neurotrophic factor (BDNF) genes. Material and Methods: We manually traced total hippocampal volumes and automatically segmented hippocampal subregions using high-resolution MRI images, and performed COMT, DAT1, and BDNF genotyping in 59 male Caucasian young adults aged 18–30 years. These included 30 chronic cannabis users with early-onset (regular use at <16 years) and 29 age-, education-, and intelligence-matched controls. Results: Cannabis use and dopaminergic gene polymorphism had both distinct and interactive effects on the hippocampus. We found emerging alterations of hippocampal total and specific subregional volumes in cannabis users relative to controls (i.e., CA1, CA2/3, and CA4), and associations between cannabis use levels and total and specific subregional volumes. Furthermore, total hippocampal volume and the fissure subregion were affected by cannabis×DAT1 polymorphism (i.e., 9/9R and in 10/10R alleles), reflecting high and low levels of dopamine availability. Conclusion: These findings suggest that cannabis exposure alters the normal relationship between DAT1 polymorphism and the anatomy of total and subregional hippocampal volumes, and that specific hippocampal subregions may be particularly affected. PMID:29404409

  5. The Influence of DAT1, COMT, and BDNF Genetic Polymorphisms on Total and Subregional Hippocampal Volumes in Early Onset Heavy Cannabis Users.

    PubMed

    Batalla, Albert; Lorenzetti, Valentina; Chye, Yann; Yücel, Murat; Soriano-Mas, Carles; Bhattacharyya, Sagnik; Torrens, Marta; Crippa, José A S; Martín-Santos, Rocío

    2018-01-01

    Introduction: Hippocampal neuroanatomy is affected by genetic variations in dopaminergic candidate genes and environmental insults, such as early onset of chronic cannabis exposure. Here, we examine how hippocampal total and subregional volumes are affected by cannabis use and functional polymorphisms of dopamine-relevant genes, including the catechol-O-methyltransferase (COMT), dopamine transporter (DAT1), and the brain-derived neurotrophic factor (BDNF) genes. Material and Methods: We manually traced total hippocampal volumes and automatically segmented hippocampal subregions using high-resolution MRI images, and performed COMT, DAT1, and BDNF genotyping in 59 male Caucasian young adults aged 18-30 years. These included 30 chronic cannabis users with early-onset (regular use at <16 years) and 29 age-, education-, and intelligence-matched controls. Results: Cannabis use and dopaminergic gene polymorphism had both distinct and interactive effects on the hippocampus. We found emerging alterations of hippocampal total and specific subregional volumes in cannabis users relative to controls (i.e., CA1, CA2/3, and CA4), and associations between cannabis use levels and total and specific subregional volumes. Furthermore, total hippocampal volume and the fissure subregion were affected by cannabis×DAT1 polymorphism (i.e., 9/9R and in 10/10R alleles), reflecting high and low levels of dopamine availability. Conclusion: These findings suggest that cannabis exposure alters the normal relationship between DAT1 polymorphism and the anatomy of total and subregional hippocampal volumes, and that specific hippocampal subregions may be particularly affected.

  6. Polymorphism analysis of the prion gene in BSE-affected and unaffected cattle.

    PubMed

    Neibergs, H L; Ryan, A M; Womack, J E; Spooner, R L; Williams, J L

    1994-10-01

    Polymerase chain reaction (PCR) primers designed to amplify the octapeptide repeat region of the bovine prion gene were used to test the association of genotypes with bovine spongiform encephalitis (BSE) in 56 BSE-affected and 177 unaffected animals. Three alleles (A,B,C) were detected as single-strand conformation polymorphisms (SSCPs) and two alleles (1,2--representing six or five copies of the octapeptide repeat respectively) were detected as amplified double-strand fragment length polymorphisms (AMFLPs). Observed genotypes of SSCPs and AMFLPs were analysed by chi-square. The SSCP genotypes of nuclear family members of animals with BSE and BSE-affected animals were different (P < 0.001, P < 0.01) from unrelated animals of the same breed without BSE. No genotypic differences were found between the BSE-affected animals and their relatives (P > 0.469). No AMFLP genotypic differences were detected between BSE-affected animals, their relatives, unrelated animals of the same breed or animals of different breeds (P > 0.05). These data suggest that BSE-affected animals and their relatives are more likely to have the AA SSCP genotype than unrelated animals of the same breed or animals of different breeds.

  7. Functional Interaction of the Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 1 Polymorphism and HLA-B27 in Vivo*

    PubMed Central

    García-Medel, Noel; Sanz-Bravo, Alejandro; Van Nguyen, Dung; Galocha, Begoña; Gómez-Molina, Patricia; Martín-Esteban, Adrián; Alvarez-Navarro, Carlos; de Castro, José A. López

    2012-01-01

    The association of ERAP1 with ankylosing spondylitis (AS)1 among HLA-B27-positive individuals suggests that ERAP1 polymorphism may affect pathogenesis by altering peptide-dependent features of the HLA-B27 molecule. Comparisons of HLA-B*27:04-bound peptidomes from cells expressing different natural variants of ERAP1 revealed significant differences in the size, length, and amount of many ligands, as well as in HLA-B27 stability. Peptide analyses suggested that the mechanism of ERAP1/HLA-B27 interaction is a variant-dependent alteration in the balance between epitope generation and destruction determined by the susceptibility of N-terminal flanking and P1 residues to trimming. ERAP1 polymorphism associated with AS susceptibility ensured efficient peptide trimming and high HLA-B27 stability. Protective polymorphism resulted in diminished ERAP1 activity, less efficient trimming, suboptimal HLA-B27 peptidomes, and decreased molecular stability. This study demonstrates that natural ERAP1 polymorphism affects HLA-B27 antigen presentation and stability in vivo and proposes a mechanism for the interaction between these molecules in AS. PMID:22918227

  8. Human cancer xenografts in outbred nude mice can be confounded by polymorphisms in a modifier of tumorigenesis.

    PubMed

    Zeineldin, Maged; Jensen, Derek; Paranjape, Smita R; Parelkar, Nikhil K; Jokar, Iman; Vielhauer, George A; Neufeld, Kristi L

    2014-08-01

    Tumorigenicity studies often employ outbred nude mice, in the absence of direct evidence that this mixed genetic background will negatively affect experimental outcome. Here we show that outbred nude mice carry two different alleles of Pla2g2a, a genetic modifier of intestinal tumorigenesis in mice. Here, we identify previous unreported linked polymorphisms in the promoter, noncoding and coding sequences of Pla2g2a and show that outbred nude mice from different commercial providers are heterogeneous for this polymorphic Pla2g2a allele. This heterogeneity even extends to mice obtained from a single commercial provider, which display mixed Pla2g2a genotypes. Notably, we demonstrated that the polymorphic Pla2g2a allele affects orthotopic xenograft establishment of human colon cancer cells in outbred nude mice. This finding establishes a non-cell-autonomous role for Pla2g2a in suppressing intestinal tumorigenesis. Using in vitro reporter assays and pharmacological inhibitors, we show promoter polymorphisms and nonsense-mediated RNA decay (NMD) as underlying mechanisms that lead to low Pla2g2a mRNA levels in tumor-sensitive mice. Together, this study provides mechanistic insight regarding Pla2g2a polymorphisms and demonstrates a non-cell-autonomous role for Pla2g2a in suppressing tumors. Moreover, our direct demonstration that mixed genetic backgrounds of outbred nude mice can significantly affect baseline tumorigenicity cautions against future use of outbred mice for tumor xenograft studies. Copyright © 2014 by the Genetics Society of America.

  9. Human Cancer Xenografts in Outbred Nude Mice Can Be Confounded by Polymorphisms in a Modifier of Tumorigenesis

    PubMed Central

    Zeineldin, Maged; Jensen, Derek; Paranjape, Smita R.; Parelkar, Nikhil K.; Jokar, Iman; Vielhauer, George A.; Neufeld, Kristi L.

    2014-01-01

    Tumorigenicity studies often employ outbred nude mice, in the absence of direct evidence that this mixed genetic background will negatively affect experimental outcome. Here we show that outbred nude mice carry two different alleles of Pla2g2a, a genetic modifier of intestinal tumorigenesis in mice. Here, we identify previous unreported linked polymorphisms in the promoter, noncoding and coding sequences of Pla2g2a and show that outbred nude mice from different commercial providers are heterogeneous for this polymorphic Pla2g2a allele. This heterogeneity even extends to mice obtained from a single commercial provider, which display mixed Pla2g2a genotypes. Notably, we demonstrated that the polymorphic Pla2g2a allele affects orthotopic xenograft establishment of human colon cancer cells in outbred nude mice. This finding establishes a non-cell-autonomous role for Pla2g2a in suppressing intestinal tumorigenesis. Using in vitro reporter assays and pharmacological inhibitors, we show promoter polymorphisms and nonsense-mediated RNA decay (NMD) as underlying mechanisms that lead to low Pla2g2a mRNA levels in tumor-sensitive mice. Together, this study provides mechanistic insight regarding Pla2g2a polymorphisms and demonstrates a non-cell-autonomous role for Pla2g2a in suppressing tumors. Moreover, our direct demonstration that mixed genetic backgrounds of outbred nude mice can significantly affect baseline tumorigenicity cautions against future use of outbred mice for tumor xenograft studies. PMID:24913681

  10. Effects of BDNF polymorphism and physical activity on episodic memory in the elderly: a cross sectional study.

    PubMed

    Canivet, Anne; Albinet, Cédric T; André, Nathalie; Pylouster, Jean; Rodríguez-Ballesteros, Montserrat; Kitzis, Alain; Audiffren, Michel

    2015-01-01

    The brain-derived neurotrophic factor (BDNF) concentration is highest in the hippocampus compared with that in other brain structures and affects episodic memory, a cognitive function that is impaired in older adults. According to the neurotrophic hypothesis, BDNF released during physical activity enhances brain plasticity and consequently brain health. However, even if the physical activity level is involved in the secretion of neurotrophin, this protein is also under the control of a specific gene. The aim of the present study was to examine the effect of the interaction between physical activity and BDNF Val66Met (rs6265), a genetic polymorphism, on episodic memory. Two hundred and five volunteers aged 55 and older with a Mini Mental State Examination score ≥ 24 participated in this study. Four groups of participants were established according to their physical activity level and polymorphism BDNF profile (Active Val homozygous, Inactive Val homozygous, Active Met carriers, Inactive Met carriers). Episodic memory was evaluated based on the delayed recall of the Logical Memory test of the MEM III battery. As expected, the physical activity level interacted with BDNF polymorphism to affect episodic memory performance (p < .05). The active Val homozygous participants significantly outperformed the active Met carriers and inactive Val homozygous participants. This study clearly demonstrates an interaction between physical activity and BDNF Val66Met polymorphism that affects episodic memory in the elderly and confirms that physical activity contributes to the neurotrophic mechanism implicated in cognitive health. The interaction shows that only participants with Val/Val polymorphism benefited from physical activity.

  11. Incentive-Elicited Mesolimbic Activation and Externalizing Symptomatology in Adolescents

    ERIC Educational Resources Information Center

    Bjork, James M.; Chen, Gang; Smith, Ashley R.; Hommer, Daniel W.

    2010-01-01

    Background: Opponent-process theories of externalizing disorders (ExD) attribute them to some combination of overactive reward processing systems and/or underactive behavior inhibition systems. Reward processing has been indexed by recruitment of incentive-motivational neurocircuitry of the ventral striatum (VS), including nucleus accumbens…

  12. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation

    PubMed Central

    MacInnes, Jeff J.; Dickerson, Kathryn C.; Chen, Nan-kuei; Adcock, R. Alison

    2016-01-01

    SUMMARY Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants’ motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-Test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. PMID:26948894

  13. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.

    PubMed

    MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-Kuei; Adcock, R Alison

    2016-03-16

    Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Dopamine and anorexia nervosa.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. If waking and dreaming consciousness became de-differentiated, would schizophrenia result?

    PubMed

    Llewellyn, Sue

    2011-12-01

    If both waking and dreaming consciousness are functional, their de-differentiation would be doubly detrimental. Differentiation between waking and dreaming is achieved through neuromodulation. During dreaming, without external sensory data and with mesolimbic dopaminergic input, hyper-cholinergic input almost totally suppresses the aminergic system. During waking, with sensory gates open, aminergic modulation inhibits cholinergic and mesocortical dopaminergic suppresses mesolimbic. These neuromodulatory systems are reciprocally interactive and self-organizing. As a consequence of neuromodulatory reciprocity, phenomenologically, the self and the world that appear during dreaming differ from those that emerge during waking. As a result of self-organizing, the self and the world in both states are integrated. Some loss of self-organization would precipitate a degree of de-differentiation between waking and dreaming, resulting in a hybrid state which would be expressed heterogeneously, both neurobiologically and phenomenologically. As a consequence of progressive de-differentiation, certain identifiable psychiatric disorders may emerge. Ultimately, schizophrenia, a disorganized-fragmented self, may result. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine.

    PubMed

    Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen; Tzvetkov, Mladen Vassilev

    2017-01-01

    Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine's potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine pharmacokinetics in humans remain to be analyzed.

  17. Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine

    PubMed Central

    Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen

    2017-01-01

    Background Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. Aim In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. Methods and results We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. Conclusions We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine’s potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine pharmacokinetics in humans remain to be analyzed. PMID:29236753

  18. G-231A and G+70C Polymorphisms of Endothelin Receptor Type-A Gene could Affect the Psoriasis Area and Severity Index Score and Endothelin 1 Levels.

    PubMed

    Okan, Gökhan; Yıldız, Zeynep; Gökdemir, Gonca; Yorulmaz, Eda; Vural, Pervin; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2015-01-01

    The etiopathogenesis of psoriasis has not been clearly elucidated although the role of chronic inflammation, imbalance between pro- and anti-inflammatory cytokines, and many immunological events have been established. Endothelin 1 (EDN1) and endothelin receptor type-A (EDNRA) are implicated in the inflammatory process. The relationships between EDN1 and EDNRA polymorphisms with several diseases have been found. This study examined the possible association of EDN1 (G5665T and T-1370G) and EDNRA (G-231A and G + 70C) single nucleotide polymorphisms (SNPs) with the occurence of psoriasis, and evaluated the relationship between genotypes and clinical/laboratory manifestation of psoriasis. We analyzed genotype and allele distributions of the above-mentioned polymorphisms in 151 patients with psoriasis and 152 healthy controls by real-time PCR combined with melting curve analysis. We did not find significant differences in the genotype and allele distributions of EDN1 T-1370G, EDNRA G-231A, and EDNRA G+70C polymorphisms between patients with psoriasis and healthy controls. Psoriasis area and severity index (PASI) score of EDNRA -231 polymorphic A allele carrying subjects (AA and AA + AG) was higher than that of wild homozygotes (P = 0.044 and P = 0.027, respectively). In addition, EDN1 levels in EDNRA+70 polymorphic C allele carriers (CC + CG) were elevated when compared with GG genotype; however, the difference was at borderline significance (P = 0.05). Although there were no associations between studied polymorphisms and psoriasis susceptibility, the PASI score and EDN1 levels seem to be affected by EDNRA G-231A and G + 70C polymorphisms.

  19. An improved in silico selection of phenotype affecting polymorphisms in SLC6A4, HTR1A and HTR2A genes.

    PubMed

    Piva, Francesco; Giulietti, Matteo; Nardi, Bernardo; Bellantuono, Cesario; Principato, Giovanni

    2010-03-01

    Among the experimentally assessed DNA variations in serotonin related genes, some influence physiological expression of personality and mental disorders, others alter the responses to pharmacological and/or psychotherapeutic treatments. Because of the huge number of polymorphisms lying in genes and of the great length of time necessary to perform association studies, a selection of the variations being studied is a necessary and crucial step. In this work we used the most updated and assessed bioinformatic tools to predict the phenotype affecting polymorphisms of the human HTR1A, HTR2A and SLC6A4 serotonin related genes. Moreover, we carried out a literature search to collect information about the recent association studies to compare it versus our prediction data. Gene polymorphism analysis indicated the variations that are worth considering in the association studies in the field of psychiatry, psychology and pharmacogenomics. The literature revision allowed to show both the few well and the most not enough investigated polymorphisms. Our data can be useful to select polymorphisms for new association studies, especially those not yet investigated that can be related to behaviour, mental disorders and individual treatment response. Copyright 2010 John Wiley & Sons, Ltd.

  20. Polymorphism of the beta3-adrenergic receptor gene affects basal metabolic rate in obese Finns.

    PubMed

    Sipiläinen, R; Uusitupa, M; Heikkinen, S; Rissanen, A; Laakso, M

    1997-01-01

    Low basal metabolic rate (BMR) is a risk factor for weight gain and obesity. The polymorphism at codon 64 of the beta3-adrenergic receptor gene has been suggested to be associated with BMR. We investigated the frequency of the Trp64Arg of the beta3-adrenergic receptor gene and the effects of this polymorphism on BMR in obese Finns. Altogether, 170 obese subjects (29 men, 141 women, BMI 34.7 +/- 3.8 kg/m2, mean +/- SD) participated in the study. The frequency of the Trp64Arg polymorphism was 19%. None of the obese subjects were homozygous for the Arg-encoding allele. The frequency of the Trp64Arg polymorphism in obese Finns did not differ from nonobese and normoglycemic control subjects. BMR adjusted for lean body mass and age was lower in subjects with the Trp64Arg polymorphism (n = 20) than in normal homozygotes Trp64Trp (n = 99) (1,569 +/- 73 vs. 1,635 +/- 142 kcal/day, P = 0.004). For the female group (n = 98), the respective values were 1,501 +/- 66 kcal/day vs. 1,568 +/- 127 kcal/day (P = 0.004). There were no significant differences in weight, BMI, waist-to-hip ratio, lean body mass, percentage of fat, and respiratory quotient between the groups with or without the Trp64Arg polymorphism. Neither serum glucose nor insulin levels differed between the two groups. We conclude that the Trp64Arg polymorphism of the beta3-adrenergic receptor gene affects basal metabolic rate in obese Finns but does not have significant effect on glucose metabolism.

  1. Substance Misuse Prevention: Addressing Anhedonia

    ERIC Educational Resources Information Center

    Sussman, Steve; Leventhal, Adam

    2014-01-01

    Anhedonia refers to the inability of experiencing pleasure in positive life events. It has been conceptualized as a stable yet malleable characteristic and is associated with hypoactivity in the mesolimbic and mesocortical dopaminergic systems. Very recently, it has been posited as an etiologic factor associated with drug addiction onset,…

  2. A translational systems biology approach in both animals and humans identifies a functionally related module of accumbal genes involved in the regulation of reward processing and binge drinking in males

    PubMed Central

    Stacey, David; Lourdusamy, Anbarasu; Ruggeri, Barbara; Maroteaux, Matthieu; Jia, Tianye; Cattrell, Anna; Nymberg, Charlotte; Banaschewski, Tobias; Bhattacharyya, Sohinee; Band, Hamid; Barker, Gareth; Bokde, Arun; Buchel, Christian; Carvalho, Fabiana; Conrod, Patricia; Desrivieres, Sylvane; Easton, Alanna; Fauth-Buehler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Frouin, Vincent; Gallinat, Jurgen; Garavanh, Hugh; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Rotter, Andrea; Santos, Eugenio; Smolka, Michael; Sommer, Wolfgang; Mameli, Manuel; Spanagel, Rainer; Girault, Jean-Antoine; Mueller, Christian; Schumann, Gunter

    2016-01-01

    Background The mesolimbic dopamine system, composed primarily of dopaminergic neurons in the ventral tegmental area that project to striatal structures, is considered to be the key mediator of reinforcement-related mechanisms in the brain. Prompted by a genome-wide association meta-analysis implicating the Ras-specific guanine nucleotide-releasing factor 2 (RASGRF2) gene in the regulation of alcohol intake in men, we have recently shown that male Rasgrf2−/− mice exhibit reduced ethanol intake and preference accompanied by a perturbed mesolimbic dopamine system. We therefore propose that these mice represent a valid model to further elucidate the precise genes and mechanisms regulating mesolimbic dopamine functioning. Methods Transcriptomic data from the nucleus accumbens (NAcc) of male Rasgrf2−/− mice and wild-type controls were analyzed by weighted gene coexpression network analysis (WGCNA). We performed follow-up genetic association tests in humans using a sample of male adolescents from the IMAGEN study characterized for binge drinking (n = 905) and ventral striatal activation during an fMRI reward task (n = 608). Results The WGCNA analyses using accumbal transcriptomic data revealed 37 distinct “modules,” or functionally related groups of genes. Two of these modules were significantly associated with Rasgrf2 knockout status: M5 (p < 0.001) and M6 (p < 0.001). In follow-up translational analyses we found that human orthologues for the M5 module were significantly (p < 0.01) enriched with genetic association signals for binge drinking in male adolescents. Furthermore, the most significant locus, originating from the EH-domain containing 4 (EHD4) gene (p < 0.001), was also significantly associated with altered ventral striatal activity in male adolescents performing an fMRI reward task (pempirical < 0.001). Limitations It was not possible to determine the extent to which the M5 module was dysregulated in Rasgrf2−/− mice by perturbed mesolimbic dopamine signalling or by the loss of Rasgrf2 function in the NAcc. Conclusion Taken together, our findings indicate that the accumbal M5 module, initially identified as being dysregulated in male Rasgrf2−/− mice, is also relevant for human alcohol-related phenotypes potentially through the modulation of reinforcement mechanisms in the NAcc. We therefore propose that the genes comprising this module represent important candidates for further elucidation within the context of alcohol-related phenotypes. PMID:26679926

  3. Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination

    DOE PAGES

    Hiszpanski, Anna M.; Woll, Arthur R.; Kim, Bumjung; ...

    2017-04-25

    Here, substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphism—the ability of a compound to adopt more than one crystal structure—has not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior ofmore » contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., P2 1/c crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination.« less

  4. Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiszpanski, Anna M.; Woll, Arthur R.; Kim, Bumjung

    Here, substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphism—the ability of a compound to adopt more than one crystal structure—has not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior ofmore » contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., P2 1/c crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination.« less

  5. SLC2A9 and ZNF518B polymorphisms correlate with gout-related metabolic indices in Chinese Tibetan populations.

    PubMed

    Zhang, X Y; Geng, T T; Liu, L J; Yuan, D Y; Feng, T; Kang, L L; Jin, T B; Chen, C

    2015-08-19

    Current evidence suggests that heredity and metabolic syndrome contribute to gout progression. SLC2A9 and ZNF518B may play a role in gout progression in different populations, but no studies have focused on the Tibetan Chinese population. In this study, we determined whether variations in these 2 genes were correlated with gout-related indices in Chinese-Tibetan gout patients. We detected 6 single nucleotide polymorphisms in SLC2A9 and ZNF518B in 319 Chinese Tibetan gout patients. One-way analysis of variance was used to evaluate the polymorphisms' effects on gout based on mean serum levels of metabolism indicators. Polymorphisms in SLC2A9 and ZNF518B affected multiple risk factors related to gout development. Significant differences in serum triglyceride levels and high-density lipoprotein-cholesterol level were detected between different genotypic groups with SLC2A9 polymorphisms rs13129697 (P = 0.022), rs4447863 (P = 0.018), and rs1014290 (P = 0.045). Similarly in ZNF518B, rs3217 (P = 0.016) and rs10016022 (P = 0.046) were associated with high creatinine and glucose levels, respectively. This study is the first to investigate and identify positive correlations between SLC2A9 and ZNF518B gene polymorphisms and metabolic indices in Tibetan gout patients. We found significant evidence indicating that genetic polymorphisms affect gout-related factors in Chinese Tibetan populations.

  6. The BDNFval66met polymorphism and individual differences in temperament in 4-month-old infants: A pilot study.

    PubMed

    Giusti, Lorenzo; Provenzi, Livio; Tavian, Daniela; Missaglia, Sara; Butti, Niccolò; Montirosso, Rosario

    2017-05-01

    Individual differences in infants' temperament are under genetic control. We investigated the association between brain-derived-neurotrophic-factor (BDNF val66met ) polymorphism and temperament in 63 full-term infants. Met-carriers (N=25) had lower Regulatory capacities compared to val-homozygotes (N=38). These findings suggest that the BDNF polymorphism affects early temperament individual differences. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Genetic variation affecting host-parasite interactions: major-effect quantitative trait loci affect the transmission of sigma virus in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M

    2008-09-01

    In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.

  8. Telling good from bad news: ADHD differentially affects processing of positive and negative feedback during guessing.

    PubMed

    van Meel, Catharina S; Oosterlaan, Jaap; Heslenfeld, Dirk J; Sergeant, Joseph A

    2005-01-01

    Neuroimaging studies on ADHD suggest abnormalities in brain regions associated with decision-making and reward processing such as the anterior cingulate cortex (ACC) and orbitofrontal cortex. Recently, event-related potential (ERP) studies demonstrated that the ACC is involved in processing feedback signals during guessing and gambling. The resulting negative deflection, the 'feedback-related negativity' (FRN) has been interpreted as reflecting an error in reward prediction. In the present study, ERPs elicited by positive and negative feedback were recorded in children with ADHD and normal controls during guessing. 'Correct' and 'incorrect' guesses resulted in respectively monetary gains and losses. The FRN amplitude to losses was more pronounced in the ADHD group than in normal controls. Positive and negative feedback differentially affected long latency components in the ERP waveforms of normal controls, but not ADHD children. These later deflections might be related to further emotional or strategic processing. The present findings suggest an enhanced sensitivity to unfavourable outcomes in children with ADHD, probably due to abnormalities in mesolimbic reward circuits. In addition, further processing, such as affective evaluation and the assessment of future consequences of the feedback signal seems to be altered in ADHD. These results may further help understanding the neural basis of decision-making deficits in ADHD.

  9. Deficient plasticity in the hippocampus and the spiral of addiction: focus on adult neurogenesis.

    PubMed

    Canales, Juan J

    2013-01-01

    Addiction is a complex neuropsychiatric disorder which causes disruption at multiple levels, including cognitive, emotional, and behavioral domains. Traditional biological theories of addiction have focused on the mesolimbic dopamine pathway and the nucleus accumbens as anatomical substrates mediating addictive-like behaviors. More recently, we have begun to recognize the engagement and dynamic influence of a much broader circuitry which encompasses the frontal cortex, the amygdala, and the hippocampus. In particular, neurogenesis in the adult hippocampus has become a major focus of attention due to its ability to influence memory, motivation, and affect, all of which are disrupted in addiction. First, I summarize toxicological data that reveal strongly suppressive effects of drug exposure on adult hippocampal neurogenesis. Then, I discuss the impact of deficient neurogenesis on learning and memory function, stress responsiveness and affective behavior, as they relate to addiction. Finally, I examine recent behavioral observations that implicate neurogenesis in the adult hippocampus in the emergence and maintenance of addictive behavior. The evidence reviewed here suggests that deficient neurogenesis is associated with several components of the downward spiraling loop that characterizes addiction, including elevated sensitivity to drug-induced reward and reinforcement, enhanced neurohormonal responsiveness, emergence of a negative affective state, memory impairment, and inflexible behavior.

  10. Apomorphine and piribedil in rats: biochemical and pharmacologic studies.

    PubMed

    Butterworth, R F; Poignant, J C; Barbeau, A

    1975-01-01

    We studied the biochemical and pharmacologic modes of action of piribedil and apomorphine in the rat. Although both drugs have many points in common, they are also different in many of their manifestations. Apomorphine causes high-intensity, short-duration stereotyped behavior; it is distributed within the brain in uneven fashion, the striatum being the area of lowest concentration as measured by fluorometry. Direct stereotactic injection within the dopaminergic mesolimbic system, and particularly the tuberculum olfactorium, produced constant intense responses. All effects of apomorphine can be blocked by pimozide, but propanolol, a beta blocker, only reduces aggression and ferocity, leaving stereotyped behaviors intact. Finally, L-5-HTP tends to reduce aggression, ferocity, and to a lesser extent stereotypy; MIF or piribedil, as well as reserpine, potentiates the stereotyped behaviors induced by apomorphine, whereas L-DOPA usually decreases them. Piribedil, on the other hand, causes low-intensity, long-duration stereotyped behavior. It is distributed within the brain almost uniformly. Most effects of piribedil can be blocked by pimozide, but propanolol blocks only aggression and ferocity, leaving stereotyped behaviors intact. On the other hand, clonidine, an alpha-receptor agonist, blocks stereotyped behaviors induced by piribedil but markedly increases aggression, ferocity, and motor activity. L-5-HTP and L-DOPA have little effect on piribedil-induced manifestations. Reserpine decreases piribedil stereotypy. The main metabolite of piribedil, S 584, had no clear-cut pharmacologic action in our hands at the dosage used. It is concluded that both apomorphine and piribedil produce stereotyped behavior by modifying the physiologic balance between mesolimbic and nigrostriatal dopaminergic systems. The other actions of apomorphine and piribedil upon aggression, ferocity, and motor activity are not always in parallel and depend probably on the fact that piribedil is less specific, affecting also noradrenergic, serotonergic, histaminergic, and/or cholinergic circuits. The usefulness of piribedil against some forms of human tremor and its low-intensity antiakinetic action probably result from this pattern of pharmacologic activity.

  11. Naloxone treatment alters gene expression in the mesolimbic reward system in 'junk food' exposed offspring in a sex-specific manner but does not affect food preferences in adulthood.

    PubMed

    Gugusheff, J R; Ong, Z Y; Muhlhausler, B S

    2014-06-22

    We have previously reported that the opioid receptor blocker, naloxone, is less effective in reducing palatable food intake in offspring exposed to a maternal cafeteria diet during the perinatal period, implicating a desensitization of the central opioid pathway in the programming of food preferences. The present study aimed to investigate the effect of a maternal cafeteria diet and naloxone treatment on the development of the mesolimbic reward pathway and food choices in adulthood. We measured mRNA expression of key components of the reward pathway (mu-opioid receptor, proenkephalin, tyrosine hydroxylase, D1 and D2 receptors and the dopamine active transporter (DAT)) in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of the offspring of control and cafeteria fed (JF) dams at weaning and after a 10-day naloxone treatment post-weaning and determined food preferences in adulthood in the remaining offspring. Naloxone treatment decreased the expression of DAT by 8.2 fold in female control offspring but increased it by 4.3 fold in female offspring of JF dams relative to the saline-injected reference groups. Proenkephalin mRNA expression was higher in the NAc of female JF offspring compared to controls, independent of naloxone treatment (P<0.05). There was no effect of naloxone treatment on food preferences in adulthood in either control or JF offspring. These data indicate that prenatal exposure to a cafeteria diet alters the impact of opioid signaling blockade in the early post-weaning period on gene expression in the central reward pathway in a sex specific manner, but that these changes in gene expression do not appear to have any persistent impact on food preferences in adulthood. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Relationship of Serum Klotho Level With ACE Gene Polymorphism in Stable Kidney Allograft Recipients.

    PubMed

    Zaare Nahandi, Maryam; Ardalan, Mohamad Reza; Banagozar Mohamadi, Ali; Ghorbani Haghjo, Amir; Jabbarpor Bonyadi, Morteza; Mohamadian, Tahere

    2017-03-01

    The kidney is the main source of serum Klotho production. Immunosuppressive agents could affect the kidney in this regard. The effect of the ACE gene polymorphism on Klotho production is a less studied area. This study aimed to assess serum Klotho and ACE gene in a group of stable kidney transplant recipients. In a cross-sectional study, 30 kidney transplant recipients with stable allograft function and 27 healthy young individuals were assessed for their serum Klotho levels. The ACE gene polymorphisms were studied in both groups. Klotho level was higher in kidney transplant recipients than the controls, but the difference was not significant (2.76 ± 2.41 ng/mL versus 2.01 ± 1.41 ng/mL, respectively). In both groups, serum Klotho level was higher in those with the I>I polymorphism, the men, those with higher glomerular filtration rate, and younger individuals, but the differences did not reach a significant level. Higher body mass index was significantly associated with lower serum Klotho level in both groups. Klotho level after kidney transplantation meets the range in healthy individuals, and it is not affected by the ACE gene polymorphism.

  13. Influence of BDNF and COMT polymorphisms on emotional decision making.

    PubMed

    Kang, Jee In; Namkoong, Kee; Ha, Ra Yeon; Jhung, Kyungun; Kim, Yang Tae; Kim, Se Joo

    2010-06-01

    Decision making is an important brain function. Although little is known about the genetic basis of decision making, it has been suggested that it is mediated by the modulation of neurotransmitter systems. We investigated how the BDNF Val66Met and COMT Val158Met polymorphisms affect emotional decision making using the Iowa Gambling Task (IGT). One hundred sixty-eight healthy Korean college students (93 males, 75 females) with a complete dataset were included in the data analysis. The IGT and genotyping for the polymorphisms of BDNF Val66Met and COMT Val158Met were performed. Both Met/Met and Val/Met of the BDNF Val66Met polymorphism were significantly associated with a lower mean score of blocks 3-5 of the IGT and with less improvement from block 1 to block 3-5 than the Val/Val. However, the BDNF was not significantly associated with the score of block 1, and the COMT Val158Met polymorphism produced no significant effect on IGT performance. No interaction effect was observed between the BDNF and the COMT for the IGT. These findings suggest the BDNF Val66Met may affect the emotional decision making performance. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Lipophosphoglycan polymorphisms do not affect Leishmania amazonensis development in the permissive vectors Lutzomyia migonei and Lutzomyia longipalpis.

    PubMed

    Nogueira, Paula M; Guimarães, Agna C; Assis, Rafael R; Sadlova, Jovana; Myskova, Jitka; Pruzinova, Katerina; Hlavackova, Jana; Turco, Salvatore J; Torrecilhas, Ana C; Volf, Petr; Soares, Rodrigo P

    2017-12-16

    Lipophosphoglycan (LPG) is a dominant surface molecule of Leishmania promastigotes. Its species-specific polymorphisms are found mainly in the sugars that branch off the conserved Gal(β1,4)Man(α1)-PO 4 backbone of repeat units. Leishmania amazonensis is one of the most important species causing human cutaneous leishmaniasis in the New World. Here, we describe LPG intraspecific polymorphisms in two Le. amazonensis reference strains and their role during the development in three sand fly species. Strains isolated from Lutzomyia flaviscutellata (PH8) and from a human patient (Josefa) displayed structural polymorphism in the LPG repeat units, possessing side chains with 1 and 2 β-glucose or 1 to 3 β-galactose, respectively. Both strains successfully infected permissive vectors Lutzomyia longipalpis and Lutzomyia migonei and could colonize their stomodeal valve and differentiate into metacyclic forms. Despite bearing terminal galactose residues on LPG, Josefa could not sustain infection in the restrictive vector Phlebotomus papatasi. LPG polymorphisms did not affect the ability of Le. amazonensis to develop late-stage infections in permissive vectors. However, the non-establishment of infection in Ph. papatasi by Josefa strain suggested other LPG-independent factors in this restrictive vector.

  15. Investigation of the L-Glutamic acid polymorphism: Comparison between stirred and stagnant conditions

    NASA Astrophysics Data System (ADS)

    Tahri, Yousra; Gagnière, Emilie; Chabanon, Elodie; Bounahmidi, Tijani; Mangin, Denis

    2016-02-01

    This work highlights the effect of the stirring, the temperature and the supersaturation on the cooling crystallization of L-Glutamic acid (LGlu) polymorphs. First, solubility measurements of the metastable polymorph α and the stable polymorph β were performed. Then, crystallization experiments were carried out in stirred vessel and in stagnant cell. All these experiments were monitored by in situ devices. The effect of the temperature on the LGlu polymorphs was found to be more relevant than the supersaturation in the stirred crystallizer. In the stagnant cell, only the stable form β crystallized regardless of the operating conditions. Moreover, an unexpected and new habit of the β form was discovered and confirmed. These results suggest that the temperature and the stirring can strongly affect the nucleation and the growth kinetics of polymorphic forms.

  16. A case-control study of apoA5 -1131T-->C polymorphism that examines the role of triglyceride levels in diabetic nephropathy.

    PubMed

    Baum, Larry; Ng, Maggie C Y; So, Wing-Yee; Poon, Emily; Wang, Ying; Lam, Vincent K L; Tomlinson, Brian; Chan, Juliana C N

    2007-01-01

    Patients with diabetic nephropathy (DN) have increased plasma fasting triglyceride (TG) levels, and most prospective studies report that elevated TG precedes DN. TG-rich lipoprotein particles might promote progression of DN. To test the hypothesis that elevated TG levels contribute to the development of DN, one may examine whether a polymorphism strongly associated with TG levels affects DN risk. The apolipoprotein A5 (apoA5) -1131T-->C polymorphism has a large effect on the TG level, and all three genotypes are relatively common in East Asians. Therefore, we sought to examine the association of this polymorphism with DN. We genotyped the apoA5 -1131T-->C polymorphism in a case-control study involving 367 Chinese Type 2 diabetes patients with DN and 382 without DN, as well as 198 subjects without diabetes. Mean fasting TG levels were higher in CC than in TT carriers by 41%, 54%, and 62% in each of the three subject groups, respectively. However, the genotype distributions did not differ between patients with and without nephropathy (P=.69). Therefore, these results weigh against the hypothesis that high fasting TG per se causes DN. The strong association between TG level and DN may be due to a factor that is usually closely linked to TG level but that is not affected by the apoA5 polymorphism.

  17. Association of lipoprotein lipase S447X, apolipoprotein E exon 4, and apoC3 -455T>C polymorphisms on the susceptibility to diabetic nephropathy.

    PubMed

    Ng, M C Y; Baum, L; So, W-Y; Lam, V K L; Wang, Y; Poon, E; Tomlinson, B; Cheng, S; Lindpaintner, K; Chan, J C N

    2006-07-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. In DN patients, triglyceride (TG) level is elevated and lipoprotein lipase (LPL) activity, which hydrolyzes TG, is decreased. The LPL S447X and apolipoprotein E (APOE) exon 4 polymorphisms affect TG levels, and the APOC3 -455T>C polymorphism affects LPL activity. Our aim was to examine the association of these polymorphisms with nephropathy in type 2 diabetes. We examined these polymorphisms in a case-control study of type 2 diabetic patients including 374 with DN and 392 without DN. LPL 447X-containing genotypes (447X+) were significantly decreased in DN patients [18.6 vs 25.6%, odds ratio (OR) = 0.66, p = 0.02], as were APOE epsilon3/epsilon3 genotypes (64.8 vs 73.1%, OR = 0.68, p = 0.01). In addition, combinations of genotypes [APOE epsilon3/epsilon3 and LPL 447X+ (OR = 0.56), APOC3 CC and LPL 447X+ (OR = 0.31), APOE epsilon3/epsilon3 and APOC3 CC (OR = 0.61] were protective for DN compared with the most common combination of the respective polymorphisms. Our findings suggest the importance of interactions among lipid genes in modulating the risk of DN.

  18. Molecular role of dopamine in anhedonia linked to reward deficiency syndrome (RDS) and anti- reward systems.

    PubMed

    Gold, Mark S; Blum, Kenneth; Febo, Marcelo; Baron, David; Modestino, Edward Justin; Elman, Igor; Badgaiyan, Rajendra D

    2018-03-01

    Anhedonia is a condition that leads to the loss of feelings pleasure in response to natural reinforcers like food, sex, exercise, and social activities. This disorder occurs in addiction, and an array of related neuropsychiatric syndromes, including schizophrenia, depression, and Post Traumatic Stress Disorder (PTSD). Anhedonia may by due to derangements in mesolimbic dopaminergic pathways and their terminal fields (e.g., striatum, amygdala, and prefrontal cortex) that persist long after the traces of the causative drugs are eliminated (pharmacokinetically). Here we postulate that anhedonia is not a distinct entity but is rather an epiphenomenon of hypodopaminergic states and traits arising from the interaction of genetic traits and epigenetic neurobiological alterations in response to environmental influences. Moreover, dopaminergic activity is rather complex, and so it may give rise to differential pathophysiological processes such as incentive sensitization, aberrant learning and stress-like "anti-reward" phenomena. These processes may have additive, synergistic or antagonistic interactions with the concurrent reward deficiency states leading in some instances to more severe and long-lasting symptoms. Operant understanding of the neurogenetic antecedents to reward deficiency syndrome (RDS) and the elucidation of reward gene polymorphisms may provide a map for accessing an individual's genetic risk for developing Anhedonia. Prevention techniques that can restore homeostatic balance via physiological activation of dopaminergic receptors (D2/D3) may be instrumental for targeting not only anhedonia per se but also drug craving and relapse.

  19. Mechanisms underlying the association between insomnia, anxiety, and depression in adolescence: Implications for behavioral sleep interventions.

    PubMed

    Blake, Matthew J; Trinder, John A; Allen, Nicholas B

    2018-05-28

    There is robust evidence of an association between insomnia, anxiety, and depression in adolescence. The aim of this review is to describe and synthesize potential mechanisms underlying this association and explore implications for the design of adolescent behavioral sleep interventions. Specifically, we examine whether insomnia symptoms are a mechanism for the development of internalizing symptoms in adolescence and whether sleep interventions are an effective treatment for both insomnia and internalizing symptoms in adolescence because they target the shared mechanisms underlying these disorders. Research using different methodologies points to the role of sequential, parallel, and interacting mechanisms. In this paper, we review a wide range of relevant biological (i.e., polymorphisms and dysregulation in serotonin, dopamine, and circadian clock genes; alterations in corticolimbic and mesolimbic brain circuits; cortisol reactivity to stress; inflammatory cytokine dysregulation; biased memory consolidation; changes in sleep architecture), psychological (i.e., cognitive inflexibility, interpretational biases, judgment biases, negative attribution styles, worry, rumination, biased attention to threat, dysfunctional beliefs and attitudes about sleep, misperception of sleep deficit), and social mechanisms (i.e., reduced and impaired social interactions, unhelpful parenting behaviors, family stress) and propose an integrative multilevel model of how these phenomena may interact to increase vulnerability to both insomnia and internalizing disorders. Several 'biopsychosocial' mechanisms hold promise as viable treatment targets for adolescent behavioral sleep interventions, which may reduce both insomnia and internalizing symptoms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sequence analysis reveals genomic factors affecting EST-SSR primer performance and polymorphism

    USDA-ARS?s Scientific Manuscript database

    Search for simple sequence repeat (SSR) motifs and design of flanking primers in expressed sequence tag (EST) sequences can be easily done at a large scale using bioinformatics programs. However, failed amplification and/or detection, along with lack of polymorphism, is often seen among randomly sel...

  1. Diffuse Scattering as an Aid to the Understanding of Polymorphism in Pharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welberry, T.R.; Chan, E.J.; Goossens, D.J.

    Polymorphism occurs when the same molecular compound can crystallize in more than one distinct crystal structure. Its study is a field of great interest and activity. This is largely driven by its importance in the pharmaceutical industry, but polymorphism is also an issue in the pigments, dyes, and explosives industries. The polymorph formed by a compound generally exerts a strong influence on its solid-state properties. The polymorphic form of a drug molecule may affect the ease of manufacture and processing, shelf life, and most significantly the rate of uptake of the molecule by the human body. They can even varymore » in toxicity; one polymorph may be safe, while a second may be toxic. In this review of recently published work, we show how diffuse scattering experiments coupled with Monte Carlo (MC) computer modeling can aid in the understanding of polymorphism. Examples of the two common pharmaceuticals, benzocaine and aspirin, both of which are bimorphic, at ambient temperatures, are discussed.« less

  2. Diffuse Scattering as an Aid to the Understanding of Polymorphism in Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Welberry, T. R.; Chan, E. J.; Goossens, D. J.; Heerdegen, A. P.

    2012-05-01

    Polymorphism occurs when the same molecular compound can crystallize in more than one distinct crystal structure. Its study is a field of great interest and activity. This is largely driven by its importance in the pharmaceutical industry, but polymorphism is also an issue in the pigments, dyes, and explosives industries. The polymorph formed by a compound generally exerts a strong influence on its solid-state properties. The polymorphic form of a drug molecule may affect the ease of manufacture and processing, shelf life, and most significantly the rate of uptake of the molecule by the human body. They can even vary in toxicity; one polymorph may be safe, while a second may be toxic. In this review of recently published work, we show how diffuse scattering experiments coupled with Monte Carlo (MC) computer modeling can aid in the understanding of polymorphism. Examples of the two common pharmaceuticals, benzocaine and aspirin, both of which are bimorphic, at ambient temperatures, are discussed.

  3. Associations between the oxytocin receptor gene (OXTR) rs53576 polymorphism and emotional processing of social and nonsocial cues: an event-related potential (ERP) study.

    PubMed

    Choi, Damee; Minote, Natsumi; Watanuki, Shigeki

    2017-01-26

    Oxytocin receptor (OXTR) gene polymorphisms are related to individual differences in emotional processing of social cues. However, whether OXTR polymorphisms affect emotional processing of nonsocial cues remains unclear. The present study investigated the relationship between the OXTR rs53576 polymorphism and emotional processing of social cues and nonsocial cues. Event-related potentials were recorded from 88 male participants while images of humans and images of objects were presented as social cues and nonsocial cues, respectively. First, the results showed that GG carriers of OXTR rs53576 showed more negative N1 (50-200 ms) than AA carriers in response to images of both humans and objects. Second, GG carriers showed more negative N2 (200-320 ms) than AA carriers in response to images of humans but not in response to images of objects. Third, GG carriers showed more negative N2 in response to images of humans than images of objects, whereas AA carriers showed the opposite pattern. Fourth, we observed no difference in late positive potential (600-1000 ms) to images of humans or objects that depended on the OXTR rs53576 polymorphism. These results suggest that the OXTR rs53576 polymorphism affects emotional processing of not only social cues but also nonsocial cues in the very early stage (reflected in N1); however, the data also suggest that the OXTR rs53576 polymorphism is related specifically to increased emotional processing of social cues in the middle stage (reflected in N2).

  4. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.).

    PubMed

    Chen, Yongsheng; Zein, Imad; Brenner, Everton Alen; Andersen, Jeppe Reitan; Landbeck, Mathias; Ouzunova, Milena; Lübberstedt, Thomas

    2010-01-15

    Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area.

  5. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)

    PubMed Central

    2010-01-01

    Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. Results In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Conclusion Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area. PMID:20078869

  6. No association between catechol-O-methyltransferase polymorphisms and neurotic disorders among mainland Chinese university students.

    PubMed

    Kou, Changgui; Meng, Xiangfei; Xie, Bing; Shi, Jieping; Yu, Qiong; Yu, Yaqin; D'Arcy, Carl

    2012-07-30

    This study investigates the genetic association between catechol-O-methyltransferase (COMT) gene polymorphisms and neurotic disorders. Data were derived from a case-control association study of 255 undergraduates affected by neurotic disorders and 269 matched healthy undergraduate controls. The polymorphisms of eight tag single nucleotide polymorphisms (SNPs) on the COMT gene were tested using polymerase chain reaction (PCR)-based Ligase Detection Reaction (PCR-LDR). The eight tag SNPs on the COMT gene assessed were not associated with neurotic disorders. Our finding suggests that the COMT gene may not be a susceptibility gene for neurotic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Three reversible polymorphic copper(I) complexes triggered by ligand conformation: insights into polymorphic crystal habit and luminescent properties.

    PubMed

    Chai, Wenxiang; Hong, Mingwei; Song, Li; Jia, Guohua; Shi, Hongsheng; Guo, Jiayu; Shu, Kangying; Guo, Bing; Zhang, Yicheng; You, Wenwu; Chen, Xueyuan

    2015-05-04

    Three luminescent polymorphs based on a new copper(I) complex Cu(2-QBO)(PPh3)PF6 (1, PPh3 = triphenylphosphine, 2-QBO = 2-(2'-quinolyl)benzoxazole) have been synthesized and characterized by FT-IR, UV-vis, elemental analyses, and single-crystal X-ray diffraction analyses. Each polymorph can reversibly convert from one to another through appropriate procedures. Interestingly, such interconversion can be distinguished by their intrinsic crystal morphologies and colors (namely α, dark yellow plate, β, orange block, γ, light yellow needle) as well as photoluminescent (PL) properties. X-ray crystal structure analyses of these three polymorphs show three different supramolecular structures from 1D to 3D, which are expected to be responsible for the formation of three different crystal morphologies such as needle, plate, and block. Combination of the experimental data with DFT calculations on these three polymorphs reveals that the polymorphic interconversion is triggered by the conformation isomerization of the 2-QBO ligand and can be successfully controlled by the polarity of the process solvents (affecting the molecular dipole moment) and thermodynamics (affecting the molecular total energy). It is also found that the different crystal colors of polymorphs and their PL properties are derived from different θ values (dihedral angle between benzoxazolyl and quinolyl group of the 2-QBO ligand) and P-Cu-P angles based on TD-DFT calculations. Moreover, an interesting phase interconversion between γ and β has also been found under different temperature, and this result is consistent with the DFT calculations in which the total energy of β is larger than that of γ. This polymorphism provides a good model to study the relationship between the structure and the physical properties in luminescent copper(I) complexes as well as some profound insights into their PL properties.

  8. A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs.

    PubMed

    Baranowska Körberg, Izabella; Sundström, Elisabeth; Meadows, Jennifer R S; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif

    2014-01-01

    The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (s(w)). We have investigated four candidate mutations associated with the s(w) allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.

  9. A Simple Repeat Polymorphism in the MITF-M Promoter Is a Key Regulator of White Spotting in Dogs

    PubMed Central

    Meadows, Jennifer R. S.; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K.; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif

    2014-01-01

    The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (sw). We have investigated four candidate mutations associated with the sw allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs. PMID:25116146

  10. The Behavioral Pharmacology of Effort-Related Choice Behavior: Dopamine, Adenosine and beyond

    ERIC Educational Resources Information Center

    Salamone, John D.; Correa, Merce; Nunes, Eric J.; Randall, Patrick A.; Pardo, Marta

    2012-01-01

    For many years, it has been suggested that drugs that interfere with dopamine (DA) transmission alter the "rewarding" impact of primary reinforcers such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding…

  11. Expected value information improves financial risk taking across the adult life span.

    PubMed

    Samanez-Larkin, Gregory R; Wagner, Anthony D; Knutson, Brian

    2011-04-01

    When making decisions, individuals must often compensate for cognitive limitations, particularly in the face of advanced age. Recent findings suggest that age-related variability in striatal activity may increase financial risk-taking mistakes in older adults. In two studies, we sought to further characterize neural contributions to optimal financial risk taking and to determine whether decision aids could improve financial risk taking. In Study 1, neuroimaging analyses revealed that individuals whose mesolimbic activation correlated with the expected value estimates of a rational actor made more optimal financial decisions. In Study 2, presentation of expected value information improved decision making in both younger and older adults, but the addition of a distracting secondary task had little impact on decision quality. Remarkably, provision of expected value information improved the performance of older adults to match that of younger adults at baseline. These findings are consistent with the notion that mesolimbic circuits play a critical role in optimal choice, and imply that providing simplified information about expected value may improve financial risk taking across the adult life span.

  12. Neural mechanisms of reproduction in females as a predisposing factor for drug addiction.

    PubMed

    Hedges, Valerie L; Staffend, Nancy A; Meisel, Robert L

    2010-04-01

    There is an increasing awareness that adolescent females differ from males in their response to drugs of abuse and consequently in their vulnerability to addiction. One possible component of this vulnerability to drug addiction is the neurobiological impact that reproductive physiology and behaviors have on the mesolimbic dopamine system, a key neural pathway mediating drug addiction. In this review, we examine animal models that address the impact of ovarian cyclicity, sexual affiliation, sexual behavior, and maternal care on the long-term plasticity of the mesolimbic dopamine system. The thesis is that this plasticity in synaptic neurotransmission stemming from an individual's normal life history contributes to the pathological impact of drugs of abuse on the neurobiology of this system. Hormones released during reproductive cycles have only transient effects on these dopamine systems, whereas reproductive behaviors produce a persistent sensitization of dopamine release and post-synaptic neuronal responsiveness. Puberty itself may not represent a neurobiological risk factor for drug abuse, but attendant behavioral experiences may have a negative impact on females engaging in drug use.

  13. Effect of non-selective dopaminergic receptor agonist on disrupted maternal behavior in olfactory bulbectomized mice.

    PubMed

    Sato, Atsushi; Nakagawasai, Osamu; Tan-No, Koichi; Onogi, Hiroshi; Niijima, Fukie; Tadano, Takeshi

    2010-07-11

    Olfactory bulbectomy (OBX) animals are considered a putative model of depression that produces behavioral, physiological, and neurochemical alterations resembling clinical depression. Depression is a critical cause of child abuse and neglect, and it has been reported that maternal behavior involves dopaminergic neurons of the mesolimbic pathway. In this study, we investigated the effect of apomorphine, a non-selective dopaminergic receptor agonist, on maternal behavior to examine the influence of activated brain dopaminergic function in OBX mice. In addition, we conducted the sucrose preference test to examine the reward system which has a critical relationship to mesolimbic dopaminergic function and maternal behavior. Maternal behavior was observed on postnatal day (PND) 0 and 4. OBX female mice showed a reduction in sucrose preference 2 weeks post surgery. OBX dams showed maternal behavior deficits on PND 0, and these deficits were ameliorated by administration of apomorphine. These results suggest that maternal behavior deficits in OBX dams may involve brain hypodopaminergic function in the central nervous system induced by OBX. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory.

    PubMed

    Ikemoto, Satoshi

    2010-11-01

    Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures-the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area. Published by Elsevier Ltd.

  15. Neural Mechanisms of Reproduction in Females as a Predisposing Factor for Drug Addiction

    PubMed Central

    Hedges, Valerie L.; Staffend, Nancy A.; Meisel, Robert L.

    2010-01-01

    There is an increasing awareness that adolescent females differ from males in their response to drugs of abuse and consequently in their vulnerability to addiction. One possible component of this vulnerability to drug addiction is the neurobiological impact that reproductive physiology and behaviors have on the mesolimbic dopamine system, a key neural pathway mediating drug addiction. In this review, we examine animal models that address the impact of ovarian cyclicity, sexual affiliation, sexual behavior, and maternal care on the long-term plasticity of the mesolimbic dopamine system. The thesis is that this plasticity in synaptic neurotransmission stemming from an individual’s normal life history contributes to the pathological impact of drugs of abuse on the neurobiology of this system. Hormones released during reproductive cycles have only transient effects on these dopamine systems, whereas reproductive behaviors produce a persistent sensitization of dopamine release and postsynaptic neuronal responsiveness. Puberty itself may not represent a neurobiological risk factor for drug abuse, but attendant behavioral experiences may have a negative impact on females engaging in drug use. PMID:20176045

  16. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing

    PubMed Central

    2014-01-01

    Background Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. Results After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation. Conclusions The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides. PMID:24593293

  17. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing.

    PubMed

    David, Jean-Philippe; Faucon, Frédéric; Chandor-Proust, Alexia; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Navratil, Vincent; Reynaud, Stéphane

    2014-03-05

    Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation. The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides.

  18. Study of polymorphic control in an ethanol-water binary solvent

    NASA Astrophysics Data System (ADS)

    Kitano, Hiroshi; Tanaka, Takayuki; Hirasawa, Izumi

    2017-07-01

    Three polymorphs of L-Citrulline crystals, anhydrate (Form α, γ and δ) and pseudo polymorph (dihydrate), were confirmed. In this study, polymorphic control of L-Citrulline was attempted by changing the ethanol concentration in ethanol-water binary solvents. First, each polymorph of L-Citrulline crystals was added to the prepared ethanol-water binary solvents and samples which were obtained chronologically were measured by XRD. Also, the crystal sizes and shapes in transformation were observed by microscope. Then, polymorphs of the crystals after transformation were determined by XRD pattern. As a result, the transformation from dihydrate to anhydrate was observed by adding dihydrate crystals to the ethanol-water binary solvent. Similarly, the transformation from anhydrate to another anhydrate was observed. Especially in the case of adding dihydrate, the existences of all polymorphs were confirmed by adjusting ethanol-water binary solvent. According to the results, it was revealed that polymorphic transformation was affected by the trace amount of water contained in ethanol-water binary solvent. Moreover, transformation from dihydrate to anhydrate was constructed with three phases, dissolution of dihydrate, nucleation and growth of anhydrate. Therefore, the solution-mediated polymorphic transformation was supposed to be a key mechanism for this transformation.

  19. Decision-making after continuous wins or losses in a randomized guessing task: implications for how the prior selection results affect subsequent decision-making

    PubMed Central

    2014-01-01

    Background Human decision-making is often affected by prior selections and their outcomes, even in situations where decisions are independent and outcomes are unpredictable. Methods In this study, we created a task that simulated real-life non-strategic gambling to examine the effect of prior outcomes on subsequent decisions in a group of male college students. Results Behavioral performance showed that participants needed more time to react after continuous losses (LOSS) than continuous wins (WIN) and discontinuous outcomes (CONTROL). In addition, participants were more likely to repeat their selections in both WIN and LOSS conditions. Functional MRI data revealed that decisions in WINs were associated with increased activation in the mesolimbic pathway, but decreased activation in the inferior frontal gyrus relative to LOSS. Increased prefrontal cortical activation was observed during LOSS relative to WIN and CONTROL conditions. Conclusion Taken together, the behavioral and neuroimaging findings suggest that participants tended to repeat previous selections during LOSS trials, a pattern resembling the gambler’s fallacy. However, during WIN trials, participants tended to follow their previous lucky decisions, like the ‘hot hand’ fallacy. PMID:24708897

  20. Alpha3beta4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo

    PubMed Central

    McCallum, Sarah E.; Cowe, Matthew A.; Lewis, Samuel W.; Glick, Stanley D.

    2012-01-01

    Habenulo-interpeduncular nicotinic receptors, particularly those containing α3, β4 and α5 subunits, have recently been implicated in the reinforcing effects of nicotine. Our laboratory has shown that injection of α3β4 nicotinic receptor antagonists into the medial habenula (MHb) decreases self-administration of multiple abused drugs, including nicotine (Glick et al., 2006; 2008; 2011). However, it is unclear whether blockade of MHb nicotinic receptors has a direct effect on mesolimbic dopamine. Here, we performed in vivo microdialysis in female rats. Microdialysis probes were implanted into the nucleus accumbens (NAcc) and α3β4 nicotinic receptor antagonists (18-methoxycoronaridine; 18-MC or α-conotoxin AuIB; AuIB), were injected into the ipsilateral MHb, just prior to systemic nicotine (0.4 mg/kg, s.c.). Dialysate samples were collected before and after drug administration and levels of extracellular dopamine and its metabolites were measured using HPLC. Acute nicotine administration increased levels of extracellular dopamine and its metabolites in the NAcc. Pre-treatment with intra-habenular AuIB or 18-MC prevented nicotine-induced increases in accumbal dopamine. Neither drug had an effect on nicotine-induced increases in dopamine metabolites, suggesting that α3β4 receptors do not play a role in dopamine metabolism. The effect of intra-habenular blockade of α3β4 receptors on NAcc dopamine was selective for acute nicotine: neither AuIB nor 18-MC prevented increases in NAcc dopamine stimulated by acute d-amphetamine or morphine. These results suggest the mesolimbic response to acute nicotine, but not to acute administration of other drugs of abuse, is directly modulated by α3β4 nicotinic receptors in the MHb, and emphasize a critical role for habenular nicotinic receptors in nicotine’s reinforcing effects. PMID:22561751

  1. Susceptibility of ascending dopamine projections to 6-hydroxydopamine in rats: effect of hypothermia.

    PubMed

    Grant, R J; Clarke, P B S

    2002-01-01

    The aims of this study were to determine (1) whether mesolimbic and nigrostriatal DA cell bodies degenerate to different extents after 6-hydroxydopamine (6-OHDA) is administered into their respective terminal fields and (2) whether hypothermia, associated with sodium pentobarbital anesthesia, protects DA neurons from the toxic effects of 6-OHDA. To address these questions, 6-OHDA or vehicle was infused into either the ventral or dorsal striatum or into the medial forebrain bundle, under conditions of brain normothermia or hypothermia. Two weeks post-surgery, tyrosine hydroxylase-positive cell bodies were counted in the ventral tegmental area (VTA) and substantia nigra. In addition, autoradiographic labeling of tyrosine hydroxylase protein and dopamine transporter was quantified in dopamine terminal fields and cell body areas. Overall, DA cell bodies in the VTA were substantially less susceptible than those in the substantia nigra to depletion of dopaminergic markers. Hypothermia provided two types of neuroprotection. The first occurred when 6-OHDA was administered into the dorsal striatum, and was associated with a 30-50% increase in residual dopaminergic markers in the lateral portion of the VTA. The second neuroprotective effect of hypothermia occurred when 6-OHDA was given into the medial forebrain bundle. This was associated with a 200-300% increase in residual dopaminergic markers in the mesolimbic and nigrostriatal terminal fields; no significant protection occurred in the cell body regions.Collectively, these findings show that (1) the dopaminergic somata in the substantia nigra are more susceptible than those in the VTA to 6-OHDA-induced denervation, and (2) hypothermia can provide anatomically selective neuroprotection within the substantia nigra-VTA cell population. The continued survival of mesolimbic dopamine cell bodies after a 6-OHDA lesion may have functional implications relating to drugs of abuse, as somatodendritic release of dopamine in the VTA has been shown to play a role in the effectiveness of cocaine reward.

  2. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring

    PubMed Central

    Ong, Z. Y.; Muhlhausler, B. S.

    2011-01-01

    Individuals exposed to high-fat, high-sugar diets before birth have an increased risk of obesity in later life. Recent studies have shown that these offspring exhibit increased preference for fat, leading to suggestions that perinatal exposure to high-fat, high-sugar foods results in permanent changes within the central reward system that increase the subsequent drive to overconsume palatable foods. The present study has determined the effect of a maternal “junk-food” diet on the expression of key components of the mesolimbic reward pathway in the offspring of rat dams at 6 wk and 3 mo of age. We show that offspring of junk-food-fed (JF) dams exhibit higher fat intake from weaning until at least 3 mo of age (males: 16±0.6 vs. 11±0.8 g/kg/d; females: 19±1.3 vs. 13±0.4 g/kg/d; P<0.01). mRNA expression of μ-opioid receptor (Mu) was 1.6-fold higher (P<0.01) and dopamine active transporter (DAT) was 2-fold lower (P<0.05) in JF offspring at 6 wk of age. By 3 mo, these differences were reversed, and Mu mRNA expression was 2.8-fold lower (P<0.01) and DAT mRNA expression was 1.9-fold higher (P<0.01) in the JF offspring. These findings suggest that perinatal exposure to high-fat, high-sugar diets results in altered development of the central reward system, resulting in increased fat intake and altered response of the reward system to excessive junk-food intake in postnatal life.—Ong, Z. Y., Muhlhausler, B. S. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. PMID:21427213

  3. Effect of Interleukin-18 Gene Polymorphisms on Sensitization to Wheat Flour in Bakery Workers

    PubMed Central

    Kim, Seung-Hyun; Hur, Gyu-Young; Jin, Hyun Jung; Choi, Hyunna

    2012-01-01

    Lower respiratory symptoms in bakery workers may be induced by wheat flour and endotoxins. We hypothesized that endotoxins from wheat flour may stimulate innate immunity and that interleukin-18 (IL-18) gene polymorphisms may affect their regulatory role in innate immune responses to endotoxins. To investigate the genetic contribution of IL-18 to sensitization to wheat flour, we performed a genetic association study of IL-18 in Korean bakery workers. A total of 373 bakery workers undertook a questionnaire regarding work-related symptoms. Skin prick tests with common and occupational allergens were performed and specific antibodies to wheat flour were measured by ELISA. Three polymorphisms of the IL-18 gene (-607A/C, -137G/C, 8674C/G) were genotyped, and the functional effects of the polymorphisms were analyzed using the luciferase reporter assay. Genotypes of -137G/C (GC or CC) and haplotype ht3 [ACC] showed a significant association with the rate of sensitization to wheat flour. Luciferase activity assay indicated ht3 [AC] as a low transcript haplotype. In conclusion, the regulatory role of IL-18 in lipopolysaccharide-induced responses in bakery workers may be affected by this polymorphism, thus contributing to the development of sensitization to wheat flour and work-related respiratory symptoms. PMID:22468101

  4. SLC11A1 polymorphisms and host susceptibility to cutaneous leishmaniasis in Pakistan.

    PubMed

    Sophie, Mariam; Hameed, Abdul; Muneer, Akhtar; Samdani, Azam J; Saleem, Saima; Azhar, Abid

    2017-01-07

    The vector-borne cutaneous leishmaniasis (CL) is endemic in several regions of Pakistan mainly affecting poor populations. Host genetic factors, particularly SLC11A1 (solute carrier transmembrane protein) within macrophages, play a crucial role in disease pathology and susceptibility. Association of SLC11A1 with cutaneous leishmaniasis, a neglected tropical disease, is not well established. Inconsistencies have been observed within different populations worldwide with respect to genetic susceptibility. This study was designed to investigate genetic variation(s) in SLC11A1 and to assess possible association with cutaneous leishmaniasis in Pakistan. Eight polymorphisms (rs2276631, rs3731864, rs2290708, rs2695342, rs201565523, rs17215556, rs17235409, rs17235416) were genotyped across SLC11A1 in 274 patients and 119 healthy controls. Six polymorphisms were studied by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing. Two single nucleotide polymorphisms were analyzed with newly designed semi-nested PCR assays. Case-control analysis showed no association between selected polymorphisms in SLC11A1 and cutaneous leishmaniasis. No significant difference was observed in the distribution of alleles between leishmaniasis patients and healthy individuals. Strong pairwise linkage disequilibrium was observed between rs2276631 and rs2290708 (r 2  = 64); and rs17235409 and rs17235416 (r 2  = 78). This study shows that genetic variations in the candidate gene SLC11A1 do not affect susceptibility to cutaneous leishmaniasis in the sample population from Pakistan.

  5. The TNF-α -308 polymorphism may affect the severity of Crohn's disease

    PubMed Central

    Santana, Genoile; Bendicho, Maria Teresita; Santana, Tamara Celi; dos Reis, Lidiane Bianca; Lemaire, Denise; Lyra, André Castro

    2011-01-01

    OBJECTIVE: The goal of this project was to analyze the association between Crohn's disease, its clinical features, and the tumor necrosis factor alpha (TNF-α) -308 polymorphism. METHODS: This is a case-control and cross-sectional study that enrolled 91 patients with Crohn's disease and 91 controls. Patients with Crohn's disease were characterized according to the Montreal Classification, along with their clinical and surgical treatment history. Analysis of the TNF-α -308 polymorphism was performed using a commercial kit. A stratified analysis was applied using an OR (odds ratio) with a 95% confidence interval. The chi-square and Fisher's exact tests were utilized for analysis of the association between the polymorphism and the clinical features of Crohn's disease. RESULTS: The low producer predicted phenotype was present in 76.9% of Crohn's disease cases and 75.8% of controls (OR 0.94 [0.45-1.97]). The TNF2 allele and the high producer predicted phenotype were more frequent among patients with Crohn's disease penetrating behavior (p = 0.004). The TNF2 allele and the high producer predicted phenotype were also associated with a history of colectomy (p = 0.02), and the TNF2 allele was associated with small bowel resection (p = 0.03). CONCLUSIONS: The TNF-α -308 polymorphism appears to affect the severity of the disease. However, TNF-α -308 polymorphism does not appear to be important for the susceptibility in the development of Crohn's disease. PMID:21915486

  6. Leptin and leptin receptor gene polymorphisms are correlated with production performance in the Arctic fox.

    PubMed

    Zhang, M; Bai, X J

    2015-05-25

    The polymerase chain reaction-single-strand conformation polymorphism technique was employed to measure mononucleotide diversity in the coding region of the leptin and leptin receptor genes in the Arctic fox. The relationships between specific genetic mutations and reproductive performance in Arctic foxes were determined to im-prove breeding strategies. We found that a leptin gene polymorphism was significantly associated with body weight (P < 0.01), abdominal circumference (P < 0.01), and fur length (P < 0.01). Furthermore, a polymorphism in the leptin receptor gene was associated with carcass weight and guard hair length (P < 0.01). Leptin and leptin receptor gene combinatorial genotypes were significantly associated with abdominal circumference, fur length (P < 0.01), and body weight (P < 0.05). The leptin gene is thus a key gene affecting body weight, abdominal circumference, and fur length in Arctic foxes, whereas variations in the leptin receptor mainly affect carcass weight and guard hair. The marker loci identified in this study can be used to assist in the selection of Arctic foxes for breeding to raise the production performance of this species.

  7. Smoking and polymorphisms of fucosyltransferase gene Le affect success of H. pylori eradication with lansoprazole, amoxicillin, and clarithromycin.

    PubMed Central

    Matsuo, K.; Hamajima, N.; Ikehara, Y.; Suzuki, T.; Nakamura, T.; Matsuura, A.; Tajima, K.; Tominaga, S.

    2003-01-01

    Identification of factors influencing success of Helicobacter pylori (HP) eradication is important for clinical practice. We have prospectively conducted an HP eradication study in the Aichi Cancer Center with a total of 142 patients available for analysis. The overall success rate was 61.3% (95% confidence interval 52.7-69.3%). Smoking during the medication for eradication significantly decreased the success rate (42.9%), whereas smoking cessation during the treatment was associated with a similar rate as for non-smokers (66.7%). We also examined links between an eradication outcome and polymorphisms of Le, Se, IL1A, IL1B, IL1RN and MPO genes, but with one exception none showed any association. The non-functional le allele of Le polymorphisms, leading to decreased expression of Le(b) antigen to which HP attaches with adhesin, showed a beneficial effect for success. Although further clarification is necessary, our study indicated that smoking cessation and Le gene polymorphisms may affect the success rate of HP eradication. PMID:12729191

  8. DNA sequence divergence among derivatives of Escherichia coli K-12 detected by arbitrary primer PCR (random amplified polymorphic DNA) fingerprinting.

    PubMed Central

    Brikun, I; Suziedelis, K; Berg, D E

    1994-01-01

    Derivatives of Escherichia coli K-12 of known ancestry were characterized by random amplified polymorphic DNA (RAPD) fingerprinting to better understand genome evolution in this family of closely related strains. This sensitive method entails PCR amplification with arbitrary primers at low stringency and yields arrays of anonymous DNA fragments that are strain specific. Among 150 fragments scored, eight were polymorphic in that they were produced from some but not all strains. Seven polymorphic bands were chromosomal, and one was from the F-factor plasmid. Five of the six mapped polymorphic chromosomal bands came from just 7% of the genome, a 340-kb segment that includes the terminus of replication. Two of these were from the cryptic Rac prophage, and the inability to amplify them from strains was attributable to deletion (excision) or to rearrangement of Rac. Two other terminus-region segments that resulted in polymorphic bands appeared to have sustained point mutations that affected the ability to amplify them. Control experiments showed that RAPD bands from the 340-kb terminus-region segment and also from two plasmids (P1 and F) were represented in approximate proportion to their size. Optimization experiments showed that the concentration of thermostable polymerase strongly affected the arrays of RAPD products obtained. Comparison of RAPD polymorphisms and positions of strains exhibiting them in the pedigree suggests that many sequence changes occurred in these historic E. coli strains during their storage. We propose that the clustering of such mutations near the terminus reflects errors during completion of chromosome replication, possibly during slow growth in the stab cultures that were often used to store E. coli strains in the early years of bacterial genetics. Images PMID:8132463

  9. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    PubMed

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  10. Association among oxidized LDL levels, MnSOD, apolipoprotein E polymorphisms, and cardiovascular risk factors in a south Brazilian region population.

    PubMed

    Gottlieb, Maria G V; Schwanke, Carla H A; Santos, Adriana F R; Jobim, Paulo F; Müssel, Denise P; da Cruz, Ivana B M

    2005-12-30

    Oxidized LDL (ox-LDL) is involved in the initiation and progression of atherosclerosis. Many factors can affect the LDL oxidation such as oxidative stress. The present study tested whether ox-LDL levels would be associated with apolipoprotein E (APOE), manganese superoxide dismutase (MnSOD) Ala16Val polymorphisms, and classic cardiovascular risk factors. ox-LDL levels were measured by thiobarbituric acid-reactive substances and both polymorphisms were determined by polymerase chain reaction/restriction fragment length polymorphism in a sample of 252 subjects (70 men, 182 women, mean age, 54-85 years). Subjects with ox-LDL >or=0.5 nmol/mg apoprotein were considered the high level group (HLG, N = 82) and subjects with ox-LDL <0.5 nmol/mg apoprotein were considered the expected level group (ELG, N = 170). Classic risk factors were also evaluated. The results showed that diabetes mellitus was more prevalent in HLG, whereas other cardiovascular risk factors were similar between groups. The APOE genotype frequencies did not differ between HLG and ELG subjects. However, AA genotype from MnSOD polymorphism was more frequent in ELG (chi(2) = 8.48; P = 0.014). AV and VV subjects from ELG present highest ox-LDL levels (OR = 3.61; CI95% = 1.42-9.17) than AA. Additional analysis did not find gene-gene interactions associated with ox-LDL levels. Multivariate analysis showed that diabetes and the MnSOD polymorphism were independent factors associated with higher ox-LDL levels in HLG. The results suggest that an important framework on modulation of the redox status influenced by genetic polymorphisms could affect the cardiovascular homeostasis.

  11. Involvement of Serotonin Transporter Gene Polymorphisms (5-HTT) in Impulsive Behavior in the Japanese Population

    PubMed Central

    Nomura, Michio; Kaneko, Masayuki; Okuma, Yasunobu; Nomura, Jun; Kusumi, Ichiro; Koyama, Tsukasa; Nomura, Yasuyuki

    2015-01-01

    The serotonergic pathway has been implicated in the pathogenesis of impulsivity, and sensitivity to aversive outcomes may be linked to serotonin (5-HT) levels. Polymorphisms in the gene that encodes the serotonin transporter (5-HTT), which have differential effects on the level of serotonin transmission, display alternate responses to aversive stimuli. However, recent studies have shown that 5-HT does not affect motor function, which suggests that the functioning of the serotonin-transporter-linked polymorphic region (5-HTTLPR) does not directly affect the behavioral regulatory process itself, but instead exerts an effect via the evaluation of the potential risk associated with particular behavioral outputs. The aim of the present study was to examine the effect of specific 5-HTTLPR genotypes on the motor regulatory process, as observed during a Go/Nogo punishment feedback task. 5-HTT gene-linked promoter polymorphisms were analyzed by polymerase chain reaction, using lymphocytes from 61 healthy Japanese volunteers. Impulsivity was defined as the number of commission errors (responding when one should not) made during a Go/Nogo task. We found that the s/s genotype group made fewer impulsive responses, specifically under aversive conditions for committing such errors, compared to those in the s/l group, without affecting overall motor inhibition. These results suggest that 5-HTTLPRs do not directly affect the behavioral regulatory process itself, but may instead exert an effect on the evaluation of potential risk. The results also indicate that under such aversive conditions, decreased expression of 5-HTT may promote motor inhibitory control. PMID:25775400

  12. Genes determining the severity of cerebral palsy: the role of single nucleotide polymorphisms on the amount and structure of apolipoprotein E

    PubMed Central

    Lien, Espen; Andersen, Guro; Bao, Yongde; Gordish-Dressman, Heather; Skranes, Jon S.; Blackman, James A.; Vik, Torstein

    2015-01-01

    Aim ApolipoproteinE (apoE) influences repair and other processes in the brain and the apoE4 variant is a risk factor for Alzheimer's disease and for prolonged recovery following traumatic brain injury. We previously reported that specific single nucleotide polymorphisms in the APOE or TOMM40 genes affecting the structure and production of apoE were associated with epilepsy, more impaired hand function and gastrostomy tube feeding in children with cerebral palsy (CP). This study explored how various combinations of the same polymorphisms may affect these clinical manifestations. Methods Successful DNA analyses of APOE and TOMM40 were carried out on 227 children. The CP Register of Norway provided details of gross and fine motor function, epilepsy and gastrostomy tube feeding. Possible associations between these clinical manifestations and various combinations of the APOEε2, ε3 or ε4 alleles and of the rs59007384 polymorphism in the TOMM40 gene were explored. Results Epilepsy, impaired fine motor function and gastrostomy tube feeding were less common in children carrying the combination of rs59007384 GG and APOEε2 or ε3 than in children with other combinations. Conclusion Our findings suggest that specific combinations of genes influence the structure and production of apoE differently and affect the clinical manifestations of CP. PMID:25703783

  13. Systems-theory of psychosis--the relevance of "internal censorship".

    PubMed

    Emrich, H M; Leweke, F M; Schneider, U

    2006-02-01

    The different aspects of the neurobiology of psychotic disorders are presently discussed under the perspective of Arvid Calssons neurochemical theory of mesolimbic/cortico-thalamic loops. In this regard the question as to whether--neuropsychologically--a "filter-defect" or a disturbance of "internal censorship" is causative for psychoses. This topic is discussed in the present paper.

  14. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity.

    PubMed

    De Luca, Maria; Roshina, Nataliya V; Geiger-Thornsberry, Gretchen L; Lyman, Richard F; Pasyukova, Elena G; Mackay, Trudy F C

    2003-08-01

    Mutational analyses in model organisms have shown that genes affecting metabolism and stress resistance regulate life span, but the genes responsible for variation in longevity in natural populations are largely unidentified. Previously, we mapped quantitative trait loci (QTLs) affecting variation in longevity between two Drosophila melanogaster strains. Here, we show that the longevity QTL in the 36E;38B cytogenetic interval on chromosome 2 contains multiple closely linked QTLs, including the Dopa decarboxylase (Ddc) locus. Complementation tests to mutations show that Ddc is a positional candidate gene for life span in these strains. Linkage disequilibrium (LD) mapping in a sample of 173 alleles from a single population shows that three common molecular polymorphisms in Ddc account for 15.5% of the genetic contribution to variance in life span from chromosome 2. The polymorphisms are in strong LD, and the effects of the haplotypes on longevity suggest that the polymorphisms are maintained by balancing selection. DDC catalyzes the final step in the synthesis of the neurotransmitters, dopamine and serotonin. Thus, these data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in individual life span.

  15. Bioinformatic analyses to select phenotype affecting polymorphisms in HTR2C gene.

    PubMed

    Piva, Francesco; Giulietti, Matteo; Baldelli, Luisa; Nardi, Bernardo; Bellantuono, Cesario; Armeni, Tatiana; Saccucci, Franca; Principato, Giovanni

    2011-08-01

    Single nucleotide polymorphisms (SNPs) in serotonin related genes influence mental disorders, responses to pharmacological and psychotherapeutic treatments. In planning association studies, researchers that want to investigate new SNPs have to select some among a large number of candidates. Our aim is to guide researchers in the selection of the most likely phenotype affecting polymorphisms. Here, we studied serotonin receptor 2C (HTR2C) SNPs because, till now, only relatively few of about 2000 are investigated. We used the most updated and assessed bioinformatic tools to predict which variations can give rise to biological effects among 2450 HTR2C SNPs. We suggest 48 SNPs that are worth considering in future association studies in the field of psychiatry, psychology and pharmacogenomics. Moreover, our analyses point out the biological level probably affected, such as transcription, splicing, miRNA regulation and protein structure, thus allowing to suggest future molecular investigations. Although few association studies are available in literature, their results are in agreement with our predictions, showing that our selection methods can help to guide future association studies. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Environmental Adaptation Contributes to Gene Polymorphism across the Arabidopsis thaliana Genome

    PubMed Central

    Lee, Cheng-Ruei

    2012-01-01

    The level of within-species polymorphism differs greatly among genes in a genome. Many genomic studies have investigated the relationship between gene polymorphism and factors such as recombination rate or expression pattern. However, the polymorphism of a gene is affected not only by its physical properties or functional constraints but also by natural selection on organisms in their environments. Specifically, if functionally divergent alleles enable adaptation to different environments, locus-specific polymorphism may be maintained by spatially heterogeneous natural selection. To test this hypothesis and estimate the extent to which environmental selection shapes the pattern of genome-wide polymorphism, we define the "environmental relevance" of a gene as the proportion of genetic variation explained by environmental factors, after controlling for population structure. We found substantial effects of environmental relevance on patterns of polymorphism among genes. In addition, the correlation between environmental relevance and gene polymorphism is positive, consistent with the expectation that balancing selection among heterogeneous environments maintains genetic variation at ecologically important genes. Comparison of the gene ontology annotations shows that genes with high environmental relevance are enriched in unknown function categories. These results suggest an important role for environmental factors in shaping genome-wide patterns of polymorphism and indicate another direction of genomic study. PMID:22798389

  17. Analysis of R213R and 13494 g-->a polymorphisms of the p53 gene in individuals with esophagitis, intestinal metaplasia of the cardia and Barrett's Esophagus compared with a control group.

    PubMed

    Pilger, Diogo André; Lopez, Patrícia Luciana da Costa; Segal, Fábio; Leistner-Segal, Sandra

    2007-01-01

    Protein p53 is the tumor suppressor involved in cell cycle control and apoptosis. There are several polymorphisms reported for p53 which can affect important regions involved in protein tumor suppressor activity. Amongst the polymorphisms described, R213R and 13949 g-->a are rarely studied, with an estimate frequency not yet available for the Brazilian population. The purpose of this study was to investigate the genotype and allele frequencies and associations of these polymorphisms in a group of patients with altered esophageal tissue from South Brazil and compare with the frequency observed for a control population. A total of 35 patients for R213R and 45 for 13494 g-->a polymorphisms analysis with gastroesophageal reflux disease (GERD) symptoms diagnosed by upper digestive endoscopy and confirmed by biopsy were studied. For both groups, 100 controls were used for comparison. Loss of heterozygosity (LOH) was also analyzed for a selected group of patients where normal and affected tissue was available. There was one patient with Barrett's Esophagus (BE) showing LOH for R213R out of two heterozygous samples analyzed and two patients (esophagitis and BE) for 13494 g-->a polymorphism. We also aimed to build a haplotype for both polymorphisms collectively analyzed with R27P polymorphism, previously reported by our group. There were no significant differences in allele and genotype distribution between patients and controls. Although using esophagitis, intestinal metaplasia of the cardia and BE samples, all non-neoplastic lesions, we can conclude that these sites do not represent genetic susceptibility markers for the development and early progression of GERD to BE and esophageal cancer. Additional studies are required in order to investigate other determiners of early premalignant lesions known to predispose to esophageal cancer.

  18. Effect of common polymorphisms of the farnesoid X receptor and bile acid transporters on the pharmacokinetics of ursodeoxycholic acid.

    PubMed

    Hu, Miao; Fok, Benny S P; Wo, Siu-Kwan; Lee, Vincent H L; Zuo, Zhong; Tomlinson, Brian

    2016-01-01

    Ursodeoxycholic acid (UDCA), a natural, dihydroxy bile acid, promotes gallstone dissolution and has been attributed with several other beneficial effects. The farnesoid X receptor (FXR) may influence the pharmacokinetics of UDCA by modulating the expression of bile acid transporters. This exploratory study examined whether common functional polymorphisms in FXR and in bile acid transporter genes affect the pharmacokinetics of exogenous UDCA. Polymorphisms in genes for transporters involved in bile acid transport, solute carrier organic anion 1B1 (SLCO1B1) 388A>G and 521T>C, solute carrier 10A1 (SLC10A1) 800 C>T and ATP-binding cassette B11 (ABCB11) 1331T>C, and the FXR -1G>T polymorphism were genotyped in 26 male Chinese subjects who ingested single oral 500-mg doses of UDCA. Plasma concentrations of UDCA and its major conjugate metabolite glycoursodeoxycholic acid (GUDCA) were determined. The mean systemic exposure of UDCA was higher in the five subjects with one copy of the FXR -1G>T variant allele than in those homozygous for the wild-type allele (n = 21) (AUC0-24 h : 38.5 ± 28.2 vs. 20.9 ± 8.0 μg h/mL, P = 0.021), but this difference appeared mainly due to one outlier with the -1GT genotype and elevated baseline and post-treatment UDCA concentrations. After excluding the outlier, body weight was the only factor associated with plasma concentrations of UDCA and there were no significant associations with the other polymorphisms examined. None of the polymorphisms affected the pharmacokinetics of GUDCA. This study showed that the common polymorphisms in bile acid transporters had no significant effect on the pharmacokinetics of exogenous UDCA but an effect of the FXR polymorphism cannot be excluded. © 2015 Wiley Publishing Asia Pty Ltd.

  19. Association between methylenetetrahydrofolate reductase polymorphisms and the relapse of acute lymphoblastic leukemia: a meta-analysis.

    PubMed

    He, H-R; Chen, S-Y; You, H-S; Hu, S-S; Sun, J-Y; Dong, Y-L; Lu, J

    2014-10-01

    Relapse is a threat in patients treated for acute lymphoblastic leukemia (ALL). Methylenetetrahydrofolate reductase (MTHFR) activity may affect the sensitivity of patients to folate-based chemotherapeutic drugs, thus influencing the relapse risk. Two polymorphisms of the gene encoding MTHFR, C677T and A1298C, alter MTHFR enzyme activity and may be associated with ALL relapse. The aim of this meta-analysis was to clarify the correlation between the C677T and A1298C polymorphisms and ALL relapse. To this end, data were collected from studies of the association between these two polymorphisms and ALL relapse. Analysis of the data revealed a serious contradiction among the results. A recessive model demonstrated that the ALL relapse risk was significantly increased in carriers of the 677 TT genotype, especially for pediatric ALL, but was unaffected by the A1298C polymorphism. These findings confirm that the MTHFR C677T polymorphism could be considered as a good marker of the pediatric ALL relapse risk.

  20. The translocator protein gene is associated with symptom severity and cerebral pain processing in fibromyalgia.

    PubMed

    Kosek, Eva; Martinsen, Sofia; Gerdle, Björn; Mannerkorpi, Kaisa; Löfgren, Monika; Bileviciute-Ljungar, Indre; Fransson, Peter; Schalling, Martin; Ingvar, Martin; Ernberg, Malin; Jensen, Karin B

    2016-11-01

    The translocator protein (TSPO) is upregulated during glia activation in chronic pain patients. TSPO constitutes the rate-limiting step in neurosteroid synthesis, thus modulating synaptic transmission. Related serotonergic mechanisms influence if pro- or anti-nociceptive neurosteroids are produced. This study investigated the effects of a functional genetic polymorphism regulating the binding affinity to the TSPO, thus affecting symptom severity and cerebral pain processing in fibromyalgia patients. Gene-to-gene interactions with a functional polymorphism of the serotonin transporter gene were assessed. Fibromyalgia patients (n=126) were genotyped regarding the polymorphisms of the TSPO (rs6971) and the serotonin transporter (5-HTTLPR/rs25531). Functional magnetic resonance imaging (n=24) was used to study brain activation during individually calibrated pressure pain. Compared to mixed/low TSPO affinity binders, the high TSPO affinity binders rated more severe pain (p=0.016) and fibromyalgia symptoms (p=0.02). A significant interaction was found between the TSPO and the serotonin transporter polymorphisms regarding pain severity (p<0.0001). Functional connectivity analyses revealed that the TSPO high affinity binding group had more pronounced pain-evoked functional connectivity in the right frontoparietal network, between the dorsolateral prefrontal area and the parietal cortex. In conclusion, fibromyalgia patients with the TSPO high affinity binding genotype reported a higher pain intensity and more severe fibromyalgia symptoms compared to mixed/low affinity binders, and this was modulated by interaction with the serotonin transporter gene. To our knowledge this is the first evidence of functional genetic polymorphisms affecting pain severity in FM and our findings are in line with proposed glia-related mechanisms. Furthermore, the functional magnetic resonance findings indicated an effect of translocator protein on the affective-motivational components of pain perception. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Pleasurable Emotional Response to Music: A Case of Neurodegenerative Generalized Auditory Agnosia

    PubMed Central

    Matthews, Brandy R.; Chang, Chiung-Chih; De May, Mary; Engstrom, John; Miller, Bruce L.

    2009-01-01

    Recent functional neuroimaging studies implicate the network of mesolimbic structures known to be active in reward processing as the neural substrate of pleasure associated with listening to music. Psychoacoustic and lesion studies suggest that there is a widely distributed cortical network involved in processing discreet musical variables. Here we present the case of a young man with auditory agnosia as the consequence of cortical neurodegeneration who continues to experience pleasure when exposed to music. In a series of musical tasks the subject was unable to accurately identify any of the perceptual components of music beyond simple pitch discrimination, including musical variables know to impact the perception of affect. The subject subsequently misidentified the musical character of personally familiar tunes presented experimentally, but continued to report the activity of “listening” to specific musical genres was an emotionally rewarding experience. The implications of this case for the evolving understanding of music perception, music misperception, music memory, and music-associated emotion are discussed. PMID:19253088

  2. Pleasurable emotional response to music: a case of neurodegenerative generalized auditory agnosia.

    PubMed

    Matthews, Brandy R; Chang, Chiung-Chih; De May, Mary; Engstrom, John; Miller, Bruce L

    2009-06-01

    Recent functional neuroimaging studies implicate the network of mesolimbic structures known to be active in reward processing as the neural substrate of pleasure associated with listening to music. Psychoacoustic and lesion studies suggest that there is a widely distributed cortical network involved in processing discreet musical variables. Here we present the case of a young man with auditory agnosia as the consequence of cortical neurodegeneration who continues to experience pleasure when exposed to music. In a series of musical tasks, the subject was unable to accurately identify any of the perceptual components of music beyond simple pitch discrimination, including musical variables known to impact the perception of affect. The subject subsequently misidentified the musical character of personally familiar tunes presented experimentally, but continued to report that the activity of 'listening' to specific musical genres was an emotionally rewarding experience. The implications of this case for the evolving understanding of music perception, music misperception, music memory, and music-associated emotion are discussed.

  3. Convergent dysregulation of frontal cortical cognitive and reward systems in eating disorders.

    PubMed

    Stefano, George B; Ptáček, Radek; Kuželová, Hana; Mantione, Kirk J; Raboch, Jiří; Papezova, Hana; Kream, Richard M

    2013-05-10

    A substantive literature has drawn a compelling case for the functional involvement of mesolimbic/prefrontal cortical neural reward systems in normative control of eating and in the etiology and persistence of severe eating disorders that affect diverse human populations. Presently, we provide a short review that develops an equally compelling case for the importance of dysregulated frontal cortical cognitive neural networks acting in concert with regional reward systems in the regulation of complex eating behaviors and in the presentation of complex pathophysiological symptoms associated with major eating disorders. Our goal is to highlight working models of major eating disorders that incorporate complementary approaches to elucidate functionally interactive neural circuits defined by their regulatory neurochemical phenotypes. Importantly, we also review evidence-based linkages between widely studied psychiatric and neurodegenerative syndromes (e.g., autism spectrum disorders and Parkinson's disease) and co-morbid eating disorders to elucidate basic mechanisms involving dopaminergic transmission and its regulation by endogenously expressed morphine in these same cortical regions.

  4. Interaction between IL-6 and TNF-α genotypes associated with bacteremia in multiple myeloma patients submitted to autologous stem cell transplantation (ASCT).

    PubMed

    Trigo, Fernanda M B; Luizon, Marcelo R; Dutra, Hélio S; Maiolino, Angelo; Nucci, Márcio; Simões, Belinda P

    2014-01-01

    Stem cell transplantation affects patient׳s vulnerability to infections due to immunological changes related to chemotherapy. Multiple myeloma is characterized by susceptibility to infections, and IL-6 and TNF-α increased levels affect immune response (IR). Polymorphisms in promoter region of cytokine genes may alter expression levels and affect IR. We performed interaction analysis of IL-6 (-174G/C) and TNF-α (-308G/A) polymorphisms with infection susceptibility in 148 patients classified accordingly to infection status and found an interaction when compared groups with and without bacteremia (p=0.0380). The interaction may be more important than single effects for the IR associated with the infection susceptibility in ASCT.

  5. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids.

    PubMed

    Mourad, Michel; Mourad, Georges; Wallemacq, Pierre; Garrigue, Valérie; Van Bellingen, Christophe; Van Kerckhove, Valérie; De Meyer, Martine; Malaise, Jacques; Eddour, Djamila Chaib; Lison, Dominique; Squifflet, Jean Paul; Haufroid, Vincent

    2005-10-15

    CYP3A5 and MDR1 polymorphisms have been shown to influence tacrolimus blood concentrations and dose requirements. The aim is to determine whether these polymorphisms also affect sirolimus trough concentrations and dose requirements after kidney transplantation. Eighty-five renal transplant recipients receiving sirolimus were included. Twenty-four were treated with a combined sirolimus-tacrolimus regimen. Eighty-one patients received steroids. Sirolimus and tacrolimus were adjusted to a target therapeutic window. CYP3A5 (intron 3) and MDR1 (exons 12, 21, 26) genotypes were correlated to the adjusted trough concentrations and dose requirements for both sirolimus and tacrolimus. There were no significant correlation between adjusted sirolimus trough concentrations or dose requirements and genetic polymorphisms. In a multiple regression model, adjusted-prednisone dose was involved with a positive or negative effect when considering sirolimus dose requirements or adjusted concentrations, respectively. In the subgroup of patients treated by tacrolimus and sirolimus, adjusted tacrolimus doses were higher in patients carrying at least one CYP3A5 *1 allele (median 0.083 vs. 0.035 mg/kg for CYP3A5*3/*3 patients, P<0.05). Adjusted-prednisolone dose and CYP3A5 polymorphism explained up to 61% of the variability in tacrolimus dose requirements. Unlike tacrolimus, sirolimus adjusted trough concentrations and dose requirements seem not affected by CYP3A5 and MDR1 polymorphisms. Adjusted-prednisone dose has a significant impact on tacrolimus and sirolimus dose requirements.

  6. The affective dimension of pain as a risk factor for drug and alcohol addiction.

    PubMed

    LeBlanc, Dana M; McGinn, M Adrienne; Itoga, Christy A; Edwards, Scott

    2015-12-01

    Addiction, or substance use disorder (SUD), is a devastating psychiatric disease composed of multiple elemental features. As a biobehavioral disorder, escalation of drug and/or alcohol intake is both a cause and consequence of molecular neuroadaptations in central brain reinforcement circuitry. Multiple mesolimbic areas mediate a host of negative affective and motivational symptoms that appear to be central to the addiction process. Brain stress- and reinforcement-related regions such as the central amygdala (CeA), prefrontal cortex (PFC), and nucleus accumbens (NAc) also serve as central processors of ascending nociceptive input. We hypothesize that a sensitization of brain mechanisms underlying the processing of persistent and maladaptive pain contributes to a composite negative affective state to drive the enduring, relapsing nature of addiction, particularly in the case of alcohol and opioid use disorder. At the neurochemical level, pain activates central stress-related neuropeptide signaling, including the dynorphin and corticotropin-releasing factor (CRF) systems, and by this process may facilitate negative affect and escalated drug and alcohol use over time. Importantly, the widespread prevalence of unresolved pain and associated affective dysregulation in clinical populations highlights the need for more effective analgesic medications with reduced potential for tolerance and dependence. The burgeoning epidemic of prescription opioid abuse also demands a closer investigation into the neurobiological mechanisms of how pain treatment could potentially represent a significant risk factor for addiction in vulnerable populations. Finally, the continuing convergence of sensory and affective neuroscience fields is expected to generate insight into the critical balance between pain relief and addiction liability, as well as provide more effective therapeutic strategies for chronic pain and addiction. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nicotinic Cholinergic Synaptic Mechanisms in the Ventral Tegmental Area Contribute to Nicotine Addiction

    ERIC Educational Resources Information Center

    Pidoplichko, Volodymyr I.; Noguchi, Jun; Areola, Oluwasanmi O.; Liang, Yong; Peterson, Jayms; Zhang, Tianxiang; Dani, John A.

    2004-01-01

    Tobacco use is a major health problem that is estimated to cause 4 million deaths a year worldwide. Nicotine is the main addictive component of tobacco. It acts as an agonist to activate and desensitize nicotinic acetylcholine receptors (nAChRs). A component of nicotine's addictive power is attributable to actions on the mesolimbic dopaminergic…

  8. Lower neighborhood quality in adolescence predicts higher mesolimbic sensitivity to reward anticipation in adulthood

    PubMed Central

    Gonzalez, Marlen Z.; Allen, Joseph P.; Coan, James A.

    2016-01-01

    Life history theory suggests that adult reward sensitivity should be best explained by childhood, but not current, socioeconomic conditions. In this functional magnetic resonance imaging (fMRI) study, 83 participants from a larger longitudinal sample completed the monetary incentive delay (MID) task in adulthood (~25 years old). Parent-reports of neighborhood quality and parental SES were collected when participants were 13 years of age. Current income level was collected concurrently with scanning. Lower adolescent neighborhood quality, but neither lower current income nor parental SES, was associated with heightened sensitivity to the anticipation of monetary gain in putative mesolimbic reward areas. Lower adolescent neighborhood quality was also associated with heightened sensitivity to the anticipation of monetary loss activation in visuo-motor areas. Lower current income was associated with heightened sensitivity to anticipated loss in occipital areas and the operculum. We tested whether externalizing behaviors in childhood or adulthood could better account for neighborhood quality findings, but they did not. Findings suggest that neighborhood ecology in adolescence is associated with greater neural reward sensitivity in adulthood above the influence of parental SES or current income and not mediated through impulsivity and externalizing behaviors. PMID:27838595

  9. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    PubMed

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron.

  10. Dopamine and serotonin: influences on male sexual behavior.

    PubMed

    Hull, Elaine M; Muschamp, John W; Sato, Satoru

    2004-11-15

    Steroid hormones regulate sexual behavior primarily by slow, genomically mediated effects. These effects are realized, in part, by enhancing the processing of relevant sensory stimuli, altering the synthesis, release, and/or receptors for neurotransmitters in integrative areas, and increasing the responsiveness of appropriate motor outputs. Dopamine has facilitative effects on sexual motivation, copulatory proficiency, and genital reflexes. Dopamine in the nigrostriatal tract influences motor activity; in the mesolimbic tract it activates numerous motivated behaviors, including copulation; in the medial preoptic area (MPOA) it controls genital reflexes, copulatory patterns, and specifically sexual motivation. Testosterone increases nitric oxide synthase in the MPOA; nitric oxide increases basal and female-stimulated dopamine release, which in turn facilitates copulation and genital reflexes. Serotonin (5-HT) is primarily inhibitory, although stimulation of 5-HT(2C) receptors increases erections and inhibits ejaculation, whereas stimulation of 5-HT(1A) receptors has the opposite effects: facilitation of ejaculation and, in some circumstances, inhibition of erection. 5-HT is released in the anterior lateral hypothalamus at the time of ejaculation. Microinjections of selective serotonin reuptake inhibitors there delay the onset of copulation and delay ejaculation after copulation begins. One means for this inhibition is a decrease in dopamine release in the mesolimbic tract.

  11. The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia.

    PubMed

    Zierhut, Kathrin; Bogerts, Bernhard; Schott, Björn; Fenker, Daniela; Walter, Martin; Albrecht, Dominik; Steiner, Johann; Schütze, Hartmut; Northoff, Georg; Düzel, Emrah; Schiltz, Kolja

    2010-09-30

    Declarative memory disturbances, known to substantially contribute to cognitive impairment in schizophrenia, have previously been attributed to prefrontal as well as hippocampal dysfunction. To characterize the role of prefrontal and mesolimbic/hippocampal dysfunction during memory encoding in schizophrenia. Neuronal activation in schizophrenia patients and controls was assessed using functional magnetic resonance imaging (fMRI) during encoding of words in a deep (semantic judgement) and shallow (case judgment) task. A free recall (no delay) and a recognition task (24h delay) were performed. Free recall, but not recognition performance was reduced in patients. Reduced performance was correlated with positive symptoms which in turn were related to increased left hippocampal activity during successful encoding. Furthermore, schizophrenia patients displayed a hippocampal hyperactivity during deep encoding irrespective of encoding success along with a reduced anterior cingulate cortex (ACC) and dorsomedial prefrontal cortex (DMPFC) activity in successful encoding but an intact left inferior frontal cortex (LIFC) activity. This study provides the first evidence directly linking positive symptoms and memory deficits to dysfunctional hippocampal hyperactivity. It thereby underscores the pivotal pathophysiological role of a hyperdopaminergic mesolimbic state in schizophrenia. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation

    PubMed Central

    Collins, Anne L.; Greenfield, Venuz Y.; Bye, Jeffrey K.; Linker, Kay E.; Wang, Alice S.; Wassum, Kate M.

    2016-01-01

    Prolonged mesolimbic dopamine concentration changes have been detected during spatial navigation, but little is known about the conditions that engender this signaling profile or how it develops with learning. To address this, we monitored dopamine concentration changes in the nucleus accumbens core of rats throughout acquisition and performance of an instrumental action sequence task. Prolonged dopamine concentration changes were detected that ramped up as rats executed each action sequence and declined after earned reward collection. With learning, dopamine concentration began to rise increasingly earlier in the execution of the sequence and ultimately backpropagated away from stereotyped sequence actions, becoming only transiently elevated by the most distal and unexpected reward predictor. Action sequence-related dopamine signaling was reactivated in well-trained rats if they became disengaged in the task and in response to an unexpected change in the value, but not identity of the earned reward. Throughout training and test, dopamine signaling correlated with sequence performance. These results suggest that action sequences can engender a prolonged mode of dopamine signaling in the nucleus accumbens core and that such signaling relates to elements of the motivation underlying sequence execution and is dynamic with learning, overtraining and violations in reward expectation. PMID:26869075

  13. Cat odor exposure induces distinct changes in the exploratory behavior and Wfs1 gene expression in C57Bl/6 and 129Sv mice.

    PubMed

    Raud, Sirli; Sütt, Silva; Plaas, Mario; Luuk, Hendrik; Innos, Jürgen; Philips, Mari-Anne; Kõks, Sulev; Vasar, Eero

    2007-10-16

    129Sv and C57Bl/6 (Bl6) strains are two most widely used inbred mice strains for generation of transgenic animals. The present study confirms the existence of substantial differences in the behavior of these two mice strains. The exploratory behavior of Bl6 mice in a novel environment was significantly higher compared to 129Sv mice. The exposure of mice to cat odor-induced an anxiety-like state in Bl6, but not in 129Sv mice. The levels of Wfs1 gene expression did not differ in the prefrontal cortex, mesolimbic area and temporal lobe of experimentally naive Bl6 and 129Sv mice. However, after cat odor exposure the expression of Wfs1 gene was significantly lower in the mesolimbic area and temporal lobe of Bl6 mice compared to 129Sv strain. Dynamics of Wfs1 gene expression and exploratory behavior suggest that the down-regulation of Wfs1 gene in Bl6 mice might be related to the increased anxiety. Further studies are needed to test the robustness and possible causal relationship of this finding.

  14. Decision Utility, Incentive Salience, and Cue-Triggered “Wanting”

    PubMed Central

    Berridge, Kent C.; Aldridge, J. Wayne

    2010-01-01

    This chapter examines brain mechanisms of reward utility operating at particular decision moments in life—moments such as when one encounters an image, sound, scent, or other cue associated in the past with a particular reward or perhaps just when one vividly imagines that cue. Such a cue can often trigger a sudden motivational urge to pursue its reward and sometimes a decision to do so. Drawing on a utility taxonomy that distinguishes among subtypes of reward utility—predicted utility, decision utility, experienced utility, and remembered utility—it is shown how cue-triggered cravings, such as an addict’s surrender to relapse, can hang on special transformations by brain mesolimbic systems of one utility subtype, namely, decision utility. The chapter focuses on a particular form of decision utility called incentive salience, a type of “wanting” for rewards that is amplified by brain mesolimbic systems. Sudden peaks of intensity of incentive salience, caused by neurobiological mechanisms, can elevate the decision utility of a particular reward at the moment its cue occurs. An understanding of what happens at such moments leads to a better understanding of the mechanisms at work in decision making in general. PMID:25309963

  15. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.

    PubMed

    Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S

    2008-07-01

    Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.

  16. Decision Utility, Incentive Salience, and Cue-Triggered "Wanting"

    PubMed

    Berridge, Kent C; Aldridge, J Wayne

    2009-01-01

    This chapter examines brain mechanisms of reward utility operating at particular decision moments in life-moments such as when one encounters an image, sound, scent, or other cue associated in the past with a particular reward or perhaps just when one vividly imagines that cue. Such a cue can often trigger a sudden motivational urge to pursue its reward and sometimes a decision to do so. Drawing on a utility taxonomy that distinguishes among subtypes of reward utility-predicted utility, decision utility, experienced utility, and remembered utility-it is shown how cue-triggered cravings, such as an addict's surrender to relapse, can hang on special transformations by brain mesolimbic systems of one utility subtype, namely, decision utility. The chapter focuses on a particular form of decision utility called incentive salience, a type of "wanting" for rewards that is amplified by brain mesolimbic systems. Sudden peaks of intensity of incentive salience, caused by neurobiological mechanisms, can elevate the decision utility of a particular reward at the moment its cue occurs. An understanding of what happens at such moments leads to a better understanding of the mechanisms at work in decision making in general.

  17. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system.

    PubMed

    Perello, M; Dickson, S L

    2015-06-01

    'Hunger is the best spice' is an old and wise saying that acknowledges the fact that almost any food tastes better when we are hungry. The neurobiological underpinnings of this lore include activation of the brain's reward system and the stimulation of this system by the hunger-promoting hormone ghrelin. Ghrelin is produced largely from the stomach and levels are higher preprandially. The ghrelin receptor is expressed in many brain areas important for feeding control, including not only the hypothalamic nuclei involved in energy balance regulation, but also reward-linked areas such as the ventral tegmental area. By targeting the mesoaccumbal dopamine neurones of the ventral tegmental area, ghrelin recruits pathways important for food reward-related behaviours that show overlap with but are also distinct from those important for food intake. We review a variety of studies that support the notion that ghrelin signalling at the level of the mesolimbic system is one of the key molecular substrates that provides a physiological signal connecting gut and reward pathways. © 2014 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  18. Prion Protein M129V Polymorphism Affects Retrieval-Related Brain Activity

    ERIC Educational Resources Information Center

    Buchmann, Andreas; Mondadori, Christian R. A.; Hanggi, Jurgen; Aerni, Amanda; Vrticka, Pascal; Luechinger, Roger; Boesiger, Peter; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas; Henke, Katharina

    2008-01-01

    The prion protein Met129Val polymorphism has recently been related to human long-term memory with carriers of either the 129[superscript MM] or the 129[superscript MV] genotype recalling 17% more words than 129[superscript VV] carriers at 24 h following learning. Here, we sampled genotype differences in retrieval-related brain activity at 30 min…

  19. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid–binding protein 2 reduce plasma triglyceride–rich lipoproteins

    USDA-ARS?s Scientific Manuscript database

    The Thr54 allele of the fatty acid binding protein 2 (FABP2) DNA polymorphism is associated with increased triglyceride-rich lipoproteins and insulin resistance. We investigated whether the triglyceride-rich lipoprotein response to diets of varied fat content is affected by the fatty acid binding pr...

  20. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism.

    PubMed

    Gur-Arie, R; Cohen, C J; Eitan, Y; Shelef, L; Hallerman, E M; Kashi, Y

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.

  1. The impact of the Val158Met catechol-O-methyltransferase genotype on neural correlates of sad facial affect processing in patients with bipolar disorder and their relatives.

    PubMed

    Lelli-Chiesa, G; Kempton, M J; Jogia, J; Tatarelli, R; Girardi, P; Powell, J; Collier, D A; Frangou, S

    2011-04-01

    The Met allele of the catechol-O-methyltransferase (COMT) valine-to-methionine (Val158Met) polymorphism is known to affect dopamine-dependent affective regulation within amygdala-prefrontal cortical (PFC) networks. It is also thought to increase the risk of a number of disorders characterized by affective morbidity including bipolar disorder (BD), major depressive disorder (MDD) and anxiety disorders. The disease risk conferred is small, suggesting that this polymorphism represents a modifier locus. Therefore our aim was to investigate how the COMT Val158Met may contribute to phenotypic variation in clinical diagnosis using sad facial affect processing as a probe for its neural action. We employed functional magnetic resonance imaging to measure activation in the amygdala, ventromedial PFC (vmPFC) and ventrolateral PFC (vlPFC) during sad facial affect processing in family members with BD (n=40), MDD and anxiety disorders (n=22) or no psychiatric diagnosis (n=25) and 50 healthy controls. Irrespective of clinical phenotype, the Val158 allele was associated with greater amygdala activation and the Met158 allele with greater signal change in the vmPFC and vlPFC. Signal changes in the amygdala and vmPFC were not associated with disease expression. However, in the right vlPFC the Met158 allele was associated with greater activation in all family members with affective morbidity compared with relatives without a psychiatric diagnosis and healthy controls. Our results suggest that the COMT Val158Met polymorphism has a pleiotropic effect within the neural networks subserving emotional processing. Furthermore the Met158 allele further reduces cortical efficiency in the vlPFC in individuals with affective morbidity.

  2. Accumbal strychnine-sensitive glycine receptors: an access point for ethanol to the brain reward system.

    PubMed

    Molander, Anna; Söderpalm, Bo

    2005-01-01

    Ethanol (EtOH), like other drugs of abuse, increases extracellular dopamine (DA) levels in the nucleus accumbens (nAc) of the brain reward system, an effect that may be of importance for alcohol addiction. How this DA increase is produced is not fully understood, although previous studies from the present laboratories indicate that nicotinic acetylcholine receptors in the ventral tegmental area play an important role in mediating this effect. Furthermore, activation of these receptors may be secondary to some priming effect produced by EtOH in the nAc. We recently demonstrated that strychnine-sensitive glycine receptors (GlyRs) are present in the nAc and that they are involved in regulating extracellular DA levels. Here we examine the tentative role of these accumbal GlyRs in the above-mentioned priming mechanism of EtOH. In vivo microdialysis (coupled to high pressure liquid chromatography with electrochemical detection) and reversed microdialysis, in awake, freely moving adult male Wistar rats. Local perfusion of strychnine decreased accumbal DA levels per se and completely prevented the increase of accumbal DA levels after both local and systemic EtOH administration. Accumbal perfusion of the GlyR agonist glycine instead increased DA levels in a subpopulation of rats and prevented the EtOH-induced increase after local but not systemic EtOH in all animals. The present results suggest that GlyRs in the nAc might constitute targets for EtOH in its mesolimbic DA-activating effect. Gene polymorphism and drug developmental studies that focus on this receptor population and its relation to alcohol dependence are warranted.

  3. Neuro-psychopharmacogenetics and Neurological Antecedents of Posttraumatic Stress Disorder: Unlocking the Mysteries of Resilience and Vulnerability

    PubMed Central

    Bowirrat, Abdalla; Chen, Thomas J.H.; Blum, Kenneth; Madigan, Margaret; Bailey, John A.; Chuan Chen, Amanda Lih; Downs, B. William; Braverman, Eric R.; Radi, Shahien; Waite, Roger L.; Kerner, Mallory; Giordano, John; Morse, Siohban; Oscar-Berman, Marlene; Gold, Mark

    2010-01-01

    Background and Hypothesis: Although the biological underpinnings of immediate and protracted trauma-related responses are extremely complex, 40 years of research on humans and other mammals have demonstrated that trauma (particularly trauma early in the life cycle) has long-term effects on neurochemical responses to stressful events. These effects include the magnitude of the catecholamine response and the duration and extent of the cortisol response. In addition, a number of other biological systems are involved, including mesolimbic brain structures and various neurotransmitters. An understanding of the many genetic and environmental interactions contributing to stress-related responses will provide a diagnostic and treatment map, which will illuminate the vulnerability and resilience of individuals to Posttraumatic Stress Disorder (PTSD). Proposal and Conclusions: We propose that successful treatment of PTSD will involve preliminary genetic testing for specific polymorphisms. Early detection is especially important, because early treatment can improve outcome. When genetic testing reveals deficiencies, vulnerable individuals can be recommended for treatment with “body friendly” pharmacologic substances and/or nutrients. Results of our research suggest the following genes should be tested: serotoninergic, dopaminergic (DRD2, DAT, DBH), glucocorticoid, GABAergic (GABRB), apolipoprotein systems (APOE2), brain-derived neurotrophic factor, Monamine B, CNR1, Myo6, CRF-1 and CRF-2 receptors, and neuropeptide Y (NPY). Treatment in part should be developed that would up-regulate the expression of these genes to bring about a feeling of well being as well as a reduction in the frequency and intensity of the symptoms of PTSD. PMID:21629442

  4. Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes.

    PubMed

    Zhu, Luchang; Olsen, Randall J; Horstmann, Nicola; Shelburne, Samuel A; Fan, Jia; Hu, Ye; Musser, James M

    2016-07-01

    Variable-number tandem-repeat (VNTR) polymorphisms are ubiquitous in bacteria. However, only a small fraction of them has been functionally studied. Here, we report an intergenic VNTR polymorphism that confers an altered level of toxin production and increased virulence in Streptococcus pyogenes The nature of the polymorphism is a one-unit deletion in a three-tandem-repeat locus upstream of the rocA gene encoding a sensor kinase. S. pyogenes strains with this type of polymorphism cause human infection and produce significantly larger amounts of the secreted cytotoxins S. pyogenes NADase (SPN) and streptolysin O (SLO). Using isogenic mutant strains, we demonstrate that deleting one or more units of the tandem repeats abolished RocA production, reduced CovR phosphorylation, derepressed multiple CovR-regulated virulence factors (such as SPN and SLO), and increased virulence in a mouse model of necrotizing fasciitis. The phenotypic effect of the VNTR polymorphism was nearly the same as that of inactivating the rocA gene. In summary, we identified and characterized an intergenic VNTR polymorphism in S. pyogenes that affects toxin production and virulence. These new findings enhance understanding of rocA biology and the function of VNTR polymorphisms in S. pyogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Evaluation of a Panel of Single-Nucleotide Polymorphisms in miR-146a and miR-196a2 Genomic Regions in Patients with Chronic Periodontitis.

    PubMed

    Venugopal, Priyanka; Lavu, Vamsi; RangaRao, Suresh; Venkatesan, Vettriselvi

    2017-04-01

    Periodontitis is an inflammatory disease caused by bacterial triggering of the host immune-inflammatory response, which in turn is regulated by microRNAs (miRNA). Polymorphisms in the miRNA pathways affect the expression of several target genes such as tumor necrosis factor-α and interleukins, which are associated with progression of disease. The objective of this study was to identify the association between the MiR-146a single nucleotide polymorphisms (SNPs) (rs2910164, rs57095329, and rs73318382), the MiR-196a2 (rs11614913) SNP and chronic periodontitis. Genotyping was performed for the MiR-146a (rs2910164, rs57095329, and rs73318382) and the MiR-196a2 (rs11614913) polymorphisms in 180 healthy controls and 190 cases of chronic periodontitis by the direct Sanger sequencing technique. The strength of the association between the polymorphisms and chronic periodontitis was evaluated using logistic regression analysis. Haplotype and linkage analyses among the polymorphisms was performed. Multifactorial dimensionality reduction was performed to determine epistatic interaction among the polymorphisms. The MiR-196a2 polymorphism revealed a significant inverse association with chronic periodontitis. Haplotype analysis of MiR-146a and MiR-196a2 polymorphisms revealed 13 different combinations, of which 5 were found to have an inverse association with chronic periodontitis. The present study has demonstrated a significant inverse association of MiR-196a2 polymorphism with chronic periodontitis.

  6. MCT1, MCT4 and CD147 gene polymorphisms in healthy horses and horses with myopathy.

    PubMed

    Mykkänen, A K; Koho, N M; Reeben, M; McGowan, C M; Pösö, A R

    2011-12-01

    Polymorphisms in human lactate transporter proteins (monocarboxylate transporters; MCTs), especially the MCT1 isoform, can affect lactate transport activity and cause signs of exercise-induced myopathy. Muscles express MCT1, MCT4 and CD147, an ancillary protein, indispensable for the activity of MCT1 and MCT4. We sequenced the coding sequence (cDNA) of horse MCT4 for the first time and examined polymorphisms in the cDNA of MCT1, MCT4 and CD147 of 16 healthy horses. To study whether signs of myopathy are linked to the polymorphisms, biopsy samples were taken from 26 horses with exercise-induced recurrent myopathy. Two polymorphisms that cause a change in amino acid sequence were found in MCT1 (Val(432)Ile and Lys(457)Gln) and one in CD147 (Met(125)Val). All polymorphisms in MCT4 were silent. Mutations in MCT1 or CD147 in equine muscle were not associated with myopathy. In the future, a functional study design is needed to evaluate the physiological role of the polymorphisms found. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. A functional EGF+61 polymorphism is associated with severity of obstructive sleep apnea.

    PubMed

    Ding, Qunli; Cao, Chao; Chen, Zhongbo; Tabusi, Mahebali; Chen, Li; Deng, Zaichun

    2015-05-01

    Involvement of epidermal growth factor (EGF) is reported in diseases caused by hypoxia. Its functional polymorphism may alter its transcription, affecting EGF expression, contributing to obstructive sleep apnea (OSA). The aim of this study was to investigate associations of EGF+61 polymorphism and risk of OSA. Two hundred two participants were enrolled in this case-control study. DNA was extracted from peripheral blood, and EGF 61A/G polymorphism was determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. No significant association between EGF 61 A/G polymorphism and risk of OSA was observed in any of the gene models tested (AA vs. GG: OR = 0.97, 95% CI = 0.37-2.55; P = 0.95). However, compared with GG genotype, AG genotype associated with decreased risk of severe OSA (AG vs. GG: OR = 0.32, 95% CI = 0.11-0.94). Our study showed that AG genotype has a protective effect on OSA patients against severe disease, although EGF 61A/G polymorphisms have no role on the risk of the disease. Additional large studies should further validate our findings.

  8. The effects of NAMPT haplotypes and metabolic risk factors on circulating visfatin/NAMPT levels in childhood obesity.

    PubMed

    Belo, V A; Luizon, M R; Lacchini, R; Miranda, J A; Lanna, C M M; Souza-Costa, D C; Tanus-Santos, J E

    2015-01-01

    Polymorphisms in the NAMPT gene, which encodes the adipocytokine visfatin/nicotinamide phosphorybosil transferase (NAMPT), affect the circulating visfatin/NAMPT levels and are associated with obesity and cardiovascular diseases. However, no study has tested the hypothesis that NAMPT haplotypes could affect visfatin/NAMPT levels in case of childhood obesity. We investigated the effects of traditional metabolic risk factors (MRFs) and NAMPT polymorphisms T/C (rs1319501) and A/G (rs3801266) or haplotypes on visfatin/NAMPT levels in obese children and adolescents, and whether NAMPT polymorphisms and/or haplotypes are associated with susceptibility to childhood obesity. We studied 175 control, 99 obese and 82 obese with ⩾ 3 MRFs children and adolescents. Genotypes were determined by a Taqman allele discrimination assay and real-time PCR. The plasma visfatin/NAMPT level was measured using an enzyme immunoassay. Obese children and adolescents with ⩾ 3 MRFs had higher plasma visfatin/NAMPT levels in comparison with control children and adolescents (P<0.05). Although positive associations were observed between visfatin/NAMPT and body mass index (rs = 0.157; P = 0.034) as well as visfatin/NAMPT and waist circumference (rs = 0.192; P = 0.011), visfatin/NAMPT and high-density lipoprotein cholesterol were inversely associated (rs = -0.162; P = 0.031). No significant differences in genotype, allele or haplotype frequency distributions for the studied polymorphisms were found when the three groups were compared. However, higher plasma visfatin/NAMPT levels were found in control and obese subjects carrying the GG genotype for the A/G (rs3801266) polymorphism (P<0.05) but not in obese children with ⩾ 3 MRFs. Moreover, control subjects carrying the 'T-G' haplotype showed higher plasma visfatin/NAMPT levels. NAMPT genotypes or haplotypes were not associated with childhood obesity. Obesity in children with ⩾ 3 MRFs increases plasma visfatin/NAMPT levels, and this marker was associated with body mass index and waist circumference. The A/G polymorphism and NAMPT haplotypes affect plasma visfatin/NAMPT levels in controls but not in obese children with ⩾ 3 MRFs. These results suggest that obesity and MRFs are more influential than genetic polymorphisms in the determination of visfatin/NAMPT levels in obese children. Further research is necessary to explain why the GG genotype is not associated with increased visfatin/NAMPT levels in obese children with ⩾ 3 MRFs.

  9. The effect of a promoter polymorphism on the transcription of nitric oxide synthase 1 and its relevance to Parkinson's disease.

    PubMed

    Rife, Terrie; Rasoul, Bareza; Pullen, Nicholas; Mitchell, David; Grathwol, Kristen; Kurth, Janice

    2009-08-01

    Transcriptional changes of the enzyme nitric oxide synthase I (NOS1) are believed to play a role in the development of many diseases. The gene for NOS1 has 12 alternative first exons (1A-1L). The 1F exon is one of the most highly utilized first exons in the brain and has a polymorphism ((TG)(m)TA(TG)(n)) located in its promoter region. The polymorphism's length has been suggested to affect NOS1 transcription and play a role in Parkinson's disease (PD); however, the actual influence of the polymorphism on NOS1 transcription has not been studied. To better characterize the links of the polymorphism with PD, a genotyping study was done comparing polymorphism length among 170 PD patients and 150 age-matched controls. The pattern of changes between the two group's allele frequencies shows statistical significance (P = 0.0359). The smallest polymorphism sizes are more predominant among PD patients than controls. To study the effects of this polymorphism on NOS1 gene transcription, reporter gene constructs were made by cloning the NOS1 1F promoter with polymorphism lengths of either 42, 54, or 62 bp in front of the luciferase gene and transfecting them into HeLa or Sk-N-MC cells. NOS1-directed reporter gene constructs with the 62-bp polymorphism increased transcription of luciferase 2.2-fold in HeLa and 1.8-fold in Sk-N-MC cells compared with reporter gene constructs with the 42-bp polymorphism. These data suggest that if smaller polymorphism size contributes to the higher NOS1 levels in PD patients, an as yet unknown transcriptional mechanism is required. Copyright 2009 Wiley-Liss, Inc.

  10. Cognitive Function in Prepubertal Children with Obstructive Sleep Apnea: A Modifying Role for NADPH Oxidase p22 Subunit Gene Polymorphisms?

    PubMed Central

    Khalyfa, Abdelnaby; Capdevila, Oscar Sans; Kheirandish-Gozal, Leila; Khalyfa, Ahamed A.; Kim, Jinkwan

    2012-01-01

    Abstract Pediatric obstructive sleep apnea (OSA) may lead to neurocognitive dysfunction, but not in everyone affected. The frequencies of NADPH oxidase (NOX) polymorphisms in the p22phox subunit were similar between children with OSA and controls, except for rs6520785 and rs4673, the latter being significantly more frequent among the OSA children without deficits than with deficits (p<0.02). Similarly, 8-hydroxydeoxyguanine urine levels and NOX activity were lower among children without cognitive deficits and particularly among those with the rs4673 polymorphism. Thus, polymorphisms within the NOX gene or its functional subunits may account for important components of the variance in cognitive function deficits associated with OSA in children. Antioxid. Redox Signal. 16, 171–177. PMID:21902598

  11. Association between the methylenetetrahydrofolate reductase polymorphisms and risk of acute lymphoblastic leukemia in Serbian children.

    PubMed

    Damnjanovic, Tatjana; Milicevic, Radomir; Novkovic, Tanja; Jovicic, Olivera; Bunjevacki, Vera; Jekic, Biljana; Lukovic, Ljiljana; Novakovic, Ivana; Redzic, Danka; Milasin, Jelena

    2010-05-01

    Methylenetetrahydrofolate reductase (MTHFR) regulates the metabolism of folate and methionine, essential components of DNA synthesis and methylation. Polymorphisms in the MTHFR gene have been associated with susceptibility to some types of cancer. We investigated a possible association of MTHFR polymorphisms (677C>T and 1298A>C) and increased risk for acute lymphoblastic leukemia in 78 affected children. The frequencies of both MTHFR 677 genotypes and alleles were significantly different between patients and controls. A significant association between CT/TT individuals and reduced risk of acute lymphoblastic leukemia was found. The odds ratios were 0.53 (95% confidence interval, 032-0.89) and 0.30 (95% confidence interval, 0.12-0.81). Polymorphism 1298 did not show statistical difference between patients and controls.

  12. Canine olfactory receptor gene polymorphism and its relation to odor detection performance by sniffer dogs.

    PubMed

    Lesniak, Anna; Walczak, Marta; Jezierski, Tadeusz; Sacharczuk, Mariusz; Gawkowski, Maciej; Jaszczak, Kazimierz

    2008-01-01

    The outstanding sensitivity of the canine olfactory system has been acknowledged by using sniffer dogs in military and civilian service for detection of a variety of odors. It is hypothesized that the canine olfactory ability is determined by polymorphisms in olfactory receptor (OR) genes. We investigated 5 OR genes for polymorphic sites which might affect the olfactory ability of service dogs in different fields of specific substance detection. All investigated OR DNA sequences proved to have allelic variants, the majority of which lead to protein sequence alteration. Homozygous individuals at 2 gene loci significantly differed in their detection skills from other genotypes. This suggests a role of specific alleles in odor detection and a linkage between single-nucleotide polymorphism and odor recognition efficiency.

  13. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica

    NASA Astrophysics Data System (ADS)

    Nehrke, Gernot; Poigner, Harald; Wilhelms-Dick, Dorothee; Brey, Thomas; Abele, Doris

    2012-05-01

    We analyzed shell cuts of five individuals of the Antarctic bivalve Laternula elliptica from three locations along the Antarctic Peninsula by means of Confocal Raman Microscopy (CRM) as well as Electron Microprobe (EMP). The shell of L. elliptica has been previously described as being composed of aragonite exclusively. Now, CRM mapping reveals that three polymorphs of calcium carbonate - aragonite, calcite, and vaterite - are present in the chondrophore region of the examined individuals. Annual shell growth layers continue through aragonite and vaterite, suggesting simultaneous mineralization of both polymorphs. Spatially congruent EMP scans showed that the calcium carbonate polymorph affects the distribution of magnesium and strontium within the chondrophore. This is, to our knowledge, the first report of the coexistence of these three calcium carbonate polymorphs within the mineralized structures of a marine calcifying organism. Particularly the presence of vaterite is unexpected, but shows striking similarities to some fish otoliths. The strong effect of the calcium carbonate polymorph on trace element incorporation restrict the suitability of magnesium and strontium based proxies for the chondrophore area of L. elliptica.

  14. Ocular findings associated with a Cys39Arg mutation in the Norrie disease gene.

    PubMed

    Joos, K M; Kimura, A E; Vandenburgh, K; Bartley, J A; Stone, E M

    1994-12-01

    To diagnose the carriers and noncarriers in a family affected with Norrie disease based on molecular analysis. Family members from three generations, including one affected patient, two obligate carriers, one carrier identified with linkage analysis, one noncarrier identified with linkage analysis, and one female family member with indeterminate carrier status, were examined clinically and electrophysiologically. Linkage analysis had previously failed to determine the carrier status of one female family member in the third generation. Blood samples were screened for mutations in the Norrie disease gene with single-strand conformation polymorphism analysis. The mutation was characterized by dideoxy-termination sequencing. Ophthalmoscopy and electroretinographic examination failed to detect the carrier state. The affected individuals and carriers in this family were found to have a transition from thymidine to cytosine in the first nucleotide of codon 39 of the Norrie disease gene, causing a cysteine-to-arginine mutation. Single-strand conformation polymorphism analysis identified a patient of indeterminate status (by linkage) to be a noncarrier of Norrie disease. Ophthalmoscopy and electroretinography could not identify carriers of this Norrie disease mutation. Single-strand conformation polymorphism analysis was more sensitive and specific than linkage analysis in identifying carriers in this family.

  15. Characterization of the effects of serotonin on the release of (/sup 3/H)dopamine from rat nucleus accumbens and striatal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-05-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotoninmore » agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.« less

  16. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    PubMed Central

    Sukhanov, Ilya; Dorofeikova, Mariia; Dolgorukova, Antonina; Dorotenko, Artem; Gainetdinov, Raul R.

    2018-01-01

    Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted. PMID:29681856

  17. The pharmacology of effort-related choice behavior: Dopamine, depression, and individual differences.

    PubMed

    Salamone, John D; Correa, Merce; Yohn, Samantha; Lopez Cruz, Laura; San Miguel, Noemi; Alatorre, Luisa

    2016-06-01

    This review paper is focused upon the involvement of mesolimbic dopamine (DA) and related brain systems in effort-based processes. Interference with DA transmission affects instrumental behavior in a manner that interacts with the response requirements of the task, such that rats with impaired DA transmission show a heightened sensitivity to ratio requirements. Impaired DA transmission also affects effort-related choice behavior, which is assessed by tasks that offer a choice between a preferred reinforcer that has a high work requirement vs. less preferred reinforcer that can be obtained with minimal effort. Rats and mice with impaired DA transmission reallocate instrumental behavior away from food-reinforced tasks with high response costs, and show increased selection of low reinforcement/low cost options. Tests of effort-related choice have been developed into models of pathological symptoms of motivation that are seen in disorders such as depression and schizophrenia. These models are being employed to explore the effects of conditions associated with various psychopathologies, and to assess drugs for their potential utility as treatments for effort-related symptoms. Studies of the pharmacology of effort-based choice may contribute to the development of treatments for symptoms such as psychomotor slowing, fatigue or anergia, which are seen in depression and other disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of the 5-HTTLPR polymorphism on affective temperament, depression and body mass index in obesity.

    PubMed

    Borkowska, A; Bieliński, M; Szczęsny, W; Szwed, K; Tomaszewska, M; Kałwa, A; Lesiewska, N; Junik, R; Gołębiewski, M; Sikora, M; Tretyn, A; Akiskal, K; Akiskal, H

    2015-09-15

    Many studies show high prevalence of affective disorders in obese patients. Affective temperament is a subclinical manifestation of such conditions. The 5-HTT gene encoding the serotonin transporter may be involved in both mood and eating dysregulation. The aim of this study was to investigate the influence of a polymorphism in the 5-HTT gene on affective temperament types, depressive symptoms and Body Mass Index (BMI) in obese patients. This study involved 390 patients (237 females, and 153 males) with obesity. The TEMPS-A questionnaire, Beck Depression Inventory (BDI) and Hamilton Depression Rating Scale (HDRS) were used to evaluate affective temperaments and prevalence of depression. DNA was obtained for serotonin transporter gene-linked polymorphism (5-HTTLPR) genotyping. In obese patients S/S genotype was associated with depressive and L/L with cyclothymic temperament. Subjects with L/L genotype presented significantly higher BMI and greater intensity of depressive symptoms in BDI and HDRS. Females scored higher in anxious and depressive, while males in hyperthymic, cyclothymic and irritable temperaments. Females scored higher in BDI (subjective depression) while males in HDRS (objective depression). TEMPS-A, BDI and HDRS are frequently used in studies on affective disorders. However, these methods do not examine all dimensions of mood and personality. In obese patients S allele of 5-HTTLPR was associated with development of depressive temperament while L allele corresponded with greater obesity and prevalence of depression. Different mechanisms may be involved in manifestation of depression in males and females with obesity. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Drosha rs10719 T>C polymorphism is associated with preeclampsia susceptibility.

    PubMed

    Rezaei, Mahnaz; Eskandari, Fatemeh; Mohammadpour-Gharehbagh, Abbas; Teimoori, Batool; Yaghmaei, Minoo; Mokhtari, Mojgan; Salimi, Saeedeh

    2018-01-01

    Drosha is a member of the micro RNA (miRNA) processing machinery that affects miRNA processing. Single-nucleotide polymorphisms (SNPs) in the Drosha gene might affect microRNA processing and the expression of various genes. The aim of this study is to investigate the association between SNPs in the Drosha gene and preeclampsia (PE) in the southeast of Iran. Genotyping of Drosha rs10719 and rs6877842 was performed using blood samples from 219 PE women and 205 healthy control subjects by a polymerase chain reaction-restriction fragment length polymorphism method. The Drosha rs10719TC genotype was significantly associated with 1.6-fold higher risk of PE (odds ratio (OR, 1.6 [95% CI, 1.1-2.4], P = 0.026). In addition, the frequency of the Drosha rs10719CC genotype was significantly higher in PE women and was associated with threefold higher risk of PE (OR 3 [95% CI 1.4-6.3], P = 0.004). There was no association between the Drosha rs6877842 polymorphism and PE susceptibility. The CC-GG combined genotype was associated with 3.4-fold higher risk of PE (OR 3.4 [95% CI 1.4-8.1], P = 0.007). The haplotype-based association analysis showed higher frequency of C-G haplotype of Drosha rs10719 and rs6877842 polymorphisms with the increased risk of PE 1.5-fold (OR 1.5 [95% CI 1.1 - 2], P = 0.01). The Drosha rs10719TC and CC genotypes were associated with PE risk. The CC-GG combined genotype and C-G haplotype of Drosha rs10719 and rs6877842 polymorphisms may increase PE susceptibility.

  20. Influence of Cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanism-based model.

    PubMed

    Fransson, Martin N; Gréen, Henrik; Litton, Jan-Eric; Friberg, Lena E

    2011-02-01

    The formulation vehicle Cremophor EL has previously been shown to affect paclitaxel kinetics, but it is not known whether it also affects the kinetics of paclitaxel metabolites. This information may be important for understanding paclitaxel metabolism in vivo and in the investigation of the role of genetic polymorphisms in the metabolizing enzymes CYP2C8 and CYP3A4/CYP3A5 and the ABCB1 transporter. In this study we used the population pharmacokinetic approach to explore the influence of predicted Cremophor EL concentrations on paclitaxel (Taxol) metabolites. In addition, correlations between genetic polymorphisms and enzyme activity with clearance of paclitaxel, its two primary metabolites, 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel, and its secondary metabolite, 6α-p-3'-dihydroxypaclitaxel were investigated. Model building was based on 1156 samples from a study with 33 women undergoing paclitaxel treatment for gynecological cancer. Total concentrations of paclitaxel were fitted to a model described previously. One-compartment models characterized unbound metabolite concentrations. Total concentrations of 6α-hydroxypaclitaxel and p-3'-hydroxypaclitaxel were strongly dependent on predicted Cremophor EL concentrations, but this association was not found for 6α-p-3'-dihydroxypaclitaxel. Clearance of 6α-hydroxypaclitaxel (fraction metabolized) was significantly correlated (p < 0.05) to the ABCB1 allele G2677T/A. Individuals carrying the polymorphisms G/A (n = 3) or G/G (n = 5) showed a 30% increase, whereas individuals with polymorphism T/T (n = 8) showed a 27% decrease relative to those with the polymorphism G/T (n = 17). The correlation of G2677T/A with 6α-hydroxypaclitaxel has not been described previously but supports other findings of the ABCB1 transporter playing a part in paclitaxel metabolism.

  1. AGXT2 rs37369 polymorphism predicts the renal function in patients with chronic heart failure.

    PubMed

    Hu, Xiao-Lei; Zeng, Wen-Jing; Li, Mu-Peng; Yang, Yong-Long; Kuang, Da-Bin; Li, He; Zhang, Yan-Jiao; Jiang, Chun; Peng, Li-Ming; Qi, Hong; Zhang, Ke; Chen, Xiao-Ping

    2017-12-30

    Patients with chronic heart failure (CHF) are often accompanied with varying degrees of renal diseases. The purpose of this study was to identify rs37369 polymorphism of AGXT2 specific to the renal function of CHF patients. A total of 1012 southern Chinese participants, including 487 CHF patients without history of renal diseases and 525 healthy volunteers, were recruited for this study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotypes of AGXT2 rs37369 polymorphism. Levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were detected to indicate the renal function of the participants. BUN level was significantly higher in CHF patients without history of renal diseases compared with healthy volunteers (p=0.000). And the similar result was also obtained for SCr (p=0.000). Besides, our results indicated that the level of BUN correlated significantly with SCr in both the CHF patients without renal diseases (r=0.4533, p<0.0001) and volunteers (r=0.2489, p<0.0001). Furthermore, we found that the AGXT2 rs37369 polymorphism could significantly affect the level of BUN in CHF patients without history of renal diseases (p=0.036, AA+AG vs GG). Patients with rs37369 GG genotype showed a significantly reduced level of BUN compared to those with the AA genotype (p=0.024), and the significant difference was still observed in the smokers of CHF patients without renal diseases (p=0.023). In conclusion, we found that CHF might induce the impairment of kidney and cause deterioration of renal function. AGXT2 rs37369 polymorphism might affect the renal function of CHF patients free from renal diseases, especially in patients with cigarette smoking. Copyright © 2017. Published by Elsevier B.V.

  2. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  3. Replicative genetic association study between functional polymorphisms in AVPR1A and social behavior scales of autism spectrum disorder in the Korean population.

    PubMed

    Yang, So Young; Kim, Soon Ae; Hur, Gang Min; Park, Mira; Park, Jong-Eun; Yoo, Hee Jeong

    2017-01-01

    Arginine vasopressin has been shown to affect social and emotional behaviors, which is mediated by the arginine vasopressin receptor (AVPR1A). Genetic polymorphisms in the AVPR1A promoter region have been identified to be associated with susceptibility to social deficits in autism spectrum disorder (ASD). We hypothesize that alleles of polymorphisms in the promoter region of AVPR1A may differentially interact with certain transcriptional factors, which in turn affect quantitative traits, such as sociality, in children with autism. We performed an association study between ASD and polymorphisms in the AVPR1A promoter region in the Korean population using a family-based association test (FBAT). We evaluated the correlation between genotypes and the quantitative traits that are related to sociality in children with autism. We also performed a promoter assay in T98G cells and evaluated the binding affinities of transcription factors to alleles of rs7294536. The polymorphisms-RS1, RS3, rs7294536, and rs10877969-were analyzed. Under the dominant model, RS1-310, the shorter allele, was preferentially transmitted. The FBAT showed that the rs7294536 A allele was also preferentially transmitted in an additive and dominant model under the bi-allelic mode. When quantitative traits were used in the FBAT, rs7294536 and rs10877969 were statistically significant in all genotype models and modes. Luciferase and electrophoretic mobility-shift assays suggest that the rs7294536 A/G allele results in a Nf-κB binding site that exhibits differential binding affinities depending on the allele. These results demonstrate that polymorphisms in the AVPR1A promoter region might be involved in pathophysiology of ASD and in functional regulation of the expression of AVPR1A .

  4. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chia-Chang; Department of Urology, Taipei Medical University—Shuang Ho Hospital, Taipei, Taiwan; Huang, Yung-Kai

    2013-10-01

    Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C, IL-8 − 251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquidmore » chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C and IL-8 − 251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α − 308 A/A and IL-8 − 251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose–response joint effect of TNF-α − 308 A/A or IL-8 − 251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 − 251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 − 251 T/T genotype for each SD increase in DMA%. - Highlights: • Joint effect of the TNF-α -308 A/A genotype and urinary total arsenic affected UC. • Joint effect of the IL-8 -251 T/T genotype and urinary total arsenic affected UC. • Urinary total arsenic level, TNF-α -308 A/A and IL-8 -251 T/T genotype affected UC.« less

  5. MTHFR polymorphisms C677T and A1298C and associations with IVF outcomes in Brazilian women.

    PubMed

    D'Elia, Priscila Queiroz; dos Santos, Aline Amaro; Bianco, Bianca; Barbosa, Caio Parente; Christofolini, Denise Maria; Aoki, Tsutomu

    2014-06-01

    The aim of this study was to investigate the association between MTHFR gene polymorphisms and IVF outcomes in Brazilian women undergoing assisted reproduction treatment. A prospective study was conducted in the Human Reproduction Department at the ABC University School of Medicine and the Ideia Fertility Institute between December 2010 and April 2012. The patient population was 82 women undergoing assisted reproduction cycles. The MTHFR polymorphisms C677T and A1298C were evaluated and compared with laboratory results and pregnancy rates. The C677T variant was associated with proportions of mature (P=0.006) and immature (P=0.003) oocytes whereas the A1298C variant was associated with number of oocytes retrieved (P=0.044). The polymorphisms, whether alone or in combination, were not associated with normal fertilization, good-quality embryo or clinical pregnancy rates. This study suggests that the number and maturity of oocytes retrieved may be related to the MTHFR polymorphisms C677T and A1298C. It is believed that folate has a crucial function in human reproduction and that folate deficiency can compromise the function of the metabolic pathways it is involved in, leading to an accumulation of homocysteine. The gene MTHFR encodes the 5-MTHFR enzyme, which is involved in folate metabolism, and C677T/A1298C polymorphisms of this gene are related to decreased enzyme activity and consequent changes in homocysteine concentration. Folate deficiency and hyperhomocysteinaemia can also compromise fertility and lead to pregnancy complications by affecting the development of oocytes, preparation of endometrial receptivity, implantation of the embryo and pregnancy. In folliculogenesis, hyperhomocysteinaemia can activate apoptosis, leading to follicular atresia and affecting the maturity of oocytes and the quality of embryos cultured in vitro. This study was performed to investigate the association between MTHFR polymorphisms and IVF outcomes in women undergoing assisted reproduction treatment. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Polymorphism of the NFKB1 affects the serum inflammatory levels of IL-6 in Hashimoto thyroiditis in a Turkish population.

    PubMed

    Koc, Arzuhan; Batar, Bahadir; Celik, Ozlem; Onaran, Ilhan; Tasan, Ertugrul; Sultuybek, Gonul Kanigur

    2014-07-01

    Hashimoto thyroiditis (HT) is a chronic inflammatory autoimmune disease of thyroid gland affected by interaction of multiple genes and various cytokines. Variants in the genes coding for the NFKB and IKB proteins can be potentially involved in the development of the inflammatory diseases. NFKB, a key transcription factor of the regulation of immune responses, is interesting candidate for association studies about autoimmune disorder. The aim of the present study was to investigate the relationship between NFKB1 and NFKBIA (NFKB1 inhibitor gene) polymorphisms, and the risk of HT in a Turkish Population in the context of IL-6 serum levels which may contribute to susceptibility to the disease. We analyzed the distribution of NFKB1-94ins/del ATTG and NFKBIA 3'UTR A→G polymorphisms using PCR-RFLP method and IL-6 serum levels using ELISA method in 120 HT patients and 190 healthy controls in Turkish population. Although, there was no statistical significant difference in distribution of the genotypes and alleles of NFKB1-94ins/del ATTG or NFKBIA 3'UTR A→G polymorphisms in patients and control subjects as single, ins/ins/GG combined genotype had protective effect on the disease when compared to ins/ins/AG combined genotype as combined genotypes of both polymorphisms. In addition to this finding, IL-6 serum levels in HT patients with del/del genotype were significantly higher than in patients with del/ins genotype (p<0.001). According to the combined genotype analysis of NFKB1-94ins/del ATTG and NFKBIA 3'UTR A→G polymorphisms, IL-6 levels were also higher in patients with del/del genotype when at least one G allele existing (p=0.007). Therefore, our findings suggest that the functional promoter NFKB1-94ins/del ATTG polymorphism was significantly associated with population HT disease through acting by directly modulating IL-6 serum levels. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Genetic variants of estrogen beta and leptin receptors may cause gynecomastia in adolescent.

    PubMed

    Eren, Erdal; Edgunlu, Tuba; Korkmaz, Huseyin Anil; Cakir, Esra Deniz Papatya; Demir, Korcan; Cetin, Esin Sakalli; Celik, Sevim Karakas

    2014-05-15

    Gynecomastia is a benign breast enlargement in males that affects approximately one-third of adolescents. The exact mechanism is not fully understood; however, it has been proposed that estrogen receptors and aromatase enzyme activity may play important roles in the pathogenesis of gynecomastia. While many studies have reported that aromatase enzyme (CYP19) gene polymorphism is associated with gynecomastia, only one study has shown a relationship between estrogen receptor (ER) alpha and beta gene polymorphism and gynecomastia. Thus, the aim of this study was to evaluate the relationships between CYP19 (rs2414096), ER alpha (rs2234693), ER beta (rs4986938), leptin (rs7799039), and leptin receptor (rs1137101) gene polymorphisms and gynecomastia. This study included 107 male adolescents with gynecomastia and 97 controls. Total serum testosterone (T) and estradiol (E2) levels were measured, and DNA was extracted from whole blood using the PCR-RFLP technique. The polymorphic distributions of CYP19, ER alpha, ER beta, leptin and leptin receptor genes were compared. The median E2 level was 12.41 (5.00-65.40) pg/ml in the control group and 16.86 (2.58-78.47) pg/ml in the study group (p<0.001). The median T level was 2.19 (0.04-7.04) ng/ml in the control group and 1.46 (0.13-12.02) ng/ml in the study group (p=0.714). There was a significant relationship between gynecomastia and leptin receptor rs1137101 (p=0.002) and ER beta receptor rs4986938 gene polymorphisms (p=0.002). According to our results, increased E2 level and ER beta gene rs4986938 polymorphism might explain why some adolescents have gynecomastia. Leptin receptor gene rs1137101 polymorphism might affect susceptibility to gynecomastia. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Association of Anxiety-Related Polymorphisms with Sports Performance in Chilean Long Distance Triathletes: A Pilot Study

    PubMed Central

    Sanhueza, Jorge A.; Zambrano, Tomás; Bahamondes-Avila, Carlos; Salazar, Luis A.

    2016-01-01

    Different factors affecting athletic performance are well established: intensity and type of training, anthropometric characteristics as well as an important psychological component. However, the contribution of the genetic background has been less investigated. The aim of the present study was to investigate the influence of polymorphisms within genes associated with stress and anxiety (5HTT, CRH2R, ACE, NK1R, 5HT1AR and CRF-BP) on the physical capability and sports performance in triathletes. One hundred and ninety two (192) unrelated Chilean triathletes who participated in the 2014 70.3 Pucón city triathlon were divided into opposite subgroups of sports performance according to their time results. We identified significant associations for five polymorphisms (5HTT 5-HTTLPR, ACE I/D, NK1R rs6715729, 5HT1AR -1019C>G and CRF-BP CRF-BPs11) with athletic performance. Our results indicate that these polymorphisms are associated with differential sports performance in Chilean triathletes, establishing an initial background for better understanding the relationship between physical performance, genetics and anxiety disorders. Key points Genetic factors influencing sports performance in the Chilean population are unknown. Differential outcomes from athletes who completed a triathlon competition were associated with five polymorphisms (5HTT 5-HTTLPR, ACE I/D, NK1R rs6715729, 5HT1AR -1019C>G and CRF-BP CRF-BPs11). We show that genetic variants within stress- and anxiety-related genes affect athletic performance. PMID:27928199

  9. Role of selected polymorphisms in determining muscle fiber composition in Japanese men and women.

    PubMed

    Kumagai, Hiroshi; Tobina, Takuro; Ichinoseki-Sekine, Noriko; Kakigi, Ryo; Tsuzuki, Takamasa; Zempo, Hirofumi; Shiose, Keisuke; Yoshimura, Eiichi; Kumahara, Hideaki; Ayabe, Makoto; Higaki, Yasuki; Yamada, Ryo; Kobayashi, Hiroyuki; Kiyonaga, Akira; Naito, Hisashi; Tanaka, Hiroaki; Fuku, Noriyuki

    2018-05-01

    Genetic polymorphisms and sex differences are suggested to affect muscle fiber composition; however, no study has investigated the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences. Therefore, the present study examined the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences in the Japanese population. The present study included 211 healthy Japanese individuals (102 men and 109 women). Muscle biopsies were obtained from the vastus lateralis to determine the proportion of myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx). Moreover, we analyzed polymorphisms in α-actinin-3 gene ( ACTN3; rs1815739 ), angiotensin-converting enzyme gene ( ACE; rs4341 ), hypoxia-inducible factor 1 α gene ( rs11549465 ), vascular endothelial growth factor receptor 2 gene ( rs1870377 ), and angiotensin II receptor, type 2 gene ( rs11091046 ), by TaqMan single-nucleotide polymorphism genotyping assays. The proportion of MHC-I was 9.8% lower in men than in women, whereas the proportion of MHC-IIa and MHC-IIx was higher in men than in women (5.0 and 4.6%, respectively). Men with the ACTN3 RR + RX genotype had a 4.8% higher proportion of MHC-IIx than those with the ACTN3 XX genotype. Moreover, men with the ACE ID + DD genotype had a 4.7% higher proportion of MHC-I than those with the ACE II genotype. Furthermore, a combined genotype of ACTN3 R577X and ACE insertion/deletion (I/D) was significantly correlated with the proportion of MHC-I ( r = -0.23) and MHC-IIx ( r = 0.27) in men. In contrast, no significant correlation was observed between the examined polymorphisms and muscle fiber composition in women. These results suggest that the ACTN3 R577X and ACE I/D polymorphisms independently affect the proportion of human skeletal muscle fibers MHC-I and MHC-IIx in men but not in women. NEW & NOTEWORTHY In men, the RR + RX genotype of the α-actinin-3 gene ( ACTN3) R577X polymorphism was associated with a higher proportion of myosin heavy chain (MHC)-IIx. The ID + DD genotype of the angiotensin-converting enzyme gene ( ACE) insertion/deletion (I/D) polymorphism, in contrast to a previous finding, was associated with a higher proportion of MHC-I in men. In addition, the combined genotype of these polymorphisms was correlated with the proportion of MHC-I and MHC-IIx in men. Thus ACTN3 R577X and ACE I/D polymorphisms influence the muscle fiber composition in Japanese men.

  10. Association of endothelial nitric oxide synthase gene variants (-786 T>C, intron 4 b/a VNTR and 894 G>T) with idiopathic recurrent pregnancy loss: A case-control study with haplotype and in silico analysis.

    PubMed

    Azani, Alireza; Hosseinzadeh, Asghar; Azadkhah, Roya; Zonouzi, Ali Akbar Poursadegh; Zonouzi, Ahmad Poursadegh; Aftabi, Younes; Khani, Hourieh; Heidary, Leida; Danaii, Shahla; Bargahi, Nasrin; Pouladi, Nasser; Hosseini, Sayed Mostafa

    2017-08-01

    Many lines of evidence suggest that reduced production of nitric oxide (NO) due to single nucleotide polymorphisms in endothelial nitric oxide synthase (eNOS) gene may affect the implantation and maintenance of pregnancy. Accordingly, our objective was to investigate whether the eNOS polymorphisms (-786 T>C, intron 4 b/a VNTR and 894 G>T) and haplotypes may be associated with increased susceptibility to recurrent pregnancy loss (RPL). A total of 130 women with a history of two or more unexplained consecutive first trimester miscarriages and 110 ethnically matched women with at least two normal pregnancies and no history of pregnancy loss were included in the study as cases and controls, respectively. To identify the genotypes, we used polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP) methods In addition, an in silico analysis was conducted to predict the possible effects of the eNOS 894 G>T polymorphism on the structure and function of eNOS mRNA and protein using prediction servers. Our findings revealed that the prevalence of eNOS -786 T>C polymorphism, eNOS -786C allele and TC+CC genotype in cases were significantly higher than those in healthy controls (p<0.05). Also, the combination genotypes -786TT/4b4a and -786TT/894GG were significantly associated with reduced risk of RPL. We also found that the C-4a-G haplotype of the eNOS gene studied polymorphisms was significantly associated with a predisposition to RPL (odds ratio, 3.219; 95% confidence interval, 1.649-6.282; p=0.0003). The in silico analysis showed that the eNOS 894 G>T polymorphism couldn't affects eNOS mRNA and protein significantly. Our findings provide evidence to support the hypothesis that eNOS -786 T>C polymorphism and the -786C-4a-894G haplotype are associated with the high risk of RPL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area

    PubMed Central

    2015-01-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active. PMID:26084913

  12. The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, O.; Weber, B.; Hayden, M.R.

    1992-10-01

    The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons including 196 bp of the 5[prime] region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected individuals of seven different ancestries. However, a frequent intronic andmore » two exonic polymorphisms (Leu[sup 489][yields]Gln and Gly[sup 842][yields]Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children. 43 refs., 3 figs., 2 tabs.« less

  13. Bidirectional genetic and environmental influences on mother and child behavior: the family system as the unit of analyses.

    PubMed

    Mills-Koonce, W Roger; Propper, Cathi B; Gariepy, Jean-Louis; Blair, Clancy; Garrett-Peters, Patricia; Cox, Martha J

    2007-01-01

    Family systems theory proposes that an individual's functioning depends on interactive processes within the self and within the context of dyadic family subsystems. Previous research on these processes has focused largely on behavioral, cognitive, and psychophysiological properties of the individual and the dyad. The goals of this study were to explore genetic and environmental interactions within the family system by examining how the dopamine receptor D2 gene (DRD2) A1+ polymorphism in mothers and children relates to maternal sensitivity, how maternal and child characteristics might mediate those effects, and whether maternal sensitivity moderates the association between DRD2 A1+ and child affective problems. Evidence is found for an evocative effect of child polymorphism on parenting behavior, and for a moderating effect of child polymorphism on the association between maternal sensitivity and later child affective problems. Findings are discussed from a family systems perspective, highlighting the role of the family as a context for gene expression in both mothers and children.

  14. The rs4846049 polymorphism in the 3'UTR region of the MTHFR gene increases the migraine susceptibility in an Iranian population.

    PubMed

    Salehi, Mohaddeseh; Amin-Beidokhti, Mona; Safarpour Lima, Behnam; Gholami, Milad; Javadi, Gholam-Reza; Mirfakhraie, Reza

    2018-01-01

    Migraine is a painful complex neurovascular disease characterized by recurrent moderate-to-severe headaches. Increased level of homocysteine is related to dilation of cerebral vessels and endothelial injury that could trigger migraine attacks. Functional polymorphisms in the MTHFR gene affect homocysteine metabolism and, therefore, play an important role in the etiology of the disease. We aimed to investigate the possible association between MTHFR gene rs4846049, C677T, and A1298C polymorphisms and the risk of migraine in Iranian population. In this genetic association study, 498 individuals were enrolled, including 223 migraine patients and 275 healthy controls. Genotyping was performed using tetra-primer ARMS-PCR for rs4846049 and PCR-restriction fragment length polymorphism for C677T and A1298C polymorphisms. The association between rs4846049 and C677T polymorphisms and migraine was observed. For the rs4846049 polymorphism, the association was detected under a dominant model ( P =0.007; odds ratio [OR] =0.60; 95% confidence interval [CI], 0.41-0.87), and for the C677T polymorphism, the TT genotype frequency was significantly different in the studied groups ( P =0.009; OR =2.48; 95% CI, 1.25-4.92). No significant differences in the genotype or allele frequencies were found for the A1298C polymorphism between the migraineurs and controls. Present data provide evidence for the association of rs4846049 and C677T polymorphisms in the MTHFR gene and migraine. Further studies are required to validate the significance of the studied genetic variations in diverse ethnic populations.

  15. Crystallization of D-mannitol in binary mixtures with NaCl: phase diagram and polymorphism.

    PubMed

    Telang, Chitra; Suryanarayanan, Raj; Yu, Lian

    2003-12-01

    To study the crystallization, polymorphism, and phase behavior of D-mannitol in binary mixtures with NaCl to better understand their interactions in frozen aqueous solutions. Differential scanning calorimetry, hot-stage microscopy, Raman microscopy, and variable-temperature X-ray diffractometry were used to characterize D-mannitol-NaCl mixtures. NaCl and D-mannitol exhibited significant melt miscibility (up to 7.5% w/w or 0.20 mole fraction of NaCl) and a eutectic phase diagram (eutectic composition 7.5% w/w NaCl; eutectic temperature 150 degrees C for the alpha and beta polymorphs of D-mannitol and 139 degrees C for the delta). The presence of NaCl did not prevent mannitol from crystallizing but, depending on sample size, affected the polymorph crystallized: below 10 mg, delta was obtained; above 100 mg, alpha was obtained. Pure mannitol crystallized under the same conditions first as the delta polymorph and then as the a polymorph, with the latter nucleating on the former. KCl showed similar eutectic points and melt miscibility with D-mannitol as NaCl. LiCl yielded lower eutectic melting points, inhibited the crystallization of D-mannitol during cooling, and enabled the observation of its glass transition. Despite their structural dissimilarity, significant melt miscibility exists between D-mannitol and NaCl. Their phase diagram has been determined and features polymorph-dependent eutectic points. NaCl influences the polymorphic behavior of mannitol, and the effect is linked to the crystallization of mannitol in two polymorphic stages.

  16. Association of Gene Polymorphisms in Interleukin 6 in Infantile Bronchial Asthma.

    PubMed

    Babusikova, Eva; Jurecekova, Jana; Jesenak, Milos; Evinova, Andrea

    2017-07-01

    The genetic background of bronchial asthma is complex, and it is likely that multiple genes contribute to its development both directly and through gene-gene interactions. Cytokines contribute to different aspects of asthma, as they determine the type, severity and outcomes of asthma pathogenesis. Allergic asthmatics undergoing an asthmatic attack exhibit significantly higher levels of pro-inflammatory cytokines, such as interleukins and chemokines. In recent years, cytokines and their receptors have been shown to be highly polymorphic, and this prompted us to investigate interleukin 6 promoter polymorphisms at position -174G/C (rs1800795) and at -572G/C (rs1800796) in relation to asthma in children. Interleukin 6 promoter polymorphisms were analyzed in bronchial asthma patients and healthy children using polymerase chain reaction-restriction fragment length polymorphism analysis. We observed a significant association between polymorphism at -174G/C and bronchial asthma (OR=3.4, 95% CI: 2.045-5.638, P<.001). Higher associations between polymorphism at IL-6 -174G/C and bronchial asthma were observed in atopic patients (OR=4.1, 95% CI: 2.308-7.280, P<8.10 -7 ). Interleukin 6 polymorphism is associated with bronchial asthma, particularly its atopic phenotype. Expression and secretion of interleukins in asthmatic patients may be affected by genetic polymorphisms, and could have a disease-modifying effect in the asthmatic airway and modify the therapeutic response. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Antioxidant-related gene polymorphisms associated with the cardio-ankle vascular index in young Russians.

    PubMed

    Sorokin, Alexander V; Kotani, Kazuhiko; Bushueva, Olga Y; Polonikov, Alexey V

    2016-04-01

    The cardio-ankle vascular index is a measure of arterial stiffness, whereas oxidative stress underlies arterial pathology. This study aimed to investigate the association between the cardio-ankle vascular index and antioxidant-related gene polymorphisms in young Russians. A total of 89 patients (mean age, 21.6 years) were examined by the cardio-ankle vascular index and for 15 gene polymorphisms related to antioxidant enzymes including FMO3 (flavin-containing monooxygenase 3), GPX1 (glutathione peroxidase 1), and GPX4 (glutathione peroxidase 4). A higher cardio-ankle vascular index level was detected in carriers with the KK-genotype of FMO3 polymorphism rs2266782 than in those without (mean levels: 6.2 versus 5.6, respectively, p<0.05). Similarly, a higher cardio-ankle vascular index level was seen in carriers with the CC-genotype of GPX4 polymorphism rs713041 than in those without (6.0 versus 5.5, respectively, p<0.05). We did not observe significant associations between the cardio-ankle vascular index levels and the other gene polymorphisms. Although carriers with the LL-genotype of GPX1 polymorphism rs1050450 showed a higher diastolic blood pressure level than those without, the polymorphism did not affect the cardio-ankle vascular index level. This study showed a significant association between rs2266782 and rs713041 polymorphisms and arterial stiffness, as measured by the cardio-ankle vascular index, in young Russians. The pathways utilised by antioxidant enzymes may be responsible for early arterial stiffening in the Russian population.

  18. Neural correlates of executive functions in patients with obesity.

    PubMed

    Ho, Ming-Chou; Chen, Vincent Chin-Hung; Chao, Seh-Huang; Fang, Ching-Tzu; Liu, Yi-Chun; Weng, Jun-Cheng

    2018-01-01

    Obesity is one of the most challenging problems in human health and is recognized as an important risk factor for many chronic diseases. It remains unclear how the neural systems (e.g., the mesolimbic "reward" and the prefrontal "control" neural systems) are correlated with patients' executive function (EF), conceptualized as the integration of "cool" EF and "hot" EF. "Cool" EF refers to relatively abstract, non-affective operations such as inhibitory control and mental flexibility. "Hot" EF refers to motivationally significant affective operations such as affective decision-making. We tried to find the correlation between structural and functional neuroimaging indices and EF in obese patients. The study population comprised seventeen patients with obesity (seven males and 10 females, BMI = 37.99 ± 5.40, age = 31.82 ± 8.75 year-old) preparing to undergo bariatric surgery. We used noninvasive diffusion tensor imaging, generalized q-sampling imaging, and resting-state functional magnetic resonance imaging to examine the neural correlations between structural and functional neuroimaging indices and EF performances in patients with obesity. We reported that many brain areas are correlated to the patients' EF performances. More interestingly, some correlations may implicate the possible associations of EF and the incentive motivational effects of food. The neural correlation between the left precuneus and middle occipital gyrus and inhibitory control may suggest that patients with a better ability to detect appetitive food may have worse inhibitory control. Also, the neural correlation between the superior frontal blade and affective decision-making may suggest that patients' affective decision-making may be associated with the incentive motivational effects of food. Our results provide evidence suggesting neural correlates of EF in patients with obesity.

  19. ACE insertion/deletion (I/D) polymorphism and diabetic nephropathy.

    PubMed

    Rahimi, Zohreh

    2012-10-01

    Angiotensin converting enzyme (ACE) gene encodes ACE, a key component of renin angiotensin system (RAS), plays an important role in blood pressure homeostasis by generating the vasoconstrictor peptide angiotensin II. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. The presence of ACE insertion/deletion (I/D) polymorphism affects the plasma level of ACE. ACE DD genotype is associated with the highest systemic and renal ACE levels compared with the lowest ACE activity in carriers of II genotype. In this review focus has been performed on the study of ACE I/D polymorphism in various populations and its influence on the risk of onset and progression of diabetic nephropathy. Also, association between ACE I/D polymorphism and response to ACE inhibitor and angiotensin II receptor antagonists will be reviewed. Further, synergistic effect of this polymorphism and variants of some genes on the risk of development of diabetic nephropathy will be discussed.

  20. Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing.

    PubMed

    Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin

    2014-11-05

    Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.

  1. Effect of ethanol on crystallization of the polymorphs of L-histidine

    NASA Astrophysics Data System (ADS)

    Wantha, Lek; Punmalee, Neeranuch; Sawaddiphol, Vanida; Flood, Adrian E.

    2018-05-01

    It is known that the antisolvents used for crystallization can affect the crystallization outcome and may promote the crystallization of a specific polymorph. In this study L-histidine (L-his) is used as a model substance, and ethanol was selected to be an antisolvent. The formation of the polymorphs of L-his in antisolvent crystallization as a function of supersaturation, ethanol volume fraction, and temperature was studied. The induction time for the antisolvent crystallization was also measured. The results showed that the induction time decreases with higher supersaturation and ethanol volume fraction, indicating that the nucleation rate of L-his from antisolvent crystallization (where water was used as the solvent and ethanol as the antisolvent) increases with higher supersaturation, as expected, and ethanol fraction. At all temperatures studied, the pure metastable polymorph B of L-his was obtained initially at higher ethanol volume fraction and supersaturation, while a mixture of the polymorphs A and B was obtained at lower ethanol volume fraction and supersaturation.

  2. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia.

    PubMed

    Lopez-Lopez, E; Martin-Guerrero, I; Ballesteros, J; Garcia-Orad, A

    2013-12-01

    Methotrexate (MTX) is an important component of therapy used to treat childhood acute lymphoblastic leukemia (ALL). Two single-nucleotide polymorphisms (SNPs) in the methylenetetrahydrofolate reductase (MTHFR) gene, C677T and A1298C, affect MTHFR activity. A large body of studies has investigated the potential role of MTHFR SNPs in MTX toxicity in pediatric ALL. However, the results are controversial. In this review and meta-analysis, we critically evaluate the relationship between the C677T and A1298C polymorphisms of MTHFR and MTX toxicity in pediatric ALL. The majority of published reports do not find associations between MTHFR polymorphisms and toxicity in pediatric ALL. When associations are reported, often the results are contradictory to each other. The meta-analysis confirms a lack of association. In conclusion, MTHFR, C677T and A1298C polymorphisms do not seem to be good markers of MTX-related toxicity in pediatric ALL.

  3. Preferential nucleation during polymorphic transformations

    DOE PAGES

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-08-03

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and thereforemore » nucleation more probable - with increasing number of special OR’s. As a result, these insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.« less

  4. Association of COL1A1 polymorphisms with osteoporosis: a meta-analysis of clinical studies

    PubMed Central

    Xie, Peigen; Liu, Bin; Zhang, Liangming; Chen, Ruiqiang; Yang, Bu; Dong, Jianwen; Rong, Limin

    2015-01-01

    Objective: To conduct a meta-analysis of all association studies on two of the collagen 1 alpha 1 (COL1A1) gene polymorphisms, the -1997G/T (rs1107946) and the -1663indelT (rs2412298) polymorphisms and osteoporosis/BMD and fracture. Methods: PubMed/Medline and Web of Knowledge were searched for relevant association studies published in English. Pooled OR and its corresponding 95% CI or pooled MD and its corresponding 95% CI was calculated with the Cochrane Review Manager (Revman, version 5.2) using a random-effect or a fixed effect model. Results: No significant association between the -1997G/T polymorphism and Lumbar Spine (LS) and Femoral Neck (FN) BMD except for the Caucasian subpopulation wherein subjects with the T allele of the -1997G/T polymorphism was associated with significantly higher LS BMD. Our analysis did reveal that women, especially postmenopausal or perimenopausal women with the GG genotype, had significantly higher Total Hip (TH) BMD than those with the GT. Additionally, our meta-analysis did not show significant association between the -1997G/T polymorphism and risk of fracture, between the -1663indelT polymorphism and LS BMD in postmenopausal or perimenopausal women, or between the -1663indelT polymorphism and the risk of fracture. Conclusions: Our results suggested the possibility of the COL1A1 -1997G/T and the -1663indelT polymorphisms individually playing very little role in osteoporosis and fracture, although more studies are needed especially for the analysis of association between these two polymorphisms and fracture. Haplotype studies may become one important future direction of study to further elucidate whether and how various COL1A1 polymorphisms affect bone health, osteoporosis and fracture. PMID:26628959

  5. Evidence of lactate dehydrogenase-B allozyme effects in the teleost, Fundulus heteroclitus.

    PubMed

    DiMichele, L; Paynter, K T; Powers, D A

    1991-08-23

    The evolutionary significance of protein polymorphisms has long been debated. Exponents of the balanced theory advocate that selection operates to maintain polymorphisms, whereas the neoclassical school argues that most genetic variation is neutral. Some studies have suggested that protein polymorphisms are not neutral, but their significance has been questioned because one cannot eliminate the possibility that linked loci were responsible for the observed differences. Evidence is presented that an enzymatic phenotype can affect carbon flow through a metabolic pathway. Glucose flux differences between lactate dehydrogenase-B phenotypes of Fundulus heteroclitus were reversed by substituting the Ldh-B gene product of one homozygous genotype with that of another.

  6. Polymorphisms of drug-metabolizing enzymes (GST, CYP2B6 and CYP3A) affect the pharmacokinetics of thiotepa and tepa

    PubMed Central

    Ekhart, Corine; Doodeman, Valerie D; Rodenhuis, Sjoerd; Smits, Paul H M; Beijnen, Jos H; Huitema, Alwin D R

    2009-01-01

    AIMS Thiotepa is widely used in high-dose chemotherapy. Previous studies have shown relations between exposure and severe organ toxicity. Thiotepa is metabolized by cytochrome P450 and glutathione S-transferase enzymes. Polymorphisms of these enzymes may affect elimination of thiotepa and tepa, its main metabolite. The purpose of this study was to evaluate effects of known allelic variants in CYP2B6, CYP3A4, CYP3A5, GSTA1 and GSTP1 genes on pharmacokinetics of thiotepa and tepa. METHODS White patients (n = 124) received a high-dose regimen consisting of cyclophosphamide, thiotepa and carboplatin as intravenous infusions. Genomic DNA was analysed using polymerase chain reaction and sequencing. Plasma concentrations of thiotepa and tepa were determined using validated GC and LC-MS/MS methods. Relations between allelic variants and elimination pharmacokinetic parameters were evaluated using nonlinear mixed effects modelling (nonmem). RESULTS The polymorphisms CYP2B6 C1459T, CYP3A4*1B, CYP3A5*3, GSTA1 (C-69T, G-52A) and GSTP1 C341T had a significant effect on clearance of thiotepa or tepa. Although significant, most effects were generally not large. Clearance of thiotepa and tepa was predominantly affected by GSTP1 C341T polymorphism, which had a frequency of 9.3%. This polymorphism increased non-inducible thiotepa clearance by 52% [95% confidence interval (CI) 41, 64, P < 0.001] and decreased tepa clearance by 32% (95% CI 29, 35, P < 0.001) in heterozygous patients, which resulted in an increase in combined exposure to thiotepa and tepa of 45% in homozygous patients. CONCLUSIONS This study indicates that the presently evaluated variant alleles explain only a small part of the substantial interindividual variability in thiotepa and tepa pharmacokinetics. Patients homozygous for the GSTP1 C341T allele may have enhanced exposure to thiotepa and tepa. PMID:19076156

  7. The Flexible Mind Is Associated with the Catechol-O-Methyltransferase (COMT) Val[superscript 158]Met Polymorphism: Evidence for a Role of Dopamine in the Control of Task-Switching

    ERIC Educational Resources Information Center

    Colzato, Lorenza S.; Waszak, Florian; Nieuwenhuis, Sander; Posthuma, Danielle; Hommel, Bernhard

    2010-01-01

    Genetic variability related to the catechol-O-methyltransferase (COMT) gene Val[superscript 128]Met polymorphism) has received increasing attention as a possible modulator of cognitive control functions. Recent evidence suggests that the Val[superscript 128]Met genotype may differentially affect cognitive stability and flexibility, in such a way…

  8. Defining Genetic Risk for GVHD and Mortality Following Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Hansen, John A; Chien, Jason W; Warren, Edus H; Zhao, Lue Ping; Martin, Paul J

    2011-01-01

    Purpose of review To explore what is known about the genetics of hematopoietic stem cell transplantation (HCT) and how genetic polymorphism affects risk of graft-versus-host disease (GVHD) and mortality. Recent findings Genetic variation found across the human genome can impact HCT outcome by 1) causing genetic disparity between patient and donor, and 2) modifying gene function. Single nucleotide polymorphisms (SNP) and structural variation can result in mismatching for cellular peptides known as histocompatibility antigens (HA). At least 25 to 30 polymorphic genes are known to encode functional HA in mismatched individuals, but their individual contribution to clinical GVHD is unclear. HCT outcome may also be affected by polymorphism in donor or recipient. Association studies have implicated several genes with GVHD and mortality, however results have been inconsistent most likely due to limited sample size, and differences in racial diversity and clinical covariates. New technologies using DNA arrays genotyping for a million or more SNPs promise genome-wide discovery of HCT associated genes, however adequate statistical power requires study populations of several thousand patient-donor pairs. Summary Available data offers strong preliminary support for the impact that genetic variation has on risk of GVHD and mortality following HCT. Definitive results however await future genome-wide studies of large multi-center HCT cohorts. PMID:20827186

  9. The effects of acute tryptophan depletion and serotonin transporter polymorphism on emotional processing in memory and attention.

    PubMed

    Roiser, Jonathan P; Müller, Ulrich; Clark, Luke; Sahakian, Barbara J

    2007-08-01

    Polymorphism at the serotonin transporter linked polymorphic region (5-HTTLPR) has been associated with neuroticism, increased risk for affective disorders and greater vulnerability to mood change following serotonin (5-HT) depletion. The aim of the present study was to investigate whether the cognitive effects of 5-HT depletion were differentially affected by genotype at the 5-HTTLPR polymorphism, using neuropsychological measures of memory and attention. We utilized the acute tryptophan depletion (ATD) technique to temporarily reduce 5-HT synthesis in two groups of healthy volunteers pre-selected on the basis of 5-HTTLPR genotype, 15 of the ll genotype and 15 of the ss genotype, in a double-blind, placebo-controlled crossover design. As expected, ATD resulted in a robust reduction in plasma tryptophan concentration in both genotype groups. However, the genotype groups differed in terms of the effect of ATD on cognitive performance. The ss genotype group showed impaired verbal recall following depletion, while episodic memory was unimpaired by ATD in the ll genotype group. Averaging across depletion condition, the ss genotype group outperformed the ll genotype group on tests of episodic memory and attention. Neither group was significantly affected by ATD on measures of emotional state. These data confirm previous reports that ss individuals are particularly vulnerable to 5-HT depletion, but extend these findings to the cognitive domain. The unexpected finding that ss volunteers showed improved memory and attention relative to ll volunteers suggests a possible evolutionary advantage to possession of the s allele, which may offset the disadvantage of vulnerability to depression following stressful life events.

  10. Thymidylate synthase repeat polymorphisms and risk of neural tube defects in a population from the northern United Kingdom.

    PubMed

    Wilding, Craig S; Relton, Caroline L; Sutton, Matthew J; Jonas, Pat A; Lynch, Sally-Ann; Tawn, E Janet; Burn, John

    2004-07-01

    A 28-bp repeat polymorphism in the 5'UTR of the thymidylate synthase (TYMS) gene represents a candidate risk factor for neural tube defects (NTDs) due to involvement in folate-dependent homocysteine metabolism. Non-Hispanic, white, U.S. citizens carrying at least one 2x 28-bp repeat allele have recently been shown to be at a four-fold increased risk of spina bifida (SB). We investigated the association between this polymorphism and risk of NTD in families affected by NTDs and controls from the northern United Kingdom (UK). PCR was performed on genomic DNA extracted from blood or mouth swabs of family members affected by NTDs (mothers, fathers, and cases), and unaffected controls (mothers and infants) to determine the number of 28-bp repeat units within the promoter region of TYMS. Case-control and TDT analyses of the influence of TYMS genotype on risk of NTD, or NTD pregnancy, were conducted. Odds ratio (OR) analysis indicated that individuals carrying the 2x 28-bp repeat allele either in homozygous or heterozygous form, are not at increased risk of NTDs, or of having an NTD affected pregnancy. Control population allele frequencies are seen to be markedly different between the U.S. controls and those in this study. TYMS polymorphism appears to be not universally associated with NTD risk across Caucasian samples. The elevated risk of spina bifida in U.S. samples appears to be driven by an unusually low risk allele (2x 28 bp) frequency in control samples. Family based (TDT) testing of U.S. samples is therefore advocated.

  11. Evolution of meiotic recombination genes in maize and teosinte.

    PubMed

    Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P

    2017-01-25

    Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.

  12. A New Perspective on the Pathophysiology of Borderline Personality Disorder: A Model of the Role of Oxytocin.

    PubMed

    Herpertz, Sabine C; Bertsch, Katja

    2015-09-01

    Borderline personality disorder is characterized by three domains of dysfunction: affect dysregulation, behavioral dyscontrol, and interpersonal hypersensitivity. Interpersonal hypersensitivity is associated with a (pre)attentive bias toward negative social information and, on the level of the brain, enhanced bottom-up emotion generation, while affect dysregulation results from abnormal top-down processes. Additionally, the problems of patients with borderline personality disorder in interpersonal functioning appear to be related to alterations in the (social) reward and empathy networks. There is increasing evidence that the oxytocinergic system may be involved in these domains of dysfunction and may thus contribute to borderline psychopathology and even open new avenues for targeted pharmacotherapeutic approaches. From studies in healthy and clinical subjects (including first studies with borderline personality disorder patients), the authors provide a conceptual framework for future research in borderline personality disorder that is based on oxytocinergic modulation of the following biobehavioral mechanisms: 1) the brain salience network favoring adaptive social approach behavior, 2) the affect regulation circuit normalizing top-down processes, 3) the mesolimbic circuit improving social reward experiences, and 4) modulating brain regions involved in cognitive and emotional empathy. In addition, preliminary data point to interactions between the oxytocin and cannabinoid system, with implications for pain processing. These mechanisms, which the authors believe to be modulated by oxytocin, may not be specific for borderline personality disorder but rather may be common to a host of psychiatric disorders in which disturbed parent-infant attachment is a major etiological factor.

  13. Vitamin D receptor genetic polymorphisms and tuberculosis: updated systematic review and meta-analysis.

    PubMed

    Gao, L; Tao, Y; Zhang, L; Jin, Q

    2010-01-01

    Host genetic susceptibility has been suggested as one of the most important explanations for inter-individual differences in tuberculosis (TB) risk. The vitamin D receptor (VDR) gene has been studied as a candidate locus due to genetic polymorphisms that affects the activity of the receptor and subsequent downstream vitamin D-mediated effects. We reviewed published studies on VDR polymorphisms and TB susceptibility up to 15 April 2009 and quantitatively summarised associations of the most widely studied polymorphisms (FokI, TaqI, ApaI and BsmI) using meta-analysis. A total of 23 eligible studies were included in this review. Heterogeneous results were observed, which may be partly explained by the differences between populations. Among Asians, the FokI ff genotype showed a pronounced positive association (OR 2.0, 95%CI 1.3-3.2), a significant inverse association was observed for the BsmI bb genotype (OR 0.5, 95%CI 0.4-0.8), and marginal significant associations were found for TaqI and ApaI polymorphisms. However, none of the polymorphisms was significantly related to TB among Africans or South Americans. The association of VDR polymorphisms with risk of TB observed in our analyses supports the hypothesis that vitamin D deficiency might play a role as risk factor during the development of TB.

  14. The danger within: the role of genetic, behavioural and ecological factors in population persistence of colour polymorphic species.

    PubMed

    Bolton, Peri E; Rollins, Lee A; Griffith, Simon C

    2015-06-01

    Polymorphic species have been the focus of important work in evolutionary biology. It has been suggested that colour polymorphic species have specific evolutionary and population dynamics that enable them to persist through environmental changes better than less variable species. We suggest that recent empirical and theoretical work indicates that polymorphic species may be more vulnerable to extinction than previously thought. This vulnerability arises because these species often have a number of correlated sexual, behavioural, life history and ecological traits, which can have a simple genetic underpinning. When exacerbated by environmental change, these alternate strategies can lead to conflict between morphs at the genomic and population levels, which can directly or indirectly affect population and evolutionary dynamics. In this perspective, we identify a number of ways in which the nature of the correlated traits, their underpinning genetic architecture, and the inevitable interactions between colour morphs can result in a reduction in population fitness. The principles illustrated here apply to all kinds of discrete polymorphism (e.g. behavioural syndromes), but we focus primarily on colour polymorphism because they are well studied. We urge further empirical investigation of the genetic architecture and interactions in polymorphic species to elucidate the impact on population fitness. © 2015 John Wiley & Sons Ltd.

  15. Adaptive Role of Inversion Polymorphism of Drosophila subobscura in Lead Stressed Environment

    PubMed Central

    Kenig, Bojan; Kurbalija Novičić, Zorana; Patenković, Aleksandra; Stamenković-Radak, Marina; Anđelković, Marko

    2015-01-01

    Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations. PMID:26102201

  16. Adaptive Role of Inversion Polymorphism of Drosophila subobscura in Lead Stressed Environment.

    PubMed

    Kenig, Bojan; Kurbalija Novičić, Zorana; Patenković, Aleksandra; Stamenković-Radak, Marina; Anđelković, Marko

    2015-01-01

    Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations.

  17. Ethanol and Mesolimbic Serotonin/Dopamine Interactions Via 5-HT1B Receptors

    DTIC Science & Technology

    2006-03-01

    baclofen , a GABAB receptor agonist, into the VTA probe and the response of extracellular DA in the ipsilateral NACC was determined. A significant...decrease (50% deduction) in extracellular DA in the ipsilateral NACC after perfusion with baclofen was considered an appropriate implantation of the...the VTA with baclofen were included in data analyses. Approximately 70% of the animals that had undergone surgery had both probes correctly implanted

  18. Amphetamine regulation of mesolimbic dopamine/cholecystokinin neurotransmission.

    PubMed

    Hurd, Y L; Lindefors, N; Brodin, E; Brené, S; Persson, H; Ungerstedt, U; Hökfelt, T

    1992-04-24

    The effects of acute and repeated amphetamine administration on mesolimbic dopamine (DA) neurons was assessed by studying DA and cholecystokinin (CCK) release in the nucleus accumbens (Acc), as well as effects on mRNA genes regulating DA and CCK synthesis in ventral tegmental area (VTA) cells in rats. Amphetamine (1.5 mg/kg) markedly increased extracellular levels of DA in the medial Acc (assessed by in vivo microdialysis) in drug-naive animals, about twice the amount released in animals repeatedly administered the drug for the previous 7 days (twice daily). CCK overflow was found to mirror the DA responses in that the very transient elevation of CCK monitored in drug-naive animals was attenuated in those with prior amphetamine use. The attenuation of both DA and CCK overflow in the medial Acc was found to be associated with a decrease in the number of CCK mRNA-positive VTA neurons (assessed by in situ hybridization histochemistry). Although the number of cells expressing CCK mRNA were decreased, the gene expression in those positive CCK and tyrosine hydroxylase mRNA cells in the VTA was significantly increased. The CCK mRNA neurons in the VTA were positively identified as those projecting to the medial Acc by the local perfusion of Fluoro-gold retrograde tracer via microdialysis probes located in the Acc.

  19. Hypothesizing Music Intervention Enhances Brain Functional Connectivity Involving Dopaminergic Recruitment: Common Neuro-correlates to Abusable Drugs.

    PubMed

    Blum, Kenneth; Simpatico, Thomas; Febo, Marcelo; Rodriquez, Chris; Dushaj, Kristina; Li, Mona; Braverman, Eric R; Demetrovics, Zsolt; Oscar-Berman, Marlene; Badgaiyan, Rajendra D

    2017-07-01

    The goal of this review is to explore the clinical significance of music listening on neuroplasticity and dopaminergic activation by understanding the role of music therapy in addictive behavior treatment. fMRI data has shown that music listening intensely modifies mesolimbic structural changes responsible for reward processing (e.g., nucleus accumbens [NAc]) and may control the emotional stimuli's effect on autonomic and physiological responses (e.g., hypothalamus). Music listening has been proven to induce the endorphinergic response blocked by naloxone, a common opioid antagonist. NAc opioid transmission is linked to the ventral tegmental area (VTA) dopamine release. There are remarkable commonalities between listening to music and the effect of drugs on mesolimbic dopaminergic activation. It has been found that musical training before the age of 7 results in changes in white-matter connectivity, protecting carriers with low dopaminergic function (DRD2A1 allele, etc.) from poor decision-making, reward dependence, and impulsivity. In this article, we briefly review a few studies on the neurochemical effects of music and propose that these findings are relevant to the positive clinical findings observed in the literature. We hypothesize that music intervention enhances brain white matter plasticity through dopaminergic recruitment and that more research is needed to explore the efficacy of these therapies.

  20. On the physiology of jouissance: interpreting the mesolimbic dopaminergic reward functions from a psychoanalytic perspective

    PubMed Central

    Bazan, Ariane; Detandt, Sandrine

    2013-01-01

    Jouissance is a Lacanian concept, infamous for being impervious to understanding and which expresses the paradoxical satisfaction that a subject may derive from his symptom. On the basis of Freud’s “experience of satisfaction” we have proposed a first working definition of jouissance as the (benefit gained from) the motor tension underlying the action which was [once] adequate in bringing relief to the drive and, on the basis of their striking reciprocal resonances, we have proposed that central dopaminergic systems could embody the physiological architecture of Freud’s concept of the drive. We have then distinguished two constitutive axes to jouissance: one concerns the subject’s body and the other the subject’s history. Four distinctive aspects of these axes are discussed both from a metapsychological and from a neuroscience point of view. We conclude that jouissance could be described as an accumulation of body tension, fuelling for action, but continuously balancing between reward and anxiety, and both marking the physiology of the body with the history of its commemoration and arising from this inscription as a constant push to act and to repeat. Moreover, it seems that the mesolimbic accumbens dopaminergic pathway is a reasonable candidate for its underlying physiological architecture. PMID:24223543

  1. Culture shapes a mesolimbic response to signals of dominance and subordination that associates with behavior.

    PubMed

    Freeman, Jonathan B; Rule, Nicholas O; Adams, Reginald B; Ambady, Nalini

    2009-08-01

    It has long been understood that culture shapes individuals' behavior, but how this is accomplished in the human brain has remained largely unknown. To examine this, we made use of a well-established cross-cultural difference in behavior: American culture tends to reinforce dominant behavior whereas, conversely, Japanese culture tends to reinforce subordinate behavior. In 17 Americans and 17 Japanese individuals, we assessed behavioral tendencies towards dominance versus subordination and measured neural responses using fMRI during the passive viewing of stimuli related to dominance and subordination. In Americans, dominant stimuli selectively engaged the caudate nucleus, bilaterally, and the medial prefrontal cortex (mPFC), whereas these were selectively engaged by subordinate stimuli in Japanese. Correspondingly, Americans self-reported a tendency towards more dominant behavior whereas Japanese self-reported a tendency towards more subordinate behavior. Moreover, activity in the right caudate and mPFC correlated with behavioral tendencies towards dominance versus subordination, such that stronger responses in the caudate and mPFC to dominant stimuli were associated with more dominant behavior and stronger responses in the caudate and mPFC to subordinate stimuli were associated with more subordinate behavior. The findings provide a first demonstration that culture can flexibly shape functional activity in the mesolimbic reward system, which in turn may guide behavior.

  2. The acute effect of pleasurable music on craving for alcohol: A pilot crossover study.

    PubMed

    Mathis, Walter S; Han, Xiaotong

    2017-07-01

    Chronic administration of drugs of abuse leads to a dopamine deficient state in the mesolimbic system, causing dysphoria in abstinence and contributing to craving and return to use. Recent functional imaging studies have shown that listening to personally pleasing music activates the mesolimbic reward system in a fashion similar to drugs of abuse. It has been proposed that such activation could ameliorate the dysphoria and craving of the hypodopaminergic state. The present study sought to evaluate the efficacy of listening to personally pleasing or moving music on reducing craving in abstinent alcoholics using a single-blind, within-subject randomized block design, with three randomly determined presentations of each condition. Twelve participants with Alcohol Use Disorder on a residential substance rehabilitation unit reported their level of craving with a Visual Analog Scale before and after listening to either the participant-selected song or white noise. Using a mixed model to analyze the crossover design, the music intervention was found to have a statistically significant advantage in craving reduction compared to the noise control. Our results indicate that personally pleasing music might have a role in augmenting substance use disorder treatment via craving reduction. Further study is warranted to elucidate factors which predict the most robust response from this intervention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The neural basis of human social values: evidence from functional MRI.

    PubMed

    Zahn, Roland; Moll, Jorge; Paiva, Mirella; Garrido, Griselda; Krueger, Frank; Huey, Edward D; Grafman, Jordan

    2009-02-01

    Social values are composed of social concepts (e.g., "generosity") and context-dependent moral sentiments (e.g., "pride"). The neural basis of this intricate cognitive architecture has not been investigated thus far. Here, we used functional magnetic resonance imaging while subjects imagined their own actions toward another person (self-agency) which either conformed or were counter to a social value and were associated with pride or guilt, respectively. Imagined actions of another person toward the subjects (other-agency) in accordance with or counter to a value were associated with gratitude or indignation/anger. As hypothesized, superior anterior temporal lobe (aTL) activity increased with conceptual detail in all conditions. During self-agency, activity in the anterior ventromedial prefrontal cortex correlated with pride and guilt, whereas activity in the subgenual cingulate solely correlated with guilt. In contrast, indignation/anger activated lateral orbitofrontal-insular cortices. Pride and gratitude additionally evoked mesolimbic and basal forebrain activations. Our results demonstrate that social values emerge from coactivation of stable abstract social conceptual representations in the superior aTL and context-dependent moral sentiments encoded in fronto-mesolimbic regions. This neural architecture may provide the basis of our ability to communicate about the meaning of social values across cultural contexts without limiting our flexibility to adapt their emotional interpretation.

  4. Hypothesizing Music Intervention Enhances Brain Functional Connectivity Involving Dopaminergic Recruitment: Common Neuro-correlates to Abusable Drugs

    PubMed Central

    Simpatico, Thomas; Febo, Marcelo; Rodriquez, Chris; Dushaj, Kristina; Li, Mona; Braverman, Eric R.; Demetrovics, Zsolt; Oscar-Berman, Marlene; Badgaiyan, Rajendra D.

    2016-01-01

    The goal of this review is to explore the clinical significance of music listening on neuroplasticity and dopaminergic activation by understanding the role of music therapy in addictive behavior treatment. fMRI data has shown that music listening intensely modifies mesolimbic structural changes responsible for reward processing (e.g., nucleus accumbens [NAc]) and may control the emotional stimuli’s effect on autonomic and physiological responses (e.g., hypothalamus). Music listening has been proven to induce the endorphinergic response blocked by naloxone, a common opioid antagonist. NAc opioid transmission is linked to the ventral tegmental area (VTA) dopamine release. There are remarkable commonalities between listening to music and the effect of drugs on mesolimbic dopaminergic activation. It has been found that musical training before the age of 7 results in changes in white-matter connectivity, protecting carriers with low dopaminergic function (DRD2A1 allele, etc.) from poor decision-making, reward dependence, and impulsivity. In this article, we briefly review a few studies on the neurochemical effects of music and propose that these findings are relevant to the positive clinical findings observed in the literature. We hypothesize that music intervention enhances brain white matter plasticity through dopaminergic recruitment and that more research is needed to explore the efficacy of these therapies. PMID:27246565

  5. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood.

    PubMed

    Hampp, Gabriele; Ripperger, Jürgen A; Houben, Thijs; Schmutz, Isabelle; Blex, Christian; Perreau-Lenz, Stéphanie; Brunk, Irene; Spanagel, Rainer; Ahnert-Hilger, Gudrun; Meijer, Johanna H; Albrecht, Urs

    2008-05-06

    The circadian clock has been implicated in addiction and several forms of depression [1, 2], indicating interactions between the circadian and the reward systems in the brain [3-5]. Rewards such as food, sex, and drugs influence this system in part by modulating dopamine neurotransmission in the mesolimbic dopamine reward circuit, including the ventral tegmental area (VTA) and the ventral striatum (NAc). Hence, changes in dopamine levels in these brain areas are proposed to influence mood in humans and mice [6-10]. To establish a molecular link between the circadian-clock mechanism and dopamine metabolism, we analyzed the murine promoters of genes encoding key enzymes important in dopamine metabolism. We find that transcription of the monoamine oxidase A (Maoa) promoter is regulated by the clock components BMAL1, NPAS2, and PER2. A mutation in the clock gene Per2 in mice leads to reduced expression and activity of MAOA in the mesolimbic dopaminergic system. Furthermore, we observe increased levels of dopamine and altered neuronal activity in the striatum, and these results probably lead to behavioral alterations observed in Per2 mutant mice in despair-based tests. These findings suggest a role of circadian-clock components in dopamine metabolism highlighting a role of the clock in regulating mood-related behaviors.

  6. Genetic polymorphism and isoenzyme patterns of lactate dehydrogenase in tench (Tinca tinca), crucian carp (Carassius carassius) and carp (Cyprinus carpio).

    PubMed

    Valenta, M; Slechta, V; Slechtová, V; Kálal, L

    1977-01-01

    Isoenzyme patterns and the polymorphism of lactate dehydrogenase (LDH) were investigated in 3 fish species of family Cyprinidae, i.e. tench (Tinca tinca), crucian carp (Carassius carassius) and carp (Cyprinus carpio). The isoenzyme patterns were tissue and species specific. In crucian carp subunits with different electrophoretic mobility are present, which are genetically controlled from the B1, B2, A1, A2 and C loci, while the set of loci in carp is B1, B2, A, C1 and C2 and in tench B, A, C. The locus B of LDH in tench, the locus B2 in crucian carp, and the loci B1, C1 and C2 in carp are polymorphic and have two different alleles in each case. The polymorphism did not affect the total LDH activity in the tissues. All the populations investigated were in Hardy-Weinberg equilibrium. The genetic control of the polymorphism in B1 and C1 loci in carp was proved by test matings. The polymorphism in B loci tested in erythrocytes may be utilized as genetic markers in the fish breeding.

  7. PRKAG3 and CAST genetic polymorphisms and quality traits of dry-cured hams--I. Associations in Spanish dry-cured ham Jamón Serrano.

    PubMed

    Gou, P; Zhen, Z Y; Hortós, M; Arnau, J; Diestre, A; Robert, N; Claret, A; Čandek-Potokar, M; Santé-Lhoutellier, V

    2012-12-01

    The functional single polymorphisms identified in the calpastatin (CAST) gene have been related to the rate of meat tenderization and the protein turnover after slaughter, and the Ile199Val polymorphism identified in the coding region of the protein kinase AMP-activated (PRKAG3) gene has been proven to affect ultimate pH in muscle. The aim of the present study was to show the effects of these genetic polymorphisms on the quality traits of Spanish dry-cured ham Jamón Serrano. A tissue sample from 665 crossbreed pigs were genotyped for PRKAG3 Ile199Val, CAST Arg249Lys and CAST Ser638Arg polymorphisms, and a subsample of 120 dry cured hams was selected to perform physico-chemical, rheological, instrumental colour and sensory analyses. Associations between the polymorphisms and several quality traits of dry-cured ham, mainly related to flavour and texture, were found. The genotypes PRKAG3 Ile/Ile, CAST249 Arg/Arg and CAST638 Arg/Arg, and the haplotype CAST 249Arg-638Arg were the most favourable for Jamón Serrano production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A literature review of MTHFR (C677T and A1298C polymorphisms) and cancer risk.

    PubMed

    Izmirli, Muzeyyen

    2013-01-01

    5,10-Methlenetetrahydrofolate reductase (MTHFR) is one of the most important enzymes for folate metabolism. This enzyme is mapped on chromosome 1, which is located at the end of the short arm (1p36.3). The C677T and A1298C are MTHFR polymorphisms that decrease in vitro MTHFR enzyme activity. Folate metabolism plays a key role in cell metabolism. These reactions are associated with purine-pyrimidine synthesis: DNA, RNA, and protein methylation. Polymorphism is also a factor in biodiversity, and be affected by ethnic heritage and geographic locale. In the case of unknown outcomes, not only should all geographical regions be investigated to ascertain biodiversity, but all populations as well to fully understand the variations in the effect. PUBMED was searched from January 2006 to December 2011 to develop an investigatory pursuit strategy. MTHFR, cancer, C677T, A1298C, and polymorphisms were key words used to focus the search. The literature review included all published relevant cancer types and MTHFR polymorphisms for that 5 years period. All selected polymorphisms data for cancer types was listed in tables for easy access and retrieval.

  9. The association between oxytocin receptor gene (OXTR) polymorphisms and affective temperaments, as measured by TEMPS-A.

    PubMed

    Kawamura, Yoshiya; Liu, Xiaoxi; Akiyama, Tsuyoshi; Shimada, Takafumi; Otowa, Takeshi; Sakai, Yoshie; Kakiuchi, Chihiro; Umekage, Tadashi; Sasaki, Tsukasa; Akiskal, Hagop S

    2010-12-01

    Oxytocin is associated with social interaction, trust, and affectivity. Affective temperaments are traits based on Kraepelin's typological definition of the "fundamental states" of manic-depressive illness. These states can be measured by the Temperament Evaluation of Memphis, Pisa, Paris and San Diego-Autoquestionnaire version (TEMPS-A). The objective of this study is to assess the association between oxytocin receptor gene (OXTR) polymorphisms and affective temperaments. Participants consisted of 493 genetically unrelated, non-clinical Japanese subjects (307 males and 186 females). The Mini-International Neuropsychiatric Interview (MINI) was used to screen and exclude those who had a lifetime diagnosis of schizophrenia or other psychotic disorders. Fifteen OXTR tag single nucleotide polymorphisms (SNPs) were genotyped using TaqMan® or direct sequencing. The Haploview 4.1. software determined the haplotype block structure. Haplotype-based quantitative trait association analysis with Bonferroni correction using PLINK 1.06 software was used to assess the association between haplotypes and the following affective temperaments: depressive, cyclothymic, hyperthymic, irritable, and anxious. Two haplotype blocks were identified on the OXTR. The depressive temperament was significantly associated with the most frequent haplotype GGGTGTC (rs11131149/rs2243370/rs2243369/rs13316193/rs2254298/rs2268493/rs2268491) (corrected P<0.05). This study consisted of participants from a corporation and the effect sizes were small. The findings suggest that an OXTR haplotype is associated with a discrete depressive temperament. Clarification of the biological basis of this temperamental trait may help to elucidate the pathophysiology of depressive disorder. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Angiotensin-converting enzyme activity in Cavalier King Charles Spaniels with an ACE gene polymorphism and myxomatous mitral valve disease.

    PubMed

    Meurs, Kathryn M; Olsen, Lisbeth H; Reimann, Maria J; Keene, Bruce W; Atkins, Clarke E; Adin, Darcy; Aona, Brent; Condit, Julia; DeFrancesco, Teresa; Reina-Doreste, Yamir; Stern, Joshua A; Tou, Sandra; Ward, Jessica; Woodruff, Kathleen

    2018-02-01

    Myxomatous mitral valve disease (MMVD) is the most common heart disease in the dog. It is particularly common in the Cavalier King Charles Spaniel (CKCS) breed and affected dogs are frequently managed with angiotensin-converting enzyme inhibitors (ACE-I). We have previously identified a canine ACE gene polymorphism associated with a decrease in angiotensin-converting enzyme (ACE) activity. The aim of this study was to evaluate for the prevalence of the ACE polymorphism in CKCS with mitral valve disease and to determine whether the presence of the polymorphism is associated with alterations in ACE activity at different stages of cardiac disease. Seventy-three dogs with a diagnosis of mitral valve disease were evaluated and a blood sample was drawn for ACE polymorphism genotyping and ACE activity measurement. Forty-three dogs were homozygous for the ACE polymorphism; five were heterozygous and 25 were homozygous wild type. The mean age and the median severity of disease were not different for dogs with the polymorphism and dogs with the wild-type sequence. The median baseline ACE activity was significantly lower for the ACE polymorphism (27.0 U/l) than the wild-type sequence dogs (31.0 U/l) (P=0.02). Dogs with more severe disease and the ACE polymorphism had significantly lower levels of ACE activity than dogs with the wild-type sequence (P=0.03). The CKCS appears to have a high prevalence of the ACE variant. Dogs with the ACE variant had lower levels of ACE activity even in more advanced mitral valve disease than dogs without the variant. The clinical significance of this finding and its impact on the need for ACE-I in dogs with the polymorphism and heart disease deserves further study.

  11. Associations between oxytocin receptor gene (OXTR) polymorphisms and self-reported aggressive behavior and anger: Interactions with alcohol consumption.

    PubMed

    Johansson, Ada; Westberg, Lars; Sandnabba, Kenneth; Jern, Patrick; Salo, Benny; Santtila, Pekka

    2012-09-01

    Oxytocin has been implicated in the regulation of social as well as aggressive behaviors, and in a recent study we found that the effect of alcohol on aggressive behavior was moderated by the individual's genotype on an oxytocin receptor gene (OXTR) polymorphism (Johansson et al., 2012). In this study we wanted to deepen and expand the analysis by exploring associations between three (rs1488467, rs4564970, rs1042778) OXTR polymorphisms and aggressive behavior, trait anger as well as anger control in a population-based sample of Finnish men and women (N=3577) aged between 18 and 49 years (M=26.45 years, SD=5.02). A specific aim was to investigate if the polymorphisms would show interactive effects with alcohol consumption on aggressive behavior and trait anger, as well as to explore whether these polymorphisms affect differences in anger control between self-reported sober and intoxicated states. The results showed no main effects of the polymorphisms, however, three interactions between the polymorphisms and alcohol consumption were found. The effect of alcohol consumption on aggressive behavior was moderated by the genotype of the individual on the rs4564970 polymorphism, in line with previous results (Johansson et al., 2012). For trait anger, both the rs1488467 and the rs4564970 polymorphisms interacted with alcohol consumption. It appears that the region of the OXTR gene including both the rs4564970 and the rs1488467 polymorphisms may be involved in the regulation of the relationship between alcohol and aggressive behavior as well as between alcohol and the propensity to react to situations with elevated levels of anger. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Polymorphisms in the bovine CIDEC gene are associated with body measurement traits and meat quality traits in Qinchuan cattle.

    PubMed

    Mei, C G; Gui, L S; Fu, C Z; Wang, H C; Wang, J L; Cheng, G; Zan, L S

    2015-08-07

    Previous studies have shown that the cell death-inducing DFF45-like effector-C (CIDEC) gene is involved in lipid storage and energy metabolism, suggesting that it is a potential candidate gene that affects body measurement traits (BMTs) and meat quality traits (MQTs). The aim of this study was to identify polymorphisms of the bovine CIDEC gene and analyze their possible associations with BMTs and MQTs in 531 randomly selected Qinchuan cattle aged between 18 and 24 months. DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism were employed to detect CIDEC single nucleotide polymorphisms (SNPs). We found five SNPs: two in exon 5 (SNP1, g.9815G>A and SNP2, g.9924C>T) and three in the 3'-untranslated region (SNP3, g.13281C>T; SNP4, g.13297A>G; and SNP5, g.13307G>A). SNP1 was a missense mutation that resulted in an arginine to glutamine amino acid change, and exhibited two genotypes (GG and AG). SNP2 was a synonymous mutation that exhibited three genotypes (CC, CT, and TT). SNP3, 4, and 5 were completely linked, and only exhibited two genotypes (CC-AA-GG and CT-AG-GA). We found significant associations between these polymorphisms and BMTs and MQTs (P < 0.05); GG, CT, and CT-AG-GA appeared to be the most beneficial genotypes. Therefore, CIDEC may affect BMTs and MQTs in Qinchuan cattle, and could be used in marker-assisted selection.

  13. Reelin gene polymorphisms in the Indian population: a possible paternal 5'UTR-CGG-repeat-allele effect on autism.

    PubMed

    Dutta, Shruti; Guhathakurta, Subhrangshu; Sinha, Swagata; Chatterjee, Anindita; Ahmed, Shabina; Ghosh, Saurabh; Gangopadhyay, Prasanta K; Singh, Manoranjan; Usha, Rajamma

    2007-01-05

    Autism is a neurodevelopmental disorder with high heritability factor and the reelin gene, which codes for an extracellular matrix protein involved with neuronal migration and lamination is being investigated as a positional and functional candidate gene for autism. It is located on chromosome 7q22 within the autism susceptible locus (AUTS1); identified in earlier genome scans and several investigations have been carried out on various ethnic groups to assess possible association and linkage of the gene with autism. However, the findings are still inconclusive. In the present study which represents the first report of such a study on the Indian population, genotyping analyses of CGG repeat polymorphism at 5'UTR, two single nucleotide polymorphisms (SNP) at exon 6 and exon 50 were performed in 73 autistic subjects, 129 parents, and 80 controls. The allelic distributions of the repeat polymorphism and exon 50 T/C SNP were quite different from earlier reports in other populations. Allelic and genotypic distribution of the markers did not show any differences between the cases and controls. While our preliminary data on family-based association studies on 58 trios showed no preferential transmission of any allele from the parents to the affected offspring, TDT and HHRR analyses revealed significant paternal transmission distortions for 10- and > or =11-repeat alleles of CGG repeat polymorphism. Thus, the present study suggests that 5'UTR of reelin gene may have a role in the susceptibility towards autism with the paternal transmission and non-transmission respectively of 10- and > or =11-repeat alleles, to the affected offspring.

  14. BDNF val66met Polymorphism Affects Aging of Multiple Types of Memory

    PubMed Central

    Kennedy, Kristen M.; Reese, Elizabeth D.; Horn, Marci M.; Sizemore, April N.; Unni, Asha K.; Meerbrey, Michael E.; Kalich, Allan G.; Rodrigue, Karen M.

    2014-01-01

    The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age x BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p < .07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory – in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). PMID:25264352

  15. Genetic polymorphisms of the CYP1A1, GSTM1, and GSTT1 enzymes and their influence on cardiovascular risk and lipid profile in people who live near a natural gas plant.

    PubMed

    Pašalić, Daria; Marinković, Natalija

    2017-03-01

    The aim of this cross-sectional study was to see whether genetic polymorphisms of the enzymes CYP1A1, GSTM1, and GSTT1 are associated with higher risk of coronary artery disease (CAD) and whether they affect lipid profile in 252 subjects living near a natural gas plant, who are likely to be exposed to polycyclic aromatic hydrocarbons (PAHs). Fasting serum concentrations of biochemical parameters were determined with standard methods. Genetic polymorphisms of CYP 1A1 rs4646903, rs1048943, rs4986883, and rs1799814 were genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFPL), while GSTM1 and GSTT1 deletions were detected with multiplex PCR. Cardiovascular risk was assessed with Framingham risk score, and the subjects divided in two groups: >10% risk and ≤10% risk. The two groups did not differ in the genotype frequencies. MANCOVA analysis, which included lipid parameters, glucose, and BMI with sex, age, hypertension and smoking status as covariates, showed a significant difference between the GSTT1*0 and GSTT1*1 allele carriers (p=0.001). UNIANCOVA with same covariates showed that total cholesterol and triglyceride levels were significantly higher in GSTT1*1 allele carriers than in GSTT1*0 carriers (p<0.001 and p=0.006, respectively). Our findings suggest that CYP1A1, GSTM1, and GSTT1 polymorphisms are not associated with the higher risk of CAD, but that GSTT1 affects lipid profile.

  16. The 894G>T endothelial nitric oxide synthase genetic polymorphism affects hemodynamic responses to mental stress performed before and after exercise.

    PubMed

    Rocha, Natália Galito; Neves, Fabricia Junqueira; Silva, Bruno Moreira; Sales, Allan Robson Kluser; Nóbrega, Antonio Claudio

    2012-03-01

    Nitric oxide is the primary mediator of vasodilation during mental stress. Since genetic polymorphisms in the nitric oxide synthase (eNOS) gene seem to impair the production of NO, this study aimed to evaluate the effect of an exercise bout on hemodynamic responses to mental stress in subjects with the 894G>T polymorphism of eNOS. Subjects without (wild-type group; n = 16) or with (polymorphic-type group; n = 19) the 894G>T polymorphism underwent a mental stress challenge before and after a maximal cardiopulmonary exercise test. Blood pressure was measured by auscultation and forearm blood flow by venous occlusion plethysmography. The groups were similar regarding anthropometric, metabolic, resting blood pressure and exercise variables. Before exercise, systolic blood pressure response during mental stress was higher in the polymorphic-type group (∆wild-type: 8.0 ± 2.0% vs. ∆polymorphic-type: 12.5 ± 1.8%, P = 0.01), while the increase in forearm vascular conductance was similar between the groups (∆wild-type 90.8 ± 26.4% vs. ∆polymorphic-type: 86.3 ± 24.1%, P = 0.44). After exercise, the systolic blood pressure at baseline and during mental stress was lower than before exercise in the whole group (P < 0.05), but the pressure response during mental stress was still higher in the polymorphic-type group (∆wild-type: 5.8 ± 1.5% vs. ∆polymorphic-type: 10.2 ± 1.4%, P = 0.01). The increase in forearm vascular conductance was inhibited only in the polymorphic-type group (∆before exercise 86.3 ± 24.1% vs. ∆after exercise: 41.5 ± 12.6%, P = 0.04). In conclusion, these results suggest the 894G>T eNOS polymorphism is associated with altered hemodynamic responses to mental stress both before and after a single bout of dynamic exercise with potential clinical implications.

  17. Polymorphism of Cyp1a1 (T6235C) is not a significant risk factor of osteoporosis in postmenopausal Indonesian woman

    NASA Astrophysics Data System (ADS)

    Auerkari, EI; Budhy, LW; Kiranahayu, R.; Djamal, NZ; Kusdhany, LS; Rahardjo, TBW; Talbot, Christopher

    2018-05-01

    Osteoporosis is an increasingly common disease resulting in reduced bone mineral density (BMD) and elevated likelihood of bone fracture, and particularly affected are postmenopausal women with additional risk factors including genetic predisposition. The CYP1A1, is one of the candidate genes that have been suggested to be associated with the pathogenesis of osteoporosis. This work aimed to evaluate the distribution of a selected polymorphism of this gene (T6235C) with respect to the BMD status in postmenopausal Indonesian women. The results show that osteoporosis is associated with age and menopause, as expected, but not with the tested polymorphism of CYP1A1 in the Indonesian sample population. It is suggested that other P450 cytochrome enzymes and their polymorphisms could provide more significant indicators of the future health of postmenopausal women.

  18. PON1 promoter polymorphisms contribute to PCOS susceptibility and phenotypic outcomes in Indian women.

    PubMed

    Dadachanji, Roshan; Shaikh, Nuzhat; Patil, Anushree; Shah, Nalini; Mukherjee, Srabani

    2018-06-30

    Polycystic ovary syndrome is a common endocrinopathy characterized by anovulatory infertility, hyperandrogenism, insulin resistance and oxidative stress, which predisposes affected women to reproductive and cardiometabolic complications in later life. We have investigated the association of PON1 promoter polymorphisms with PCOS susceptibility, PON1 activity and its related traits in Indian women. The genotypic and allelic frequency distribution of only -907G/C polymorphism in PON1 promoter showed significant difference between non-hyperandrogenic control and PCOS women, and was significantly associated with reduced susceptibility to PCOS, considering the recessive model. PON1 lactonase and arylesterase activities were also significantly decreased in women with PCOS compared to controls. Further, PON1 promoter polymorphisms were linked to altered insulin and testosterone levels in hyperandrogenic and non-hyperandrogenic women with PCOS. This study highlights PON1 as an important candidate gene influencing genetic pathophysiology of PCOS. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. IL-18 promoter -137G/C polymorphism correlates with chronic hepatitis B and affects the expression of interleukins.

    PubMed

    Jiang, H; Cao, H; Liu, G; Huang, Q; Li, Y

    2014-01-01

    The relationship between the interleukin (IL)-18 promoter -137G/C polymorphism and plasma levels of IL-18, IL-12, IL-4, and IFN-γ in chronic hepatitis B (CHB) patients and healthy subjects was investigated. The polymorphism was genotyped by a ligase detection reaction-PCR (LDR-PCR), while the cytokines were assayed by ELISA. Compared with healthy subjects, CHB patients exhibited an increased frequency of the G allele, GG genotype and increased IL-4 levels, but decreased levels of IL-18, IL-12, and IFN-γ. A positive correlation for IL-18 ~ IL-12 ~ IFN-γ and a negative correlation for IL-18 ~ IL-4 were found. We conclude that the IL-18 promoter -137G polymorphisms correlated with CHB infection and influenced the expression of IL-18. The studied interleukins represent an immunomodulatory network that plays important roles in host immune responses to CHB infection.

  20. HERC1 polymorphisms: population-specific variations in haplotype composition.

    PubMed

    Yuasa, Isao; Umetsu, Kazuo; Nishimukai, Hiroaki; Fukumori, Yasuo; Harihara, Shinji; Saitou, Naruya; Jin, Feng; Chattopadhyay, Prasanta K; Henke, Lotte; Henke, Jürgen

    2009-08-01

    Human HERC1 is one of six HERC proteins and may play an important role in intracellular membrane trafficking. The human HERC1 gene is suggested to have been affected by local positive selection. To assess the global frequency distributions of coding and non-coding single nucleotide polymorphisms (SNPs) in the HERC1 gene, we developed a new simultaneous genotyping method for four SNPs, and applied this method to investigate 1213 individuals from 12 global populations. The results confirmed remarked differences in the allele and haplotype frequencies between East Asian and non-East Asian populations. One of the three common haplotypes observed was found to be characteristic of East Asians, who showed a relatively uniform distribution of haplotypes. Information on haplotypes would be useful for testing the function of polymorphisms in the HERC1 gene. This is the first study to investigate the distribution of HERC1 polymorphisms in various populations. (c) 2009 John Wiley & Sons, Ltd.

  1. [Features of allele polymorphism of genes involved in homocysteine and folate metabolism in patients with atherosclerosis of the lower extremity arteries].

    PubMed

    Klenkova, N A; Kapustin, S I; Saltykova, N B; Shmeleva, V M; Blinov, M N

    2009-01-01

    Under study were features of allele polymorphism of genes of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), methionine synthase (MS A 2756G), methionine synthase reductase (MTRR A66G) and methylenetetrahydrofolate dehydrogenase (MTHFD G1958A) in patients with atherosclerosis of the lower extremity arteries (ALEA). Patients with hyperhomocysteinemia (HHcy) had statistically significant increase of allele MTHFR 677T and MTRR 66GG as compared both with the control group and with the group of patients without HHcy. It suggests that polymorphism of genes involved in homocystein and folate metabolism might affect the risk of HHcy in patients with ALEA.

  2. Experimental and Theoretical Evaluation of the Stability of True MOF Polymorphs Explains Their Mechanochemical Interconversions.

    PubMed

    Akimbekov, Zamirbek; Katsenis, Athanassios D; Nagabhushana, G P; Ayoub, Ghada; Arhangelskis, Mihails; Morris, Andrew J; Friščić, Tomislav; Navrotsky, Alexandra

    2017-06-14

    We provide the first combined experimental and theoretical evaluation of how differences in ligand structure and framework topology affect the relative stabilities of isocompositional (i.e., true polymorph) metal-organic frameworks (MOFs). We used solution calorimetry and periodic DFT calculations to analyze the thermodynamics of two families of topologically distinct polymorphs of zinc zeolitic imidazolate frameworks (ZIFs) based on 2-methyl- and 2-ethylimidazolate linkers, demonstrating a correlation between measured thermodynamic stability and density, and a pronounced effect of the ligand substituent on their stability. The results show that mechanochemical syntheses and transformations of ZIFs are consistent with Ostwald's rule of stages and proceed toward thermodynamically increasingly stable, more dense phases.

  3. Population-based Study of Risk Polymorphisms Associated with Vascular Disorders and Dementia

    PubMed Central

    Teijido, Óscar; Carril, Juan Carlos; Cacabelos, Ramón

    2017-01-01

    Introduction: Cardiovascular and neurodegenerative disorders are among the major causes of mortality in the developed countries. Population studies evaluate the genetic risk, i.e. the probability of an individual carrying a specific disease-associated polymorphism. Identification of risk polymorphisms is essential for an accurate diagnosis or prognosis of a number of pathologies. Aims: The aim of this study was to characterize the influence of risk polymorphisms associated with lipid metabolism, hypertension, thrombosis, and dementia, in a large population of Spanish individuals affected by a variety of brain and vascular disorders as well as metabolic syndrome. Material & Method: We performed a cross-sectional study on 4415 individuals from a widespread regional distribution in Spain (48.15% males and 51.85% females), with mental, neurodegenerative, cerebrovascular, and metabolic disorders. We evaluated polymorphisms in 20 genes involved in obesity, vascular and cardiovascular risk, and dementia in our population and compared it with representative Spanish and European populations. Risk polymorphisms in ACE, AGT(235), IL6(573), PSEN1, and APOE (specially the APOE-ε4 allele) are representative of our population as compared to the reference data of Spanish and European individuals. Conclusion: The significantly higher distribution of risk polymorphisms in PSEN1 and APOE-ε4 is characteristic of a representative number of patients with Alzheimer’s disease; whereas polymorphisms in ACE, AGT(235), and IL6(573), are most probably related with the high number of patients with metabolic syndrome or cerebrovascular damage. PMID:29081698

  4. Exposure to bright light biases effort-based decisions.

    PubMed

    Bijleveld, Erik; Knufinke, Melanie

    2018-06-01

    Secreted in the evening and the night, melatonin suppresses activity of the mesolimbic dopamine pathway, a brain pathway involved in reward processing. However, exposure to bright light diminishes-or even prevents-melatonin secretion. Thus, we hypothesized that reward processing, in the evening, is more pronounced in bright light (vs. dim light). Healthy human participants carried out three tasks that tapped into various aspects of reward processing (effort expenditure for rewards task [EEfRT]; two-armed bandit task [2ABT]; balloon analogue risk task [BART). Brightness was manipulated within-subjects (bright vs. dim light), in separate evening sessions. During the EEfRT, participants used reward-value information more strongly when they were exposed to bright light (vs. dim light). This finding supported our hypothesis. However, exposure to bright light did not significantly affect task behavior on the 2ABT and the BART. While future research is necessary (e.g., to zoom in on working mechanisms), these findings have potential implications for the design of physical work environments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Early handling, but not maternal separation, decreases emotional responses in two paradigms of fear without changes in mesolimbic dopamine.

    PubMed

    Madruga, Clarice; Xavier, Léder L; Achaval, Matilde; Sanvitto, Gilberto L; Lucion, Aldo B

    2006-01-30

    This study aimed at identifying the effects of neonatal handling (H) and maternal separation (MS) on two paradigms of fear, learned and innate, and on the tyrosine hydroxylase (TH) immunoreactive cells in adult life. Wistar rats were daily handled with a brief maternal separation, maternal separated for 3 h or left undisturbed during the first 10 days of life. Behavioural responses in the open-field (innate fear) and conditioned fear (learned fear) were evaluated. Moreover, a semi-quantitative analysis of TH immunoreactivity in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) was performed using optical densitometry and confirmed by planar measurements of neuronal density. Early handling decreased behaviour responses of innate and learned fear in adult life, while maternal separation had no significant long-lasting effect on these responses compared to the non-handled group. The behavioural effects of early handling could not be explained by changes in the density of midbrain dopaminergic cells, which were not affected by handling or maternal separation.

  6. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks.

    PubMed

    Silveira, Mason M; Arnold, Jonathon C; Laviolette, Steven R; Hillard, Cecilia J; Celorrio, Marta; Aymerich, María S; Adams, Wendy K

    2017-05-01

    Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB 1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB 1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The role of pedunculopontine nucleus in choice behavior under risk

    PubMed Central

    Leblond, Mona; Sukharnikova, Tatyana; Yu, Chunxiu; Rossi, Mark A.; Yin, Henry H.

    2014-01-01

    The dopaminergic projections to the basal ganglia have long been implicated in reward guided behavior and decision making, yet little is known about the role of the posterior pedunculopontine nucleus (pPPN), a major source of excitatory input to the mesolimbic dopamine system. Here we studied the contributions of pPPN to decision making under risk, using excitoxic lesions and reversible inactivation in rats. Rats could choose between two options: a small but certain reward on one lever, or a large but uncertain reward on the other lever. The overall payoff associated with each choice is the same, but the reward variance (risk) associated with the risky choice is much higher. In Experiment 1, we showed that excitotoxic lesions of the pPPN before training did not affect acquisition of lever pressing. But whereas the controls strongly preferred the safe choice, the lesioned rats did not. In Experiment 2, we found that muscimol inactivation of the pPPN also reversibly altered choice behavior. These results show that permanent lesions or reversible inactivation of the pPPN both abolish risk aversion in decision making. PMID:24617747

  8. Seeing through the smoke: human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks

    PubMed Central

    Silveira, Mason M.; Arnold, Jonathon C.; Laviolette, Steven R.; Hillard, Cecilia J.; Celorrio, Marta; Aymerich, María S.; Adams, Wendy K.

    2016-01-01

    Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications. PMID:27639448

  9. Common α2A and α2C adrenergic receptor polymorphisms do not affect plasma membrane trafficking.

    PubMed

    Hurt, Carl M; Sorensen, Matt W; Angelotti, Timothy

    2014-06-01

    Various naturally occurring polymorphic forms of human G protein-coupled receptors (GPCRs) have been identified and linked to diverse pathological diseases, including receptors for vasopressin type 2 (nephrogenic diabetes insipidus) and gonadotropin releasing hormone (hypogonadotropic hypogonadism). In most cases, polymorphic amino acid mutations disrupt protein folding, altering receptor function as well as plasma membrane expression. Other pathological GPCR variants have been found that do not alter receptor function, but instead affect only plasma membrane trafficking (e.g., delta opiate and histamine type 1 receptors). Thus, altered membrane trafficking with retained receptor function may be another mechanism causing polymorphic GPCR dysfunction. Two common human α2A and α2C adrenergic receptor (AR) variants have been identified (α2A N251K and α2C Δ322-325 ARs), but pharmacological analysis of ligand binding and second messenger signaling has not consistently demonstrated altered receptor function. However, possible alterations in plasma membrane trafficking have not been investigated. We utilized a systematic approach previously developed for the study of GPCR trafficking motifs and accessory proteins to assess whether these α2 AR variants affected intracellular trafficking or plasma membrane expression. By combining immunofluorescent microscopy, glycosidic processing analysis, and quantitative fluorescent-activated cell sorting (FACS), we demonstrate that neither variant receptor had altered intracellular localization, glycosylation, nor plasma membrane expression compared to wild-type α2 ARs. Therefore, pathopharmacological properties of α2A N251K and α2C Δ322-325 ARs do not appear to be due to altered receptor pharmacology or plasma membrane trafficking, but may involve interactions with other intracellular signaling cascades or proteins.

  10. The relationship between BIM deletion polymorphism and clinical significance of epidermal growth factor receptor-mutated non-small cell lung cancer patients with epidermal growth factor receptor-tyrosine kinase inhibitor therapy: a meta-analysis.

    PubMed

    Zou, Qian; Zhan, Ping; Lv, Tangfeng; Song, Yong

    2015-12-01

    BIM deletion polymorphism is a germline that might lead to little or no BH3 expression, which affects epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) related apoptosis. Recent studies show that BIM deletion polymorphism might be a critical factor leading to the resistance of EGFR-TKIs in EGFR mutation-positive non-small cell lung cancer (NSCLC) patients. Thus, a meta-analysis was conducted by combing seven original eligible studies including 778 NSCLC patients to investigate a steady and reliable conclusion. Our study indicated that BIM deletion polymorphism was significantly associated with the poor objective response rate (ORR) of EGFR-TKIs in EGFR-mutated NSCLC patients [odds ratios (OR) =0.55, 95% confidence interval (CI), 0.33-0.92]. And disease control rate (DCR) in EGFR-mutate NSCLC patients treated with EGFR-TKIs was significantly decreased in patients with BIM deletion polymorphism (OR=0.55, 95% CI, 0.27-1.12). Moreover, the progression-free survival (PFS) of patients with BIM deletion polymorphism is shorter. These findings suggested that BIM deletion polymorphism might be a genetic cause of intrinsic resistance to TKI therapy and it could be emerged as an independent predictor to identify patients who would benefit from TKI targeted therapy in EGFR-mutated NSCLC.

  11. Influence of uridine diphosphate glucuronosyltransferase 2B7 -161C>T polymorphism on the concentration of valproic acid in pediatric epilepsy patients.

    PubMed

    Inoue, Kazuyuki; Suzuki, Eri; Yazawa, Rei; Yamamoto, Yoshiaki; Takahashi, Toshiki; Takahashi, Yukitoshi; Imai, Katsumi; Koyama, Seiichi; Inoue, Yushi; Tsuji, Daiki; Hayashi, Hideki; Itoh, Kunihiko

    2014-06-01

    Valproic acid (VPA) is widely used to treat various types of epilepsy. Interindividual variability in VPA pharmacokinetics may arise from genetic polymorphisms of VPA-metabolizing enzymes. This study aimed to examine the relationships between plasma VPA concentrations and the -161C>T single nucleotide polymorphism in uridine diphosphate glucuronosyltransferase (UGT) 2B7 genes in pediatric epilepsy patients. This study included 78 pediatric epilepsy patients carrying the cytochrome P450 (CYP) 2C9*1/*1 genotype and who were not treated with the enzyme inducers (phenytoin, phenobarbital, and carbamazepine), lamotrigine, and/or topiramate. CYP2C9*3 and UGT2B7 -161C>T polymorphisms were identified using methods based on polymerase chain reaction-restriction fragment length polymorphism. Blood samples were drawn from each patient under steady-state conditions, and plasma VPA concentrations were measured. Significant differences in adjusted plasma VPA concentrations were observed between carriers of CC, CT, and TT genotypes in the UGT2B7 -161C>T polymorphism (P = 0.039). Patients with the CC genotype had lower adjusted plasma VPA concentrations than those with CT or TT genotype (P = 0.028). These data suggest that the UGT2B7 -161C>T polymorphism in pediatric epilepsy patients carrying the CYP2C9*1/*1 genotype affects VPA concentration.

  12. Interleukin-21 gene polymorphism rs2221903 is associated with disease activity in patients with rheumatoid arthritis.

    PubMed

    Malinowski, Damian; Paradowska-Gorycka, Agnieszka; Safranow, Krzysztof; Pawlik, Andrzej

    2017-08-01

    Interleukin-21 (IL-21) is a cytokine which plays a significant role in the pathogenesis and disease activity of rheumatoid arthritis (RA). Genetic polymorphisms in the IL-21 gene may alter the synthesis of IL-21. The aim of this study was to examine IL-21 and IL-21R polymorphisms in patients with RA. We examined 422 patients with RA and 338 healthy controls. Single nucleotide polymorphisms (SNPs) within the IL-21 (rs6822844 G>T, rs6840978 C>T, rs2221903 T>C) and IL-21R (rs2285452 G>A) genes were genotyped using TaqMan genotyping assays. There were no statistically significant differences in the distribution of studied genotypes and alleles between RA patients and the control group. To examine whether IL-21 polymorphisms affect disease activity in RA patients, we compared the distribution of IL-21 genotypes between patients with DAS28 ≤ 2.5 (patients with remission of disease symptoms) and patients with DAS28 > 2.5 (patients with active RA). Among patients with DAS28 > 2.5, increased prevalence of rs2221903 CT and CC genotypes was observed (OR = 1.54; 95% CI: 1.04-2.28; p = 0.035). The results of this study suggest that IL-21 and IL-21R gene polymorphisms are not risk loci for RA susceptibility, whereas the IL-21 rs2221903 polymorphism is associated with disease activity.

  13. Association of FAS A-670G Polymorphism and Risk of Uterine Leiomyoma in a Southeast Iranian Population

    PubMed Central

    Mohammadpour-Gharehbagh, Abbas; Salimi, Saeedeh; Keshavarzi, Farshid; Zakerian, Sepideh; Sajadian, Mojtaba; Mokhtari, Mojgan

    2016-01-01

    Background: Uterine leiomyoma (UL) is a benign tumor of uterine smooth muscle that affects women in reproductive ages. FAS has an important role in initial stages of apoptosis. Previous studies have shown an association between the FAS gene and tumorigenesis. In the present study, we evaluated the relationship between FAS A-670G (rs 1800682) and UL risk Methods: The FAS gene polymorphism of 155 women with UL and 157 healthy controls was analyzed by the polymerase chain reaction restriction fragment length polymorphism method Results: The AA, AG, and GG genotype frequencies of the FAS A-670G polymorphism were respectively 37.4, 42.6, and 20% in women with UL, and 46, 42.6, and 11.5% in healthy controls. The risk of UL in women was 1.5-fold greater in GG-genotype women than in AA-genotype women. The G allele frequencies were 41% in women with UL and 33% in healthy controls and statistically different (P = 0.03) Conclusion: The FAS polymorphism was associated with the risk of UL in a sample of Iranian women. PMID:28070535

  14. Exploring the role of ionic liquids to tune the polymorphic outcome of organic compounds.

    PubMed

    Zeng, Qingying; Mukherjee, Arijit; Müller, Peter; Rogers, Robin D; Myerson, Allan S

    2018-02-14

    While molecular solvents are commonly used in the screening of polymorphs, the choices are often restricted. Ionic liquids (ILs) - also referred as designer solvents - have immense possibility in this regard because of their wide flexibility of tunability. More importantly, the interactions among the IL components are completely unique compared to those present in the molecular solvents. In this context, we have chosen tetrolic acid (TA) and isonicotinamide (INA), which showed solution-structure link in molecular solvents in the past, as probes to investigate the role of imidazolium based ionic liquids in the polymorphism of these two systems and whether the different solute-solvent interactions in ILs affect the polymorphic outcome. It is observed that the selected imidazolium-based ILs, with varying anion basicity have influenced the crystallization outcome by the interaction between ILs and model compounds. Later, we have utilized the concept of double salt ionic liquids (DSIL) for INA, a penta-morphic system, to investigate the variation in the polymorphic outcome. This approach helped to obtain the forms that were otherwise inaccessible in ILs.

  15. Spontaneous abortion and functional polymorphism (Val16Ala) in the manganese SOD gene.

    PubMed

    Eskafi Sabet, E; Salehi, Z; Khodayari, S; Sabouhi Zarafshan, S; Zahiri, Z

    2015-02-01

    Spontaneous abortion is the most common complication of early pregnancy. Genetic factors have been hypothesised to play a role in spontaneous abortion. Since it is possible that the balance of oxidants and antioxidants can be affected by different genetic variants, gene polymorphisms have been proposed as a susceptibility factor that increases the chance of miscarriage. Manganese superoxide dismutase is an important antioxidant enzyme encoded by manganese superoxide dismutase (MnSOD) gene. The aim of this experiment was to assess whether Val16Ala polymorphism of MnSOD gene is associated with miscarriage in northern Iran. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for genotyping. Statistical analyses were conducted using the χ(2)-test. The genetic distributions did not differ significantly between cases and controls, however slightly more Val/Val genotypes were found among the patients compared with control subjects (p = 0.059). No correlation was observed between susceptibility to abortion and MnSOD Val16Ala polymorphism. Larger population-based studies are needed for clarifying the relationship between abortion and MnSOD genotypes.

  16. Methylenetetrahydrofolate reductase C677T and A1298C polymorphism and susceptibility to acute lymphoblastic leukemia in a cohort of Egyptian children.

    PubMed

    Mosaad, Youssef M; Abousamra, Nashwa K; Elashery, Rasha; Fawzy, Iman M; Eldein, Omar A Sharaf; Sherief, Doaa M; El Azab, Hend M M

    2015-01-01

    This case-control study was planned to investigate the possible role of methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms as a risk factor for the development of acute lymphoblastic leukemia (ALL) in a cohort of Egyptian children. Typing of MTHFR C677T and A1298C polymorphisms was done using restriction fragment length polymorphism (RFLP) for 100 children with ALL and 100 age- and sex-matched healthy controls. No significant differences were found between patients with ALL and controls for the frequency of MTHFR C677T and A1298C alleles, genotypes, combined genotypes or haplotypes. The C677T and A1298C genotype frequency was different from that in Korean and Chinese populations (p < 0.5) and was similar to that in British, French-Canadian and German-Caucasian populations (p > 0.5). Our findings suggest that MTHFR C677T and A1298C polymorphisms are unlikely to affect the development of childhood ALL in an Egyptian population from Delta.

  17. Effects of polymorphisms in endothelial nitric oxide synthase and folate metabolizing genes on the concentration of serum nitrate, folate, and plasma total homocysteine after folic acid supplementation: a double-blind crossover study.

    PubMed

    Cabo, Rona; Hernes, Sigrunn; Slettan, Audun; Haugen, Margaretha; Ye, Shu; Blomhoff, Rune; Mansoor, M Azam

    2015-02-01

    A number of studies have explored the effects of dietary nitrate on human health. Nitrate in the blood can be recycled to nitric oxide, which is an essential mediator involved in many important biochemical mechanisms. Nitric oxide is also formed in the body from l-arginine by nitric oxide synthase. The aim of this study was to investigate whether genetic polymorphisms in endothelial nitric oxide synthase (eNOS) and genes involved in folate metabolism affect the concentration of serum nitrate, serum folate, and plasma total homocysteine in healthy individuals after folic acid supplementation. In a randomized double-blind, crossover study, participants were given either folic acid 800 μg/d (n = 52) or placebo (n = 51) for 2 wk. Wash-out period was 2 wk. Fasting blood samples were collected, DNA was extracted by salting-out method and the polymorphisms in eNOS synthase and folate genes were genotyped by polymerase chain reaction methods. Measurement of serum nitrate and plasma total homocysteine (p-tHcy) concentration was done by high-performance liquid chromatography. The concentration of serum nitrate did not change in individuals after folic acid supplements (trial 1); however, the concentration of serum nitrate increased in the same individuals after placebo (P = 0.01) (trial 2). The individuals with three polymorphisms in eNOS gene had increased concentration of serum folate and decreased concentration of p-tHcy after folic acid supplementation. Among the seven polymorphisms tested in folate metabolizing genes, serum nitrate concentration was significantly decreased only in DHFR del 19 gene variant. A significant difference in the concentration of serum nitrate was detected among individuals with MTHFR C > T677 polymorphisms. Polymorphisms in eNOS and folate genes affect the concentration of serum folate and p-tHcy but do not have any effect on the concentration of NO3 in healthy individuals after folic acid supplementation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma.

    PubMed

    Israel, E; Drazen, J M; Liggett, S B; Boushey, H A; Cherniack, R M; Chinchilli, V M; Cooper, D M; Fahy, J V; Fish, J E; Ford, J G; Kraft, M; Kunselman, S; Lazarus, S C; Lemanske, R F; Martin, R J; McLean, D E; Peters, S P; Silverman, E K; Sorkness, C A; Szefler, S J; Weiss, S T; Yandava, C N

    2000-07-01

    Inhaled beta-adrenergic agonists are the most commonly used medications for the treatment of asthma although there is evidence that regular use may produce adverse effects in some patients. Polymorphisms of the beta(2)-adrenergic receptor (beta(2)-AR) can affect regulation of the receptor. Smaller studies examining the effects of such polymorphisms on the response to beta-agonist therapy have produced inconsistent results. We examined whether polymorphisms at codon 16 (beta(2)-AR-16) and codon 27 (beta(2)-AR-27) of the beta(2)-AR might affect the response to regular versus as-needed use of albuterol by genotyping the 190 asthmatics who had participated in a trial examining the effects of regular versus as needed albuterol use. During the 16-wk treatment period there was a small decline in morning peak expiratory flow in patients homozygous for arginine at B(2)-AR-16 (Arg/Arg) who used albuterol regularly. This effect was magnified during a 4-wk run out period, during which all patients returned to using as-needed albuterol, so that by the end of the study Arg Arg patients who had regularly used albuterol had a morning peak expiratory flow 30. 5 +/- 12.1 L/min lower (p = 0.012) than Arg/Arg patients who had used albuterol on an as needed basis. There was no decline in peak flow with regular use of albuterol in patients who were homozygous for glycine at beta(2)-AR-16. Evening peak expiratory flow also declined in the Arg/Arg patients who used albuterol regularly but not in those who used albuterol on an as-needed basis. No significant differences in outcomes between regular and as-needed treatment were associated with polymorphisms at position 27 of the beta(2)-AR. No other differences in asthma outcomes that we investigated occurred in relation to these beta(2)-AR polymorphisms. Polymorphisms of the beta(2)-AR may influence airway responses to regular inhaled beta-agonist treatment.

  19. Pharmacogenetics in obstetric anesthesia.

    PubMed

    Landau, Ruth; Kraft, John C

    2010-06-01

    Genomic research in pain, anesthesia and analgesia generated some hope that pharmacogenetics may guide anesthesiologists to provide effective medicine in a 'tailored' manner. Within the field of obstetric anesthesia, relatively few studies have evaluated the effect of polymorphisms on the perception of labor or postcesarean pain or the response to analgesics for childbirth. Because of the multifactorial nature of labor and delivery pain and particularly challenging clinical context, many consider that 'titration of drugs to the desired effect works just fine'. With recent evidence highlighting an association between severe postdelivery pain and persistent pain, early recognition of an increased susceptibility for acute pain has become particularly relevant. Neuraxial labor analgesia is influenced by a common polymorphism of the mu-opioid receptor gene. This polymorphism also affects the analgesic response to systemic opioids for postcesarean pain and other types of surgeries. Finally, the risk for persistent pain after cesarean deliveries may be associated with a certain genetic profile. Although still premature to anticipate clinical implications and a change in practice based on these recent discoveries, genetic variability clearly appears to affect pain perception, response to analgesics and predisposition for the development of chronic pain.

  20. Computer simulation and experimental self-assembly of irradiated glycine amino acid under magnetic fields: Its possible significance in prebiotic chemistry.

    PubMed

    Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón

    2017-12-01

    Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Simple Sequence Repeats in Escherichia coli: Abundance, Distribution, Composition, and Polymorphism

    PubMed Central

    Gur-Arie, Riva; Cohen, Cyril J.; Eitan, Yuval; Shelef, Leora; Hallerman, Eric M.; Kashi, Yechezkel

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.[The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AF209020–209030 and AF209508–209518.] PMID:10645951

  2. eNOS gene Glu298Asp and 4b/a polymorphisms are associated with renal function parameters in Mexican patients with Fabry disease.

    PubMed

    Marin-Medina, A; Brambila-Tapia, A J L; Picos-Cárdenas, V J; Gallegos-Arreola, M P; Figuera, L E

    2016-10-24

    Fabry disease (FD) is an inherited X-linked lysosomal disease that causes renal failure in a high percentage of affected individuals. The eNOS gene encodes for endothelial nitric oxide synthase, which plays an important role in glomerular hemodynamics. This gene has two main polymorphisms (Glu298Asp and 4b/a) that have been studied in the context of many different diseases, including those involving cardiovascular and renal alterations. Considering the lack of information regarding eNOS variants and FD, we investigated whether there were associations between eNOS genetic variants and renal function parameters in Mexican patients with FD and renal impairment. In total, 15 FD patients with renal alterations were included in the present study, and associations between eNOS polymorphisms and renal function parameters (urea, creatinine, and GFR) were evaluated. The Asp298 and 4a alleles of the eNOS gene were found to be significantly associated with increased levels of urea and creatinine, and a decreased glomerular filtration rate in FD patients, and this association behaved in a co-dominant fashion. Our results coincide with previous reports showing an association between these polymorphisms and kidney disease, and along with other studies regarding their role in the nitric oxide pathway, suggest that these variants affect the severity of nephropathy in patients with FD.

  3. Leptin promoter variant G2548A is associated with serum leptin and HDL-C levels in a case control observational study in association with obesity in a Pakistani cohort.

    PubMed

    Shabana, -; Hasnain, Shahida

    2016-06-01

    Leptin is a protein hormone synthesized by adipocytes and is involved in the regulation of food intake and energy expenditure. We hypothesized that any change in the promoter sequence can affect the expression of the gene and hence leptin protein levels in the serum. The aim of the current study was to investigate the relationship of such a promoter variant of the leptin gene, G-2548A polymorphism, with obesity and its effect on various anthropometric and metabolic parameters in a Pakistani cohort consisting of 250 obese and 225 non-obese control subjects. Body weight, height, waist circumference (WC), hip circumference (HC) and blood pressure (BP) were measured by standard methods and levels of fasting blood glucose (FBG), total cholesterol, triglycerides, HDLC, LDLC, and leptin were determined. Genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that the LEP G-2548A polymorphism showed significant association with obesity in Pakistan. In addition, the polymorphism showed association with weight, height, BMI, WC, HDLC and serum leptin levels. The findings suggest that the leptin promoter G-2548A variant may play its part in the progression to obesity by not only affecting the body's fat distribution but also by changing the serum leptin and HDLC levels.

  4. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy

    PubMed Central

    Saruwatari, Junji; Ishitsu, Takateru; Nakagawa, Kazuko

    2010-01-01

    Genetic polymorphisms in the genes that encode drug-metabolizing enzymes are implicated in the inter-individual variability in the pharmacokinetics and pharmaco-dynamics of antiepileptic drugs (AEDs). However, the clinical impact of these polymorphisms on AED therapy still remains controversial. The defective alleles of cytochrome P450 (CYP) 2C9 and/or CYP2C19 could affect not only the pharmacokinetics, but also the pharmacodynamics of phenytoin therapy. CYP2C19 deficient genotypes were associated with the higher serum concentration of an active metabolite of clobazam, N-desmethylclobazam, and with the higher clinical efficacy of clobazam therapy than the other CYP2C19 genotypes. The defective alleles of CYP2C9 and/or CYP2C19 were also found to have clinically significant effects on the inter-individual variabilities in the population pharmacokinetics of phenobarbital, valproic acid and zonisamide. EPHX1 polymorphisms may be associated with the pharmacokinetics of carbamazepine and the risk of phenytoin-induced congenital malformations. Similarly, the UDP-glucuronosyltransferase 2B7 genotype may affect the pharmacokinetics of lamotrigine. Gluthatione S-transferase null genotypes are implicated in an increased risk of hepatotoxicity caused by carbamazepine and valproic acid. This article summarizes the state of research on the effects of mutations of drug-metabolizing enzymes on the pharmacokinetics and pharmacodynamics of AED therapies. Future directions for the dose-adjustment of AED are discussed. PMID:27713373

  5. Failure to find linkage between a functional polymorphism in the dopamine D4 receptor gene and schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaikh, S.; Gill, M.; Collier, D.A.

    1994-03-15

    We report the results of a linkage study in 24 families multiply affected with schizophrenia using a polymorphic DNA sequence encoding the third cytoplasmic loop of the dopamine D4 receptor. Two-point LOD score analyses with a range of single gene models ranging from near dominant to near recessive revealed no evidence for linkage. In addition, we examined the data by non-parametric sib-pair analysis and found no excess sharing of alleles between affected sib-pairs. We therefore conclude that mutations within the dopamine D4 receptor gene do not have a major aetiological role in schizophrenia in our collection of pedigrees. 20 refs.,more » 2 tabs.« less

  6. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  7. Amphetamine Challenge: A Marker of Brain Function That Mediates Risk for Drug and Alcohol Abuse

    DTIC Science & Technology

    2011-08-05

    sexual behavior, even if the long-term consequences of those behaviors are harmful. In this study the relationship between the response to a stimulant... sexual behavior, even if the long-term consequences may be harmful. When these tendencies occur together, individuals are more likely to try...this characteristic is sometimes associated with poor control. One possibility is that the same neural system—namely, the mesolimbic dopamine system

  8. Association of interleukins genes polymorphisms with multi-drug resistant tuberculosis in Ukrainian population.

    PubMed

    Butov, Dmytro O; Kuzhko, Mykhaylo M; Makeeva, Natalia I; Butova, Tetyana S; Stepanenko, Hanna L; Dudnyk, Andrii B

    2016-01-01

    Multi-drug resistant tuberculosis (MDR TB) is a significant health problem in some parts of the world. Three major cytokines involved in TB immunopathogenesis include IL-2, IL-4 and IL-10. The susceptibility to MDR TB may be genetically determined. The aim of the study was to assess the association of IL-2, IL-4, IL-10 gene polymorphisms with multi-drug resistant tuberculosis (MDR TB) in Ukrainian population. We observed 140 patients suffering from infiltrative pulmonary tuberculosis (PT) and 30 apparently healthy subjects. The patients were assigned to two groups whether they suffer or do not suffer from pulmonary MDR TB. Interleukin gene (IL) polymorphisms, particularly T330G polymorphism in the IL-2 gene, C589T polymorphism in the IL-4 gene and G1082A polymorphism in the IL-10 gene were studied through polymerase chain reaction. Circulating levels of IL-2, IL-4 and IL-10 in venous blood were estimated using ELISA. Prior to treatment, patients with PT showed significant increase of IL-2 levels and decrease of IL-4 and IL-10 levels compared to apparently healthy subjects. Circulating IL-4 and IL-10 levels were significantly decreased whilst serum IL-2 level was significantly increased in patients with MDR TB compared to non-MDR TB. Low IL-4 and IL-10 secretion and considerable IL-2 alterations were shown to be significantly associated with mutations of homozygous and heterozygous genotypes affecting C589T polymorphism in the IL-4 gene, G1082A polymorphism in the IL-10 gene and T330G polymorphism in the IL-2 gene in patients with PT. Heterozygous genotype and mutations homozygous genotypes gene in polymorphisms determining specified cytokines' production is a PT risk factor and may lead to disease progression into chronic phase. Heterozygous genotype of aforementioned cytokine genetic polymorphisms was significantly the most frequent in patients with MDR TB.

  9. The role of reactive oxygen species in methamphetamine self-administration and dopamine release in the nucleus accumbens.

    PubMed

    Jang, Eun Young; Yang, Chae Ha; Hedges, David M; Kim, Soo Phil; Lee, Jun Yeon; Ekins, Tyler G; Garcia, Brandon T; Kim, Hee Young; Nelson, Ashley C; Kim, Nam Jun; Steffensen, Scott C

    2017-09-01

    Methamphetamine (METH) markedly increases dopamine (DA) release in the mesolimbic DA system, which plays an important role in mediating the reinforcing effects of METH. METH-induced DA release results in the formation of reactive oxygen species (ROS), leading to oxidative damage. We have recently reported that ROS are implicated in behavior changes and DA release in the nucleus accumbens (NAc) following cocaine administration. The aim of this study was to evaluate the involvement of ROS in METH-induced locomotor activity, self-administration and enhancement of DA release in the NAc. Systemic administration of a non-specific ROS scavenger, N-tert-butyl-α-phenylnitrone (PBN; 0, 50 and 75 mg/kg, IP) or a superoxide-selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL; 0, 50 and 100 mg/kg, IP), attenuated METH-induced locomotor activity without affecting generalized behavior in METH-naïve rats. PBN and TEMPOL significantly attenuated METH self-administration without affecting food intake. Increased oxidative stress was found in neurons, but not astrocytes, microglia or oligodendrocytes, in the NAc of METH self-administering rats. In addition, TEMPOL significantly decreased METH enhancement of DA release in the NAc. Taken together, these results suggest that enhancement of ROS in the NAc contributes to the reinforcing effect of METH. © 2016 Society for the Study of Addiction.

  10. Modafinil augments brain activation associated with reward anticipation in the nucleus accumbens.

    PubMed

    Funayama, Takuya; Ikeda, Yumiko; Tateno, Amane; Takahashi, Hidehiko; Okubo, Yoshiro; Fukayama, Haruhisa; Suzuki, Hidenori

    2014-08-01

    The nucleus accumbens (NAc) works as a key brain structure of the reward system, in which reward-related neural activity is well correlated with dopamine release from mesolimbic dopaminergic neurons. Since modafinil can modulate dopaminergic transmission through re-uptake inhibition of dopamine, we investigated whether modafinil affects the reward-related brain activity in the NAc in healthy subjects. Twenty healthy participants underwent two series of functional magnetic resonance imaging while performing monetary incentive delay task in which they were cued to anticipate and respond to a rapidly presented target to gain or avoid losing varying amounts of money, under modafinil or placebo condition. Blood oxygenation-level dependent (BOLD) activation signals during gain and loss anticipations were analyzed in the NAc as an a priori region of interest as well as the whole brain. Modafinil significantly changed subjective feelings toward positive ones. The activation of BOLD signals was observed during gain anticipation under the placebo and modafinil conditions in the left and bilateral NAc, respectively. The modafinil condition showed significantly higher BOLD signal change at the highest gain (+¥500) cue compared to the placebo condition. The present study showed that modafinil affects reward processing in the NAc in healthy subjects through enhancing more positive anticipation, and it may provide a basis for the use of this drug for treating anhedonia observed in psychiatric disorders.

  11. The Evaluation of IL6 and ESR1 Gene Polymorphisms in Primary Dysmenorrhea.

    PubMed

    Ozsoy, Asker Zeki; Karakus, Nevin; Yigit, Serbulent; Cakmak, Bulent; Nacar, Mehmet Can; Yılmaz Dogru, Hatice

    2016-01-01

    Primary dysmenorrhea is the most common gynecological complaint with painful menstrual cramps in pelvis without any pathology. It affects about half of menstruating women, and it causes significant disruption in quality of life. We investigated the association between IL6 gene promoter and ESR1 gene XbaI and PvuII polymorphisms and primary dysmenorrhea. In this case-control study, 152 unrelated young women with primary dysmenorrhea and 150 unrelated healthy age-matched controls participated. Genomic DNA was isolated and IL6 and ESR1 gene polymorphisms were genotyped using PCR-based RFLP assay. The distribution of genotype and allele frequencies of IL6 gene promoter and ESR1 gene XbaI polymorphisms were not statistically different between patients and controls (p > 0.05). However, the genotype and allele frequencies of ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls (p = 0.009 and p = 0.021, respectively). Statistically significant associations were also observed between age and married status of primary dysmenorrhea patients and ESR1 gene PvuII polymorphism (p = 0.044 and p = 0.023, respectively). In combined genotype analyses, AG at ESR1 XbaI and TC at ESR1 PvuII loci encoded a p-value of 0.027. Thus, individuals who are heterozygote at both loci have a lower risk of developing primary dysmenorrhea. Our study suggests no strong association between IL6 gene promoter and ESR1 gene XbaI polymorphisms and primary dysmenorrhea in Turkish women. However, ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls. The potential association between ESR1 gene PvuII polymorphism and age and married status of dysmenorrhea patients deserves further consideration.

  12. Presence of the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease.

    PubMed

    Clark-Feoktistova, Y; Ruenes-Domech, C; García-Bacallao, E F; Roblejo-Balbuena, H; Feoktistova, L; Clark-Feoktistova, I; Jay-Herrera, O; Collazo-Mesa, T

    2018-06-10

    Wilson's disease is characterized by the accumulation of copper in different organs, mainly affecting the liver, brain, and cornea, and is caused by mutations in the ATP7B gene. More than 120 polymorphisms in the ATP7B gene have been reported in the medical literature. The aim of the present study was to identify the conformational changes in the exon 3 region of the ATP7B gene and detect the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease. A descriptive study was conducted at the Centro Nacional de Genética Médica and the Instituto Nacional de Gastroenterología within the time frame of 2007-2012 and included 105 patients with a clinical diagnosis of Wilson's disease. DNA extraction was performed through the salting-out method and the fragment of interest was amplified using the polymerase chain reaction technique. The conformational shift changes in the exon 3 region and the presence of the p.L456V polymorphism were identified through the Single-Strand Conformation Polymorphism analysis. The so-called b and c conformational shift changes, corresponding to the p.L456V polymorphism in the heterozygous and homozygous states, respectively, were identified. The allelic frequency of the p.L456V polymorphism in the 105 Cuban patients that had a clinical diagnosis of Wilson's disease was 41% and liver-related symptoms were the most frequent in the patients with that polymorphism. The p.L456V polymorphism was identified in 64 Cuban patients clinically diagnosed with Wilson's disease, making future molecular study through indirect methods possible. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  13. Association of UGT2B7 and UGT1A4 Polymorphisms with Serum Concentration of Antiepileptic Drugs in Children.

    PubMed

    Du, Zhongliang; Jiao, Yukun; Shi, Lianting

    2016-10-31

    BACKGROUND This study aimed to analyze the relationship of UGT2B7 and UGT1A4 polymorphisms with metabolism of valproic acid (VPA) and lamotrigine (LTG) in epileptic children. MATERIAL AND METHODS We administered VPA (102) and LTG (102) to 204 children with epilepsy. Blood samples were collected before the morning dose. Serum concentration of LTG was measured by high-performance liquid chromatography (HPLC). Serum VPA concentration was tested by fluorescence polarization immunoassay. UGT2B7 A268G, C802T, and G211T polymorphisms, as well as UGT1A4 L48V polymorphism, were assayed by direct automated DNA sequencing after PCR. Evaluation of efficacy was conducted using the Engel method. RESULTS The adjusted serum concentration of VPA was 4.26 μg/mL per mg/kg and LTG was 1.56 μg/mL per mg/kg. Multiple linear regression analysis revealed that VPA or LTG adjusted concentration showed a good linear relation with sex and age. UGT2B7 A268G and C802T polymorphisms were demonstrated to affect the serum concentration of VPA (F=3.147, P=0.047; F=22.754, P=0.000). UGT1A4 L48V polymorphism was not related with the serum concentration of LTG (F=5.328, P=0.006). In the efficacy analysis, we found that C802T polymorphism exerted strong effects on efficacy of VPA (χ²=9.265, P=0.010). L48V polymorphism also showed effects on efficacy of LTG (χ²=17.397, P=0.001). CONCLUSIONS UGT2B7, UGT1A4 polymorphisms play crucial roles in metabolism of VPA and LTG.

  14. Comparative genome-wide polymorphic microsatellite markers in Antarctic penguins through next generation sequencing

    PubMed Central

    Vianna, Juliana A.; Noll, Daly; Mura-Jornet, Isidora; Valenzuela-Guerra, Paulina; González-Acuña, Daniel; Navarro, Cristell; Loyola, David E.; Dantas, Gisele P. M.

    2017-01-01

    Abstract Microsatellites are valuable molecular markers for evolutionary and ecological studies. Next generation sequencing is responsible for the increasing number of microsatellites for non-model species. Penguins of the Pygoscelis genus are comprised of three species: Adélie (P. adeliae), Chinstrap (P. antarcticus) and Gentoo penguin (P. papua), all distributed around Antarctica and the sub-Antarctic. The species have been affected differently by climate change, and the use of microsatellite markers will be crucial to monitor population dynamics. We characterized a large set of genome-wide microsatellites and evaluated polymorphisms in all three species. SOLiD reads were generated from the libraries of each species, identifying a large amount of microsatellite loci: 33,677, 35,265 and 42,057 for P. adeliae, P. antarcticus and P. papua, respectively. A large number of dinucleotide (66,139), trinucleotide (29,490) and tetranucleotide (11,849) microsatellites are described. Microsatellite abundance, diversity and orthology were characterized in penguin genomes. We evaluated polymorphisms in 170 tetranucleotide loci, obtaining 34 polymorphic loci in at least one species and 15 polymorphic loci in all three species, which allow to perform comparative studies. Polymorphic markers presented here enable a number of ecological, population, individual identification, parentage and evolutionary studies of Pygoscelis, with potential use in other penguin species. PMID:28898354

  15. Search for methylation-sensitive amplification polymorphisms in mutant figs.

    PubMed

    Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S

    2013-07-08

    Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.

  16. C677T (RS1801133 ) MTHFR gene polymorphism frequency in a colombian population.

    PubMed

    Romero-Sánchez, Consuelo; Gómez-Gutierrez, Alberto; Gómez, Piedad Elena; Casas-Gomez, Maria Consuelo; Briceño, Ignacio

    2015-01-01

    Abnormal levels of the enzyme methylenetetrahydrofolate reductase (MTHFR) are associated with an increased risk of both cardiovascular and cerebrovascular disease and higher concentrations of homocysteine. Abnormal levels are also related to birth defects, pregnancy complications, cancer and toxicity to methotrexate (MTX). Polymorphisms of MTHFR affect the activity of the enzyme. Genetic associations have been related to treatment efficacy. To establish the frequency of the C> T polymorphism at nucleotide 677 of the MTHFR gene in a group of Colombian individuals. Data from pharmacogenetic microarrays that include MTX sensibility-associated polymorphisms were retrospectively collected (Pathway Genomics(®)). The frequency of the C> T MTHFR rs1801133 marker polymorphism was analyzed. Microarray data from 68 men and 84 women were analyzed. Comparisons of genotype C/C vs. C/T and T/T were statistically significantly different (p= 0.00, p= 0.026, respectively), as were C/T and T / T (p= 0.0001). Results for the C/C and C/T genotypes in a Colombian population are similar to other previously studied groups of healthy subjects. Subjects from our population might be at risk of developing diseases associated with MTHFR polymorphisms and might present toxicity and adverse effects if treated with MTX, which suggests the need to evaluate therapeutic alternatives based on individual pharmacogenetic studies.

  17. Pharmacogenetic profile of xenobiotic enzyme metabolism in survivors of the Spanish toxic oil syndrome.

    PubMed Central

    Ladona, M G; Izquierdo-Martinez, M; Posada de la Paz, M P; de la Torre, R; Ampurdanés, C; Segura, J; Sanz, E J

    2001-01-01

    In 1981, the Spanish toxic oil syndrome (TOS) affected more than 20,000 people, and over 300 deaths were registered. Assessment of genetic polymorphisms on xenobiotic metabolism would indicate the potential metabolic capacity of the victims at the time of the disaster. Thus, impaired metabolic pathways may have contributed to the clearance of the toxicant(s) leading to a low detoxification or accumulation of toxic metabolites contributing to the disease. We conducted a matched case-control study using 72 cases (54 females, 18 males) registered in the Official Census of Affected Patients maintained by the Spanish government. Controls were nonaffected siblings (n =72) living in the same household in 1981 and nonaffected nonrelatives (n = 70) living in the neighborhood at that time, with no ties to TOS. Genotype analyses were performed to assess the metabolic capacity of phase I [cytochrome P450 1A1 (CYP1A1), CYP2D6] and phase II [arylamine N-acetyltransferase-2 (NAT2), GSTM1 (glutathione S-transferase M1) and GSTT1] enzyme polymorphisms. The degree of association of the five metabolic pathways was estimated by calculating their odds ratios (ORs) using conditional logistic regression analysis. In the final model, cases compared with siblings (72 pairs) showed no differences either in CYP2D6 or CYP1A1 polymorphisms, or in conjugation enzyme polymorphisms, whereas cases compared with the unrelated controls (70 pairs) showed an increase in NAT2 defective alleles [OR = 6.96, 95% confidence interval (CI), 1.46-33.20] adjusted by age and sex. Glutathione transferase genetic polymorphisms (GSTM1, GSTT1) showed no association with cases compared with their siblings or unrelated controls. These findings suggest a possible role of impaired acetylation mediating susceptibility in TOS. PMID:11335185

  18. BDNF val66met polymorphism affects aging of multiple types of memory.

    PubMed

    Kennedy, Kristen M; Reese, Elizabeth D; Horn, Marci M; Sizemore, April N; Unni, Asha K; Meerbrey, Michael E; Kalich, Allan G; Rodrigue, Karen M

    2015-07-01

    The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age×BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p<.07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory - in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). This article is part of a Special Issue entitled Memory & Aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene

    PubMed Central

    Martínez, María Elena; O'Brien, Thomas G.; Fultz, Kimberly E.; Babbar, Naveen; Yerushalmi, Hagit; Qu, Ning; Guo, Yongjun; Boorman, David; Einspahr, Janine; Alberts, David S.; Gerner, Eugene W.

    2003-01-01

    Most sporadic colon adenomas acquire mutations in the adenomatous polyposis coli gene (APC) and show defects in APC-dependent signaling. APC influences the expression of several genes, including the c-myc oncogene and its antagonist Mad1. Ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, is a transcriptional target of c-myc and a modifier of APC-dependent tumorigenesis. A single-nucleotide polymorphism exists in intron 1 of the human ODC gene, which lies between two myc-binding domains. This region is known to affect ODC transcription, but no data exist on the relationship of this polymorphism to risk of colorectal neoplasia in humans. We show that individuals homozygous for the minor ODC A-allele who reported using aspirin are ≈0.10 times as likely to have an adenoma recurrence as non-aspirin users homozygous for the major G-allele. Mad1 selectively suppressed the activity of the ODC promoter containing the A-allele, but not the G-allele, in a human colon cancer-derived cell line (HT29). Aspirin (≥10 μM) did not affect ODC allele-specific promoter activity but did activate polyamine catabolism and lower polyamine content in HT29 cells. We propose that the ODC polymorphism and aspirin act independently to reduce the risk of adenoma recurrence by suppressing synthesis and activating catabolism, respectively, of colonic mucosal polyamines. These findings confirm the hypothesis that the ODC polymorphism is a genetic marker for colon cancer risk, and support the use of ODC inhibitors and aspirin, or other nonsteroidal antiinflammatory drugs (NSAIDs), in combination as a strategy for colon cancer prevention. PMID:12810952

  20. The serotonin transporter 5-HTTLPR polymorphism in the association between sleep quality and affect.

    PubMed

    Hartmann, Jessica A; Wichers, Marieke; van Bemmel, Alex L; Derom, Catherine; Thiery, Evert; Jacobs, Nele; van Os, Jim; Simons, Claudia J P

    2014-07-01

    A link between sleep and affect is well-known. Serotonin (5-HT) is associated with the regulation of affective as well as sleep-related processes. A functional polymorphism in the serotonin transporter gene (5-HTTLPR) has been associated with serotonergic functioning. The present study investigated whether allelic variation of this gene moderates the association between nighttime subjective sleep quality and affect the following day. A population-based sample of 361 ethnically homogenous adult female twins underwent a five day protocol based on the experience sampling method (ESM), assessing momentary negative affect, positive affect, and subjective sleep quality repeatedly and prospectively. There was a significant interaction between sleep quality and genotype in predicting positive affect the next day: carriers of one (n=167) or two S-alleles (n=78) had a significantly steeper slope compared to LL carriers (n=116) (χ(2)=4.16, p=.042 and χ(2)=3.90, p=.048 respectively). The association between subjective sleep quality and positive affect the next day varied as a function of 5-HTTLPR: it was stronger in carriers of at least one copy of the S-allele compared to homozygous L-carriers, supporting a link between sleep and affect regulation, in which serotonin may play a role. However, these results are preliminary and require replication. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  1. Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer's disease.

    PubMed

    Xu, Cunlu; Wang, Zhenhua; Fan, Ming; Liu, Bing; Song, Ming; Zhen, Xiantong; Jiang, Tianzi

    2010-08-23

    Earlier studies showed that the Val66Met polymorphisms of the brain-derived neurotrophic factor differentially affect gray matter volume and brain region activities. This study used resting positron emission tomography to investigate the relationship between the polymorphisms of Val66Met and the regional cerebral metabolic rate in the brain. We analyzed the positron emission tomography images of 215 patients from the Alzheimer's Disease Neuroimaging Initiative and found significant differences in the parahippocampal gyrus, superior temporal gyrus, prefrontal cortex, and inferior parietal lobule when comparing Met carriers with noncarriers among both the normal controls and those with mild cognitive impairment. For those with Alzheimer's disease, we also found additional differences in the bilateral insula between the carriers and noncarriers.

  2. Association study of interferon gamma (IFN-γ) +874T/A gene polymorphism in patients with paranoid schizophrenia.

    PubMed

    Paul-Samojedny, Monika; Owczarek, Aleksander; Suchanek, Renata; Kowalczyk, Malgorzata; Fila-Danilow, Anna; Borkowska, Paulina; Kucia, Krzysztof; Kowalski, Jan

    2011-03-01

    Schizophrenia is a multifactorial disease with changes affecting the immune system. Dysregulation of the cytokine network in schizophrenia has been well documented. Such changes may occur due to disturbances in cytokine levels that are linked to polymorphisms of cytokine genes. However, research in the role of cytokine gene polymorphisms in schizophrenia has been surprisingly scanty. The aim of this study was to identify, in a case control study, whether polymorphism of IFN-γ gene is a risk factor for the development of paranoid schizophrenia. To the best of our knowledge, this is the first study that examines the association between the IFN-γ gene polymorphism and psychopathological symptoms in patients with paranoid schizophrenia. Polymorphism of IFN-γ (+874T/A, rs 62559044) in schizophrenic patients (n=179), as well as healthy individuals (n=196), both Polish residents, was genotyped using AS-PCR method. Of note, when analyzing the results, we took into consideration the gender of studied individuals. Surprisingly, a single-nucleotide polymorphism in the first intron of the IFN-γ gene was found to be associated with paranoid schizophrenia in males, but not in females. The presence of allele A at position +874 in the IFN-γ gene correlates with 1.66-fold higher risk of paranoid schizophrenia development in males. Differences in the genotypes may have an important role in determining the level of I gene transcription. Because other polymorphisms have been demonstrated to influence IFN-γ transcription, further analysis is necessary to clarify the role of this gene in the pathogenesis of paranoid schizophrenia.

  3. Sudden infant death syndrome (SIDS) and polymorphisms in Monoamine oxidase A gene (MAOA): a revisit.

    PubMed

    Groß, Maximilian; Bajanowski, Thomas; Vennemann, Mechtild; Poetsch, Micaela

    2014-01-01

    Literature describes multiple possible links between genetic variations in the neuroadrenergic system and the occurrence of sudden infant death syndrome. The X-chromosomal Monoamine oxidase A (MAOA) is one of the genes with regulatory activity in the noradrenergic and serotonergic neuronal systems and a polymorphism of the promoter which affects the activity of this gene has been proclaimed to contribute significantly to the prevalence of sudden infant death syndrome (SIDS) in three studies from 2009, 2012 and 2013. However, these studies described different significant correlations regarding gender or age of children. Since several studies, suggesting associations between genetic variations and SIDS, were disproved by follow-up analysis, this study was conducted to take a closer look at the MAOA gene and its polymorphisms. The functional MAOA promoter length polymorphism was investigated in 261 SIDS cases and 93 control subjects. Moreover, the allele distribution of 12 coding and non-coding single nucleotide polymorphisms (SNPs) of the MAOA gene was examined in 285 SIDS cases and 93 controls by a minisequencing technique. In contrast to prior studies with fewer individuals, no significant correlations between the occurrence of SIDS and the frequency of allele variants of the promoter polymorphism could be demonstrated, even including the results from the abovementioned previous studies. Regarding the SNPs, three statistically significant associations were observed which had not been described before. This study clearly disproves interactions between MAOA promoter polymorphisms and SIDS, even if variations in single nucleotide polymorphisms of MAOA should be subjected to further analysis to clarify their impact on SIDS.

  4. Direct Detection of Insertion/Deletion Polymorphisms in an Autosomal Region by Analyzing High-Density Markers in Individual Spermatozoa

    PubMed Central

    Pramanik, Sreemanta; Li, Honghua

    2002-01-01

    Direct polymerase chain reaction (PCR) detection of insertion/deletion (indel) polymorphisms requires sample homozygosity. For the indel polymorphisms that have the deletion allele with a relatively low frequency in the autosomal regions, direct PCR detection becomes difficult or impossible. The present study is, to our knowledge, the first designed to directly detect indel polymorphisms in a human autosomal region (i.e., the immunoglobulin VH region), through use of single haploid sperm cells as subjects. Unique marker sequences (n=32), spaced at ∼5-kb intervals, were selected near the 3′ end of the VH region. A two-round multiplex PCR protocol was used to amplify these sequences from single sperm samples from nine unrelated healthy donors. The parental haplotypes of the donors were determined by examining the presence or absence of these markers. Seven clustered markers in 6 of the 18 haplotypes were missing and likely represented a 35–40-kb indel polymorphism. The genotypes of the donors, with respect to this polymorphism, perfectly matched the expectation under Hardy-Weinberg equilibrium. Three VH gene segments, of which two are functional, are affected by this polymorphism. According to these results, >10% of individuals in the human population may not have these gene segments in their genome, and ∼44% may have only one copy of these gene segments. The biological impact of this polymorphism would be very interesting to study. The approach used in the present study could be applied to understand the physical structure and diversity of all other autosomal regions. PMID:12442231

  5. Impact of the -675 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene on childhood IgA nephropathy.

    PubMed

    Han, Su-Ryun; Kim, Cheon-Jong; Lee, Byung-Cheol

    2012-04-01

    Plasminogen activator inhibitor-1 (PAI-1) is an important regulator of the fibrinolytic pathway and extracellular matrix (ECM) turnover. The -675 4G/5G polymorphism in the PAI-1 promoter is associated with altered PAI-1 transcription, suggesting that this polymorphism may be a candidate risk factor for diseases characterized by ECM accumulation, such as immunoglobulin A nephropathy (IgAN) and mesangial proliferative glomerulonephritis (MesPGN). We genotyped childhood patients with biopsy-confirmed IgAN (n=111) and MesPGN (n=47), and healthy control subjects (n=230) for the -675 4G/5G PAI-1 polymorphism by polymerase chain reaction-restriction fragment length polymorphism methods. The distribution of the 4G/4G (27.9%), 4G/5G (45.1%) and 5G/5G (27.0%) genotypes in IgAN patients was significantly different from the healthy controls (32.2, 54.3 and 13.5%, respectively) (p=0.0092). There was no significant difference in the genotype distributions of the 4G/5G polymorphism between MesPGN patients and the healthy controls. Regarding the impact of the polymorphism on IgAN, the 4G/4G genotype was markedly increased in patients with proteinuria (≥1,000 mg/day) and/or hypertension when compared to patients without proteinuria and hypertension (OR=5.23, 95% CI 1.34-20.38, P=0.0183). These findings indicate that the PAI-1 gene polymorphism may affect the susceptibility of childhood IgAN.

  6. Impact of the -675 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene on childhood IgA nephropathy

    PubMed Central

    HAN, SU-RYUN; KIM, CHEON-JONG; LEE, BYUNG-CHEOL

    2012-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is an important regulator of the fibrinolytic pathway and extracellular matrix (ECM) turnover. The -675 4G/5G polymorphism in the PAI-1 promoter is associated with altered PAI-1 transcription, suggesting that this polymorphism may be a candidate risk factor for diseases characterized by ECM accumulation, such as immunoglobulin A nephropathy (IgAN) and mesangial proliferative glomerulonephritis (MesPGN). We genotyped childhood patients with biopsy-confirmed IgAN (n=111) and MesPGN (n=47), and healthy control subjects (n=230) for the -675 4G/5G PAI-1 polymorphism by polymerase chain reaction-restriction fragment length polymorphism methods. The distribution of the 4G/4G (27.9%), 4G/5G (45.1%) and 5G/5G (27.0%) genotypes in IgAN patients was significantly different from the healthy controls (32.2, 54.3 and 13.5%, respectively) (p=0.0092). There was no significant difference in the genotype distributions of the 4G/5G polymorphism between MesPGN patients and the healthy controls. Regarding the impact of the polymorphism on IgAN, the 4G/4G genotype was markedly increased in patients with proteinuria (≥1,000 mg/day) and/or hypertension when compared to patients without proteinuria and hypertension (OR=5.23, 95% CI 1.34–20.38, P=0.0183). These findings indicate that the PAI-1 gene polymorphism may affect the susceptibility of childhood IgAN. PMID:22969955

  7. Relation of polymorphism of arsenic metabolism genes to arsenic methylation capacity and developmental delay in preschool children in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Ru-Lan

    Inefficient arsenic methylation capacity has been associated with developmental delay in children. The present study was designed to explore whether polymorphisms and haplotypes of arsenic methyltransferase (AS3MT), glutathione-S-transferase omegas (GSTOs), and purine nucleoside phosphorylase (PNP) affect arsenic methylation capacity and developmental delay. A case-control study was conducted from August 2010 to March 2014. All participants were recruited from the Shin Kong Wu Ho-Su Memorial Teaching Hospital. In total, 179 children with developmental delay and 88 children without delay were recruited. Urinary arsenic species, including arsenite (As{sup III}), arsenate (As{sup V}), monomethylarsonic acid (MMA{sup V}), and dimethylarsinic acid (DMA{sup V}) weremore » measured using a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphisms of AS3MT, GSTO, and PNP were performed using the Sequenom MassARRAY platform with iPLEX Gold chemistry. Polymorphisms of AS3MT genes were found to affect susceptibility to developmental delay in children, but GSTO and PNP polymorphisms were not. Participants with AS3MT rs3740392 A/G + G/G genotype, compared with AS3MT rs3740392 A/A genotype, had a significantly lower secondary methylation index. This may result in an increased OR for developmental delay. Participants with the AS3MT high-risk haplotype had a significantly higher OR than those with AS3MT low-risk haplotypes [OR and 95% CI, 1.59 (1.08–2.34)]. This is the first study to show a joint dose-response effect of this AS3MT high-risk haplotype and inefficient arsenic methylation capacity on developmental delay. Our data provide evidence that AS3MT genes are related to developmental delay and may partially influence arsenic methylation capacity. - Highlights: • AS3MT genotypes were found to affect susceptibility to developmental delay. • AS3MT rs3740392 A/G and G/G genotype had a significantly low SMI (DMA/MMA) index. • AS3MT high-risk haplotype was significantly associated with developmental delay.« less

  8. Genetic and Epigenetic Factors at COL2A1 and ABCA4 Influence Clinical Outcome in Congenital Toxoplasmosis

    PubMed Central

    Jamieson, Sarra E.; de Roubaix, Lee-Anne; Cortina-Borja, Mario; Tan, Hooi Kuan; Mui, Ernest J.; Cordell, Heather J.; Kirisits, Michael J.; Miller, E. Nancy; Peacock, Christopher S.; Hargrave, Aubrey C.; Coyne, Jessica J.; Boyer, Kenneth; Bessieres, Marie-Hélène; Buffolano, Wilma; Ferret, Nicole; Franck, Jacqueline; Kieffer, François; Meier, Paul; Nowakowska, Dorota E.; Paul, Malgorzata; Peyron, François; Stray-Pedersen, Babill; Prusa, Andrea-Romana; Thulliez, Philippe; Wallon, Martine; Petersen, Eskild; McLeod, Rima; Gilbert, Ruth E.; Blackwell, Jenefer M.

    2008-01-01

    Background Primary Toxoplasma gondii infection during pregnancy can be transmitted to the fetus. At birth, infected infants may have intracranial calcification, hydrocephalus, and retinochoroiditis, and new ocular lesions can occur at any age after birth. Not all children who acquire infection in utero develop these clinical signs of disease. Whilst severity of disease is influenced by trimester in which infection is acquired by the mother, other factors including genetic predisposition may contribute. Methods and Findings In 457 mother-child pairs from Europe, and 149 child/parent trios from North America, we show that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4. Polymorphisms at COL2A1 encoding type II collagen associate only with ocular disease. Both loci showed unusual inheritance patterns for the disease allele when comparing outcomes in heterozygous affected children with outcomes in affected children of heterozygous mothers. Modeling suggested either an effect of mother's genotype, or parent-of-origin effects. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting. Conclusions These associations between clinical outcomes of congenital toxoplasmosis and polymorphisms at ABCA4 and COL2A1 provide novel insight into the molecular pathways that can be affected by congenital infection with this parasite. PMID:18523590

  9. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain.

    PubMed

    Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H; Porreca, Frank

    2017-12-01

    Gabapentin (GBP) is a first-line therapy for neuropathic pain, but its mechanisms and sites of action remain uncertain. We investigated GBP-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal GBP reversed evoked mechanical hypersensitivity and produced conditioned place preference (CPP) and dopamine (DA) release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal GBP also significantly inhibited dorsal horn wide-dynamic-range neuronal responses to a range of evoked stimuli in SNL rats. By contrast, GBP microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP, and elicited NAc DA release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on wide-dynamic-range neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous GBP-induced CPP and NAc DA release but failed to block its inhibition of tactile allodynia. Gabapentin, therefore, can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity, and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from nonopioid analgesics, GBP requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain-motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of GBP's analgesic effects in patients.

  10. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain

    PubMed Central

    Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H.; Porreca, Frank

    2017-01-01

    Gabapentin is a first-line therapy for neuropathic pain but its mechanisms and sites of action remain uncertain. We investigated gabapentin-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal gabapentin reversed evoked mechanical hypersensitivity, produced conditioned place preference (CPP) and dopamine release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal gabapentin also significantly inhibited dorsal horn wide dynamic range (WDR) neuronal responses to a range of evoked stimuli in SNL rats. In contrast, gabapentin microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP and elicited NAc dopamine release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on WDR neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous gabapentin-induced CPP and NAc dopamine release but failed to block its inhibition of tactile allodynia. Gabapentin therefore can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from non-opioid analgesics, gabapentin requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of gabapentin’s analgesic effects in patients. PMID:28832395

  11. Ethanol and Mesolimbic Serotonin/Dopamine Interactions via 5HT-1B Receptors

    DTIC Science & Technology

    2007-03-01

    of [3H]DA in the presence of the monoamine oxidase inhibitor pargyline to minimize the formation of DA metabolites. Under these experimental... human genetics and in animal models, and to play a role in regulating alcohol voluntary intakes. 15. SUBJECT TERMS Ethanol, Dopamine, Serotonin...ip to the KO and WT mice, respectively. Twenty minutes later, each mouse received an ethanol injection (1 or 2 g/kg, ip) and extracellular DA in the

  12. Neural correlates of specific musical anhedonia

    PubMed Central

    Martínez-Molina, Noelia; Mas-Herrero, Ernest; Rodríguez-Fornells, Antoni; Zatorre, Robert J.

    2016-01-01

    Although music is ubiquitous in human societies, there are some people for whom music holds no reward value despite normal perceptual ability and preserved reward-related responses in other domains. The study of these individuals with specific musical anhedonia may be crucial to understand better the neural correlates underlying musical reward. Previous neuroimaging studies have shown that musically induced pleasure may arise from the interaction between auditory cortical networks and mesolimbic reward networks. If such interaction is critical for music-induced pleasure to emerge, then those individuals who do not experience it should show alterations in the cortical-mesolimbic response. In the current study, we addressed this question using fMRI in three groups of 15 participants, each with different sensitivity to music reward. We demonstrate that the music anhedonic participants showed selective reduction of activity for music in the nucleus accumbens (NAcc), but normal activation levels for a monetary gambling task. Furthermore, this group also exhibited decreased functional connectivity between the right auditory cortex and ventral striatum (including the NAcc). In contrast, individuals with greater than average response to music showed enhanced connectivity between these structures. Thus, our results suggest that specific musical anhedonia may be associated with a reduction in the interplay between the auditory cortex and the subcortical reward network, indicating a pivotal role of this interaction for the enjoyment of music. PMID:27799544

  13. A new role for GABAergic transmission in the control of male rat sexual behavior expression.

    PubMed

    Rodríguez-Manzo, Gabriela; Canseco-Alba, Ana

    2017-03-01

    GABAergic transmission in the ventral tegmental area (VTA) exerts a tonic inhibitory influence on mesolimbic dopaminergic neurons' activity. Blockade of VTA GABA A receptors increases dopamine release in the nucleus accumbens (NAcc). Increases in NAcc dopamine levels typically accompany sexual behavior display. Copulation to satiety is characterized by the instatement of a long lasting (72h) sexual behavior inhibition and the mesolimbic system appears to be involved in this phenomenon. GABAergic transmission in the VTA might play a role in the maintenance of this long lasting sexual inhibitory state. To test this hypothesis, in the present work we investigated the effect of GABA A receptor blockade in sexually exhausted males 24h after copulation to satiety, once the sexual inhibitory state is established, and compared it with its effect in sexually experienced rats. Results showed that low doses of systemically administered bicuculline induced sexual behavior expression in sexually exhausted rats, but lacked an effect on copulation of sexually experienced animals. Intra-VTA bilateral infusion of bicuculline did not modify sexual behavior of sexually experienced rats, but induced sexual behavior expression in all the sexually exhausted males. Hence, GABA plays a role in the control of sexual behavior expression at the VTA. The role played by GABAergic transmission in male sexual behavior expression of animals with distinct sexual behavior conditions is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors

    PubMed Central

    Mikhailova, Maria A.; Bass, Caroline E.; Grinevich, Valentina P.; Chappell, Ann M.; Deal, Alex L.; Bonin, Keith D.; Weiner, Jeff L.; Gainetdinov, Raul R.; Budygin, Evgeny A.

    2016-01-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in the water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors. PMID:27421228

  15. Dopamine, Effort-Based Choice, and Behavioral Economics: Basic and Translational Research

    PubMed Central

    Salamone, John D.; Correa, Merce; Yang, Jen-Hau; Rotolo, Renee; Presby, Rose

    2018-01-01

    Operant behavior is not only regulated by factors related to the quality or quantity of reinforcement, but also by the work requirements inherent in performing instrumental actions. Moreover, organisms often make effort-related decisions involving economic choices such as cost/benefit analyses. Effort-based decision making is studied using behavioral procedures that offer choices between high-effort options leading to relatively preferred reinforcers vs. low effort/low reward choices. Several neural systems, including the mesolimbic dopamine (DA) system and other brain circuits, are involved in regulating effort-related aspects of motivation. Considerable evidence indicates that mesolimbic DA transmission exerts a bi-directional control over exertion of effort on instrumental behavior tasks. Interference with DA transmission produces a low-effort bias in animals tested on effort-based choice tasks, while increasing DA transmission with drugs such as DA transport blockers tends to enhance selection of high-effort options. The results from these pharmacology studies are corroborated by the findings from recent articles using optogenetic, chemogenetic and physiological techniques. In addition to providing important information about the neural regulation of motivated behavior, effort-based choice tasks are useful for developing animal models of some of the motivational symptoms that are seen in people with various psychiatric and neurological disorders (e.g., depression, schizophrenia, Parkinson’s disease). Studies of effort-based decision making may ultimately contribute to the development of novel drug treatments for motivational dysfunction. PMID:29628879

  16. Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats.

    PubMed

    Vollbrecht, Peter J; Mabrouk, Omar S; Nelson, Andrew D; Kennedy, Robert T; Ferrario, Carrie R

    2016-03-01

    Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2 /D3 dopamine receptor-mediated transmission prior to and after consumption of "junk-foods" in obesity-prone and obesity-resistant rats. Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2 /D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. © 2016 The Obesity Society.

  17. Running from Disease: Molecular Mechanisms Associating Dopamine and Leptin Signaling in the Brain with Physical Inactivity, Obesity, and Type 2 Diabetes.

    PubMed

    Ruegsegger, Gregory N; Booth, Frank W

    2017-01-01

    Physical inactivity is a primary contributor to diseases such as obesity, cardiovascular disease, and type 2 diabetes. Accelerometry data suggest that a majority of US adults fail to perform substantial levels of physical activity needed to improve health. Thus, understanding the molecular factors that stimulate physical activity, and physical inactivity, is imperative for the development of strategies to reduce sedentary behavior and in turn prevent chronic disease. Despite many of the well-known health benefits of physical activity being described, little is known about genetic and biological factors that may influence this complex behavior. The mesolimbic dopamine system regulates motivating and rewarding behavior as well as motor movement. Here, we present data supporting the hypothesis that obesity may mechanistically lower voluntary physical activity levels via dopamine dysregulation. In doing so, we review data that suggest mesolimbic dopamine activity is a strong contributor to voluntary physical activity behavior. We also summarize findings suggesting that obesity leads to central dopaminergic dysfunction, which in turn contributes to reductions in physical activity that often accompany obesity. Additionally, we highlight examples in which central leptin activity influences physical activity levels in a dopamine-dependent manner. Future elucidation of these mechanisms will help support strategies to increase physical activity levels in obese patients and prevent diseases caused by physical inactivity.

  18. Dopamine, Effort-Based Choice, and Behavioral Economics: Basic and Translational Research.

    PubMed

    Salamone, John D; Correa, Merce; Yang, Jen-Hau; Rotolo, Renee; Presby, Rose

    2018-01-01

    Operant behavior is not only regulated by factors related to the quality or quantity of reinforcement, but also by the work requirements inherent in performing instrumental actions. Moreover, organisms often make effort-related decisions involving economic choices such as cost/benefit analyses. Effort-based decision making is studied using behavioral procedures that offer choices between high-effort options leading to relatively preferred reinforcers vs. low effort/low reward choices. Several neural systems, including the mesolimbic dopamine (DA) system and other brain circuits, are involved in regulating effort-related aspects of motivation. Considerable evidence indicates that mesolimbic DA transmission exerts a bi-directional control over exertion of effort on instrumental behavior tasks. Interference with DA transmission produces a low-effort bias in animals tested on effort-based choice tasks, while increasing DA transmission with drugs such as DA transport blockers tends to enhance selection of high-effort options. The results from these pharmacology studies are corroborated by the findings from recent articles using optogenetic, chemogenetic and physiological techniques. In addition to providing important information about the neural regulation of motivated behavior, effort-based choice tasks are useful for developing animal models of some of the motivational symptoms that are seen in people with various psychiatric and neurological disorders (e.g., depression, schizophrenia, Parkinson's disease). Studies of effort-based decision making may ultimately contribute to the development of novel drug treatments for motivational dysfunction.

  19. Toward understanding the genetics of regulatory T cells in ovarian cancer.

    PubMed

    Derycke, Melissa S; Charbonneau, Bridget; Preston, Claudia C; Kalli, Kimberly R; Knutson, Keith L; Rider, David N; Goode, Ellen L

    2013-06-01

    Tumor-infiltrating regulatory T cells (Tregs) promote immune evasion and are associated with poor disease outcome in patients affected by various malignancies. We have recently demonstrated that several, inherited single nucleotide polymorphisms affecting Treg-related genes influence the survival of ovarian cancer patients, providing novel insights into possible mechanisms of immune escape.

  20. Polymorphisms in TLR9 but not in TLR5 increase the risk for duodenal ulcer and alter cytokine expression in the gastric mucosa.

    PubMed

    Trejo-de la O, Alejandra; Torres, Javier; Sánchez-Zauco, Norma; Pérez-Rodríguez, Martha; Camorlinga-Ponce, Margarita; Flores-Luna, Lourdes; Lazcano-Ponce, Eduardo; Maldonado-Bernal, Carmen

    2015-10-01

    Colonization of the gastric mucosa by Helicobacter pylori can lead to peptic ulcer and gastric adenocarcinoma. TLRs are signaling receptors involved in the recognition of microorganisms, and polymorphisms in their genes may influence the innate and adaptive immune response to H. pylori, affecting the clinical outcomes of the infection. We assessed the association between single nucleotide polymorphisms in TLR9 and TLR5 and gastroduodenal diseases. All patients were genotyped by allelic discrimination in regions 1174C>T and 1775A>G of TLR5 and -1237T>C and 2848G>A of TLR9. The 2848A allele of TLR9 was more frequent in duodenal ulcer and showed an association of risk with this pathology. Polymorphisms in TLR5 were not found to be associated with disease. Patients with polymorphisms in TLR9 and TLR5 expressed significantly lower levels of IL-1β and TNF-α, whereas polymorphisms in TLR5 also decreased the expression of IL-6 and IL-10. Our findings suggest that 2848G>A polymorphism in TLR9 increases the risk for the development of duodenal ulcer probably by modifying the inflammatory response to H. pylori infection. This is the first study to show an association of 2848A allele of TLR9 with duodenal ulcer and with altered expression of inflammatory cytokines in the gastric mucosa. © The Author(s) 2015.

  1. A polymorphism in a transporter of testosterone is a determinant of androgen independence in prostate cancer.

    PubMed

    Sharifi, Nima; Hamada, Akinobu; Sissung, Tristan; Danesi, Romano; Venzon, David; Baum, Caitlin; Gulley, James L; Price, Douglas K; Dahut, William L; Figg, William D

    2008-08-05

    To determine if patients with advanced prostate cancer carrying a polymorphism that codes for a more active testosterone transporter have less durable responses to androgen-deprivation therapy (ADT) than patients not carrying this polymorphism. We previously determined that a polymorphism in SLCO1B3 affects testosterone transport and that those men who have at least one wild-type T allele at the 334 T > G polymorphism in this gene have a shorter survival. We hypothesized that the T allele which increases testosterone transport would be associated with a shorter interval from ADT to androgen independence. We examined the association between this SLCO1B3 polymorphism and time from ADT to androgen independence, ADT to prostate-specific antigen (PSA) nadir and PSA nadir to androgen independence in 68 Caucasian patients with advanced prostate cancer who were treated with ADT with metastatic disease (D2) or biochemical failure with no metastatic disease (D0). When examined separately, patients in the individual stages tended to have a shorter time to androgen independence with the T allele in the D0 (P = 0.11) and D2 (P = 0.18) groups. Combining these groups and stratifying by stage yielded a statistically significant shorter time to androgen independence with the T allele (P = 0.048). A polymorphism in a transporter that increases testosterone import is associated with a shorter time to androgen independence in patients with prostate cancer who are treated with ADT.

  2. Vitamin D receptor polymorphisms and the risk of cutaneous melanoma: a systematic review and meta-analysis.

    PubMed

    Mocellin, Simone; Nitti, Donato

    2008-11-01

    It has been hypothesized that polymorphisms in the vitamin D receptor (VDR) gene affect the risk of developing melanoma. However, results often are conflicting, and no meta-analysis has been performed to date on published data. Six studies (cases, 2152; controls, 2410) that investigated the association between 5 VDR polymorphisms (TaqI, FokI, BsmI, EcoRV, and Cdx2) and the risk of melanoma were retrieved and analyzed. The model-free approach was applied to meta-analyze these molecular association studies. Available data suggested a significant association between the BsmI VDR polymorphism and melanoma risk (pooled odds ratio [OR], 1.30; 95% confidence interval [CI], 1.11-1.53; P= .002; heterogeneity Cochran Q test, P> .1), and the population-attributable risk was 9.2%. In contrast, the FokI polymorphism did not appear to be associated with such risk (OR, 1.09; 95% CI, 0.99-1.21; P= .07; heterogeneity Cochran Q test, P> .1). For the TaqI and the EcoRV polymorphisms, significant between-study heterogeneity did not support genotype data pooling. Only 1 study investigated the Cdx2 variant, and the findings were negative. Current evidence is in favor of an association between 1 VDR gene polymorphism (BsmI) and the risk of developing melanoma. The current findings prompt further investigation on this subject and indirectly support the hypothesis that sun exposure may have an antimelanoma effect through activation of the vitamin D system.

  3. Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study.

    PubMed

    Jóźków, Paweł; Słowińska-Lisowska, Małgorzata; Łaczmański, Łukasz; Mędraś, Marek

    2013-01-01

    Human behavior is influenced by a number of brain neurotransmitters. Central dopamine, serotonin and melanocortin systems have special importance for male sexual function. We searched for associations between male aging symptoms and polymorphic sites of serotonin (5-HTR1B), melanocortin (MC4R) and dopamine (DRD2, DRD4) receptors. In a population-based sample, genotyping of 5-HTR1B (polymorphism: G861C), MC4R (polymorphisms: C-2745T, Val103Ile), DRD2 (polymorphism: C313T) and DRD4 (polymorphism: 48-bp VNTR) was performed in 387 healthy men. The Aging Males' Symptoms (AMS) scale was used to evaluate specific ailments of aging men. We analyzed answers to questions from the AMS scale. Five points of the questionnaire addressed sexual symptoms of the aging male: feeling of passing one's peak, decrease in beard growth, decrease in ability/frequency to perform sexually, decrease in the number of morning erections, and decrease in sexual desire/libido (lacking pleasure in sex, lacking desire for sexual intercourse). Relations between reported symptoms and variants of the polymorphic sites of the studied genes were assessed. After adjusting for confounding factors (education, arterial hypertension, physical activity, weight, waist circumference) an association between the sexual dimension of AMS and genetic variants of 5-HTR1B G861C (p = 0.04) was observed. Variability of neurotransmitter receptor genes may be associated with sexual symptoms of aging in men. Copyright © 2013 S. Karger AG, Basel.

  4. Interleukin-21 gene polymorphism rs2221903 is associated with disease activity in patients with rheumatoid arthritis

    PubMed Central

    Malinowski, Damian; Paradowska-Gorycka, Agnieszka; Safranow, Krzysztof

    2017-01-01

    Introduction Interleukin-21 (IL-21) is a cytokine which plays a significant role in the pathogenesis and disease activity of rheumatoid arthritis (RA). Genetic polymorphisms in the IL-21 gene may alter the synthesis of IL-21. The aim of this study was to examine IL-21 and IL-21R polymorphisms in patients with RA. Material and methods We examined 422 patients with RA and 338 healthy controls. Single nucleotide polymorphisms (SNPs) within the IL-21 (rs6822844 G>T, rs6840978 C>T, rs2221903 T>C) and IL-21R (rs2285452 G>A) genes were genotyped using TaqMan genotyping assays. Results There were no statistically significant differences in the distribution of studied genotypes and alleles between RA patients and the control group. To examine whether IL-21 polymorphisms affect disease activity in RA patients, we compared the distribution of IL-21 genotypes between patients with DAS28 ≤ 2.5 (patients with remission of disease symptoms) and patients with DAS28 > 2.5 (patients with active RA). Among patients with DAS28 > 2.5, increased prevalence of rs2221903 CT and CC genotypes was observed (OR = 1.54; 95% CI: 1.04–2.28; p = 0.035). Conclusions The results of this study suggest that IL-21 and IL-21R gene polymorphisms are not risk loci for RA susceptibility, whereas the IL-21 rs2221903 polymorphism is associated with disease activity. PMID:28883856

  5. Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility.

    PubMed

    Latini, Andrea; Ciccacci, Cinzia; Novelli, Giuseppe; Borgiani, Paola

    2017-08-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate the expression of multiple protein-encoding genes at the post-transcriptional level. MicroRNAs are involved in different pathways, such as cellular proliferation and differentiation, signal transduction and inflammation, and play crucial roles in the development of several diseases, such as cancer, diabetes, and cardiovascular diseases. They have recently been recognized to play a role also in the pathogenesis of autoimmune diseases. Although the majority of studies are focused on miRNA expression profiles investigation, a growing number of studies have been investigating the role of polymorphisms in miRNA genes in the autoimmune diseases development. Indeed, polymorphisms affecting the miRNA genes can modify the set of targets they regulate or the maturation efficiency. This review is aimed to give an overview about the available studies that have investigated the association of miRNA gene polymorphisms with the susceptibility to various autoimmune diseases and to their clinical phenotypes.

  6. Effect of exercise training on the cardiovascular and biochemical parameters in women with eNOS gene polymorphism.

    PubMed

    Rezende, Tiago M; Sponton, Carlos H G; Malagrino, Pamella A; Bezerra, Marcos A C; Penteado, Carla F F; Zanesco, Angelina

    2011-12-01

    Presence of endothelial nitric oxide synthase (eNOS) gene polymorphism has been associated with cardiovascular disease (CVD) whereas exercise training (EX) promotes beneficial effects on CVD which is related to increased nitric oxide levels (NO). To evaluate if women with eNOS gene polymorphism at position-G894T would be less responsive to EX than those who did not carry T allele. Women were trained 3 days/week, 40 minutes session during 6 months. Cardio-biochemical parameters and genetic analysis were performed in a double-blind fashion. Plasma NOx- levels were similar in both groups at baseline (GG genotype: 18.44±3.28 μM) and (GT+TT genotype: 17.19±2.43 μM) and after EX (GG: 29.20±4.33 and GT+TT: 27.38±3.12 μM). A decrease in blood pressure was also observed in both groups. The presence of eNOS polymorphism does not affect the beneficial effects of EX in women.

  7. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  8. Vitamin D pathway gene polymorphisms affecting daclatasvir plasma concentration at 2 weeks and 1 month of therapy.

    PubMed

    Cusato, Jessica; Nicolò, Amedeo De; Boglione, Lucio; Favata, Fabio; Ariaudo, Alessandra; Pinna, Simone Mornese; Carcieri, Chiara; Guido, Federica; Cariti, Giuseppe; Perri, Giovanni Di; D'Avolio, Antonio

    2018-06-01

    Vitamin D (VD) influences genetic expression through its receptor (VDR). VD pathway gene polymorphisms seem to influence antiviral drug pharmacokinetics and therapeutic outcome/toxicity. We investigated the association between daclatasvir (DCV) plasma concentrations and genetic variants (SNPs) associated with the VD pathway. Chronic hepatitis C patients treated with DCV from 2014 to 2016 were included. Genotypes were assessed through real-time PCR and plasma concentrations through liquid chromatography. A total of 52 patients were analyzed. DCV levels were influenced by CYP24A1 rs2248359T>C polymorphism at 2 weeks and VDR Cdx2 A>G at 1 month of treatment. Linear regression analysis showed baseline BMI, alanine aminotransferase and hematocrit as significant predictors of DCV concentrations at 2 weeks, BMI and hematocrit at baseline, VDR Cdx2 AG/GG and FokI TC/CC at 1 month. These results showed a possible role of VD pathway gene polymorphisms in influencing DCV plasma concentrations, but further studies are required.

  9. The Vitamin D Receptor (VDR) Gene Polymorphisms in Turkish Brain Cancer Patients

    PubMed Central

    Toptaş, Bahar; Kafadar, Ali Metin; Cacina, Canan; Turan, Saime; Yurdum, Leman Melis; Yiğitbaşı, Nihal; Gökçe, Muhammed Oğuz; Zeybek, Ümit; Yaylım, Ilhan

    2013-01-01

    Objective. It has been stated that brain cancers are an increasingly serious issue in many parts of the world. The aim of our study was to determine a possible relationship between Vitamin D receptor (VDR) gene polymorphisms and the risk of glioma and meningioma. Methods. We investigated the VDR Taq-I and VDR Fok-I gene polymorphisms in 100 brain cancer patients (including 44 meningioma cases and 56 glioma cases) and 122 age-matched healthy control subjects. This study was performed by polymerase chain reaction-based restriction fragment length polymorphism (RF LP). Results. VDR Fok-I ff genotype was significantly increased in meningioma patients (15.9%) compared with controls (2.5%), and carriers of Fok-I ff genotype had a 6.47-fold increased risk for meningioma cases. There was no significant difference between patients and controls for VDR Taq-I genotypes and alleles. Conclusions. We suggest that VDR Fok-I genotypes might affect the development of meningioma. PMID:23691496

  10. Genetic analysis of abdominal aortic aneurysms (AAA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Jean, P.L.; Hart, B.K.; Zhang, X.C.

    1994-09-01

    The association between AAA and gender, smoking (SM), hypertension (HTN) and inguinal herniation (IH) was examined in 141 AAA probands and 139 of their 1st degree relatives with aortic exam (36 affected, 103 unaffected). There was no significant difference between age at diagnosis of affecteds and age at exam of unaffecteds. Of 181 males, 142 had AAA; of 99 females, 35 had AAA. Using log-linear modeling AAA was significantly associated at the 5% level with gender, SM and HTN but not IH. The association of AAA with SM and HTN held when males and females were analyzed separately. HTN wasmore » -1.5 times more common in both affected males and females, while SM was 1.5 and 2 times more common in affected males and females, respectively. Tests of association and linkage analyses were performed with relevant candidate genes: 3 COL3A1 polymorphisms (C/T, ALA/THR, AvaII), 2 ELN polymorphisms (SER/GLY, (CA)n), FBN1(TAAA)n, 2 APOB polymorphisms (Xbal,Ins/Del), CLB4B (CA)n, PI and markers D1S243 (CA)n, HPR (CA)n and MFD23(CA)n. The loci were genotyped in > 100 AAA probands and > 95 normal controls. No statistically significant evidence of association at the 5% level was obtained for any of the loci using chi-square test of association. 28 families with 2 or more affecteds were analyzed using the affected pedigree member method (APM) and lod-score analyses. There was no evidence for linkage with any loci using APM. Lod-score analysis under an autosomal recessive model resulted in excluding linkage (lod score < -2) of all loci to AAA at {theta}=0.0. Under an autosomal dominant model, linkage was excluded at {theta}=0.0 to ELN, APOB, CLG4B, D1S243, HPR and MFD23. The various genes previously proposed in AAA pathogenesis are neither associated nor casually related in our study population.« less

  11. Extensive sequence-influenced DNA methylation polymorphism in the human genome

    PubMed Central

    2010-01-01

    Background Epigenetic polymorphisms are a potential source of human diversity, but their frequency and relationship to genetic polymorphisms are unclear. DNA methylation, an epigenetic mark that is a covalent modification of the DNA itself, plays an important role in the regulation of gene expression. Most studies of DNA methylation in mammalian cells have focused on CpG methylation present in CpG islands (areas of concentrated CpGs often found near promoters), but there are also interesting patterns of CpG methylation found outside of CpG islands. Results We compared DNA methylation patterns on both alleles between many pairs (and larger groups) of related and unrelated individuals. Direct observation and simulation experiments revealed that around 10% of common single nucleotide polymorphisms (SNPs) reside in regions with differences in the propensity for local DNA methylation between the two alleles. We further showed that for the most common form of SNP, a polymorphism at a CpG dinucleotide, the presence of the CpG at the SNP positively affected local DNA methylation in cis. Conclusions Taken together with the known effect of DNA methylation on mutation rate, our results suggest an interesting interdependence between genetics and epigenetics underlying diversity in the human genome. PMID:20497546

  12. PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes.

    PubMed

    Kumar, Pankaj; Chaitanya, Pasumarthy S; Nagarajaram, Hampapathalu A

    2011-01-01

    PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1-6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in some bacteria. Although SSR-mediated phase variation and antigenic variations have been well-studied in some bacteria there seems a lot of other species of prokaryotes yet to be investigated for SSR mediated adaptive and other evolutionary advantages. As a part of our on-going studies on SSR polymorphism in prokaryotes we compared the genome sequences of various strains and isolates available for 85 different species of prokaryotes and extracted a number of SSRs showing length variations and created a relational database called PSSRdb. This database gives useful information such as location of PSSRs in genomes, length variation across genomes, the regions harboring PSSRs, etc. The information provided in this database is very useful for further research and analysis of SSRs in prokaryotes.

  13. N-acetyltransferase gene polymorphisms & plasma isoniazid concentrations in patients with tuberculosis.

    PubMed

    Hemanth Kumar, A K; Ramesh, K; Kannan, T; Sudha, V; Haribabu, Hemalatha; Lavanya, J; Swaminathan, Soumya; Ramachandran, Geetha

    2017-01-01

    Variations in the N-acetyltransferase (NAT2) gene among different populations could affect the metabolism and disposition of isoniazid (INH). This study was performed to genotype NAT2 gene polymorphisms in tuberculosis (TB) patients from Chennai, India, and compare plasma INH concentrations among the different genotypes. Adult patients with TB treated in the Revised National TB Control Programme (RNTCP) in Chennai, Tamil Nadu, were genotyped for NAT2 gene polymorphism, and two-hour post-dosing INH concentrations were compared between the different genotypes. Plasma INH was determined by high-performance liquid chromatography. Genotyping of the NAT2 gene polymorphism was performed by real-time polymerase chain reaction method. Among the 326 patients genotyped, there were 189 (58%), 114 (35%) and 23 (7%) slow, intermediate and fast acetylators, respectively. The median two-hour INH concentrations in slow, intermediate and fast acetylators were 10.2, 8.1 and 4.1 μg/ml, respectively. The differences in INH concentrations among the three genotypes were significant (P<0.001). Genotyping of TB patients from south India for NAT2 gene polymorphism revealed that 58 per cent of the study population comprised slow acetylators. Two-hour INH concentrations differed significantly among the three genotypes.

  14. The XRCC1 Arg194Trp polymorphism is significantly associated with lung adenocarcinoma: a case-control study in an Eastern European Caucasian group

    PubMed Central

    Cătană, Andreea; Pop, Monica; Hincu, Bianca Domokos; Pop, Ioan V; Petrişor, Felicia M; Porojan, Mihai D; Popp, Radu A

    2015-01-01

    DNA repair plays an important role in maintaining the integrity of the genome by repairing DNA damage induced by carcinogens. Certain genetic polymorphisms that occur in DNA-repair genes may affect the ability to repair DNA defects, and may represent a risk factor in carcinogenesis. The gene XRCC1 is involved in DNA repair. The purpose of our study was to investigate the association between XRCC1 Arg194Trp and Arg399Gln polymorphisms and the risk of lung cancer in a Romanian population. We recruited 222 healthy controls and 102 patients with lung cancer. Genotypes were determined by multiplex polymerase chain-reaction restriction fragment-length polymorphism. Statistical analysis (odds ratio, recessive model) revealed an increased risk for lung cancer for the homozygous 194Trp genotype (χ2=0.186, odds ratio 10.667, 95% confidence interval 1.309–86.933; P=0.007). Also, we found an association between the 194Trp allele and women with lung adenocarcinoma. In conclusion, the results of the study place the XRCC1 Arg194Trp polymorphism among independent risk factors for developing lung cancer. PMID:26664136

  15. The XRCC1 Arg194Trp polymorphism is significantly associated with lung adenocarcinoma: a case-control study in an Eastern European Caucasian group.

    PubMed

    Cătană, Andreea; Pop, Monica; Hincu, Bianca Domokos; Pop, Ioan V; Petrişor, Felicia M; Porojan, Mihai D; Popp, Radu A

    2015-01-01

    DNA repair plays an important role in maintaining the integrity of the genome by repairing DNA damage induced by carcinogens. Certain genetic polymorphisms that occur in DNA-repair genes may affect the ability to repair DNA defects, and may represent a risk factor in carcinogenesis. The gene XRCC1 is involved in DNA repair. The purpose of our study was to investigate the association between XRCC1 Arg194Trp and Arg399Gln polymorphisms and the risk of lung cancer in a Romanian population. We recruited 222 healthy controls and 102 patients with lung cancer. Genotypes were determined by multiplex polymerase chain-reaction restriction fragment-length polymorphism. Statistical analysis (odds ratio, recessive model) revealed an increased risk for lung cancer for the homozygous 194Trp genotype (χ (2)=0.186, odds ratio 10.667, 95% confidence interval 1.309-86.933; P=0.007). Also, we found an association between the 194Trp allele and women with lung adenocarcinoma. In conclusion, the results of the study place the XRCC1 Arg194Trp polymorphism among independent risk factors for developing lung cancer.

  16. The functional BDNF Val66Met polymorphism affects functions of pre-attentive visual sensory memory processes.

    PubMed

    Beste, Christian; Schneider, Daniel; Epplen, Jörg T; Arning, Larissa

    2011-01-01

    The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The influence of PRNP polymorphisms on human prion disease susceptibility: an update.

    PubMed

    Kobayashi, Atsushi; Teruya, Kenta; Matsuura, Yuichi; Shirai, Tsuyoshi; Nakamura, Yoshikazu; Yamada, Masahito; Mizusawa, Hidehiro; Mohri, Shirou; Kitamoto, Tetsuyuki

    2015-08-01

    Two normally occurring polymorphisms of the human PRNP gene, methionine (M)/valine (V) at codon 129 and glutamic acid (E)/lysine (K) at codon 219, can affect the susceptibility to prion diseases. It has long been recognized that 129M/M homozygotes are overrepresented in sporadic Creutzfeldt-Jakob disease (CJD) patients and variant CJD patients, whereas 219E/K heterozygotes are absent in sporadic CJD patients. In addition to these pioneering findings, recent progress in experimental transmission studies and worldwide surveillance of prion diseases have identified novel relationships between the PRNP polymorphisms and the prion disease susceptibility. For example, although 219E/K heterozygosity confers resistance against the development of sporadic CJD, this genotype is not entirely protective against acquired forms (iatrogenic CJD and variant CJD) or genetic forms (genetic CJD and Gerstmann-Sträussler-Scheinker syndrome) of prion diseases. In addition, 129M/V heterozygotes predispose to genetic CJD caused by a pathogenic PRNP mutation at codon 180. These findings show that the effects of the PRNP polymorphisms may be more complicated than previously thought. This review aims to summarize recent advances in our knowledge about the influence of the PRNP polymorphisms on the prion disease susceptibility.

  18. How social learning adds up to a culture: from birdsong to human public opinion

    PubMed Central

    Feher, Olga; Fimiarz, Daniel; Conley, Dalton

    2017-01-01

    ABSTRACT Distributed social learning may occur at many temporal and spatial scales, but it rarely adds up to a stable culture. Cultures vary in stability and diversity (polymorphism), ranging from chaotic or drifting cultures, through cumulative polymorphic cultures, to stable monolithic cultures with high conformity levels. What features can sustain polymorphism, preventing cultures from collapsing into either chaotic or highly conforming states? We investigate this question by integrating studies across two quite separate disciplines: the emergence of song cultures in birds, and the spread of public opinion and social conventions in humans. In songbirds, the learning process has been studied in great detail, while in human studies the structure of social networks has been experimentally manipulated on large scales. In both cases, the manner in which communication signals are compressed and filtered – either during learning or while traveling through the social network – can affect culture polymorphism and stability. We suggest a simple mechanism of a shifting balance between converging and diverging social forces to explain these effects. Understanding social forces that shape cultural evolution might be useful for designing agile communication systems, which are stable and polymorphic enough to promote gradual changes in institutional behavior. PMID:28057835

  19. BDNF polymorphism predicts the rate of decline in skilled task performance and hippocampal volume in healthy individuals

    PubMed Central

    Sanchez, M Millan; Das, D; Taylor, J L; Noda, A; Yesavage, J A; Salehi, A

    2011-01-01

    Numerous studies have indicated a link between the presence of polymorphism in brain-derived neurotrophic factor (BDNF) and cognitive and affective disorders. However, only a few have studied these effects longitudinally along with structural changes in the brain. This study was carried out to investigate whether valine-to-methionine substitution at position 66 (val66met) of pro-BDNF could be linked to alterations in the rate of decline in skilled task performance and structural changes in hippocampal volume. Participants consisted of 144 healthy Caucasian pilots (aged 40–69 years) who completed a minimum of 3 consecutive annual visits. Standardized flight simulator score (SFSS) was measured as a reliable and quantifiable indicator for skilled task performance. In addition, a subset of these individuals was assessed for hippocampal volume alterations using magnetic resonance imaging. We found that val66met substitution in BDNF correlated longitudinally with the rate of decline in SFSS. Structurally, age-dependent hippocampal volume changes were also significantly altered by this substitution. Our study suggests that val66met polymorphism in BDNF can be linked to the rate of decline in skilled task performance. Furthermore, this polymorphism could be used as a predictor of the effects of age on the structure of the hippocampus in healthy individuals. Such results have implications for understanding possible disabilities in older adults performing skilled tasks who are at a higher risk for cognitive and affective disorders. PMID:22833197

  20. The common Arg389gly ADRB1 polymorphism affects heart rate response to the ultra-short-acting β(1) adrenergic receptor antagonist esmolol in healthy individuals.

    PubMed

    Muszkat, Mordechai; Hoofien, Assaf; Orlanski-Meyer, Esther; Makhoul, Hani; Porat, Einav; Davidson, Eliad M; Blotnick, Simcha; Caraco, Yoseph

    2013-01-01

    The β1-adrenergic receptor (β1AR) Arg389Gly polymorphism affects responses to orally administered β1AR antagonists (β-blockers) in vivo. However, the effect of this polymorphism on the early heart rate response to β-blockers has not been evaluated. The aim of this study was to determine the effect of the Arg389Gly polymorphism on the inhibition of exercise-induced tachycardia by esmolol, an ultra-short-acting intravenously administered β1AR antagonist. Healthy nonsmoking White individuals were enrolled on the basis of their ADRB1 genotype, including carriers of 0, 1 or 2 Arg389 alleles (n=9 in each group, total 27, 18 men). Placebo and esmolol were infused consecutively for 10 min each, separated by 30 min. At the end of each infusion, participants performed dynamic handgrip exercise. Heart rate and blood pressure were compared among three ADRB1 genotypes. Carriers of 0, 1, or 2 Arg389 alleles varied significantly in both exercise-induced tachycardia during esmolol (P(ANOVA)=0.030) and esmolol inhibition of exercise-induced tachycardia [0.78±7.70, 5.11±4.05, 10.22±9.78 bpm, respectively (P=0.014)]. The early effect of esmolol on exercise-induced tachycardia was significantly greater among Arg389 than in Gly389 homozygote healthy individuals (NCT01388036). © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  1. Association of cytokine gene polymorphisms in CWP and its severity in Turkish coal workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ates, I.; Suzen, H.S.; Yucesoy, B.

    2008-10-15

    Cytokines appear to play a key role in some inflammatory reactions affecting the interactions among pro- and anti-inflammatory mechanisms that result in several diseases such as coal workers' pneumoconiosis (CWP). In this study, to determine the cytokine gene profiles of Turkish coal miners, we performed genotyping analysis to investigate the polymorphisms of CWP-related pro-inflammatory (TNFA, IL1A, IL1B, and IL6) and anti-inflammatory cytokines (IL-1RN and TGFB1). Genotyping was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. TNFA (-238) gene polymorphism principally affected CWP development and severity (OR=3.47: 95% CI, 1.12-10.77 and OR=4.30: 95% CI, 1.25-14.74, respectively) and alsomore » risk of CWP (OR=3.79: 95% CI, 1.37-10.46). The TNFA (-308) variant was associated with a risk for the CWP severity (OR = 2.84: 95% CI, 1.08-7.39). A protective effect of IL6 was found on the development (OR = 0.48: 95% CI, 0.21-0.93) and severity of CWP (OR = 0.37: 95% CI, 0.15-0.91). We suggest that TNFA (-238) variant may be a risk factor in both development and the severity, of CWP while TNFA (-308) variant seems to be important only in disease severity On the other hand, IL6 variant may have a protective effect on the development and disease severity.« less

  2. Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence.

    PubMed

    Mohseni, Sara; Che, Hua; Djillali, Zakia; Dumont, Estelle; Nankeu, Joseph; Danyluk, Jean

    2012-12-01

    Expression of cold-regulated genes needed for protection against freezing stress is mediated, in part, by the CBF transcription factor family. Previous studies with temperate cereals suggested that the CBF gene family in wheat was large, and that CBF genes were at the base of an important low temperature tolerance trait. Therefore, the goal of our study was to identify the CBF repertoire in the freezing-tolerant hexaploid wheat cultivar Norstar, and then to examine if the coding region of CBF genes in two spring cultivars contain polymorphisms that could affect the protein sequence and structure. Our analyses reveal that hexaploid wheat contains a complex CBF family consisting of at least 65 CBF genes of which 60 are known to be expressed in the cultivar Norstar. They represent 27 paralogous genes with 1-3 homeologous copies for the A, B, and D genomes. The cultivar Norstar contains two pseudogenes and at least 24 additional proteins having sequences and (or) structures that deviate from the consensus in the conserved AP2 DNA-binding and (or) C-terminal activation-domains. This suggests that in cultivars such as Norstar, low temperature tolerance may be increased through breeding of additional optimal alleles. The examination of the CBF repertoire present in the two spring cultivars, Chinese Spring and Manitou, reveals that they have additional polymorphisms affecting conserved positions in these domains. Understanding the effects of these polymorphisms will provide additional information for the selection of optimum CBF alleles in Triticeae breeding programs.

  3. EIF3G is associated with narcolepsy across ethnicities.

    PubMed

    Holm, Anja; Lin, Ling; Faraco, Juliette; Mostafavi, Sara; Battle, Alexis; Zhu, Xiaowei; Levinson, Douglas F; Han, Fang; Gammeltoft, Steen; Jennum, Poul; Mignot, Emmanuel; Kornum, Birgitte R

    2015-11-01

    Type 1 narcolepsy, an autoimmune disease affecting hypocretin (orexin) neurons, is strongly associated with HLA-DQB1*06:02. Among polymorphisms associated with the disease is single-nucleotide polymorphism rs2305795 (c.*638G>A) located within the P2RY11 gene. P2RY11 is in a region of synteny conserved in mammals and zebrafish containing PPAN, EIF3G and DNMT1 (DNA methyltransferase 1). As mutations in DNMT1 cause a rare dominant form of narcolepsy in association with deafness, cerebellar ataxia and dementia, we questioned whether the association with P2RY11 in sporadic narcolepsy could be secondary to linkage disequilibrium with DNMT1. Based on genome-wide association data from two cohorts of European and Chinese ancestry, we found that the narcolepsy association signal drops sharply between P2RY11/EIF3G and DNMT1, suggesting that the association with narcolepsy does not extend into the DNMT1 gene region. Interestingly, using transethnic mapping, we identified a novel single-nucleotide polymorphism rs3826784 (c.596-260A>G) in the EIF3G gene also associated with narcolepsy. The disease-associated allele increases EIF3G mRNA expression. EIF3G is located in the narcolepsy risk locus and EIF3G expression correlates with PPAN and P2RY11 expression. This suggests shared regulatory mechanisms that might be affected by the polymorphism and are of relevance to narcolepsy.

  4. Does the Incredible Years reduce child externalizing problems through improved parenting? The role of child negative affectivity and serotonin transporter linked polymorphic region (5-HTTLPR) genotype.

    PubMed

    Weeland, Joyce; Chhangur, Rabia R; Jaffee, Sara R; Van Der Giessen, Danielle; Matthys, Walter; Orobio De Castro, Bram; Overbeek, Geertjan

    2018-02-01

    In a randomized controlled trial, the Observational Randomized Controlled Trial of Childhood Differential Susceptibility (ORCHIDS study), we tested whether observed parental affect and observed and reported parenting behavior are mechanisms of change underlying the effects of the behavioral parent training program the Incredible Years (IY). Furthermore, we tested whether some children are more susceptible to these change mechanisms because of their temperamental negative affectivity and/or serotonin transporter linked polymorphic region (5-HTTLPR) genotype. Participants were 387 Dutch children between 4 and 8 years of age (M age = 6.31, SD = 1.33; 55.3% boys) and their parents. Results showed that although IY was successful in improving parenting behavior and increasing parental positive affect, these effects did not explain the significant decreases in child externalizing problems. We therefore found no evidence for changes in parenting behavior or parental affect being the putative mechanisms of IY effectiveness. Furthermore, intervention effects on child externalizing behavior were not moderated by child negative affectivity or 5-HTTLPR genotype. However, child 5-HTTLPR genotype did moderate intervention effects on negative parenting behavior. This suggests that in research on behavioral parent training programs, "what works for which parents" might also be an important question.

  5. A rare mutation in AgRP, +79G>A, affects promoter activity.

    PubMed

    Sözen, M A; de Jonge, L H M; Greenway, F; Ravussin, E; Smith, S R; Argyropoulos, G

    2007-06-01

    The agouti-related protein is a powerful orexigenic peptide. A rare mutation, +79G>A, was identified in its minimal promoter in two white carriers. Comparison of the 45-year-old male proband, who was also a carrier of the common Ala67Thr polymorphism, with an age- and weight-matching wild-type population showed marginal differences for resting metabolic rate (RMR) and body mass index. The second carrier however was an obese 57-year-old female with reduced RMR. Functional analysis in hypothalamus- and periphery-derived cell lines showed reduced promoter activity for the +79A allele in the adrenocortical cells only, suggesting that it could affect the peripheral expression levels of AgRP. The +79G>A mutation could predispose to body weight gain (as suggested by the phenotype of the second carrier), but it could only affect the proband at an older age as he may be protected by the Ala67Thr polymorphism that is associated with resistance to late-onset fatness.

  6. Further mapping of 10q26 supports strong association of HTRA1 polymorphisms with age-related macular degeneration.

    PubMed

    Gibbs, Daniel; Yang, Zhenglin; Constantine, Ryan; Ma, Xiang; Camp, Nicola J; Yang, Xian; Chen, Hayou; Jorgenson, Adam; Hau, Vincent; Dewan, Andrew; Zeng, Jiexi; Harmon, Jennifer; Buehler, Jeanette; Brand, John M; Hoh, Josephine; Cameron, D Joshua; Dixit, Manjusha; Tong, Zongzhong; Zhang, Kang

    2008-02-01

    Age-related macular degeneration (AMD) is a complex disorder with genetic and environmental influences. The genetic influences affecting AMD are not well understood and few genes have been consistently implicated and replicated for this disease. A polymorphism (rs11200638) in a transcription factor binding site of the HTRA1 gene has been described, in previous reports, as being most significantly associated with AMD. In this paper, we investigate haplotype association and individual polymorphic association by genotyping additional variants in the AMD risk-associated region of chromosome 10q26. We demonstrate that rs11200638 in the promoter region and rs2293870 in exon 1 of HTRA1, are among the most significantly associated variants for advanced forms of AMD.

  7. Mass and charge distributions of amyloid fibers involved in neurodegenerative diseases: mapping heterogeneity and polymorphism† †Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c7sc04542e

    PubMed Central

    Pansieri, Jonathan; Halim, Mohammad A.; Vendrely, Charlotte; Dumoulin, Mireille; Legrand, François; Sallanon, Marcelle Moulin; Chierici, Sabine; Denti, Simona; Dagany, Xavier; Dugourd, Philippe; Marquette, Christel

    2018-01-01

    Heterogeneity and polymorphism are generic features of amyloid fibers with some important effects on the related disease development. We report here the characterization, by charge detection mass spectrometry, of amyloid fibers made of three polypeptides involved in neurodegenerative diseases: Aβ1–42 peptide, tau and α-synuclein. Beside the mass of individual fibers, this technique enables to characterize the heterogeneity and the polymorphism of the population. In the case of Aβ1–42 peptide and tau protein, several coexisting species could be distinguished and characterized. In the case of α-synuclein, we show how the polymorphism affects the mass and charge distributions. PMID:29732065

  8. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    PubMed

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2017-06-15

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design: We used EGFR -mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results: EGFR -mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR -mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR -T790M mutations. Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR -mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR . ©2016 American Association for Cancer Research.

  9. Prognostic role of the CDNK1B V109G polymorphism in multiple endocrine neoplasia type 1

    PubMed Central

    Circelli, Luisa; Ramundo, Valeria; Marotta, Vincenzo; Sciammarella, Concetta; Marciello, Francesca; Del Prete, Michela; Sabatino, Lina; Pasquali, Daniela; Izzo, Francesco; Scala, Stefania; Colao, Annamaria; Faggiano, Antongiulio; Colantuoni, Vittorio

    2015-01-01

    CDKN1B encodes the cyclin-dependent kinase inhibitor p27/Kip1. CDKN1B mutations and polymorphisms are involved in tumorigenesis; specifically, the V109G single nucleotide polymorphism has been linked to different tumours with controversial results. Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant syndrome, characterized by the development of different types of neuroendocrine tumours and increased incidence of other malignancies. A clear genotype–phenotype correlation in MEN1 has not been established yet. In this study, we assessed whether the CDKN1B V109G polymorphism was associated with the development of aggressive tumours in 55 consecutive patients affected by MEN1. The polymorphism was investigated by PCR amplification of germline DNA followed by direct sequencing. Baseline and follow-up data of tumour types and their severity were collected and associated with the genetic data. MEN1-related aggressive and other malignant tumours of any origin were detected in 16.1% of wild-type and 33.3% of polymorphism allele-bearing patients (P = NS). The time interval between birth and the first aggressive tumour was significantly shorter in patients with the CDKN1B V109G polymorphism (median 46 years) than in those without (median not reached; P = 0.03). Similarly, shorter was the time interval between MEN1 diagnosis and age of the first aggressive tumour (P = 0.02). Overall survival could not be estimated as 96% patients were still alive at the time of the study. In conclusion, CDKN1B V109G polymorphism seems to play a role in the development of aggressive tumours in MEN1. PMID:25824098

  10. The evolution of a Müllerian mimic in a spatially distributed community.

    PubMed

    Joron, Mathieu; Iwasa, Yoh

    2005-11-07

    Strong positive density-dependence should lead to a loss of diversity, but warning-colour and Müllerian mimicry systems show extraordinary levels of diversity. Here, we propose an analytical model to explore the dynamics of two forms of a Müllerian mimic in a heterogeneous environment with two alternative model species. Two connected populations of a dimorphic, chemically defended mimic are allowed to evolve and disperse. The proportions of the respective model species vary spatially. We use a nonlinear approximation of Müller's number-dependent equations to model a situation where the mortality for either form of the mimic decreases hyberbolically when its local density increases. A first non-spatial analysis confirms that the positive density-dependence makes coexistence of mimetic forms unstable in a single isolated patch, but shows that mimicry of the rarer model can be stable once established. The two-patch analysis shows that when models have different abundance in different places, local mimetic diversity in the mimic is maintained only if spatial heterogeneity is strong, or, more interestingly, if the mimic is not too strongly distasteful. Therefore, mildly toxic species can become polymorphic in a wider range of ecological settings. Spatial dynamics thus reveal a region of Müllerian polymorphism separating classical Batesian polymorphism and Müllerian monomorphism along the mimic's palatability spectrum. Such polymorphism-palatability relationship in a spatial environment provides a parsimonious hypothesis accounting for the observed Müllerian polymorphism that does not require quasi-Batesian dynamics. While the stability of coexistence depends on all factors, only the migration rate and strength of selection appear to affect the level of diversity at the polymorphic equilibrium. Local adaptation is predicted in most polymorphic cases. These results are in very good accordance with recent empirical findings on the polymorphic butterflies Heliconius numata and H. cydno.

  11. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: effect on methotrexate-related toxicity in adult acute lymphoblastic leukaemia.

    PubMed

    Eissa, Deena Samir; Ahmed, Tamer Mohamed

    2013-03-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme involved in folate metabolism. Two polymorphisms, C677T and A1298C, were described leading to reduced enzyme activity. Methotrexate (MTX) is an antifolate agent of consolidation and maintenance therapy of acute lymphoblastic leukaemia (ALL). Despite its clinical success, MTX can be associated with serious toxicities resulting in treatment interruption or discontinuation, impacting disease outcome. There is evidence that MTX toxicity can be affected by polymorphisms in genes encoding for drug-metabolizing enzymes such as MTHFR. Therefore, we aimed to investigate the influence of MTHFR C677T and A1298C polymorphisms on the frequency of MTX-related toxicity, disease outcome and patients' survival. MTHFR polymorphisms were assessed in 50 adult patients with de novo ALL using real-time PCR. Patients were followed-up for the development of haematologic and/or nonhaematologic toxicity and assessment of clinical outcome. Frequency of C677T polymorphisms was 42% for TT, 24% for CT and 34% for CC; A1298C polymorphisms were 28, 6 and 66% for CC, AC and AA, respectively. MTX therapy was significantly associated with neutropaenia, hepatic and gastrointestinal toxicities, unfavourable response at day 14 of induction therapy, increased relapse and mortality rates and shorter survival in patients with 677 TT genotype than in those with CC and CT, whereas 1298 CC genotype patients had lower frequency of neutropaenia, hepatic toxicity and relapse than in those with AA and AC. Our study suggests MTHFR polymorphism as an attractive predictor of MTX-related toxicity in adult ALL, considering it a potential prognostic factor influencing disease outcome.

  12. Evolutionary trade-offs and the structure of polymorphisms.

    PubMed

    Sheftel, Hila; Szekely, Pablo; Mayo, Avi; Sella, Guy; Alon, Uri

    2018-05-26

    Populations of organisms show genetic differences called polymorphisms. Understanding the effects of polymorphisms is important for biology and medicine. Here, we ask which polymorphisms occur at high frequency when organisms evolve under trade-offs between multiple tasks. Multiple tasks present a problem, because it is not possible to be optimal at all tasks simultaneously and hence compromises are necessary. Recent work indicates that trade-offs lead to a simple geometry of phenotypes in the space of traits: phenotypes fall on the Pareto front, which is shaped as a polytope: a line, triangle, tetrahedron etc. The vertices of these polytopes are the optimal phenotypes for a single task. Up to now, work on this Pareto approach has not considered its genetic underpinnings. Here, we address this by asking how the polymorphism structure of a population is affected by evolution under trade-offs. We simulate a multi-task selection scenario, in which the population evolves to the Pareto front: the line segment between two archetypes or the triangle between three archetypes. We find that polymorphisms that become prevalent in the population have pleiotropic phenotypic effects that align with the Pareto front. Similarly, epistatic effects between prevalent polymorphisms are parallel to the front. Alignment with the front occurs also for asexual mating. Alignment is reduced when drift or linkage is strong, and is replaced by a more complex structure in which many perpendicular allele effects cancel out. Aligned polymorphism structure allows mating to produce offspring that stand a good chance of being optimal multi-taskers in at least one of the locales available to the species.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  13. Relationship of plasminogen activator inhibitor 1 gene 4G/5G polymorphisms to hypertension in Korean women.

    PubMed

    Kim, Kyu-nam; Kim, Kwang-min; Kim, Bom-taeck; Joo, Nam-seok; Cho, Doo-yeoun; Lee, Duck-joo

    2012-04-01

    Hypertension (HTN) is a major determinant of various cardiovascular events. Plasma levels of plasminogen activator inhibitor 1 (PAI-1) modulate this risk. A deletion/insertion polymorphism within the PAI-1 loci (4G/4G, 4G/5G, 5G/5G) affects the expression of this gene. The present study investigated the association between PAI-1 loci polymorphisms and HTN in Korean women. Korean women (n = 1312) were enrolled in this study to evaluate the association between PAI-1 4G/5G gene polymorphisms and HTN as well as other metabolic risk factors. PAI-1 loci polymorphisms were investigated using polymerase chain reaction amplification and single-strand conformation polymorphism analysis. The three genotype groups differed with respect to systolic blood pressure (P = 0.043), and diastolic blood pressure (P = 0.009) but not with respect to age, body mass index, total cholesterol, low or high density lipoprotein cholesterol, triglycerides, or fasting blood glucose. Carriers of the PAI-1 4G allele had more hypertension significantly (PAI-1 4G/5G vs. PAI-1 5G/5G, P = 0.032; PAI-1 4G/4G vs. PAI-1 5G/5G, P = 0.034). When stratified according to PAI-1 4G/5G polymorphism, there was no significant difference in all metabolic parameters among PAI-1 genotype groups in patients with HTN as well as subjects with normal blood pressure. The estimated odds ratio of the 4G/4G genotype and 4G/5G for HTN was 1.7 (P = 0.005), and 1.6 (P = 0.015), respectively. These findings might indicate that PAI-1 loci polymorphisms independently contribute to HTN and that gene-environmental interaction may be not associated in Korean women.

  14. Association of interleukin-18 gene polymorphism and its protein expression with the lower extremity deep venous thrombosis in the chinese han population: A case-control study.

    PubMed

    Chen, Ye-Long; Shou, Li-Hong; Zhang, Zong-Xin

    2018-05-01

    We aim to explain the correlation among IL-18 gene polymorphism, its protein expression and LEDVT in the Chinese Han population. A total of 138 LEDVT patients and 150 healthy people volunteered as LEDVT and control groups. All the data, including the gender, age, BMI, levels of TG, LDL/HDL, TC, GLU, APTT, BUN, Cr, ALT, AST, ApoA1, ApoB, and Fg was detected. IL-18 level, IL-18 -137G/C and -607C/A polymorphism, and risk factors of LEDVT were detected using ELISA, PCR-RFLP and multivariate logistic regression analysis, respectively. Increased BMI, GLU, Fg, BUN, ApoB and IL-18 and decreased APTT were found in the LEDVT group. The GC + CC genotype and C allele in -137G/C polymorphism was elevated in the control group when compared to that in the LEDVT group. The IL-18 level was elevated in the case group when compared to the control group with respect to the same genotype in -607C/A and -137G/C polymorphisms, and in the LEDVT group, IL-18 level was higher in the GG genotype than that in the GC + CC genotype of -137G/C polymorphism. BUN, GG genotype and IL-18 level were independent risk factors, but APTT was a protective factor of LEDVT. On the basis of our results, we concluded that the GG genotype of -137G/C polymorphism and IL-18 level are independent risk factors of LEDVT, and IL-18 gene polymorphism affects the level of IL-18 in LEDVT patients. © 2017 Wiley Periodicals, Inc.

  15. NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease

    PubMed Central

    Malhotra, Deepti; Boezen, H. Marike; Siedlinski, Mateusz; Postma, Dirkje S.; Wong, Vivien; Akhabir, Loubna; He, Jian-Qing; Connett, John E.; Anthonisen, Nicholas R.; Paré, Peter D.; Biswal, Shyam

    2012-01-01

    An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function. PMID:22693272

  16. NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease.

    PubMed

    Sandford, Andrew J; Malhotra, Deepti; Boezen, H Marike; Siedlinski, Mateusz; Postma, Dirkje S; Wong, Vivien; Akhabir, Loubna; He, Jian-Qing; Connett, John E; Anthonisen, Nicholas R; Paré, Peter D; Biswal, Shyam

    2012-08-01

    An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function.

  17. Addictive genes and the relationship to obesity and inflammation.

    PubMed

    Heber, David; Carpenter, Catherine L

    2011-10-01

    There is increasing evidence that the same brain reward circuits involved in perpetuating drug abuse are involved in the hedonic urges and food cravings observed clinically in overweight and obese subjects. A polymorphism of the D2 dopamine receptor which renders it less sensitive to dopamine stimulation has been proposed to promote self-stimulatory behavior such as consuming alcohol, abusing drugs, or binging on foods. It is important to determine how this polymorphism may interact with other well-known candidate genes for obesity including polymorphisms of the leptin receptor gene and the opiomelanocortin gene. Leptin is a proinflammatory cytokine as well as a long-term signal maintaining body fat. Upper-body obesity stimulates systemic inflammation through the action of multiple cytokines including leptin throughout many organs including the brain. The association of numerous diseases including diabetes mellitus, heart disease, as well as depression with chronic low-grade inflammation due to abdominal obesity has raised the possibility that obesity-associated inflammation affecting the brain may promote addictive behaviors leading to a self-perpetuating cycle that may affect not only foods but addictions to drugs, alcohol, and gambling. This new area of interdisciplinary research holds the promise of developing new approaches to treating drug abuse and obesity.

  18. Regulation of emotional response in juvenile monkeys treated with fluoxetine: MAOA interactions

    PubMed Central

    Golub, M. S.; Phi, C. E.; Bulleri, A. M.

    2016-01-01

    Juvenile male rhesus macaques received therapeutic doses of fluoxetine daily from one to three years of age and were compared to vehicle-treated controls (N=16/group). Genotyping for monoamine oxidase A (MAOA) polymorphisms was used to form subgroups (N=8) with high and low expression of the gene. Behavioral responses were scored during 30-second exposures to pictures differing in affective content. As expected from its therapeutic effect, fluoxetine decreased the behavioral response to emotionally evocative pictures. A 44% reduction in number of expressive behaviors was seen, but only in subjects with low expression MAOA polymorphisms. In general, this effect occurred for pictures of varying affective content and was not due to altered occurrence of one specific behavior or type of behavior. The drug*genotype interaction was seen after one and two years of treatment and did not reverse one year after discontinuation of dosing. Two potential translational implications are suggested: (1) MAOA genetic polymorphisms may be the source of some of the variability in response to fluoxetine treatment in children; (2) extended fluoxetine treatment during juvenile brain development may result in persistent effects on emotional regulation. PMID:27852517

  19. Regulation of emotional response in juvenile monkeys treated with fluoxetine: MAOA interactions.

    PubMed

    Golub, M S; Hogrefe, C E; Bulleri, A M

    2016-12-01

    Juvenile male rhesus macaques received therapeutic doses of fluoxetine daily from one to three years of age and were compared to vehicle-treated controls (N=16/group). Genotyping for monoamine oxidase A (MAOA) polymorphisms was used to form subgroups (N=8) with high and low expression of the gene. Behavioral responses were scored during 30-second exposures to pictures differing in affective content. As expected from its therapeutic effect, fluoxetine decreased the behavioral response to emotionally evocative pictures. A 44% reduction in number of expressive behaviors was seen, but only in subjects with low expression MAOA polymorphisms. In general, this effect occurred for pictures of varying affective content and was not due to altered occurrence of one specific behavior or type of behavior. The drug*genotype interaction was seen after one and two years of treatment and did not reverse one year after discontinuation of dosing. Two potential translational implications are suggested: (1) MAOA genetic polymorphisms may be the source of some of the variability in response to fluoxetine treatment in children; (2) extended fluoxetine treatment during juvenile brain development may result in persistent effects on emotional regulation. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  20. Genetic polymorphisms in the vitamin D pathway in relation to lung cancer risk and survival

    PubMed Central

    Kong, Jinyu; Xu, Fangxiu; Qu, Jinli; Wang, Yu; Gao, Ming; Yu, Herbert; Qian, Biyun

    2015-01-01

    Studies have suggested that vitamin D may have protective effects against cancer development or tumor progression. To search for additional evidence, we investigated the role of genetic polymorphisms involved in the vitamin D pathway in non-small cell lung cancer (NSCLC). We evaluated common genetic polymorphisms associated with the vitamin D pathway in relation to NSCLC in a case-control study of 603 newly diagnosed NSCLC patients and 661 matched healthy controls. Seven single nucleotide polymorphisms (SNPs) were genotyped, the expression of CYP27B1 and CYP24A1 were measured in 153 tumor samples and their associations with genotypes and patient survival were also analyzed. In the case-control comparison, we found SNP rs3782130 (CYP27B1), rs7041 (GC), rs6068816 and rs4809957 (CYP24A1) associated with NSCLC risk. The risk of NSCLC was increased with the number of risk alleles. CYP27B1 and CYP24A1 expression were significantly different between tumor and normal tissues in NSCLC. High CYP27B1 expression was associated with better overall survival, and the expression was different by the rs3782130 genotype. The study suggests that some genetic polymorphisms involved in the vitamin D pathway may associate with NSCLC risk, and one of the polymorphisms (rs3782130) may affect gene expression and patient survival. PMID:25544771

  1. Association between XRCC1 polymorphisms and laryngeal cancer susceptibility in a Chinese sample population.

    PubMed

    Wu, W Q; Zhang, L S; Liao, S P; Lin, X L; Zeng, J; Du, D

    2016-10-05

    Laryngeal cancer is the major malignant tumor affecting the upper respiratory tract. Previous studies have reported on the association between XRCC1 genetic polymorphisms and risk of laryngeal cancer, but with conflicting results. In this study, we attempted to assess the association between XRCC1 Arg194Trp, Arg280His and Arg399Gln polymorphisms and risk of laryngeal cancer in a Chinese population. A total of 126 laryngeal cancer patients and 254 control subjects were recruited to this study from the Second Medical College of Jinan University between December 2013 and May 2015. The XRCC1 Arg194Trp, Arg280His, and Arg399Gln polymorphic sites were genotyped by polymerase chain reaction-restriction fragment length polymorphism. Our results revealed a significant association between the AA genotype of XRCC1 Arg280His [odds ratio (OR) = 2.51, 95% confidence interval (CI) = 1.29-4.87, P = 0.01] and an increased risk of laryngeal cancer susceptibility compared to the GG genotype. Moreover, the A allele showed a higher risk of laryngeal cancer susceptibility compared to the G allele (OR = 1.63, 95%CI = 1.19-2.50, P = 0.002). In conclusion, the results of our study suggest that the AA genotype and A allele of the XRCC1 Arg280His polymorphism are associated with an increased laryngeal cancer risk in a Chinese population.

  2. C677T (RS1801133 ) MTHFR gene polymorphism frequency in a colombian population

    PubMed Central

    Gómez-Gutierrez, Alberto; Gómez, Piedad Elena; Casas-Gomez, Maria Consuelo; Briceño, Ignacio

    2015-01-01

    Introduction: Abnormal levels of the enzyme methylenetetrahydrofolate reductase (MTHFR) are associated with an increased risk of both cardiovascular and cerebrovascular disease and higher concentrations of homocysteine. Abnormal levels are also related to birth defects, pregnancy complications, cancer and toxicity to methotrexate (MTX). Polymorphisms of MTHFR affect the activity of the enzyme. Genetic associations have been related to treatment efficacy. Objective: To establish the frequency of the C> T polymorphism at nucleotide 677 of the MTHFR gene in a group of Colombian individuals. Methods: Data from pharmacogenetic microarrays that include MTX sensibility-associated polymorphisms were retrospectively collected (Pathway Genomics®). The frequency of the C> T MTHFR rs1801133 marker polymorphism was analyzed. Results: Microarray data from 68 men and 84 women were analyzed. Comparisons of genotype C/C vs. C/T and T/T were statistically significantly different (p= 0.00, p= 0.026, respectively), as were C/T and T / T (p= 0.0001). Conclusions: Results for the C/C and C/T genotypes in a Colombian population are similar to other previously studied groups of healthy subjects. Subjects from our population might be at risk of developing diseases associated with MTHFR polymorphisms and might present toxicity and adverse effects if treated with MTX, which suggests the need to evaluate therapeutic alternatives based on individual pharmacogenetic studies. PMID:26309343

  3. Association between CFH Y402H Polymorphism and Age Related Macular Degeneration in North Indian Cohort

    PubMed Central

    Gupta, Amod; Prabhakar, Sudesh; Singh, Ramandeep; Sharma, Suresh Kumar; Chen, Wei

    2013-01-01

    The purpose of the study was to determine serum complement factor H (CFH) levels in patients of age related macular degeneration (AMD) and examine its association with CFH Y402H polymorphism. 115 AMD patients and 61 normal controls were recruited in this study. The single nucleotide polymorphism was assayed by real time PCR and serum CFH levels were measured by ELISA and standardized to total serum protein. Chi-square test was applied to polymorphism analysis while Mann Whitney U-statistic for CFH-levels. Mendelian randomization approach was used for determining causal relationship. The genotype frequency differed between the AMD patients (TT- 18.3%, TC-41.3% and CC-40.4%) and controls (TT-76.3%, TC-13.6%, and CC-10.1%) (p = 0001). The frequency of alleles was also significantly different when AMD (T-39% and C-61%) was compared to controls (T-83% and C-17%) (p = 0.0001). Level of serum CFH was significantly lower in AMD patients as compared to normal controls (p = 0.001). Our data showed that the CFH Y402H polymorphism is a risk factor for AMD in the North Indian population. Mendelian randomization approach revealed that CFH Y402H polymorphism affects AMD risk through the modification of CFH serum levels. PMID:23922956

  4. The impact of HLA-G, LILRB1 and LILRB2 gene polymorphisms on susceptibility to and severity of endometriosis.

    PubMed

    Bylińska, Aleksandra; Wilczyńska, Karolina; Malejczyk, Jacek; Milewski, Łukasz; Wagner, Marta; Jasek, Monika; Niepiekło-Miniewska, Wanda; Wiśniewski, Andrzej; Płoski, Rafał; Barcz, Ewa; Roszkowski, Piotr; Kamiński, Paweł; Malinowski, Andrzej; Wilczyński, Jacek R; Radwan, Paweł; Radwan, Michał; Kuśnierczyk, Piotr; Nowak, Izabela

    2018-06-01

    Endometriosis is a disease in which endometriotic tissue occurs outside the uterus. Its pathogenesis is still unknown. The most widespread hypothesis claims that ectopic endometrium appears as a result of retrograde menstruation and its insufficient elimination by immunocytes. Some reports have shown expression of non-classical HLA-G molecules on ectopic endometrium. HLA-G is recognized by KIR2DL4, LILRB1 and LILRB2 receptors on natural killer (NK) and other cells. These receptors are polymorphic, which may affect their activity. In this study we investigated whether HLA-G, KIR2DL4, LILRB1 and LILRB2 polymorphisms may influence susceptibility to endometriosis and disease progression. We used polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (PCR-RFLP) and allelic discrimination methods with TaqMan SNP Genotyping Assays for typing of 276 patients with endometriosis and 314 healthy fertile women. The HLA-G rs1632947:GG genotype was associated with protection against the disease and its severe stages; HLA-G rs1233334:CT protected against progression; LILRB1 rs41308748:AA and LILRB2 rs383369:AG predisposed to the disease and its progression. No effect of KIR2DL4 polymorphism was observed. These results support the role of polymorphisms of HLA-G and its receptors LILRB1 and LILRB2 in susceptibility to endometriosis and its progression.

  5. Tumor necrosis factor-α -308G/A gene polymorphism in Egyptian children with immune thrombocytopenic purpura.

    PubMed

    El Sissy, Maha H; El Sissy, A H; Elanwary, Sherif

    2014-07-01

    Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by increased platelet destruction. Although the cause of ITP remains unclear, it is accepted that both environmental and genetic factors play an important role in the development of the disease. Children with ITP have a T-helper 1-type cytokine pattern with elevated levels of tumor necrosis factor-alpha (TNF-α) as in most autoimmune diseases. Researchers have shown that polymorphism in the TNF-α gene at position -308 affects gene transcriptions with increased TNF-α production. The current case-control study aimed at detecting the frequency of TNF-α -308G/A gene polymorphism as genetic markers in Egyptian children with ITP, and to clear out their possible role in choosing the treatment protocols of therapy, using PCR restriction fragment length polymorphism assay. Ninety-two ITP patients and 100 age and sex-matched healthy controls were recruited in the study. The results obtained revealed that the frequency of TNF-α -308A/A homotype in ITP patients was significantly higher than that of the controls, and conferred almost six-fold increased risk of ITP acquisition. The polymorphic A allele frequency was significantly higher in ITP patients than in the controls, conferring almost two-fold increased ITP risk. In conclusion, our study suggests the possibility that TNF-α -308 gene polymorphism may contribute to the susceptibility of childhood ITP in Egyptian children.

  6. PD-1 gene polymorphism in children with subacute sclerosing panencephalitis.

    PubMed

    Piskin, Ibrahim Etem; Calık, Mustafa; Abuhandan, Mahmut; Kolsal, Ebru; Celik, Sevim Karakas; Iscan, Akın

    2013-08-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive inflammatory and degenerative disorder of the central nervous system. Several factors influence the risk of chronic brain infection with the mutant measles virus. However, to date, no pathogenic mechanism that may predispose to SSPE has been determined. Studies have indicated that specific polymorphisms in certain host genes are probably involved in impairing the ability of host immune cells to eradicate the measles virus in SSPE patients. Programmed cell death protein 1 (PD-1), a member of the CD28 family, is a negative regulator of the immune system. The purpose of our study was to investigate whether PD-1 gene polymorphisms affect susceptibility to the development of SSPE in Turkish children. In total, 109 subjects (54 SSPE patients and 55 healthy controls) were genotyped for the PD-1.9 C/T (rs2227982) single-nucleotide polymorphism (SNP). The distributions of T alleles in the PD-1.9 polymorphism in SSPE patients and healthy controls were 2.8 and 10.9%, respectively. There was a statistically significant difference between the groups; the 95% confidence interval (CI) was 0.06 to 0.85 and the odds ratio (OR) was 0.23 (χ(2) test). Thus, we identified an association between SSPE and the PD-1 rs2227982 gene polymorphism; the frequency of T alleles was higher in controls than in SSPE patients. Georg Thieme Verlag KG Stuttgart · New York.

  7. Absence of association of FCGR2A gene polymorphism rs1801274 with Kawasaki disease in Greek patients.

    PubMed

    Chatzikyriakidou, Anthoula; Aidinidou, Louiza; Giannopoulos, Andreas; Papadopoulou-Legbelou, Kyriaki; Kalinderi, Kallirhoe; Fidani, Liana

    2015-04-01

    Kawasaki disease is an acute, febrile syndrome in infancy, characterised by vasculitis of medium-sized arteries, and affects predominantly young children. Family-based studies on Kawasaki disease supports the contribution of genetic factors in disorder manifestation. In a recent genome-wide association study, the polymorphism rs1801274 of FCGR2A [Fc fragment of immunoglobulin G, low-affinity IIa, receptor] gene has been implicated in disease pathogenesis. The aim of the present study was to explore the association of this variant, for the first time, in a group of Kawasaki-diseased patients of Greek origin. A total of 47 Kawasaki-diseased children and 50 control subjects were enrolled in the study. Polymerase chain reaction-restriction fragment length polymorphism assay was performed in rs1801274 genotyping. No association was observed between this polymorphism genotypes' or alleles' distribution between Kawasaki-diseased patients and controls. Furthermore, no association was revealed between this polymorphism and cardiovascular complications in Kawasaki-diseased patients. In the literature, the reported data over this polymorphism association with Kawasaki disease in Caucasian patients are contradictory. In addition, the disease shows low prevalence in the Caucasian populations. Therefore, the independent genetic association studies on rs1801274 with Kawasaki disease in various Caucasian groups increase the amount of genetic data, which could be used in a future meta-analysis, increasing the statistical power of the resultant conclusions.

  8. Association analysis of the functional MAOA gene promoter and MAOB gene intron 13 polymorphisms in tension type headache patients.

    PubMed

    Edgnülü, Tuba G; Özge, Aynur; Erdal, Nurten; Kuru, Oktay; Erdal, Mehmet E

    2014-01-01

    Monoamine oxidase (MAO) enzymes play an important role in the etiology of many neurological diseases. Tension type headache (TTH) treatments contain inhibitors for selective re-uptake of serotonin and monoamine oxidase inhibitors. MAO (EC 1.4.3.4) has two isoenzymes known as MAOA and MAOB. A promoter polymorphism of a variable number of tandem repeats (VNTR) in the MAOA gene seems to affect MAOA transcriptional activity in vitro. Also, G/A polymorphism in intron 13 (rs1799836) of the MAOB gene have been previously found to be associated with the variability of MAOB enzyme activity. The aim of our study was to investigate a possible association of monoamine oxidase (MAOA and MAOB) gene polymorphisms in tension type headache. MAO gene polymorphisms were examined in a group of 120 TTH patients and in another 168 unrelated healthy volunteers (control group). MAOA promoter and MAOB intron 13 polymorphisms were genotyped using PCR-based methods. An overall comparison between the genotype of MAOA and MAOB genes and allele frequencies of the patients and the control group did not reveal any statistically significant difference between the patients and the control group (p=0.162). Factors like estrogen dosage, the limited number of male patients and other genes' neurotransmitters involved in the etiology of TTH could be responsible for our non-significant results.

  9. In silico screening of the chicken genome for overlaps between genomic regions: microRNA genes, coding and non-coding transcriptional units, QTL, and genetic variations.

    PubMed

    Zorc, Minja; Kunej, Tanja

    2016-05-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a starting point for further functional studies and association studies with poultry production and health traits and the basis for systematic screening of exonic miRNAs and missense/miRNA seed polymorphisms in other genomes.

  10. Strong Impact of TGF-β1 Gene Polymorphisms on Breast Cancer Risk in Indian Women: A Case-Control and Population-Based Study

    PubMed Central

    Rajender, Singh; Tamang, Rakesh; Rajkumar, Raja; Saini, Karan Singh; Megu, Kaling; Goel, Madhu Mati; Surekha, Daminani; Rao, Digumarthi Raghunatha; Rao, Lakshmi; Ramachandra, Lingadakai; Kumar, Sandeep; Kumar, Surender; Vishnupriya, Satti; Satyamoorthy, Kapaettu; Negi, Mahendra Pal Singh; Thangaraj, Kumarasamy; Konwar, Rituraj

    2013-01-01

    Introduction TGF-β1 is a multi-functional cytokine that plays an important role in breast carcinogenesis. Critical role of TGF-β1 signaling in breast cancer progression is well documented. Some TGF-β1 polymorphisms influence its expression; however, their impact on breast cancer risk is not clear. Methods We analyzed 1222 samples in a candidate gene-based genetic association study on two distantly located and ethnically divergent case-control groups of Indian women, followed by a population-based genetic epidemiology study analyzing these polymorphisms in other Indian populations. The c.29C>T (Pro10Leu, rs1982073 or rs1800470) and c.74G>C (Arg25Pro, rs1800471) polymorphisms in the TGF-β1 gene were analyzed using direct DNA sequencing, and peripheral level of TGF-β1 were measured by ELISA. Results c.29C>T substitution increased breast cancer risk, irrespective of ethnicity and menopausal status. On the other hand, c.74G>C substitution reduced breast cancer risk significantly in the north Indian group (p = 0.0005) and only in the pre-menopausal women. The protective effect of c.74G>C polymorphism may be ethnicity-specific, as no association was seen in south Indian group. The polymorphic status of c.29C>T was comparable among Indo-Europeans, Dravidians, and Tibeto-Burmans. Interestingly, we found that Tibeto-Burmans lack polymorphism at c.74G>C locus as true for the Chinese populations. However, the Brahmins of Nepal (Indo-Europeans) showed polymorphism in 2.08% of alleles. Mean TGF-β1 was significantly elevated in patients in comparison to controls (p<0.001). Conclusion c.29C>T and c.74G>C polymorphisms in the TGF-β1 gene significantly affect breast cancer risk, which correlates with elevated TGF-β1 level in the patients. The c.29C>T locus is polymorphic across ethnically different populations, but c.74G>C locus is monomorphic in Tibeto-Burmans and polymorphic in other Indian populations. PMID:24146803

  11. Original BPC3 Research Plan

    Cancer.gov

    The Breast and Prostate Cancer and Hormone-Related Gene Variant Study allows large-scale analyses of breast and prostate cancer risk in relation to genetic polymorphisms and gene-environment interactions that affect hormone metabolism.

  12. Mesolimbic and Nigrostriatal Dopaminergic Systems: Behavioral Neuropharmacology.

    DTIC Science & Technology

    1985-08-01

    presented in Table Table III List of drugs D ru gVeh i c l e Intracerebral infusions Dopamine agonist~s Apomorphine hydrochloride 0.1% Na metabisulfite...saline GABA 0.9% saline Picrotoxin 0 .9%saline Systemic injections Dopamine agents d-Amphetamine sulfate 0.9% saline Aponiorphine hydrochloride 0.9...3H)methionine (15 Ci/mmole, lmCi/ml. 16 Amersham), 122 ul of freshly prepared pargyline hydrochloride (10.2 mM), 326 ul of I M Tris pH 10.8, 246 ul

  13. Ethanol and Mesolimbic Serotonin/Dopamine Interactions via 5-HT-1B Receptors

    DTIC Science & Technology

    2005-03-01

    finished with After completion of the dialysis, the animals were given infusion of 50 [tM of baclofen , a GABAB receptor agonist, an intracardiac...in the quickly, and 40-[tm-thick coronal sections were cut on a ipsilateral NACC after perfusion with baclofen was consid- freezing microtome, stained...triethylamine, 11.5% and appropriate accumbal DA responses to perfusion of the acetonitrile and 11.5% methanol (pH 5.6 with H3 PO4 ), VTA with baclofen were

  14. The long pursued Holy Grail of the true "alcoholic" rat.

    PubMed

    Gessa, Gian Luigi

    2016-08-15

    An anthology of microdialysis and electrophysiological studies on ethanol effect on mesolimbic dopaminergic neurons is presented. The usefulness of rats with innate preference for ethanol, such as the Sardinian alcohol-preferring (sP), in studying ethanol rewarding and reinforcing effects is signaled. The generation of the long sought "alcoholics rat" from sP rats is announced. Rats of the sP line avoid the shortcomings of using rats non selected for ethanol preference. Copyright © 2016. Published by Elsevier B.V.

  15. Drug addiction, love, and the higher power.

    PubMed

    Sussman, Steve; Reynaud, Michel; Aubin, Henri-Jean; Leventhal, Adam M

    2011-09-01

    This discussion piece suggests that reliance on a Higher Power in drug abuse recovery programs is entertained among some addicts for its psychobiological effects. Prayer, meditation, early romantic love, and drug abuse may have in common activation of mesolimbic dopaminergic pathways of the brain and the generation of intense emotional states. In this sense, reliance on a Higher Power may operate as a substitute addiction, which replaces the psychobiological functions formerly served by drug use. Implications of this perspective are discussed.

  16. Polymorphisms in the methylene tetrahydrofolate reductase gene and their unique combinations are associated with an increased susceptibility to the renal cancers.

    PubMed

    Ajaz, Sadia; Khaliq, Shagufta; Hashmi, Altaf; Naqvi, Syed Ali Anwar; Rizvi, Syed Adib-ul-Hassan; Mehdi, Syed Qasim

    2012-05-01

    Two single nucleotide polymorphisms in the methylene tetrahydrofolate reductase (MTHFR) gene, 677C/T and 1298A/C, encode the thermolabile isoforms of the MTHFR enzyme that adversely affect the folic acid metabolic pathway. In the present study, these polymorphisms were investigated for their associations with the risk and prognosis of the renal cell carcinomas (RCCs) in Pakistani patients. The study included 168 RCC patients and 178 controls. The polymorphisms were analyzed by the polymerase chain reaction-restriction fragment length polymorphism method. Statistical analysis revealed that the C-allele and homozygous C genotype of the MTHFR 1298A/C polymorphism were significantly correlated with the risk of RCCs (odds ratio [OR]=1.60; 95% confidence interval [CI]=1.1-2.34 and OR=3.26; 95% CI=1.27-8.37, respectively). The combined genotype analysis showed that the 677CC+1298CC combination greatly increased the susceptibility to RCCs (OR=8.34; 95% CI=2.7-25.7). The 677CT+1298AA and 677CC+1298CA combinations were also associated with an increased risk of RCC (OR=3.21; 95% CI=1.3-7.8 and OR=2.45; 95% CI=1.3-4.6, respectively). The combined genotype effects were also evident in a semiparametric expectation-maximization-based haplotype analysis. The results presented here indicate that the two MTHFR gene polymorphisms are significantly associated with the risk of RCCs in a cohort of Pakistani patients and may be useful as susceptibility markers in other populations of the world as well.

  17. Single-nucleotide polymorphisms and mRNA expression for melatonin synthesis rate-limiting enzyme in recurrent depressive disorder.

    PubMed

    Gałecki, Piotr; Szemraj, Janusz; Bartosz, Grzegorz; Bieńkiewicz, Małgorzata; Gałecka, Elzbieta; Florkowski, Antoni; Lewiński, Andrzej; Karbownik-Lewińska, Małgorzata

    2010-05-01

    Depressive disorder (DD) is characterised by disturbances in blood melatonin concentration. It is well known that melatonin is involved in the control of circadian rhythms, sleep included. The use of melatonin and its analogues has been found to be effective in depression therapy. Melatonin synthesis is a multistage process, where the last stage is catalysed by acetylserotonin methyltransferase (ASMT), the reported rate-limiting melatonin synthesis enzyme. Taking into account the significance of genetic factors in depression development, the gene for ASMT may become an interesting focus for studies in patients with recurrent DD. The goal of the study was to evaluate two single-nucleotide polymorphisms (SNPs) (rs4446909; rs5989681) of the ASMT gene, as well as mRNA expression for ASMT in recurrent DD-affected patients. We genotyped two polymorphisms in a group of 181 recurrent DD patients and in 149 control subjects. The study was performed using the polymerase chain reaction/restriction fragment length polymorphism method. The distribution of genotypes in both studied SNPs in the ASMT gene differed significantly between DD and healthy subjects. The presence of AA genotype of rs4446909 polymorphism and of GG genotype of rs5989681 polymorphism was associated with lower risk for having recurrent DD. In turn, patients with depression were characterised by reduced mRNA expression for ASMT. In addition, ASMT transcript level in both recurrent DD patients and in healthy subjects depended significantly on genotype distributions in both polymorphisms. In conclusion, our results suggest the ASMT gene as a susceptibility gene for recurrent DD.

  18. Relationship of obstructive sleep apnea syndrome with the 5-HT2A receptor gene in Brazilian patients.

    PubMed

    de Carvalho, Thiago Bittencourt Ottoni; Suman, Marcela; Molina, Fernando Drimel; Piatto, Vânia Belintani; Maniglia, José Victor

    2013-03-01

    Serotonin (5-HT) regulates a variety of visceral and physiological functions, including sleep. Polymorphisms in the 5-HT2A receptor gene can alter its transcription, affecting the number of receptors in the serotoninergic system, contributing to obstructive sleep apnea syndrome (OSAS). The aim of this study was to determine the prevalence of the 102T-C and -1438G-A polymorphisms in the 5-HTR2A gene in Brazilian patients with and without OSAS. A cross-sectional study performed at the Otorhinolaryngology and Sleep Disorder Out Clinics, São José do Rio Preto Medical School, FAMERP. One hundred patients were examined as index cases and 100 persons as controls, of both genders to both groups. DNA was extracted from peripheral blood leukocytes, and the sites that encompassed both polymorphisms were amplified by PCR-RFLP. There was a significant prevalence of the male gender in index cases compared with the control group gender (p < 0.0001). There was no significant genotypic difference in the 102T-C polymorphism between the case and control groups (p = 1.000). The AA genotype of the -1438G-A polymorphism was more prevalent in the patients with OSAS compared with the controls (OR, 2.3; CI 95% 1.20-4.38; p = 0.01). There was no difference in the prevalence of the 102T-C polymorphism between patients with OSAS and the control group. Serotoninergic system dysfunction appeared to be related to OSAS. The -1438G-A polymorphism and OSAS are related in this studied Brazilian population.

  19. Role of Thr399Ile and Asp299Gly polymorphisms of toll-like receptor-4 gene in acute dental abscess.

    PubMed

    Miri-Moghaddam, Ebrahim; Farhad-Mollashahi, Narges; Baghaee, Elnaz; Bazi, Ali; Garme, Yasaman

    2017-02-01

    Apical Periodontitis (AP) is an inflammatory disease that affects the tissues surrounding the root end of a tooth. The disease which is caused by endodontic infections presents in different clinical ways including development of an acute abscess. Recent studies have provided information suggesting role of a multitude of factors in pathogenesis of acute apical abscess (AAA). In this case-control study, our goal was to evaluate the frequency and potential role of two common polymorphisms of toll like receptor-4 (TLR-4) gene; Thr399Ile (1196 C>T) and Asp299Gly (+896 A>G), in 50 patients with AAA as cases and 50 patients with asymptomatic apical periodontitis (AAP) as controls. Saliva sample containing mucosal epithelial cells was used for DNA extraction. Polymorphisms were detected by Tetra-ARMS (Amplification Refractory Mutation System) PCR method. Statistical analyses were carried out in SPSS 21 software. Homozygous wild type (CC) and heterozygous (CT) genotypes of Thr399Ile polymorphism were detected in 84% and 16% of AAA patients respectively. In controls, respective ratios were 94% (CC) and 6% (CT). Observed difference was not statistically significant ( P >0.05) for distribution of these genotypes. The mutant homozygous (TT) genotype of this polymorphism was identified in neither of the participants. Overall, T allele frequency was obtained 8% in AAA and 3% in AAP (OR=2.6, 95% CI; 0. 6-10.6, p >0.05). For Asp299Gly polymorphism, no individual was detected with the mutant allele in case or control groups. Our results indicated a possible role for Thr399Ile polymorphism in acute presentations of abscess in AAA. However, the impact of this polymorphism needs to be more assessed in future studies. Key words: Genetic polymorphism, periapical abscess, periapical periodontitis, toll-like receptor 4.

  20. Effects of Lead Exposure and Genetic Polymorphisms on ALAD and GPx Activities in Brazilian Battery Workers.

    PubMed

    da Cunha Martins, Airton; Mazzaron Barcelos, Gustavo Rafael; Jacob Ferreira, Anna Laura Bechara; de Souza, Marilesia Ferreira; de Syllos Cólus, Ilce Mara; Antunes, Lusânia Maria Greggi; Bastos Paoliello, Monica Maria; Adeyemi, Joseph A; Barbosa, Fernando

    2015-01-01

    Lead (Pb) is a toxic metal that is widely used by metallurgical industries such as car battery recycling. Exposure to the metal may modify the redox status of the cells and consequently result in changes in activities of important enzymes such as delta-aminolevulinic acid dehydratase (ALAD) and glutathione peroxidase (GPx). Similarly, genetic polymorphisms may modulate the activities of enzymes related to detoxification processes of the metal and may modify Pb body burden. Therefore, the aims of the present study were (i) to evaluate the correlation between blood lead levels (BLL) and activities of the enzymes ALAD and GPx, and (ii) to determine whether activities of these enzymes may be influenced by polymorphisms in ALAD and GPx genes in Brazilian automotive battery workers chronically exposed to Pb, as well as the effects of these polymorphisms on BLL. Our study included 257 participants; BLL were determined by inductively couple plasma-mass spectrometry (ICP-MS), and the activities of the enzymes ALAD and GPx were quantified spectrophotometrically; and genotyping of ALAD (rs1800435) and GPx-1 (rs1800668) polymorphisms was performed by TaqMan assays (real-time polymerase chain reaction, RT-PCR). Significant negative correlations were found between BLL and ALAD activity. Subjects who carried at least one polymorphic allele for ALAD gene displayed markedly lower ALAD activities, while no significant effect was observed regarding GPx-1 polymorphism and activity of the same enzyme. Further, ALAD and GPx-1 polymorphisms exerted no marked influence on BLL. Taken together, our results showed that BLL affected ALAD but not GPx activities, and these were not modulated by polymorphisms in ALAD and GPx gene. Further, the rs1800435 SNP showed a tendency to modulate ALAD activity, while the rs1800668 SNP did not modulate GPx activity in Brazilian automotive battery workers exposed to Pb.

  1. Role of Thr399Ile and Asp299Gly polymorphisms of toll-like receptor-4 gene in acute dental abscess

    PubMed Central

    Miri-Moghaddam, Ebrahim; Baghaee, Elnaz; Bazi, Ali; Garme, Yasaman

    2017-01-01

    Background Apical Periodontitis (AP) is an inflammatory disease that affects the tissues surrounding the root end of a tooth. The disease which is caused by endodontic infections presents in different clinical ways including development of an acute abscess. Recent studies have provided information suggesting role of a multitude of factors in pathogenesis of acute apical abscess (AAA). In this case-control study, our goal was to evaluate the frequency and potential role of two common polymorphisms of toll like receptor-4 (TLR-4) gene; Thr399Ile (1196 C>T) and Asp299Gly (+896 A>G), in 50 patients with AAA as cases and 50 patients with asymptomatic apical periodontitis (AAP) as controls. Material and Methods Saliva sample containing mucosal epithelial cells was used for DNA extraction. Polymorphisms were detected by Tetra-ARMS (Amplification Refractory Mutation System) PCR method. Statistical analyses were carried out in SPSS 21 software. Results Homozygous wild type (CC) and heterozygous (CT) genotypes of Thr399Ile polymorphism were detected in 84% and 16% of AAA patients respectively. In controls, respective ratios were 94% (CC) and 6% (CT). Observed difference was not statistically significant (P>0.05) for distribution of these genotypes. The mutant homozygous (TT) genotype of this polymorphism was identified in neither of the participants. Overall, T allele frequency was obtained 8% in AAA and 3% in AAP (OR=2.6, 95% CI; 0. 6-10.6, p>0.05). For Asp299Gly polymorphism, no individual was detected with the mutant allele in case or control groups. Conclusions Our results indicated a possible role for Thr399Ile polymorphism in acute presentations of abscess in AAA. However, the impact of this polymorphism needs to be more assessed in future studies. Key words:Genetic polymorphism, periapical abscess, periapical periodontitis, toll-like receptor 4. PMID:28210435

  2. Variation in the serotonin transporter gene modulates selective attention to threat.

    PubMed

    Osinsky, Roman; Reuter, Martin; Küpper, Yvonne; Schmitz, Anja; Kozyra, Eva; Alexander, Nina; Hennig, Jürgen

    2008-08-01

    The 5-HTTLPR is an insertion/deletion polymorphism in the promoter region of the serotonin transporter gene. Prior research has revealed associations between the short-allele variant of this polymorphism, enhanced self-reported negative emotionality, and hypersensitivity of fear relevant neural circuits. In a sample of 50 healthy women we examined the role of 5-HTTLPR for cognitive-affective processing of phylogenetical fear-relevant stimuli (spiders) in a dot probe task. In contrast to homozygote long-allele carriers (ll), participants carrying at least 1 short allele (ss and sl) selectively shifted attention toward pictures of spiders, when these were presented for a duration of 2,000 ms. These results argue for an involvement of 5-HTTLPR in cognitive processing of threatening stimuli and thus, underpin its general role for individual differences in negative affect.

  3. Genetic association between human chitinases and lung function in COPD.

    PubMed

    Aminuddin, F; Akhabir, L; Stefanowicz, D; Paré, P D; Connett, J E; Anthonisen, N R; Fahy, J V; Seibold, M A; Burchard, E G; Eng, C; Gulsvik, A; Bakke, P; Cho, M H; Litonjua, A; Lomas, D A; Anderson, W H; Beaty, T H; Crapo, J D; Silverman, E K; Sandford, A J

    2012-07-01

    Two primary chitinases have been identified in humans--acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host's immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to chronic obstructive pulmonary disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the caucasian LHS population, the baseline forced expiratory volume in one second (FEV(1)) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV(1) and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV(1). Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups.

  4. The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.

    PubMed

    Chen, Linjun; Diao, Zhenyu; Xu, Zhipeng; Zhou, Jianjun; Yan, Guijun; Sun, Haixiang

    2018-05-15

    Osteogenesis imperfecta (OI) is a genetically heterogeneous disorder, presenting either autosomal dominant, autosomal recessive or X-linked inheritance patterns. The majority of OI cases are autosomal dominant and are caused by heterozygous mutations in either the COL1A1 or COL1A2 gene. In these dominant disorders, allele dropout (ADO) can lead to misdiagnosis in preimplantation genetic diagnosis (PGD). Polymorphic markers linked to the mutated genes have been used to establish haplotypes for identifying ADO and ensuring the accuracy of PGD. However, the haplotype of male patients cannot be determined without data from affected relatives. Here, we developed a method for single-sperm-based single-nucleotide polymorphism (SNP) haplotyping via next-generation sequencing (NGS) for the PGD of OI. After NGS, 10 informative polymorphic SNP markers located upstream and downstream of the COL1A1 gene and its pathogenic mutation site were linked to individual alleles in a single sperm from an affected male. After haplotyping, a normal blastocyst was transferred to the uterus for a subsequent frozen embryo transfer cycle. The accuracy of PGD was confirmed by amniocentesis at 19 weeks of gestation. A healthy infant weighing 4,250 g was born via vaginal delivery at the 40th week of gestation. Single-sperm-based SNP haplotyping can be applied for PGD of any monogenic disorders or de novo mutations in males in whom the haplotype of paternal mutations cannot be determined due to a lack of affected relatives. ADO: allele dropout; DI: dentinogenesis imperfect; ESHRE: European Society of Human Reproduction and Embryology; FET: frozen embryo transfer; gDNA: genomic DNA; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; MDA: multiple displacement amplification; NGS: next-generation sequencing; OI: osteogenesis imperfect; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PGD: preimplantation genetic diagnosis; SNP: single-nucleotide polymorphism; STR: short tandem repeat; TE: trophectoderm; WGA: whole-genome amplification.

  5. I219V polymorphism in hMLH1 gene in patients affected with ulcerative colitis.

    PubMed

    Vietri, Maria Teresa; Riegler, Gabriele; De Paola, Marialaura; Simeone, Serena; Boggia, Maria; Improta, Alessia; Parisi, Mariarita; Molinari, Anna Maria; Cioffi, Michele

    2009-04-01

    hMLH1 gene, lying on chromosome 3p21-23, is a key factor of the mismatch repair (MMR) complex, which amends DNA replication errors. MMR alterations are involved in the development of both hereditary and sporadic forms of colorectal carcinoma related to ulcerative colitis (UC). I219V Polymorphism is located on exon 8 of hMLH1 and provides an aminoacidic substitution of isoleucine to valine, on the protein codon 219. This may affect the speed and fidelity of protein synthesis because of a tRNA paucity or changes in the mRNA secondary structure. Most of the hereditary nonpolyposis colon cancer-associated missense mutations of hMLH1 cause structural changes of the amino- or carboxy-terminal regions, involving the domains that interact with ATP and hPMS2. In this study, we analyzed the hMLH1 I219V polymorphism frequency in colectomized patients with UC. Venous blood from 100 ulcerative patients and 97 apparently healthy subjects has been collected. Out of 100 patients affected with UC, 75 noncolectomized showed an alternating course of disease, while 25 did not respond to the common drugs, and underwent colectomy. Genotyping was performed by polymerase chain reaction and following enzymatic digestion by BccI. No significant differences were found between patients with UC and controls both for genotype and allele frequencies. However, our data show a significant association when colectomized and noncolectomized patients are compared. The frequencies of G homozygosity were 28% in colectomized and 10.7% in noncolectomized patients (p < 0.05, chi(2) = 4.4, Odds ratio = 3.3). The allele frequencies of allele A were 52% in colectomized and 68% in noncolectomized patients; while those of allele G were 48% and 32%, respectively. I219V polymorphism in hMLH1 could influence the clinical course of the disease and lead to resistance to therapy.

  6. GABA-A receptor beta3 and alpha5 subunit gene cluster on chromosome 15q11-q13 and bipolar disorder: a genetic association study.

    PubMed

    Papadimitriou, G N; Dikeos, D G; Karadima, G; Avramopoulos, D; Daskalopoulou, E G; Stefanis, C N

    2001-05-08

    There is accumulated evidence that the genes coding for the receptor of gamma aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the CNS, may be involved in the pathogenesis of affective disorders. In a previous study, we have found a genetic association between the GABA-A receptor alpha5 subunit gene locus (GABRA5) on chromosome 15q11-of 13 and bipolar affective disorder. The aim of the present study was to examine the same subjects to see if there exists a genetic association between bipolar affective disorder and the GABA receptor beta3 subunit gene (GABRB3), which is located within 100 kb from GABRA5. The sample consisted of 48 bipolar patients compared to 44 controls (blood donors). All subjects were Greek, unrelated, and personally interviewed. Diagnosis was based on DSM-IV and ICD-10 criteria. The marker used was a dinucleotide (CA) repeat polymorphism with 12 alleles 179 to 201 bp long; genotyping was successful in all patients and 43 controls. The distribution of GABRB3 genotypes among the controls did not deviate significantly from the Hardy-Weinberg equilibrium. No differences in allelic frequencies between bipolar patients and controls were found for GABRB3, while this locus and GABRA5 did not seem to be in significant linkage disequilibrium. In conclusion, the GABRB3 CA-repeat polymorphism we investigated does not present the observed association between bipolar affective illness and GABRA5. This could be due to higher mutation rate in the GABRB3 CA-repeat polymorphism, but it might also signify that GABRA5 is the gene actually associated with the disease. Copyright 2001 Wiley-Liss, Inc.

  7. The SEEKING mind: primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression.

    PubMed

    Alcaro, Antonio; Panksepp, Jaak

    2011-10-01

    Appetitive motivation and incentive states are essential functions sustained by a common emotional brain process, the SEEKING disposition, which drives explorative and approach behaviors, sustains goal-directed activity, promotes anticipatory cognitions, and evokes feelings of positive excitement which control reward-learning. All such functions are orchestrated by the same "archetypical" neural processes, activated in ancient subcortical areas and transported to the forebrain by the mesolimbic dopamine (ML-DA) system. In mammals, the neurophysiology of the SEEKING urge is expressed by DA-promoted high-frequency oscillations, in the form of transient and synchronized gamma waves (>30Hz) emerging in limbic forebrain and diffusing throughout basal ganglia-thalamocortical (BG-T-C) circuits. These patterns may be considered basic "SEEKING neurodynamic impulses" which represent the primary-process exploratory disposition getting integrated with information relative to the external and the internal environment. Abnormal manifestation of SEEKING and its neural substrates are evident in clinical depression and addiction. Specifically, depression is characterized by reduced recruitment of SEEKING, while addictions reflect re-organizations of the SEEKING disposition around ultra-specific appetitive memories and compulsive activities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry

    PubMed Central

    Castro, Daniel C.; Cole, Shannon L.; Berridge, Kent C.

    2015-01-01

    The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH) and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc) and ventral pallidum (VP), in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (“liking”) and motivational incentive salience (“wanting”) of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating vs. intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including “liking” and “wanting” for food rewards. PMID:26124708

  9. Involvement of opioid signaling in food preference and motivation: Studies in laboratory animals.

    PubMed

    Morales, I; Font, L; Currie, P J; Pastor, R

    2016-01-01

    Motivation is a complex neurobiological process that initiates, directs, and maintains goal-oriented behavior. Although distinct components of motivated behavior are difficult to investigate, appetitive and consummatory phases of motivation are experimentally separable. Different neurotransmitter systems, particularly the mesolimbic dopaminergic system, have been associated with food motivation. Over the last two decades, however, research focusing on the role of opioid signaling has been particularly growing in this area. Opioid receptors seem to be involved, via neuroanatomically distinct mechanisms, in both appetitive and consummatory aspects of food reward. In the present chapter, we review the pharmacology and functional neuroanatomy of opioid receptors and their endogenous ligands, in the context of food reinforcement. We examine literature aimed at the development of laboratory animal techniques to better understand different components of motivated behavior. We present recent data investigating the effect of opioid receptor antagonists on food preference and effort-related decision making in rats, which indicate that opioid signaling blockade selectively affects intake of relatively preferred foods, resulting in reduced willingness to exert effort to obtain them. Finally, we elaborate on the potential role of opioid system manipulations in disorders associated with excessive eating and obesity. © 2016 Elsevier B.V. All rights reserved.

  10. The uncertainty processing theory of motivation.

    PubMed

    Anselme, Patrick

    2010-04-02

    Most theories describe motivation using basic terminology (drive, 'wanting', goal, pleasure, etc.) that fails to inform well about the psychological mechanisms controlling its expression. This leads to a conception of motivation as a mere psychological state 'emerging' from neurophysiological substrates. However, the involvement of motivation in a large number of behavioural parameters (triggering, intensity, duration, and directedness) and cognitive abilities (learning, memory, decision, etc.) suggest that it should be viewed as an information processing system. The uncertainty processing theory (UPT) presented here suggests that motivation is the set of cognitive processes allowing organisms to extract information from the environment by reducing uncertainty about the occurrence of psychologically significant events. This processing of information is shown to naturally result in the highlighting of specific stimuli. The UPT attempts to solve three major problems: (i) how motivations can affect behaviour and cognition so widely, (ii) how motivational specificity for objects and events can result from nonspecific neuropharmacological causal factors (such as mesolimbic dopamine), and (iii) how motivational interactions can be conceived in psychological terms, irrespective of their biological correlates. The UPT is in keeping with the conceptual tradition of the incentive salience hypothesis while trying to overcome the shortcomings inherent to this view. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Comparative analysis of DNA methylation polymorphism in drought sensitive (HPKC2) and tolerant (HPK4) genotypes of horse Gram (Macrotyloma uniflorum).

    PubMed

    Bhardwaj, Jyoti; Mahajan, Monika; Yadav, Sudesh Kumar

    2013-08-01

    DNA methylation is known as an epigenetic modification that affects gene expression in plants. Variation in CpG methylation behavior was studied in two natural horse gram (Macrotyloma uniflorum [Lam.] Verdc.) genotypes, HPKC2 (drought-sensitive) and HPK4 (drought-tolerant). The methylation pattern in both genotypes was studied through methylation-sensitive amplified polymorphism. The results revealed that methylation was higher in HPKC2 (10.1%) than in HPK4 (8.6%). Sequencing demonstrated sequence homology with the DRE binding factor (cbf1), the POZ/BTB protein, and the Ty1-copia retrotransposon among some of the polymorphic fragments showing alteration in methylation behavior. Differences in DNA methylation patterns could explain the differential drought tolerance and the epigenetic signature of these two horse gram genotypes.

  12. Cytochrome P450 2D6 polymorphism and character traits.

    PubMed

    Suzuki, Eiji; Kitao, Yoshie; Ono, Yutaka; Iijima, Yoshimi; Inada, Toshiya

    2003-06-01

    It has been suggested that cytochrome P450 2D6 (CYP2D6) is involved in dopamine metabolism within the brain. The dopamine system is suggested to play a role in determining normal character. The purpose of this study was to examine whether character traits are dependent on cytochrome P450 2D6 activity. We investigated the association between temperament and CYP2D6 gene polymorphism. The subjects were all Japanese and the polymorphism genotyped in the present study was CYP2D6*10. Character traits were assessed using the Temperament and Character Inventory. There was no overall or specific association between personality traits and the CYP2D6*10 allele and genotype frequencies. The present results do not support the hypothesis that CYP2D6 activity affects temperament and character.

  13. [Cognitive and neuropsychiatric disorders in Parkinson's disease].

    PubMed

    Rodríguez-Constenla, I; Cabo-López, I; Bellas-Lamas, P; Cebrián, E

    2010-02-08

    In Parkinson's disease there are patients with isolated and multiple cognitive impairment, and their cognitive performance ranges from normal to an advanced degree of dementia. Most patients present an executive deficit, either in isolation or combined with other cognitive disorders, which is considered to be the most characteristic aspect of the disease, and 30-40% of those affected will end up with a clinically-defined dementia. The presence of a mild cognitive disorder in patients with Parkinson means that the risk of dementia appearing at some time during the development of the disease is high. The dementia associated with Parkinson's disease is specifically related with neuropsychiatric signs and symptoms, which may have three possible explanations: disorders affecting the mesolimbic pathways, diffuse limbic and cortical compromise, or associated Alzheimer-type phenomenology. Psychotic episodes tend to present more often in patients with dopaminergic treatment and the clinical spectrum of Parkinson-related psychosis covers visual illusions, visual-audio-olfactory hallucinations, delirium and severe paranoid hallucinatory psychosis. All the antiparkinsonian drugs can give rise to hallucinations and psychosis, but the dopamine agonists are the ones with the greatest capacity to do so. In managing these problems, it is crucial for prevention as well as diagnosis and treatment to be carried out as soon as they are detected. Doses of antiparkinsonian drugs must be reduced, although this is not usually enough, and so it will be necessary to associate atypical antipsychotics, which act mainly on 5-HT receptors and, in most cases, do not produce D2 blockage.

  14. Mixing pleasures: review of the effects of drugs on sex behavior in humans and animal models.

    PubMed

    Frohmader, Karla S; Pitchers, Kyle K; Balfour, Margaret E; Coolen, Lique M

    2010-06-01

    Drugs of abuse act on the brain circuits mediating motivation and reward associated with natural behaviors. There is ample evidence that drugs of abuse impact male and female sexual behavior. First, the current review discusses the effect of drugs of abuse on sexual motivation and performance in male and female humans. In particular, we discuss the effects of commonly abused drugs including psychostimulants, opiates, marijuana/THC, and alcohol. In general, drug use affects sexual motivation, arousal, and performance and is commonly associated with increased sexual risk behaviors. Second, studies on effects of systemic administration of drugs of abuse on sexual behavior in animals are reviewed. These studies analyze the effects on sexual performance and motivation but do not investigate the effects of drugs on risk-taking behavior, creating a disconnect between human and animal studies. For this reason, we discuss two studies that focus on the effects of alcohol and methamphetamine on inhibition of maladaptive sex-seeking behaviors in rodents. Third, this review discusses potential brain areas where drugs of abuse may be exerting their effect on sexual behavior with a focus on the mesolimbic system as the site of action. Finally, we discuss recent studies that have brought to light that sexual experience in turn can affect drug responsiveness, including a sensitized locomotor response to amphetamine in female and male rodents as well as enhanced drug reward in male rats. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Melanopsin Polymorphisms in Seasonal Affective Disorder

    DTIC Science & Technology

    2005-01-01

    Affective Disorder and Melanopsin Pigmentosa (RP), which is a disease characterized by retinal degeneration. Melanopsin is structurally similar to all...abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants. Proceedings of the National Academy of Science U S A, 98(9), p4872-4876...in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa

  16. A vitamin D pathway gene-gene interaction affects low-density lipoprotein cholesterol levels.

    PubMed

    Grave, Nathália; Tovo-Rodrigues, Luciana; da Silveira, Janaína; Rovaris, Diego Luiz; Dal Bosco, Simone Morelo; Contini, Verônica; Genro, Júlia Pasqualini

    2016-12-01

    Much evidence suggests an association between vitamin D deficiency and chronic diseases such as obesity and dyslipidemia. Although genetic factors play an important role in the etiology of these diseases, only a few studies have investigated the relationship between vitamin D-related genes and anthropometric and lipid profiles. The aim of this study was to investigate the association of three vitamin D-related genes with anthropometric and lipid parameters in 542 adult individuals. We analyzed the rs2228570 polymorphism in the vitamin D receptor gene (VDR), rs2134095 in the retinoid X receptor gamma gene (RXRG) and rs7041 in the vitamin D-binding protein gene (GC). Polymorphisms were genotyped by TaqMan allelic discrimination. Gene-gene interactions were evaluated by the general linear model. The functionality of the polymorphisms was investigated using the following predictors and databases: SIFT (Sorting Intolerant from Tolerant), PolyPhen-2 (Polymorphism Phenotyping v2) and Human Splicing Finder 3. We identified a significant effect of the interaction between RXRG (rs2134095) and GC (rs7041) on low-density lipoprotein cholesterol (LDL-c) levels (P=.005). Furthermore, our in silico analysis suggested a functional role for both variants in the regulation of the gene products. Our results suggest that the vitamin D-related genes RXRG and GC affect LDL-c levels. These findings are in agreement with other studies that consistently associate vitamin D and lipid profile. Together, our results corroborate the idea that analyzing gene-gene interaction would be helpful to clarify the genetic component of lipid profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Arterial stiffness, physical activity, and atrial natriuretic Peptide gene polymorphism in older subjects.

    PubMed

    Iemitsu, Motoyuki; Maeda, Seiji; Otsuki, Takeshi; Sugawara, Jun; Kuno, Shinya; Ajisaka, Ryuichi; Matsuda, Mitsuo

    2008-04-01

    An increase in arterial stiffness with advancing age is associated with several pathological states, including hypertension and arteriosclerosis. Regular exercise improves the aging-induced increase in arterial stiffness and has a protective effect against these diseases. However, not all individuals respond to exercise to the same extent. Atrial natriuretic peptide (ANP) is involved in the regulation of basal blood pressure, blood flow, and vascular tone. The present study was designed to clarify whether gene polymorphisms in ANP-related genes affect exercise-induced improvements in arterial stiffness. We performed a cross-sectional study of 291 healthy middle-aged and older Japanese subjects (63+/-1 years), examining the relationship between daily physical activity-induced improvements in arterial stiffness, estimated by brachial-ankle arterial pulse wave velocity (baPWV), and the gene polymorphisms of valine32methionine (V32M: 664G>A) in exon 1 of ANP and asparagine521aspartic acid (N521D: 1780A>G) in exon 8 of the ANP clearance receptor (NPR-C). The baseline baPWV was significantly lower in the active group, but no differences were seen in blood pressure. Active subjects with the ANP-VV genotype had significantly lower baPWV and higher plasma ANP levels compared with inactive subjects, but there were no variations related to the VM+MM genotype. Additionally, baPWV and plasma ANP levels were negatively correlated in ANP-VV genotype subjects, but were not correlated in VM+MM individuals. Our results suggest that ANP polymorphism in older Japanese subjects may affect the cardiovascular response to regular exercise.

  18. The mitochondrial superoxide dismutase A16V polymorphism in the cardiomyopathy associated with hereditary haemochromatosis.

    PubMed

    Valenti, L; Conte, D; Piperno, A; Dongiovanni, P; Fracanzani, A L; Fraquelli, M; Vergani, A; Gianni, C; Carmagnola, L; Fargion, S

    2004-12-01

    The A16V mitochondrial targeting sequence polymorphism influences the antioxidant activity of MnSOD, an enzyme involved in neutralising iron induced oxidative stress. Patients with hereditary haemochromatosis develop parenchymal iron overload, which may lead to cirrhosis, diabetes, hypogonadism, and heart disease. The objective of this study was to determine in patients with haemochromatosis whether the presence of the Val MnSOD allele, associated with reduced enzymatic activity, affects tissue damage, and in particular heart disease, as MnSOD knockout mice develop lethal cardiomyopathy. We studied 217 consecutive unrelated probands with haemochromatosis, and 212 healthy controls. MnSOD polymorphism was evaluated by restriction analysis. The frequency distribution of the polymorphism did not differ between patients and controls. Patients carrying the Val allele had higher prevalence of cardiomyopathy (A/A 4%, A/V 11%, V/V 30%, p = 0.0006) but not of cirrhosis, diabetes, or hypogonadism, independently of age, sex, alcohol misuse, diabetes, and iron overload (odds ratio 10.1 for V/V, p = 0.006). The frequency of the Val allele was higher in patients with cardiomyopathy (0.67 v 0.45, p = 0.003). The association was significant in both C282Y+/+ (p = 0.02), and in non-C282Y+/+ patients (p = 0.003), and for both dilated (p = 0.01) and non-dilated stage (p = 0.04) cardiomyopathy, but not for ischaemic heart disease. In patients with hereditary haemochromatosis, the MnSOD genotype affects the risk of cardiomyopathy related to iron overload and possibly to other known and unknown risk factors and could represent an iron toxicity modifier gene.

  19. Polymorphisms in the microglial marker molecule CX3CR1 affect the blood volume of the human brain.

    PubMed

    Sakai, Mai; Takeuchi, Hikaru; Yu, Zhiqian; Kikuchi, Yoshie; Ono, Chiaki; Takahashi, Yuta; Ito, Fumiaki; Matsuoka, Hiroo; Tanabe, Osamu; Yasuda, Jun; Taki, Yasuyuki; Kawashima, Ryuta; Tomita, Hiroaki

    2018-06-01

    CX3CR1, a G-protein-coupled receptor, is involved in various inflammatory processes. Two non-synonymous single nucleotide polymorphisms, V249I (rs3732379) and T280M (rs3732378), are located in the sixth and seventh transmembrane domains of the CX3CR1 protein, respectively. Previous studies have indicated significant associations between T280M and leukocyte functional characteristics, including adhesion, signaling, and chemotaxis, while the function of V249I is unclear. In the brain, microglia are the only proven and widely accepted CX3CR1-expressing cells. This study aimed to specify whether there were specific brain regions on which these two single nucleotide polymorphisms exert their biological impacts through their functional effects on microglia. Associations between the single nucleotide polymorphisms and brain characteristics, including gray and white matter volumes, white matter integrity, resting arterial blood volume, and cerebral blood flow, were evaluated among 1300 healthy Japanese individuals. The major allele carriers (V249 and T280) were significantly associated with an increased total arterial blood volume of the whole brain, especially around the bilateral precuneus, left posterior cingulate cortex, and left posterior parietal cortex. There were no significant associations between the genotypes and other brain structural indicators. This finding suggests that the CX3CR1 variants may affect arterial structures in the brain, possibly via interactions between microglia and brain microvascular endothelial cells. © 2018 The Authors. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  20. Association of genetic variants and expression levels of porcine FABP4 and FABP5 genes.

    PubMed

    Ballester, M; Puig-Oliveras, A; Castelló, A; Revilla, M; Fernández, A I; Folch, J M

    2017-12-01

    The FABP4 and FABP5 genes, coding for fatty acid transport proteins, have long been studied as positional candidate genes for SSC4 QTL affecting fat deposition and composition traits in pigs. Polymorphisms in these genes, FABP4:g.2634_2635insC and FABP5:g.3000T>G, have previously been associated with fatness traits in an Iberian by Landrace cross (IBMAP). The aim of the present work was to evaluate the functional implication of these genetic variants. For this purpose, FABP4 and FABP5 mRNA expression levels in 114 BC1_LD animals (25% Iberian × 75% Landrace) were analyzed using real-time quantitative PCR in backfat and muscle. FABP4 gene expression in backfat, but not in muscle, was associated with FABP4:g.2634_2635insC. In contrast, FABP5:g.3000T>G was not associated with gene expression levels. An expression-based genome-wide association study highlighted the FABP4:g.2634_2635insC polymorphism as the polymorphism most associated with FABP4 gene expression in backfat. Furthermore, other genomic regions associated in trans with the mRNA expression of FABP4 in backfat and FABP5 in muscle were also identified. Finally, two putative transcription binding sites for PPARG and NR4A2 may be affected by the FABP4:g.2634_2635insC polymorphism, modifying FABP4 gene expression. Our results reinforce FABP4 as a candidate gene for fatness traits on SSC4. © 2017 Stichting International Foundation for Animal Genetics.

  1. Association of polymorphisms in microRNA-binding sites and colorectal cancer in an Iranian population.

    PubMed

    Azimzadeh, Pedram; Romani, Sara; Mohebbi, Seyed Reza; Mahmoudi, Touraj; Vahedi, Mohsen; Fatemi, Seyed Reza; Zali, Narges; Zali, Mohammad Reza

    2012-10-01

    MicroRNAs (miRNAs) are agents of post-transcriptional gene expression, and they can affect many functions of an individual cell or tissue from extracellular matrix production to inflammatory processes and tumor development. We aimed to determine the possible role of miRNA-binding site polymorphisms located in five cancer-related genes: IL-16, CDKN2A (p16), RAF1, PTGER4, and ITGB4 in colorectal cancer (CRC) risk modification in an Iranian population. This study was performed on 643 individuals (249 CRC cases and 394 healthy controls). We selected five cancer-related genes (IL-16, CDKN2A (p16), RAF1, PTGER4, and ITGB4) and investigated the genotypes of the 3' untranslated region miRNA-binding site polymorphisms in these genes in our study population. The restriction fragment length polymorphism results were confirmed by a direct sequencing method. We found a statistically significant difference between the rs1131445 polymorphism of the IL-16 gene and CRC. The frequencies of the genotypes TT, CT, and CC in controls were 51%, 40.4%, and 8.6%, respectively, and in cases were 41.4%, 44.1%, and 14.5%, respectively, which shows a significant association between the CC genotype of the rs1131445 polymorphism and CRC (P = 0.004). The frequency of the C allele in the CRC group was higher than in the controls, and the C allele of the rs1131445 polymorphism was found to be in association with CRC (P = 0.009). These associations remained significant after Bonferroni's correction for multiple testing. We found that the AA genotype of the rs743554 polymorphism in the ITGB4 gene and the T allele of the rs1051208 polymorphism of the RAF1 gene were associated with the risk of CRC in females; however, after Bonferroni's correction we found that they were non-significant. Finally, we can conclude that a significant relationship exists between the miRNA-binding site polymorphism of the IL-16 gene and CRC risk in the Iranian population. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Association of the MAOA promoter uVNTR polymorphism with suicide attempts in patients with major depressive disorder

    PubMed Central

    2011-01-01

    Background The MAOA uVNTR polymorphism has been documented to affect the MAOA gene at the transcriptional level and is associated with aggressive impulsive behaviors, depression associated with suicide (depressed suicide), and major depressive disorder (MDD). We hypothesized that the uVNTR polymorphism confers vulnerability to MDD, suicide or both. The aim of this study was to explore the association between the MAOA uVNTR and depressed suicide, using multiple controls. Methods Four different groups were included: 432 community controls, 385 patients with MDD who had not attempted suicide, 96 community subjects without mental disorders who had attempted suicide, and 109 patients with MDD who had attempted suicide. The MAOA uVNTR polymorphism was genotyped by a PCR technique. The symptom profiles and personal characteristics in each group were also compared. Results The MAOA 4R allele was more frequent in males with MDD than in male community controls (χ2 = 4.182, p = 0.041). Logistic regression analysis showed that, among the depressed subjects, those younger in age, more neurotic or who smoked had an increased risk of suicide (β = -0.04, p = 0.002; β = 0.15, p = 0.017; β = 0.79, p = 0.031, respectively). Moreover, among those who had attempted suicide, those younger in age, with more paternal overprotection, and more somatic symptoms were more likely to be in the MDD group than in the community group (β = -0.11, p < 0.001; β = 0.15, p = 0.026; β = 1.11, p < 0.001). Structural equation modeling (SEM) showed that nongenetic factors, such as age, paternal overprotection, and somatic symptoms, were associated with MDD, whereas depressed suicide were associated with severity of depression, personality traits, age, marital status, and inversely associated with anxiety symptoms. However, depression did not affect suicidal behavior in the community group. Conclusion The MAOA 4R allele is associated with enhanced vulnerability to suicide in depressed males, but not in community subjects. The MAOA 4R allele affects vulnerability to suicide through the mediating factor of depressive symptoms. Further large-scale studies are needed to verify the psychopathology of the relationships among MAOA uVNTR polymorphism, symptom profiles, and suicidal behavior. PMID:21605465

  3. Sequence variations of the bovine prion protein gene (PRNP) in native Korean Hanwoo cattle

    PubMed Central

    Choi, Sangho

    2012-01-01

    Bovine spongiform encephalopathy (BSE) is one of the fatal neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs) caused by infectious prion proteins. Genetic variations correlated with susceptibility or resistance to TSE in humans and sheep have not been reported for bovine strains including those from Holstein, Jersey, and Japanese Black cattle. Here, we investigated bovine prion protein gene (PRNP) variations in Hanwoo cattle [Bos (B.) taurus coreanae], a native breed in Korea. We identified mutations and polymorphisms in the coding region of PRNP, determined their frequency, and evaluated their significance. We identified four synonymous polymorphisms and two non-synonymous mutations in PRNP, but found no novel polymorphisms. The sequence and number of octapeptide repeats were completely conserved, and the haplotype frequency of the coding region was similar to that of other B. taurus strains. When we examined the 23-bp and 12-bp insertion/deletion (indel) polymorphisms in the non-coding region of PRNP, Hanwoo cattle had a lower deletion allele and 23-bp del/12-bp del haplotype frequency than healthy and BSE-affected animals of other strains. Thus, Hanwoo are seemingly less susceptible to BSE than other strains due to the 23-bp and 12-bp indel polymorphisms. PMID:22705734

  4. N-acetyltransferase gene polymorphisms & plasma isoniazid concentrations in patients with tuberculosis

    PubMed Central

    Hemanth Kumar, A. K.; Ramesh, K.; Kannan, T.; Sudha, V.; Haribabu, Hemalatha; Lavanya, J.; Swaminathan, Soumya; Ramachandran, Geetha

    2017-01-01

    Background & objectives: Variations in the N-acetyltransferase (NAT2) gene among different populations could affect the metabolism and disposition of isoniazid (INH). This study was performed to genotype NAT2 gene polymorphisms in tuberculosis (TB) patients from Chennai, India, and compare plasma INH concentrations among the different genotypes. Methods: Adult patients with TB treated in the Revised National TB Control Programme (RNTCP) in Chennai, Tamil Nadu, were genotyped for NAT2 gene polymorphism, and two-hour post-dosing INH concentrations were compared between the different genotypes. Plasma INH was determined by high-performance liquid chromatography. Genotyping of the NAT2 gene polymorphism was performed by real-time polymerase chain reaction method. Results: Among the 326 patients genotyped, there were 189 (58%), 114 (35%) and 23 (7%) slow, intermediate and fast acetylators, respectively. The median two-hour INH concentrations in slow, intermediate and fast acetylators were 10.2, 8.1 and 4.1 μg/ml, respectively. The differences in INH concentrations among the three genotypes were significant (P<0.001). Interpretation & conclusions: Genotyping of TB patients from south India for NAT2 gene polymorphism revealed that 58 per cent of the study population comprised slow acetylators. Two-hour INH concentrations differed significantly among the three genotypes. PMID:28574024

  5. Effects of bovine SMO gene polymorphisms on the body measurement and meat quality traits of Qinchuan cattle.

    PubMed

    Zhang, Y R; Li, Y K; Fu, C Z; Wang, J L; Wang, H B; Zan, L S

    2014-10-07

    Beef cattle breeding programs focus on improving important economic traits, including growth rates, and meat quantity and quality. Molecular marker-assisted selection based on genetic variation represents a potential method for breeding genetically improved livestock with better economic traits. Smoothened (SMO) protein is a signal transducer that contributes to the regulation of both osteogenesis and adipogenesis through the hedgehog pathway. In this study, we detected polymorphisms in the bovine SMO gene of Qinchuan cattle, and we analyzed their associations with body measurement traits (BMTs) and meat quality traits (MQTs). Using DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism, 3 novel single nucleotide polymorphisms were identified in the SMO gene of 562 cattle: 1 G > C mutation on exon 9 (G21234C) and 2 C > T mutations on exon 11 (C22424T and C22481T). Association analysis showed that polymorphisms on both the G21234C and C22424T loci significantly affected certain BMTs and MQTs (P < 0.05 or P < 0.01), whereas those on the C22481T locus did not (P > 0.05). Therefore, the SMO gene could be used as a candidate gene to alter BMTs and MQTs in Qinchuan cattle or for marker-assisted selection to breed cattle with superior BMTs and MQTs.

  6. Identification of single nucleotide polymorphisms in the ASB15 gene and their associations with chicken growth and carcass traits.

    PubMed

    Wang, Y C; Jiang, R R; Kang, X T; Li, Z J; Han, R L; Geng, J; Fu, J X; Wang, J F; Wu, J P

    2015-09-25

    ASB15 is a member of the ankyrin repeat and suppressor of cytokine signaling box family, and is predominantly expressed in skeletal muscle. In the present study, an F2 resource population of Gushi chickens crossed with Anka broilers was used to investigate the genetic effects of the chicken ASB15 gene. Two single nucleotide polymorphisms (SNPs) (rs315759231 A>G and rs312619270 T>C) were identified in exon 7 of the ASB15 gene using forced chain reaction-restriction fragment length polymorphism and DNA sequencing. One was a missense SNP (rs315759231 A>G) and the other was a synonymous SNP (rs312619270 T>C). The rs315759231 A>G polymorphism was significantly associated with body weight at birth, 12-week body slanting length, semi-evisceration weight, evisceration weight, leg muscle weight, and carcass weight (P < 0.05). The rs312619270 T>C polymorphism was significantly associated with body weight at birth, 4, 8, and 12-week body weight, 8-week shank length, 12-week breast bone length, 8 and 12-week body slanting length, breast muscle weight, and carcass weight (P < 0.05). Our results suggest that the ASB15 gene profoundly affects chicken growth and carcass traits.

  7. High-Pressure Polymorphism in Orthoamphiboles

    NASA Astrophysics Data System (ADS)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  8. How social learning adds up to a culture: from birdsong to human public opinion.

    PubMed

    Tchernichovski, Ofer; Feher, Olga; Fimiarz, Daniel; Conley, Dalton

    2017-01-01

    Distributed social learning may occur at many temporal and spatial scales, but it rarely adds up to a stable culture. Cultures vary in stability and diversity (polymorphism), ranging from chaotic or drifting cultures, through cumulative polymorphic cultures, to stable monolithic cultures with high conformity levels. What features can sustain polymorphism, preventing cultures from collapsing into either chaotic or highly conforming states? We investigate this question by integrating studies across two quite separate disciplines: the emergence of song cultures in birds, and the spread of public opinion and social conventions in humans. In songbirds, the learning process has been studied in great detail, while in human studies the structure of social networks has been experimentally manipulated on large scales. In both cases, the manner in which communication signals are compressed and filtered - either during learning or while traveling through the social network - can affect culture polymorphism and stability. We suggest a simple mechanism of a shifting balance between converging and diverging social forces to explain these effects. Understanding social forces that shape cultural evolution might be useful for designing agile communication systems, which are stable and polymorphic enough to promote gradual changes in institutional behavior. © 2017. Published by The Company of Biologists Ltd.

  9. A case-based evaluation of SRD5A1, SRD5A2, AR, and ADRA1A as candidate genes for severity of BPH.

    PubMed

    Klotsman, M; Weinberg, C R; Davis, K; Binnie, C G; Hartmann, K E

    2004-01-01

    In men with a clinical diagnosis of benign prostatic hyperplasia (BPH), polytomous logistic regression analysis was conducted to evaluate associations between two silent polymorphisms in SRD5A1 (codon positions 30 and 116), two polymorphisms in SRD5A2 (Val89Leu substitution and C to T transition in intron 1), a trinucleotide (CAG)n repeat in androgen receptor (AR), and an Arg492Cys substitution in ADRA1A and clinical parameters that characterize severity of BPH. Candidate gene selection was based on two mechanistic pathways targeted by pharmacotherapy for BPH: (1) androgen metabolic loci contributing to prostate growth (static obstruction); and (2) factors affecting smooth muscle tone (dynamic obstruction). Polymorphisms in SRD5A2 were not associated with severity of BPH; however, SRD5A1 polymorphisms were associated with severity of BPH. The process(es) in which these silent single-nucleotide polymorphisms (SNPs) influence BPH phenotypes is unknown and additional studies will be needed to assess whether these SNPs have direct functional consequences. The characterization of additional molecular factors that contribute to static and dynamic obstruction may help predict response to pharmacotherapy and serve to identify novel drug targets for the clinical management of BPH.

  10. Exploring the role of ionic liquids to tune the polymorphic outcome of organic compounds† †Electronic supplementary information (ESI) available: CCDC 1577981. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04353h

    PubMed Central

    Zeng, Qingying; Mukherjee, Arijit; Müller, Peter; Rogers, Robin D.

    2017-01-01

    While molecular solvents are commonly used in the screening of polymorphs, the choices are often restricted. Ionic liquids (ILs) – also referred as designer solvents – have immense possibility in this regard because of their wide flexibility of tunability. More importantly, the interactions among the IL components are completely unique compared to those present in the molecular solvents. In this context, we have chosen tetrolic acid (TA) and isonicotinamide (INA), which showed solution-structure link in molecular solvents in the past, as probes to investigate the role of imidazolium based ionic liquids in the polymorphism of these two systems and whether the different solute–solvent interactions in ILs affect the polymorphic outcome. It is observed that the selected imidazolium-based ILs, with varying anion basicity have influenced the crystallization outcome by the interaction between ILs and model compounds. Later, we have utilized the concept of double salt ionic liquids (DSIL) for INA, a penta-morphic system, to investigate the variation in the polymorphic outcome. This approach helped to obtain the forms that were otherwise inaccessible in ILs. PMID:29675194

  11. Inferences on the evolutionary history of the Drosophila americana polymorphic X/4 fusion from patterns of polymorphism at the X-linked paralytic and elav genes.

    PubMed Central

    Vieira, Cristina P; Coelho, Paula A; Vieira, Jorge

    2003-01-01

    In Drosophila there is limited evidence on the nature of evolutionary forces affecting chromosomal arrangements other than inversions. The study of the X/4 fusion polymorphism of Drosophila americana is thus of interest. Polymorphism patterns at the paralytic (para) gene, located at the base of the X chromosome, suggest that there is suppressed crossing over in this region between fusion and nonfusion chromosomes but not within fusion and nonfusion chromosomes. These data are thus compatible with previous claims that within fusion chromosomes the amino acid clines found at fused1 (also located at the base of the X chromosome) are likely maintained by local selection. The para data set also suggests a young age of the X/4 fusion. Polymorphism data on para and elav (located at the middle region of the X chromosome) suggest that there is no population structure other than that caused by the X/4 fusion itself. These findings are therefore compatible with previous claims that selection maintains the strong association observed between the methionine/threonine variants at fused1 and the status of the X chromosome as fused or unfused to the fourth chromosome. PMID:12930752

  12. Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism

    PubMed Central

    Cieślińska, Anna; Kostyra, Elżbieta; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Fiedorowicz, Ewa; Teodorowicz, Małgorzata

    2017-01-01

    Background: Autism spectrum disorder (ASD) is a group of heterogeneous, behaviorally defined disorders whereby currently no biological markers are common to all affected individuals. A deregulated immune response may be contributing to the etiology of ASD. The active metabolite of vitamin D3 has an immunoregulatory role mediated by binding to the vitamin D receptor (VDR) in monocyte, macrophages, and lymphocytes. The effects of vitamin D and interaction with the VDR may be influenced by polymorphism in the VDR gene. Methods: Genetic association of four different VDR polymorphisms (Apa-I, Bsm-I, Taq-I, Fok-I) associated with susceptibility to the development of autism in children was investigated. Results: We uniquely found an association between the presence of the T allele at position Taq-I and presence of the a allele at position Apa-I of the VDR gene with decreased ASD incidence. There was also an association between female gender and the presence of the T allele. We found no statistical significant correlation between VDR single nucleotide polymorphisms (SNPs) and vitamin D3 concentration in serum of ASD children. Conclusion: Genetic polymorphism in two SNP in VDR may be correlated with development of ASD symptoms by influencing functionality of vitamin D3 metabolism, while vitamin D3 levels were not significantly different between ASD and non-ASD children. PMID:28891930

  13. Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism.

    PubMed

    Cieślińska, Anna; Kostyra, Elżbieta; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Fiedorowicz, Ewa; Teodorowicz, Małgorzata; Savelkoul, Huub F J

    2017-09-09

    Autism spectrum disorder (ASD) is a group of heterogeneous, behaviorally defined disorders whereby currently no biological markers are common to all affected individuals. A deregulated immune response may be contributing to the etiology of ASD. The active metabolite of vitamin D₃ has an immunoregulatory role mediated by binding to the vitamin D receptor (VDR) in monocyte, macrophages, and lymphocytes. The effects of vitamin D and interaction with the VDR may be influenced by polymorphism in the VDR gene. Genetic association of four different VDR polymorphisms (Apa-I, Bsm-I, Taq-I, Fok-I) associated with susceptibility to the development of autism in children was investigated. We uniquely found an association between the presence of the T allele at position Taq-I and presence of the a allele at position Apa-I of the VDR gene with decreased ASD incidence. There was also an association between female gender and the presence of the T allele. We found no statistical significant correlation between VDR single nucleotide polymorphisms (SNPs) and vitamin D₃ concentration in serum of ASD children. Genetic polymorphism in two SNP in VDR may be correlated with development of ASD symptoms by influencing functionality of vitamin D₃ metabolism, while vitamin D₃ levels were not significantly different between ASD and non-ASD children.

  14. C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test.

    PubMed

    Osipova, Daria V; Kulikov, Alexander V; Popova, Nina K

    2009-04-01

    Tryptophan hydroxylase-2 (TPH2) is the rate-limiting enzyme of brain serotonin synthesis. The C1473G polymorphism in the mouse tryptophan hydroxylase-2 gene affects the enzyme's activity. In the present study, we investigated the linkage between the C1473G polymorphism, enzyme activity in the brain, and behavior in the forced swim, intermale aggression, and open field tests using mice of the C57BL/6 (C/C) and CC57BR/Mv (G/G) strains and the B6-1473C (C/C) and B6-1473G (G/G) lines created by three successive backcrossings on C57BL/6. Mice of the CC57BR/Mv strain had decreased brain enzyme activity, aggression intensity, and immobility in the forced swim test, but increased locomotor activity and time spent in the central part of the open field arena compared with animals of the C57BL/6 strain. Mice of the B6-1473G line homozygous for the 1473G allele had lower TPH2 activity in the brain, aggression intensity, and immobility time in the forced swim test compared with animals of the B6-1473C line homozygous for the 1473C allele. No differences were found between the B6-1473G and B6-1473C mice in locomotor activity and time spent in the central part of the arena in the open field test. Thus, the C1473G polymorphism is involved in the determination of TPH2 activity and is linked to aggression intensity and forced-swim immobility in mice. At the same time, the polymorphism does not affect locomotion and anxiety-related behavior in the open field test. The B6-1473C and B6-1473G mice represent a valuable experimental model for investigating molecular mechanisms of serotonin-related behavior.

  15. Gender differences in association between serotonin transporter gene polymorphism and resting-state EEG activity.

    PubMed

    Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V

    2015-01-22

    Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Relation of polymorphism of arsenic metabolism genes to arsenic methylation capacity and developmental delay in preschool children in Taiwan.

    PubMed

    Hsieh, Ru-Lan; Su, Chien-Tien; Shiue, Horng-Sheng; Chen, Wei-Jen; Huang, Shiau-Rung; Lin, Ying-Chin; Lin, Ming-I; Mu, Shu-Chi; Chen, Ray-Jade; Hsueh, Yu-Mei

    2017-04-15

    Inefficient arsenic methylation capacity has been associated with developmental delay in children. The present study was designed to explore whether polymorphisms and haplotypes of arsenic methyltransferase (AS3MT), glutathione-S-transferase omegas (GSTOs), and purine nucleoside phosphorylase (PNP) affect arsenic methylation capacity and developmental delay. A case-control study was conducted from August 2010 to March 2014. All participants were recruited from the Shin Kong Wu Ho-Su Memorial Teaching Hospital. In total, 179 children with developmental delay and 88 children without delay were recruited. Urinary arsenic species, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ), and dimethylarsinic acid (DMA V ) were measured using a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphisms of AS3MT, GSTO, and PNP were performed using the Sequenom MassARRAY platform with iPLEX Gold chemistry. Polymorphisms of AS3MT genes were found to affect susceptibility to developmental delay in children, but GSTO and PNP polymorphisms were not. Participants with AS3MT rs3740392 A/G+G/G genotype, compared with AS3MT rs3740392 A/A genotype, had a significantly lower secondary methylation index. This may result in an increased OR for developmental delay. Participants with the AS3MT high-risk haplotype had a significantly higher OR than those with AS3MT low-risk haplotypes [OR and 95% CI, 1.59 (1.08-2.34)]. This is the first study to show a joint dose-response effect of this AS3MT high-risk haplotype and inefficient arsenic methylation capacity on developmental delay. Our data provide evidence that AS3MT genes are related to developmental delay and may partially influence arsenic methylation capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Pharmacokinetic interactions between glimepiride and rosuvastatin in healthy Korean subjects: does the SLCO1B1 or CYP2C9 genetic polymorphism affect these drug interactions?

    PubMed Central

    Kim, Choon Ok; Oh, Eun Sil; Kim, Hohyun; Park, Min Soo

    2017-01-01

    To improve cardiovascular outcomes, dyslipidemia in patients with diabetes needs to be treated. Thus, these patients are likely to take glimepiride and rosuvastatin concomitantly. Therefore, this study aimed to evaluate the pharmacokinetic (PK) interactions between these two drugs in healthy males and to explore the effect of SLCO1B1 and CYP2C9 polymorphisms on their interactions in two randomized, open-label crossover studies. Glimepiride was studied in part 1 and rosuvastatin in part 2. Twenty-four participants were randomly assigned to each part. All subjects (n=24) completed part 1, and 22 subjects completed part 2. A total of 38 subjects among the participants of the PK interaction studies were enrolled in the genotype study to analyze their SLCO1B1 and CYP2C9 polymorphisms retrospectively (n=22 in part 1, n=16 in part 2). Comparison of the PK and safety of each drug alone with those of the drugs in combination showed that both glimepiride and rosuvastatin did not interact with each other and had tolerable safety profiles in all subjects. However, with regard to glimepiride PK, the SLCO1B1 521TC group had a significantly higher maximum plasma concentration (Cmax,ss) and area under the plasma concentration–time curve during the dose interval at steady state (AUCτ,ss) for glimepiride in combination with rosuvastatin than those for glimepiride alone. However, other significant effects of the SLCO1B1 or CYP2C9 polymorphism on the interaction between the two drugs were not observed. In conclusion, there were no significant PK interactions between the two drugs; however, the exposure to glimepiride could be affected by rosuvastatin in the presence of the SLCO1B1 polymorphism. PMID:28260863

  18. Evolutionary game theory and multiple chemical sensitivity.

    PubMed

    Newlin, D B

    1999-01-01

    Newlin's [Newlin D.B. Evolutionary game theory of tolerance and sensitization in substance abuse. Paper presented to the Research Society on Alcoholism, Hilton Head, SC, 1998] evolutionary game theory of addictive behavior specifies how evolutionarily stable strategies for survival and reproduction may lead to addiction. The game theory of multiple chemical sensitivity (MCS) assumes that: (1) the MCS patient responds to low-level toxicants as stressors or as direct threats to their survival and reproductive fitness, (2) this activates the cortico-mesolimbic dopamine system, (3) this system is a survival motivation center--not a 'reward center', (4) the subject emits a counter-response that is in the same direction as the naive response to the chemicals, (5) previously neutral stimuli associated with chemicals also trigger conditioned responses that mimic those to the chemicals, (6) these counter-responses further activate the dopaminergic survival motivation system, and (7) this produces a positive feedback loop that leads to strong neural sensitization in these structures and in behavior controlled by this system, despite a small initial response. Psychologically, the MCS patient with a sensitized cortico-mesolimbic dopamine system is behaving as though his/her survival is directly threatened by these chemicals. Non-MCS subjects have counter-responses opposite in direction to those of the chemicals and show tolerance. An autoshaping/sign-tracking model of this game is discussed. This evolutionary game makes several specific, testable predictions about differences between MCS subjects, non-MCS controls, and substance abusers in laboratory experiments, and between sensitized and nonsensitized animals.

  19. COMT Val158Met and MTHFR C677T moderate risk of schizophrenia in response to childhood adversity.

    PubMed

    Debost, J-C; Debost, M; Grove, J; Mors, O; Hougaard, D M; Børglum, A D; Mortensen, P B; Petersen, L

    2017-07-01

    Mesolimbic dopamine sensitization has been hypothesized to be a mediating factor of childhood adversity (CA) on schizophrenia risk. Activity of catechol-O-methyltransferase (COMT) Val158Met increases mesolimbic dopamine signaling and may be further regulated by methylenetetrahydrofolate reductase (MTHFR) C677T. This study investigates the three-way interaction between CA, COMT, and MTHFR. We conducted a nested case-control study on individuals born after 1981, linking population-based registers to study the three-way interaction. We included 1699 schizophrenia cases and 1681 controls, and used conditional logistic regression to report incidence rate ratios (IRRs). Childhood adversity was robustly associated with schizophrenia. No main genetic effects were observed. MTHFR C677T increased schizophrenia risk in a dose-dependent manner per MTHFR T allele (P = 0.005) consequent upon CA exposure. After inclusion of the significant (P = 0.03) COMT × MTHFR × CA interaction, the risk was further increased per high-activity COMT Val allele. Hence, exposed COMT Val/Val and MTHFR T/T carriers had an IRR of 2.76 (95% CI, 1.66-4.61). Additional adjustments for ancestry and parental history of mental illness attenuated the results with the interaction being only marginally significant. MTHFR C677T and COMT Val158Met interact with CA to increase risk of schizophrenia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Influence of ventral tegmental area input on cortico-subcortical networks underlying action control and decision making.

    PubMed

    Richter, Anja; Gruber, Oliver

    2018-02-01

    It is argued that the mesolimbic system has a more general function in processing all salient events, including and extending beyond rewards. Saliency was defined as an event that is unexpected due to its frequency of occurrence and elicits an attentional-behavioral switch. Using functional magnetic resonance imaging (fMRI), signals were measured in response to the modulation of salience of rewarding and nonrewarding events during a reward-based decision making task, the so called desire-reason dilemma paradigm (DRD). Replicating previous findings, both frequent and infrequent, and therefore salient, reward stimuli elicited reliable activation of the ventral tegmental area (VTA) and ventral striatum (vStr). When immediate reward desiring contradicted the superordinate task-goal, we found an increased activation of the VTA and vStr when the salient reward stimuli were presented compared to the nonsalient reward stimuli, indicating a boosting of activation in these brain regions. Furthermore, we found a significantly increased functional connectivity between the VTA and vStr, confirming the boosting of vStr activation via VTA input. Moreover, saliency per se without a reward association led to an increased activation of brain regions in the mesolimbic reward system as well as the orbitofrontal cortex (OFC), inferior frontal gyrus (IFG), and anterior cingulate cortex (ACC). Finally, findings uncovered multiple increased functional interactions between cortical saliency-processing brain areas and the VTA and vStr underlying detection and processing of salient events and adaptive decision making. © 2017 Wiley Periodicals, Inc.

  1. Involvement of mesolimbic dopaminergic network in neuropathic pain relief by treadmill exercise

    PubMed Central

    Wakaizumi, Kenta; Kondo, Takashige; Hamada, Yusuke; Narita, Michiko; Kawabe, Rui; Narita, Hiroki; Watanabe, Moe; Kato, Shigeki; Senba, Emiko; Kobayashi, Kazuto; Yamanaka, Akihiro

    2016-01-01

    Background Exercise alleviates pain and it is a central component of treatment strategy for chronic pain in clinical setting. However, little is known about mechanism of this exercise-induced hypoalgesia. The mesolimbic dopaminergic network plays a role in positive emotions to rewards including motivation and pleasure. Pain negatively modulates these emotions, but appropriate exercise is considered to activate the dopaminergic network. We investigated possible involvement of this network as a mechanism of exercise-induced hypoalgesia. Methods In the present study, we developed a protocol of treadmill exercise, which was able to recover pain threshold under partial sciatic nerve ligation in mice, and investigated involvement of the dopaminergic reward network in exercise-induced hypoalgesia. To temporally suppress a neural activation during exercise, a genetically modified inhibitory G-protein-coupled receptor, hM4Di, was specifically expressed on dopaminergic pathway from the ventral tegmental area to the nucleus accumbens. Results The chemogenetic-specific neural suppression by Gi-DREADD system dramatically offset the effect of exercise-induced hypoalgesia in transgenic mice with hM4Di expressed on the ventral tegmental area dopamine neurons. Additionally, anti-exercise-induced hypoalgesia effect was significantly observed under the suppression of neurons projecting out of the ventral tegmental area to the nucleus accumbens as well. Conclusion Our findings suggest that the dopaminergic pathway from the ventral tegmental area to the nucleus accumbens is involved in the anti-nociception under low-intensity exercise under a neuropathic pain-like state. PMID:27909152

  2. Gestational treatment with methylazoxymethanol (MAM) that disrupts hippocampal-dependent memory does not alter behavioural response to cocaine.

    PubMed

    Featherstone, Robert E; Burton, Christie L; Coppa-Hopman, Romina; Rizos, Zoë; Sinyard, Judy; Kapur, Shitij; Fletcher, Paul J

    2009-10-01

    Schizophrenia is associated with increased rates of substance abuse that are thought to be the result of changes in cortical and mesolimbic dopamine activity. Previous work has shown that gestational methylazoxymethanol acetate (MAM) treatment induces increased mesolimbic dopamine activity when given around the time of embryonic day 17 (ED17), suggesting that MAM treatment may model some aspects of schizophrenia. Given that increased dopaminergic activity facilitates aspects of drug self-administration and reinstatement of drug seeking, the current experiments sought to assess cocaine self-administration in MAM treated animals. Experiment 1 examined the acquisition of cocaine self-administration in ED17 MAM and saline treated rats using a sub-threshold dose of cocaine. In experiment 2 ED17 MAM and saline treated animals were trained to self-administer cocaine and were then assessed under varying doses of cocaine (dose-response), followed by extinction and drug-induced reinstatement of responding. A subset of these animals was trained on a win-shift radial maze task, designed to detect impairments in hippocampal-dependent memory. In experiment 3, MAM and saline treated animals were assessed on a progressive ratio schedule of cocaine delivery. Finally, in experiment 4 MAM and saline treated animals were assessed on cocaine-induced locomotor activity across a range of doses of cocaine. MAM treatment disrupted performance of the win-shift task but did not alter cocaine self-administration or cocaine-induced locomotion. Implications of these results for the MAM model of schizophrenia are discussed.

  3. Role of the mesolimbic cholinergic projection to the septum in the production of 22 kHz alarm calls in rats.

    PubMed

    Bihari, Aurelia; Hrycyshyn, A W; Brudzynski, Stefan M

    2003-05-15

    The role of the ascending cholinergic projection from the laterodorsal tegmental nucleus (LDT) to septum in the production of 22 kHz ultrasonic vocalization was studied in adult rats, using behavioral-pharmacological and anatomical tracing methods. Direct application of carbachol, a muscarinic agonist, into the lateral septal region induced species-typical 22 kHz alarm calls. The septum receives cholinergic input from LDT, thus, activation with glutamate of predominantly cholinergic neurons of the LDT induced comparable 22 kHz alarm calls in the same animals. This glutamate-induced response from LDT was significantly reduced when the lateral septum was pretreated with scopolamine, a cholinergic antagonist. To investigate the localization of the cell groups projecting to septum, the fluorescent retrograde tracer, fluorogold, was pressure injected into the lateral septum and sections from these brains were also immunostained against choline acetyltransferase (ChAT) to visualize cholinergic cell bodies. Several ChAT-fluorogold double-labeled cells within the boundaries of the LDT were found, while other fluorogold-labeled regions did not contain double-labeled cells. These results provide both direct and indirect evidence that at least a part of the mesolimbic ascending cholinergic projection from LDT to septum is involved in the initiation of the 22 kHz vocalization. It is concluded that the septum is an integral part of the medial cholinoceptive vocalization strip and the 22 kHz alarm vocalization is triggered from septum by the cholinergic input from the LDT.

  4. DOPAMINE AND FOOD ADDICTION: LEXICON BADLY NEEDED

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Over the last few years, the concept of food addiction has become a common feature in the scientific literature, as well as the popular press. Nevertheless, the use of the term “addiction” to describe pathological aspects of food intake in humans remains controversial, and even among those who affirm the validity of the concept, there is considerable disagreement about its utility for explaining the increasing prevalence of obesity throughout much of the world. An examination of the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often are cited as mechanisms that contribute to the establishment of food addiction. However, in reviewing this literature, it is important to have a detailed consideration of the complex nature of dopaminergic involvement in motivational processes. For example, although it is often stated that mesolimbic dopamine mediates “reward”, there is no standard or consistent technical meaning of this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or hedonia, as opposed to other aspects of motivation or learning. The present paper provides a critical discussion of some aspects of the food addiction literature, viewed through the lens of recent findings and current theoretical views of dopaminergic involvement in food motivation. Furthermore, compulsive food intake and binge eating will be considered from an evolutionary perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food consumption and seeking behaviors, and a consideration of how these could be altered in pathological conditions. PMID:23177385

  5. No differences in ventral striatum responsivity between adolescents with a positive family history of alcoholism and controls.

    PubMed

    Müller, Kathrin U; Gan, Gabriela; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Ströhle, Andreas; Struve, Maren; Schumann, Gunter; Smolka, Michael N

    2015-05-01

    Individuals with alcohol-dependent parents show an elevated risk of developing alcohol-related problems themselves. Modulations of the mesolimbic reward circuit have been postulated as a pre-existing marker of alcoholism. We tested whether a positive family history of alcoholism is correlated with ventral striatum functionality during a reward task. All participants performed a modified version of the monetary incentive delay task while their brain responses were measured with functional magnetic resonance imaging. We compared 206 healthy adolescents (aged 13-15) who had any first- or second-degree relative with alcoholism to 206 matched controls with no biological relative with alcoholism. Reward anticipation as well as feedback of win recruited the ventral striatum in all participants, but adolescents with a positive family history of alcoholism did not differ from their matched peers. Also we did not find any correlation between family history density and reward anticipation or feedback of win. This finding of no differences did not change when we analyzed a subsample of 77 adolescents with at least one parent with alcohol use disorder and their matched controls. Because this result is in line with another study reporting no differences between children with alcohol-dependent parents and controls at young age, but contrasts with studies of older individuals, one might conclude that at younger age the effect of family history has not yet exerted its influence on the still developing mesolimbic reward circuit. © 2014 Society for the Study of Addiction.

  6. Behavioral approach to nondyskinetic dopamine antagonists: identification of seroquel.

    PubMed

    Warawa, E J; Migler, B M; Ohnmacht, C J; Needles, A L; Gatos, G C; McLaren, F M; Nelson, C L; Kirkland, K M

    2001-02-01

    A great need exists for antipsychotic drugs which will not induce extrapyramidal symptoms (EPS) and tardive dyskinesias (TDs). These side effects are deemed to be a consequence of nonselective blockade of nigrostriatal and mesolimbic dopamine D2 receptors. Nondyskinetic clozapine (1) is a low-potency D2 dopamine receptor antagonist which appears to act selectively in the mesolimbic area. In this work dopamine antagonism was assessed in two mouse behavioral assays: antagonism of apomorphine-induced climbing and antagonism of apomorphine-induced disruption of swimming. The potential for the liability of dyskinesias was determined in haloperidol-sensitized Cebus monkeys. Initial examination of a few close cogeners of 1 enhanced confidence in the Cebus model as a predictor of dyskinetic potential. Considering dibenzazepines, 2 was not dyskinetic whereas 2a was dyskinetic. Among dibenzodiazepines, 1 did not induce dyskinesias whereas its N-2-(2-hydroxyethoxy)ethyl analogue 3 was dyskinetic. The emergence of such distinctions presented an opportunity. Thus, aromatic and N-substituted analogues of 6-(piperazin-1-yl)-11H-dibenz[b,e]azepines and 11-(piperazin-1-yl)dibenzo[b,f][1,4]thiazepines and -oxazepines were prepared and evaluated. 11-(4-[2-(2-Hydroxyethoxy)ethyl]piperazin-1-yl)dibenzo[b,f][1,4]thiazepine (23) was found to be an apomorphine antagonist comparable to clozapine. It was essentially nondyskinetic in the Cebus model. With 23 as a platform, a number of N-substituted analogues were found to be good apomorphine antagonists but all were dyskinetic.

  7. Hyperresponsivity and impaired prefrontal control of the mesolimbic reward system in schizophrenia.

    PubMed

    Richter, Anja; Petrovic, Aleksandra; Diekhof, Esther K; Trost, Sarah; Wolter, Sarah; Gruber, Oliver

    2015-12-01

    Schizophrenia is characterized by substantial dysfunctions of reward processing, leading to detrimental consequences for decision-making. The neurotransmitter dopamine is responsible for the transmission of reward signals and also known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), sixteen medicated patients with schizophrenia and sixteen healthy controls performed the 'desire-reason dilemma' (DRD) paradigm. This paradigm allowed us to directly investigate reward-related brain activations depending on the interaction of bottom-up and top-down mechanisms, when a previously conditioned reward stimulus had to be rejected to achieve a superordinate long-term goal. Both patients and controls showed significant activations in the mesolimbic reward system. In patients with schizophrenia, however, we found a significant hyperactivation of the left ventral striatum (vStr) when they were allowed to accept the conditioned reward stimuli, and a reduced top-down regulation of activation in the ventral striatum (vStr) and ventral tegmental area (VTA) while having to reject the immediate reward to pursue the superordinate task-goal. Moreover, while healthy subjects exhibited a negative functional coupling of the vStr with both the anteroventral prefrontal cortex (avPFC) and the ventromedial prefrontal cortex (VMPFC) in the dilemma situation, this functional coupling was significantly impaired in the patient group. These findings provide evidence for an increased ventral striatal activation to reward stimuli and an impaired top-down control of reward signals by prefrontal brain regions in schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Individual differences in pavlovian autoshaping of lever pressing in rats predict stress-induced corticosterone release and mesolimbic levels of monoamines.

    PubMed

    Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D

    2000-03-01

    Pavlovian autoshaping CRs are directed and reflexive consummatory responses targeted at objects repeatedly paired with rewarding substances. To evaluate the hypothesis that autoshaping may provide an animal learning model of vulnerability to drug abuse, this study relates individual differences in lever-press autoshaping CR performance in rats to stress-induced corticosterone release and tissue monoamine levels in the mesolimbic dopamine tract. Long-Evans rats (n = 14) were given 20 sessions of Pavlovian autoshaping training wherein the insertion of a retractable lever CS was followed by the response-independent presentation of food US. Large between-subjects differences in lever-press autoshaping CR performance were observed, with group high CR frequency (n = 5) performing many more lever press CRs than group low CR frequency (n = 9). Tail-blood samples were obtained before and after the 20th autoshaping session, then 24 h later the rats were sacrificed and dissection yielded tissue samples of nucleus accumbens (NAC), prefrontal cortex (PFC), caudate putamen (CP), and ventral tegmental area (VTA). Serum levels of postsession corticosterone were elevated in group high CR frequency. HPLC revealed that group high CR frequency had higher tissue levels of dopamine and DOPAC in NAC, lower levels of DOPAC/DA turnover in CP, and lower levels of 5-HIAA and lower 5-HIAA/5-HT turnover in VTA. The neurochemical profile of rats that perform more autoshaping CRs share some features of vulnerability to drug abuse.

  9. Allelic polymorphism in the T cell receptor and its impact on immune responses.

    PubMed

    Gras, Stephanie; Chen, Zhenjun; Miles, John J; Liu, Yu Chih; Bell, Melissa J; Sullivan, Lucy C; Kjer-Nielsen, Lars; Brennan, Rebekah M; Burrows, Jacqueline M; Neller, Michelle A; Khanna, Rajiv; Purcell, Anthony W; Brooks, Andrew G; McCluskey, James; Rossjohn, Jamie; Burrows, Scott R

    2010-07-05

    In comparison to human leukocyte antigen (HLA) polymorphism, the impact of allelic sequence variation within T cell receptor (TCR) loci is much less understood. Particular TCR loci have been associated with autoimmunity, but the molecular basis for this phenomenon is undefined. We examined the T cell response to an HLA-B*3501-restricted epitope (HPVGEADYFEY) from Epstein-Barr virus (EBV), which is frequently dominated by a TRBV9*01(+) public TCR (TK3). However, the common allelic variant TRBV9*02, which differs by a single amino acid near the CDR2beta loop (Gln55-->His55), was never used in this response. The structure of the TK3 TCR, its allelic variant, and a nonnaturally occurring mutant (Gln55-->Ala55) in complex with HLA-B*3501(HPVGEADYFEY) revealed that the Gln55-->His55 polymorphism affected the charge complementarity at the TCR-peptide-MHC interface, resulting in reduced functional recognition of the cognate and naturally occurring variants of this EBV peptide. Thus, polymorphism in the TCR loci may contribute toward variability in immune responses and the outcome of infection.

  10. Association of Anxiety-Related Polymorphisms with Sports Performance in Chilean Long Distance Triathletes: A Pilot Study.

    PubMed

    Sanhueza, Jorge A; Zambrano, Tomás; Bahamondes-Avila, Carlos; Salazar, Luis A

    2016-12-01

    Different factors affecting athletic performance are well established: intensity and type of training, anthropometric characteristics as well as an important psychological component. However, the contribution of the genetic background has been less investigated. The aim of the present study was to investigate the influence of polymorphisms within genes associated with stress and anxiety ( 5HTT , CRH2R , ACE , NK1R , 5HT1AR and CRF-BP ) on the physical capability and sports performance in triathletes. One hundred and ninety two (192) unrelated Chilean triathletes who participated in the 2014 70.3 Pucón city triathlon were divided into opposite subgroups of sports performance according to their time results. We identified significant associations for five polymorphisms ( 5HTT 5-HTTLPR, ACE I/D, NK1R rs6715729, 5HT1AR -1019C>G and CRF-BP CRF-BPs11) with athletic performance. Our results indicate that these polymorphisms are associated with differential sports performance in Chilean triathletes, establishing an initial background for better understanding the relationship between physical performance, genetics and anxiety disorders.

  11. MTHFR C677T polymorphism, homocysteine and B-vitamins status in a sample of Chinese and Malay subjects in Universiti Putra Malaysia.

    PubMed

    Choo, S C; Loh, S P; Khor, G L; Sabariah, M N; Rozita, R

    2011-08-01

    Methylenetetrahydrofolate reductase (MTHFR) C677T is involved in folate and homocysteine metabolism. Disruption in the activity of this enzyme will alter their levels in the body. This study assessed MTHFR C677T polymorphism and its relationship with serum homocysteine and B-vitamins levels in a sample of Chinese and Malays subjects in UPM, Serdang. One hundred subjects were randomly selected from among the university population. Folate, vitamin B12, B6, and homocysteine levels were determined using MBA, ECLIA, and HPLC, respectively. PCR coupled with HinfI digestion was used for detection of MTHFR C677T polymorphism. The frequency of T allele was higher in the Chinese subjects (0.40) compared to the Malay (0.14). Folate, vitamin B12 and B6 levels were highest in the wild genotype in both ethnic groups. Subjects with heterozygous and homozygous genotype showed the highest homocysteine levels. The serum folate and homocysteine were mainly affected by homozygous genotype. MTHFR C677T polymorphism plays an important role in influencing the folate and homocysteine metabolism.

  12. Serotonin transporter gene polymorphism and psychiatric disorders: Is there a link?

    PubMed Central

    Margoob, Mushtaq A.; Mushtaq, Dhuha

    2011-01-01

    Though still in infancy, the field of psychiatric genetics holds great potential to contribute to the development of new diagnostic and therapeutic options to treat these disorders. Among a large number of existing neurotransmitter systems, the serotonin system dysfunction has been implicated in many psychiatric disorders and therapeutic efficacy of many drugs is also thought to be based on modulation of serotonin. Serotonin transporter gene polymorphism is one of the most extensively studied polymorphisms in psychiatric behavioral genetics. In this article, we review the status of evidence for association between the serotonin gene polymorphism and some common mental disorders like affective disorders, post-traumatic stress disorder, obsessive-compulsive disorder, suicide, autism, and other anxiety and personality disorders. Going beyond traditional association studies, gene-environment interaction, currently gaining momentum, is also discussed in the review. While the existing information of psychiatric genetics is inadequate for putting into practice genetic testing in the diagnostic work-up of the psychiatric patient, if consistent in future research attempts, such results can be of great help to improve the clinical care of a vast majority of patients suffering from such disorders. PMID:22303036

  13. Effect of Dopamine Therapy on Nonverbal Affect Burst Recognition in Parkinson's Disease

    PubMed Central

    Péron, Julie; Grandjean, Didier; Drapier, Sophie; Vérin, Marc

    2014-01-01

    Background Parkinson's disease (PD) provides a model for investigating the involvement of the basal ganglia and mesolimbic dopaminergic system in the recognition of emotions from voices (i.e., emotional prosody). Although previous studies of emotional prosody recognition in PD have reported evidence of impairment, none of them compared PD patients at different stages of the disease, or ON and OFF dopamine replacement therapy, making it difficult to determine whether their impairment was due to general cognitive deterioration or to a more specific dopaminergic deficit. Methods We explored the involvement of the dopaminergic pathways in the recognition of nonverbal affect bursts (onomatopoeias) in 15 newly diagnosed PD patients in the early stages of the disease, 15 PD patients in the advanced stages of the disease and 15 healthy controls. The early PD group was studied in two conditions: ON and OFF dopaminergic therapy. Results Results showed that the early PD patients performed more poorly in the ON condition than in the OFF one, for overall emotion recognition, as well as for the recognition of anger, disgust and fear. Additionally, for anger, the early PD ON patients performed more poorly than controls. For overall emotion recognition, both advanced PD patients and early PD ON patients performed more poorly than controls. Analysis of continuous ratings on target and nontarget visual analog scales confirmed these patterns of results, showing a systematic emotional bias in both the advanced PD and early PD ON (but not OFF) patients compared with controls. Conclusions These results i) confirm the involvement of the dopaminergic pathways and basal ganglia in emotional prosody recognition, and ii) suggest a possibly deleterious effect of dopatherapy on affective abilities in the early stages of PD. PMID:24651759

  14. Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin

    PubMed Central

    van der Plasse, G; van Zessen, R; Luijendijk, M C M; Erkan, H; Stuber, G D; Ramakers, G M J; Adan, R A H

    2015-01-01

    Background/objectives: The rewarding value of palatable foods contributes to overconsumption, even in satiated subjects. Midbrain dopaminergic activity in response to reward-predicting environmental stimuli drives reward-seeking and motivated behavior for food rewards. This mesolimbic dopamine (DA) system is sensitive to changes in energy balance, yet it has thus far not been established whether reward signaling of DA neurons in vivo is under control of hormones that signal appetite and energy balance such as ghrelin and leptin. Subjects/methods: We trained rats (n=11) on an operant task in which they could earn two different food rewards. We then implanted recording electrodes in the ventral tegmental area (VTA), and recorded from DA neurons during behavior. Subsequently, we assessed the effects of mild food restriction and pretreatment with the adipose tissue-derived anorexigenic hormone leptin or the orexigenic hormone ghrelin on VTA DA reward signaling. Results: Animals showed an increase in performance following mild food restriction (P=0.002). Importantly, food-cue induced DA firing increased when animals were food restricted (P=0.02), but was significantly attenuated after leptin pretreatment (P=0.00). While ghrelin did affect baseline DA activity (P=0.025), it did not affect cue-induced firing (P⩾0.353). Conclusions: Metabolic signals, such as leptin, affect food seeking, a process that is dependent on the formation of cue-reward outcomes and involves midbrain DA signaling. These data show that food restriction engages the encoding of food cues by VTA DA neurons at a millisecond level and leptin suppresses this activity. This suggests that leptin is a key in linking metabolic information to reward signaling. PMID:26183405

  15. Separating Analgesia from Reward within the Ventral Tegmental Area

    PubMed Central

    Schifirneţ, Elena; Bowen, Scott E.; Borszcz, George S.

    2014-01-01

    Activation of the dopaminergic mesolimbic reward circuit that originates in the ventral tegmental area (VTA) is postulated to preferentially suppress emotional responses to noxious stimuli, and presumably contributes to the addictive liability of strong analgesics. VTA dopamine neurons are activated via cholinergic afferents and microinjection of carbachol (cholinergic agonist) into VTA is rewarding. Here, we evaluated regional differences within VTA in the capacity of carbachol to suppress rats' affective response to pain (vocalization afterdischarges, VADs) and to support conditioned place preference (CPP) learning. As carbachol is a non-specific agonist, muscarinic and nicotinic receptor involvement was assessed by administering atropine (muscarinic antagonist) and mecamylamine (nicotinic antagonist) into VTA prior to carbachol treatment. Unilateral injections of carbachol (4 μg) into anterior VTA (aVTA) and posterior VTA (pVTA) suppressed VADs and supported CPP; whereas, injections into midVTA failed to effect either VADs or CPP. These findings corroborate the hypothesis that the neural substrates underlying affective analgesia and reward overlap. However, the extent of the overlap was only partial. Whereas both nicotinic and muscarinic receptors contributed to carbachol-induced affective analgesia in aVTA, only muscarinic receptors mediated the analgesic action of carbachol in pVTA. The rewarding effects of carbachol are mediated by the activation of both nicotinic and muscarinic receptors in both aVTA and pVTA. The results indicate that analgesia and reward are mediated by separate cholinergic mechanisms within pVTA. Nicotinic receptor antagonism within pVTA failed to attenuate carbachol-induced analgesia, but prevented carbachol-induced reward. As addictive liability of analgesics stem from their rewarding properties, the present findings suggest that these processes can be neuropharmacologically separated within pVTA. PMID:24434773

  16. XRCC3 Thr241Met Polymorphism is not Associated with Lung Cancer Risk in a Romanian Population.

    PubMed

    Catana, Andreea; Pop, Monica; Marginean, Dragos Horea; Blaga, Ioana Cristina; Porojan, Mihai Dumitru; Popp, Radu Anghel; Pop, Ioan Victor

    2016-01-01

    Deoxyribonucleic Acid (DNA) repair mechanisms play a critical role in protecting the cellular genome against carcinogens. X-ray cross-complementing gene 3 (XRCC3) is involved in DNA repair and therefore certain genetic polymorphisms that occur in DNA repair genes may affect the ability to repair DNA defects and may represent a risk factor in carcinogenesis. The purpose of our study was to investigate the association between XRCC3 gene substitution of Threonine with Methionine in codon 241 of XRCC3 gene (Thr241Met) polymorphism and the risk of lung cancer, in a Romanian population. We recruited 93 healthy controls and 85 patients with lung cancer, all smokers. Thr241Met, XRCC3 gene genotyping was determined by multiplex Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Statistical analysis (OR, recessive model), did not revealed an increased risk for lung cancer, for the variant 241Met allele and Thr241Met genotypes (p=0.138, OR=0.634, CI=0.348-1.157; p=0.023, OR=0.257, CI=0.085-6.824). Also, there were no positive statistical associations between Thr241Met polymorphism of XRCC3 gene, gender, tobacco and various histopathological tumor type of lung cancer. In conclusion, the results of the study suggest that the XRCC3 gene Thr241Met polymorphism is not associated with an increased risk for the development of lung cancer in this Romanian group.

  17. Genetic Variants in SDC3 Gene are Significantly Associated with Growth Traits in Two Chinese Beef Cattle Breeds.

    PubMed

    Huang, Yong-Zhen; Wang, Qin; Zhang, Chun-Lei; Fang, Xing-Tang; Song, En-Liang; Chen, Hong

    2016-01-01

    Identification of the genes and polymorphisms underlying quantitative traits, and understanding these genes and polymorphisms affect economic growth traits, are important for successful marker-assisted selection and more efficient management strategies in commercial cattle (Bos taurus) population. Syndecan-3 (SDC3), a member of the syndecan family of type I transmembrane heparan sulfate proteoglycans is a novel regulator of feeding behavior and body weight. The aim of this study is to examine the association of the SDC3 polymorphism with growth traits in Chinese Jiaxian and Qinchuan cattle breeds (). Four single nucleotide polymorphisms (SNPs: 1-4) were detected in 555 cows from three Chinese native cattle breeds by means of sequencing pooled DNA samples and polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) methods. We found one SNP (g.28362A > G) in intron and three SNPs (g.30742T > G, g.30821C > T and 33418 A > G) in exons. The statistical analyses indicated that these SNPs of SDC3 gene were associated with bovine body height, body length, chest circumference, and circumference of cannon bone (P < 0.05). The mutant-type variant was superior for growth traits; the heterozygote was associated with higher growth traits compared to wild-type homozygote. Our result confirms the polymorphisms in the SDC3 gene are associated with growth traits that may be used for marker-assisted selection in beef cattle breeding programs.

  18. The CYP2B6 G516T polymorphism influences CD4+ T-cell counts in HIV-positive patients receiving antiretroviral therapy in an ethnically diverse region of the Amazon.

    PubMed

    Queiroz, Maria Alice Freitas; Laurentino, Rogério Valois; da Silva Graça Amoras, Ednelza; Araújo, Mauro Sérgio Moura de; Gomes, Samara Tatielle Monteiro; Lima, Sandra Souza; Vallinoto, Antonio Carlos Rosário; de Oliveira Guimarães Ishak, Marluísa; Ishak, Ricardo; Machado, Luiz Fernando Almeida

    2017-02-01

    Cytochrome P450 (CYP) enzyme polymorphisms seem to significantly influence the variability of the responses to certain antiretroviral drugs and their toxicity levels. The objective of this study was to evaluate the influence of the CYP2B6 G516T polymorphism on hepatic, renal, immunological, and viral marker changes in HIV-1-positive patients receiving treatment in an ethnically diverse region of the Amazon. CYP2B6 G516T genotyping was performed by real-time PCR (RT-PCR) in samples from 185 patients. Urea, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), CD4 + /CD8 + T-cell counts, and HIV-1 plasma viral load were measured. The polymorphic CYP2B6 G516T allele frequency was 0.36, which is different from the frequencies in other ethnic groups. The polymorphic genotype was associated with changes in the urea and ALT levels, although the median values were within the normal range. The TT genotype was also associated with significantly lower CD4 + T-cell counts in patients using efavirenz. The CYP2B6 G516T polymorphism seems to affect the response to efavirenz treatment by reducing CD4 + T-cell counts in patients with a high degree of miscegenation who use this antiretroviral agent. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy.

    PubMed

    Shen, Chunhong; Zhang, Bijun; Liu, Zhirong; Tang, Yelei; Zhang, Yinxi; Wang, Shan; Guo, Yi; Ding, Yao; Wang, Shuang; Ding, Meiping

    2017-10-01

    The aim of the study is to investigate the effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on plasma oxcarbazepine (OXC) concentrations and therapeutic efficacy in Han Chinese patients with epilepsy. We recruited 116 Han Chinese patients with epilepsy who were receiving OXC monotherapy. Blood samples were taken and OXC levels were measured. The polymorphisms of ABCB1 rs1045642, ABCC2 rs2273697, UGT2B7 rs7439366, and HNF4α rs2071197 were determined. The therapeutic efficacy of OXC at the 1-year time-point was assessed. Data analysis was performed using IBM SPSS Statistics 22.0. The genetic polymorphism of ABCB1 rs1045642 was found to be associated with normalized OXC concentration and therapeutic efficacy in patients with epilepsy (P<0.05). As for UGT2B7 rs7439366, the allele polymorphism exhibited a correlation with treatment outcome, but not OXC concentration. The polymorphisms of ABCC2 rs2273697 and HNF4α rs2071197 was not associated with OXC concentrations and therapeutic efficacy. These results suggested that ABCB1 rs1045642 and UGT2B7 rs7439366 may affect OXC pharmacokinetics and therapeutic efficacy in Han Chinese patients with epilepsy. However, further studies in larger populations and other ethnic groups are required. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  20. The association of folate pathway and DNA repair polymorphisms with susceptibility to childhood acute lymphoblastic leukemia.

    PubMed

    Goričar, Katja; Erčulj, Nina; Faganel Kotnik, Barbara; Debeljak, Maruša; Hovnik, Tinka; Jazbec, Janez; Dolžan, Vita

    2015-05-15

    Genetic factors may play an important role in susceptibility to childhood acute lymphoblastic leukemia (ALL). The aim of our study was to evaluate the associations of genetic polymorphisms in folate pathway and DNA repair genes with susceptibility to ALL. In total, 121 children with ALL and 184 unrelated healthy controls of Slovenian origin were genotyped for 14 polymorphisms in seven genes of folate pathway, base excision repair and homologous recombination repair (TYMS, MTHFR, OGG1, XRCC1, NBN, RAD51, and XRCC3). In addition, the exon 6 of NBN was screened for the presence of mutations using denaturing high performance liquid chromatography. Twelve polymorphisms were in Hardy-Weinberg equilibrium in controls and their genotype frequencies were in agreement with those reported in other Caucasian populations. Among the investigated polymorphisms and mutations, NBN Glu185Gln significantly decreased susceptibility to B-cell ALL (p=0.037), while TYMS 3R allele decreased susceptibility to T-cell ALL (p=0.011). Moreover, significantly decreased susceptibility to ALL was observed for MTHFR TA (p=0.030) and RAD51 GTT haplotypes (p=0.016). Susceptibility to ALL increased with the increasing number of risk alleles (ptrend=0.007). We also observed significant influence of hOGG-RAD51 and NBN-RAD51 interactions on susceptibility to ALL. Our results suggest that combination of several polymorphisms in DNA repair and folate pathways may significantly affect susceptibility to childhood ALL. Copyright © 2015 Elsevier B.V. All rights reserved.

Top