Sample records for polymorphisms snps located

  1. Screening for polymorphisms in the PXR gene in a Dutch population.

    PubMed

    Bosch, Tessa M; Deenen, Maarten; Pruntel, Roelof; Smits, Paul H M; Schellens, Jan H M; Beijnen, Jos H; Meijerman, Irma

    2006-05-01

    Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of over 50% of all drugs currently in use. However, CYP3A4 expression shows a large inter-individual variation that cannot only be explained by genetic polymorphisms identified in this gene. The pregnane X receptor (PXR) has been identified as a transcriptional regulator of CYP3A4. Single nucleotide polymorphisms (SNPs) in the PXR gene could influence PXR activity and thereby CYP3A4 expression. This study was therefore aimed at determining the frequencies of known SNPs and detecting yet unknown SNPs in the PXR gene in a Dutch population. Genomic DNA was isolated from blood samples obtained from 100 healthy volunteers and subjected to PCR amplification, followed by DNA sequencing. The population, of which the ethnicity was 93% Caucasian, consisted of 79 female individuals and 21 males. A total of 24 SNPs were found in the PXR gene, eight of which are previously unknown. The allelic frequencies found in this population varied from 0.5 to 73%. Most of the previously detected SNPs were located in introns. One new SNP, T8555G in exon 8, causes an amino acid change of C379G and is located in the Ligand Binding Domain of PXR. Several SNPs were detected in the PXR gene, one of which is located in the ligand binding domain (LBD). These SNPs may influence PXR-mediated CYP3A4 induction.

  2. Identification of single-nucleotide polymorphisms of the prion protein gene in sika deer (Cervus nippon laiouanus)

    PubMed Central

    Jeong, Hyun-Jeong; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Kim, Bo-Sook; Rho, Jung-Rae; Yoo, Mi-Hyun; Jeong, Byung-Hoon; Kim, Yong-Sun

    2007-01-01

    Polymorphisms of the prion protein gene (PRNP) have been detected in several cervid species. In order to confirm the genetic variations, this study examined the DNA sequences of the PRNP obtained from 33 captive sika deer (Cervus nippon laiouanus) in Korea. A total of three single-nucleotide polymorphisms (SNPs) at codons 100, 136 and 226 in the PRNP of the sika deer were identified. The polymorphic site located at codon 100 has not been reported. The SNPs detected at codons 100 and 226 induced amino acid substitutions. The SNP at codon 136 was a silent mutation that does not induce any amino acid change. The genotype and allele frequencies were determined for each of the SNPs. PMID:17679779

  3. Allele frequency and genotype distribution of polymorphisms within disease-related genes is influenced by ethnic population sub-structuring in Sudan.

    PubMed

    Bereir, R E H; Mohamed, H S; Seielstad, M; El Hassani, A M; Khalil, E A G; Peacock, C S; Blackwell, J M; Ibrahim, M E

    2003-09-01

    Four single nucleotide polymorphisms (SNPs) and a variable number of tandem repeats (VNTR) polymorphism located within disease associated/causing genes were typed in four populations of different tribal and ethnic affiliation from the Sudan. The genotype and allele frequencies were compared with those of other groups from published and unpublished data of world populations. The combined Sudanese sample conformed with Hardy-Weinberg equilibrium (HWE) expectation. However, population sub-structuring according to ethnic/linguistic group indicated at least two SNPs in departure from HWE. Differences in allele frequencies and genotype distribution between groups was also noted in three of the four SNPs. The other loci were distributed homogeneously within the populations studied with genotype frequencies in agreement with HWE expectation. These results highlight the importance of inter-population stratification for polymorphic markers, as well as the potential influence of evolutionary history and ethnic variation of loci, in the general distribution of SNPs and other polymorphisms.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pei-Chun; Chen, Yen-Ching; Research Center for Gene, Environment, and Human Health, College of Public Health, National Taiwan University, Taiwan

    Purpose: To identify germline polymorphisms to predict concurrent chemoradiation therapy (CCRT) response in esophageal cancer patients. Materials and Methods: A total of 139 esophageal cancer patients treated with CCRT (cisplatin-based chemotherapy combined with 40 Gy of irradiation) and subsequent esophagectomy were recruited at the National Taiwan University Hospital between 1997 and 2008. After excluding confounding factors (i.e., females and patients aged {>=}70 years), 116 patients were enrolled to identify single nucleotide polymorphisms (SNPs) associated with specific CCRT responses. Genotyping arrays and mass spectrometry were used sequentially to determine germline polymorphisms from blood samples. These polymorphisms remain stable throughout disease progression,more » unlike somatic mutations from tumor tissues. Two-stage design and additive genetic models were adopted in this study. Results: From the 26 SNPs identified in the first stage, 2 SNPs were found to be significantly associated with CCRT response in the second stage. Single nucleotide polymorphism rs16863886, located between SGPP2 and FARSB on chromosome 2q36.1, was significantly associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.62-10.30) under additive models. Single nucleotide polymorphism rs4954256, located in ZRANB3 on chromosome 2q21.3, was associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.57-10.87). The predictive accuracy for CCRT response was 71.59% with these two SNPs combined. Conclusions: This is the first study to identify germline polymorphisms with a high accuracy for predicting CCRT response in the treatment of esophageal cancer.« less

  5. Two novel polymorphisms of bovine SIRT2 gene are associated with higher body weight in Nanyang cattle.

    PubMed

    Sun, Xiaomei; Li, Mingxun; Hao, Dan; Hua, Liushuai; Lan, Xianyong; Lei, Chuzhao; Hu, Shenrong; Qi, Xinglei; Chen, Hong

    2015-03-01

    Identification of polymorphisms associated with economic traits is important for successful marker-assisted selection in cattle breeding. The family of mammalian sirtuin regulates many biological functions, such as life span extension and energy metabolism. SIRT2, a most abundant sirtuin in adipocytes, acts as a crucial regulator of adipogenic differentiation and plays a key role in controlling adipose tissue function and mass. Here we investigated single nucleotide polymorphisms (SNPs) of bovine SIRT2 in 1226 cattle from five breeds and further evaluated the effects of identified SNPs on economically important traits of Nanyang cattle. Our results revealed four novel SNPs in bovine SIRT2, one was located in intronic region and the other three were synonymous mutations. Linkage disequilibrium and haplotype analyses based on the identified SNPs showed obvious difference between crossbred breed and the other four beef breeds. Association analyses demonstrated that SNPs g.17333C > T and g.17578A > G have a significantly effect on 18-months-old body weight of Nanyang population. Animals with combined genotype TTGG at the above two loci exhibited especially higher body weight. Our data for the first time demonstrated that polymorphisms in bovine SIRT2 are associated with economic traits of Nanyang cattle, which will be helpful for future cattle selection practices.

  6. N-acetyltransferase single nucleotide polymorphisms: Emerging concepts serve as a paradigm for understanding complexities of personalized medicine

    PubMed Central

    Hein, David W.

    2009-01-01

    Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) exhibit single nucleotide polymorphisms (SNPs) in human populations that modify drug and carcinogen metabolism. This paper updates the identity, location, and functional effects of these SNPs and then follows with emerging concepts for understanding why pharmacogenetic findings may not be replicated consistently. Using this paradigm as an example, laboratory-based mechanistic analyses can reveal complexities such that genetic polymorphisms become biologically and medically relevant when confounding factors are more fully understood and considered. As medical care moves to a more personalized approach, the implications of these confounding factors will be important in understanding the complexities of personalized medicine. PMID:19379125

  7. Association of Adenylate Cyclase 10 (ADCY10) Polymorphisms and Bone Mineral Density in Healthy Adults

    PubMed Central

    Ichikawa, Shoji; Koller, Daniel L.; Curry, Leah R.; Lai, Dongbing; Xuei, Xiaoling; Edenberg, Howard J.; Hui, Siu L.; Peacock, Munro; Foroud, Tatiana; Econs, Michael J.

    2010-01-01

    Phenotypic variation in bone mineral density (BMD) among healthy adults is influenced by both genetic and environmental factors. Genetic sequence variations in the adenylate cyclase 10 (ADCY10) gene, which is also called soluble adenylate cyclase, have previously been reported to be associated with low spinal BMD in hypercalciuric patients. Since ADCY10 is located in the region linked to spinal BMD in our previous linkage analysis, we tested whether polymorphisms in this gene are also associated with normal BMD variation in healthy adults. Sixteen single nucleotide polymorphisms (SNPs) distributed throughout ADCY10 were genotyped in two healthy groups of American whites: 1,692 premenopausal women and 715 men. Statistical analyses were performed in the two groups to test for association between these SNPs and femoral neck and lumbar spine areal BMD. We observed significant evidence of association (p<0.01) with one SNP each in men and women. Genotypes at these SNPs accounted for less than 1% of hip BMD variation in men, but 1.5% of spinal BMD in women. However, adjacent SNPs did not corroborate the association in either males or females. In conclusion, we found a modest association between an ADCY10 polymorphism and spinal areal BMD in premenopausal white women. PMID:19093065

  8. Single-nucleotide polymorphisms g.151435C>T and g.173057T>C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats.

    PubMed

    An, Xiaopeng; Hou, Jinxing; Gao, Teyang; Lei, Yingnan; Li, Guang; Song, Yuxuan; Wang, Jiangang; Cao, Binyun

    2015-06-01

    Single-nucleotide polymorphisms (SNPs) located at microRNA-binding sites (miR-SNPs) can affect the expression of genes. This study aimed to identify the miR-SNPs associated with litter size. Guanzhong (n = 321) and Boer (n = 191) goat breeds were used to detect SNPs in the caprine prolactin receptor (PRLR) gene by DNA sequencing, primer-introduced restriction analysis-polymerase chain reaction, and polymerase chain reaction-restriction fragment length polymorphism. Three novel SNPs (g.151435C>T, g.151454A>G, and g.173057T>C) were identified in the caprine PRLR gene. Statistical results indicated that the g.151435C>T and g.173057T>C SNPs were significantly associated with litter size in Guanzhong and Boer goat breeds. Further analysis revealed that combinative genotype C6 (TTAACC) was better than the others for litter size in both goat breeds. Furthermore, the PRLR g.173057T>C polymorphism was predicted to regulate the binding activity of bta-miR-302a. Luciferase reporter gene assay confirmed that 173057C to T substitution disrupted the binding site for bta-miR-302a, resulting in the reduced levels of luciferase. Taken together, these findings suggested that bta-miR-302a can influence the expression of PRLR protein by binding with 3'untranslated region, resulting in that the g.173057T>C SNP had significant effects on litter size. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties.

    PubMed

    Rathinasabapathi, Pasupathi; Purushothaman, Natarajan; Parani, Madasamy

    2016-05-01

    Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties.

  10. A false single nucleotide polymorphism generated by gene duplication compromises meat traceability.

    PubMed

    Sanz, Arianne; Ordovás, Laura; Zaragoza, Pilar; Sanz, Albina; de Blas, Ignacio; Rodellar, Clementina

    2012-07-01

    Controlling meat traceability using SNPs is an effective method of ensuring food safety. We have analyzed several SNPs to create a panel for bovine genetic identification and traceability studies. One of these was the transversion g.329C>T (Genbank accession no. AJ496781) on the cytochrome P450 17A1 gene, which has been included in previously published panels. Using minisequencing reactions, we have tested 701 samples belonging to eight Spanish cattle breeds. Surprisingly, an excess of heterozygotes was detected, implying an extreme departure from Hardy-Weinberg equilibrium (P<0.001). By alignment analysis and sequencing, we detected that the g.329C>T SNP is a false positive polymorphism, which allows us to explain the inflated heterozygotic value. We recommend that this ambiguous SNP, as well as other polymorphisms located in this region, should not be used in identification, traceability or disease association studies. Annotation of these false SNPs should improve association studies and avoid misinterpretations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Catalog of MicroRNA Seed Polymorphisms in Vertebrates

    PubMed Central

    Calin, George Adrian; Horvat, Simon; Jiang, Zhihua; Dovc, Peter; Kunej, Tanja

    2012-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms. In the present study, we developed an online tool for the detection of miRNA polymorphisms (miRNA SNiPer) in vertebrates (http://www.integratomics-time.com/miRNA-SNiPer) and generated a catalog of miRNA seed region polymorphisms (miR-seed-SNPs) consisting of 149 SNPs in six species. Although a majority of detected polymorphisms were due to point mutations, two consecutive nucleotide substitutions (double nucleotide polymorphisms, DNPs) were also identified in nine miRNAs. We determined that miR-SNPs are frequently located within the quantitative trait loci (QTL), chromosome fragile sites, and cancer susceptibility loci, indicating their potential role in the genetic control of various complex traits. To test this further, we performed an association analysis between the mmu-miR-717 seed SNP rs30372501, which is polymorphic in a large number of standard inbred strains, and all phenotypic traits in these strains deposited in the Mouse Phenome Database. Analysis showed a significant association between the mmu-miR-717 seed SNP and a diverse array of traits including behavior, blood-clinical chemistry, body weight size and growth, and immune system suggesting that seed SNPs can indeed have major pleiotropic effects. The bioinformatics analyses, data and tools developed in the present study can serve researchers as a starting point in testing more targeted hypotheses and designing experiments using optimal species or strains for further mechanistic studies. PMID:22303453

  12. Genetic effects of PDGFRB and MARCH1 identified in GWAS revealing strong associations with semen production traits in Chinese Holstein bulls.

    PubMed

    Liu, Shuli; Yin, Hongwei; Li, Cong; Qin, Chunhua; Cai, Wentao; Cao, Mingyue; Zhang, Shengli

    2017-07-03

    Using a genome-wide association study strategy, our previous study discovered 19 significant single-nucleotide polymorphisms (SNPs) related to semen production traits in Chinese Holstein bulls. Among them, three SNPs were within or close to the phosphodiesterase 3A (PDE3A), membrane associated ring-CH-type finger 1 (MARCH1) and platelet derived growth factor receptor beta (PDGFRB) genes. The present study was designed with the objectives of identifying genetic polymorphism of the PDE3A, PDGFRB and MARCH1 genes and their effects on semen production traits in a Holstein bull population. A total of 20 SNPs were detected and genotyped in 730 bulls. Association analyses using de-regressed estimated breeding values of each semen production trait revealed four statistically significant SNPs for one or more semen production traits (P < 0.05): one SNP was located downstream of PDGFRB and three SNPs were located in the promoter of MARCH1. Interestingly, for MARCH1, haplotype-based analysis revealed significant associations of haplotypes with semen volume per ejaculate. Furthermore, high expression of the MARCH1 gene was observed in sperm cells. One SNP (rs43445726) in the regulatory region of MARCH1 had a significant effect on gene expression. Our study demonstrated the significant associations of genetic variants of the PDGFRB and MARCH1 genes with semen production traits. The identified SNPs may serve as genetic markers to optimize breeding programs for semen production traits in Holstein bull populations.

  13. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data.

    PubMed

    Seo, Dong-Won; Oh, Jae-Don; Jin, Shil; Song, Ki-Duk; Park, Hee-Bok; Heo, Kang-Nyeong; Shin, Younhee; Jung, Myunghee; Park, Junhyung; Jo, Cheorun; Lee, Hak-Kyo; Lee, Jun-Heon

    2015-02-01

    There are five native chicken lines in Korea, which are mainly classified by plumage colors (black, white, red, yellow, gray). These five lines are very important genetic resources in the Korean poultry industry. Based on a next generation sequencing technology, whole genome sequence and reference assemblies were performed using Gallus_gallus_4.0 (NCBI) with whole genome sequences from these lines to identify common and novel single nucleotide polymorphisms (SNPs). We obtained 36,660,731,136 ± 1,257,159,120 bp of raw sequence and average 26.6-fold of 25-29 billion reference assembly sequences representing 97.288 % coverage. Also, 4,006,068 ± 97,534 SNPs were observed from 29 autosomes and the Z chromosome and, of these, 752,309 SNPs are the common SNPs across lines. Among the identified SNPs, the number of novel- and known-location assigned SNPs was 1,047,951 ± 14,956 and 2,948,648 ± 81,414, respectively. The number of unassigned known SNPs was 1,181 ± 150 and unassigned novel SNPs was 8,238 ± 1,019. Synonymous SNPs, non-synonymous SNPs, and SNPs having character changes were 26,266 ± 1,456, 11,467 ± 604, 8,180 ± 458, respectively. Overall, 443,048 ± 26,389 SNPs in each bird were identified by comparing with dbSNP in NCBI. The presently obtained genome sequence and SNP information in Korean native chickens have wide applications for further genome studies such as genetic diversity studies to detect causative mutations for economic and disease related traits.

  14. Analysis of single nucleotide polymorphisms in the 3' region of the estrogen receptor 1 gene in normal and cryptorchid Miniature Dachshunds and Chihuahuas.

    PubMed

    Pathirana, Indunil Nishantha; Tanaka, Kakeru; Kawate, Noritoshi; Tsuji, Makoto; Kida, Kayoko; Hatoya, Shingo; Inaba, Toshio; Tamada, Hiromichi

    2010-08-01

    This study was performed to examine the distribution of single nucleotide polymorphisms (SNPs) and estimated haplotypes in the canine estrogen receptor (ER) alpha gene (ESR1) and the association of them with different phenotypes of cryptorchidism (CO) in Miniature Dachshunds and Chihuahuas. Forty CO and 68 normal dogs were used, and CO was classified into unilateral (UCO; n=33) and bilateral CO (BCO; n=5) or into abdominal (ACO; n=16) and inguinal CO (ICO; n=22). Thirteen DNA fragments located in the 70-kb region at the 3' end of ESR1 were amplified by PCR and sequenced to examine 13 SNPs (#1-#13) reported in a canine SNP database. Ten SNPs (#1-#4, #7, #8, #10-#13) were not polymorphic, and 5 new SNPs (#14-#18) were discovered. A common haplotype block in normal, CO and CO phenotypes was identified for an approximately 20-kb region encompassing 4 SNPs (#14-#17). Allele, genotype and haplotype frequencies in CO without classification by phenotype and also in UCO, ACO and ICO phenotypes were not statistically different from the normal group. Significant differences in genotype frequencies and homozygosity for the estimated GTTG haplotype within the block were observed in BCO compared with the normal group, although the number of BCO animals was small. Our results demonstrate that the examined SNPs and haplotypes in the 3' end of canine ESR1 are not associated with unilateral, abdominal and inguinal CO phenotypes and CO per se in Miniature Dachshunds and Chihuahuas. Further studies are necessary to suggest a clear association between the ESR1 SNPs and bilateral CO in dogs.

  15. Association of ADRB2 polymorphism with triglyceride levels in Tongans.

    PubMed

    Naka, Izumi; Ohashi, Jun; Kimura, Ryosuke; Inaoka, Tsukasa; Matsumura, Yasuhiro

    2013-07-23

    Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index.

  16. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    PubMed

    Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C

    2015-03-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  17. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  18. Transcriptome-wide single nucleotide polymorphisms (SNPs) for abalone (Haliotis midae): validation and application using GoldenGate medium-throughput genotyping assays.

    PubMed

    Bester-Van Der Merwe, Aletta; Blaauw, Sonja; Du Plessis, Jana; Roodt-Wilding, Rouvay

    2013-09-23

    Haliotis midae is one of the most valuable commercial abalone species in the world, but is highly vulnerable, due to exploitation, habitat destruction and predation. In order to preserve wild and cultured stocks, genetic management and improvement of the species has become crucial. Fundamental to this is the availability and employment of molecular markers, such as microsatellites and single nucleotide (SNPs). Transcriptome sequences generated through sequencing-by-synthesis technology were utilized for the in vitro and in silico identification of 505 putative SNPs from a total of 316 selected contigs. A subset of 234 SNPs were further validated and characterized in wild and cultured abalone using two Illumina GoldenGate genotyping assays. Combined with VeraCode technology, this genotyping platform yielded a 65%-69% conversion rate (percentage polymorphic markers) with a global genotyping success rate of 76%-85% and provided a viable means for validating SNP markers in a non-model species. The utility of 31 of the validated SNPs in population structure analysis was confirmed, while a large number of SNPs (174) were shown to be informative and are, thus, good candidates for linkage map construction. The non-synonymous SNPs (50) located in coding regions of genes that showed similarities with known proteins will also be useful for genetic applications, such as the marker-assisted selection of genes of relevance to abalone aquaculture.

  19. Validation of PDE9A Gene Identified in GWAS Showing Strong Association with Milk Production Traits in Chinese Holstein.

    PubMed

    Yang, Shao-Hua; Bi, Xiao-Jun; Xie, Yan; Li, Cong; Zhang, Sheng-Li; Zhang, Qin; Sun, Dong-Xiao

    2015-11-05

    Phosphodiesterase9A (PDE9A) is a cyclic guanosine monophosphate (cGMP)-specific enzyme widely expressed among the tissues, which is important in activating cGMP-dependent signaling pathways. In our previous genome-wide association study, a single nucleotide polymorphism (SNP) (BTA-55340-no-rs(b)) located in the intron 14 of PDE9A, was found to be significantly associated with protein yield. In addition, we found that PDE9A was highly expressed in mammary gland by analyzing its mRNA expression in different tissues. The objectives of this study were to identify genetic polymorphisms of PDE9A and to determine the effects of these variants on milk production traits in dairy cattle. DNA sequencing identified 11 single nucleotide polymorphisms (SNPs) and six SNPs in 5' regulatory region were genotyped to test for the subsequent association analyses. After Bonferroni correction for multiple testing, all these identified SNPs were statistically significant for one or more milk production traits (p < 0.0001~0.0077). Interestingly, haplotype-based association analysis revealed similar effects on milk production traits (p < 0.01). In follow-up RNA expression analyses, two SNPs (c.-1376 G>A, c.-724 A>G) were involved in the regulation of gene expression. Consequently, our findings provide confirmatory evidences for associations of PDE9A variants with milk production traits and these identified SNPs may serve as genetic markers to accelerate Chinese Holstein breeding program.

  20. Genetic Association Study of KCNQ5 Polymorphisms with High Myopia.

    PubMed

    Liao, Xuan; Yap, Maurice K H; Leung, Kim Hung; Kao, Patrick Y P; Liu, Long Qian; Yip, Shea Ping

    2017-01-01

    Identification of genetic variations related to high myopia may advance our knowledge of the etiopathogenesis of refractive error. This study investigated the role of potassium channel gene (KCNQ5) polymorphisms in high myopia. We performed a case-control study of 1563 unrelated Han Chinese subjects (809 cases of high myopia and 754 emmetropic controls). Five tag single-nucleotide polymorphisms (SNPs) of KCNQ5 were genotyped, and association testing with high myopia was conducted using logistic regression analysis adjusted for sex and age to give P asym values, and multiple comparisons were corrected by permutation test to give P emp values. All five noncoding SNPs were associated with high myopia. The SNP rs7744813, previously shown to be associated with refractive error and myopia in two GWAS, showed an odds ratio of 0.75 (95% CI 0.63-0.90; P emp = 0.0058) for the minor allele. The top SNP rs9342979 showed an odds ratio of 0.75 (95% CI 0.64-0.89; P emp = 0.0045) for the minor allele. Both SNPs are located within enhancer histone marks and DNase-hypersensitive sites. Our data support the involvement of KCNQ5 gene polymorphisms in the genetic susceptibility to high myopia and further exploration of KCNQ5 as a risk factor for high myopia.

  1. Genome-wide single-nucleotide polymorphism arrays demonstrate high fidelity of multiple displacement-based whole-genome amplification.

    PubMed

    Tzvetkov, Mladen V; Becker, Christian; Kulle, Bettina; Nürnberg, Peter; Brockmöller, Jürgen; Wojnowski, Leszek

    2005-02-01

    Whole-genome DNA amplification by multiple displacement (MD-WGA) is a promising tool to obtain sufficient DNA amounts from samples of limited quantity. Using Affymetrix' GeneChip Human Mapping 10K Arrays, we investigated the accuracy and allele amplification bias in DNA samples subjected to MD-WGA. We observed an excellent concordance (99.95%) between single-nucleotide polymorphisms (SNPs) called both in the nonamplified and the corresponding amplified DNA. This concordance was only 0.01% lower than the intra-assay reproducibility of the genotyping technique used. However, MD-WGA failed to amplify an estimated 7% of polymorphic loci. Due to the algorithm used to call genotypes, this was detected only for heterozygous loci. We achieved a 4.3-fold reduction of noncalled SNPs by combining the results from two independent MD-WGA reactions. This indicated that inter-reaction variations rather than specific chromosomal loci reduced the efficiency of MD-WGA. Consistently, we detected no regions of reduced amplification, with the exception of several SNPs located near chromosomal ends. Altogether, despite a substantial loss of polymorphic sites, MD-WGA appears to be the current method of choice to amplify genomic DNA for array-based SNP analyses. The number of nonamplified loci can be substantially reduced by amplifying each DNA sample in duplicate.

  2. Genetic polymorphisms located in genes related to immune and inflammatory processes are associated with end-stage renal disease: a preliminary study

    PubMed Central

    2012-01-01

    Background Chronic kidney disease progression has been linked to pro-inflammatory cytokines and markers of inflammation. These markers are also elevated in end-stage renal disease (ESRD), which constitutes a serious public health problem. Objective To investigate whether single nucleotide polymorphisms (SNPs) located in genes related to immune and inflammatory processes, could be associated with ESRD development. Design and methods A retrospective case-control study was carried out on 276 patients with ESRD and 288 control subjects. Forty-eight SNPs were genotyped via SNPlex platform. Logistic regression was used to assess the relationship between each sigle polymorphism and the development of ESRD. Results Four polymorphisms showed association with ESRD: rs1801275 in the interleukin 4 receptor (IL4R) gene (OR: 0.66 (95%CI = 0.46-0.95); p = 0.025; overdominant model), rs4586 in chemokine (C-C motif) ligand 2 (CCL2) gene (OR: 0.70 (95%CI = 0.54-0.90); p = 0.005; additive model), rs301640 located in an intergenic binding site for signal transducer and activator of transcription 4 (STAT4) (OR: 1.82 (95%CI = 1.17-2.83); p = 0.006; additive model) and rs7830 in the nitric oxide synthase 3 (NOS3) gene (OR: 1.31 (95%CI = 1.01-1.71); p = 0.043; additive model). After adjusting for multiple testing, results lost significance. Conclusion Our preliminary data suggest that four genetic polymorphisms located in genes related to inflammation and immune processes could help to predict the risk of developing ESRD. PMID:22817530

  3. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    PubMed

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.

  4. Kallikrein 3 and vitamin D receptor polymorphisms: potentials environmental risk factors for prostate cancer

    PubMed Central

    2014-01-01

    Objective To investigate the relationship and interaction of the single nucleotide polymorphisms (SNPs) of KLK3 and VDR and environmental factors with the predisposition to prostate cancer within Chinese population. Methods The comparison between 108 patients and 242 healthy people was carried out by using the TaqMan/MGB Probe Technology to determine the genotypes of KLK3(rs2735839 is located between KLK2 and KLK3) and VDR (rs731236 is located exon 9). Univariate and multivariate logistic regression model were used to assess the connection of genetic polymorphisms and environmental risk factors with PCa by collecting demographic information, as well as BMI, consumption of cigarettes, alcohol, and tea, exercise, and other environmental risk factors. Results The appearing frequencies of AA, AG, and GG genotypes at the SNPs rs2735839 (A/G) for KLK3 were 13.89%, 62.96% and 23.15% in PCa and 37.19%, 44.63%, 18.18% in control, respectively; these two groups are statistically different (P = 0.00). While the appearing frequencies of TT, TC, and CC genotypes at the SNPs rs731236 (T/C) for VDR were 88.89%, 9, 26%, 1.85% and 90.50%, 9.10%, 0.40% in control, respectively, with no significant statistical difference between the two group. The study confirmed decreasing risk in tea drinkers (OR = 0.58, 95% CI = 0.35-0.96). Conclusions Our studies indicate that environmental factor-tea drinking is associated with the development of PCa. The habit of drinking tea is a protective factor against PCa. The SNPs rs2735839 for KLK3 is strongly related to the development of PCa, while the SNPs rs731236 for VDR is not. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9759981571058803. PMID:24755043

  5. Polymorphisms in genes related to inflammation and obesity and colorectal adenoma risk.

    PubMed

    Huang, Brian Z; Tsilidis, Konstantinos K; Smith, Michael W; Hoffman-Bolton, Judith; Visvanathan, Kala; Platz, Elizabeth A; Joshu, Corinne E

    2018-05-26

    We previously investigated the association between single nucleotide polymorphisms (SNPs) in genes related to obesity and inflammation and colorectal cancer in the CLUE II cohort. However, the relationships between these SNPs and colorectal adenomas have not been well evaluated. In a nested case-control study of 135 incident adenoma cases and 269 matched controls in the CLUE II cohort (1989-2000), we genotyped 17 candidate SNPs in 12 genes (PPARG, TCF7L2, ADIPOQ, LEP, IL10, CRP, TLR4, IL6, IL1B, IL8, TNF, RNASEL) and 19 tagSNPs in three genes (IL10, CRP, and TLR4). Conditional logistic regression was used to calculate odds ratios (OR) for adenomas (overall and by size, histology, location, number). Polymorphisms in the inflammatory-related genes CRP, ADIPOQ, IL6, and TLR4 were observed to be associated with adenoma risk. At rs1205 in CRP, T (minor allele) carriers had a higher risk (OR 1.67, 95%CI 1.07-2.60; reference: CC) of adenomas overall and adenomas with aggressive characteristics. At rs1201299 in ADIPOQ, the AC genotype had a higher risk (OR 1.58, 95%CI 1.00-2.49) of adenomas, while the minor AA genotype had a borderline inverse association (OR 0.44, 95%CI 0.18-1.08; reference: CC). At rs1800797 in IL6, the AA genotype had a borderline inverse association (OR 0.53, 95%CI 0.27-1.05; reference: GG). Three TLR4 tagSNPs (rs10116253, rs1927911, rs7873784) were associated with adenomas among obese participants. None of these SNPs were associated with colorectal cancer in our prior study in CLUE II, possibly suggesting a different genetic etiology for early colorectal neoplasia. © 2018 Wiley Periodicals, Inc.

  6. Detection of a single nucleotide polymorphism in the human alpha-lactalbumin gene: implications for human milk proteins.

    PubMed

    Chowanadisai, Winyoo; Kelleher, Shannon L; Nemeth, Jennifer F; Yachetti, Stephen; Kuhlman, Charles F; Jackson, Joan G; Davis, Anne M; Lien, Eric L; Lönnerdal, Bo

    2005-05-01

    Variability in the protein composition of breast milk has been observed in many women and is believed to be due to natural variation of the human population. Single nucleotide polymorphisms (SNPs) are present throughout the entire human genome, but the impact of this variation on human milk composition and biological activity and infant nutrition and health is unclear. The goals of this study were to characterize a variant of human alpha-lactalbumin observed in milk from a Filipino population by determining the location of the polymorphism in the amino acid and genomic sequences of alpha-lactalbumin. Milk and blood samples were collected from 20 Filipino women, and milk samples were collected from an additional 450 women from nine different countries. alpha-Lactalbumin concentration was measured by high-performance liquid chromatography (HPLC), and milk samples containing the variant form of the protein were identified with both HPLC and mass spectrometry (MS). The molecular weight of the variant form was measured by MS, and the location of the polymorphism was narrowed down by protein reduction, alkylation and trypsin digestion. Genomic DNA was isolated from whole blood, and the polymorphism location and subject genotype were determined by amplifying the entire coding sequence of human alpha-lactalbumin by PCR, followed by DNA sequencing. A variant form of alpha-lactalbumin was observed in HPLC chromatograms, and the difference in molecular weight was determined by MS (wild type=14,070 Da, variant=14,056 Da). Protein reduction and digestion narrowed the polymorphism between the 33rd and 77th amino acid of the protein. The genetic polymorphism was identified as adenine to guanine, which translates to a substitution from isoleucine to valine at amino acid 46. The frequency of variation was higher in milk from China, Japan and Philippines, which suggests that this polymorphism is most prevalent in Asia. There are SNPs in the genome for human milk proteins and their implications for protein bioactivity and infant nutrition need to be considered.

  7. Assessment of the Geographic Origins of Pinewood Nematode Isolates via Single Nucleotide Polymorphism in Effector Genes

    PubMed Central

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  8. Discovery of 100K SNP array and its utilization in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing (NGS) enable us to identify thousands of single nucleotide polymorphisms (SNPs) marker for genotyping and fingerprinting. However, the process requires very precise bioinformatics analysis and filtering process. High throughput SNP array with predefined genomic location co...

  9. Association of TUSC1 and DPF3 gene polymorphisms with male infertility.

    PubMed

    Sato, Youichi; Hasegawa, Chise; Tajima, Atsushi; Nozawa, Shiari; Yoshiike, Miki; Koh, Eitetsue; Kanaya, Jiro; Namiki, Mikio; Matsumiya, Kiyomi; Tsujimura, Akira; Komatsu, Kiyoshi; Itoh, Naoki; Eguchi, Jiro; Yamauchi, Aiko; Iwamoto, Teruaki

    2018-02-01

    Recently, genome-wide association studies of a Hutterite population in the USA revealed that five single nucleotide polymorphisms (SNPs) with a significant association with sperm quality and/or function in ethnically diverse men from Chicago were significantly correlated with family size. Of these, three SNPs (rs7867029, rs7174015, and rs12870438) were found to be significantly associated with the risk of azoospermia and/or oligozoospermia in a Japanese population. In this study, we investigated whether the rs10966811 (located in an intergenic region between the TUSC1 and IZUMO3 genes) and rs10129954 (located in the DPF3 gene) SNPs, previously related to family size, are associated with male infertility. In addition, we performed association analysis between rs12348 in TUSC1 and rs2772579 in IZUMO3 and male infertility. We genotyped 145 patients with infertility (including 83 patients with azoospermia and 62 with oligozoospermia) and 713 fertile controls by PCR-RFLP technique for polymorphism. Because rs10966811 has no restriction sites, the SNP rs12376894 with strong linkage disequilibrium was selected as an alternative to rs10966811. There was a statistically significant association between rs12376894 proxy SNP of rs10966811 and oligozoospermia. Also, a statistically significant association between rs10129954 and azoospermia, and oligozoospermia was observed. When we assessed the relationship between rs12348 in TUSC1 and rs2772579 in IZUMO3 and male infertility traits, we found that rs12348 in TUSC1 was significantly associated with azoospermia and oligozoospermia, but rs2772579 in IZUMO3 was not associated with male infertility. We found that the polymorphisms in TUSC1 and DPF3 displayed strong associations with male infertility.

  10. Study of five novel non-synonymous polymorphisms in human brain-expressed genes in a Colombian sample.

    PubMed

    Ojeda, Diego A; Forero, Diego A

    2014-10-01

    Non-synonymous single nucleotide polymorphisms (nsSNPs) in brain-expressed genes represent interesting candidates for genetic research in neuropsychiatric disorders. To study novel nsSNPs in brain-expressed genes in a sample of Colombian subjects. We applied an approach based on in silico mining of available genomic data to identify and select novel nsSNPs in brain-expressed genes. We developed novel genotyping assays, based in allele-specific PCR methods, for these nsSNPs and genotyped them in 171 Colombian subjects. Five common nsSNPs (rs6855837; p.Leu395Ile, rs2305160; p.Thr394Ala, rs10503929; p.Met289Thr, rs2270641; p.Thr4Pro and rs3822659; p.Ser735Ala) were studied, located in the CLOCK, NPAS2, NRG1, SLC18A1 and WWC1 genes. We reported allele and genotype frequencies in a sample of South American healthy subjects. There is previous experimental evidence, arising from genome-wide expression and association studies, for the involvement of these genes in several neuropsychiatric disorders and endophenotypes, such as schizophrenia, mood disorders or memory performance. Frequencies for these nsSNPSs in the Colombian samples varied in comparison to different HapMap populations. Future study of these nsSNPs in brain-expressed genes, a synaptogenomics approach, will be important for a better understanding of neuropsychiatric diseases and endophenotypes in different populations.

  11. Association of ADRB2 polymorphism with triglyceride levels in Tongans

    PubMed Central

    2013-01-01

    Background Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. Methods To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. Results A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. Conclusions In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index. PMID:23875540

  12. Polymorphisms in HLA-DPB1 Are Associated With Differences in Rubella Virus–Specific Humoral Immunity After Vaccination

    PubMed Central

    Lambert, Nathaniel D.; Haralambieva, Iana H.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Pankratz, Vernon Shane; Poland, Gregory A.

    2015-01-01

    Vaccination with live attenuated rubella virus induces a strong immune response in most individuals. However, small numbers of subjects never reach or maintain protective antibody levels, and there is a high degree of variability in immune response. We have previously described genetic polymorphisms in HLA and other candidate genes that are associated with interindividual differences in humoral immunity to rubella virus. To expand our previous work, we performed a genome-wide association study (GWAS) to discover single-nucleotide polymorphisms (SNPs) associated with rubella virus–specific neutralizing antibodies. We identified rs2064479 in the HLA-DPB1 genetic region as being significantly associated with humoral immune response variations after rubella vaccination (P = 8.62 × 10−8). All other significant SNPs in this GWAS were located near the HLA-DPB1 gene (P ≤ 1 × 10−7). These findings demonstrate that polymorphisms in HLA-DPB1 are strongly associated with interindividual differences in neutralizing antibody levels to rubella vaccination and represent a validation of our previous HLA work. PMID:25293367

  13. African-specific variability in the acetylcholine muscarinic receptor M4: association with cocaine and heroin addiction.

    PubMed

    Levran, Orna; Randesi, Matthew; Peles, Einat; Correa da Rosa, Joel; Ott, Jurg; Rotrosen, John; Adelson, Miriam; Kreek, Mary Jeanne

    2016-06-01

    This study was designed to determine whether polymorphisms in acetylcholine receptors contribute to opioid dependence and/or cocaine dependence. The sample (n = 1860) was divided by drug and ancestry, and 55 polymorphisms (nine genes) were analyzed. Of the 20 SNPs that showed nominally significant associations, the association of the African-specific CHRM4 SNP rs2229163 (Asn417=) with cocaine dependence survived correction for multiple testing (Pcorrected = 0.047). CHRM4 is located in a region of strong linkage disequilibrium on chromosome 11 that includes genes associated with schizophrenia. CHRM4 SNP rs2229163 is in strong linkage disequilibrium with several African-specific SNPs in DGKZ and AMBRA1. Cholinergic receptors' variants may contribute to drug addiction and have a potential role as pharmacogenetic markers.

  14. Evaluation and identification of damaged single nucleotide polymorphisms in COL1A1 gene involved in osteoporosis

    PubMed Central

    Alsaif, Mohammed A.; Al Shammari, Sulaiman A.; Alhamdan, Adel A.

    2012-01-01

    Introduction Single-nucleotide polymorphisms (SNPs) are biomarkers for exploring the genetic basis of many complex human diseases. The prediction of SNPs is promising in modern genetic analysis but it is still a great challenge to identify the functional SNPs in a disease-related gene. The computational approach has overcome this challenge and an increase in the successful rate of genetic association studies and reduced cost of genotyping have been achieved. The objective of this study is to identify deleterious non-synonymous SNPs (nsSNPs) associated with the COL1A1 gene. Material and methods The SNPs were retrieved from the Single Nucleotide Polymorphism Database (dbSNP). Using I-Mutant, protein stability change was calculated. The potentially functional nsSNPs and their effect on proteins were predicted by PolyPhen and SIFT respectively. FASTSNP was used for estimation of risk score. Results Our analysis revealed 247 SNPs as non-synonymous, out of which 5 nsSNPs were found to be least stable by I-Mutant 2.0 with a DDG value of > –1.0. Four nsSNPs, namely rs17853657, rs17857117, rs57377812 and rs1059454, showed a highly deleterious tolerance index score of 0.00 with a change in their physicochemical properties by the SIFT server. Seven nsSNPs, namely rs1059454, rs8179178, rs17853657, rs17857117, rs72656340, rs72656344 and rs72656351, were found to be probably damaging with a PSIC score difference between 2.0 and 3.5 by the PolyPhen server. Three nsSNPs, namely rs1059454, rs17853657 and rs17857117, were found to be highly polymorphic with a risk score of 3-4 with a possible effect of non-conservative change and splicing regulation by FASTSNP. Conclusions Three nsSNPs, namely rs1059454, rs17853657 and rs17857117, are potential functional polymorphisms that are likely to have a functional impact on the COL1A1 gene. PMID:24273577

  15. Use of single-nucleotide polymorphisms (SNPs) to distinguish gene expression subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME).

    PubMed

    Shimosako, Nana; Kerr, Jonathan R

    2014-12-01

    We have reported gene expression changes in patients with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) and the fact that such gene expression data can be used to identify subtypes of CFS/ME with distinct clinical phenotypes. Due to the difficulties in using a comparative gene expression method as an aid to CFS/ME disease and subtype-specific diagnosis, we have attempted to develop such a method based on single-nucleotide polymorphism (SNP) analysis. To identify SNP allele associations with CFS/ME and CFS/ME subtypes, we tested genomic DNA of patients with CFS/ME (n=108), patients with endogenous depression (n=17) and normal blood donors (n=68) for 504 human SNP alleles located within 88 CFS-associated human genes using the SNP Genotyping GoldenGate Assay (Illumina, San Diego, California, USA). 360 ancestry informative markers (AIM) were also examined. 21 SNPs were significantly associated with CFS/ME compared with depression and normal groups. 148 SNP alleles had a significant association with one or more CFS/ME subtypes. For each subtype, associated SNPs tended to be grouped together within particular genes. AIM SNPs indicated that 4 subjects were of Asian origin while the remainder were Caucasian. Hierarchical clustering of AIM data revealed the relatedness between 2 couples of patients with CFS only and confirmed the overall heterogeneity of all subjects. This study provides evidence that human SNPs located within CFS/ME associated genes are associated with particular genomic subtypes of CFS/ME. Further work is required to develop this into a clinically useful subtype-specific diagnostic test. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. A genetic variant of miR-148a binding site in the SCRN1 3'-UTR is associated with susceptibility and prognosis of gastric cancer.

    PubMed

    Song, Peng; Zhu, Haixia; Zhang, Dong; Chu, Haiyan; Wu, Dongmei; Kang, Meiyun; Wang, Meilin; Gong, Weida; Zhou, Jianwei; Zhang, Zhengdong; Zhao, Qinghong

    2014-11-17

    Single nucleotide polymorphisms (SNPs) in the 3'-untranslated regions targeted by putative mircoRNA can change its binding strength, affecting the susceptibility and prognosis of cancer. We aimed to investigate the associations between SNPs within miR-148a binding sites and gastric cancer (GC) risk and prognosis. Using bioinformatics tools, we selected two SNPs (SCRN1 rs6976789 and PDYN rs2235749) located in miR-148a target sites. We genotyped the two SNPs in a case-control study comprising 753 GC patients and 949 cancer-free subjects. We found a significantly increased risk of GC associated with the SCRN1 rs6976789 C>T polymorphism [adjusted OR = 1.25, 95% confidence interval (CI) = 1.02-1.53; CT/TT vs. CC]. However, no significant association was found between the PDYN rs2235749 and GC risk in all genetic models. Furthermore, we evaluated whether SCRN1 rs6976789 affected the survival of GC patients. Results showed that individuals with SCRN1 rs6976789 TT genotype had poorer overall survival compared with those carried CC/CT genotypes in intestinal-type GC (adjusted HR = 2.47, 95% CI = 1.21-5.05). Luciferase report assay showed that the rs6976789 variant T allele influenced the binding ability of miR-148a. Our results suggested that the SCRN1 rs6976789 polymorphism may play an important role in the GC development and progression.

  17. Genetic alterations within TLR genes in development of Toxoplasma gondii infection among Polish pregnant women.

    PubMed

    Wujcicka, Wioletta; Wilczyński, Jan; Nowakowska, Dorota

    2017-09-01

    The research was conducted to evaluate the role of genotypes, haplotypes and multiple-SNP variants in the range of TLR2, TLR4 and TLR9 single nucleotide polymorphisms (SNPs) in the development of Toxoplasma gondii infection among Polish pregnant women. The study was performed for 116 Polish pregnant women, including 51 patients infected with T. gondii, and 65 age-matched control pregnant individuals. Genotypes in TLR2 2258 G>A, TLR4 896 A>G, TLR4 1196 C>T and TLR9 2848 G>A SNPs were estimated by self-designed, nested PCR-RFLP assays. Randomly selected PCR products, representative for distinct genotypes in the studied polymorphisms, were confirmed by sequencing. All the genotypes were calculated for Hardy-Weinberg (H-W) equilibrium and TLR4 variants were tested for linkage disequilibrium. Relationships were assessed between alleles, genotypes, haplotypes or multiple-SNP variants in TLR polymorphisms and the occurrence of T. gondii infection in pregnant women, using a logistic regression model. All the analyzed genotypes preserved the H-W equilibrium among the studied groups of patients (P>0.050). Similar distribution of distinct alleles and individual genotypes in TLR SNPs, as well as of haplotypes in TLR4 polymorphisms, were observed in T. gondii infected and control uninfected pregnant women. However, the GACG multiple-SNP variant, within the range of all the four studied polymorphisms, was correlated with a decreased risk of the parasitic infection (OR 0.52, 95% CI 0.28-0.97; P≤0.050). The polymorphisms, located within TLR2, TLR4 and TLR9 genes, may be involved together in occurrence of T. gondii infection among Polish pregnant women. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  18. Association of μ-Calpain and Calpastatin Polymorphisms with Meat Tenderness in a Brahman–Angus Population

    PubMed Central

    Leal-Gutiérrez, Joel D.; Elzo, Mauricio A.; Johnson, Dwain D.; Scheffler, Tracy L.; Scheffler, Jason M.; Mateescu, Raluca G.

    2018-01-01

    Autogenous proteolytic enzymes of the calpain family are implicated in myofibrillar protein degradation. As a result, the μ-calpain gene and its specific inhibitor, calpastatin, have been repeatedly investigated for their association with meat quality traits in cattle; however, no functional mutation has been identified for these two genes. The objectives of this study were: (1) to assess breed composition effect on tenderness; (2) to perform a linkage disequilibrium (LD) analysis in μ-calpain and calpastatin genes as well as an association analyses with tenderness; and (3) to analyze putative functional SNPs inside the significant LD block for an effect on tenderness. Tenderness measurements and genotypes for 16 SNPs in μ-calpain gene and 28 SNPs in calpastatin gene from 673 steers were analyzed. A bioinformatic analysis identified “putative functional SNPs” inside the associated LD block – polymorphisms able to produce a physical and/or chemical change in the DNA, mRNA, or translated protein in silico. Breed composition had a significant (P < 0.0001) effect on tenderness where animals with more than 80% Angus composition had the most tender meat. One 11-kb LD-block and three LD-blocks of 37, 17, and 14 kb in length were identified in the μ-calpain and calpastatin genes, respectively. Out of these, the LD-block 3 in calpastatin, tagged by SNPs located at 7-98566391 and 7-98581038, had a significant effect on tenderness with the TG-CG diplotype being approximately 1 kg more tender than the toughest diplotype, TG-CG. A total of 768 SNPs in the LD-block 3 of calpastatin were included in the bioinformatic analysis, and 28 markers were selected as putative functional SNPs inside the LD-block 3 of calpastatin; however, none of them were polymorphic in this population. Out of 15 initial polymorphisms segregating inside the LD-block 3 of calpastatin in this population, markers ARSUSMARC116, Cast5, rs730723459, and rs210861835 were found to be significantly associated with tenderness. PMID:29520298

  19. Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index.

    PubMed

    Hoggart, Clive J; Venturini, Giulia; Mangino, Massimo; Gomez, Felicia; Ascari, Giulia; Zhao, Jing Hua; Teumer, Alexander; Winkler, Thomas W; Tšernikova, Natalia; Luan, Jian'an; Mihailov, Evelin; Ehret, Georg B; Zhang, Weihua; Lamparter, David; Esko, Tõnu; Macé, Aurelien; Rüeger, Sina; Bochud, Pierre-Yves; Barcella, Matteo; Dauvilliers, Yves; Benyamin, Beben; Evans, David M; Hayward, Caroline; Lopez, Mary F; Franke, Lude; Russo, Alessia; Heid, Iris M; Salvi, Erika; Vendantam, Sailaja; Arking, Dan E; Boerwinkle, Eric; Chambers, John C; Fiorito, Giovanni; Grallert, Harald; Guarrera, Simonetta; Homuth, Georg; Huffman, Jennifer E; Porteous, David; Moradpour, Darius; Iranzo, Alex; Hebebrand, Johannes; Kemp, John P; Lammers, Gert J; Aubert, Vincent; Heim, Markus H; Martin, Nicholas G; Montgomery, Grant W; Peraita-Adrados, Rosa; Santamaria, Joan; Negro, Francesco; Schmidt, Carsten O; Scott, Robert A; Spector, Tim D; Strauch, Konstantin; Völzke, Henry; Wareham, Nicholas J; Yuan, Wei; Bell, Jordana T; Chakravarti, Aravinda; Kooner, Jaspal S; Peters, Annette; Matullo, Giuseppe; Wallaschofski, Henri; Whitfield, John B; Paccaud, Fred; Vollenweider, Peter; Bergmann, Sven; Beckmann, Jacques S; Tafti, Mehdi; Hastie, Nicholas D; Cusi, Daniele; Bochud, Murielle; Frayling, Timothy M; Metspalu, Andres; Jarvelin, Marjo-Riitta; Scherag, André; Smith, George Davey; Borecki, Ingrid B; Rousson, Valentin; Hirschhorn, Joel N; Rivolta, Carlo; Loos, Ruth J F; Kutalik, Zoltán

    2014-07-01

    The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.

  20. Novel Approach Identifies SNPs in SLC2A10 and KCNK9 with Evidence for Parent-of-Origin Effect on Body Mass Index

    PubMed Central

    Hoggart, Clive J.; Venturini, Giulia; Mangino, Massimo; Gomez, Felicia; Ascari, Giulia; Zhao, Jing Hua; Teumer, Alexander; Winkler, Thomas W.; Tšernikova, Natalia; Luan, Jian'an; Mihailov, Evelin; Ehret, Georg B.; Zhang, Weihua; Lamparter, David; Esko, Tõnu; Macé, Aurelien; Rüeger, Sina; Bochud, Pierre-Yves; Barcella, Matteo; Dauvilliers, Yves; Benyamin, Beben; Evans, David M.; Hayward, Caroline; Lopez, Mary F.; Franke, Lude; Russo, Alessia; Heid, Iris M.; Salvi, Erika; Vendantam, Sailaja; Arking, Dan E.; Boerwinkle, Eric; Chambers, John C.; Fiorito, Giovanni; Grallert, Harald; Guarrera, Simonetta; Homuth, Georg; Huffman, Jennifer E.; Porteous, David; Moradpour, Darius; Iranzo, Alex; Hebebrand, Johannes; Kemp, John P.; Lammers, Gert J.; Aubert, Vincent; Heim, Markus H.; Martin, Nicholas G.; Montgomery, Grant W.; Peraita-Adrados, Rosa; Santamaria, Joan; Negro, Francesco; Schmidt, Carsten O.; Scott, Robert A.; Spector, Tim D.; Strauch, Konstantin; Völzke, Henry; Wareham, Nicholas J.; Yuan, Wei; Bell, Jordana T.; Chakravarti, Aravinda; Kooner, Jaspal S.; Peters, Annette; Matullo, Giuseppe; Wallaschofski, Henri; Whitfield, John B.; Paccaud, Fred; Vollenweider, Peter; Bergmann, Sven; Beckmann, Jacques S.; Tafti, Mehdi; Hastie, Nicholas D.; Cusi, Daniele; Bochud, Murielle; Frayling, Timothy M.; Metspalu, Andres; Jarvelin, Marjo-Riitta; Scherag, André; Smith, George Davey; Borecki, Ingrid B.; Rousson, Valentin; Hirschhorn, Joel N.; Rivolta, Carlo; Loos, Ruth J. F.; Kutalik, Zoltán

    2014-01-01

    The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity. PMID:25078964

  1. Genomic location of the bovine growth hormone secretagogue receptor (GHSR) gene and investigation of genetic polymorphism.

    PubMed

    Colinet, F G; Vanderick, S; Charloteaux, B; Eggen, A; Gengler, N; Renaville, B; Brasseur, R; Portetelle, D; Renaville, Robert

    2009-01-01

    The growth hormone secretagogue receptor (GHSR) is involved in the regulation of energetic homeostasis and GH secretion. In this study, the bovine GHSR gene was mapped to BTA1 between BL26 and BMS4004. Two different bovine GHSR CDS (GHSR1a and GHSR1b) were sequenced. Six polymorphisms (five SNPs and one 3-bp indel) were also identified, three of them leading to amino acid variations L24V, D194N, and Del R242. These variations are located in the extracellular N-terminal end, the exoloop 2, and the cytoloop 3 of the receptor, respectively.

  2. Homozygosity of single nucleotide polymorphisms in the 3' region of the canine estrogen receptor 1 gene is greater in Toy Poodles than in Miniature Dachshunds and Chihuahuas.

    PubMed

    Pathirana, Indunil N; Tanaka, Kakeru; Kawate, Noritoshi; Tsuji, Makoto; Hatoya, Shingo; Inaba, Toshio; Tamada, Hiromichi

    2011-06-01

    Differences in the distribution of single nucleotide polymorphisms (SNPs) and haplotypes in the estrogen receptor α gene (ESR1) were examined in Miniature Dachshunds (n = 48), Chihuahuas (n = 20) and Toy Poodles (n = 18). Five DNA fragments located in the 40-kb region at the 3' end of ESR1 were amplified by polymerase chain reaction and were directly sequenced. We compared allele, genotype and estimated haplotype frequencies at each SNP in the 3' end of ESR1 for these three breeds of small dog. The frequency of the major allele and the genotype frequency of the major allele homozygotes, were significantly higher in Toy Poodles for five SNPs (SNP #5, #14-17) than in Miniature Dachshunds, and significantly higher in Toy Poodles than Chihuahuas for three SNPs (SNP #15-17). A common haplotype block was identified in an approximately 20-kb region encompassing four SNPs (SNPs # 14-17). The frequencies of the most abundant estimated haplotype (GTTG) and GTTG homozygotes were significantly higher in Toy Poodles than in the other two breeds. These results imply that homozygosity for the allele, genotype and haplotype distribution within the block at the 3' end of ESR1 is greater in Toy Poodles than in Miniature Dachshunds and Chihuahuas. © 2011 The Authors; Animal Science Journal © 2011 Japanese Society of Animal Science.

  3. Activating Transcription Factor 6 (ATF6) Sequence Polymorphisms in Type 2 Diabetes and Pre-Diabetic Traits

    PubMed Central

    Chu, Winston S.; Das, Swapan Kumar; Wang, Hua; Chan, Juliana C.; Deloukas, Panos; Froguel, Philippe; Baier, Leslie J.; Jia, Weiping; McCarthy, Mark I.; Ng, Maggie C.Y.; Damcott, Coleen; Shuldiner, Alan R.; Zeggini, Eleftheria; Elbein, Steven C.

    2009-01-01

    Activating transcription factor 6 (ATF6) is located within the region of linkage to type 2 diabetes on chromosome 1q21-q23 and is a key activator of the endoplasmic reticulum stress response. We evaluated 78 single nucleotide polymorphisms (SNPs) spanning >213 kb in 95 people, from which we selected 64 SNPs for evaluation in 191 Caucasian case subjects from Utah and between 165 and 188 control subjects. Six SNPs showed nominal associations with type 2 diabetes (P = 0.001-0.04), including the nonsynonymous SNP rs1058405 (M67V) in exon 3 and rs11579627 in the 3′ flanking region. Only rs1159627 remained significant on permutation testing. The associations were not replicated in 353 African-American case subjects and 182 control subjects, nor were ATF6 SNPs associated with altered insulin secretion or insulin sensitivity in nondiabetic Caucasian individuals. No association with type 2 diabetes was found in a subset of 44 SNPs in Caucasian (n = 2,099), Pima Indian (n = 293), and Chinese (n = 287) samples. Allelic expression imbalance was found in transformed lymphocyte cDNA for 3′ untranslated region variants, thus suggesting cis-acting regulatory variants. ATF6 does not appear to play a major role in type 2 diabetes, but further work is required to identify the cause of the allelic expression imbalance. PMID:17327457

  4. Prospects for inferring pairwise relationships with single nucleotide polymorphisms

    Treesearch

    Jeffery C. Glaubitz; O. Eugene, Jr. Rhodes; J. Andrew DeWoody

    2003-01-01

    An extraordinarily large number of single nucleotide polymorphisms (SNPs) are now available in humans as well as in other model organisms. Technological advancements may soon make it feasible to assay hundreds of SNPs in virtually any organism of interest. One potential application of SNPs is the determination of pairwise genetic relationships in populations without...

  5. Distribution and linkage disequilibrium analysis of polymorphisms of GH1 gene in different populations of pigs associated with body size.

    PubMed

    Cheng, Yunyun; Liu, Songcai; Su, Dan; Lu, Chao; Zhang, Xin; Wu, Qingyan; Li, Siming; Fu, Haoyu; Yu, Hao; Hao, Linlin

    2016-03-01

    Growth hormone (GH) has been considered as a candidate gene for growth and body size in pigs. In this study, polymorphisms of the GH1 gene were evaluated for associations with body size traits in 190 pig individuals. Seventeen single-nucleotide polymorphisms (SNPs) were identified in GH1 gene of the large pig breeds and miniature pig breeds using direct sequencing and genotyped by allele-specific PCR approach. Notably, six (g.237A>G, g.283T>C, g.309A>G, g.318A>G, g.540A>G and g.544A>G) of them were significantly associated with body size, of which three loci (g.283T>C, g.309A>G, g.318A>G) located in the signal-peptide coding region of GH1 gene compose a CGG haplotype for large pigs and TAA haplotype for miniature pigs (P <0.001), two loci (g.540A>G and g.544A>G) located in the second intron of GH1 gene compose a GG haplotype for large pigs and AA haplotype for miniature pigs (P < 0.001). Our results demonstrate that these SNPs in GH1 gene are associated with the body size of pigs providing genetic basis for pig breeding with the improved economic benefits.

  6. Genetic variations of DICKKOPF family genes might not be associated with gastric cancer susceptibility.

    PubMed

    Wu, Juan; Zhang, Junfeng; Zhan, Zhen; Cao, Qinhong; Li, Zhong

    2016-07-26

    Recent studies have implicated that members of the DICKKOPF (DKK) were causally involved in large number of human cancers. This study was designed to investigate the relationship between the genetic variations of DKK family genes and the risk of gastric cancer (GC). Six SNPs (single nucleotide polymorphisms) of DKK family genes, including rs2241529 in DKK1, rs3733635, rs17037102 and rs419764 in DKK2, rs3206824 in DKK3 and rs2073664 in DKK4, were selected and genotyped by restriction fragment length polymorphism (RFLP) and TaqMan SNP genotyping methods in 409 GC cases and 554 cancer-free controls in the Han population in eastern China. None of the six SNPs achieved significant association with the overall GC risk and stratified analysis by age, gender, smoking status, drinking status, tumor location and pathological classification confirmed these non-significant associations. Our study indicated that the studied six SNPs of DKKs would not be the risk factors for GC in this Han Chinese population. Studies of larger population for different ethnicities will be needed to warrant our findings.

  7. Common variants of xeroderma pigmentosum genes and prostate cancer risk.

    PubMed

    Mirecka, Aneta; Paszkowska-Szczur, Katarzyna; Scott, Rodney J; Górski, Bohdan; van de Wetering, Thierry; Wokołorczyk, Dominika; Gromowski, Tomasz; Serrano-Fernandez, Pablo; Cybulski, Cezary; Kashyap, Aniruddh; Gupta, Satish; Gołąb, Adam; Słojewski, Marcin; Sikorski, Andrzej; Lubiński, Jan; Dębniak, Tadeusz

    2014-08-10

    The genetic basis of prostate cancer (PC) is complex and appears to involve multiple susceptibility genes. A number of studies have evaluated a possible correlation between several NER gene polymorphisms and PC risk, but most of them evaluated only single SNPs among XP genes and the results remain inconsistent. Out of 94 SNPs located in seven XP genes (XPA-XPG) a total of 15 SNPs were assayed in 720 unselected patients with PC and compared to 1121 healthy adults. An increased risk of disease was associated with the XPD SNP, rs1799793 (Asp312Asn) AG genotype (OR=2.60; p<0.001) and with the AA genotype (OR=531; p<0.0001) compared to the control population. Haplotype analysis of XPD revealed one protective haplotype and four associated with an increased disease risk, which showed that the A allele (XPD rs1799793) appeared to drive the main effect on promoting prostate cancer risk. Polymorphism in XPD gene appears to be associated with the risk of prostate cancer. Copyright © 2014. Published by Elsevier B.V.

  8. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo.

    PubMed

    Li, Yi; Gao, Yuxuan; Kim, You-Sam; Iqbal, Asif; Kim, Jong-Joo

    2017-01-01

    A whole genome association study was conducted to identify single nucleotide polymorphisms (SNPs) with additive and dominant effects for growth and carcass traits in Korean native cattle, Hanwoo. The data set comprised 61 sires and their 486 Hanwoo steers that were born between spring of 2005 and fall of 2007. The steers were genotyped with the 35,968 SNPs that were embedded in the Illumina bovine SNP 50K beadchip and six growth and carcass quality traits were measured for the steers. A series of lack-of-fit tests between the models was applied to classify gene expression pattern as additive or dominant. A total of 18 (0), 15 (3), 12 (8), 15 (18), 11 (7), and 21 (1) SNPs were detected at the 5% chromosome (genome) - wise level for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area (LMA) and marbling score, respectively. Among the significant 129 SNPs, 56 SNPs had additive effects, 20 SNPs dominance effects, and 53 SNPs both additive and dominance effects, suggesting that dominance inheritance mode be considered in genetic improvement for growth and carcass quality in Hanwoo. The significant SNPs were located at 33 quantitative trait locus (QTL) regions on 18 Bos Taurus chromosomes (i.e. BTA 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 23, 26, 28, and 29) were detected. There is strong evidence that BTA14 is the key chromosome affecting CWT. Also, BTA20 is the key chromosome for almost all traits measured (WWT, YWT, LMA). The application of various additive and dominance SNP models enabled better characterization of SNP inheritance mode for growth and carcass quality traits in Hanwoo, and many of the detected SNPs or QTL had dominance effects, suggesting that dominance be considered for the whole-genome SNPs data and implementation of successive molecular breeding schemes in Hanwoo.

  9. Cacao single-nucleotide polymorphism (SNP) markers: A discovery strategy to identify SNPs for genotyping, genetic mapping and genome wide association studies (GWAS)

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...

  10. Searching for ancient balanced polymorphisms shared between Neanderthals and Modern Humans

    PubMed Central

    Viscardi, Lucas Henriques; Paixão-Côrtes, Vanessa Rodrigues; Comas, David; Salzano, Francisco Mauro; Rovaris, Diego; Bau, Claiton Dotto; Amorim, Carlos Eduardo G.; Bortolini, Maria Cátira

    2018-01-01

    Abstract Hominin evolution is characterized by adaptive solutions often rooted in behavioral and cognitive changes. If balancing selection had an important and long-lasting impact on the evolution of these traits, it can be hypothesized that genes associated with them should carry an excess of shared polymorphisms (trans- SNPs) across recent Homo species. In this study, we investigate the role of balancing selection in human evolution using available exomes from modern (Homo sapiens) and archaic humans (H. neanderthalensis and Denisovan) for an excess of trans-SNP in two gene sets: one associated with the immune system (IMMS) and another one with behavioral system (BEHS). We identified a significant excess of trans-SNPs in IMMS (N=547), of which six of these located within genes previously associated with schizophrenia. No excess of trans-SNPs was found in BEHS, but five genes in this system harbor potential signals for balancing selection and are associated with psychiatric or neurodevelopmental disorders. Our approach evidenced recent Homo trans-SNPs that have been previously implicated in psychiatric diseases such as schizophrenia, suggesting that a genetic repertoire common to the immune and behavioral systems could have been maintained by balancing selection starting before the split between archaic and modern humans. PMID:29658973

  11. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination.

    PubMed

    Lambert, Nathaniel D; Haralambieva, Iana H; Kennedy, Richard B; Ovsyannikova, Inna G; Pankratz, Vernon Shane; Poland, Gregory A

    2015-03-15

    Vaccination with live attenuated rubella virus induces a strong immune response in most individuals. However, small numbers of subjects never reach or maintain protective antibody levels, and there is a high degree of variability in immune response. We have previously described genetic polymorphisms in HLA and other candidate genes that are associated with interindividual differences in humoral immunity to rubella virus. To expand our previous work, we performed a genome-wide association study (GWAS) to discover single-nucleotide polymorphisms (SNPs) associated with rubella virus-specific neutralizing antibodies. We identified rs2064479 in the HLA-DPB1 genetic region as being significantly associated with humoral immune response variations after rubella vaccination (P = 8.62 × 10(-8)). All other significant SNPs in this GWAS were located near the HLA-DPB1 gene (P ≤ 1 × 10(-7)). These findings demonstrate that polymorphisms in HLA-DPB1 are strongly associated with interindividual differences in neutralizing antibody levels to rubella vaccination and represent a validation of our previous HLA work. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Contributions of IKZF1, DDC, CDKN2A, CEBPE, and LMO1 Gene Polymorphisms to Acute Lymphoblastic Leukemia in a Yemeni Population.

    PubMed

    Al-Absi, Boshra; Razif, Muhammad F M; Noor, Suzita M; Saif-Ali, Riyadh; Aqlan, Mohammed; Salem, Sameer D; Ahmed, Radwan H; Muniandy, Sekaran

    2017-10-01

    Genome-wide and candidate gene association studies have previously revealed links between a predisposition to acute lymphoblastic leukemia (ALL) and genetic polymorphisms in the following genes: IKZF1 (7p12.2; ID: 10320), DDC (7p12.2; ID: 1644), CDKN2A (9p21.3; ID: 1029), CEBPE (14q11.2; ID: 1053), and LMO1 (11p15; ID: 4004). In this study, we aimed to conduct an investigation into the possible association between polymorphisms in these genes and ALL within a sample of Yemeni children of Arab-Asian descent. Seven single-nucleotide polymorphisms (SNPs) in IKZF1, three SNPs in DDC, two SNPs in CDKN2A, two SNPs in CEBPE, and three SNPs in LMO1 were genotyped in 289 Yemeni children (136 cases and 153 controls), using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Logistic regression analyses were used to estimate ALL risk, and the strength of association was expressed as odds ratios with 95% confidence intervals. We found that the IKZF1 SNP rs10235796 C allele (p = 0.002), the IKZF1 rs6964969 A>G polymorphism (p = 0.048, GG vs. AA), the CDKN2A rs3731246 G>C polymorphism (p = 0.047, GC+CC vs. GG), and the CDKN2A SNP rs3731246 C allele (p = 0.007) were significantly associated with ALL in Yemenis of Arab-Asian descent. In addition, a borderline association was found between IKZF1 rs4132601 T>G variant and ALL risk. No associations were found between the IKZF1 SNPs (rs11978267; rs7789635), DDC SNPs (rs3779084; rs880028; rs7809758), CDKN2A SNP (rs3731217), the CEBPE SNPs (rs2239633; rs12434881) and LMO1 SNPs (rs442264; rs3794012; rs4237770) with ALL in Yemeni children. The IKZF1 SNPs, rs10235796 and rs6964969, and the CDKN2A SNP rs3731246 (previously unreported) could serve as risk markers for ALL susceptibility in Yemeni children.

  13. Multiple SNPs in Intron 41 of Thyroglobulin Gene Are Associated with Autoimmune Thyroid Disease in the Japanese Population

    PubMed Central

    Ban, Yoshiyuki; Tozaki, Teruaki; Taniyama, Matsuo; Skrabanek, Luce; Nakano, Yasuko; Ban, Yoshio; Hirano, Tsutomu

    2012-01-01

    Background The etiology of the autoimmune thyroid diseases (AITDs), Graves' disease (GD) and Hashimoto's thyroiditis (HT), is largely unknown. However, genetic susceptibility is believed to play a major role. Two whole genome scans from Japan and from the US identified a locus on chromosome 8q24 that showed evidence for linkage with AITD and HT. Recent studies have demonstrated an association between thyroglobulin (Tg) polymorphisms and AITD in Caucasians, suggesting that Tg is a susceptibility gene on 8q24. Objectives The objective of the study was to refine Tg association with AITD, by analyzing a panel of 25 SNPs across an extended 260 kb region of the Tg. Methods We studied 458 Japanese AITD patients (287 GD and 171 HT patients) and 221 matched Japanese control subjects in association studies. Case-control association studies were performed using 25 Tg single nucleotide polymorphisms (SNPs) chosen from a database of the Single Nucleotide Polymorphism Database (dbSNP). Haplotype analysis was undertaken using the computer program SNPAlyze version 7.0. Principal Findings and Conclusions In total, 5 SNPs revealed association with GD (P<0.05), with the strongest SNP associations at rs2256366 (P = 0.002) and rs2687836 (P = 0.0077), both located in intron 41 of the Tg gene. Because of the strong LD between these two strongest associated variants, we performed the haplotype analysis, and identified a major protective haplotype for GD (P = 0.001).These results suggested that the Tg gene is involved in susceptibility for GD and AITD in the Japanese. PMID:22662162

  14. Association study between monoamine oxidase A (MAOA) gene polymorphisms and schizophrenia: lack of association with schizophrenia and possible association with affective disturbances of schizophrenia.

    PubMed

    Kim, Su Kang; Park, Hae Jeong; Seok, Hosik; Jeon, Hye Sook; Chung, Joo-Ho; Kang, Won Sub; Kim, Jong Woo; Yu, Gyeong Im; Shin, Dong Hoon

    2014-05-01

    Monoamine oxidase A (MAOA) catalyzes monoamine neurotransmitters including dopamine, 5-hydroxytryptamine (5-HT, serotonin), and norepinephrine. MAOA also plays a key role in emotional regulation. The aim of this study was to investigate the associations between the exonic single nucleotide polymorphisms (SNPs) of the MAOA gene located on the X chromosome and schizophrenia. We also analyzed the relationships between these SNPs and the common clinical symptoms of schizophrenia such as persecutory delusion, auditory hallucinations, affective disturbances, and poor concentration. Two hundred seventy five Korean schizophrenia patients and 289 control subjects were recruited. Three SNPs [rs6323 (Arg294Arg), rs1137070 (Asp470Asp), and rs3027407 (3'-untranslated region)] of the MAOA gene were selected and genotyped by direct sequencing. The common clinical symptoms of schizophrenia according to the Operation Criteria Checklist were analyzed. Three examined SNPs showed no associations with male and female schizophrenia, respectively (p>0.05). In the analysis of the common clinical symptoms of schizophrenia patients, three examined SNPs were associated with affective disturbances, especially restricted affect and blunted affect in male schizophrenia, respectively (restricted affect, p=0.002, OR=2.71, 95% CI 1.45-5.00; blunted affect, p=0.009, OR 2.25, 95% CI 1.22-4.12). The SNPs were not associated with other clinical symptoms of schizophrenia (persecutory delusion, auditory hallucinations, and poor concentration). These results suggest that exonic SNPs (rs6323, rs1137070, and rs3027407) of the MAOA gene may be contributed to affective disturbances of Korean males schizophrenia, especially restricted affect and blunted affect.

  15. Translating natural genetic variation to gene expression in a computational model of the Drosophila gap gene regulatory network

    PubMed Central

    Kozlov, Konstantin N.; Kulakovskiy, Ivan V.; Zubair, Asif; Marjoram, Paul; Lawrie, David S.; Nuzhdin, Sergey V.; Samsonova, Maria G.

    2017-01-01

    Annotating the genotype-phenotype relationship, and developing a proper quantitative description of the relationship, requires understanding the impact of natural genomic variation on gene expression. We apply a sequence-level model of gap gene expression in the early development of Drosophila to analyze single nucleotide polymorphisms (SNPs) in a panel of natural sequenced D. melanogaster lines. Using a thermodynamic modeling framework, we provide both analytical and computational descriptions of how single-nucleotide variants affect gene expression. The analysis reveals that the sequence variants increase (decrease) gene expression if located within binding sites of repressors (activators). We show that the sign of SNP influence (activation or repression) may change in time and space and elucidate the origin of this change in specific examples. The thermodynamic modeling approach predicts non-local and non-linear effects arising from SNPs, and combinations of SNPs, in individual fly genotypes. Simulation of individual fly genotypes using our model reveals that this non-linearity reduces to almost additive inputs from multiple SNPs. Further, we see signatures of the action of purifying selection in the gap gene regulatory regions. To infer the specific targets of purifying selection, we analyze the patterns of polymorphism in the data at two phenotypic levels: the strengths of binding and expression. We find that combinations of SNPs show evidence of being under selective pressure, while individual SNPs do not. The model predicts that SNPs appear to accumulate in the genotypes of the natural population in a way biased towards small increases in activating action on the expression pattern. Taken together, these results provide a systems-level view of how genetic variation translates to the level of gene regulatory networks via combinatorial SNP effects. PMID:28898266

  16. Genic and Intergenic SSR Database Generation, SNPs Determination and Pathway Annotations, in Date Palm (Phoenix dactylifera L.).

    PubMed

    Mokhtar, Morad M; Adawy, Sami S; El-Assal, Salah El-Din S; Hussein, Ebtissam H A

    2016-01-01

    The present investigation was carried out aiming to use the bioinformatics tools in order to identify and characterize, simple sequence repeats within the third Version of the date palm genome and develop a new SSR primers database. In addition single nucleotide polymorphisms (SNPs) that are located within the SSR flanking regions were recognized. Moreover, the pathways for the sequences assigned by SSR primers, the biological functions and gene interaction were determined. A total of 172,075 SSR motifs was identified on date palm genome sequence with a frequency of 450.97 SSRs per Mb. Out of these, 130,014 SSRs (75.6%) were located within the intergenic regions with a frequency of 499 SSRs per Mb. While, only 42,061 SSRs (24.4%) were located within the genic regions with a frequency of 347.5 SSRs per Mb. A total of 111,403 of SSR primer pairs were designed, that represents 291.9 SSR primers per Mb. Out of the 111,403, only 31,380 SSR primers were in the genic regions, while 80,023 primers were in the intergenic regions. A number of 250,507 SNPs were recognized in 84,172 SSR flanking regions, which represents 75.55% of the total SSR flanking regions. Out of 12,274 genes only 463 genes comprising 896 SSR primers were mapped onto 111 pathways using KEGG data base. The most abundant enzymes were identified in the pathway related to the biosynthesis of antibiotics. We tested 1031 SSR primers using both publicly available date palm genome sequences as templates in the in silico PCR reactions. Concerning in vitro validation, 31 SSR primers among those used in the in silico PCR were synthesized and tested for their ability to detect polymorphism among six Egyptian date palm cultivars. All tested primers have successfully amplified products, but only 18 primers detected polymorphic amplicons among the studied date palm cultivars.

  17. In silico screening of the chicken genome for overlaps between genomic regions: microRNA genes, coding and non-coding transcriptional units, QTL, and genetic variations.

    PubMed

    Zorc, Minja; Kunej, Tanja

    2016-05-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a starting point for further functional studies and association studies with poultry production and health traits and the basis for systematic screening of exonic miRNAs and missense/miRNA seed polymorphisms in other genomes.

  18. Effect of P450 Oxidoreductase Polymorphisms on the Metabolic Activities of Ten Cytochrome P450s Varied by Polymorphic CYP Genotypes in Human Liver Microsomes.

    PubMed

    Fang, Yan; Gao, Na; Tian, Xin; Zhou, Jun; Zhang, Hai-Feng; Gao, Jie; He, Xiao-Pei; Wen, Qiang; Jia, Lin-Jing; Jin, Han; Qiao, Hai-Ling

    2018-06-27

    Background/ Aims: Little is known about the effect of P450 oxidoreductase (POR) gene polymorphisms on the activities of CYPs with multiple genotypes. We genotyped 102 human livers for 18 known POR single nucleotide polymorphisms (SNPs) with allelic frequencies greater than 1% as well as for 27 known SNPs in 10 CYPs. CYP enzyme activities in microsomes prepared from these livers were determined by measuring probe substrate metabolism by high performance liquid chromatograph. We found that the effects of the 18 POR SNPs on 10 CYP activities were CYP genotype-dependent. The POR mutations were significantly associated with decreased overall Km for CYP2B6 and 2E1, and specific genotypes within CYP1A2, 2A6, 2B6, 2C8, 2D6 and 2E1 were identified as being affected by these POR SNPs. Notably, the effect of a specific POR mutation on the activity of a CYP genotype could not be predicted from other CYP genotypes of even the same CYP. When combining one POR SNP with other POR SNPs, a hitherto unrecognized effect of multiple-site POR gene polymorphisms (MSGP) on CYP activity was uncovered, which was not necessarily consistent with the effect of either single POR SNP. The effects of POR SNPs on CYP activities were not only CYP-dependent, but more importantly, CYP genotype-dependent. Moreover, the effect of a POR SNP alone and in combination with other POR SNPs (MSGP) was not always consistent, nor predictable. Understanding the impact of POR gene polymorphisms on drug metabolism necessitates knowing the complete SNP complement of POR and the genotype of the relevant CYPs. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. [Association analysis between SNPs of the growth hormone receptor gene and growth traits in arctic fox].

    PubMed

    DU, Zhi-Heng; Liu, Zong-Yue; Bai, Xiu-Juan

    2010-06-01

    Using single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing, single nucleotide polymorphisms (SNPs) of growth hormone receptor (GHR) gene were detected in an arctic fox population. Correlation analysis between GHR polymorphisms and growth traits were carried out using the appropriate model. Four SNPs, G3A in the 5'UTR, C99T in the first exon, T59C and G65A in the fifth exon were identified on the arctic fox GHR gene. The G3A and C99T polymorphisms of GHR were associated with female fox body weight (Pamp;0.05) and the T59C and G65A polymorphisms of GHR were associated with male fox body weight (Pamp;0.05) and the skin length of the female fox (Pamp;0.01). Therefore, marker assistant selection on body weight and skin length of arctic foxes using these SNPs can be applied to get big and high quality arctic foxes.

  20. A haplotype of three SNPs in FTO had a strong association with body composition and BMI in Iranian male adolescents.

    PubMed

    Kalantari, Naser; Keshavarz Mohammadi, Nastaran; Izadi, Pantea; Doaei, Saeid; Gholamalizadeh, Maryam; Eini-Zinab, Hassan; Salonurmi, Tuire; Rafieifar, Shahram; Janipoor, Reza; Azizi Tabesh, Ghasem

    2018-01-01

    Single-nucleotide polymorphisms (SNPs), which are located in the first intron of the FTO gene, are reported to be associated with body weight and the body mass index (BMI). However, their effects on anthropometric measurements in adolescents are poorly understood. This study aimed to investigate the association of three adjacent polymorphisms (rs9930506, rs9930501, & rs9932754) in the FTO gene with anthropometric indices in Iranian adolescent males. The participants comprised a total of 237 adolescent males who were recruited randomly from two high schools in Tehran, Iran. The DNA samples were genotyped for the FTO gene polymorphisms by DNA sequencing. BMI, body fat percentage (BF%), and body muscle percentage (BM%) were determined using a validated bioelectrical impedance analysis scale. The association of the FTO polymorphisms with weight, height, BMI, BF%, and BM% was investigated. A haplotype of rs9930506, rs9930501, and rs9932754 (GGT) in the first intron of the FTO with complete linkage disequilibrium (LD) was found to be significantly associated with higher weight (OR = 1.32), BMI (OR = 5.36) and BF% (OR = 1.46), and lower BM% (OR = 3.59) (all P<0.001). None of the students with GGC genotypes were underweight, while all of the students with AAT genotypes had high muscle mass. A haplotype in the first intron of the FTO gene had a strong association with obesity indices in Iranian adolescent males. The FTO gene polymorphisms might have greater effects on anthropometric indices than what was previously imagined. Moreover, we suggested that the FTO gene exerted their effects on anthropometric measurements through haplotypes (and not single SNPs).

  1. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16.

    PubMed

    Hamilton, Natasha A; Tammen, Imke; Raadsma, Herman W

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.

  2. Multi-Species Comparative Analysis of the Equine ACE Gene Identifies a Highly Conserved Potential Transcription Factor Binding Site in Intron 16

    PubMed Central

    Hamilton, Natasha A.; Tammen, Imke; Raadsma, Herman W.

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism. PMID:23408978

  3. Maternal and offspring genetic variants of AKR1C3 and the risk of childhood leukemia

    PubMed Central

    Liu, Chen-yu; Hsu, Yi-Hsiang; Pan, Pi-Chen; Wu, Ming-Tsang; Ho, Chi-Kung; Su, Li; Xu, Xin; Li, Yi; Christiani, David C.

    2008-01-01

    The aldo-keto reductase 1C3 (AKR1C3) gene located on chromosome 10p15-p14, a regulator of myeloid cell proliferation and differentiation, represents an important candidate gene for studying human carcinogenesis. In a prospectively enrolled population-based case–control study of Han Chinese conducted in Kaohsiung in southern Taiwan, a total of 114 leukemia cases and 221 controls <20 years old were recruited between November 1997 and December 2005. The present study set out to evaluate the association between childhood leukemia and both maternal and offspring's genotypes. To do so, we conducted a systematic assessment of common single-nucleotide polymorphisms (SNPs) at the 5′ flanking 10 kb to 3′ UTR of AKR1C3 gene. Gln5His and three tagSNPs (rs2245191, rs10508293 and rs3209896) and one multimarker (rs2245191, rs10508293 and rs3209896) were selected with average 90% coverage of untagged SNPs by using the HapMap II data set. Odds ratios and 95% confidence intervals were adjusted for age and gender. After correcting for multiple comparisons, we observed that risk of developing childhood leukemia is significantly associated with rs10508293 polymorphism on intron 4 of the AKR1C3 gene in both offspring alone and in the combined maternal and offspring genotypes (nominal P < 0.0001, permutation P < 0.005). The maternal methylenetetrahydrofolate reductase A1298C polymorphism was found to be an effect modifier of the maternal intron 4 polymorphism of the AKR1C3 gene (rs10508293) and the childhood leukemia risk. In conclusion, this study suggests that AKR1C3 polymorphisms may be important predictive markers for childhood leukemia susceptibility. PMID:18339682

  4. Association of a 3' untranslated region polymorphism in proprotein convertase subtilisin/kexin type 9 with HIV viral load and CD4+ levels in HIV/hepatitis C virus coinfected women.

    PubMed

    Kuniholm, Mark H; Liang, Hua; Anastos, Kathryn; Gustafson, Deborah; Kassaye, Seble; Nowicki, Marek; Sha, Beverly E; Pawlowski, Emilia J; Gange, Stephen J; Aouizerat, Bradley E; Pushkarsky, Tatiana; Bukrinsky, Michael I; Prasad, Vinayaka R

    2017-11-28

    To assess variation in genes that regulate cholesterol metabolism in relation to the natural history of HIV infection. Cross-sectional and longitudinal analysis of the Women's Interagency HIV Study. We examined 2050 single nucleotide polymorphisms (SNPs) in 19 genes known to regulate cholesterol metabolism in relation to HIV viral load and CD4 T-cell levels in a multiracial cohort of 1066 antiretroviral therapy-naive women. Six SNPs were associated with both HIV viral load and CD4 T-cell levels at a false discovery rate of 0.01. Bioinformatics tools did not predict functional activity for five SNPs, located in introns of nuclear receptor corepressor 2, retinoid X receptor alpha (RXRA), and tetratricopeptide repeat domain 39B. Rs17111557 located in the 3' untranslated region of proprotein convertase subtilisin/kexin type 9 (PCSK9) putatively affects binding of hsa-miR-548t-5p and hsa-miR-4796-3p, which could regulate PCSK9 expression levels. Interrogation of rs17111557 revealed stronger associations in the subset of women with HIV/hepatitis C virus (HCV) coinfection (n = 408, 38% of women). Rs17111557 was also associated with low-density lipoprotein cholesterol levels in HIV/HCV coinfected (β: -10.4; 95% confidence interval: -17.9, -2.9; P = 0.007), but not in HIV monoinfected (β:1.2; 95% confidence interval: -6.3, 8.6; P = 0.76) women in adjusted analysis. PCSK9 polymorphism may affect HIV pathogenesis, particularly in HIV/HCV coinfected women. A likely mechanism for this effect is PCSK9-mediated regulation of cholesterol metabolism. Replication in independent cohorts is needed to clarify the generalizability of the observed associations.

  5. Single-Nucleotide Polymorphisms of the MSH2 and MLH1 Genes, Potential Molecular Markers for Susceptibility to the Development of Basal Cell Carcinoma in the Brazilian Population.

    PubMed

    da Silva Calixto, Poliane; Lopes, Otávio Sérgio; Dos Santos Maia, Mayara; Herrero, Sylvia Satomi Takeno; Longui, Carlos Alberto; Melo, Cynthia Germoglio Farias; de Carvalho Filho, Ivan Rodrigues; Soares, Leonardo Ferreira; de Medeiros, Arnaldo Correia; Delatorre, Plínio; Khayat, André Salim; Burbano, Rommel Rodriguez; Lima, Eleonidas Moura

    2018-07-01

    Basal cell carcinoma - BCC is considered a multifactorial neoplasm involving genetic, epigenetic and environmental factors. Where UVB radiation is considered the main physical agent involved in BCC carcinogenesis. The Brazil and state of Paraíba are exposed to high levels of UVB rays. The mismatch repair - MMR is important DNA repair mechanisms to maintain replication fidelity. Therefore, single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in MMR may be potential molecular markers of susceptibility to BCC. The objective of this study was to evaluate and describe for the first time the SNPs rs560246973, rs2303425 and rs565410865 and risk of developing BCC. The present study analyzed 100 samples of paraffin-embedded tissue from patients with histopathological diagnosis of BCC and 100 control samples. The results were obtained by genotyping method, Dideoxy Unique Allele Specific - PCR (DSASP). The SNPs rs2303425 were not associated with Basal Cell Carcinoma. However, the SNPs rs560246973 and rs565410865 was shown to be associated with the development of BCC when compared to control samples (P < 0.0001). The SNPs rs565410865 was also statistical significance between the genotypes of and the age group (p = 0.0027) and tumor location (p = 0,0191). The result suggests that SNPs rs2303425 and rs565410865 are associated with susceptibility to the development of BCC in the Brazilian population and may be considered as potential molecular markers for BCC.

  6. Analysis of single nucleotide polymorphisms in case-control studies.

    PubMed

    Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer

    2011-01-01

    Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.

  7. Development and Evaluation of a Genome-Wide 6K SNP Array for Diploid Sweet Cherry and Tetraploid Sour Cherry

    PubMed Central

    Peace, Cameron; Bassil, Nahla; Main, Dorrie; Ficklin, Stephen; Rosyara, Umesh R.; Stegmeir, Travis; Sebolt, Audrey; Gilmore, Barbara; Lawley, Cindy; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Iezzoni, Amy

    2012-01-01

    High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb) of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome) and P. fruticosa (fruticosa subgenome). Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269) and sour (n = 330) cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery, genome structure investigation, and genetic diversity assessment in this diploid-tetraploid crop group. PMID:23284615

  8. Effects of methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: a case study in oil palm (Elaeis guineensis).

    PubMed

    Pootakham, Wirulda; Sonthirod, Chutima; Naktang, Chaiwat; Jomchai, Nukoon; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke

    2016-01-01

    Advances in next generation sequencing have facilitated a large-scale single nucleotide polymorphism (SNP) discovery in many crop species. Genotyping-by-sequencing (GBS) approach couples next generation sequencing with genome complexity reduction techniques to simultaneously identify and genotype SNPs. Choice of enzymes used in GBS library preparation depends on several factors including the number of markers required, the desired level of multiplexing, and whether the enrichment of genic SNP is preferred. We evaluated various combinations of methylation-sensitive ( Aat II, Pst I, Msp I) and methylation-insensitive ( Sph I, Mse I) enzymes for their effectiveness in genome complexity reduction and enrichment of genic SNPs. We discovered that the use of two methylation-sensitive enzymes effectively reduced genome complexity and did not require a size selection step. On the contrary, the genome coverage of libraries constructed with methylation-insensitive enzymes was quite high, and the additional size selection step may be required to increase the overall read depth. We also demonstrated the effectiveness of methylation-sensitive enzymes in enriching for SNPs located in genic regions. When two methylation-insensitive enzymes were used, only 16% of SNPs identified were located in genes and 18% in the vicinity (± 5 kb) of the genic regions, while most SNPs resided in the intergenic regions. In contrast, a remarkable degree of enrichment was observed when two methylation-sensitive enzymes were employed. Almost two thirds of the SNPs were located either inside (32-36%) or in the vicinity (28-31%) of the genic regions. These results provide useful information to help researchers choose appropriate GBS enzymes in oil palm and other crop species.

  9. The contribution of individual and pairwise combinations of SNPs in the APOA1 and APOC3 genes to interindividual HDL-C variability.

    PubMed

    Brown, C M; Rea, T J; Hamon, S C; Hixson, J E; Boerwinkle, E; Clark, A G; Sing, C F

    2006-07-01

    Apolipoproteins (apo) A-I and C-III are components of high-density lipoprotein-cholesterol (HDL-C), a quantitative trait negatively correlated with risk of cardiovascular disease (CVD). We analyzed the contribution of individual and pairwise combinations of single nucleotide polymorphisms (SNPs) in the APOA1/APOC3 genes to HDL-C variability to evaluate (1) consistency of published single-SNP studies with our single-SNP analyses; (2) consistency of single-SNP and two-SNP phenotype-genotype relationships across race-, gender-, and geographical location-dependent contexts; and (3) the contribution of single SNPs and pairs of SNPs to variability beyond that explained by plasma apo A-I concentration. We analyzed 45 SNPs in 3,831 young African-American (N=1,858) and European-American (N=1,973) females and males ascertained by the Coronary Artery Risk Development in Young Adults (CARDIA) study. We found three SNPs that significantly impact HDL-C variability in both the literature and the CARDIA sample. Single-SNP analyses identified only one of five significant HDL-C SNP genotype relationships in the CARDIA study that was consistent across all race-, gender-, and geographical location-dependent contexts. The other four were consistent across geographical locations for a particular race-gender context. The portion of total phenotypic variance explained by single-SNP genotypes and genotypes defined by pairs of SNPs was less than 3%, an amount that is miniscule compared to the contribution explained by variability in plasma apo A-I concentration. Our findings illustrate the impact of context-dependence on SNP selection for prediction of CVD risk factor variability.

  10. Association of MAP4K4 gene single nucleotide polymorphism with mastitis and milk traits in Chinese Holstein cattle.

    PubMed

    Bhattarai, Dinesh; Chen, Xing; Ur Rehman, Zia; Hao, Xingjie; Ullah, Farman; Dad, Rahim; Talpur, Hira Sajjad; Kadariya, Ishwari; Cui, Lu; Fan, Mingxia; Zhang, Shujun

    2017-02-01

    The objective of the studies presented in this Research Communication was to investigate the association of single nucleotide polymorphisms present in the MAP4K4 gene with different milk traits in dairy cows. Based on previous QTL fine mapping results on bovine chromosome 11, the MAP4K4 gene was selected as a candidate gene to evaluate its effect on somatic cell count and milk traits in ChineseHolstein cows. Milk production traits including milk yield, fat percentage, and protein percentage of each cow were collected using 305 d lactation records. Association between MAP4K4 genotype and different traits and Somatic Cell Score (SCS) was performed using General Linear Regression Model of R. Two SNPs at exon 18 (c.2061T > G and c.2196T > C) with genotype TT in both SNPs were found significantly higher for somatic SCS. We found the significant effect of exon 18 (c.2061T > G) on protein percentage, milk yield and SCS. We identified SNPs at different location of MAP4K4 gene of the cattle and several of them were significantly associated with the somatic cell score and other different milk traits. Thus, MAP4K4 gene could be a useful candidate gene for selection of dairy cattle against mastitis and the identified polymorphisms might potentially be strong genetic markers.

  11. OAS single-nucleotide polymorphisms and haplotypes are associated with variations in immune responses to rubella vaccine

    PubMed Central

    Haralambieva, Iana H.; Dhiman, Neelam; Ovsyannikova, Inna G.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2010-01-01

    Interferon (IFN)-induced antiviral genes are crucial players in innate antiviral defense and potential determinants of immune response heterogeneity. We selected 114 candidate SNPs from 12 antiviral genes using an LD tagSNP selection approach and genotyped them in a cohort of 738 schoolchildren immunized with two doses of rubella vaccine. Associations between SNPs/haplotypes and rubella virus-specific immune measures were assessed using linear regression methodologies. We identified 23 significant associations (p<0.05) between polymorphisms within the 2′-5′-oligoadenylate synthetase (OAS) gene cluster, and rubella virus-specific IL-2, IL-10, IL-6 secretion and antibody levels. The minor allele variants of three OAS1 SNPs (rs3741981/Ser162Gly, rs1051042/Thr361Arg, rs2660), located in a linkage disequilibrium block of functional importance, were significantly associated with an increase in rubella virus-specific IL-2/Th1 response (p≤0.024). Seven OAS1 and OAS3 promoter/regulatory SNPs were similarly associated with IL-2 secretion. Importantly, two SNPs (rs3741981 and rs10774670), independently cross-regulated rubella virus-specific IL-10 secretion levels (p≤0.031). Furthermore, both global tests and individual haplotype analyses revealed significant associations between OAS1 haplotypes and rubella virus-specific cytokine secretion. Our results suggest that innate immunity and OAS genetic variations are likely involved in modulating the magnitude and quality of the adaptive immune responses to live attenuated rubella vaccine. PMID:20079393

  12. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression

    PubMed Central

    Cowper-Sal·lari, Richard; Zhang, Xiaoyang; Wright, Jason B.; Bailey, Swneke D.; Cole, Michael D.; Eeckhoute, Jerome; Moore, Jason H.; Lupien, Mathieu

    2012-01-01

    Genome-wide association studies (GWASs) have identified thousands of single nucleotide polymorphisms (SNPs) associated with human traits and diseases. But because the vast majority of these SNPs are located in the noncoding regions of the genome their risk promoting mechanisms are elusive. Employing a new methodology combining cistromics, epigenomics and genotype imputation we annotate the noncoding regions of the genome in breast cancer cells and systematically identify the functional nature of SNPs associated with breast cancer risk. Our results demonstrate that breast cancer risk-associated SNPs are enriched in the cistromes of FOXA1 and ESR1 and the epigenome of H3K4me1 in a cancer and cell-type-specific manner. Furthermore, the majority of these risk-associated SNPs modulate the affinity of chromatin for FOXA1 at distal regulatory elements, which results in allele-specific gene expression, exemplified by the effect of the rs4784227 SNP on the TOX3 gene found within the 16q12.1 risk locus. PMID:23001124

  13. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects.

    PubMed

    Dereeper, Alexis; Nicolas, Stéphane; Le Cunff, Loïc; Bacilieri, Roberto; Doligez, Agnès; Peros, Jean-Pierre; Ruiz, Manuel; This, Patrice

    2011-05-05

    High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats. Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.SNiPlay is available at: http://sniplay.cirad.fr/.

  14. Single nucleotide polymorphisms in bone turnover-related genes in Koreans: ethnic differences in linkage disequilibrium and haplotype

    PubMed Central

    Kim, Kyung-Seon; Kim, Ghi-Su; Hwang, Joo-Yeon; Lee, Hye-Ja; Park, Mi-Hyun; Kim, Kwang-joong; Jung, Jongsun; Cha, Hyo-Soung; Shin, Hyoung Doo; Kang, Jong-Ho; Park, Eui Kyun; Kim, Tae-Ho; Hong, Jung-Min; Koh, Jung-Min; Oh, Bermseok; Kimm, Kuchan; Kim, Shin-Yoon; Lee, Jong-Young

    2007-01-01

    Background Osteoporosis is defined as the loss of bone mineral density that leads to bone fragility with aging. Population-based case-control studies have identified polymorphisms in many candidate genes that have been associated with bone mass maintenance or osteoporotic fracture. To investigate single nucleotide polymorphisms (SNPs) that are associated with osteoporosis, we examined the genetic variation among Koreans by analyzing 81 genes according to their function in bone formation and resorption during bone remodeling. Methods We resequenced all the exons, splice junctions and promoter regions of candidate osteoporosis genes using 24 unrelated Korean individuals. Using the common SNPs from our study and the HapMap database, a statistical analysis of deviation in heterozygosity depicted. Results We identified 942 variants, including 888 SNPs, 43 insertion/deletion polymorphisms, and 11 microsatellite markers. Of the SNPs, 557 (63%) had been previously identified and 331 (37%) were newly discovered in the Korean population. When compared SNPs in the Korean population with those in HapMap database, 1% (or less) of SNPs in the Japanese and Chinese subpopulations and 20% of those in Caucasian and African subpopulations were significantly differentiated from the Hardy-Weinberg expectations. In addition, an analysis of the genetic diversity showed that there were no significant differences among Korean, Han Chinese and Japanese populations, but African and Caucasian populations were significantly differentiated in selected genes. Nevertheless, in the detailed analysis of genetic properties, the LD and Haplotype block patterns among the five sub-populations were substantially different from one another. Conclusion Through the resequencing of 81 osteoporosis candidate genes, 118 unknown SNPs with a minor allele frequency (MAF) > 0.05 were discovered in the Korean population. In addition, using the common SNPs between our study and HapMap, an analysis of genetic diversity and deviation in heterozygosity was performed and the polymorphisms of the above genes among the five populations were substantially differentiated from one another. Further studies of osteoporosis could utilize the polymorphisms identified in our data since they may have important implications for the selection of highly informative SNPs for future association studies. PMID:18036257

  15. Seven newly identified loci for autoimmune thyroid disease.

    PubMed

    Cooper, Jason D; Simmonds, Matthew J; Walker, Neil M; Burren, Oliver; Brand, Oliver J; Guo, Hui; Wallace, Chris; Stevens, Helen; Coleman, Gillian; Franklyn, Jayne A; Todd, John A; Gough, Stephen C L

    2012-12-01

    Autoimmune thyroid disease (AITD), including Graves' disease (GD) and Hashimoto's thyroiditis (HT), is one of the most common of the immune-mediated diseases. To further investigate the genetic determinants of AITD, we conducted an association study using a custom-made single-nucleotide polymorphism (SNP) array, the ImmunoChip. The SNP array contains all known and genotype-able SNPs across 186 distinct susceptibility loci associated with one or more immune-mediated diseases. After stringent quality control, we analysed 103 875 common SNPs (minor allele frequency >0.05) in 2285 GD and 462 HT patients and 9364 controls. We found evidence for seven new AITD risk loci (P < 1.12 × 10(-6); a permutation test derived significance threshold), five at locations previously associated and two at locations awaiting confirmation, with other immune-mediated diseases.

  16. Genome Wide Analysis of Fertility and Production Traits in Italian Holstein Cattle

    PubMed Central

    Stella, Alessandra; Biffani, Stefano; Negrini, Riccardo; Lazzari, Barbara; Ajmone-Marsan, Paolo; Williams, John L .

    2013-01-01

    A genome wide scan was performed on a total of 2093 Italian Holstein proven bulls genotyped with 50K single nucleotide polymorphisms (SNPs), with the objective of identifying loci associated with fertility related traits and to test their effects on milk production traits. The analysis was carried out using estimated breeding values for the aggregate fertility index and for each trait contributing to the index: angularity, calving interval, non-return rate at 56 days, days to first service, and 305 day first parity lactation. In addition, two production traits not included in the aggregate fertility index were analysed: fat yield and protein yield. Analyses were carried out using all SNPs treated separately, further the most significant marker on BTA14 associated to milk quality located in the DGAT1 region was treated as fixed effect. Genome wide association analysis identified 61 significant SNPs and 75 significant marker-trait associations. Eight additional SNP associations were detected when SNP located near DGAT1 was included as a fixed effect. As there were no obvious common SNPs between the traits analyzed independently in this study, a network analysis was carried out to identify unforeseen relationships that may link production and fertility traits. PMID:24265800

  17. Frequency and Distribution of Single-Nucleotide Polymorphisms within mprF in Methicillin-Resistant Staphylococcus aureus Clinical Isolates and Their Role in Cross-Resistance to Daptomycin and Host Defense Antimicrobial Peptides.

    PubMed

    Bayer, Arnold S; Mishra, Nagendra N; Chen, Liang; Kreiswirth, Barry N; Rubio, Aileen; Yang, Soo-Jin

    2015-08-01

    MprF is responsible for the lysinylation of phosphatidylglycerol (PG) to synthesize the positively charged phospholipid (PL) species, lysyl-PG (L-PG). It has been proposed that the single-nucleotide polymorphisms (SNPs) within the mprF open reading frame (ORF) are associated with a gain-in-function phenotype in terms of daptomycin resistance in Staphylococcus aureus. (Note that although the official term is daptomycin nonsusceptibility, we use the term daptomycin resistance in this paper for ease of presentation.) Using 22 daptomycin-susceptible (DAP(s))/daptomycin-resistant (DAP(r)) clinical methicillin-resistant S. aureus (MRSA) strain pairs, we assessed (i) the frequencies and distribution of putative mprF gain-in-function SNPs, (ii) the relationships of the SNPs to both daptomycin resistance and cross-resistance to the prototypical endovascular host defense peptide (HDP) thrombin-induced platelet microbicidal protein (tPMP), and (iii) the impact of mprF SNPs on positive surface charge phenotype and modifications of membrane PL profiles. Most of the mprF SNPs identified in our DAP(r) strains were clustered within the two MprF loci, (i) the central bifunctional domain and (ii) the C-terminal synthase domain. Moreover, we were able to correlate the presence and location of mprF SNPs in DAP(r) strains with HDP cross-resistance, positive surface charge, and L-PG profiles. Although DAP(r) strains with mprF SNPs in the bifunctional domain showed higher resistance to tPMPs than DAP(r) strains with SNPs in the synthase domain, this relationship was not observed in positive surface charge assays. These results demonstrated that both charge-mediated and -unrelated mechanisms are involved in DAP resistance and HDP cross-resistance in S. aureus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Preselection statistics and Random Forest classification identify population informative single nucleotide polymorphisms in cosmopolitan and autochthonous cattle breeds.

    PubMed

    Bertolini, F; Galimberti, G; Schiavo, G; Mastrangelo, S; Di Gerlando, R; Strillacci, M G; Bagnato, A; Portolano, B; Fontanesi, L

    2018-01-01

    Commercial single nucleotide polymorphism (SNP) arrays have been recently developed for several species and can be used to identify informative markers to differentiate breeds or populations for several downstream applications. To identify the most discriminating genetic markers among thousands of genotyped SNPs, a few statistical approaches have been proposed. In this work, we compared several methods of SNPs preselection (Delta, F st and principal component analyses (PCA)) in addition to Random Forest classifications to analyse SNP data from six dairy cattle breeds, including cosmopolitan (Holstein, Brown and Simmental) and autochthonous Italian breeds raised in two different regions and subjected to limited or no breeding programmes (Cinisara, Modicana, raised only in Sicily and Reggiana, raised only in Emilia Romagna). From these classifications, two panels of 96 and 48 SNPs that contain the most discriminant SNPs were created for each preselection method. These panels were evaluated in terms of the ability to discriminate as a whole and breed-by-breed, as well as linkage disequilibrium within each panel. The obtained results showed that for the 48-SNP panel, the error rate increased mainly for autochthonous breeds, probably as a consequence of their admixed origin lower selection pressure and by ascertaining bias in the construction of the SNP chip. The 96-SNP panels were generally more able to discriminate all breeds. The panel derived by PCA-chrom (obtained by a preselection chromosome by chromosome) could identify informative SNPs that were particularly useful for the assignment of minor breeds that reached the lowest value of Out Of Bag error even in the Cinisara, whose value was quite high in all other panels. Moreover, this panel contained also the lowest number of SNPs in linkage disequilibrium. Several selected SNPs are located nearby genes affecting breed-specific phenotypic traits (coat colour and stature) or associated with production traits. In general, our results demonstrated the usefulness of Random Forest in combination to other reduction techniques to identify population informative SNPs.

  19. Physiogenomic analysis of localized FMRI brain activity in schizophrenia.

    PubMed

    Windemuth, Andreas; Calhoun, Vince D; Pearlson, Godfrey D; Kocherla, Mohan; Jagannathan, Kanchana; Ruaño, Gualberto

    2008-06-01

    The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes.

  20. Epistasis between polymorphisms in PCSK1 and DBH is associated with premature ovarian failure.

    PubMed

    Pyun, Jung-A; Kim, Sunshin; Cha, Dong Hyun; Kwack, KyuBum

    2014-11-01

    This study examined whether epistasis between single nucleotide polymorphisms (SNPs) within proprotein convertase subtilisin/kexin type 1 (PCSK1) and dopamine β-hydroxylase (DBH) genes is associated with premature ovarian failure (POF). One hundred twenty women with POF and 222 female controls were recruited for this study. To genotype SNPs within PCSK1 and DBH, we used a GoldenGate assay with VeraCode technology, which uses an allele-specific primer extension method. Two SNPs (rs155979 and rs3762986) within PCSK1 and one SNP (rs1611114) within DBH, which were located in the 5' flanking region, were involved in synergistic interactions. The C allele in the rs155979 SNP showed an increased risk of POF in a dominant model when AA genotype in the rs1611114 SNP was present (odds ratio, 3.60; 95% CI, 1.82-7.14; P = 0.00024), whereas the G allele in the rs1611114 SNP showed a reduced risk of POF in a dominant model when at least one C allele at the rs155979 SNP was present (odds ratio, 0.24; 95% CI, 0.11-0.51; P = 0.00018) or one G allele at the rs3762986 SNP was present (odds ratio, 0.33; 95% CI, 0.19-0.60; P = 0.00023). Epistases between SNPs within PCSK1 and DBH genes are significantly associated with susceptibility or resistance to POF.

  1. Genome-wide association study on growth traits in Colombian creole breeds and crossbreeds with Zebu cattle.

    PubMed

    Martínez, R; Gómez, Y; Rocha, J F M

    2014-08-25

    Whole genome selection represents an important tool for improving parameters related to the production of livestock. In order to build genomic selection indexes within a particular breed, it is important to identify polymorphisms that have the most significant association with a desired trait. A genome-wide marker association approach based on the Illumina BovineSNP50 BeadChip(TM) was used to identify genomic regions affecting birth weight (BW), weaning weight (WW), and daily weight gain (DWG) in purebred and crossbred creole cattle populations. We genotyped 654 individuals of Blanco Orejinegro (BON), Romosinuano (ROMO) and Cebú breeds and the crossbreeds BON x Cebú and ROMO x Cebú, and tested 5 genetic control models. In total, 85 single nucleotide polymorphisms (SNPs) were related (P < 0.05) to the 3 evaluated traits; BW was associated with the highest number of SNPs. For statistical false-positive correction, Bonferroni correction was used. From the results, we identified 7, 6, and 4 SNPs with strong associations with BW, WW, and DWG, respectively. Many of these SNPs were located on important coding regions of the bovine genome; their ontology and interactions are discussed herein. The results could contribute to the identification of genes involved in the physiology of beef cattle growth and the development of new strategies for breeding management via genomic selection to improve the productivity of creole cattle herds.

  2. SNPServer: a real-time SNP discovery tool.

    PubMed

    Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-07-01

    SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.

  3. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle

    PubMed Central

    2014-01-01

    Background This study was conducted to: (1) identify new SNPs for residual feed intake (RFI) and performance traits within candidate genes identified in a genome wide association study (GWAS); (2) estimate the proportion of variation in RFI explained by the detected SNPs; (3) estimate the effects of detected SNPs on carcass traits to avoid undesirable correlated effects on these economically important traits when selecting for feed efficiency; and (4) map the genes to biological mechanisms and pathways. A total number of 339 SNPs corresponding to 180 genes were tested for association with phenotypes using a single locus regression (SLRM) and genotypic model on 726 and 990 crossbred animals for feed efficiency and carcass traits, respectively. Results Strong evidence of associations for RFI were located on chromosomes 8, 15, 16, 18, 19, 21, and 28. The strongest association with RFI (P = 0.0017) was found with a newly discovered SNP located on BTA 8 within the ELP3 gene. SNPs rs41820824 and rs41821600 on BTA 16 within the gene HMCN1 were strongly associated with RFI (P = 0.0064 and P = 0.0033, respectively). A SNP located on BTA 18 within the ZNF423 gene provided strong evidence for association with RFI (P = 0.0028). Genomic estimated breeding values (GEBV) from 98 significant SNPs were moderately correlated (0.47) to the estimated breeding values (EBVs) from a mixed animal model. The significant (P < 0.05) SNPs (98) explained 26% of the genetic variance for RFI. In silico functional analysis for the genes suggested 35 and 39 biological processes and pathways, respectively for feed efficiency traits. Conclusions This study identified several positional and functional candidate genes involved in important biological mechanisms associated with feed efficiency and performance. Significant SNPs should be validated in other populations to establish their potential utilization in genetic improvement programs. PMID:24476087

  4. Single-nucleotide polymorphism discovery in Leptographium longiclavatum, a mountain pine beetle-associated symbiotic fungus, using whole-genome resequencing.

    PubMed

    Ojeda, Dario I; Dhillon, Braham; Tsui, Clement K M; Hamelin, Richard C

    2014-03-01

    Single-nucleotide polymorphisms (SNPs) are rapidly becoming the standard markers in population genomics studies; however, their use in nonmodel organisms is limited due to the lack of cost-effective approaches to uncover genome-wide variation, and the large number of individuals needed in the screening process to reduce ascertainment bias. To discover SNPs for population genomics studies in the fungal symbionts of the mountain pine beetle (MPB), we developed a road map to discover SNPs and to produce a genotyping platform. We undertook a whole-genome sequencing approach of Leptographium longiclavatum in combination with available genomics resources of another MPB symbiont, Grosmannia clavigera. We sequenced 71 individuals pooled into four groups using the Illumina sequencing technology. We generated between 27 and 30 million reads of 75 bp that resulted in a total of 1, 181 contigs longer than 2 kb and an assembled genome size of 28.9 Mb (N50 = 48 kb, average depth = 125x). A total of 9052 proteins were annotated, and between 9531 and 17,266 SNPs were identified in the four pools. A subset of 206 genes (containing 574 SNPs, 11% false positives) was used to develop a genotyping platform for this species. Using this roadmap, we developed a genotyping assay with a total of 147 SNPs located in 121 genes using the Illumina(®) Sequenom iPLEX Gold. Our preliminary genotyping (success rate = 85%) of 304 individuals from 36 populations supports the utility of this approach for population genomics studies in other MPB fungal symbionts and other fungal nonmodel species. © 2013 John Wiley & Sons Ltd.

  5. Characteristics of Japanese inflammatory bowel disease susceptibility loci.

    PubMed

    Arimura, Yoshiaki; Isshiki, Hiroyuki; Onodera, Kei; Nagaishi, Kanna; Yamashita, Kentaro; Sonoda, Tomoko; Matsumoto, Takayuki; Takahashi, Atsushi; Takazoe, Masakazu; Yamazaki, Keiko; Kubo, Michiaki; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-08-01

    There are substantial differences in inflammatory bowel disease (IBD) genetics depending on the populations examined. We aimed to identify Japanese population-specific or true culprit susceptibility genes through a meta-analysis of past genetic studies of Japanese IBD. For this study, we reviewed 2,703 articles. The review process consisted of three screening stages: we initially searched for relevant studies and then relevant single nucleotide polymorphisms (SNPs). Finally, we adjusted them for the meta-analysis. To maximize our chances of analysis, we introduced proxy SNPs during the first stage. To minimize publication bias, no significant SNPs and solitary SNPs without pairs were combined to be reconsidered during the third stage. Additionally, two SNPs were newly genotyped. Finally, we conducted a meta-analysis of 37 published studies in 50 SNPs located at 22 loci corresponding to the total number of 4,853 Crohn's disease (CD), 5,612 ulcerative colitis (UC) patients, and 14,239 healthy controls. We confirmed that the NKX2-3 polymorphism is associated with common susceptibility to IBD and that HLA-DRB1*0450 alleles increase susceptibility to CD but reduce risk for UC while HLA-DRB1*1502 alleles increase susceptibility to UC but reduce CD risk. Moreover, we found individual disease risk loci: TNFSF15 and TNFα to CD and HLA-B*5201, and NFKBIL1 to UC. The genetic risk of HLA was substantially high (odds ratios ranged from 1.54 to 2.69) while that of common susceptibility loci to IBD was modest (odds ratio ranged from 1.13 to 1.24). Results indicate that Japanese IBD susceptibility loci identified by the meta-analysis are closely associated with the HLA regions.

  6. MicroRNA Related Polymorphisms and Breast Cancer Risk

    PubMed Central

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L.; Muranen, Taru A.; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K.; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L.; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Meindl, Alfons; Schmutzler, Rita K.; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J.; Hunter, David J.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Schmidt, Marjanka K.; Broeks, Annegien; Veer, Laura J. V. a. n't.; Hogervorst, Frans B.; Fasching, Peter A.; Schrauder, Michael G.; Ekici, Arif B.; Beckmann, Matthias W.; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M.; Perez, Jose I. A.; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D. P.; Dunning, Alison M.; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J.; Wang, Xianshu; Vachon, Celine; Olson, Janet E.; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Andrulis, Irene L.; Knight, Julia A.; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; van Asperen, Christi J.; Kristensen, Vessela N.; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J.; Martens, John W. M.; Collée, J. Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G.; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F.; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI: 0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99, and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 3′ UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects. PMID:25390939

  7. MicroRNA related polymorphisms and breast cancer risk.

    PubMed

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L; Muranen, Taru A; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F; Southey, Melissa C; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J; Hunter, David J; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Schmidt, Marjanka K; Broeks, Annegien; Van't Veer, Laura J; Hogervorst, Frans B; Fasching, Peter A; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M; Perez, Jose I A; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D P; Dunning, Alison M; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Olson, Janet E; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Andrulis, Irene L; Knight, Julia A; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V; Antonenkova, Natalia N; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; van Asperen, Christi J; Kristensen, Vessela N; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

  8. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  9. Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis.

    PubMed

    Cho, Seoae; Kim, Haseong; Oh, Sohee; Kim, Kyunga; Park, Taesung

    2009-12-15

    The current trend in genome-wide association studies is to identify regions where the true disease-causing genes may lie by evaluating thousands of single-nucleotide polymorphisms (SNPs) across the whole genome. However, many challenges exist in detecting disease-causing genes among the thousands of SNPs. Examples include multicollinearity and multiple testing issues, especially when a large number of correlated SNPs are simultaneously tested. Multicollinearity can often occur when predictor variables in a multiple regression model are highly correlated, and can cause imprecise estimation of association. In this study, we propose a simple stepwise procedure that identifies disease-causing SNPs simultaneously by employing elastic-net regularization, a variable selection method that allows one to address multicollinearity. At Step 1, the single-marker association analysis was conducted to screen SNPs. At Step 2, the multiple-marker association was scanned based on the elastic-net regularization. The proposed approach was applied to the rheumatoid arthritis (RA) case-control data set of Genetic Analysis Workshop 16. While the selected SNPs at the screening step are located mostly on chromosome 6, the elastic-net approach identified putative RA-related SNPs on other chromosomes in an increased proportion. For some of those putative RA-related SNPs, we identified the interactions with sex, a well known factor affecting RA susceptibility.

  10. Non-synonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to zucchini yellow mosaic virus.

    PubMed

    Ling, Kai-Shu; Harris, Karen R; Meyer, Jenelle D F; Levi, Amnon; Guner, Nihat; Wehner, Todd C; Bendahmane, Abdelhafid; Havey, Michael J

    2009-12-01

    Zucchini yellow mosaic virus (ZYMV) is one of the most economically important potyviruses infecting cucurbit crops worldwide. Using a candidate gene approach, we cloned and sequenced eIF4E and eIF(iso)4E gene segments in watermelon. Analysis of the nucleotide sequences between the ZYMV-resistant watermelon plant introduction PI 595203 (Citrullus lanatus var. lanatus) and the ZYMV-susceptible watermelon cultivar 'New Hampshire Midget' ('NHM') showed the presence of single nucleotide polymorphisms (SNPs). Initial analysis of the identified SNPs in association studies indicated that SNPs in the eIF4E, but not eIF(iso)4E, were closely associated to the phenotype of ZYMV-resistance in 70 F(2) and 114 BC(1R) progenies. Subsequently, we focused our efforts in obtaining the entire genomic sequence of watermelon eIF4E. Three SNPs were identified between PI 595203 and NHM. One of the SNPs (A241C) was in exon 1 and the other two SNPs (C309A and T554G) were in the first intron of the gene. SNP241 which resulted in an amino acid substitution (proline to threonine) was shown to be located in the critical cap recognition and binding area, similar to that of several plant species resistance to potyviruses. Analysis of a cleaved amplified polymorphism sequence (CAPS) marker derived from this SNP in F(2) and BC(1R) populations demonstrated a cosegregation between the CAPS-2 marker and their ZYMV resistance or susceptibility phenotype. When we investigated whether such SNP mutation in the eIF4E was also conserved in several other PIs of C. lanatus var. citroides, we identified a different SNP (A171G) resulting in another amino acid substitution (D71G) from four ZYMV-resistant C. lanatus var. citroides (PI 244018, PI 482261, PI 482299, and PI 482322). Additional CAPS markers were also identified. Availability of all these CAPS markers will enable marker-aided breeding of watermelon for ZYMV resistance.

  11. Association of SNPs from IL1A, IL1B, and IL6 Genes with Human Cytomegalovirus Infection Among Pregnant Women.

    PubMed

    Wujcicka, Wioletta Izabela; Wilczyński, Jan Szczęsny; Nowakowska, Dorota Ewa

    2017-05-01

    The study was aimed to estimate the role and prevalence rates of genotypes, haplotypes, and alleles, located within the single-nucleotide polymorphisms (SNPs) of interleukin (IL) 1A, IL1B, and IL6 genes, in the occurrence and development of human cytomegalovirus (HCMV) infection among pregnant women. A research was conducted in 129 pregnant women, out of whom, 65 were HCMV infected and 64 were age-matched control uninfected individuals. HCMV DNA was quantitated for UL55 gene by the real-time Q PCR in the body fluids. The genotypic statuses within the SNPs were determined by nested PCR-RFLP assays and confirmed, by sequencing for randomly selected representative PCR products. A relationship between the genotypes and alleles, as well as haplotypes and multiple variants in the studied polymorphisms, and the occurrence of HCMV infection in pregnant women, was determined using a logistic regression model. TT genotype within IL1A polymorphism significantly decreased the risk of HCMV infection (OR 0.32, 95% CI 0.09-1.05; p ≤ 0.050). Considering IL6 SNP, the prevalence rate of GC genotype was significantly decreased among the HCMV infected, compared to the uninfected control individuals (OR 0.45, 95% CI 0.21-0.99; p ≤ 0.050). Moreover, CC homozygotic status in IL6 SNP, found in pregnant women, significantly decreased the risk of congenital infection with HCMV in their offsprings (OR 0.12; p ≤ 0.050). In multiple SNP analysis, TC haplotype within the IL1 polymorphisms significantly decreased the risk of the infection in pregnant women (OR 0.38 95% CI 0.15-0.96; p ≤ 0.050). In addition, TTG complex variants for all the studied polymorphisms and TG variants for IL1B and IL6 SNPs were significantly more prevalent among the infected offsprings with symptomatic congenital cytomegaly than among the asymptomatic cases (p ≤ 0.050). In conclusion, the analyzed IL1A -889 C>T, IL1B +3954 C>T, and IL6 -174 G>C polymorphisms may be associated with the occurrence and development of HCMV infection among studied patients.

  12. Association of CASP9, CASP10 gene polymorphisms and tea drinking with colorectal cancer risk in the Han Chinese population.

    PubMed

    Liu, He; Jiang, Xia; Zhang, Ming-wu; Pan, Yi-feng; Yu, Yun-xian; Zhang, Shan-chun; Ma, Xin-yuan; Li, Qi-long; Chen, Kun

    2013-01-01

    The initiators caspase-9 (CASP9) and caspase-10 (CASP10) are two key controllers of apoptosis and play important roles in carcinogenesis. This study aims to explore the association between CASPs gene polymorphisms and colorectal cancer (CRC) susceptibility in a population-based study. A two-stage designed population-based case-control study was carried out, including a testing set with 300 cases and 296 controls and a validation set with 206 cases and 845 controls. A total of eight tag selected single nucleotide polymorphisms (SNPs) in CASP9 and CASP10 were chosen based on HapMap and the National Center of Biotechnology Information (NCBI) datasets and genotyped by restriction fragment length polymorphism (RFLP) assay. Multivariate logistic regression models were applied to evaluate the association of SNPs with CRC risk. In the first stage, from eight tag SNPs, three polymorphisms rs4646077 (odds ratio (OR)(AA+AG): 0.654, 95% confidence interval (CI): 0.406-1.055; P=0.082), rs4233532 (OR(CC): 1.667, 95% CI: 0.967-2.876; OR(CT): 1.435, 95% CI: 0.998-2.063; P=0.077), and rs2881930 (OR(CC): 0.263, 95% CI: 0.095-0.728, P=0.036) showed possible association with CRC risk. However, none of the three SNPs, rs4646077 (OR(AA+AG): 1.233, 95% CI: 0.903-1.683), rs4233532 (OR(CC): 0.892, 95% CI: 0.640-1.243; OR(CT): 1.134, 95% CI: 0.897-1.433), and rs2881930 (OR(CC): 1.096, 95% CI: 0.620-1.938; OR(CT): 1.009, 95% CI: 0.801-1.271), remained significant with CRC risk in the validation set, even after stratification for different tumor locations (colon or rectum). In addition, never tea drinking was associated with a significantly increased risk of CRC in testing set together with validation set (OR: 1.755, 95% CI: 1.319-2.334). Our results found that polymorphisms of CASP9 and CASP10 genes may not contribute to CRC risk in Chinese population and thereby the large-scale case-control studies might be in consideration. In addition, tea drinking was a protective factor for CRC.

  13. Association of CASP9, CASP10 gene polymorphisms and tea drinking with colorectal cancer risk in the Han Chinese population*

    PubMed Central

    Liu, He; Jiang, Xia; Zhang, Ming-wu; Pan, Yi-feng; Yu, Yun-xian; Zhang, Shan-chun; Ma, Xin-yuan; Li, Qi-long; Chen, Kun

    2013-01-01

    The initiators caspase-9 (CASP9) and caspase-10 (CASP10) are two key controllers of apoptosis and play important roles in carcinogenesis. This study aims to explore the association between CASPs gene polymorphisms and colorectal cancer (CRC) susceptibility in a population-based study. A two-stage designed population-based case-control study was carried out, including a testing set with 300 cases and 296 controls and a validation set with 206 cases and 845 controls. A total of eight tag selected single nucleotide polymorphisms (SNPs) in CASP9 and CASP10 were chosen based on HapMap and the National Center of Biotechnology Information (NCBI) datasets and genotyped by restriction fragment length polymorphism (RFLP) assay. Multivariate logistic regression models were applied to evaluate the association of SNPs with CRC risk. In the first stage, from eight tag SNPs, three polymorphisms rs4646077 (odds ratio (OR)AA+AG: 0.654, 95% confidence interval (CI): 0.406–1.055; P=0.082), rs4233532 (ORCC: 1.667, 95% CI: 0.967–2.876; ORCT: 1.435, 95% CI: 0.998–2.063; P=0.077), and rs2881930 (ORCC: 0.263, 95% CI: 0.095–0.728, P=0.036) showed possible association with CRC risk. However, none of the three SNPs, rs4646077 (ORAA+AG: 1.233, 95% CI: 0.903–1.683), rs4233532 (ORCC: 0.892, 95% CI: 0.640–1.243; ORCT: 1.134, 95% CI: 0.897–1.433), and rs2881930 (ORCC: 1.096, 95% CI: 0.620–1.938; ORCT: 1.009, 95% CI: 0.801–1.271), remained significant with CRC risk in the validation set, even after stratification for different tumor locations (colon or rectum). In addition, never tea drinking was associated with a significantly increased risk of CRC in testing set together with validation set (OR: 1.755, 95% CI: 1.319–2.334). Our results found that polymorphisms of CASP9 and CASP10 genes may not contribute to CRC risk in Chinese population and thereby the large-scale case-control studies might be in consideration. In addition, tea drinking was a protective factor for CRC. PMID:23303631

  14. JAK2V617F mutation is associated with special alleles in essential thrombocythemia.

    PubMed

    Hsiao, Hui-Hua; Liu, Yi-Chang; Tsai, Hui-Jen; Lee, Ching-Ping; Hsu, Jui-Feng; Lin, Sheng-Fung

    2011-03-01

    Janus kinase 2 mutation (JAK2V617F) has been identified in myeloproliferative neoplasms. Furthermore, special single nucleoside polymorphisms (SNPs) have been found to be associated with the JAK2V617F mutation. Therefore, the associations among JAK2V617F and special SNPs and the allelic location between them were investigated in patients with essential thrombocythemia (ET). A total of 61 patients with ET and 106 healthy individuals were enrolled. The PCR-RFLP method was applied to investigate the pattern of three SNPs, rs10974944, rs12343867, and rs12340895. Allele-specific PCR was used to examine the allelic location between rs10974944 and JAK2V617F. Among the patients with ET, 34 (55.7%, 34/61) were JAK2V617F positive (heterozygous) while the other 27 (44.3%, 27/61) were negative, and there were no MPLW515L/K mutations noted. The pattern of special SNPs in JAK2V617F(+) was significantly different from that in normal individuals (p <0.05), while there was no difference between JAK2V617F(-) patients and normal individuals. Allele-specific PCR showed high association of a cis-location between the special G-allele of rs10974944 and JAK2V617F(+). Based on this small numbered study, the results show the association between special SNPs and JAK2V617F mutation and a cis-location between the special G-allelic form of rs10974944 and the JAK2V617F mutation. These data highlight a close relationship between them in patients with ET.

  15. Identification of single nucleotide polymorphism in ginger using expressed sequence tags

    PubMed Central

    Chandrasekar, Arumugam; Riju, Aikkal; Sithara, Kandiyl; Anoop, Sahadevan; Eapen, Santhosh J

    2009-01-01

    Ginger (Zingiber officinale Rosc) (Family: Zingiberaceae) is a herbaceous perennial, the rhizomes of which are used as a spice. Ginger is a plant which is well known for its medicinal applications. Recently EST-derived SNPs are a free by-product of the currently expanding EST (Expressed Sequence Tag) databases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion/deletion) has led to a revolution in their use as molecular markers. Available (38139) Ginger EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script AutoSNP version 1.0 which has used 31905 ESTs for detecting SNPs and Indel sites. We found 64026 SNP sites and 7034 indel polymorphisms with frequency of 0.84 SNPs / 100 bp. Among the three tissues from which the EST libraries had been generated, Rhizomes had high frequency of 1.08 SNPs/indels per 100 bp whereas the leaves had lowest frequency of 0.63 per 100 bp and root is showing relative frequency 0.82/100bp. Transitions and transversion ratio is 0.90. In overall detected SNP, transversion is high when compare to transition. These detected SNPs can be used as markers for genetic studies. Availability The results of the present study hosted in our webserver www.spices.res.in/spicesnip PMID:20198184

  16. Population-based case-control study of DRD2 gene polymorphisms and alcoholism.

    PubMed

    Bhaskar, L V K S; Thangaraj, K; Non, A L; Singh, Lalji; Rao, V R

    2010-10-01

    Several independent lines of evidence for genetic contributions to vulnerability to alcoholism exist. Dopamine is thought to play a major role in the mechanism of reward and reinforcement in response to alcohol. D2 dopamine receptor (DRD2) gene has been among the stronger candidate genes implicated in alcoholism. In this study, alcohol use was assessed in 196 randomly selected Kota individuals of Nilgiri Hills, South India. Six DRD2 SNPs were assessed in 81 individuals with alcoholism and 151 controls to evaluate the association between single nucleotide polymorphisms (SNPs) and alcoholism. Of the three models (dominant, recessive, and additive) tested for association between alcoholism and DRD2 SNPs, only the additive model shows association for three loci (rs1116313, TaqID, and rs2734835). Of six studied polymorphisms, five are in strong linkage disequilibrium forming onesingle haplotype block. Though the global haplotype analysis with these five SNPs was not significant, haplotype analysis using all six SNPs yielded a global P value of .033, even after adjusting for age. These findings support the importance of dopamine receptor gene polymorphisms in alcoholism. Further studies to replicate these findings in different populations are needed to confirm these results.

  17. Genome-wide association study of alcohol dependence

    PubMed Central

    Treutlein, Jens; Cichon, Sven; Ridinger, Monika; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Maier, Wolfgang; Moessner, Rainald; Gaebel, Wolfgang; Dahmen, Norbert; Fehr, Christoph; Scherbaum, Norbert; Steffens, Michael; Ludwig, Kerstin U.; Frank, Josef; Wichmann, H.- Erich; Schreiber, Stefan; Dragano, Nico; Sommer, Wolfgang; Leonardi-Essmann, Fernando; Lourdusamy, Anbarasu; Gebicke-Haerter, Peter; Wienker, Thomas F.; Sullivan, Patrick F.; Nöthen, Markus M.; Kiefer, Falk; Spanagel, Rainer; Mann, Karl; Rietschel, Marcella

    2014-01-01

    Context Identification of genes contributing to alcohol dependence will improve our understanding of the mechanisms underlying this disorder. Objective To identify susceptibility genes for alcohol dependence through a genome-wide association study (GWAS) and follow-up study in a population of German male inpatients with an early age at onset. Design The GWAS included 487 male inpatients with DSM-IV alcohol dependence with an age at onset below 28 years and 1,358 population based control individuals. The follow-up study included 1,024 male inpatients and 996 age-matched male controls. All subjects were of German descent. The GWAS tested 524,396 single nucleotide polymorphisms (SNPs). All SNPs with p<10-4 were subjected to the follow-up study. In addition, nominally significant SNPs from those genes that had also shown expression changes in rat brains after chronic alcohol consumption were selected for the follow-up step. Results The GWAS produced 121 SNPs with nominal p<10-4. These, together with 19 additional SNPs from homologs of rat genes showing differential expression, were genotyped in the follow-up sample. Fifteen SNPs showed significant association with the same allele as in the GWAS. In the combined analysis, two closely linked intergenic SNPs met genome-wide significance (rs7590720 p=9.72×10-9; rs1344694 p=1.69×10-8). They are located on chromosome 2q35, a region which has been implicated in linkage studies for alcohol phenotypes. Nine SNPs were located in genes, including CDH13 and ADH1C genes which have been reported to be associated with alcohol dependence. Conclusion This is the first GWAS and follow-up study to identify a genome-wide significant association in alcohol dependence. Further independent studies are required to confirm these findings. PMID:19581569

  18. Transferability of genome-wide associated loci for asthma in African Americans.

    PubMed

    Faruque, Mezbah U; Chen, Guanjie; Doumatey, Ayo P; Zhou, Jie; Huang, Hanxia; Shriner, Daniel; Adeyemo, Adebowale A; Rotimi, Charles N; Dunston, Georgia M

    2017-01-02

    Transferability of significantly associated loci or GWAS "hits" adds credibility to genotype-disease associations and provides evidence for generalizability across different ancestral populations. We sought evidence of association of known asthma-associated single nucleotide polymorphisms (SNPs) in an African American population. Subjects comprised 661 participants (261 asthma cases and 400 controls) from the Howard University Family Study. Forty-eight SNPs previously reported to be associated with asthma by GWAS were selected for testing. We adopted a combined strategy by first adopting an "exact" approach where we looked-up only the reported index SNP. For those index SNPs missing form our dataset, we used a "local" approach that examined all the regional SNPs in LD with the index SNP. Out of the 48 SNPs, our cohort had genotype data available for 27, which were examined for exact replication. Of these, two SNPs were found positively associated with asthma. These included: rs10508372 (OR = 1.567 [95%CI, 1.133-2.167], P = 0.0066) and rs2378383 (OR = 2.147 [95%CI, 1.149-4.013], P = 0.0166), located on chromosomal bands 10p14 and 9q21.31, respectively. Local replication of the remaining 21 loci showed association at two chromosomal loci (9p24.1-rs2381413 and 6p21.32-rs3132947; Bonferroni-corrected P values: 0.0033 and 0.0197, respectively). Of note, multiple SNPs in LD with rs2381413 located upstream of IL33 were significantly associated with asthma. This study has successfully transferred four reported asthma-associated loci in an independent African American population. Identification of several asthma-associated SNPs in the upstream of the IL33, a gene previously implicated in allergic inflammation of asthmatic airway, supports the generalizability of this finding.

  19. Genome-wide association studies and epistasis analyses of candidate genes related to age at menarche and age at natural menopause in a Korean population.

    PubMed

    Pyun, Jung-A; Kim, Sunshin; Cho, Nam H; Koh, InSong; Lee, Jong-Young; Shin, Chol; Kwack, KyuBum

    2014-05-01

    The aim of this study was to identify polymorphisms and gene-gene interactions that are significantly associated with age at menarche and age at menopause in a Korean population. A total of 3,452 and 1,827 women participated in studies of age at menarche and age at natural menopause, respectively. Linear regression analyses adjusted for residence area were used to perform genome-wide association studies (GWAS), candidate gene association studies, and interactions between the candidate genes for age at menarche and age at natural menopause. In GWAS, four single nucleotide polymorphisms (SNPs; rs7528241, rs1324329, rs11597068, and rs6495785) were strongly associated with age at natural menopause (lowest P = 9.66 × 10). However, GWAS of age at menarche did not reveal any strong associations. In candidate gene association studies, SNPs with P < 0.01 were selected to test their synergistic interactions. For age at natural menopause, there was a significant interaction between intronic SNPs on ADAM metallopeptidase with thrombospondin type I motif 9 (ADAMTS9) and SMAD family member 3 (SMAD3) genes (P = 9.52 × 10). For age at menarche, there were three significant interactions between three intronic SNPs on follicle-stimulating hormone receptor (FSHR) gene and one SNP located at the 3' flanking region of insulin-like growth factor 2 receptor (IGF2R) gene (lowest P = 1.95 × 10). Novel SNPs and synergistic interactions between candidate genes are significantly associated with age at menarche and age at natural menopause in a Korean population.

  20. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions.

    PubMed

    Yates, Christopher M; Sternberg, Michael J E

    2013-11-01

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are single base changes leading to a change to the amino acid sequence of the encoded protein. Many of these variants are associated with disease, so nsSNPs have been well studied, with studies looking at the effects of nsSNPs on individual proteins, for example, on stability and enzyme active sites. In recent years, the impact of nsSNPs upon protein-protein interactions has also been investigated, giving a greater insight into the mechanisms by which nsSNPs can lead to disease. In this review, we summarize these studies, looking at the various mechanisms by which nsSNPs can affect protein-protein interactions. We focus on structural changes that can impair interaction, changes to disorder, gain of interaction, and post-translational modifications before looking at some examples of nsSNPs at human-pathogen protein-protein interfaces and the analysis of nsSNPs from a network perspective. © 2013.

  1. Screening and Evaluation of Deleterious SNPs in APOE Gene of Alzheimer's Disease.

    PubMed

    Masoodi, Tariq Ahmad; Al Shammari, Sulaiman A; Al-Muammar, May N; Alhamdan, Adel A

    2012-01-01

    Introduction. Apolipoprotein E (APOE) is an important risk factor for Alzheimer's disease (AD) and is present in 30-50% of patients who develop late-onset AD. Several single-nucleotide polymorphisms (SNPs) are present in APOE gene which act as the biomarkers for exploring the genetic basis of this disease. The objective of this study is to identify deleterious nsSNPs associated with APOE gene. Methods. The SNPs were retrieved from dbSNP. Using I-Mutant, protein stability change was calculated. The potentially functional nonsynonymous (ns) SNPs and their effect on protein was predicted by PolyPhen and SIFT, respectively. FASTSNP was used for functional analysis and estimation of risk score. The functional impact on the APOE protein was evaluated by using Swiss PDB viewer and NOMAD-Ref server. Results. Six nsSNPs were found to be least stable by I-Mutant 2.0 with DDG value of >-1.0. Four nsSNPs showed a highly deleterious tolerance index score of 0.00. Nine nsSNPs were found to be probably damaging with position-specific independent counts (PSICs) score of ≥2.0. Seven nsSNPs were found to be highly polymorphic with a risk score of 3-4. The total energies and root-mean-square deviation (RMSD) values were higher for three mutant-type structures compared to the native modeled structure. Conclusion. We concluded that three nsSNPs, namely, rs11542041, rs11542040, and rs11542034, to be potentially functional polymorphic.

  2. DoGSD: the dog and wolf genome SNP database.

    PubMed

    Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping

    2015-01-01

    The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri.

    PubMed

    Gao, Yangchun; Li, Shiguo; Zhan, Aibin

    2018-04-01

    Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.

  4. The IL18 Promoter Polymorphism, rs1946518, Is Associated with the Risk of Periodontitis in Japanese Women: The Kyushu Okinawa Maternal and Child Health Study.

    PubMed

    Tanaka, Keiko; Miyake, Yoshihiro; Hanioka, Takashi; Furukawa, Shinya; Miyatake, Nobuyuki; Arakawa, Masashi

    2017-11-01

    Interleukin-18 (IL-18) is a proinflammatory cytokine that plays an important role in periodontitis and its polymorphisms might modulate the individual susceptibility to periodontitis. Only a limited number of studies on the association between IL18 single-nucleotide polymorphisms (SNPs) and the risk of periodontitis have been realized, however. The aim of this case-control study among young post-partum Japanese women (18 to 45 years) was to determine the impact of SNPs, rs1946518 (-607 C/A) and rs187238 (-137G/C), on periodontitis. The two SNPs may be located within a transcription factor-binding element, thereby influencing transcription from the IL18 promoter. Subjects were 131 cases who had at least one tooth with a probing pocket depth of ≥ 4.0 mm and 1,017 periodontally healthy controls. Probing pocket depth measurements were performed between 1 and 12 months post-partum. In this population, the A allele of rs1946518 and the C allele of rs187238 are more common. After adjustment for age, education, smoking, and use of an interdental brush, compared with subjects with the AA or AC genotype of SNP rs1946518, those with the CC genotype had a significantly reduced risk of periodontitis (adjusted odds ratio = 0.54, 95% confidence interval = 0.29-0.97). No significant association was observed between rs187238 and the risk of periodontitis. Our study did not reveal any evidence of interaction between the IL18 polymorphisms and smoking. Our findings indicate that the IL18 promoter SNP, rs1946518, is a potential risk factor of periodontitis among young Japanese women.

  5. Genetic variation in CDH13 gene was associated with non-small cell lung cancer (NSCLC): A population-based case-control study

    PubMed Central

    Li, Yingfu; Li, Chuanyin; Ma, Qianli; Zhang, Yu; Yao, Yueting; Liu, Shuyuan; Zhang, Xinwen; Hong, Chao; Tan, Fang; Shi, Li; Yao, Yufeng

    2018-01-01

    Cadherin 13 (CDH13, T-cadherin, H-cadherin) has been identified as an anti-oncogene in various cancers. Recent studies have reported that downregulation of H-cadherin in cancers is associated with CDH13 promoter hypermethylation, which could be affected by the single nucleotide polymorphisms (SNPs) near CpG sites in the CDH13 promoter. In the current study, we investigated and analyzed the association of seven SNPs (rs11646213, rs12596316, rs3865188, rs12444338, rs4783244, rs12051272 and rs7195409) with non-small cell lung cancer (NSCLC) using logistic regression analysis. SNPs rs11646213, rs12596316, rs3865188 and rs12444338 are located in the promoter region, rs4783244 and rs12051272 are located in intron 1, and rs7195409 is located in intron 7. A total of 454 patients with NSCLC were placed into a NSCLC group and 444 healthy controls were placed into a control group, all participants were recruited to genotype the SNPs using Taqman assay. Our results showed that the allelic frequencies of rs11646213 were significantly different between NSCLC and control groups (P = 0.006). In addition, the association analysis of these SNPs stratified into NSCLC pathologic stages I+II and III+IV showed that the allelic frequencies rs7195409 had a significant difference between NSCLC pathologic stages I+II and III+IV (P = 0.006). Our results indicated that the rs11646213 and rs7195409 in CDH13 could be associated with NSCLC or its pathologic stages in the Chinese Han population. PMID:29416663

  6. Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms

    USDA-ARS?s Scientific Manuscript database

    We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...

  7. Informativeness of single nucleotide polymorphisms and relationships among onion populations from important world production regions

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphisms (SNPs) were genotyped using a high-density array and DNAs from individual plants from important onion populations from major production regions world-wide and the likely progenitor of onion, Allium vavilovii. Genotypes at 1226 SNPs were used to estimate genetic relati...

  8. Distribution of three SNPs related to low bone mineral density in Amerindian groups and Mestizos from Mexico.

    PubMed

    Nuño-Arana, Ismael; Sahagún-Núñez, Valeria Del Rocío; Muñoz-Valle, José Francisco; Sandoval, Lucila; Pinto-Escalante, Doris; Páez-Riberos, Luis Antonio; Lazalde, Brissia; Maldonado-González, Montserrat; Rangel-Villalobos, Héctor

    2012-01-01

    Some Single nucleotide polymorphisms (SNPs) of several candidate genes have been associated with low bone mineral density (BMD) and fracture risk. As the genetic variability of such SNPs in Hispanic and Native American populations is scarce, we analyzed the three SNPs that have been related with bone mass disorders (Sp1, A163G, and BsmI) located in the genes of Type I Collagen (COL1A1), Osteoprotegerin (OPG), and Vitamin D receptor (VDR) in Mexican Mestizos (people resulting from post-Columbian admixture) and five Amerindian populations. We genotyped these three SNPs by Polymerase chain reaction (PCR) and Restriction fragment length polymorphisms (RFLPs) in 523 individuals from five Mexican Amerindian groups (Nahua, Maya, Purépecha, Tarahumara, and Huichol) and 227 western Mestizos (Jalisco state). The modal allele was the same in all the six populations for Sp1-COL1A1 (S > 77%), A163G-OPG (A > 80%), and BsmI-VDR (b > 62%). Genotype distribution was in Hardy-Weinberg equilibrium in all SNPs/populations, excepting Sp1-COL1A1 in the Purépecha group and BsmI-VDR in Mestizo. In terms of the presumably Sp1-COL1A1 risk allele to low BMD (allele "s"), the Purépecha group showed the highest allele (23%) and homozygous (14.5%) frequencies. If the role of this allele as a genetic predisposing factor to low BMD were confirmed, this would mean increased susceptibility of Purépechas with regard to Europeans (14.5 vs. 6.8%). This finding presumably could influence the genetic susceptibility to low BMD in Purépechas. For the SNPs, BsmI-VDR and A163G-OPG, relative homogeneity was observed among the Mexican populations analyzed here. Copyright © 2012 Wiley Periodicals, Inc.

  9. High-resolution melting analysis of the single nucleotide polymorphism hot-spot region in the rpoB gene as an indicator of reduced susceptibility to rifaximin in Clostridium difficile.

    PubMed

    Pecavar, Verena; Blaschitz, Marion; Hufnagl, Peter; Zeinzinger, Josef; Fiedler, Anita; Allerberger, Franz; Maass, Matthias; Indra, Alexander

    2012-06-01

    Clostridium difficile, a Gram-positive, spore-forming, anaerobic bacterium, is the main causative agent of hospital-acquired diarrhoea worldwide. In addition to metronidazole and vancomycin, rifaximin, a rifamycin derivative, is a promising antibiotic for the treatment of recurring C. difficile infections (CDI). However, exposure of C. difficile to this antibiotic has led to the development of rifaximin-resistance due to point mutations in the β-subunit of the RNA polymerase (rpoB) gene. In the present study, 348 C. difficile strains with known PCR-ribotypes were investigated for respective single nucleotide polymorphisms (SNPs) within the proposed rpoB hot-spot region by using high-resolution melting (HRM) analysis. This method allows the detection of SNPs by comparing the altered melting behaviour of dsDNA with that of wild-type DNA. Discrimination between wild-type and mutant strains was enhanced by creating heteroduplexes by mixing sample DNA with wild-type DNA, leading to characteristic melting curve shapes from samples containing SNPs in the respective rpoB section. In the present study, we were able to identify 16 different rpoB sequence-types (ST) by sequencing analysis of a 325 bp fragment. The 16 PCR STs displayed a total of 24 different SNPs. Fifteen of these 24 SNPs were located within the proposed 151 bp SNP hot-spot region, resulting in 11 different HRM curve profiles (CP). Eleven SNPs (seven of which were within the proposed hot-spot region) led to amino acid substitutions associated with reduced susceptibility to rifaximin and 13 SNPs (eight of which were within the hot-spot region) were synonymous. This investigation clearly demonstrates that HRM analysis of the proposed SNP hot-spot region in the rpoB gene of C. difficile is a fast and cost-effective method for the identification of C. difficile samples with reduced susceptibility to rifaximin and even allows simultaneous SNP subtyping of the respective C. difficile isolates.

  10. Chromosome 17: association of a large inversion polymorphism with corticosteroid response in asthma.

    PubMed

    Tantisira, Kelan G; Lazarus, Ross; Litonjua, Augusto A; Klanderman, Barbara; Weiss, Scott T

    2008-08-01

    A 900-kb inversion exists within a large region of conserved linkage disequilibrium (LD) on chromosome 17. CRHR1 is located within the inversion region and associated with inhaled corticosteroid response in asthma. We hypothesized that CRHR1 variants are in LD with the inversion, supporting a potential role for natural selection in the genetic response to corticosteroids. We genotyped six single nucleotide polymorphisms (SNPs) spanning chromosome 17: 40,410,565-42,372,240, including four SNPs defining inversion status. Similar allele frequencies and strong LD were noted between the inversion and a CRHR1 SNP previously associated with lung function response to inhaled corticosteroids. Each inversion-defining SNP was strongly associated with inhaled corticosteroid response in adult asthma (P values 0.002-0.005). The CRHR1 response to inhaled corticosteroids may thus be explained by natural selection resulting from inversion status or by long-range LD with another gene. Additional pharmacogenetic investigations into regions of chromosomal diversity, including copy number variation and inversions, are warranted.

  11. A genome-wide association study of seed composition traits in wild soybean (Glycine soja).

    PubMed

    Leamy, Larry J; Zhang, Hengyou; Li, Changbao; Chen, Charles Y; Song, Bao-Hua

    2017-01-05

    Cultivated soybean (Glycine max) is a major agricultural crop that provides a crucial source of edible protein and oil. Decreased amounts of saturated palmitic acid and increased amounts of unsaturated oleic acid in soybean oil are considered optimal for human cardiovascular health and therefore there has considerable interest by breeders in discovering genes affecting the relative concentrations of these fatty acids. Using a genome-wide association (GWA) approach with nearly 30,000 single nucleotide polymorphisms (SNPs), we investigated the genetic basis of protein, oil and all five fatty acid levels in seeds from a sample of 570 wild soybeans (Glycine soja), the progenitor of domesticated soybean, to identify quantitative trait loci (QTLs) affecting these seed composition traits. We discovered 29 SNPs located on ten different chromosomes that are significantly associated with the seven seed composition traits in our wild soybean sample. Eight SNPs co-localized with QTLs previously uncovered in linkage or association mapping studies conducted with cultivated soybean samples, while the remaining SNPs appeared to be in novel locations. Twenty-four of the SNPs significantly associated with fatty acid variation, with the majority located on chromosomes 14 (6 SNPs) and seven (8 SNPs). Two SNPs were common for two or more fatty acids, suggesting loci with pleiotropic effects. We also identified some candidate genes that are involved in fatty acid metabolism and regulation. For each of the seven traits, most of the SNPs produced differences between the average phenotypic values of the two homozygotes of about one-half standard deviation and contributed over 3% of their total variability. This is the first GWA study conducted on seed composition traits solely in wild soybean populations, and a number of QTLs were found that have not been previously discovered. Some of these may be useful to breeders who select for increased protein/oil content or altered fatty acid ratios in the seeds. The results also provide additional insight into the genetic architecture of these traits in a large sample of wild soybean, and suggest some new candidate genes whose molecular effects on these traits need to be further studied.

  12. Association of DGAT2 gene polymorphisms with carcass and meat quality traits in domestic pigeons (Columba livia).

    PubMed

    Mao, H G; Dong, X Y; Cao, H Y; Xu, N Y; Yin, Z Z

    2018-04-01

    1. Diacylglycerol acyltransferase (DGAT) plays an important role in the synthesis of triacylglycerol, but its effects on meat quality and carcass composition in pigeons are unclear. In this study, single-nucleotide polymorphisms (SNPs) in the exons of the DGAT2 gene were identified and analysed by using DNA sequencing methods in 200 domestic pigeons (Columba livia). The associations between DGAT2 polymorphisms and carcass and meat quality traits were also analysed. 2. Sequencing results showed that 5 nucleotide mutations were detected in exons 3, 4, 5 and 6 of the DGAT2 gene. The analysis revealed three genotypes (AA, AB and BB) in G18398T and G22484C, in which the AA genotype and A allele had the highest frequency. 3. In the SNP of G18398T located in exon 5, individuals with genotype BB had significantly higher meat quality and lower abdominal fat content than those with AA or AB genotype. In the SNP of G22484C located in exon 6, the genotype AA showed highest carcass trait values, while the genotype BB represented better meat quality, compared to AA and AB genotypes. 4. The results imply that DGAT2 gene has a close relationship with carcass and meat quality traits in pigeons, and the SNPs of G18398T and G22484C can be used as genetic markers for marker-assisted breeding in pigeon.

  13. Genetic polymorphisms associated with breast cancer in malaysian cohort.

    PubMed

    Chahil, Jagdish Kaur; Munretnam, Khamsigan; Samsudin, Nurulhafizah; Lye, Say Hean; Hashim, Nikman Adli Nor; Ramzi, Nurul Hanis; Velapasamy, Sharmila; Wee, Ler Lian; Alex, Livy

    2015-04-01

    Genome-wide association studies have discovered multiple single nucleotide polymorphisms (SNPs) associated with the risk of common diseases. The objective of this study was to demonstrate the replication of previously published SNPs that showed statistical significance for breast cancer in the Malaysian population. In this case-control study, 80 subjects for each group were recruited from various hospitals in Malaysia. A total of 768 SNPs were genotyped and analyzed to distinguish risk and protective alleles. A total of three SNPs were found to be associated with increased risk of breast cancer while six SNPs showed protective effect. All nine were statistically significant SNPs (p ≤ 0.01), five SNPs from previous studies were successfully replicated in our study. Significant modifiable (diet) and non-modifiable (family history of breast cancer in first degree relative) risk factors were also observed. We identified nine SNPs from this study to be either conferring susceptibility or protection to breast cancer which may serve as potential markers in risk prediction.

  14. Cloning of polymorphisms (COP): enrichment of polymorphic sequences from complex genomes

    PubMed Central

    Li, Jingfeng; Wang, Fuli; Zabarovska, Veronika; Wahlestedt, Claes; Zabarovsky, Eugene R.

    2000-01-01

    Here we describe a new procedure (cloning of polymorphisms, COP) for enrichment of single nucleotide polymorphisms (SNPs) that represent restriction fragment length polymorphisms (RFLPs). COP would be applicable to the isolation of SNPs from particular regions of the genome, e.g. CpG islands, chromosomal bands, YACs or PAC contigs. A combination of digestion with restriction enzymes, treatment with uracil-DNA glycosylase and mung bean nuclease, PCR amplification and purification with streptavidin magnetic beads was used to isolate polymorphic sequences from the genomes of two human samples. After only two cycles of enrichment, 80% of the isolated clones were found to contain RFLPs. A simple method for the PCR detection of these polymorphisms was also developed. PMID:10606669

  15. Single nucleotide polymorphism-specific regulation of matrix metalloproteinase-9 by multiple miRNAs targeting the coding exon

    PubMed Central

    Duellman, Tyler; Warren, Christopher; Yang, Jay

    2014-01-01

    Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221

  16. Genetic Polymorphisms Associated with Rubella Virus-Specific Cellular Immunity Following MMR Vaccination

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Lambert, Nathaniel D.; Pankratz, V. Shane; Poland, Gregory A.

    2014-01-01

    Rubella virus causes a relatively benign disease in most cases, although infection during pregnancy can result in serious birth defects. An effective vaccine has been available since the early 1970s and outbreaks typically do not occur among highly vaccinated (≥2 doses) populations. Nevertheless, considerable inter-individual variation in immune response to rubella immunization does exist, with single dose seroconversion rates ~95%. Understanding the mechanisms behind this variability may provide important insights into rubella immunity. In the current study, we examined associations between single nucleotide polymorphisms (SNPs) in selected cytokine, cytokine receptor, and innate/antiviral genes and immune responses following rubella vaccination in order to understand genetic influences on vaccine response. Our approach consisted of a discovery cohort of 887 subjects ages 11–22 at the time of enrollment and a replication cohort of 542 older adolescents and young adults (ages 18–40). Our data indicate that SNPs near the butyrophilin genes (BTN3A3/BTN2A1) and cytokine receptors (IL10RB/IFNAR1) are associated with variations in IFNγ secretion and that multiple SNPs in the PVR gene, as well as SNPs located in the ADAR gene, exhibit significant associations with rubella virus-specific IL-6 secretion. This information may be useful, not only in furthering our understanding immune responses to rubella vaccine, but also in identifying key pathways for targeted adjuvant use to boost immunity in those with weak or absent immunity following vaccination. PMID:25098560

  17. Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections.

    PubMed

    Reddy, Umesh K; Almeida, Aldo; Abburi, Venkata L; Alaparthi, Suresh Babu; Unselt, Desiree; Hankins, Gerald; Park, Minkyu; Choi, Doil; Nimmakayala, Padma

    2014-01-01

    Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1.

  18. Identification of Gene-Specific Polymorphisms and Association with Capsaicin Pathway Metabolites in Capsicum annuum L. Collections

    PubMed Central

    Abburi, Venkata L.; Alaparthi, Suresh Babu; Unselt, Desiree; Hankins, Gerald; Park, Minkyu; Choi, Doil

    2014-01-01

    Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1. PMID:24475113

  19. Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination.

    PubMed

    Kennedy, Richard B; Ovsyannikova, Inna G; Haralambieva, Iana H; Lambert, Nathaniel D; Pankratz, V Shane; Poland, Gregory A

    2014-11-01

    Rubella virus causes a relatively benign disease in most cases, although infection during pregnancy can result in serious birth defects. An effective vaccine has been available since the early 1970s and outbreaks typically do not occur among highly vaccinated (≥2 doses) populations. Nevertheless, considerable inter-individual variation in immune response to rubella immunization does exist, with single-dose seroconversion rates ~95 %. Understanding the mechanisms behind this variability may provide important insights into rubella immunity. In the current study, we examined associations between single nucleotide polymorphisms (SNPs) in selected cytokine, cytokine receptor, and innate/antiviral genes and immune responses following rubella vaccination in order to understand genetic influences on vaccine response. Our approach consisted of a discovery cohort of 887 subjects aged 11-22 at the time of enrollment and a replication cohort of 542 older adolescents and young adults (age 18-40). Our data indicate that SNPs near the butyrophilin genes (BTN3A3/BTN2A1) and cytokine receptors (IL10RB/IFNAR1) are associated with variations in IFNγ secretion and that multiple SNPs in the PVR gene, as well as SNPs located in the ADAR gene, exhibit significant associations with rubella virus-specific IL-6 secretion. This information may be useful, not only in furthering our understanding immune responses to rubella vaccine, but also in identifying key pathways for targeted adjuvant use to boost immunity in those with weak or absent immunity following vaccination.

  20. Polymorphisms of clip domain serine proteinase and serine proteinase homolog in the swimming crab Portunus trituberculatus and their association with Vibrio alginolyticus

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Liu, Yuan; Hui, Min; Song, Chengwen; Cui, Zhaoxia

    2017-03-01

    Clip domain serine proteases (cSPs) and their homologs (SPHs) play an important role in various biological processes that are essential components of extracellular signaling cascades, especially in the innate immune responses of invertebrates. Here, polymorphisms of PtcSP and PtSPH from the swimming crab Portunus trituberculatus were investigated to explore their association with resistance/susceptibility to Vibrio alginolyticus. Polymorphic loci were identified using Clustal X, and characterized with SPSS 16.0 software, and then the significance of genotype and allele frequencies between resistant and susceptible stocks was determined by a χ 2 test. A total of 109 and 77 single nucleotide polymorphisms (SNPs) were identified in the genomic fragments of PtcSP and PtSPH, respectively. Notably, nearly half of PtSPH polymorphisms were found in the non-coding exon 1. Fourteen SNPs investigated were significantly associated with susceptibility/resistance to V. alginolyticus ( P <0.05). Among them, eight SNPs were observed in introns, and one synonymous, four non-synonymous SNPs and one ins-del were found in coding exons. In addition, five simple sequence repeats (SSRs) were detected in intron 3 of PtcSP. Although there was no statistically significant difference of allele frequencies, the SSRs showed different polymorphic alleles on the basis of the repeat number between resistant and susceptible stocks. After further validation, polymorphisms investigated here might be applied to select potential molecular markers of P. trituberculatus with resistance to V. alginolyticus.

  1. Insulin‐degrading enzyme is genetically associated with Alzheimer's disease in the Finnish population

    PubMed Central

    Vepsäläinen, Saila; Parkinson, Michele; Helisalmi, Seppo; Mannermaa, Arto; Soininen, Hilkka; Tanzi, Rudolph E; Bertram, Lars; Hiltunen, Mikko

    2007-01-01

    The gene for insulin‐degrading enzyme (IDE), which is located at chromosome 10q24, has been previously proposed as a candidate gene for late‐onset Alzheimer's disease (AD) based on its ability to degrade amyloid β‐protein. Genotyping of single nucleotide polymorphisms (SNPs) in the IDE gene in Finnish patients with AD and controls revealed SNPs rs4646953 and rs4646955 to be associated with AD, conferring an approximately two‐fold increased risk. Single locus findings were corroborated by the results obtained from haplotype analyses. This suggests that genetic alterations in or near the IDE gene may increase the risk for developing AD. PMID:17496198

  2. SNPing Away at Complex Diseases: Analysis of Single-Nucleotide Polymorphisms around APOE in Alzheimer Disease

    PubMed Central

    Martin, Eden R.; Lai, Eric H.; Gilbert, John R.; Rogala, Allison R.; Afshari, A. J.; Riley, John; Finch, K. L.; Stevens, J. F.; Livak, K. J.; Slotterbeck, Brandon D.; Slifer, Susan H.; Warren, Liling L.; Conneally, P. Michael; Schmechel, Donald E.; Purvis, Ian; Pericak-Vance, Margaret A.; Roses, Allen D.; Vance, Jeffery M.

    2000-01-01

    There has been great interest in the prospects of using single-nucleotide polymorphisms (SNPs) in the search for complex disease genes, and several initiatives devoted to the identification and mapping of SNPs throughout the human genome are currently underway. However, actual data investigating the use of SNPs for identification of complex disease genes are scarce. To begin to look at issues surrounding the use of SNPs in complex disease studies, we have initiated a collaborative SNP mapping study around APOE, the well-established susceptibility gene for late-onset Alzheimer disease (AD). Sixty SNPs in a 1.5-Mb region surrounding APOE were genotyped in samples of unrelated cases of AD, in controls, and in families with AD. Standard tests were conducted to look for association of SNP alleles with AD, in cases and controls. We also used family-based association analyses, including recently developed methods to look for haplotype association. Evidence of association (P⩽.05) was identified for 7 of 13 SNPs, including the APOE-4 polymorphism, spanning 40 kb on either side of APOE. As expected, very strong evidence for association with AD was seen for the APOE-4 polymorphism, as well as for two other SNPs that lie <16 kb from APOE. Haplotype analysis using family data increased significance over that seen in single-locus tests for some of the markers, and, for these data, improved localization of the gene. Our results demonstrate that associations can be detected at SNPs near a complex disease gene. We found that a high density of markers will be necessary in order to have a good chance of including SNPs with detectable levels of allelic association with the disease mutation, and statistical analysis based on haplotypes can provide additional information with respect to tests of significance and fine localization of complex disease genes. PMID:10869235

  3. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease.

    PubMed

    Martin, E R; Lai, E H; Gilbert, J R; Rogala, A R; Afshari, A J; Riley, J; Finch, K L; Stevens, J F; Livak, K J; Slotterbeck, B D; Slifer, S H; Warren, L L; Conneally, P M; Schmechel, D E; Purvis, I; Pericak-Vance, M A; Roses, A D; Vance, J M

    2000-08-01

    There has been great interest in the prospects of using single-nucleotide polymorphisms (SNPs) in the search for complex disease genes, and several initiatives devoted to the identification and mapping of SNPs throughout the human genome are currently underway. However, actual data investigating the use of SNPs for identification of complex disease genes are scarce. To begin to look at issues surrounding the use of SNPs in complex disease studies, we have initiated a collaborative SNP mapping study around APOE, the well-established susceptibility gene for late-onset Alzheimer disease (AD). Sixty SNPs in a 1.5-Mb region surrounding APOE were genotyped in samples of unrelated cases of AD, in controls, and in families with AD. Standard tests were conducted to look for association of SNP alleles with AD, in cases and controls. We also used family-based association analyses, including recently developed methods to look for haplotype association. Evidence of association (P

  4. Characterization of the canine desmin (DES) gene and evaluation as a candidate gene for dilated cardiomyopathy in the Dobermann.

    PubMed

    Stabej, Polona; Imholz, Sandra; Versteeg, Serge A; Zijlstra, Carla; Stokhof, Arnold A; Domanjko-Petric, Aleksandra; Leegwater, Peter A J; van Oost, Bernard A

    2004-10-13

    Canine-dilated cardiomyopathy (DCM) in dogs is a disease of the myocardium associated with dilatation and impaired contraction of the ventricles and is suspected to have a genetic cause. A missense mutation in the desmin gene (DES) causes DCM in a human family. Human DCM closely resembles the canine disease. In the present study, we evaluated whether DES gene mutations are responsible for DCM in Dobermann dogs. We have isolated bacterial artificial chromosome clones (BACs) containing the canine DES gene and determined the chromosomal location by fluorescence in situ hybridization (FISH). Using data deposited in the NCBI trace archive and GenBank, the canine DES gene DNA sequence was assembled and seven single nucleotide polymorphisms (SNPs) were identified. From the canine DES gene BAC clones, a polymorphic microsatellite marker was isolated. The microsatellite marker and four informative desmin SNPs were typed in a Dobermann family with frequent DCM occurrence, but the disease phenotype did not associate with a desmin haplotype. We concluded that mutations in the DES gene do not play a role in Dobermann DCM. Availability of the microsatellite marker, SNPs and DNA sequence reported in this study enable fast evaluation of the DES gene as a DCM candidate gene in other dog breeds with DCM occurrence.

  5. Comprehensive Search for Alzheimer Disease Susceptibility Loci in the APOE Region

    PubMed Central

    Jun, Gyungah; Vardarajan, Badri N.; Buros, Jacqueline; Yu, Chang-En; Hawk, Michele V.; Dombroski, Beth A.; Crane, Paul K.; Larson, Eric B.; Mayeux, Richard; Haines, Jonathan L.; Lunetta, Kathryn L.; Pericak-Vance, Margaret A.; Schellenberg, Gerard D.; Farrer, Lindsay A.

    2013-01-01

    Objective To evaluate the association of risk and age at onset (AAO) of Alzheimer disease (AD) with single-nucleotide polymorphisms (SNPs) in the chromosome 19 region including apolipoprotein E (APOE) and a repeat-length polymorphism in TOMM40 (poly-T, rs10524523). Design Conditional logistic regression models and survival analysis. Setting Fifteen genome-wide association study data sets assembled by the Alzheimer's Disease Genetics Consortium. Participants Eleven thousand eight hundred forty AD cases and 10 931 cognitively normal elderly controls. Main Outcome Measures Association of AD risk and AAO with genotyped and imputed SNPs located in an 800-Mb region including APOE in the entire Alzheimer's Disease Genetics Consortium data set and with the TOMM40 poly-T marker genotyped in a subset of 1256 cases and 1605 controls. Results In models adjusting for APOE ε4, no SNPs in the entire region were significantly associated with AAO at P<.001. Rs10524523 was not significantly associated with AD or AAO in models adjusting for APOE genotype or within the subset of ε3/ε3 subjects. Conclusions APOE alleles ε2, ε3, and ε4 account for essentially all the inherited risk of AD associated with this region. Other variants including a poly-T track in TOMM40 are not independent risk or AAO loci. PMID:22869155

  6. Physiogenomic Analysis of Localized fMRI Brain Activity in Schizophrenia

    PubMed Central

    Windemuth, Andreas; Calhoun, Vince D.; Pearlson, Godfrey D.; Kocherla, Mohan; Jagannathan, Kanchana; Ruaño, Gualberto

    2009-01-01

    The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes. PMID:18330705

  7. Pharmacogenetic screening for polymorphisms in drug-metabolizing enzymes and drug transporters in a Dutch population.

    PubMed

    Bosch, T M; Doodeman, V D; Smits, P H M; Meijerman, I; Schellens, J H M; Beijnen, J H

    2006-01-01

    A possible explanation for the wide interindividual variability in toxicity and efficacy of drug therapy is variation in genes encoding drug-metabolizing enzymes and drug transporters. The allelic frequency of these genetic variants, linkage disequilibrium (LD), and haplotype of these polymorphisms are important parameters in determining the genetic differences between patients. The aim of this study was to explore the frequencies of polymorphisms in drug-metabolizing enzymes (CYP1A1, CYP2C9, CYP2C19, CYP3A4, CYP2D6, CYP3A5, DPYD, UGT1A1, GSTM1, GSTP1, GSTT1) and drug transporters (ABCB1[MDR1] and ABCC2[MRP2]), and to investigate the LD and perform haplotype analysis of these polymorphisms in a Dutch population. Blood samples were obtained from 100 healthy volunteers and genomic DNA was isolated and amplified by PCR. The amplification products were sequenced and analyzed for the presence of polymorphisms by sequence alignment. In the study population, we identified 13 new single nucleotide polymorphisms (SNPs) in Caucasians and three new SNPs in non-Caucasians, in addition to previously recognized SNPs. Three of the new SNPs were found within exons, of which two resulted in amino acid changes (A428T in CYP2C9 resulting in the amino acid substitution D143V; and C4461T in ABCC2 in a non-Caucasian producing the amino acid change T1476M). Several LDs and haplotypes were found in the Caucasian individuals. In this Dutch population, the frequencies of 16 new SNPs and those of previously recognized SNPs were determined in genes coding for drug-metabolizing enzymes and drug transporters. Several LDs and haplotypes were also inferred. These data are important for further research to help explain the interindividual pharmacokinetic and pharmacodynamic variability in response to drug therapy.

  8. Progranulin gene variation affects serum progranulin levels differently in Danish bipolar individuals compared with healthy controls.

    PubMed

    Buttenschøn, Henriette N; Nielsen, Marit N; Thotakura, Gangadaar; Lee, Chris W; Nykjær, Anders; Mors, Ole; Glerup, Simon

    2017-06-01

    The identification of peripheral biomarkers for bipolar disorder is of great importance and has the potential to improve diagnosis, treatment and prognosis. Recent studies have reported lower plasma progranulin levels in bipolar individuals compared with controls and association with single nucleotide polymorphisms (SNPs) within the progranulin gene (GRN). In the present study, we investigated the effect of GRN and sortilin (SORT1) gene variation on serum progranulin levels in bipolar individuals and controls. In a Danish cohort of individuals with bipolar disorder and controls, we analysed the serum progranulin level (nbipolar=80, ncontrols=76) and five SNPs located within GRN and two SNPs near the SORT1 gene encoding sortilin, a progranulin scavenger receptor known to affect circulating progranulin levels (nbipolar=166, ncontrols=186). We observed no significant difference in the serum progranulin level between cases and controls and none of the analysed SNPs located within GRN or close to SORT1 were associated with bipolar disorder. Crude and adjusted (adjusted for case-control status, sex and age) linear regression analyses showed no effect of any SNPs on the serum progranulin level. However, we observed that the mean serum progranulin level in cases and controls is affected differently depending on the genotypes of two SNPs within GRN (rs2879096 and rs4792938). The sample size is relatively small and detailed information on medication and polarity of the disorder is not available. No correction for multiple testing was performed. Our study suggests that the potential of progranulin as a biomarker for bipolar disorder is genotype dependent.

  9. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids.

    PubMed

    Montanari, Sara; Saeed, Munazza; Knäbel, Mareike; Kim, YoonKyeong; Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E; Crowhurst, Ross N; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.

  10. Bioinformatic analyses to select phenotype affecting polymorphisms in HTR2C gene.

    PubMed

    Piva, Francesco; Giulietti, Matteo; Baldelli, Luisa; Nardi, Bernardo; Bellantuono, Cesario; Armeni, Tatiana; Saccucci, Franca; Principato, Giovanni

    2011-08-01

    Single nucleotide polymorphisms (SNPs) in serotonin related genes influence mental disorders, responses to pharmacological and psychotherapeutic treatments. In planning association studies, researchers that want to investigate new SNPs have to select some among a large number of candidates. Our aim is to guide researchers in the selection of the most likely phenotype affecting polymorphisms. Here, we studied serotonin receptor 2C (HTR2C) SNPs because, till now, only relatively few of about 2000 are investigated. We used the most updated and assessed bioinformatic tools to predict which variations can give rise to biological effects among 2450 HTR2C SNPs. We suggest 48 SNPs that are worth considering in future association studies in the field of psychiatry, psychology and pharmacogenomics. Moreover, our analyses point out the biological level probably affected, such as transcription, splicing, miRNA regulation and protein structure, thus allowing to suggest future molecular investigations. Although few association studies are available in literature, their results are in agreement with our predictions, showing that our selection methods can help to guide future association studies. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Nucleotide polymorphisms in a pine ortholog of the Arabidopsis degrading enzyme cellulase KORRIGAN are associated with early growth performance in Pinus pinaster.

    PubMed

    Cabezas, José Antonio; González-Martínez, Santiago C; Collada, Carmen; Guevara, María Angeles; Boury, Christophe; de María, Nuria; Eveno, Emmanuelle; Aranda, Ismael; Garnier-Géré, Pauline H; Brach, Jean; Alía, Ricardo; Plomion, Christophe; Cervera, María Teresa

    2015-09-01

    We have carried out a candidate-gene-based association genetic study in Pinus pinaster Aiton and evaluated the predictive performance for genetic merit gain of the most significantly associated genes and single nucleotide polymorphisms (SNPs). We used a second generation 384-SNP array enriched with candidate genes for growth and wood properties to genotype mother trees collected in 20 natural populations covering most of the European distribution of the species. Phenotypic data for total height, polycyclism, root-collar diameter and biomass were obtained from a replicated provenance-progeny trial located in two sites with contrasting environments (Atlantic vs Mediterranean climate). General linear models identified strong associations between growth traits (total height and polycyclism) and four SNPs from the korrigan candidate gene, after multiple testing corrections using false discovery rate. The combined genomic breeding value predictions assessed for the four associated korrigan SNPs by ridge regression-best linear unbiased prediction (RR-BLUP) and cross-validation accounted for up to 8 and 15% of the phenotypic variance for height and polycyclic growth, respectively, and did not improve adding SNPs from other growth-related candidate genes. For root-collar diameter and total biomass, they accounted for 1.6 and 1.1% of the phenotypic variance, respectively, but increased to 15 and 4.1% when other SNPs from lp3.1, lp3.3 and cad were included in RR-BLUP models. These results point towards a desirable integration of candidate-gene studies as a means to pre-select relevant markers, and aid genomic selection in maritime pine breeding programs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Identification and prioritization of NUAK1 and PPP1CC as positional candidate loci for skeletal muscle strength phenotypes

    PubMed Central

    Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W.; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston

    2011-01-01

    Muscle strength is an important determinant in elite sports performance as well as in the activities of daily living. Muscle metabolism also plays a role in the genesis, and therefore prevention, of common pathological conditions and chronic diseases. Even though heritability estimates between 31 and 78% suggest a significant genetic component in muscle strength, only a limited number of genes influencing muscle strength have been identified. This study aimed to identify and prioritize positional candidate genes within a skeletal muscle strength quantitative trait locus on chromosome 12q22-23 for follow-up. A two-staged gene-centered fine-mapping approach using 122 single nucleotide polymorphisms (SNPs) in stage 1 identified a familybased association (n = 500) between several tagSNPs located in the ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 (ATP2A2; rs3026468), the NUAK family, SNF1-like kinase, 1 (NUAK1; rs10861553 and rs3741886), and the protein phosphatase 1, catalytic subunit, gamma isoform (PPP1CC; rs1050587 and rs7901769) genes and knee torque production (P values up to 0.00092). In stage 2, family-based association tests on additional putatively functional SNPs (e.g., exonic SNPs, SNPs in transcription factor binding sites or in conserved regions) in an enlarged sample (n = 536; 464 individuals overlap with stage 1) did not identify additional associations with muscle strength characteristics. Further in-depth analyses will be necessary to elucidate the exact role of ATP2A2, PPP1CC, and NUAK1 in muscle strength and to find out which functional polymorphisms are at the base of the interindividual strength differences. PMID:21750233

  13. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease.

    PubMed

    Stark, Klaus; Reinhard, Wibke; Grassl, Martina; Erdmann, Jeanette; Schunkert, Heribert; Illig, Thomas; Hengstenberg, Christian

    2009-11-05

    Recently, a large meta-analysis including over 28,000 participants identified nine different loci with association to serum uric acid (UA) levels. Since elevated serum UA levels potentially cause gout and are a possible risk factor for coronary artery disease (CAD) and myocardial infarction (MI), we performed two large case-control association analyses with participants from the German MI Family Study. In the first study, we assessed the association of the qualitative trait gout and ten single nucleotide polymorphisms (SNP) markers that showed association to UA serum levels. In the second study, the same genetic polymorphisms were analyzed for association with CAD. A total of 683 patients suffering from gout and 1,563 healthy controls from the German MI Family Study were genotyped. Nine SNPs were identified from a recently performed genome-wide meta-analysis on serum UA levels (rs12129861, rs780094, rs734553, rs2231142, rs742132, rs1183201, rs12356193, rs17300741 and rs505802). Additionally, the marker rs6855911 was included which has been associated with gout in our cohort in a previous study. SNPs rs734553 and rs6855911, located in SLC2A9, and SNP rs2231142, known to be a missense polymorphism in ABCG2, were associated with gout (p=5.6*10(-7), p=1.1*10(-7), and p=1.3*10(-3), respectively). Other SNPs in the genes PDZK1, GCKR, LRRC16A, SLC17A1-SLC17A3, SLC16A9, SLC22A11 and SLC22A12 failed the significance level. None of the ten markers were associated with risk to CAD in our study sample of 1,473 CAD cases and 1,241 CAD-free controls. SNP markers in SLC2A9 and ABCG2 genes were found to be strongly associated with the phenotype gout. However, not all SNP markers influencing serum UA levels were also directly associated with the clinical manifestation of gout in our study sample. In addition, none of these SNPs showed association with the risk to CAD in the German MI Family Study.

  14. GSTO and AS3MT genetic polymorphisms and differences in urinary arsenic concentrations among residents in Bangladesh.

    PubMed

    Rodrigues, Ema G; Kile, Molly; Hoffman, Elaine; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Hsueh, Yumei; Christiani, David C

    2012-05-01

    We determined whether single nucleotide polymorphisms (SNPs) in the glutathione S-transferase omega (GSTO) and arsenic(III)methyltransferase (AS3MT) genes were associated with concentrations of urinary arsenic metabolites among 900 individuals without skin lesions in Bangladesh. Four SNPs were assessed in these genes. A pathway analysis evaluated the association between urinary arsenic metabolites and SNPs. GSTO1 rs4925 homozygous wild type was significantly associated with higher monomethylarsonic acid (MMA) and dimethylarsinic acid urinary concentrations, whereas wild-type AS3MT rs11191439 had significantly lower levels of As(III) and MMA. Genetic polymorphisms GSTO and As3MT modify arsenic metabolism as evidenced by altered urinary arsenic excretion.

  15. Genetic polymorphisms in TERT are associated with increased risk of esophageal cancer.

    PubMed

    Wu, Yifei; Yan, Mengdan; Li, Jing; Li, Jingjie; Chen, Zhengshuai; Chen, Peng; Li, Bin; Chen, Fulin; Jin, Tianbo; Chen, Chao

    2017-02-07

    Single nucleotide polymorphisms (SNPs) in TERT may be associated with susceptibility to esophageal cancer. In this study, we analyzed the association between TERT SNPs and risk of esophageal cancer in 386 esophageal cancer patients and 495 healthy subjects from the Xi'an area of China. Of the four SNPs examined, rs10069690 and rs2242652 were correlated with esophageal cancer risk. Additionally, after adjusting for age and gender, the "Trs10069690Ars2242652", "Trs10069690Grs2242652" haplotypes were associated with an increased risk of esophageal cancer, while the and "Crs10069690Grs2242652" haplotype was associated with a decreased risk of esophageal cancer. These findings suggest that TERT polymorphisms may contribute to the development of esophageal cancer.

  16. POLYMORPHISMS NEAR SOCS3 ARE ASSOCIATED WITH OBESITY AND GLUCOSE HOMEOSTASIS TRAITS IN HISPANIC AMERICANS FROM THE INSULIN RESISTANCE ATHEROSCLEROSIS FAMILY STUDY

    PubMed Central

    Talbert, Matthew E; Langefeld, Carl D; Ziegler, Julie; Mychaleckyj, Josyf C; Haffner, Steven M; Norris, Jill M; Bowden, Donald W

    2009-01-01

    The SOCS3 gene product participates in the feedback inhibition of a range of cytokine signals. Most notably, SOCS3 inhibits the functioning of leptin and downstream steps in insulin signaling after being expressed by terminal transcription factors, such as STAT3 and c-fos. The SOCS3 gene is located in the chromosome region 17q24–17q25, previously linked to body mass index (BMI), visceral adipose tissue (VAT), and waist circumference (WAIST) in Hispanic families in the Insulin Resistance Atherosclerosis Family Study (IRASFS). A high density map of 1536 single nucleotide polymorphisms (SNPs) was constructed to cover a portion of the 17q linkage interval in DNA samples from 1425 Hispanic subjects from 90 extended families in IRASFS. Analysis of this dense SNP map data revealed evidence of association of rs9914220 (located 10 kb 5’ of the SOCS3 gene) with BMI, VAT, and WAIST (P-value ranging from 0 003 to 0.017). Using a tagging SNP approach, rs9914220 and 22 additional SOCS3 SNPs were genotyped for genetic association analysis with measures of adiposity and glucose homeostasis. The adiposity phenotypes utilized in association analyses included BMI, WAIST, waist to hip ratio (WHR), subcutaneous adipose tissue (SAT), VAT, and visceral to subcutaneous ratio (VSR). Linkage disequilibrium (LD) calculations revealed three haplotype blocks near SOCS3. Haplotype Block 1 (5’ of SOCS3) contained SNPs consistently associated with BMI, WAIST, WHR, and VAT (P-values ranging from 2.00x10−4 to .036). Haplotype Block 3 contained single-SNPs that were associated with most adiposity traits except for VSR (P-values ranging from 0.002 to 0.047). When trait associated SNPs were included in linkage analyses as covariates, a reduction of VAT LOD score from 1.26 to .76 above the SOCS3 locus (110 cM) was observed. Multi-SNP haplotype testing using the quantitative pedigree disequilibrium test (QPDT) was broadly consistent with the single-SNP associations. In conclusion, these results support a role for SOCS3 genetic variants in human obesity. PMID:19083014

  17. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species.

    PubMed

    Geraldes, A; Difazio, S P; Slavov, G T; Ranjan, P; Muchero, W; Hannemann, J; Gunter, L E; Wymore, A M; Grassa, C J; Farzaneh, N; Porth, I; McKown, A D; Skyba, O; Li, E; Fujita, M; Klápště, J; Martin, J; Schackwitz, W; Pennacchio, C; Rokhsar, D; Friedmann, M C; Wasteneys, G O; Guy, R D; El-Kassaby, Y A; Mansfield, S D; Cronk, Q C B; Ehlting, J; Douglas, C J; Tuskan, G A

    2013-03-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids. © 2013 Blackwell Publishing Ltd.

  18. Genetic Polymorphisms Associated with Hearing Threshold Shift in Subjects during First Encounter with Occupational Impulse Noise

    PubMed Central

    Grondin, Yohann; Bortoni, Magda E.; Sepulveda, Rosalinda; Ghelfi, Elisa; Bartos, Adam; Cotanche, Douglas; Clifford, Royce E.; Rogers, Rick A.

    2015-01-01

    Noise-induced hearing loss (NIHL) is the most significant occupational health issue worldwide. We conducted a genome-wide association study to identify single-nucleotide polymorphisms (SNPs) associated with hearing threshold shift in young males undergoing their first encounter with occupational impulse noise. We report a significant association of SNP rs7598759 (p < 5 x 10-7; p = 0.01 after permutation and correction; Odds Ratio = 12.75) in the gene coding for nucleolin, a multifunctional phosphoprotein involved in the control of senescence and protection against apoptosis. Interestingly, nucleolin has been shown to mediate the anti-apoptotic effect of HSP70, a protein found to prevent ototoxicity and whose polymorphisms have been associated with susceptibility to NIHL. Increase in nucleolin expression has also been associated with the prevention of apoptosis in cells undergoing oxidative stress, a well-known metabolic sequela of noise exposure. To assess the potential role of nucleolin in hearing loss, we tested down-regulation of nucleolin in cochlear sensory cells HEI-OC1 under oxidative stress conditions and report increased sensitivity to cisplatin, a chemotherapeutic drug with ototoxic side effects. Additional SNPs were found with suggestive association (p < 5 x 10-4), of which 7 SNPs were located in genes previously reported to be related to NIHL and 43 of them were observed in 36 other genes previously not reported to be associated with NIHL. Taken together, our GWAS data and in vitro studies reported herein suggest that nucleolin is a potential candidate associated with NIHL in this population. PMID:26121033

  19. The impact of common dopamine D2 receptor gene polymorphisms on D2/3 receptor availability: C957T as a key determinant in putamen and ventral striatum.

    PubMed

    Smith, C T; Dang, L C; Buckholtz, J W; Tetreault, A M; Cowan, R L; Kessler, R M; Zald, D H

    2017-04-11

    Dopamine function is broadly implicated in multiple neuropsychiatric conditions believed to have a genetic basis. Although a few positron emission tomography (PET) studies have investigated the impact of single-nucleotide polymorphisms (SNPs) in the dopamine D2 receptor gene (DRD2) on D2/3 receptor availability (binding potential, BP ND ), these studies have often been limited by small sample size. Furthermore, the most commonly studied SNP in D2/3 BP ND (Taq1A) is not located in the DRD2 gene itself, suggesting that its linkage with other DRD2 SNPs may explain previous PET findings. Here, in the largest PET genetic study to date (n=84), we tested for effects of the C957T and -141C Ins/Del SNPs (located within DRD2) as well as Taq1A on BP ND of the high-affinity D2 receptor tracer 18 F-Fallypride. In a whole-brain voxelwise analysis, we found a positive linear effect of C957T T allele status on striatal BP ND bilaterally. The multilocus genetic scores containing C957T and one or both of the other SNPs produced qualitatively similar striatal results to C957T alone. The number of C957T T alleles predicted BP ND in anatomically defined putamen and ventral striatum (but not caudate) regions of interest, suggesting some regional specificity of effects in the striatum. By contrast, no significant effects arose in cortical regions. Taken together, our data support the critical role of C957T in striatal D2/3 receptor availability. This work has implications for a number of psychiatric conditions in which dopamine signaling and variation in C957T status have been implicated, including schizophrenia and substance use disorders.

  20. Association of Toll-like receptor 3 and Toll-like receptor 9 single-nucleotide polymorphisms with hepatitis C virus persistence among Egyptians.

    PubMed

    Hamdy, Shaimaa; Osman, Ahmed M; Zakaria, Zainab A; Galal, Iman; Sobhy, Maha; Hashem, Mohamed; Allam, Walaa R; Abdel-Samiee, Mohamed; Rewisha, Eman; Waked, Imam; Abdelwahab, Sayed F

    2018-06-02

    Toll-like receptors (TLRs) give the innate immune system a considerable specificity for a large range of pathogens. TLR3 detects dsRNA of viruses while TLR9 recognizes bacterial and viral unmethylated CpG motifs. This study examined whether there is a potential association between single-nucleotide polymorphisms (SNPs) in the TLR3.rs3775290 (c.1377C/T), TLR9.rs5743836 (-1237T→C) and TLR9.rs352140 (G2848A) genes and HCV infection among Egyptian patients and healthcare workers (HCWs). We enrolled 546 subjects (409 HCWs and 137 patients) divided into four groups: group 1 included 265 seronegative, aviremic subjects; group 2 included 25 seronegative, viremic subjects; group 3 included 87 subjects with spontaneously resolved HCV infection; and group 4 included 169 chronic HCV patients. All subjects were genotyped for TLR3.rs3775290, TLR9.rs5743836 and TLR9.rs352140 SNPs by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis. TLR3.rs3775290 "CC" genotype was associated with chronic HCV infection, where there was a significantly greater frequency of this genotype among chronic patients when compared to subjects with spontaneously resolved infection (63.9% vs. 51.9%; p = 0.033; OR = 1.639 and 95% CI = 0.94-2.84). However, this SNP did not correlate with the HCV RNA load among the chronic subjects (p > 0.05). There was no significant difference in TLR9.rs5743836 and TLR9.rs352140 genotype distribution between groups (p > 0.05). Lack of association between the three SNPs was found, as the three SNPs are located on two different chromosomes. In conclusion, the TLR3.rs3775290 "CC" genotype was associated with HCV chronicity, while the TLR9 gene may not play a major role in HCV infection.

  1. Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

    PubMed Central

    Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron

    2012-01-01

    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421

  2. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows.

    PubMed

    Cecchinato, A; Ribeca, C; Chessa, S; Cipolat-Gotet, C; Maretto, F; Casellas, J; Bittante, G

    2014-07-01

    The aim of this study was to investigate 96 single-nucleotide polymorphisms (SNPs) from 54 candidate genes, and test the associations of the polymorphic SNPs with milk yield, composition, milk urea nitrogen (MUN) content and somatic cell score (SCS) in individual milk samples from Italian Brown Swiss cows. Milk and blood samples were collected from 1271 cows sampled once from 85 herds. Milk production, quality traits (i.e. protein, casein, fat and lactose percentages), MUN and SCS were measured for each milk sample. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model that considered the effects of herd, days in milk, parity, SNP genotype and additive polygenic effect was used for the association analysis. Our results showed that 14 of the 51 polymorphic SNPs had relevant additive effects on at least one of the aforementioned traits. Polymorphisms in the glucocorticoid receptor DNA-binding factor 1 (GRLF1), prolactin receptor (PRLR) and chemokine ligand 2 (CCL2) were associated with milk yield; an SNP in the stearoyl-CoA desaturase (SCD-1) was related to fat content; SNPs in the caspase recruitment domain 15 protein (CARD15) and lipin 1 (LPIN1) affected the protein and casein contents; SNPs in growth hormone 1 (GH1), lactotransferrin (LTF) and SCD-1 were relevant for casein number; variants in beta casein (CSN2), GH1, GRLF1 and LTF affected lactose content; SNPs in beta-2 adrenergic receptor (ADRB2), serpin peptidase inhibitor (PI) and SCD-1 were associated with MUN; and SNPs in acetyl-CoA carboxylase alpha (ACACA) and signal transducer and activator of transcription 5A (STAT5A) were relevant in explaining the variation of SCS. Although further research is needed to validate these SNPs in other populations and breeds, the association between these markers and milk yield, composition, MUN and SCS could be exploited in gene-assisted selection programs for genetic improvement purposes.

  3. Genetic Polymorphisms are Associated with Hair, Blood, and Urine Mercury Levels in the American Dental Association (ADA) Study Participants

    PubMed Central

    Parajuli, Rajendra Prasad; Goodrich, Jaclyn M.; Chou, Hwai-Nan; Gruninger, Stephen E.; Dolinoy, Dana C.; Franzblau, Alfred; Basu, Niladri

    2015-01-01

    Background/Aims Mercury (Hg) is a potent toxicant of concern to the general public. Recent studies suggest that several genes that mediate Hg metabolism are polymorphic. We hypothesize that single nucleotide polymorphisms (SNPs) in such genes may underline inter-individual differences in exposure biomarker concentrations. Methods Dental professionals were recruited during the American Dental Association (ADA) 2012 Annual Meeting. Samples of hair, blood, and urine were collected for quantifying Hg levels and genotyping (88 SNPs in classes relevant to Hg toxicokinetics including glutathione metabolism, selenoproteins, metallothioneins, and xenobiotic transporters). Questionnaires were administrated to obtain information on demographics and sources of Hg exposure (e.g., fish consumption and use of dental amalgam). Here, we report results for 380 participants with complete genotype and Hg biomarker datasets. ANOVA and linear regressions were used for statistical analysis. Results Mean (geometric) Hg levels in hair (hHg), blood (bHg), urine (uHg), and the average estimated Hg intake from fish were 0.62μg/g, 3.75μg/L, 1.32μg/L, and 0.12μg/kg body weight/day, respectively. Out of 88 SNPs successfully genotyped, Hg biomarker levels differed by genotype for 25 SNPs, one of which remained significant following Bonferroni correction in ANOVA. When the associations between sources of Hg exposure and SNPs were analyzed with respect to Hg biomarker concentrations, 38 SNPs had significant main effects and/or gene-Hg exposure source interactions. Twenty-five, 23, and four SNPs showed significant main effects and/or interactions for hHg, bHg, and uHg levels, respectively (p<0.05), and six SNPs (in GCLC, MT1M, MT4, ATP7B, and BDNF) remained significant following Bonferroni correction. Conclusion The findings suggest that polymorphisms in environmentally-responsive genes can influence Hg biomarker levels. Hence, consideration of such gene-environment factors may improve the ability to assess the health risks of Hg more precisely. PMID:26673400

  4. The effects of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene on meat tenderness of yak.

    USDA-ARS?s Scientific Manuscript database

    The association of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n=181) was studied. Yaks were harvested at 2, 3, and 4 yr of age (n=51, 59, and 71, respectively), and samples of each ya...

  5. CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity

    PubMed Central

    Blaisdell, Carol J; Howard, Timothy D; Stern, Augustus; Bamford, Penelope; Bleecker, Eugene R; Stine, O Colin

    2004-01-01

    Background Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. Methods The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%). Results PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. Conclusions CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity. PMID:15507145

  6. Accumulation of slightly deleterious mutations in the mitochondrial genome: a hallmark of animal domestication.

    PubMed

    Hughes, Austin L

    2013-02-15

    The hypothesis that domestication leads to a relaxation of purifying selection on mitochondrial (mt) genomes was tested by comparative analysis of mt genes from dog, pig, chicken, and silkworm. The three vertebrate species showed mt genome phylogenies in which domestic and wild isolates were intermingled, whereas the domestic silkworm (Bombyx mori) formed a distinct cluster nested within its closest wild relative (Bombyx mandarina). In spite of these differences in phylogenetic pattern, significantly greater proportions of nonsynonymous SNPs than of synonymous SNPs were unique to the domestic populations of all four species. Likewise, in all four species, significantly greater proportions of RNA-encoding SNPs than of synonymous SNPs were unique to the domestic populations. Thus, domestic populations were characterized by an excess of unique polymorphisms in two categories generally subject to purifying selection: nonsynonymous sites and RNA-encoding sites. Many of these unique polymorphisms thus seem likely to be slightly deleterious; the latter hypothesis was supported by the generally lower gene diversities of polymorphisms unique to domestic populations in comparison to those of polymorphisms shared by domestic and wild populations. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Association between long non-coding RNA polymorphisms and cancer risk: a meta-analysis.

    PubMed

    Huang, Xin; Zhang, Weiyue; Shao, Zengwu

    2018-05-25

    Several studies have suggested that long non-coding RNA (lncRNA) gene polymorphisms are associated with cancer risk. In the present study, we conducted a meta-analysis related to studies on the association between lncRNA single-nucleotide polymorphisms (SNPs) and the overall risk of cancer. A total 12 SNPs in five common lncRNA genes were finally included in the meta-analysis. In the lncRNA antisense noncoding RNA in the INK4 locus (ANRIL), the rs1333048 A/C, rs4977574 A/G, and rs10757278 A/G polymorphisms, but not rs1333045 C/T, were correlated with overall cancer risk. Our study also demonstrated that other SNPs were correlated with overall cancer risk, namely, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1, rs619586 A/G), HOXA distal transcript antisense RNA (HOTTIP, rs1859168 A/C) and highly up-regulated in liver cancer (HULC, rs7763881 A/C). Moreover, four prostate cancer‑associated non‑coding RNA 1 (PRNCR1, rs16901946 G/A, rs13252298 G/A, rs1016343 T/C, and rs1456315 G/A) SNPs were in association with cancer risk. No association was found between the PRNCR1 (rs7007694 C/T) SNP and the risk of cancer. In conclusion, our results suggest that several studied lncRNA SNPs are associated with overall cancer risk. Therefore, they might be potential predictive biomarkers for the risk of cancer. More studies based on larger sample sizes and more lncRNA SNPs are warranted to confirm these findings. ©2018 The Author(s).

  8. Identification of Pyrus Single Nucleotide Polymorphisms (SNPs) and Evaluation for Genetic Mapping in European Pear and Interspecific Pyrus Hybrids

    PubMed Central

    Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E.; Crowhurst, Ross N.; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality. PMID:24155917

  9. Transferability of genome-wide associated loci for asthma in African Americans

    PubMed Central

    Faruque, Mezbah U.; Chen, Guanjie; Doumatey, Ayo P.; Zhou, Jie; Huang, Hanxia; Shriner, Daniel; Adeyemo, Adebowale A.; Rotimi, Charles N.; Dunston, Georgia M.

    2017-01-01

    Objective Transferability of significantly associated loci or GWAS “hits” adds credibility to genotype-disease associations and provides evidence for generalizability across different ancestral populations. We sought evidence of association of known asthma-associated single nucleotide polymorphisms (SNPs) in an African American population. Methods Subjects comprised 661 participants (261 asthma cases and 400 controls) from the Howard University Family Study. Forty-eight SNPs previously reported to be associated with asthma by GWAS were selected for testing. We adopted a combined strategy by first adopting an “exact” approach where we looked-up only the reported index SNP. For those index SNPs missing form our dataset, we used a “local” approach that examined all the regional SNPs in LD with the index SNP. Results Out of the 48 SNPs, our cohort had genotype data available for 27, which were examined for exact replication. Of these, two SNPs were found positively associated with asthma. These included: rs10508372 (OR = 1.567 [95%CI, 1.133–2.167], P = 0.0066) and rs2378383 (OR = 2.147 [95%CI, 1.149–4.013], P = 0.0166), located on chromosomal bands 10p14 and 9q21.31, respectively. Local replication of the remaining 21 loci showed association at two chromosomal loci (9p24.1-rs2381413 and 6p21.32-rs3132947; Bonferroni-corrected P values: 0.0033 and 0.0197, respectively). Of note, multiple SNPs in LD with rs2381413 located upstream of IL33 were significantly associated with asthma. Conclusions This study has successfully transferred four reported asthma-associated loci in an independent African American population. Identification of several asthma-associated SNPs in the upstream of the IL33, a gene previously implicated in allergic inflammation of asthmatic airway, supports the generalizability of this finding. PMID:27177148

  10. No association between catechol-O-methyltransferase polymorphisms and neurotic disorders among mainland Chinese university students.

    PubMed

    Kou, Changgui; Meng, Xiangfei; Xie, Bing; Shi, Jieping; Yu, Qiong; Yu, Yaqin; D'Arcy, Carl

    2012-07-30

    This study investigates the genetic association between catechol-O-methyltransferase (COMT) gene polymorphisms and neurotic disorders. Data were derived from a case-control association study of 255 undergraduates affected by neurotic disorders and 269 matched healthy undergraduate controls. The polymorphisms of eight tag single nucleotide polymorphisms (SNPs) on the COMT gene were tested using polymerase chain reaction (PCR)-based Ligase Detection Reaction (PCR-LDR). The eight tag SNPs on the COMT gene assessed were not associated with neurotic disorders. Our finding suggests that the COMT gene may not be a susceptibility gene for neurotic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Differences in candidate gene association between European ancestry and African American asthmatic children.

    PubMed

    Baye, Tesfaye M; Butsch Kovacic, Melinda; Biagini Myers, Jocelyn M; Martin, Lisa J; Lindsey, Mark; Patterson, Tia L; He, Hua; Ericksen, Mark B; Gupta, Jayanta; Tsoras, Anna M; Lindsley, Andrew; Rothenberg, Marc E; Wills-Karp, Marsha; Eissa, N Tony; Borish, Larry; Khurana Hershey, Gurjit K

    2011-02-28

    Candidate gene case-control studies have identified several single nucleotide polymorphisms (SNPs) that are associated with asthma susceptibility. Most of these studies have been restricted to evaluations of specific SNPs within a single gene and within populations from European ancestry. Recently, there is increasing interest in understanding racial differences in genetic risk associated with childhood asthma. Our aim was to compare association patterns of asthma candidate genes between children of European and African ancestry. Using a custom-designed Illumina SNP array, we genotyped 1,485 children within the Greater Cincinnati Pediatric Clinic Repository and Cincinnati Genomic Control Cohort for 259 SNPs in 28 genes and evaluated their associations with asthma. We identified 14 SNPs located in 6 genes that were significantly associated (p-values <0.05) with childhood asthma in African Americans. Among Caucasians, 13 SNPs in 5 genes were associated with childhood asthma. Two SNPs in IL4 were associated with asthma in both races (p-values <0.05). Gene-gene interaction studies identified race specific sets of genes that best discriminate between asthmatic children and non-allergic controls. We identified IL4 as having a role in asthma susceptibility in both African American and Caucasian children. However, while IL4 SNPs were associated with asthma in asthmatic children with European and African ancestry, the relative contributions of the most replicated asthma-associated SNPs varied by ancestry. These data provides valuable insights into the pathways that may predispose to asthma in individuals with European vs. African ancestry.

  12. The Population Genomics of Repeated Evolution in the Blind Cavefish Astyanax mexicanus

    PubMed Central

    Bradic, Martina; Teotónio, Henrique; Borowsky, Richard L.

    2013-01-01

    Distinct populations of Astyanax mexicanus cavefish offer striking examples of repeatable convergence or parallelism in their independent evolutions from surface to cave phenotypes. However, the extent to which the repeatability of evolution occurred at the genetic level remains poorly understood. To address this, we first characterized the genetic diversity of 518 single-nucleotide polymorphisms (SNPs), obtained through RAD tag sequencing and distributed throughout the genome, in seven cave and three groups of surface populations. The cave populations represented two distinct lineages (old and new). Thirty-one SNPs were significantly differentiated between surface and old cave populations, two SNPs were differentiated between surface and new cave populations, and 44 SNPs were significantly differentiated in both old and new cave populations. In addition, we determined whether these SNPs map to the same locations of previously described quantitative trait loci (QTL) between surface and cave populations. A total of 25 differentiated SNPs co-map with several QTL, such as one containing a fibroblast growth factor gene (Fgf8) involved in eye development and lens size. Further, the identity of many SNPs that co-mapped with QTL was the same in independently derived cave populations. These conclusions were further confirmed by haplotype analyses of SNPs within QTL regions. Our findings indicate that the repeatability of evolution at the genetic level is substantial, suggesting that ancestral standing genetic variation significantly contributed to the population genetic variability used in adaptation to the cave environment. PMID:23927992

  13. Association of gene polymorphisms in ABO blood group chromosomal regions and menstrual disorders

    PubMed Central

    SU, YONG; KONG, GUI-LIAN; SU, YA-LI; ZHOU, YAN; LV, LI-FANG; WANG, QIONG; HUANG, BAO-PING; ZHENG, RUI-ZHI; LI, QUAN-ZHONG; YUAN, HUI-JUAN; ZHAO, ZHI-GANG

    2015-01-01

    This study aimed to investigate whether single nucleotide polymorphisms (SNPs) located near the gene of the ABO blood group play an important role in the genetic aetiology of menstrual disorders (MDs). Polymerase chain reaction-ligase detection reaction technology was used to detect eight SNPs near the ABO gene location on the chromosomes in 250 cases of MD and 250 cases of normal menstruation. The differences in the distribution of each genotype, as well as the allele frequency in the normal and control groups, were analysed using Pearson's χ2 test to search for disease-associated loci. SHEsis software was used to analyse the linkage disequilibrium and haplotype frequencies and to inspect the correlation between haplotypes and the disease. Compared with the control group, the experimental group exhibited statistically significant differences in the genotype distribution frequencies of the rs657152 locus of the ABO blood group gene and the rs17250673 locus of the tumour necrosis factor cofactor 2 (TRAF2) gene, which is located downstream of the ABO gene. The allele distribution frequencies of rs657152 and rs495828 loci in the ABO blood group gene exhibited significant differences between the groups. Dominant and recessive genetic model analysis of each locus revealed that the experimental group exhibited statistically significant differences from the control group in the genotype distribution frequencies of rs657152 and rs495828 loci, respectively. These results indicate that the ABO blood group gene and TRAF2 gene may be a cause of MDs. PMID:26136981

  14. Potential relationship between single nucleotide polymorphisms used in forensic genetics and diseases or other traits in European population.

    PubMed

    Pombar-Gomez, Maria; Lopez-Lopez, Elixabet; Martin-Guerrero, Idoia; Garcia-Orad Carles, Africa; de Pancorbo, Marian M

    2015-05-01

    Single nucleotide polymorphisms (SNPs) are an interesting option to facilitate the analysis of highly degraded DNA by allowing the reduction of the size of the DNA amplicons. The SNPforID 52-plex panel is a clear example of the use of non-coding SNPs in forensic genetics. However, nonstop advances in studies of genetic polymorphisms are leading to the discovery of new associations between SNPs and diseases. The aim of this study was to perform a comprehensive review of the state of association between the 52 SNPs in the 52-plex panel and diseases or other traits related to their treatment, such as drug response characters. In order to achieve this goal, we have conducted a bioinformatic search for each SNP included in the panel and the SNPs in linkage disequilibrium (LD) with them in the European population (r (2)  > 0.8). A total of 424 SNPs (52 in the panel and 372 in LD) were investigated in PubMed, Scopus, and dbSNP databases. Our results show that three SNPs in the SNPforID 52-plex panel (rs2107612, rs1979255, rs1463729) have been associated with diseases such as hypertension or macular degeneration, as well as drug response. Similarly, three out of the 372 SNPs in LD (rs2107614, r (2)  = 0.859; rs765250, r (2)  = 0.858; rs11064560, r (2)  = 0,887) are also associated with various pathologies. In view of these results, we propose the need for a periodic review of the SNPs used in forensic genetics in order to keep their associations with diseases or related phenotypes updated and to evaluate their continuity in forensic panels for avoiding legal and ethical conflicts.

  15. The combined effects of single-nucleotide polymorphisms, tobacco products, and ethanol on normal resting blood mononuclear cells.

    PubMed

    Cederblad, Lena; Thunberg, Ulf; Engström, Mats; Castro, Juan; Rutqvist, Lars Erik; Laytragoon-Lewin, Nongnit

    2013-05-01

    Tobacco and ethanol consumption are crucial factors in the development of various diseases including cancer. In this investigation, we evaluated the combined effects of a number of single nucleotide polymorphisms (SNPs), with ethanol and tobacco products on healthy individuals. Pure nicotine, cigarette smoke extract, and Swedish snuff (snus) extract were used. The effects were examined by means of in vitro cell cycle progression and cell death of peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. After 3 days, in vitro, resting PBMCs entered the S and G2 stage in the presence of 100 µM nicotine. The PBMCs only proceeded to S stage, in the presence of 0.2% ethanol. The nicotine- and ethanol-induced normal cell cycle progression correlated to a number of SNPs in the IL12RB2, Rad 52, XRCC2, P53, CCND3, and ABCA1 genes. Certain SNPs in Caspases 8, IL12RB2, Rad 52, MMP2, and MDM2 genes appeared to significantly influence the effects of EtOH-, snus-, and snus + EtOH-induced cell death. Importantly, the highest degree of cell death was observed in the presence of smoke + EtOH. The amount of cell death under this treatment condition also correlated to specific SNPs, located in the MDM2, ABCA1, or GASC1 genes. Cigarette smoke in combination with ethanol strongly induced massive cell death. Long-term exposure to smoke and ethanol could provoke chronic inflammation, and this could be the initiation of disease including the development of cancer at various sites.

  16. Significant SNPs have limited prediction ability for thyroid cancer

    PubMed Central

    Guo, Shicheng; Wang, Yu-Long; Li, Yi; Jin, Li; Xiong, Momiao; Ji, Qing-Hai; Wang, Jiucun

    2014-01-01

    Recently, five thyroid cancer significantly associated genetic variants (rs965513, rs944289, rs116909374, rs966423, and rs2439302) have been discovered and validated in two independent GWAS and numerous case–control studies, which were conducted in different populations. We genotyped the above five single nucleotide polymorphisms (SNPs) in Han Chinese populations and performed thyroid cancer-risk predictions with nine machine learning methods. We found that four SNPs were significantly associated with thyroid cancer in Han Chinese population, while no polymorphism was observed for rs116909374. Small familial relative risks (1.02–1.05) and limited power to predict thyroid cancer (AUCs: 0.54–0.60) indicate limited clinical potential. Four significant SNPs have limited prediction ability for thyroid cancer. PMID:24591304

  17. Physiological Study on Association between Nicotinamide N-Methyltransferase Gene Polymorphisms and Hyperlipidemia

    PubMed Central

    Zhu, Xiao-Juan; Lin, Ya-Jun; Chen, Wei; Wang, Ya-Hui; Qiu, Li-Qiang; Cai, Can-Xin; Xiong, Qun; Chen, Fei; Chen, Li-Hui; Zhou, Qiong

    2016-01-01

    Nicotinamide N-methyltransferase (NNMT) catalyzes the methylation of nicotinamide. Our previous works indicate that NNMT is involved in the body mass index and energy metabolism, and recently the association between a SNP (rs694539) of NNMT and a variety of cardiovascular diseases was reported. At present, more than 200 NNMT single nucleotide polymorphisms (SNPs) have been identified in the databases of the human genome projects; however, the association between rs694539 variation and hyperlipidemia has not been reported yet, and whether there are any SNPs in NNMT significantly associated with hyperlipidemia is still unclear. In this paper, we selected 19 SNPs in NNMT as the tagSNPs using Haploview software (Haploview 4.2) first and then performed a case-control study to observe the association between these tagSNPs and hyperlipidemia and finally applied physiological approaches to explore the possible mechanisms through which the NNMT polymorphism induces hyperlipidemia. The results show that a SNP (rs1941404) in NNMT is significantly associated with hyperlipidemia, and the influence of rs1941404 variation on the resting energy expenditure may be the possible mechanism for rs1941404 variation to induce hyperlipidemia. PMID:27999813

  18. Significant association of APOA5 and APOC3 gene polymorphisms with meat quality traits in Kele pigs.

    PubMed

    Hui, Y T; Yang, Y Q; Liu, R Y; Zhang, Y Y; Xiang, C J; Liu, Z Z; Ding, Y H; Zhang, Y L; Wang, B R

    2013-09-13

    Apolipoprotein A5 (APOA5) and C3 (APOC3) genes are involved in the PPAR lipid metabolism pathway and thus associated with elevated triglyceride levels. However, whether APOA5 and APOC3 genetic polymorphisms affect intramuscular fat deposition and other meat quality traits remains unknown in pigs. One hundred and seventy-one Kele pigs were sampled to investigate genetic variants in the APOA5 and APOC3 genes and their association with seven pork quality traits. We identified 5 single nucleotide polymorphisms (SNPs) in the promoter region of the APOA5 gene and 17 SNPs in the APOC3 gene. Linkage disequilibrium analysis revealed 5 complete linkage disequilibria among these 22 SNPs. We found that 10 SNPs were significantly correlated with meat quality traits, including the mutation A5/-769 in the APOA5 gene, which was significantly associated with cooked weight percentage, and 9 SNPs in the APOC3 gene that were significantly associated with drip loss rate, meat color value of longissimus dorsi muscle and shear force. Therefore, these SNP markers will be useful for marker-assisted selection for improved pork quality.

  19. Efficient selection of tagging single-nucleotide polymorphisms in multiple populations.

    PubMed

    Howie, Bryan N; Carlson, Christopher S; Rieder, Mark J; Nickerson, Deborah A

    2006-08-01

    Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.

  20. Correlates between Models of Virulence for Mycobacterium tuberculosis among Isolates of the Central Asian Lineage: a Case for Lysozyme Resistance Testing?

    PubMed Central

    Casali, Nicola; Clark, Simon O.; Hooper, Richard; Williams, Ann; Velji, Preya; Gonzalo, Ximena

    2015-01-01

    Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established. PMID:25776753

  1. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics.

    PubMed

    Reitzel, A M; Herrera, S; Layden, M J; Martindale, M Q; Shank, T M

    2013-06-01

    Characterization of large numbers of single-nucleotide polymorphisms (SNPs) throughout a genome has the power to refine the understanding of population demographic history and to identify genomic regions under selection in natural populations. To this end, population genomic approaches that harness the power of next-generation sequencing to understand the ecology and evolution of marine invertebrates represent a boon to test long-standing questions in marine biology and conservation. We employed restriction-site-associated DNA sequencing (RAD-seq) to identify SNPs in natural populations of the sea anemone Nematostella vectensis, an emerging cnidarian model with a broad geographic range in estuarine habitats in North and South America, and portions of England. We identified hundreds of SNP-containing tags in thousands of RAD loci from 30 barcoded individuals inhabiting four locations from Nova Scotia to South Carolina. Population genomic analyses using high-confidence SNPs resulted in a highly-resolved phylogeography, a result not achieved in previous studies using traditional markers. Plots of locus-specific FST against heterozygosity suggest that a majority of polymorphic sites are neutral, with a smaller proportion suggesting evidence for balancing selection. Loci inferred to be under balancing selection were mapped to the genome, where 90% were located in gene bodies, indicating potential targets of selection. The results from analyses with and without a reference genome supported similar conclusions, further highlighting RAD-seq as a method that can be efficiently applied to species lacking existing genomic resources. We discuss the utility of RAD-seq approaches in burgeoning Nematostella research as well as in other cnidarian species, particularly corals and jellyfishes, to determine phylogeographic relationships of populations and identify regions of the genome undergoing selection. © 2013 John Wiley & Sons Ltd.

  2. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics

    PubMed Central

    Reitzel, A.M.; Herrera, S.; Layden, M.J.; Martindale, M.Q.; Shank, T.M.

    2013-01-01

    Characterization of large numbers of single nucleotide polymorphisms (SNPs) throughout a genome has the power to refine the understanding of population demographic history and to identify genomic regions under selection in natural populations. To this end, population genomic approaches that harness the power of next-generation sequencing to understand the ecology and evolution of marine invertebrates represent a boon to test long-standing questions in marine biology and conservation. We employed restriction-site-associated DNA sequencing (RAD-seq) to identify SNPs in natural populations of the sea anemone Nematostella vectensis, an emerging cnidarian model with a broad geographic range in estuarine habitats in North and South America, and portions of England. We identified hundreds of SNP-containing tags in thousands of RAD loci from 30 barcoded individuals inhabiting four locations from Nova Scotia to South Carolina. Population genomic analyses using high-confidence SNPs resulted in a highly-resolved phylogeography, a result not achieved in previous studies using traditional markers. Plots of locus-specific FST against heterozygosity suggest that a majority of polymorphic sites are neutral, with a smaller proportion suggesting evidence for balancing selection. Loci inferred to be under balancing selection were mapped to the genome, where 90% were located in gene bodies, indicating potential targets of selection. Results from analyses with and without a reference genome supported similar conclusions, further supporting RAD-seq as a method that can be efficiently applied to species lacking existing genomic resources. We discuss the utility of RAD-seq approaches in burgeoning Nematostella research as well as in other cnidarian species, particularly corals, to determine phylogeographic relationships of populations and identify regions of the genome undergoing selection. PMID:23473066

  3. Vitamin D receptor polymorphisms in patients with cutaneous melanoma.

    PubMed

    Orlow, Irene; Roy, Pampa; Reiner, Anne S; Yoo, Sarah; Patel, Himali; Paine, Susan; Armstrong, Bruce K; Kricker, Anne; Marrett, Loraine D; Millikan, Robert C; Thomas, Nancy E; Gruber, Stephen B; Anton-Culver, Hoda; Rosso, Stefano; Gallagher, Richard P; Dwyer, Terence; Kanetsky, Peter A; Busam, Klaus; From, Lynn; Begg, Colin B; Berwick, Marianne

    2012-01-15

    The vitamin D receptor (VDR) gene has been associated with cancer risk, but only a few polymorphisms have been studied in relation to melanoma risk and the results have been inconsistent. We examined 38 VDR gene single nucleotide polymorphisms (SNPs) in a large international multicenter population-based case-control study of melanoma. Buccal DNAs were obtained from 1,207 people with incident multiple primary melanoma and 2,469 with incident single primary melanoma. SNPs with known or suspected impact on VDR activity, haplotype tagging SNPs with ≥ 10% minor allele frequency in Caucasians, and SNPs reported as significant in other association studies were examined. Logistic regression was used to calculate the relative risks conferred by the individual SNP. Eight of 38 SNPs in the promoter, coding, and 3' gene regions were individually significantly associated with multiple primary melanoma after adjusting for covariates. The estimated increase in risk for individuals who were homozygous for the minor allele ranged from 25 to 33% for six polymorphisms: rs10875712 (odds ratios [OR] 1.28; 95% confidence interval (CI), 1.01-1.62), rs4760674 (OR 1.33; 95% CI, 1.06-1.67), rs7139166 (OR 1.26; 95%CI, 1.02-1.56), rs4516035 (OR 1.25; 95%CI, 1.01-1.55), rs11168287 (OR 1.27; 95%CI, 1.03-1.57) and rs1544410 (OR 1.30; 95%CI, 1.04-1.63); for two polymorphisms, homozygous carriers had a decreased risk: rs7305032 (OR 0.81; 95%CI 0.65-1.02) and rs7965281 (OR, 0.78; 95%CI, 0.62-0.99). We recognize the potential false positive findings because of multiple comparisons; however, the eight significant SNPs in our study outnumbered the two significant tests expected to occur by chance. The VDR may play a role in melanomagenesis. Copyright © 2011 UICC.

  4. Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms (SNPs) Associated With the Development of Erectile Dysfunction in African-American Men After Radiotherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, Sarah L.; Ostrer, Harry; Stock, Richard

    2010-12-01

    Purpose: To identify single nucleotide polymorphisms (SNPs) associated with erectile dysfunction (ED) among African-American prostate cancer patients treated with external beam radiation therapy. Methods and Materials: A cohort of African-American prostate cancer patients treated with external beam radiation therapy was observed for the development of ED by use of the five-item Sexual Health Inventory for Men (SHIM) questionnaire. Final analysis included 27 cases (post-treatment SHIM score {<=}7) and 52 control subjects (post-treatment SHIM score {>=}16). A genome-wide association study was performed using approximately 909,000 SNPs genotyped on Affymetrix 6.0 arrays (Affymetrix, Santa Clara, CA). Results: We identified SNP rs2268363, locatedmore » in the follicle-stimulating hormone receptor (FSHR) gene, as significantly associated with ED after correcting for multiple comparisons (unadjusted p = 5.46 x 10{sup -8}, Bonferroni p = 0.028). We identified four additional SNPs that tended toward a significant association with an unadjusted p value < 10{sup -6}. Inference of population substructure showed that cases had a higher proportion of African ancestry than control subjects (77% vs. 60%, p = 0.005). A multivariate logistic regression model that incorporated estimated ancestry and four of the top-ranked SNPs was a more accurate classifier of ED than a model that included only clinical variables. Conclusions: To our knowledge, this is the first genome-wide association study to identify SNPs associated with adverse effects resulting from radiotherapy. It is important to note that the SNP that proved to be significantly associated with ED is located within a gene whose encoded product plays a role in male gonad development and function. Another key finding of this project is that the four SNPs most strongly associated with ED were specific to persons of African ancestry and would therefore not have been identified had a cohort of European ancestry been screened. This study demonstrates the feasibility of a genome-wide approach to investigate genetic predisposition to radiation injury.« less

  5. Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case-control study.

    PubMed

    Stark, Klaus; Reinhard, Wibke; Neureuther, Katharina; Wiedmann, Silke; Sedlacek, Kamil; Baessler, Andrea; Fischer, Marcus; Weber, Stefan; Kaess, Bernhard; Erdmann, Jeanette; Schunkert, Heribert; Hengstenberg, Christian

    2008-04-09

    Serum uric acid (UA) levels have recently been shown to be genetically influenced by common polymorphisms in the GLUT9 gene in two genome-wide association analyses of Italian and British populations. Elevated serum UA levels are often found in conjunction with the metabolic syndrome. Hyperuricemia is the major risk factor for gout and has been associated with increased cardiovascular morbidity and mortality. The aim of the present study was to further elucidate the association of polymorphisms in GLUT9 with gout and coronary artery disease (CAD) or myocardial infarction (MI). To test our hypotheses, we performed two large case-control association analyses of individuals from the German MI Family Study. First, 665 patients with gout and 665 healthy controls, which were carefully matched for age and gender, were genotyped for four single nucleotide polymorphisms (SNPs) within or near the GLUT9 gene. All four SNPs demonstrated highly significant association with gout. SNP rs6855911, located within intron 7 of GLUT9, showed the strongest signal with a protective effect of the minor allele with an allelic odds ratio of 0.62 (95% confidence interval 0.52-0.75; p = 3.2*10(-7)). Importantly, this finding was not influenced by adjustment for components of the metabolic syndrome or intake of diuretics. Secondly, 1,473 cases with severe CAD or MI and 1,241 healthy controls were tested for the same four GLUT9 SNPs. The analyses revealed, however, no significant association with CAD or with MI. Additional screening of genome-wide association data sets showed no signal for CAD or MI within the GLUT9 gene region. Thus, our results provide compelling evidence that common genetic variations within the GLUT9 gene strongly influence the risk for gout but are unlikely to have a major effect on CAD or MI in a German population.

  6. Interleukin-2 and Interleukin-8 Gene Polymorphisms and Acquired Aplastic Anemia Risk in a Chinese Population.

    PubMed

    Zhang, Xuejie; Lin, Shengyun; Yang, Yan; Rong, Liucheng; He, Guangsheng; He, Hailong; Xue, Yao; Fang, Yongjun; Wang, Yaping

    2017-01-01

    Cytokines IL-2 and IL-8 both participate in immune regulation. However, the relationship between polymorphisms in these two cytokines and the risk of acquired aplastic anemia (acquired AA) has not been explored. We selected five SNPs including rs11575812, rs2069772 and rs2069762 of IL-2, rs2227306 and rs2227543 of IL-8. SNaPshot genotyping was used to test the genotypes of IL-2 and IL-8 polymorphisms in a population of 101 acquired AA patients and 165 healthy controls. The rs2069762 G allele appeared to be a protective mutation, but no significant differences were found in other four SNPs. We also found that rs2069762 had an impact on the transcriptional regulation. It could be assumed that the rs2069762 polymorphism might reduce the risk of acquired aplastic anemia, while the remaining four SNPs might not contribute to susceptibility to acquired AA in a Chinese population. © 2017 The Author(s)Published by S. Karger AG, Basel.

  7. Evidence for association between Disrupted-in-schizophrenia 1 (DISC1) gene polymorphisms and autism in Chinese Han population: a family-based association study

    PubMed Central

    2011-01-01

    Background Disrupted-in-Schizophrenia 1 (DISC1) gene is one of the most promising candidate genes for major mental disorders. In a previous study, a Finnish group demonstrated that DISC1 polymorphisms were associated with autism and Asperger syndrome. However, the results were not replicated in Korean population. To determine whether DISC1 is associated with autism in Chinese Han population, we performed a family-based association study between DISC1 polymorphisms and autism. Methods We genotyped seven tag single nucleotide polymorphisms (SNPs) in DISC1, spanning 338 kb, in 367 autism trios (singleton and their biological parents) including 1,101 individuals. Single SNP association and haplotype association analysis were performed using the family-based association test (FBAT) and Haploview software. Results We found three SNPs showed significant associations with autism (rs4366301: G > C, Z = 2.872, p = 0.004; rs11585959: T > C, Z = 2.199, p = 0.028; rs6668845: A > G, Z = 2.326, p = 0.02). After the Bonferroni correction, SNP rs4366301, which located in the first intron of DISC1, remained significant. When haplotype were constructed with two-markers, three haplotypes displayed significant association with autism. These results were still significant after using the permutation method to obtain empirical p values. Conclusions Our study provided evidence that the DISC1 may be the susceptibility gene of autism. It suggested DISC1 might play a role in the pathogenesis of autism. PMID:21569632

  8. Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti

    PubMed Central

    Paris, Margot; Marcombe, Sebastien; Coissac, Eric; Corbel, Vincent; David, Jean-Philippe; Després, Laurence

    2013-01-01

    Mosquito control is often the main method used to reduce mosquito-transmitted diseases. In order to investigate the genetic basis of resistance to the bio-insecticide Bacillus thuringiensis subsp. israelensis (Bti), we used information on polymorphism obtained from cDNA tag sequences from pooled larvae of laboratory Bti-resistant and susceptible Aedes aegypti mosquito strains to identify and analyse 1520 single nucleotide polymorphisms (SNPs). Of the 372 SNPs tested, 99.2% were validated using DNA Illumina GoldenGate® array, with a strong correlation between the allelic frequencies inferred from the pooled and individual data (r = 0.85). A total of 11 genomic regions and five candidate genes were detected using a genome scan approach. One of these candidate genes showed significant departures from neutrality in the resistant strain at sequence level. Six natural populations from Martinique Island were sequenced for the 372 tested SNPs with a high transferability (87%), and association mapping analyses detected 14 loci associated with Bti resistance, including one located in a putative receptor for Cry11 toxins. Three of these loci were also significantly differentiated between the laboratory strains, suggesting that most of the genes associated with resistance might differ between the two environments. It also suggests that common selected regions might harbour key genes for Bti resistance. PMID:24187584

  9. Identification of New Single Nucleotide Polymorphism-Based Markers for Inter- and Intraspecies Discrimination of Obligate Bacterial Parasites (Pasteuria spp.) of Invertebrates ▿ †

    PubMed Central

    Mauchline, Tim H.; Knox, Rachel; Mohan, Sharad; Powers, Stephen J.; Kerry, Brian R.; Davies, Keith G.; Hirsch, Penny R.

    2011-01-01

    Protein-encoding and 16S rRNA genes of Pasteuria penetrans populations from a wide range of geographic locations were examined. Most interpopulation single nucleotide polymorphisms (SNPs) were detected in the 16S rRNA gene. However, in order to fully resolve all populations, these were supplemented with SNPs from protein-encoding genes in a multilocus SNP typing approach. Examination of individual 16S rRNA gene sequences revealed the occurrence of “cryptic” SNPs which were not present in the consensus sequences of any P. penetrans population. Additionally, hierarchical cluster analysis separated P. penetrans 16S rRNA gene clones into four groups, and one of which contained sequences from the most highly passaged population, demonstrating that it is possible to manipulate the population structure of this fastidious bacterium. The other groups were made from representatives of the other populations in various proportions. Comparison of sequences among three Pasteuria species, namely, P. penetrans, P. hartismeri, and P. ramosa, showed that the protein-encoding genes provided greater discrimination than the 16S rRNA gene. From these findings, we have developed a toolbox for the discrimination of Pasteuria at both the inter- and intraspecies levels. We also provide a model to monitor genetic variation in other obligate hyperparasites and difficult-to-culture microorganisms. PMID:21803895

  10. Identification of new single nucleotide polymorphism-based markers for inter- and intraspecies discrimination of obligate bacterial parasites (Pasteuria spp.) of invertebrates.

    PubMed

    Mauchline, Tim H; Knox, Rachel; Mohan, Sharad; Powers, Stephen J; Kerry, Brian R; Davies, Keith G; Hirsch, Penny R

    2011-09-01

    Protein-encoding and 16S rRNA genes of Pasteuria penetrans populations from a wide range of geographic locations were examined. Most interpopulation single nucleotide polymorphisms (SNPs) were detected in the 16S rRNA gene. However, in order to fully resolve all populations, these were supplemented with SNPs from protein-encoding genes in a multilocus SNP typing approach. Examination of individual 16S rRNA gene sequences revealed the occurrence of "cryptic" SNPs which were not present in the consensus sequences of any P. penetrans population. Additionally, hierarchical cluster analysis separated P. penetrans 16S rRNA gene clones into four groups, and one of which contained sequences from the most highly passaged population, demonstrating that it is possible to manipulate the population structure of this fastidious bacterium. The other groups were made from representatives of the other populations in various proportions. Comparison of sequences among three Pasteuria species, namely, P. penetrans, P. hartismeri, and P. ramosa, showed that the protein-encoding genes provided greater discrimination than the 16S rRNA gene. From these findings, we have developed a toolbox for the discrimination of Pasteuria at both the inter- and intraspecies levels. We also provide a model to monitor genetic variation in other obligate hyperparasites and difficult-to-culture microorganisms.

  11. In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?

    PubMed Central

    Lepoittevin, Camille; Frigerio, Jean-Marc; Garnier-Géré, Pauline; Salin, Franck; Cervera, María-Teresa; Vornam, Barbara; Harvengt, Luc; Plomion, Christophe

    2010-01-01

    Background There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C). Methodology/Principal Findings A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). Conclusions/Significance This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome. PMID:20543950

  12. Effect of polymorphisms in the CSN3 (κ-casein) gene on milk production traits in Chinese Holstein Cattle.

    PubMed

    Alim, M A; Dong, T; Xie, Y; Wu, X P; Zhang, Yi; Zhang, Shengli; Sun, D X

    2014-11-01

    This study was designed to evaluate significant associations between single nucleotide polymorphisms (SNPs) and milk composition and milk production traits in Chinese Holstein cows. Six SNPs were identified in the κ-casein gene using pooled DNA sequencing. The identified SNPs were genotyped by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) methods from 507 individuals. Out of six, we identified three non-synonymous SNPs (g.10888T>C, g.10924C>A and g.10944A>G) that changed in the protein product. SIFT (Sorting_Intolerant_From_Tolerant) prediction score (0.01) demonstrated that protein changed Isoleucine > Threonine (g.10888T>C) will affect the phenotypes. Significant associations between identified SNPs and three yield traits (milk, protein and fat) and two composition traits (fat and protein percentages) were found whereas it did not reach significance for fat percentage in haplotypes association. Importantly, the significant SNPs in our results showed a large proportion of the phenotypic variation of milk protein yield and concentration. Our results suggest that CSN3 is an important candidate gene that influences milk production traits, and identified polymorphisms and haplotypes could be used as a genetic marker in programs of marker-assisted selection for the genetic improvement of milk production traits in dairy cattle.

  13. Chosen single nucleotide polymorphisms (SNPs) of enamel formation genes and dental caries in a population of Polish children.

    PubMed

    Gerreth, Karolina; Zaorska, Katarzyna; Zabel, Maciej; Borysewicz-Lewicka, Maria; Nowicki, Michał

    2017-09-01

    It is increasingly emphasized that the influence of a host's factors in the etiology of dental caries are of most interest, particularly those concerned with genetic aspect. The aim of the study was to analyze the genotype and allele frequencies of single nucleotide polymorphisms (SNPs) in AMELX, AMBN, TUFT1, TFIP11, MMP20 and KLK4 genes and to prove their association with dental caries occurrence in a population of Polish children. The study was performed in 96 children (48 individuals with caries - "cases" and 48 free of this disease - "controls"), aged 20-42 months, chosen out of 262 individuals who had dental examination performed and attended 4 day nurseries located in Poznań (Poland). From both groups oral swab was collected for molecular evaluation. Eleven selected SNPs markers were genotyped by Sanger sequencing. Genotype and allele frequencies were calculated and a standard χ2 analysis was used to test for deviation from Hardy-Weinberg equilibrium. The association of genetic variations with caries susceptibility or resistance was assessed by the Fisher's exact test and p ≤ 0.05 was considered statistically significant. Five markers were significantly associated with caries incidence in children in the study: rs17878486 in AMELX (p < 0.0001), rs34538475 in AMBN (p < 0.0001), rs2337360 in TUFT1 (p < 0.0001), and rs2235091 (p = 0.0085) and rs198969 (p = 0.0069) in KLK4. Genotype and allele frequencies indicated both risk and protective variants for these markers. Single nucleotide polymorphisms in AMELX, AMBN, TUFT1, KLK4 genes may be considered as a risk factor for dental caries occurrence in Polish children.

  14. Polymorphisms in CARS are associated with gastric cancer risk: a two-stage case-control study in the Chinese population.

    PubMed

    Tian, Tian; Xiao, Ling; Du, Jiangbo; Zhu, Xun; Gu, Yayun; Qin, Na; Yan, Caiwang; Liu, Li; Ma, Hongxia; Jiang, Yue; Chen, Jiaping; Yu, Hao; Dai, Juncheng

    2017-11-01

    The cysteinyl transfer RNA synthetase gene (CARS) is located on chromosome band 11p15.5, which is an important tumor-suppressor gene region. Mutations in CARS have been identified in many kinds of cancers; however, evidence for a relationship between genetic variants in CARS and gastric cancer at the population level is still lacking. Thus, we explored the association of variants in CARS with gastric cancer using a two-stage case-control strategy in Chinese. We undertook a two-stage case-control study to investigate the association between polymorphisms in CARS and risk of gastric cancer with use of an Illumina Infinium ® BeadChip and an ABI 7900 system. Four single nucleotide polymorphisms (SNPs) were significantly associated with gastric cancer risk in both the discovery stage and the validation stage after adjustment for age and sex. In addition, the combined results of the two stages showed these SNPs were related to gastric cancer risk (P false discovery rate  ≤ 0.001 for rs384,490, rs729662, rs2071101, and rs7394702). In silico analyses revealed that rs384490 and rs7394702 could affect transcription factor response elements or DNA methylation of CARS, and rs729662 was associated with the prognosis of gastric cancer. Additionally, expression quantitative trait loci analysis showed rs384490 and rs729662 might alter expression of CARS-related genes. The potential functional SNPs in CARS might influence the biological functions of CARS or CARS-related genes and ultimately modify the occurrence and development of gastric cancer in Chinese. Further large-scale population-based studies or biological functional assays are warranted to validate our findings.

  15. Toll-like receptors genes polymorphisms and the occurrence of HCMV infection among pregnant women.

    PubMed

    Wujcicka, Wioletta; Paradowska, Edyta; Studzińska, Mirosława; Wilczyński, Jan; Nowakowska, Dorota

    2017-03-24

    Human cytomegalovirus (HCMV) is the most common cause of intrauterine infections worldwide. The toll-like receptors (TLRs) have been reported as important factors in immune response against HCMV. Particularly, TLR2, TLR4 and TLR9 have been shown to be involved in antiviral immunity. Evaluation of the role of single nucleotide polymorphisms (SNPs), located within TLR2, TLR4 and TLR9 genes, in the development of human cytomegalovirus (HCMV) infection in pregnant women and their fetuses and neonates, was performed. The study was performed for 131 pregnant women, including 66 patients infected with HCMV during pregnancy, and 65 age-matched control pregnant individuals. The patients were selected to the study, based on serological status of anti-HCMV IgG and IgM antibodies and on the presence of viral DNA in their body fluids. Genotypes in TLR2 2258 A > G, TLR4 896 G > A and 1196 C > T and TLR9 2848 G > A SNPs were determined by self-designed nested PCR-RFLP assays. Randomly selected PCR products, representative for distinct genotypes in TLR SNPs, were confirmed by sequencing. A relationship between the genotypes, alleles, haplotypes and multiple variants in the studied polymorphisms, and the occurrence of HCMV infection in pregnant women and their offsprings, was determined, using a logistic regression model. Genotypes in all the analyzed polymorphisms preserved the Hardy-Weinberg equilibrium in pregnant women, both infected and uninfected with HCMV (P > 0.050). GG homozygotic and GA heterozygotic status in TLR9 2848 G > A SNP decreased significantly the occurrence of HCMV infection (OR 0.44 95% CI 0.21-0.94 in the dominant model, P ≤ 0.050). The G allele in TLR9 SNP was significantly more frequent among the uninfected pregnant women than among the infected ones (χ 2  = 4.14, P ≤ 0.050). Considering other polymorphisms, similar frequencies of distinct genotypes, haplotypes and multiple-SNP variants were observed between the studied groups of patients. TLR9 2848 G > A SNP may be associated with HCMV infection in pregnant women.

  16. Association of "ADAM10" and "CAMK2A" Polymorphisms with Conduct Disorder: Evidence from Family-Based Studies

    ERIC Educational Resources Information Center

    Jian, Xue-Qiu; Wang, Ke-Sheng; Wu, Tie-Jian; Hillhouse, Joel J.; Mullersman, Jerald E.

    2011-01-01

    Twin and family studies have shown that genetic factors play a role in the development of conduct disorder (CD). The purpose of this study was to identify genetic variants associated with CD using a family-based association study. We used 4,720 single nucleotide polymorphisms (SNPs) from the Illumina Panel and 11,120 SNPs from the Affymetrix 10K…

  17. Leu72Met and Other Intronic Polymorphisms in the GHRL and GHSR Genes Are Not Associated with Type 2 Diabetes Mellitus, Insulin Resistance, or Serum Ghrelin Levels in a Saudi Population

    PubMed Central

    Joatar, Faris Elbahi; Al Qarni, Ali Ahmed; Ali, Muhalab E.; Al Masaud, Abdulaziz; Shire, Abdirashid M.; Das, Nagalla; Gumaa, Khalid

    2017-01-01

    Background Ghrelin (GHRL), a gastric peptide encoded by the GHRL gene, is known to be involved in energy homeostasis via its G protein receptor, encoded by the growth hormone secretagogue receptor (GHSR) gene. Some studies have shown associations between plasma GHRL levels and GHRL single-nucleotide polymorphisms (SNPs), namely the Leu72Met polymorphism (rs696217 TG), with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), while others have not. The controversies in these associations raise the issue of ‘which SNPs in which populations.’ The aim of this study was to investigate whether SNPs in GHRL and/or GHSR genes were associated with T2DM, IR, or plasma GHRL levels among Arab Saudis. Methods Blood was collected from 208 Saudi subjects with (n=107) and without (n=101) T2DM. DNA samples from these subjects were analyzed by real-time polymerase chain reaction to genotype five intronic SNPs in the GHRL (rs696217 TG, rs27647 CT, rs2075356 CT, and rs4684677 AT) and GHSR (rs509030 GC) genes. In addition, plasma GHRL levels were measured by a radioimmunoassay. Results None of the SNPs were associated with T2DM, IR, or plasma GHRL levels. The frequencies of the alleles, genotypes, and haplotypes of the five SNPs were comparable between the T2DM patients and the non-diabetic subjects. A large number of the GHRL haplotypes indicates the molecular heterogeneity of the preproghrelin gene in this region. Conclusion Neither the Leu72Met polymorphism nor the other intronic GHRL and GHSR SNPs were associated with T2DM, IR, or GHRL levels. Further investigations should be carried out to explain the molecular basis of the association of the GHRL peptide with T2DM and IR. PMID:28956366

  18. Leu72Met and Other Intronic Polymorphisms in the GHRL and GHSR Genes Are Not Associated with Type 2 Diabetes Mellitus, Insulin Resistance, or Serum Ghrelin Levels in a Saudi Population.

    PubMed

    Joatar, Faris Elbahi; Al Qarni, Ali Ahmed; Ali, Muhalab E; Al Masaud, Abdulaziz; Shire, Abdirashid M; Das, Nagalla; Gumaa, Khalid; Giha, Hayder A

    2017-09-01

    Ghrelin (GHRL), a gastric peptide encoded by the GHRL gene, is known to be involved in energy homeostasis via its G protein receptor, encoded by the growth hormone secretagogue receptor (GHSR) gene. Some studies have shown associations between plasma GHRL levels and GHRL single-nucleotide polymorphisms (SNPs), namely the Leu72Met polymorphism (rs696217 TG), with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), while others have not. The controversies in these associations raise the issue of 'which SNPs in which populations.' The aim of this study was to investigate whether SNPs in GHRL and/or GHSR genes were associated with T2DM, IR, or plasma GHRL levels among Arab Saudis. Blood was collected from 208 Saudi subjects with (n=107) and without (n=101) T2DM. DNA samples from these subjects were analyzed by real-time polymerase chain reaction to genotype five intronic SNPs in the GHRL (rs696217 TG, rs27647 CT, rs2075356 CT, and rs4684677 AT) and GHSR (rs509030 GC) genes. In addition, plasma GHRL levels were measured by a radioimmunoassay. None of the SNPs were associated with T2DM, IR, or plasma GHRL levels. The frequencies of the alleles, genotypes, and haplotypes of the five SNPs were comparable between the T2DM patients and the non-diabetic subjects. A large number of the GHRL haplotypes indicates the molecular heterogeneity of the preproghrelin gene in this region. Neither the Leu72Met polymorphism nor the other intronic GHRL and GHSR SNPs were associated with T2DM, IR, or GHRL levels. Further investigations should be carried out to explain the molecular basis of the association of the GHRL peptide with T2DM and IR. Copyright © 2017 Korean Endocrine Society

  19. Investigation of previously implicated genetic variants in chronic tic disorders: a transmission disequilibrium test approach.

    PubMed

    Abdulkadir, Mohamed; Londono, Douglas; Gordon, Derek; Fernandez, Thomas V; Brown, Lawrence W; Cheon, Keun-Ah; Coffey, Barbara J; Elzerman, Lonneke; Fremer, Carolin; Fründt, Odette; Garcia-Delgar, Blanca; Gilbert, Donald L; Grice, Dorothy E; Hedderly, Tammy; Heyman, Isobel; Hong, Hyun Ju; Huyser, Chaim; Ibanez-Gomez, Laura; Jakubovski, Ewgeni; Kim, Young Key; Kim, Young Shin; Koh, Yun-Joo; Kook, Sodahm; Kuperman, Samuel; Leventhal, Bennett; Ludolph, Andrea G; Madruga-Garrido, Marcos; Maras, Athanasios; Mir, Pablo; Morer, Astrid; Müller-Vahl, Kirsten; Münchau, Alexander; Murphy, Tara L; Plessen, Kerstin J; Roessner, Veit; Shin, Eun-Young; Song, Dong-Ho; Song, Jungeun; Tübing, Jennifer; van den Ban, Els; Visscher, Frank; Wanderer, Sina; Woods, Martin; Zinner, Samuel H; King, Robert A; Tischfield, Jay A; Heiman, Gary A; Hoekstra, Pieter J; Dietrich, Andrea

    2018-04-01

    Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412 families (some probands were siblings). We assessed 75 single nucleotide polymorphisms (SNPs) in 465 parent-child trios; 117 additional SNPs in 211 trios; and 4 additional SNPs in 254 trios. We performed SNP and gene-based transmission disequilibrium tests and compared nominally significant SNP results with those from a large independent case-control cohort. After quality control 71 SNPs were available in 371 trios; 112 SNPs in 179 trios; and 3 SNPs in 192 trios. 17 were candidate SNPs implicated in TS and 2 were implicated in obsessive-compulsive disorder (OCD) or autism spectrum disorder (ASD); 142 were tagging SNPs from eight monoamine neurotransmitter-related genes (including dopamine and serotonin); 10 were top SNPs from TS GWAS; and 13 top SNPs from attention-deficit/hyperactivity disorder, OCD, or ASD GWAS. None of the SNPs or genes reached significance after adjustment for multiple testing. We observed nominal significance for the candidate SNPs rs3744161 (TBCD) and rs4565946 (TPH2) and for five tagging SNPs; none of these showed significance in the independent cohort. Also, SLC1A1 in our gene-based analysis and two TS GWAS SNPs showed nominal significance, rs11603305 (intergenic) and rs621942 (PICALM). We found no convincing support for previously implicated genetic polymorphisms. Targeted re-sequencing should fully appreciate the relevance of candidate genes.

  20. Identification of SNPs associated with variola virus virulence.

    PubMed

    Hoen, Anne Gatewood; Gardner, Shea N; Moore, Jason H

    2013-02-14

    Decades after the eradication of smallpox, its etiological agent, variola virus (VARV), remains a threat as a potential bioweapon. Outbreaks of smallpox around the time of the global eradication effort exhibited variable case fatality rates (CFRs), likely attributable in part to complex viral genetic determinants of smallpox virulence. We aimed to identify genome-wide single nucleotide polymorphisms associated with CFR. We evaluated unadjusted and outbreak geographic location-adjusted models of single SNPs and two- and three-way interactions between SNPs. Using the data mining approach multifactor dimensionality reduction (MDR), we identified five VARV SNPs in models significantly associated with CFR. The top performing unadjusted model and adjusted models both revealed the same two-way gene-gene interaction. We discuss the biological plausibility of the influence of the SNPs identified these and other significant models on the strain-specific virulence of VARV. We have identified genetic loci in the VARV genome that are statistically associated with VARV virulence as measured by CFR. While our ability to infer a causal relationship between the specific SNPs identified in our analysis and VARV virulence is limited, our results suggest that smallpox severity is in part associated with VARV strain variation and that VARV virulence may be determined by multiple genetic loci. This study represents the first application of MDR to the identification of pathogen gene-gene interactions for predicting infectious disease outbreak severity.

  1. Putative Prostate Cancer Risk SNP in an Androgen Receptor‐Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites

    PubMed Central

    Bu, Huajie; Narisu, Narisu; Schlick, Bettina; Rainer, Johannes; Manke, Thomas; Schäfer, Georg; Pasqualini, Lorenza; Chines, Peter; Schweiger, Michal R.; Fuchsberger, Christian

    2015-01-01

    ABSTRACT Genome‐wide association studies have identified genomic loci, whose single‐nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the mechanisms of most of these variants are largely unknown. We integrated chromatin‐immunoprecipitation‐coupled sequencing and microarray expression profiling in TMPRSS2‐ERG gene rearrangement positive DUCaP cells with the GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor‐binding sites (ARBSs). Among the 48 GWAS index risk SNPs and 3,917 linked SNPs, 80 were found located in ARBSs. Of these, rs11891426:T>G in an intron of the melanophilin gene (MLPH) was within a novel putative auxiliary AR‐binding motif, which is enriched in the neighborhood of canonical androgen‐responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay. The expression of MLPH in primary prostate tumors was significantly lower in those with the G compared with the T allele and correlated significantly with AR protein. Higher melanophilin level in prostate tissue of patients with a favorable PCa risk profile points out a tumor‐suppressive effect. These results unravel a hidden link between AR and a functional putative PCa risk SNP, whose allele alteration affects androgen regulation of its host gene MLPH. PMID:26411452

  2. Identification of SNPs associated with variola virus virulence

    PubMed Central

    2013-01-01

    Background Decades after the eradication of smallpox, its etiological agent, variola virus (VARV), remains a threat as a potential bioweapon. Outbreaks of smallpox around the time of the global eradication effort exhibited variable case fatality rates (CFRs), likely attributable in part to complex viral genetic determinants of smallpox virulence. We aimed to identify genome-wide single nucleotide polymorphisms associated with CFR. We evaluated unadjusted and outbreak geographic location-adjusted models of single SNPs and two- and three-way interactions between SNPs. Findings Using the data mining approach multifactor dimensionality reduction (MDR), we identified five VARV SNPs in models significantly associated with CFR. The top performing unadjusted model and adjusted models both revealed the same two-way gene-gene interaction. We discuss the biological plausibility of the influence of the SNPs identified these and other significant models on the strain-specific virulence of VARV. Conclusions We have identified genetic loci in the VARV genome that are statistically associated with VARV virulence as measured by CFR. While our ability to infer a causal relationship between the specific SNPs identified in our analysis and VARV virulence is limited, our results suggest that smallpox severity is in part associated with VARV strain variation and that VARV virulence may be determined by multiple genetic loci. This study represents the first application of MDR to the identification of pathogen gene-gene interactions for predicting infectious disease outbreak severity. PMID:23410064

  3. Choline dehydrogenase polymorphism rs12676 is a functional variation and is associated with changes in human sperm cell function.

    PubMed

    Johnson, Amy R; Lao, Sai; Wang, Tongwen; Galanko, Joseph A; Zeisel, Steven H

    2012-01-01

    Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh(-/-) males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm.

  4. Choline Dehydrogenase Polymorphism rs12676 Is a Functional Variation and Is Associated with Changes in Human Sperm Cell Function

    PubMed Central

    Johnson, Amy R.; Lao, Sai; Wang, Tongwen; Galanko, Joseph A.; Zeisel, Steven H.

    2012-01-01

    Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh−/− males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm. PMID:22558321

  5. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    PubMed Central

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome. PMID:24010766

  6. LAMB1 polymorphism is associated with autism symptom severity in Korean autism spectrum disorder patients.

    PubMed

    Kim, Young Jong; Park, Jin Kyung; Kang, Won Sub; Kim, Su Kang; Park, Hae Jeong; Nam, Min; Kim, Jong Woo

    2015-01-01

    LAMB1 encodes laminin beta-1, which is expressed during early development of the human nervous system, and could be involved in the pathogenesis of neurodevelopmental disorders. In our study, we aimed to investigate whether single nucleotide polymorphisms (SNPs) in LAMB1 were associated with autism spectrum disorder (ASD) and with related clinical severities of ASD. Two coding SNPs (rs20556 and rs25659) and two intronic SNPs (rs2158836 and rs2237659) were compared between 180 patients with ASD and 147 healthy control subjects using direct sequencing. The Korean version of the Childhood Autism Rating Scale (K-CARS) was used to assess clinical severities. Multiple logistic regression models were employed to analyze genetic data, and associations with symptom severity were tested with the Kruskal-Wallis and the Mann-Whitney U tests. None of the four examined SNPs was associated with ASD risk. However, the GG genotype of rs2158836 was associated with more severe symptoms for the "object use" and "non-verbal communication" measures. The results of our study suggest the association between rs2158836 polymorphisms and symptom severity in ASD.

  7. Genetic association between ghrelin polymorphisms and Alzheimer's disease in a Japanese population.

    PubMed

    Shibata, Nobuto; Ohnuma, Tohru; Kuerban, Bolati; Komatsu, Miwa; Arai, Heii

    2011-01-01

    Ghrelin has been reported to enter the hippocampus and to bind to the neurons of the hippocampal formation. This peptide also affects neuronal glucose uptake and decreases tau hyperphosphorylation. There is increasing evidence suggesting an association between ghrelin and Alzheimer's disease (AD) pathology. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) of the ghrelin gene are associated with AD. The SNPs were genotyped using TaqMan technology and were analyzed using a case-control study design. Our case-control dataset consisted of 182 AD patients and 143 age-matched controls. Hardy-Weinberg equilibrium and linkage disequilibrium analyses suggest that the region in and around the gene is highly polymorphic. One SNP, rs4684677 (Leu90Gln), showed a marginal association with age of AD onset. We did not detect any association between the other SNPs of the ghrelin gene and AD. There have been few genetic studies on the relationship between circulating ghrelin and functional SNPs. Further multifactorial studies are needed to clarify the relationship between ghrelin and AD. Copyright © 2011 S. Karger AG, Basel.

  8. Variability of the caprine whey protein genes and their association with milk yield, composition and renneting properties in the Sarda breed. 1. The LALBA gene.

    PubMed

    Dettori, Maria Luisa; Pazzola, Michele; Paschino, Pietro; Pira, Maria Giovanna; Vacca, Giuseppe Massimo

    2015-11-01

    The 5' flanking region and 3' UTR of the caprine LALBA gene were analysed by SSCP and sequencing. A total of nine SNPs were detected: three in the promoter region, two were synonymous coding SNPs at exon-1, and four SNPs were in exon-4, within the 3'UTR. The nucleotide changes located in the promoter region (c.-358T>C, c.-163G>A, c.-121T>G) were genotyped by SSCP in 263 Sarda goats to evaluate their possible effect on milk yield, composition and renneting properties. We observed an effect of the three SNPs on milk yield and lactose content. Genotypes TT and CT at c.-358T>C (P A (P C and c.-121T>G were part of transcription factors binding sites, potentially involved in modulating the LALBA gene expression. The LALBA genotype affected renneting properties (P < 0.001), as heterozygotes c.-358CT and c.-163GA were characterised by delayed rennet coagulation time and curd firming time and the lowest value of curd firmness. The present investigation increases the panel of SNPs and adds new information about the effects of the caprine LALBA gene polymorphism.

  9. Correlation between facial morphology and gene polymorphisms in the Uygur youth population.

    PubMed

    He, Huiyu; Mi, Xue; Zhang, Jiayu; Zhang, Qin; Yao, Yuan; Zhang, Xu; Xiao, Feng; Zhao, Chunping; Zheng, Shutao

    2017-04-25

    Human facial morphology varies considerably among individuals and can be influenced by gene polymorphisms. We explored the effects of single nucleotide polymorphisms (SNPs) on facial features in the Uygur youth population of the Kashi area in Xinjiang, China. Saliva samples were collected from 578 volunteers, and 10 SNPs previously associated with variations in facial physiognomy were genotyped. In parallel, 3D images of the subjects' faces were obtained using grating facial scanning technology. After delimitation of 15 salient landmarks, the correlation between SNPs and the distances between facial landmark pairs was assessed. Analysis of variance revealed that ENPP1 rs7754561 polymorphism was significantly associated with RAla-RLipCn and RLipCn-Sbn linear distances (p = 0.044 and p = 0.012, respectively) as well as RLipCn-Stm curve distance (p = 0.042). The GHR rs6180 polymorphism correlated with RLipCn-Stm linear distance (p = 0.04), while the GHR rs6184 polymorphism correlated with RLipCn-ULipP curve distance (p = 0.047). The FGFR1 rs4647905 polymorphism was associated with LLipCn-Nsn linear distance (p = 0.042). These results reveal that ENPP1 and FGFR1 influence lower anterior face height, the distance from the upper lip to the nasal floor, and lip shape. FGFR1 also influences the lower anterior face height, while GHR is associated with the length and width of the lip.

  10. Common Polymorphisms in the PKP3-SIGIRR-TMEM16J Gene Region Are Associated With Susceptibility to Tuberculosis

    PubMed Central

    Randhawa, April K.; Chau, Tran T. H.; Bang, Nguyen D.; Yen, Nguyen T. B.; Farrar, Jeremy J.; Dunstan, Sarah J.; Hawn, Thomas R.

    2012-01-01

    (See the editorial commentary by Wilkinson, on pages 525–7.) Background. Tuberculosis has been associated with genetic variation in host immunity. We hypothesized that single-nucleotide polymorphisms (SNPs) in SIGIRR, a negative regulator of Toll-like receptor/IL-1R signaling, are associated with susceptibility to tuberculosis. Methods. We used a case-population study design in Vietnam with cases that had either tuberculous meningitis or pulmonary tuberculosis. We genotyped 6 SNPs in the SIGIRR gene region (including the adjacent genes PKP3 and TMEM16J) in a discovery cohort of 352 patients with tuberculosis and 382 controls. Significant associations were genotyped in a validation cohort (339 patients with tuberculosis, 376 controls). Results. Three SNPs (rs10902158, rs7105848, rs7111432) were associated with tuberculosis in discovery and validation cohorts. The polymorphisms were associated with both tuberculous meningitis and pulmonary tuberculosis and were strongest with a recessive genetic model (odds ratios, 1.5–1.6; P = .0006–.001). Coinheritance of these polymorphisms with previously identified risk alleles in Toll-like receptor 2 and TIRAP was associated with an additive risk of tuberculosis susceptibility. Conclusions. These results demonstrate a strong association of SNPs in the PKP3-SIGIRR-TMEM16J gene region and tuberculosis in discovery and validation cohorts. To our knowledge, these are the first associations of polymorphisms in this region with any disease. PMID:22223854

  11. Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.).

    PubMed

    Lin, Shoukai; Chen, Lijuan; Tao, Huan; Huang, Jian; Xu, Chaoqun; Li, Lin; Ma, Shiwei; Tian, Tian; Liu, Wei; Xue, Lichun; Ai, Yufang; He, Huaqin

    2016-11-11

    Single nucleotide polymorphisms (SNPs) are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs) on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1%) nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK) types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding.

  12. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma

    PubMed Central

    Yucesoy, Berran; Kaufman, Kenneth M.; Lummus, Zana L.; Weirauch, Matthew T.; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M.; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B.; Bernstein, David I.

    2015-01-01

    Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10−14). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10−9 and rs2514805, p = 1.22 × 10−8, respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10−6). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies. PMID:25918132

  13. A Prediction Algorithm for Drug Response in Patients with Mesial Temporal Lobe Epilepsy Based on Clinical and Genetic Information

    PubMed Central

    Carvalho, Benilton S.; Bilevicius, Elizabeth; Alvim, Marina K. M.; Lopes-Cendes, Iscia

    2017-01-01

    Mesial temporal lobe epilepsy is the most common form of adult epilepsy in surgical series. Currently, the only characteristic used to predict poor response to clinical treatment in this syndrome is the presence of hippocampal sclerosis. Single nucleotide polymorphisms (SNPs) located in genes encoding drug transporter and metabolism proteins could influence response to therapy. Therefore, we aimed to evaluate whether combining information from clinical variables as well as SNPs in candidate genes could improve the accuracy of predicting response to drug therapy in patients with mesial temporal lobe epilepsy. For this, we divided 237 patients into two groups: 75 responsive and 162 refractory to antiepileptic drug therapy. We genotyped 119 SNPs in ABCB1, ABCC2, CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 genes. We used 98 additional SNPs to evaluate population stratification. We assessed a first scenario using only clinical variables and a second one including SNP information. The random forests algorithm combined with leave-one-out cross-validation was used to identify the best predictive model in each scenario and compared their accuracies using the area under the curve statistic. Additionally, we built a variable importance plot to present the set of most relevant predictors on the best model. The selected best model included the presence of hippocampal sclerosis and 56 SNPs. Furthermore, including SNPs in the model improved accuracy from 0.4568 to 0.8177. Our findings suggest that adding genetic information provided by SNPs, located on drug transport and metabolism genes, can improve the accuracy for predicting which patients with mesial temporal lobe epilepsy are likely to be refractory to drug treatment, making it possible to identify patients who may benefit from epilepsy surgery sooner. PMID:28052106

  14. Systematic identification of DNA variants associated with ultraviolet radiation using a novel Geographic-Wide Association Study (GeoWAS).

    PubMed

    Hsu, Irving; Chen, Rong; Ramesh, Aditya; Corona, Erik; Kang, Hyunseok Peter; Ruau, David; Butte, Atul J

    2013-06-20

    Long-term environmental variables are widely understood to play important roles in DNA variation. Previously, clinical studies examining the impacts of these variables on the human genome were localized to a single country, and used preselected DNA variants. Furthermore, clinical studies or surveys are either not available or difficult to carry out for developing countries. A systematic approach utilizing bioinformatics to identify associations among environmental variables, genetic variation, and diseases across various geographical locations is needed but has been lacking. Using a novel Geographic-Wide Association Study (GeoWAS) methodology, we identified Single Nucleotide Polymorphisms (SNPs) in the Human Genome Diversity Project (HGDP) with population allele frequencies associated geographical ultraviolet radiation exposure, and then assessed the diseases known to be assigned with these SNPs. 2,857 radiation SNPs were identified from over 650,000 SNPs in 52 indigenous populations across the world. Using a quantitative disease-SNP database curated from 5,065 human genetic papers, we identified disease associations with those radiation SNPs. The correlation of the rs16891982 SNP in the SLC45A2 gene with melanoma was used as a case study for analysis of disease risk, and the results were consistent with the incidence and mortality rates of melanoma in published scientific literature. Finally, by analyzing the ontology of genes in which the radiation SNPs were significantly enriched, potential associations between SNPs and neurological disorders such as Alzheimer's disease were hypothesized. A systematic approach using GeoWAS has enabled us to identify DNA variation associated with ultraviolet radiation and their connections to diseases such as skin cancers. Our analyses have led to a better understating at the genetic level of why certain diseases are more predominant in specific geographical locations, due to the interactions between environmental variables such as ultraviolet radiation and the population types in those regions. The hypotheses proposed in GeoWAS can lead to future testing and interdisciplinary research.

  15. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China

    PubMed Central

    Song, Xin; Hu, Shou Jia; Lv, Shuang; Cheng, Rang; Zhang, Tang Juan; Han, Xue Na; Ren, Jing Li; Qi, Yi Jun

    2017-01-01

    Background Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS) in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs). Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population. Methods A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS) on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE) using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson’s Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival. Results Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107–1.509; P = 0.02), rs10931936 (OR = 1.283; 95% CI = 1.100–1.495; P = 0.04), rs2244438 (OR = 1.294; 95% CI = 1.098–1.525; P = 0.04) and rs13016963 (OR = 1.268; 95% CI = 1.089–1.447; P = 0.04). All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage, histopathological type, smoking, family history and overall survival. Conclusions The present study identified four high-risk SNPs at 2q33 locus for Chinese lung cancer and demonstrated the shared susceptibility loci at 2q33 region for Chinese lung and esophageal cancers. PMID:28542283

  16. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China.

    PubMed

    Zhao, Xue Ke; Mao, Yi Min; Meng, Hui; Song, Xin; Hu, Shou Jia; Lv, Shuang; Cheng, Rang; Zhang, Tang Juan; Han, Xue Na; Ren, Jing Li; Qi, Yi Jun; Wang, Li Dong

    2017-01-01

    Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS) in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs). Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population. A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS) on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE) using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson's Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival. Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107-1.509; P = 0.02), rs10931936 (OR = 1.283; 95% CI = 1.100-1.495; P = 0.04), rs2244438 (OR = 1.294; 95% CI = 1.098-1.525; P = 0.04) and rs13016963 (OR = 1.268; 95% CI = 1.089-1.447; P = 0.04). All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage, histopathological type, smoking, family history and overall survival. The present study identified four high-risk SNPs at 2q33 locus for Chinese lung cancer and demonstrated the shared susceptibility loci at 2q33 region for Chinese lung and esophageal cancers.

  17. Mitochondrial pathogenic mutations are population-specific.

    PubMed

    Breen, Michael S; Kondrashov, Fyodor A

    2010-12-31

    Surveying deleterious variation in human populations is crucial for our understanding, diagnosis and potential treatment of human genetic pathologies. A number of recent genome-wide analyses focused on the prevalence of segregating deleterious alleles in the nuclear genome. However, such studies have not been conducted for the mitochondrial genome. We present a systematic survey of polymorphisms in the human mitochondrial genome, including those predicted to be deleterious and those that correspond to known pathogenic mutations. Analyzing 4458 completely sequenced mitochondrial genomes we characterize the genetic diversity of different types of single nucleotide polymorphisms (SNPs) in African (L haplotypes) and non-African (M and N haplotypes) populations. We find that the overall level of polymorphism is higher in the mitochondrial compared to the nuclear genome, although the mitochondrial genome appears to be under stronger selection as indicated by proportionally fewer nonsynonymous than synonymous substitutions. The African mitochondrial genomes show higher heterozygosity, a greater number of polymorphic sites and higher frequencies of polymorphisms for synonymous, benign and damaging polymorphism than non-African genomes. However, African genomes carry significantly fewer SNPs that have been previously characterized as pathogenic compared to non-African genomes. Finding SNPs classified as pathogenic to be the only category of polymorphisms that are more abundant in non-African genomes is best explained by a systematic ascertainment bias that favours the discovery of pathogenic polymorphisms segregating in non-African populations. This further suggests that, contrary to the common disease-common variant hypothesis, pathogenic mutations are largely population-specific and different SNPs may be associated with the same disease in different populations. Therefore, to obtain a comprehensive picture of the deleterious variability in the human population, as well as to improve the diagnostics of individuals carrying African mitochondrial haplotypes, it is necessary to survey different populations independently. This article was reviewed by Dr Mikhail Gelfand, Dr Vasily Ramensky (nominated by Dr Eugene Koonin) and Dr David Rand (nominated by Dr Laurence Hurst).

  18. Polymorphisms of the bovine DKK2 and their associations with body measurement traits and meat quality traits in Qinchuan cattle.

    PubMed

    Zhan, Xiaoli; Gao, Jianbin; Huangfu, Yifan; Fu, Changzhen; Zan, Linsen

    2013-12-01

    The objective of this research were to detect bovine Dickkopf 2 (DKK2) gene polymorphism and analyze their associations with body measurement traits (BMT) and meat quality traits (MQT) of animals. Blood samples were taken from a total of 541 Qinchuan cattle aged from 18 to 24 months. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was employed to find out DKK2 single-polymorphism nucleotide (SNPs) and to explore their possible association with BMT and MQT. Sequence analysis of DKK2 gene revealed 2 SNPs (C29 T and A169C) in 5' untranslated region (5'UTR) of exon 1.C29T and A164T SNPs are both synonymous mutation, which showed 2 genotypes namely (CC, CT) and (AA and AC), respectively. Association analysis of polymorphism with body measurement and meat quality traits at the two locus showed that there were significant effects on CT, BL, RL, PBW, BFT, LMA, and IFC. These results suggest that the DKK2 gene might have potential effects on BMT and MQT in Qinchuan cattle population and could be used for marker-assisted selection.

  19. Association study of ghrelin receptor gene polymorphisms in rheumatoid arthritis.

    PubMed

    Robledo, G; Rueda, B; Gonzalez-Gay, M A; Fernández, B; Lamas, J R; Balsa, A; Pascual-Salcedo, D; García, A; Raya, E; Martín, J

    2010-01-01

    Ghrelin is a newly characterised growth hormone (GH) releasing peptide widely distributed that may play an important role in the regulation of metabolic balance in inflammatory diseases such as rheumatoid arthritis (RA) by decreasing the pro-inflammatory Th1 responses. In this study we investigated the possible contribution of several polymorphisms in the functional Ghrelin receptor to RA susceptibility. A screening of 3 single nucleotide polymorphisms (SNPs) was performed in a total of 950 RA patients and 990 healthy controls of Spanish Caucasian origin. Genotyping of all 3 SNPs was performed by real-time polymerase chain reaction technology, using the TaqMan 5'-allele discrimination assay. We observed no statistically significant deviation between RA patients and controls for the GHSR SNPs analysed. In addition, we performed a haplotype analysis that did not reveal an association with RA susceptibility. The stratification analysis for the presence of shared epitope (SE), rheumatoid factor (RF) or antibodies anti cyclic citrullinated peptide (anti-CCP) did not detect significant association of the GHSR polymorphisms with RA. These findings suggest that the GHSR gene polymorphisms do not appear to play a major role in RA genetic predisposition in our population.

  20. Genetic contributions to the association between adult height and testicular germ cell tumors.

    PubMed

    Cook, Michael B; Chia, Victoria M; Berndt, Sonja I; Graubard, Barry I; Chanock, Stephen J; Rubertone, Mark V; Erickson, Ralph L; Hayes, Richard B; McGlynn, Katherine A

    2011-06-01

    Previously, we have shown that increasing adult height is associated with increased risk of testicular germ-cell tumor (TGCT). Recently, a number of single nucleotide polymorphisms (SNPs) have been found to be related to height. We examined whether these SNPs were associated with TGCT and whether they explained the relationship between height and TGCT. We genotyped 15 height-related SNPs in the US Servicemen's Testicular Tumor Environmental and Endocrine Determinants (STEED) case-control study. DNA was extracted from buccal cell samples and Taqman assays were used to type the selected SNPs. We used logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (95%CIs). There were 561 cases and 676 controls for analysis. Two SNPs were found to be associated with risk of TGCT, rs6060373 (CC vs TT, OR = 1.51, 95% CI: 1.06-2.15) and rs143384 (CC vs TT, OR = 1.53, 95% CI: 1.09-2.15). rs6060373 is an intronic polymorphism of ubiquinol-cytochrome c reductase complex chaperone (UQCC), and rs143384 is a 5'UTR polymorphism of growth differentiation factor 5 (GDF5). No individual SNP attenuated the association between height and TGCT. Adjustment for all SNPs previously associated with adult height reduced the associations between adult height and TGCT by ~8.5%, although the P-value indicated only weak evidence that this difference was important (P = 0.26). This novel analysis provides tentative evidence that SNPs which are associated with adult height may also share an association with risk of TGCT.

  1. Possible association of VISA gene polymorphisms with susceptibility to systemic lupus erythematosus in Chinese population.

    PubMed

    Liu, Xiaowen; Jiao, Yulian; Wen, Xin; Wang, Laicheng; Ma, Chunyan; Gao, Xuejun; Chen, Zi-Jiang; Zhao, Yueran

    2011-10-01

    Virus-induced signaling adapter (VISA), an important adaptor protein linking both RIG-I and MDA-5 to downstream signaling events, may mediates the activation of NF kappaB and IRFs and the induction of type I IFN. As the evidence has showed that Toll-like receptors (TLRs), I-IFN and IFN-inducible genes contribute to the pathogenesis of systemic lupus erythematosus (SLE), the aim of the current study was to investigate the possible associations between the VISA gene and SLE. Four single nucleotide polymorphisms (SNPs), rs17857295, rs2326369, rs7262903, and rs7269320, in VISA gene were genotyped in 123 SLE patients and 95 healthy controls. Genotyping was performed using direct sequencing the purified PCR products. Associations were analyzed by using the chi-square test and Fisher's exact test. Haplotype analysis was performed using haploview and PHASE2.1. None of the four SNPs was found to be associated with SLE. The four-SNPs haplotype analysis showed different effect between cases and controls. While the SNPs, rs17857295 and rs2326369, were found to be associated with the renal nephritis and arthritis of SLE patient, respectively. The SNPs rs7269320 showed associations with different manifestations. Our data reveal that polymorphisms in the VISA gene may be related to disease susceptibility and manifestations of SLE.

  2. Genetic Variation in FABP4 and Evaluation of Its Effects on Beef Cattle Fat Content.

    PubMed

    Goszczynski, Daniel E; Papaleo-Mazzucco, Juliana; Ripoli, María V; Villarreal, Edgardo L; Rogberg-Muñoz, Andrés; Mezzadra, Carlos A; Melucci, Lilia M; Giovambattista, Guillermo

    2017-07-03

    FABP4 is a protein primarily expressed in adipocytes and macrophages that plays a key role in fatty acid trafficking and lipid hydrolysis. FABP4 gene polymorphisms have been associated with meat quality traits in cattle, mostly in Asian breeds under feedlot conditions. The objectives of this work were to characterize FABP4 genetic variation in several worldwide cattle breeds and evaluate possible genotype effects on fat content in a pasture-fed crossbred (Angus-Hereford-Limousin) population. We re-sequenced 43 unrelated animals from nine cattle breeds (Angus, Brahman, Creole, Hereford, Holstein, Limousin, Nelore, Shorthorn, and Wagyu) and obtained 22 single nucleotide polymorphisms (SNPs) over 3,164 bp, including four novel polymorphisms. Haplotypes and linkage disequilibrium analyses showed a high variability. Five SNPs were selected to perform validation and association studies in our crossbred population. Four SNPs showed well-balanced allele frequencies (minor frequency > 0.159), and three showed no significant deviations from Hardy-Weinberg proportions. SNPs showed significant effects on backfat thickness and fatty acid composition (P < 0.05). The protein structure of one of the missense SNPs was analyzed to elucidate its possible effect on fat content in our studied population. Our results revealed a possible blockage of the fatty acid binding site by the missense mutation.

  3. Polymorphisms in the Tlr4 and Tlr5 Gene Are Significantly Associated with Inflammatory Bowel Disease in German Shepherd Dogs

    PubMed Central

    Kathrani, Aarti; House, Arthur; Catchpole, Brian; Murphy, Angela; German, Alex; Werling, Dirk; Allenspach, Karin

    2010-01-01

    Inflammatory bowel disease (IBD) is considered to be the most common cause of vomiting and diarrhoea in dogs, and the German shepherd dog (GSD) is particularly susceptible. The exact aetiology of IBD is unknown, however associations have been identified between specific single-nucleotide polymorphisms (SNPs) in Toll-like receptors (TLRs) and human IBD. However, to date, no genetic studies have been undertaken in canine IBD. The aim of this study was to investigate whether polymorphisms in canine TLR 2, 4 and 5 genes are associated with IBD in GSDs. Mutational analysis of TLR2, TLR4 and TLR5 was performed in 10 unrelated GSDs with IBD. Four non-synonymous SNPs (T23C, G1039A, A1571T and G1807A) were identified in the TLR4 gene, and three non-synonymous SNPs (G22A, C100T and T1844C) were identified in the TLR5 gene. The non-synonymous SNPs identified in TLR4 and TLR5 were evaluated further in a case-control study using a SNaPSHOT multiplex reaction. Sequencing information from 55 unrelated GSDs with IBD were compared to a control group consisting of 61 unrelated GSDs. The G22A SNP in TLR5 was significantly associated with IBD in GSDs, whereas the remaining two SNPs were found to be significantly protective for IBD. Furthermore, the two SNPs in TLR4 (A1571T and G1807A) were in complete linkage disequilibrium, and were also significantly associated with IBD. The TLR5 risk haplotype (ACC) without the two associated TLR4 SNP alleles was significantly associated with IBD, however the presence of the two TLR4 SNP risk alleles without the TLR5 risk haplotype was not statistically associated with IBD. Our study suggests that the three TLR5 SNPs and two TLR4 SNPs; A1571T and G1807A could play a role in the pathogenesis of IBD in GSDs. Further studies are required to confirm the functional importance of these polymorphisms in the pathogenesis of this disease. PMID:21203467

  4. Polymorphisms in the TLR4 and TLR5 gene are significantly associated with inflammatory bowel disease in German shepherd dogs.

    PubMed

    Kathrani, Aarti; House, Arthur; Catchpole, Brian; Murphy, Angela; German, Alex; Werling, Dirk; Allenspach, Karin

    2010-12-23

    Inflammatory bowel disease (IBD) is considered to be the most common cause of vomiting and diarrhoea in dogs, and the German shepherd dog (GSD) is particularly susceptible. The exact aetiology of IBD is unknown, however associations have been identified between specific single-nucleotide polymorphisms (SNPs) in Toll-like receptors (TLRs) and human IBD. However, to date, no genetic studies have been undertaken in canine IBD. The aim of this study was to investigate whether polymorphisms in canine TLR 2, 4 and 5 genes are associated with IBD in GSDs. Mutational analysis of TLR2, TLR4 and TLR5 was performed in 10 unrelated GSDs with IBD. Four non-synonymous SNPs (T23C, G1039A, A1571T and G1807A) were identified in the TLR4 gene, and three non-synonymous SNPs (G22A, C100T and T1844C) were identified in the TLR5 gene. The non-synonymous SNPs identified in TLR4 and TLR5 were evaluated further in a case-control study using a SNaPSHOT multiplex reaction. Sequencing information from 55 unrelated GSDs with IBD were compared to a control group consisting of 61 unrelated GSDs. The G22A SNP in TLR5 was significantly associated with IBD in GSDs, whereas the remaining two SNPs were found to be significantly protective for IBD. Furthermore, the two SNPs in TLR4 (A1571T and G1807A) were in complete linkage disequilibrium, and were also significantly associated with IBD. The TLR5 risk haplotype (ACC) without the two associated TLR4 SNP alleles was significantly associated with IBD, however the presence of the two TLR4 SNP risk alleles without the TLR5 risk haplotype was not statistically associated with IBD. Our study suggests that the three TLR5 SNPs and two TLR4 SNPs; A1571T and G1807A could play a role in the pathogenesis of IBD in GSDs. Further studies are required to confirm the functional importance of these polymorphisms in the pathogenesis of this disease.

  5. Complete physical mapping of IL6 reveals a new marker associated with chronic periodontitis.

    PubMed

    Farhat, S B; de Souza, C M; Braosi, A P R; Kim, S H; Tramontina, V A; Papalexiou, V; Olandoski, M; Mira, M T; Luczyszyn, S M; Trevilatto, P C

    2017-04-01

    Interleukin-6 (IL-6) is a powerful stimulator of osteoclast differentiation and bone resorption. Production of IL-6 is modulated by polymorphisms, and higher levels of this cytokine are found locally in patients with chronic periodontitis. In this study we performed a modern approach - Complete physical mapping of the IL6 gene - to identify the polymorphisms associated with chronic periodontitis in a southern Brazilian population sample. One-hundred and nine individuals of both genders (mean age: 41.5 ± 8.5 years) were divided into a study group (56 participants with periodontitis) and a control group (53 individuals without periodontitis). After collection and purification of DNA, nine tag single nucleotide polymorphisms (SNPs; rs1524107, rs2069835, rs2069837, rs2069838, rs2069840, rs2069842, rs2069843, rs2069845 and rs2069849) covering the entire gene were selected according to the information available on the International HapMap Project website and evaluated using real-time PCR. Differences in the distribution of the following parameters were statistically significant between study and control groups: number of teeth (p = 0.030); probing depth (p < 0.001); clinical attachment level (p < 0.001); gingival index (p < 0.001); plaque index (p = 0.003); calculus index (p < 0.001); and dental mobility (p < 0.001). It was found that marker rs2069837 (located in intron 2 of IL6) under G dominant was associated with protection against chronic periodontitis in a Brazilian population in the presence of clinical variables, such as visible plaque, dentist visit frequency and dental floss use, and was suggested for the first time as a marker of susceptibility to chronic periodontitis. Complete physical mapping of IL6 (using tag SNPs) was carried out for the first time, unveiling allele G of polymorphism rs2069837 (located in the second intron of IL6) as a suggestive marker of protection against chronic periodontitis in a Brazilian population. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. PigGIS: Pig Genomic Informatics System

    PubMed Central

    Ruan, Jue; Guo, Yiran; Li, Heng; Hu, Yafeng; Song, Fei; Huang, Xin; Kristiensen, Karsten; Bolund, Lars; Wang, Jun

    2007-01-01

    Pig Genomic Information System (PigGIS) is a web-based depository of pig (Sus scrofa) genomic learning mainly engineered for biomedical research to locate pig genes from their human homologs and position single nucleotide polymorphisms (SNPs) in different pig populations. It utilizes a variety of sequence data, including whole genome shotgun (WGS) reads and expressed sequence tags (ESTs), and achieves a successful mapping solution to the low-coverage genome problem. With the data presently available, we have identified a total of 15 700 pig consensus sequences covering 18.5 Mb of the homologous human exons. We have also recovered 18 700 SNPs and 20 800 unique 60mer oligonucleotide probes for future pig genome analyses. PigGIS can be freely accessed via the web at and . PMID:17090590

  7. Data on polymorphisms in CYP2A6 associated to risk and predispose to smoking related variables.

    PubMed

    López-Flores, Luis A; Pérez-Rubio, Gloria; Ramírez-Venegas, Alejandra; Ambrocio-Ortiz, Enrique; Sansores, Raúl H; Falfán-Valencia, Ramcés

    2017-12-01

    This article contains data on the single nucleotide polymorphisms (SNPs) rs1137115, rs1801272 and rs28399433 rs4105144 in CYP2A6 associated to smoking related variables in Mexican Mestizo smokers (Pérez-Rubio et al., 2017) [1]. These SNPs were selected due to previous associations with other populations. Mexican Mestizo smokers were classified according their smoking pattern. A genetic association test was performed.

  8. Association of Cytokine Candidate Genes with Severity of Pain and Co-Occurring Symptoms in Breast Cancer Patients Receiving Chemotherapy

    DTIC Science & Technology

    2013-10-01

    identify common genetic variations (i.e., single nucleotide polymorphisms [ SNPs ] and haplotypes) in cytokine genes, as well demographic, clinical, and...Center. The purpose of the proposed project is to identify common genetic variations (i.e., single nucleotide polymorphisms [ SNPs ] and haplotypes) in...research team continues to meet monthly to discuss progress with regards to recruitment, enrollment, and data collection. Training in Genetics In year

  9. Single nucleotide polymorphisms associated with coronary heart disease predict incident ischemic stroke in the atherosclerosis risk in communities study.

    PubMed

    Morrison, Alanna C; Bare, Lance A; Luke, May M; Pankow, James S; Mosley, Thomas H; Devlin, James J; Willerson, James T; Boerwinkle, Eric

    2008-01-01

    Ischemic stroke and coronary heart disease (CHD) may share genetic factors contributing to a common etiology. This study investigates whether 51 single nucleotide polymorphisms (SNPs) associated with CHD in multiple antecedent studies are associated with incident ischemic stroke in the Atherosclerosis Risk in Communities (ARIC) study. From the multiethnic ARIC cohort of 14,215 individuals, 495 validated ischemic strokes were identified. Cox proportional hazards models, adjusted for age and gender, identified three SNPs in Whites and two SNPs in Blacks associated with incident stroke (p

  10. Fast Screening Technology for Drug Emergency Management: Predicting Suspicious SNPs for ADR with Information Theory-based Models.

    PubMed

    Liang, Zhaohui; Liu, Jun; Huang, Jimmy X; Zeng, Xing

    2018-01-01

    The genetic polymorphism of Cytochrome P450 (CYP 450) is considered as one of the main causes for adverse drug reactions (ADRs). In order to explore the latent correlations between ADRs and potentially corresponding single-nucleotide polymorphism (SNPs) in CYP450, three algorithms based on information theory are used as the main method to predict the possible relation. The study uses a retrospective case-control study to explore the potential relation of ADRs to specific genomic locations and single-nucleotide polymorphism (SNP). The genomic data collected from 53 healthy volunteers are applied for the analysis, another group of genomic data collected from 30 healthy volunteers excluded from the study are used as the control group. The SNPs respective on five loci of CYP2D6*2,*10,*14 and CYP1A2*1C, *1F are detected by the Applied Biosystem 3130xl. The raw data is processed by ChromasPro to detect the specific alleles on the above loci from each sample. The secondary data are reorganized and processed by R combined with the reports of ADRs from clinical reports. Three information theory based algorithms are implemented for the screening task: JMI, CMIM, and mRMR. If a SNP is selected by more than two algorithms, we are confident to conclude that it is related to the corresponding ADR. The selection results are compared with the control decision tree + LASSO regression model. In the study group where ADRs occur, 10 SNPs are considered relevant to the occurrence of a specific ADR by the combined information theory model. In comparison, only 5 SNPs are considered relevant to a specific ADR by the decision tree + LASSO regression model. In addition, the new method detects more relevant pairs of SNP and ADR which are affected by both SNP and dosage. This implies that the new information theory based model is effective to discover correlations of ADRs and CYP 450 SNPs and is helpful in predicting the potential vulnerable genotype for some ADRs. The newly proposed information theory based model has superiority performance in detecting the relation between SNP and ADR compared to the decision tree + LASSO regression model. The new model is more sensitive to detect ADRs compared to the old method, while the old method is more reliable. Therefore, the selection criteria for selecting algorithms should depend on the pragmatic needs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    This paper examines whether an abbreviated panel of 37 single nucleotide polymorphisms (SNPs) has the same power as a larger and more expensive panel of 95 SNPs to assign ancestry of honeybees (Apis mellifera) to three ancestral lineages. We selected 37 SNPs from the original 95 SNP panel using alle...

  12. Polymorphisms in the dopamine receptor 2 gene region influence improvements during working memory training in children and adolescents.

    PubMed

    Söderqvist, Stina; Matsson, Hans; Peyrard-Janvid, Myriam; Kere, Juha; Klingberg, Torkel

    2014-01-01

    Studying the effects of cognitive training can lead to finding better treatments, but it can also be a tool for investigating factors important for brain plasticity and acquisition of cognitive skills. In this study, we investigated how single-nucleotide polymorphisms (SNPs) and ratings of intrinsic motivation were associated to interindividual differences in improvement during working memory training. The study included 256 children aged 7-19 years who were genotyped for 13 SNPs within or near eight candidate genes previously implicated in learning: COMT, SLC6A3 (DAT1), DRD4, DRD2, PPP1R1B (DARPP32), MAOA, LMX1A, and BDNF. Ratings on the intrinsic motivation inventory were also available for 156 of these children. All participants performed at least 20 sessions of working memory training, and performance during the training was logged and used as the outcome variable. We found that two SNPs, rs1800497 and rs2283265, located near and within the dopamine receptor 2 (DRD2) gene, respectively, were significantly associated with improvements during training (p < .003 and p < .0004, respectively). Scores from a questionnaire regarding intrinsic motivation did not correlate with training outcome. However, we observed both the main effect of genotype at those two loci as well as the interaction between genotypes and ratings of intrinsic motivation (perceived competence). Both SNPs have previously been shown to affect DRD2 receptor density primarily in the BG. Our results suggest that genetic variation is accounting for some interindividual differences in how children acquire cognitive skills and that part of this effect is also seen on intrinsic motivation. Moreover, they suggest that dopamine D2 transmission in the BG is a key factor for cognitive plasticity.

  13. Genetic polymorphisms associated with smoking behaviour predict the risk of surgery in patients with Crohn's disease.

    PubMed

    Lang, B M; Biedermann, L; van Haaften, W T; de Vallière, C; Schuurmans, M; Begré, S; Zeitz, J; Scharl, M; Turina, M; Greuter, T; Schreiner, P; Heinrich, H; Kuntzen, T; Vavricka, S R; Rogler, G; Beerenwinkel, N; Misselwitz, B

    2018-01-01

    Smoking is a strong environmental factor leading to adverse outcomes in Crohn's disease, but a more benign course in ulcerative colitis. Several single nucleotide polymorphisms (SNPs) are associated with smoking quantity and behaviour. To assess whether smoking-associated SNPs interact with smoking to influence the clinical course of inflammatory bowel diseases. Genetic and prospectively obtained clinical data from 1434 Swiss inflammatory bowel disease cohort patients (821 Crohn's disease and 613 ulcerative colitis) were analysed. Six SNPs associated with smoking quantity and behaviour (rs588765, rs1051730, rs1329650, rs4105144, rs6474412 and rs3733829) were combined to form a risk score (range: 0-12) by adding the number of risk alleles. We calculated multivariate models for smoking, risk of surgery, fistula, Crohn's disease location and ulcerative colitis disease extent. In Crohn's disease patients who smoke, the number of surgeries was associated with the genetic risk score. This translates to a predicted 3.5-fold (95% confidence interval: 2.4- to 5.7-fold, P<.0001) higher number of surgical procedures in smokers with 12 risk alleles than individuals with the lowest risk. Patients with a risk score >7 had a significantly shorter time to first intestinal surgery. The genetic risk score did not predict surgery in ulcerative colitis or occurrence of fistulae in Crohn's disease. SNP rs6265 was associated with ileal disease in Crohn's disease (P<.05) and proctitis in ulcerative colitis (P<.05). SNPs associated with smoking quantity is associated with an increased risk for surgery in Crohn's disease patients who smoke. Our data provide an example of genetics interacting with the environment to influence the disease course of inflammatory bowel disease. © 2017 John Wiley & Sons Ltd.

  14. X-chromosome Forkhead Box P3 polymorphisms associate with atopy in girls in three Dutch birth cohorts.

    PubMed

    Bottema, R W B; Kerkhof, M; Reijmerink, N E; Koppelman, G H; Thijs, C; Stelma, F F; Smit, H A; Brunekreef, B; van Schayck, C P; Postma, D S

    2010-07-01

    The Forkhead Box P3 (FOXP3) gene, located on the X-chromosome, encodes a transcription factor that directs T cells toward a regulatory phenotype. Regulatory T cells may suppress development of atopy. We evaluated whether single-nucleotide polymorphisms (SNPs) of FOXP3 are associated with atopy development in childhood. Seven SNPs in FOXP3 were genotyped in 3062 children (51% boys) participating in the Allergenic study, which consists of three Dutch birth cohorts (PIAMA, PREVASC and KOALA). Association of FOXP3 SNPs with total serum IgE and sensitisation (presence of specific serum IgE to egg, milk, and indoor, i.e. house-dust mite, cat, and/or dog allergens) was investigated at ages 1, 2, 4, and 8. Analysis of variance and logistic regression were performed, stratified for gender. Our most consistent finding was observed for sensitisation to egg and indoor allergens. In girls, five FOXP3 SNPs (rs5906761, rs2294021, rs2294019, rs6609857 and rs3761548) were significantly associated with sensitisation to egg at ages 1 and 2 and with sensitisation to indoor allergens at age 2 (P < 0.05), but not at 4 and 8, a finding that was observed across the three cohorts. Rs5906761 and rs2294021 were associated with remission of sensitisation to food allergens in boys, as tested in the PIAMA cohort. This is the first study showing across three cohorts that X-chromosomal FOXP3 genotypes may contribute to development of sensitisation against egg and indoor allergens in girls in early childhood. In addition, an association with remission of sensitisation to food allergens existed in boys only.

  15. Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunus persica (L.) Batsch].

    PubMed

    Martínez-García, Pedro J; Fresnedo-Ramírez, Jonathan; Parfitt, Dan E; Gradziel, Thomas M; Crisosto, Carlos H

    2013-01-01

    Single nucleotide polymorphisms (SNPs) are a fundamental source of genomic variation. Large SNP panels have been developed for Prunus species. Fruit quality traits are essential peach breeding program objectives since they determine consumer acceptance, fruit consumption, industry trends and cultivar adoption. For many cultivars, these traits are negatively impacted by cold storage, used to extend fruit market life. The major symptoms of chilling injury are lack of flavor, off flavor, mealiness, flesh browning, and flesh bleeding. A set of 1,109 SNPs was mapped previously and 67 were linked with these complex traits. The prediction of the effects associated with these SNPs on downstream products from the 'peach v1.0' genome sequence was carried out. A total of 2,163 effects were detected, 282 effects (non-synonymous, synonymous or stop codon gained) were located in exonic regions (13.04 %) and 294 placed in intronic regions (13.59 %). An extended list of genes and proteins that could be related to these traits was developed. Two SNP markers that explain a high percentage of the observed phenotypic variance, UCD_SNP_1084 and UCD_SNP_46, are associated with zinc finger (C3HC4-type RING finger) family protein and AOX1A (alternative oxidase 1a) protein groups, respectively. In addition, phenotypic variation suggests that the observed polymorphism for SNP UCD_SNP_1084 [A/G] mutation could be a candidate quantitative trait nucleotide affecting quantitative trait loci for mealiness. The interaction and expression of affected proteins could explain the variation observed in each individual and facilitate understanding of gene regulatory networks for fruit quality traits in peach.

  16. Genetic diversity of tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) genes in cattle breeds

    PubMed Central

    Lourenco-Jaramillo, Diana Lelidett; Sifuentes-Rincón, Ana María; Parra-Bracamonte, Gaspar Manuel; de la Rosa-Reyna, Xochitl Fabiola; Segura-Cabrera, Aldo; Arellano-Vera, Williams

    2012-01-01

    DNA from four cattle breeds was used to re-sequence all of the exons and 56% of the introns of the bovine tyrosine hydroxylase (TH) gene and 97% and 13% of the bovine dopamine β-hydroxylase (DBH) coding and non-coding sequences, respectively. Two novel single nucleotide polymorphisms (SNPs) and a microsatellite motif were found in the TH sequences. The DBH sequences contained 62 nucleotide changes, including eight non-synonymous SNPs (nsSNPs) that are of particular interest because they may alter protein function and therefore affect the phenotype. These DBH nsSNPs resulted in amino acid substitutions that were predicted to destabilize the protein structure. Six SNPs (one from TH and five from DBH non-synonymous SNPs) were genotyped in 140 animals; all of them were polymorphic and had a minor allele frequency of > 9%. There were significant differences in the intra- and inter-population haplotype distributions. The haplotype differences between Brahman cattle and the three B. t. taurus breeds (Charolais, Holstein and Lidia) were interesting from a behavioural point of view because of the differences in temperament between these breeds. PMID:22888292

  17. Association of genetic variations in the serotonin and dopamine systems with aggressive behavior in the Chinese adolescent population: Single- and multiple-risk genetic variants.

    PubMed

    Chang, Hongjuan; Yan, Qiuge; Tang, Lina; Huang, Juan; Ma, Yuqiao; Ye, Xiaozhou; Wu, Chunxia; Wu, Linguo; Yu, Yizhen

    2018-01-01

    Genetic predisposition is an important factor leading to aggressive behavior. However, the relationship between genetic polymorphisms and aggressive behavior has not been elucidated. We identified candidate genes located in the dopaminergic and serotonin system (DRD3, DRD4, and FEV) that had been previously reported to be associated with aggressive behavior. We investigated 14 tag single-nucleotide polymorphisms (SNPs) using a multi-analytic strategy combining logistic regression (LR) and classification and regression tree (CART) to explore higher-order interactions between these SNPs and aggressive behavior in 318 patients and 558 controls. Both LR and CART analyses suggested that the rs16859448 polymorphism is the strongest individual factor associated with aggressive behavior risk. In CART analysis, individuals carrying the combined genotypes of rs16859448TT/GT-rs11246228CT/TT-rs3773679TT had the highest risk, while rs16859448GG-rs2134655CT had the lowest risk (OR = 5.25, 95% CI: 2.53-10.86). This study adds to the growing evidence on the association of single- and multiple-risk variants in DRD3, DRD4, and FEV with aggressive behavior in Chinese adolescents. However, the aggressive behavior scale used to diagnose aggression in this study did not account for comorbid conditions; therefore, further studies are needed to confirm our observations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dextromethorphan and debrisoquine metabolism and polymorphism of the gene for cytochrome P450 isozyme 2D50 in Thoroughbreds.

    PubMed

    Corado, Carley R; McKemie, Daniel S; Knych, Heather K

    2016-09-01

    OBJECTIVE To characterize polymorphisms of the gene for cytochrome P450 isozyme 2D50 (CYP2D50) and the disposition of 2 CYP2D50 probe drugs, dextromethorphan and debrisoquine, in horses. ANIMALS 23 healthy horses (22 Thoroughbreds and 1 Standardbred). PROCEDURES Single-nucleotide polymorphisms (SNPs) in CYP2D50 were identified. Disposition of dextromethorphan (2 mg/kg) and debrisoquine (0.2 mg/kg) were determined after oral (dextromethorphan) or nasogastric (debrisoquine) administration to the horses. Metabolic ratios of plasma dextromethorphan and total dextrorphan (dextrorphan plus dextrorphan-O-β-glucuronide) and 4-hydroxydebrisoquine concentrations were calculated on the basis of the area under the plasma concentration-versus-time curve extrapolated to infinity for the parent drug divided by that for the corresponding metabolite. Pharmacokinetic data were used to categorize horses into the phenotypic drug-metabolism categories poor, extensive, and ultrarapid. Disposition patterns were compared among categories, and relationships between SNPs and metabolism categories were explored. RESULTS Gene sequencing identified 51 SNPs, including 27 nonsynonymous SNPs. Debrisoquine was minimally detected after oral administration. Disposition of dextromethorphan varied markedly among horses. Metabolic ratios for dextromethorphan ranged from 0.03 to 0.46 (mean, 0.12). On the basis of these data, 1 horse was characterized as a poor metabolizer, 18 were characterized as extensive metabolizers, and 3 were characterized as ultrarapid metabolizers. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that CYP2D50 is polymorphic and that the disposition of the probe drug varies markedly in horses. The polymorphisms may be related to rates of drug metabolism. Additional research involving more horses of various breeds is needed to fully explore the functional implication of polymorphisms in CYP2D50.

  19. No association of dynamin binding protein (DNMBP) gene SNPs and Alzheimer's disease.

    PubMed

    Minster, Ryan L; DeKosky, Steven T; Kamboh, M Ilyas

    2008-10-01

    A recent scan of single nucleotide polymorphisms (SNPs) on chromosome 10q found significant association of six correlated SNPs with late-onset Alzheimer's disease (AD) among Japanese. We examined the SNP with the highest statistical significance (rs3740058) in a large Caucasian American case-control cohort and the remaining five SNPs in a smaller subset of cases and controls. We observed no association of statistical significance in either the total sample or the APOE*4 non-carriers for any of the SNPs.

  20. A study of possible associations between single nucleotide polymorphisms in the estrogen receptor 2 gene and female sexual desire.

    PubMed

    Gunst, Annika; Jern, Patrick; Westberg, Lars; Johansson, Ada; Salo, Benny; Burri, Andrea; Spector, Tim; Eriksson, Elias; Sandnabba, N Kenneth; Santtila, Pekka

    2015-03-01

    Female sexual desire and arousal problems have been shown to have a heritable component of moderate size. Previous molecular genetic studies on sexual desire have mainly focused on genes associated with neurotransmitters such as dopamine and serotonin. Nevertheless, there is reason to believe that hormones with more specific functions concerning sexuality could have an impact on sexual desire and arousal. The aim of the present study was to investigate the possible effects of 17 single nucleotide polymorphisms (SNPs) located in estrogen receptor genes on female sexual desire and subjective and genital arousal (lubrication). Based on previous research, we hypothesized that ESR1 and ESR2 are relevant genes that contribute to female sexual desire and arousal. The desire, arousal, and lubrication subdomains of the Female Sexual Function Index self-report questionnaire were used. The present study involved 2,448 female twins and their sisters aged 18-49 who had submitted saliva samples for genotyping. The participants were a subset from a large-scale, population-based sample. We found nominally significant main effects on sexual desire for three ESR2 -linked SNPs when controlled for anxiety, suggesting that individuals homozygous for the G allele of the rs1271572 SNP, and the A allele of the rs4986938 and rs928554 SNPs had lower levels of sexual desire. The rs4986938 SNP also had a nominally significant effect on lubrication. No effects for any of the SNPs on subjective arousal could be detected. The number of nominally significant results for SNPs in the ESR2 gene before correcting for multiple testing suggests that further studies on the possible influence of this gene on interindividual variation in female sexual functioning are warranted. In contrast, no support for an involvement of ESR1 was obtained. Our results should be interpreted with caution until replicated in independent, large samples. © 2014 International Society for Sexual Medicine.

  1. Polymorphism discovery and allele frequency estimation using high-throughput DNA sequencing of target-enriched pooled DNA samples

    PubMed Central

    2012-01-01

    Background The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility. Results In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent (n = 952) of variants were located within 5' and 3' UTRs. Seventy-two percent (n = 3,612) were intronic and 9% (n = 464) were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS). Significant (P < 0.01) mean allele frequency differentials between the low and high fertility groups were observed for 720 SNPs (58 NSS). Allele frequencies for 43 of the SNPs were also determined by genotyping the 150 individual animals (Sequenom® MassARRAY). No significant differences (P > 0.1) were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total). Conclusions The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving interval plausibly harbouring causative variants contributing to heritable variation. To our knowledge, this is the first report describing sequencing of targeted genomic regions in any livestock species using groups with divergent phenotypes for an economically important trait. PMID:22235840

  2. TLR7 single-nucleotide polymorphisms in the 3' untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study

    PubMed Central

    2011-01-01

    Introduction The Toll-like receptor 7 (TLR7) gene, encoded on human chromosome Xp22.3, is crucial for type I interferon production. A recent multicenter study in East Asian populations, comprising Chinese, Korean and Japanese participants, identified an association of a TLR7 single-nucleotide polymorphism (SNP) located in the 3' untranslated region (3' UTR), rs3853839, with systemic lupus erythematosus (SLE), especially in males, although some difference was observed among the tested populations. To test whether additional polymorphisms contribute to SLE in Japanese, we systematically analyzed the association of TLR7 with SLE in a Japanese female population. Methods A case-control association study was conducted on eight tag SNPs in the TLR7 region, including rs3853839, in 344 Japanese females with SLE and 274 healthy female controls. Results In addition to rs3853839, two SNPs in intron 2, rs179019 and rs179010, which were in moderate linkage disequilibrium with each other (r2 = 0.53), showed an association with SLE (rs179019: P = 0.016, odds ratio (OR) 2.02, 95% confidence interval (95% CI) 1.15 to 3.54; rs179010: P = 0.018, OR 1.75, 95% CI 1.10 to 2.80 (both under the recessive model)). Conditional logistic regression analysis revealed that the association of the intronic SNPs and the 3' UTR SNP remained significant after we adjusted them for each other. When only the patients and controls carrying the risk genotypes at the 3' UTR SNPpositionwere analyzed, the risk of SLE was significantly increased when the individuals also carried the risk genotypes at both of the intronic SNPs (P = 0.0043, OR 2.45, 95% CI 1.31 to 4.60). Furthermore, the haplotype containing the intronic risk alleles in addition to the 3' UTR risk allele was associated with SLE under the recessive model (P = 0.016, OR 2.37, 95% CI 1.17 to 4.80), but other haplotypes were not associated with SLE. Conclusions The TLR7 intronic SNPs rs179019 and rs179010 are associated with SLE independently of the 3' UTR SNP rs3853839 in Japanese women. Our findings support a role of TLR7 in predisposition for SLE in Asian populations. PMID:21396113

  3. CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs.

    PubMed

    Ao, S I; Yip, Kevin; Ng, Michael; Cheung, David; Fong, Pui-Yee; Melhado, Ian; Sham, Pak C

    2005-04-15

    Cluster and set-cover algorithms are developed to obtain a set of tag single nucleotide polymorphisms (SNPs) that can represent all the known SNPs in a chromosomal region, subject to the constraint that all SNPs must have a squared correlation R2>C with at least one tag SNP, where C is specified by the user. http://hkumath.hku.hk/web/link/CLUSTAG/CLUSTAG.html mng@maths.hku.hk.

  4. Developing a new nonbinary SNP fluorescent multiplex detection system for forensic application in China.

    PubMed

    Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila

    2017-04-01

    Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Top single nucleotide polymorphisms affecting carbohydrate metabolism in metabolic syndrome: from the LIPGENE study.

    PubMed

    Delgado-Lista, Javier; Perez-Martinez, Pablo; Solivera, Juan; Garcia-Rios, Antonio; Perez-Caballero, A I; Lovegrove, Julie A; Drevon, Christian A; Defoort, Catherine; Blaak, Ellen E; Dembinska-Kieć, Aldona; Risérus, Ulf; Herruzo-Gomez, Ezequiel; Camargo, Antonio; Ordovas, Jose M; Roche, Helen; Lopez-Miranda, José

    2014-02-01

    Metabolic syndrome (MetS) is a high-prevalence condition characterized by altered energy metabolism, insulin resistance, and elevated cardiovascular risk. Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS. A total of 904 SNPs (tag SNPs and functional SNPs) were tested for influence on 8 fasting and dynamic markers of carbohydrate metabolism, by performance of an intravenous glucose tolerance test in 450 participants in the LIPGENE study. From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (16% of the preselected variables) remained significant after bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose, rs26125 (PPARGC1B); fasting insulin, rs4759277 (LRP1); C-peptide, rs4759277 (LRP1); homeostasis assessment of insulin resistance, rs4759277 (LRP1); quantitative insulin sensitivity check index, rs184003 (AGER); sensitivity index, rs7301876 (ABCC9), acute insulin response to glucose, rs290481 (TCF7L2); and disposition index, rs12691 (CEBPA). We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among approximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.

  6. Automated detection system of single nucleotide polymorphisms using two kinds of functional magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Hongna; Li, Song; Wang, Zhifei; Li, Zhiyang; Deng, Yan; Wang, Hua; Shi, Zhiyang; He, Nongyue

    2008-11-01

    Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome wide codominant SNPs identification. Therefore, large-scale codominant SNPs identification, especially for those associated with complex diseases, has induced the need for completely high-throughput and automated SNP genotyping method. Herein, we present an automated detection system of SNPs based on two kinds of functional magnetic nanoparticles (MNPs) and dual-color hybridization. The amido-modified MNPs (NH 2-MNPs) modified with APTES were used for DNA extraction from whole blood directly by electrostatic reaction, and followed by PCR, was successfully performed. Furthermore, biotinylated PCR products were captured on the streptavidin-coated MNPs (SA-MNPs) and interrogated by hybridization with a pair of dual-color probes to determine SNP, then the genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. This system provided a rapid, sensitive and highly versatile automated procedure that will greatly facilitate the analysis of different known SNPs in human genome.

  7. Single-nucleotide polymorphisms (SNPs) of the IRF6 and TFAP2A in non-syndromic cleft lip with or without cleft palate (NSCLP) in a northern Chinese population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jinna, E-mail: kqkjk@yahoo.com.cn; Song, Tao; Jiao, Xiaohui

    2011-07-15

    Highlights: {yields} IRF6 rs642961 polymorphism is intensively associated with NSCLP. {yields} IRF6 rs2235371 polymorphism is not associated with NSCLP in the northern Chinese population. {yields} This investigation failed to yield any evidence for the involvement of TFAP2A polymorphisms in NSCLP in the northern Chinese population. -- Abstract: Non-syndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect that is presumably caused by genetic factors alone or gene alterations in combination with environmental changes. A number of studies have shown an association between NSCLP and single-nucleotide polymorphisms (SNPs) in the interferon regulatory factor 6 (IRF6) gene inmore » several populations. The transcription factor AP-2a (TFAP2A), which is involved in regulating mid-face development and upper lip fusion, has also be considered a candidate gene contributing to the etiology of NSCLP. The potential importance of IRF6 and TFAP2A in the NSCLP is further highlighted by a study showing that the two molecules are in the same developmental pathway. To further assess the roles of the IRF6 and TFAP2A in NSCLP, we investigated two identified IRF6 SNPs (rs2235371, rs642961) and three TFAP2A tag SNPs (rs3798691, rs1675414, rs303050) selected from HapMap data in a northern Chinese population, a group with a high prevalence of NSCLP. These SNPs were examined for association with NSCLP in 175 patients and 160 healthy controls. We observed a significant correlation between IRF6 rs642961 and NSCLP, and a lack of association between IRF6 rs2235371 polymorphisms and NSCLP in this population. This investigation indicated that there is no association between the three SNPs in the TFAP2A and NSCLP, suggesting that TFAP2A may not be involved in the development of NSCLP in the northern Chinese population. Our study provides further evidence regarding the role of IRF6 variations in NSCLP development and finds no significant association between TFAP2A and NSCLP in this northern Chinese population.« less

  8. A Primary Assembly of a Bovine Haplotype Block Map Based on a 15,036-Single-Nucleotide Polymorphism Panel Genotyped in Holstein–Friesian Cattle

    PubMed Central

    Khatkar, Mehar S.; Zenger, Kyall R.; Hobbs, Matthew; Hawken, Rachel J.; Cavanagh, Julie A. L.; Barris, Wes; McClintock, Alexander E.; McClintock, Sara; Thomson, Peter C.; Tier, Bruce; Nicholas, Frank W.; Raadsma, Herman W.

    2007-01-01

    Analysis of data on 1000 Holstein–Friesian bulls genotyped for 15,036 single-nucleotide polymorphisms (SNPs) has enabled genomewide identification of haplotype blocks and tag SNPs. A final subset of 9195 SNPs in Hardy–Weinberg equilibrium and mapped on autosomes on the bovine sequence assembly (release Btau 3.1) was used in this study. The average intermarker spacing was 251.8 kb. The average minor allele frequency (MAF) was 0.29 (0.05–0.5). Following recent precedents in human HapMap studies, a haplotype block was defined where 95% of combinations of SNPs within a region are in very high linkage disequilibrium. A total of 727 haplotype blocks consisting of ≥3 SNPs were identified. The average block length was 69.7 ± 7.7 kb, which is ∼5–10 times larger than in humans. These blocks comprised a total of 2964 SNPs and covered 50,638 kb of the sequence map, which constitutes 2.18% of the length of all autosomes. A set of tag SNPs, which will be useful for further fine-mapping studies, has been identified. Overall, the results suggest that as many as 75,000–100,000 tag SNPs would be needed to track all important haplotype blocks in the bovine genome. This would require ∼250,000 SNPs in the discovery phase. PMID:17435229

  9. PXR polymorphisms and their impact on pharmacokinetics/pharmacodynamics of repaglinide in healthy Chinese volunteers.

    PubMed

    Du, Qing-qing; Wang, Zhi-jun; He, Lin; Jiang, Xue-hua; Wang, Ling

    2013-11-01

    CYP3A4 is the main isoform of cytochrome P450 oxidases involved in the metabolism of approximately 60 % drugs, and its expression level is highly variable in human subjects. CYP3A4 is regulated by many transcription factors, among which the pregnane X receptor/steroid and xenobiotic receptor (PXR/SXR, NR1I2) have been identified as the most critical. Genetic polymorphisms (such as SNPs) in PXR may affect the expression level of CYP3A4. Although numerous SNPs have been identified in PXR and have appeared to affect PXR function, their impact on the expression of CYP3A4 in human subjects has not been well studied. Thus, a clinical study in healthy Chinese subjects was conducted to investigate the impact of PXR polymorphisms on repaglinide (an endogenous marker for CYP3A4 activity) pharmacokinetics used alone or in combination with a PXR inducer, flucloxacillin. Two SNPs, -298A>G and 11193T>C, were identified as the tag SNPs to represent the overall genetic polymorphic profile of PXR. To evaluate the potential functional change of these two SNPs, 24 healthy subjects were recruited in a pharmacokinetics/pharmacodynamics study of repaglinide with or without flucloxacillin. The pharmacokinetic parameters including AUC and T1/2 were significantly different among the PXR genotype groups. The SNPs of -298G/G and 11193C/C were found to be associated with a lower PXR activity resulting in reduction of CYP3A4 activity in vivo. After administration of flucloxacillin, a significant drug-drug interaction was observed. The clearance of repagnilide was significantly increased by concomitant flucloxacillin in a genotype dependent manner. The subjects with SNPs of -298G/G and 11193C/C appeared to be less sensitive to flucloxacillin. Our study results demonstrated for the first time the impact of genetic polymorphisms of PXR on the PK and PD of repaglinide, and showed that subjects with genotype of -298G/G and 11193C/C in PXR has a decreased elimination rate of 3A4/2C8. Furthermore, flucloxacillin was able to induce 3A4/2C8 expression mediated by PXR in a genotype dependent manner.

  10. Association of High Myopia with Crystallin Beta A4 (CRYBA4) Gene Polymorphisms in the Linkage-Identified MYP6 Locus

    PubMed Central

    Ho, Daniel W. H.; Yap, Maurice K. H.; Ng, Po Wah; Fung, Wai Yan; Yip, Shea Ping

    2012-01-01

    Background Myopia is the most common ocular disorder worldwide and imposes tremendous burden on the society. It is a complex disease. The MYP6 locus at 22 q12 is of particular interest because many studies have detected linkage signals at this interval. The MYP6 locus is likely to contain susceptibility gene(s) for myopia, but none has yet been identified. Methodology/Principal Findings Two independent subject groups of southern Chinese in Hong Kong participated in the study an initial study using a discovery sample set of 342 cases and 342 controls, and a follow-up study using a replication sample set of 316 cases and 313 controls. Cases with high myopia were defined by spherical equivalent ≤ -8 dioptres and emmetropic controls by spherical equivalent within ±1.00 dioptre for both eyes. Manual candidate gene selection from the MYP6 locus was supported by objective in silico prioritization. DNA samples of discovery sample set were genotyped for 178 tagging single nucleotide polymorphisms (SNPs) from 26 genes. For replication, 25 SNPs (tagging or located at predicted transcription factor or microRNA binding sites) from 4 genes were subsequently examined using the replication sample set. Fisher P value was calculated for all SNPs and overall association results were summarized by meta-analysis. Based on initial and replication studies, rs2009066 located in the crystallin beta A4 (CRYBA4) gene was identified to be the most significantly associated with high myopia (initial study: P = 0.02; replication study: P = 1.88e-4; meta-analysis: P = 1.54e-5) among all the SNPs tested. The association result survived correction for multiple comparisons. Under the allelic genetic model for the combined sample set, the odds ratio of the minor allele G was 1.41 (95% confidence intervals, 1.21-1.64). Conclusions/Significance A novel susceptibility gene (CRYBA4) was discovered for high myopia. Our study also signified the potential importance of appropriate gene prioritization in candidate selection. PMID:22792142

  11. Polymorphisms in the Estrogen Receptor β (ESR2) Gene Are Associated with Bone Mineral Density in Caucasian Men and Women

    PubMed Central

    Ichikawa, Shoji; Koller, Daniel L.; Peacock, Munro; Johnson, Michelle L.; Lai, Dongbing; Hui, Siu L.; Johnston, C. Conrad; Foroud, Tatiana M.; Econs, Michael J.

    2007-01-01

    Context A major determinant of osteoporotic fractures is peak bone mineral density (BMD), which is a highly heritable trait. Recently, we identified significant linkage for hip BMD in premenopausal sister pairs at chromosome 14q (LOD score = 3.5), where the estrogen receptor β gene (ESR2) is located. Objective The objective of the study was to determine whether ESR2 polymorphisms are associated with normal BMD variation. Design This was a population‐based genetic association study, using 11 single nucleotide polymorphisms (SNPs) distributed across the ESR2 gene. Setting The study was conducted at an academic research laboratory and medical center. Patients and Other Participants A total of 411 healthy men (aged 18–61 yr) and 1291 healthy premenopausal women (aged 20–50 yr) living in Indiana participated in the study. Intervention(s) There were no interventions. Main Outcome Measure(s) The main outcome measures were SNP genotype distributions and their association with BMD at the femoral neck and lumbar spine. Results Significant association of spine BMD was found with three SNPs in men and one SNP in women (P ≤ 0.05). The conditional linkage analysis using the ESR2 haplotypes showed that the ESR2 gene accounts for, at most, 18% of the original linkage. Conclusions ESR2 polymorphisms are significantly associated with bone mass in both men and women. However, the ESR2 gene is not entirely responsible for our original linkage, and an additional gene(s) in chromosome 14q contributes to the determination of BMD. PMID:16118344

  12. Effect of BCHE single nucleotide polymorphisms on lipid metabolism markers in women.

    PubMed

    Oliveira, Jéssica de; Tureck, Luciane Viater; Santos, Willian Dos; Saliba, Louise Farah; Schenknecht, Caroline Schovanz; Scaraboto, Débora; Souza, Ricardo Lehtonen R; Furtado-Alle, Lupe

    2017-01-01

    Butyrylcholinesterase (BChE) activity and polymorphisms in its encoding gene had previously been associated with metabolic traits of obesity. This study investigated the association of three single nucleotide polymorphisms (SNPs) in the BCHE gene: -116G > A (rs1126680), 1615GA (rs1803274), 1914A < G (rs3495), with obesity and lipid metabolism markers, body mass index (BMI), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglyceride (TG) levels, and BChE enzymatic activity in obese (BMI≥30/n = 226) and non-obese women (BMI < 25/n = 81). BCHE SNPs genotyping was obtained by TaqMan allelic discrimination assay and by RFLP-PCR. Plasmatic BChE activity was measured using propionylthiocholine as substrate. Similar allele frequencies were found in obese and non-obese women for the three studied SNPs (p > 0.05). The dominant and recessive models were tested, and different effects were found. The -116A allele showed a dominant effect in BChE activity reduction in both non-obese and obese women (p = 0.045 and p < 0.001, respectively). The 1914A > G and 1615GA SNPs influenced the TG levels only in obese women. The 1914G and the 1615A alleles were associated with decreased plasma levels of TG. Thus, our results suggest that the obesity condition, characterized by loss of energy homeostasis, is modulated by BCHE polymorphisms.

  13. Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Qiu, Weiliang; Cho, Michael H.; Riley, John H.; Anderson, Wayne H.; Singh, Dave; Bakke, Per; Gulsvik, Amund; Litonjua, Augusto A.; Lomas, David A.; Crapo, James D.; Beaty, Terri H.; Celli, Bartolome R.; Rennard, Stephen; Tal-Singer, Ruth; Fox, Steven M.; Silverman, Edwin K.; Hersh, Craig P.

    2011-01-01

    Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus. PMID:21949713

  14. Genetic Variants in the Apoptosis Gene BCL2L1 Improve Response to Interferon-Based Treatment of Hepatitis C Virus Genotype 3 Infection

    PubMed Central

    Clausen, Louise Nygaard; Weis, Nina; Ladelund, Steen; Madsen, Lone; Lunding, Suzanne; Tarp, Britta; Christensen, Peer Brehm; Krarup, Henrik Bygum; Møller, Axel; Gerstoft, Jan; Clausen, Mette Rye; Benfield, Thomas

    2015-01-01

    Genetic variation upstream of the apoptosis pathway has been associated with outcome of hepatitis C virus (HCV) infection. We investigated genetic polymorphisms in the intrinsic apoptosis pathway to assess their influence on sustained virological response (SVR) to pegylated interferon-α and ribavirin (pegIFN/RBV) treatment of HCV genotypes 1 and 3 infections. We conducted a candidate gene association study in a prospective cohort of 201 chronic HCV-infected individuals undergoing treatment with pegIFN/RBV. Differences between groups were compared in logistic regression adjusted for age, HCV viral load and interleukin 28B genotypes. Four single nucleotide polymorphisms (SNPs) located in the B-cell lymphoma 2-like 1 (BCL2L1) gene were significantly associated with SVR. SVR rates were significantly higher for carriers of the beneficial rs1484994 CC genotypes. In multivariate logistic regression, the rs1484994 SNP combined CC + TC genotypes were associated with a 3.4 higher odds ratio (OR) in SVR for the HCV genotype 3 (p = 0.02). The effect estimate was similar for genotype 1, but the association did not reach statistical significance. In conclusion, anti-apoptotic SNPs in the BCL2L1 gene were predictive of SVR to pegIFN/RBV treatment in HCV genotypes 1 and 3 infected individuals. These SNPs may be used in prediction of SVR, but further studies are needed. PMID:25648321

  15. Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola.

    PubMed

    Chen, Yaowen; Li, Zongcheng; Hu, Shuofeng; Zhang, Jian; Wu, Jiaqi; Shao, Ningsheng; Bo, Xiaochen; Ni, Ming; Ying, Xiaomin

    2017-02-01

    Gut microbes play a critical role in human health and disease, and researchers have begun to characterize their genomes, the so-called gut metagenome. Thus far, metagenomics studies have focused on genus- or species-level composition and microbial gene sets, while strain-level composition and single-nucleotide polymorphism (SNP) have been overlooked. The gut metagenomes of type 2 diabetes (T2D) patients have been found to be enriched with butyrate-producing bacteria and sulfate reduction functions. However, it is not known whether the gut metagenomes of T2D patients have characteristic strain patterns or SNP distributions. We downloaded public gut metagenome datasets from 170 T2D patients and 174 healthy controls and performed a systematic comparative analysis of their metagenome SNPs. We found that Bacteroides coprocola, whose relative abundance did not differ between the groups, had a characteristic distribution of SNPs in the T2D patient group. We identified 65 genes, all in B. coprocola, that had remarkably different enrichment of SNPs. The first and sixth ranked genes encode glycosyl hydrolases (GenBank accession EDU99824.1 and EDV02301.1). Interestingly, alpha-glucosidase, which is also a glycosyl hydrolase located in the intestine, is an important drug target of T2D. These results suggest that different strains of B. coprocola may have different roles in human gut and a specific set of B. coprocola strains are correlated with T2D.

  16. Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation.

    PubMed

    De Wit, Pierre; Palumbi, Stephen R

    2013-06-01

    Global climate change is projected to accelerate during the next century, altering oceanic patterns in temperature, pH and oxygen concentrations. Documenting patterns of genetic adaptation to these variables in locations that currently experience geographic variation in them is an important tool in understanding the potential for natural selection to allow populations to adapt as climate change proceeds. We sequenced the mantle transcriptome of 39 red abalone (Haliotis rufescens) individuals from three regions (Monterey Bay, Sonoma, north of Cape Mendocino) distinct in temperature, aragonite saturation, exposure to hypoxia and disease pressure along the California coast. Among 1.17 × 10(6) Single Nucleotide Polymorphisms (SNPs) identified in this study (1.37% of the transcriptome), 21 579 could be genotyped for all individuals. A principal components analysis concluded that the vast majority of SNPs show no population structure from Monterey, California to the Oregon border, in corroboration with several previous studies. In contrast, an FST outlier analysis indicated 691 SNPs as exhibiting significantly higher than expected differentiation (experiment-wide P < 0.05). From these, it was possible to identify 163 genes through BLAST annotation, 34 of which contained more than one outlier SNP. A large number of these genes are involved in biomineralization, energy metabolism, heat-, disease- or hypoxia-tolerance. These genes are candidate loci for spatial adaptation to geographic variation that is likely to increase in the future. © 2012 John Wiley & Sons Ltd.

  17. Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.).

    PubMed

    Guo, Jie; Shi, Weiping; Zhang, Zheng; Cheng, Jingye; Sun, Daizhen; Yu, Jin; Li, Xinlei; Guo, Pingyi; Hao, Chenyang

    2018-02-20

    Yield improvement is an ever-important objective of wheat breeding. Studying and understanding the phenotypes and genotypes of yield-related traits has potential for genetic improvement of crops. The genotypes of 215 wheat cultivars including 11 founder parents and 106 derivatives were analyzed by the 9 K wheat SNP iSelect assay. A total of 4138 polymorphic single nucleotide polymorphism (SNP) loci were detected on 21 chromosomes, of which 3792 were mapped to single chromosome locations. All genotypes were phenotyped for six yield-related traits including plant height (PH), spike length (SL), spikelet number per spike (SNPS), kernel number per spike (KNPS), kernel weight per spike (KWPS), and thousand kernel weight (TKW) in six irrigated environments. Genome-wide association analysis detected 117 significant associations of 76 SNPs on 15 chromosomes with phenotypic explanation rates (R 2 ) ranging from 2.03 to 12.76%. In comparing allelic variation between founder parents and their derivatives (106) and other cultivars (98) using the 76 associated SNPs, we found that the region 116.0-133.2 cM on chromosome 5A in founder parents and derivatives carried alleles positively influencing kernel weight per spike (KWPS), rarely found in other cultivars. The identified favorable alleles could mark important chromosome regions in derivatives that were inherited from founder parents. Our results unravel the genetic of yield in founder genotypes, and provide tools for marker-assisted selection for yield improvement.

  18. Multilocus adaptation associated with heat resistance in reef-building corals.

    PubMed

    Bay, Rachael A; Palumbi, Stephen R

    2014-12-15

    The evolution of tolerance to future climate change depends on the standing stock of genetic variation for resistance to climate-related impacts, but genes contributing to climate tolerance in wild populations are poorly described in number and effect. Physiology and gene expression patterns have shown that corals living in naturally high-temperature microclimates are more resistant to bleaching because of both acclimation and fixed effects, including adaptation. To search for potential genetic correlates of these fixed effects, we genotyped 15,399 single nucleotide polymorphisms (SNPs) in 23 individual tabletop corals, Acropora hyacinthus, within a natural temperature mosaic in backreef lagoons on Ofu Island, American Samoa. Despite overall lack of population substructure, we identified 114 highly divergent SNPs as candidates for environmental selection, via multiple stringent outlier tests, and correlations with temperature. Corals from the warmest reef location had higher minor allele frequencies across these candidate SNPs, a pattern not seen for noncandidate loci. Furthermore, within backreef pools, colonies in the warmest microclimates had a higher number and frequency of alternative alleles at candidate loci. These data suggest mild selection for alternate alleles at many loci in these corals during high heat episodes and possible maintenance of extensive polymorphism through multilocus balancing selection in a heterogeneous environment. In this case, a natural population harbors a reservoir of alleles preadapted to high temperatures, suggesting potential for future evolutionary response to climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Investigating the CFH Gene Polymorphisms as a Risk Factor for Age-related Macular Degeneration in an Iranian Population.

    PubMed

    Babanejad, Mojgan; Moein, Hamidreza; Akbari, Mohammad R; Badiei, Azadeh; Yaseri, Mehdi; Soheilian, Masoud; Najmabadi, Hossein

    2016-06-01

    Age-related macular degeneration (AMD) is a complex disorder which results in irreversible vision loss and progressive impairment of central vision. Disease susceptibility is influenced by multiple genetic and environmental factors. Single nucleotide polymorphisms (SNP) in the complement factor H gene are the most important genetic risk factors. We conducted a case-control study to investigate the association four SNPs (dbSNP ID: rs800292, rs1061170, rs2274700 and rs3753395) of CFH gene with AMD in the Iranian population. We recruited 100 AMD patients and 100 age- and sex-matched normal controls. Direct sequencing for three SNPs (rs800292, rs2274700 and rs3753395) and restriction fragment length polymorphism utilized for rs1061170. Allele and genotype frequencies of SNPs were calculated and tested for departure from Hardy-Weinberg equilibrium using the Chi-square test. An allelic and genotypic association was compared by logistic regression analysis using the SNPassoc. According to our results, the frequencies of risk allele for all SNPs (G, G, A, and C alleles of rs800292, rs2274700, rs3753395 and rs1061170, respectively) were significantly higher in AMD patients (p value < 0.001). AMD individuals who had at least one copy of the C allele of rs1061170 had an increased risk of disease compared with cases with the T allele. Other studied polymorphisms showed the same association. Our results suggest the contribution of all four predicted CFH polymorphisms in AMD susceptibility among the Iranian population. This association with CFH may lead to early detection and new strategies for prevention and treatment of AMD.

  20. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease.

    PubMed

    Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru

    2018-01-01

    Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score ([Formula: see text]) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing [Formula: see text] >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of [Formula: see text] (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 ([Formula: see text] = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). We confirmed the existence of cis-regulated ASM around IBD susceptibility genes and the association between ASM SNP (rs36221701) genotype and SMAD3 expression, a susceptibility gene for IBD. These results give us supporting evidence that DNA methylation mediates genetic effects on disease susceptibility.

  1. A genome-wide association study of seed protein and oil content in soybean

    PubMed Central

    2014-01-01

    Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s). PMID:24382143

  2. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease

    PubMed Central

    Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru

    2018-01-01

    Background Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. Methods CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score (ΔRAS¯) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing ΔRAS¯ >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. Results We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of ΔRAS¯ (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 (ΔRAS¯ = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). Conclusions We confirmed the existence of cis-regulated ASM around IBD susceptibility genes and the association between ASM SNP (rs36221701) genotype and SMAD3 expression, a susceptibility gene for IBD. These results give us supporting evidence that DNA methylation mediates genetic effects on disease susceptibility. PMID:29547621

  3. A genome-wide association study of seed protein and oil content in soybean.

    PubMed

    Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B

    2014-01-02

    Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s).

  4. Sequence Analysis of APOA5 Among the Kuwaiti Population Identifies Association of rs2072560, rs2266788, and rs662799 With TG and VLDL Levels

    PubMed Central

    Jasim, Anfal A.; Al-Bustan, Suzanne A.; Al-Kandari, Wafa; Al-Serri, Ahmad; AlAskar, Huda

    2018-01-01

    Common variants of Apolipoprotein A5 (APOA5) have been associated with lipid levels yet very few studies have reported full sequence data from various ethnic groups. The purpose of this study was to analyse the full APOA5 gene sequence to identify variants in 100 healthy Kuwaitis of Arab ethnicities and assess their association with variation in lipid levels in a cohort of 733 samples. Sanger method was used in the direct sequencing of the full 3.7 Kb APOA5 and multiple sequence alignment was used to identify variants. The complete APOA5 sequence in Kuwaiti Arabs has been deposited in GenBank (KJ401315). A total of 20 reported single nucleotide polymorphisms (SNPs) were identified. Two novel SNPs were also identified: a synonymous 2197G>A polymorphism at genomic position 116661525 and a 3′ UTR 3222 C>T polymorphism at genomic position 116660500 based on human genome assembly GRCh37/hg:19. Five SNPs along with the two novel SNPs were selected for validation in the cohort. Association of those SNPs with lipid levels was tested and minor alleles of three SNPs (rs2072560, rs2266788, and rs662799) were found significantly associated with TG and VLDL levels. This is the first study to report the full APOA5 sequence and SNPs in an Arab ethnic group. Analysis of the variants identified and comparison to other populations suggests a distinctive genetic component in Arabs. The positive association observed for rs2072560 and rs2266788 with TG and VLDL levels confirms their role in lipid metabolism. PMID:29686695

  5. Lack of association between autonomously functioning thyroid nodules and germline polymorphisms of the thyrotropin receptor and Gαs genes in a mild to moderate iodine-deficient Caucasian population.

    PubMed

    Vicchio, Teresa Manuela; Giovinazzo, Salvatore; Certo, Rosaria; Cucinotta, Mariapaola; Micali, Carmelo; Baldari, Sergio; Benvenga, Salvatore; Trimarchi, Francesco; Campennì, Alfredo; Ruggeri, Rosaria Maddalena

    2014-07-01

    Mutations of the thyrotropin receptor (TSHR) and/or Gαs gene have been found in a number of, but not all, autonomously functioning thyroid nodules (AFTNs). Recently, in a 15-year-old girl with a hyperfunctioning papillary thyroid carcinoma, we found two somatic and germline single nucleotide polymorphisms (SNPs): a SNP of the TSHR gene (exon 7, codon 187) and a SNP of Gαs gene (exon 8, codon 185). The same silent SNP of the TSHR gene had been reported in patients with AFTN or familial non-autoimmune hyperthyroidism. No further data about the prevalence of the two SNPs in AFTNs as well as in the general population are available in the literature. To clarify the possible role of these SNPs in predisposing to AFTN. Germline DNA was extracted from blood leukocytes of 115 patients with AFTNs (43 males and 72 females, aged 31-85 years, mean ± SD = 64 ± 13) and 100 sex-matched healthy individuals from the same geographic area, which is marginally iodine deficient. The genotype distribution of the two SNPs was investigated by restriction fragment length polymorphism-polymerase chain reaction. The prevalence of the two SNPs in our study population was low and not different to that found in healthy individuals: 8 % of patients vs. 9 % of controls were heterozygous for the TSHR SNP and 4 % patients vs. 6 % controls were heterozygous for the Gαs SNP. One patient harbored both SNPs. These results suggest that these two SNPs do not confer susceptibility for the development of AFTN.

  6. Sequence Analysis of APOA5 Among the Kuwaiti Population Identifies Association of rs2072560, rs2266788, and rs662799 With TG and VLDL Levels.

    PubMed

    Jasim, Anfal A; Al-Bustan, Suzanne A; Al-Kandari, Wafa; Al-Serri, Ahmad; AlAskar, Huda

    2018-01-01

    Common variants of Apolipoprotein A5 ( APOA 5) have been associated with lipid levels yet very few studies have reported full sequence data from various ethnic groups. The purpose of this study was to analyse the full APOA5 gene sequence to identify variants in 100 healthy Kuwaitis of Arab ethnicities and assess their association with variation in lipid levels in a cohort of 733 samples. Sanger method was used in the direct sequencing of the full 3.7 Kb APOA5 and multiple sequence alignment was used to identify variants. The complete APOA5 sequence in Kuwaiti Arabs has been deposited in GenBank (KJ401315). A total of 20 reported single nucleotide polymorphisms (SNPs) were identified. Two novel SNPs were also identified: a synonymous 2197G>A polymorphism at genomic position 116661525 and a 3' UTR 3222 C>T polymorphism at genomic position 116660500 based on human genome assembly GRCh37/hg:19. Five SNPs along with the two novel SNPs were selected for validation in the cohort. Association of those SNPs with lipid levels was tested and minor alleles of three SNPs (rs2072560, rs2266788, and rs662799) were found significantly associated with TG and VLDL levels. This is the first study to report the full APOA5 sequence and SNPs in an Arab ethnic group. Analysis of the variants identified and comparison to other populations suggests a distinctive genetic component in Arabs. The positive association observed for rs2072560 and rs2266788 with TG and VLDL levels confirms their role in lipid metabolism.

  7. Blood lead levels, iron metabolism gene polymorphisms and homocysteine: a gene-environment interaction study.

    PubMed

    Kim, Kyoung-Nam; Lee, Mee-Ri; Lim, Youn-Hee; Hong, Yun-Chul

    2017-12-01

    Homocysteine has been causally associated with various adverse health outcomes. Evidence supporting the relationship between lead and homocysteine levels has been accumulating, but most prior studies have not focused on the interaction with genetic polymorphisms. From a community-based prospective cohort, we analysed 386 participants (aged 41-71 years) with information regarding blood lead and plasma homocysteine levels. Blood lead levels were measured between 2001 and 2003, and plasma homocysteine levels were measured in 2007. Interactions of lead levels with 42 genotyped single-nucleotide polymorphisms (SNPs) in five genes ( TF , HFE , CBS , BHMT and MTR ) were assessed via a 2-degree of freedom (df) joint test and a 1-df interaction test. In secondary analyses using imputation, we further assessed 58 imputed SNPs in the TF and MTHFR genes. Blood lead concentrations were positively associated with plasma homocysteine levels (p=0.0276). Six SNPs in the TF and MTR genes were screened using the 2-df joint test, and among them, three SNPs in the TF gene showed interactions with lead with respect to homocysteine levels through the 1-df interaction test (p<0.0083). Seven SNPs in the MTHFR gene were associated with homocysteine levels at an α-level of 0.05, but the associations did not persist after Bonferroni correction. These SNPs did not show interactions with lead levels. Blood lead levels were positively associated with plasma homocysteine levels measured 4-6 years later, and three SNPs in the TF gene modified the association. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Interleukin gene polymorphisms and breast cancer: a case control study and systematic literature review

    PubMed Central

    Balasubramanian, SP; Azmy, IAF; Higham, SE; Wilson, AG; Cross, SS; Cox, A; Brown, NJ; Reed, MW

    2006-01-01

    Background Interleukins and cytokines play an important role in the pathogenesis of many solid cancers. Several single nucleotide polymorphisms (SNPs) identified in cytokine genes are thought to influence the expression or function of these proteins and many have been evaluated for their role in inflammatory disease and cancer predisposition. The aim of this study was to evaluate any role of specific SNPs in the interleukin genes IL1A, IL1B, IL1RN, IL4R, IL6 and IL10 in predisposition to breast cancer susceptibility and severity. Methods Candidate single nucleotide polymorphisms (SNPs) in key cytokine genes were genotyped in breast cancer patients and in appropriate healthy volunteers who were similar in age, race and sex. Genotyping was performed using a high throughput allelic discrimination method. Data on clinico-pathological details and survival were collected. A systematic review of Medline English literature was done to retrieve previous studies of these polymorphisms in breast cancer. Results None of the polymorphisms studied showed any overall predisposition to breast cancer susceptibility, severity or to time to death or occurrence of distant metastases. The results of the systematic review are summarised. Conclusion Polymorphisms within key interleukin genes (IL1A, IL1B, IL1RN, IL4R, IL6 and IL10 do not appear to play a significant overall role in breast cancer susceptibility or severity. PMID:16842617

  9. Genetic polymorphism and prostate cancer aggressiveness: a case-only study of 1,536 GWAS and candidate SNPs in African-Americans and European-Americans.

    PubMed

    Bensen, Jeannette T; Xu, Zongli; Smith, Gary J; Mohler, James L; Fontham, Elizabeth T H; Taylor, Jack A

    2013-01-01

    Genome-wide association studies have established a number of replicated single nucleotide polymorphisms (SNPs) for susceptibility to prostate cancer (CaP), but it is unclear whether these susceptibility SNPs are also associated with disease aggressiveness. This study evaluates whether such replication SNPs or other candidate SNPs are associated with CaP aggressiveness in African-American (AA) and European-American (EA) men. A 1,536 SNP panel which included 34 genome-wide association study (GWAS) replication SNPs, 38 flanking SNPs, a set of ancestry informative markers, and SNPs in candidate genes and other areas was genotyped in 1,060 AA and 1,087 EA men with incident CaP from the North Carolina-Louisiana Prostate Cancer Project (PCaP). Tests for association were conducted using ordinal logistic regression with a log-additive genotype model and a 3-category CaP aggressiveness variable. Four GWAS replication SNPs (rs2660753, rs13254738, rs10090154, rs2735839) and seven flanking SNPs were associated with CaP aggressiveness (P < 0.05) in three genomic regions: One at 3p12 (EA), seven at 8q24 (5 AA, 2 EA), and three at 19q13 at the kallilkrein-related peptidase 3 (KLK3) locus (two AA, one AA and EA). The KLK3 SNPs also were associated with serum prostate-specific antigen (PSA) levels in AA (P < 0.001) but not in EA. A number of the other SNPs showed some evidence of association but none met study-wide significance levels after adjusting for multiple comparisons. Some replicated GWAS susceptibility SNPs may play a role in CaP aggressiveness. However, like susceptibility, these associations are not consistent between racial groups. Copyright © 2012 Wiley Periodicals, Inc.

  10. Genetic polymorphism and prostate cancer aggressiveness: A case-only study of 1536 GWAS and candidate SNPs in African Americans and European Americans

    PubMed Central

    Bensen, Jeannette T.; Xu, Zongli; Smith, Gary J.; Mohler, James L.; Fontham, Elizabeth T.H.; Taylor, Jack A.

    2012-01-01

    BACKGROUND Genome-wide association studies have established a number of replicated single nucleotide polymorphisms (SNPs) for susceptibility to prostate cancer (CaP), but it is unclear whether these susceptibility SNPs are also associated with disease aggressiveness. This study evaluates whether such replication SNPs or other candidate SNPs are associated with CaP aggressiveness in African-American (AA) and European-American (EA) men. METHODS A 1,536 SNP panel which included 34 genome-wide association study (GWAS) replication SNPs, 38 flanking SNPs, a set of ancestry informative markers, and SNPs in candidate genes and other areas was genotyped in 1,060 AA and 1,087 EA men with incident CaP from the North Carolina-Louisiana Prostate Cancer Project (PCaP). Tests for association were conducted using ordinal logistic regression with a log-additive genotype model and a 3-category CaP aggressiveness variable. RESULTS 4 GWAS replication SNPs (rs2660753, rs13254738, rs10090154, rs2735839) and 7 flanking SNPs were associated with CaP aggressiveness (P<0.05) in 3 genomic regions: one at 3p12 (EA), 7 at 8q24 (5 AA, 2 EA), and 3 at 19q13 at the kallilkrein-related peptidase 3 (KLK3) locus (2 AA, 1 AA and EA). The KLK3 SNPs also were associated with serum prostate-specific antigen (PSA) levels in AA (p < 0.001) but not in EA. A number of the other SNPs showed some evidence of association but none met study-wide significance levels after adjusting for multiple comparisons. CONCLUSIONS Some replicated GWAS susceptibility SNPs may play a role in CaP aggressiveness. However, like susceptibility, these associations are not consistent between racial groups. PMID:22549899

  11. Polymorphisms in nitric oxide synthase and endothelin genes among children with obstructive sleep apnea.

    PubMed

    Chatsuriyawong, Siriporn; Gozal, David; Kheirandish-Gozal, Leila; Bhattacharjee, Rakesh; Khalyfa, Ahamed A; Wang, Yang; Sukhumsirichart, Wasana; Khalyfa, Abdelnaby

    2013-09-06

    Obstructive sleep apnea (OSA) is associated with adverse and interdependent cognitive and cardiovascular consequences. Increasing evidence suggests that nitric oxide synthase (NOS) and endothelin family (EDN) genes underlie mechanistic aspects of OSA-associated morbidities. We aimed to identify single nucleotide polymorphisms (SNPs) in the NOS family (3 isoforms), and EDN family (3 isoforms) to identify potential associations of these SNPs in children with OSA. A pediatric community cohort (ages 5-10 years) enriched for snoring underwent overnight polysomnographic (NPSG) and a fasting morning blood draw. The diagnostic criteria for OSA were an obstructive apnea-hypopnea Index (AHI) >2/h total sleep time (TST), snoring during the night, and a nadir oxyhemoglobin saturation <92%. Control children were defined as non-snoring children with AHI <2/h TST (NOSA). Endothelial function was assessed using a modified post-occlusive hyperemic test. The time to peak reperfusion (Tmax) was considered as the indicator for normal endothelial function (NEF; Tmax<45 sec), or ED (Tmax ≥ 45 sec). Genomic DNA from peripheral blood was extracted and allelic frequencies were assessed for, NOS1 (209 SNPs), NOS2 (122 SNPs), NOS3 (50 SNPs), EDN1 (43 SNPs), EDN2 (48 SNPs), EDN3 (14 SNPs), endothelin receptor A, EDNRA, (27 SNPs), and endothelin receptor B, EDNRB (23 SNPs) using a custom SNPs array. The relative frequencies of NOS-1,-2, and -3, and EDN-1,-2,-3,-EDNRA, and-EDNRB genotypes were evaluated in 608 subjects [128 with OSA, and 480 without OSA (NOSA)]. Furthermore, subjects with OSA were divided into 2 subgroups: OSA with normal endothelial function (OSA-NEF), and OSA with endothelial dysfunction (OSA-ED). Linkage disequilibrium was analyzed using Haploview version 4.2 software. For NOSA vs. OSA groups, 15 differentially distributed SNPs for NOS1 gene, and 1 SNP for NOS3 emerged, while 4 SNPs for EDN1 and 1 SNP for both EDN2 and EDN3 were identified. However, in the smaller sub-group for whom endothelial function was available, none of the significant SNPs was retained due to lack of statistical power. Differences in the distribution of polymorphisms among NOS and EDN gene families suggest that these SNPs could play a contributory role in the pathophysiology and risk of OSA-induced cardiovascular morbidity. Thus, analysis of genotype-phenotype interactions in children with OSA may assist in the formulation of categorical risk estimates.

  12. Fine-Mapping Angiotensin-Converting Enzyme Gene: Separate QTLs Identified for Hypertension and for ACE Activity

    PubMed Central

    Chung, Chia-Min; Wang, Ruey-Yun; Fann, Cathy S. J.; Chen, Jaw-Wen; Jong, Yuh-Shiun; Jou, Yuh-Shan; Yang, Hsin-Chou; Kang, Chih-Sen; Chen, Chien-Chung; Chang, Huan-Cheng; Pan, Wen-Harn

    2013-01-01

    Angiotensin-converting enzyme (ACE) has been implicated in multiple biological system, particularly cardiovascular diseases. However, findings associating ACE insertion/deletion polymorphism with hypertension or other related traits are inconsistent. Therefore, in a two-stage approach, we aimed to fine-map ACE in order to narrow-down the function-specific locations. We genotyped 31 single nucleotide polymorphisms (SNPs) of ACE from 1168 individuals from 305 young-onset (age ≤40) hypertension pedigrees, and found four linkage disequilibrium (LD) blocks. A tag-SNP, rs1800764 on LD block 2, upstream of and near the ACE promoter, was significantly associated with young-onset hypertension (p = 0.04). Tag-SNPs on all LD blocks were significantly associated with ACE activity (p-value: 10–16 to <10–33). The two regions most associated with ACE activity were found between exon13 and intron18 and between intron 20 and 3′UTR, as revealed by measured haplotype analysis. These two major QTLs of ACE activity and the moderate effect variant upstream of ACE promoter for young-onset hypertension were replicated by another independent association study with 842 subjects. PMID:23469169

  13. Genome-wide DNA polymorphisms in two cultivars of mei (Prunus mume sieb. et zucc.).

    PubMed

    Sun, Lidan; Zhang, Qixiang; Xu, Zongda; Yang, Weiru; Guo, Yu; Lu, Jiuxing; Pan, Huitang; Cheng, Tangren; Cai, Ming

    2013-10-06

    Mei (Prunus mume Sieb. et Zucc.) is a famous ornamental plant and fruit crop grown in East Asian countries. Limited genetic resources, especially molecular markers, have hindered the progress of mei breeding projects. Here, we performed low-depth whole-genome sequencing of Prunus mume 'Fenban' and Prunus mume 'Kouzi Yudie' to identify high-quality polymorphic markers between the two cultivars on a large scale. A total of 1464.1 Mb and 1422.1 Mb of 'Fenban' and 'Kouzi Yudie' sequencing data were uniquely mapped to the mei reference genome with about 6-fold coverage, respectively. We detected a large number of putative polymorphic markers from the 196.9 Mb of sequencing data shared by the two cultivars, which together contained 200,627 SNPs, 4,900 InDels, and 7,063 SSRs. Among these markers, 38,773 SNPs, 174 InDels, and 418 SSRs were distributed in the 22.4 Mb CDS region, and 63.0% of these marker-containing CDS sequences were assigned to GO terms. Subsequently, 670 selected SNPs were validated using an Agilent's SureSelect solution phase hybridization assay. A subset of 599 SNPs was used to assess the genetic similarity of a panel of mei germplasm samples and a plum (P. salicina) cultivar, producing a set of informative diversity data. We also analyzed the frequency and distribution of detected InDels and SSRs in mei genome and validated their usefulness as DNA markers. These markers were successfully amplified in the cultivars and in their segregating progeny. A large set of high-quality polymorphic SNPs, InDels, and SSRs were identified in parallel between 'Fenban' and 'Kouzi Yudie' using low-depth whole-genome sequencing. The study presents extensive data on these polymorphic markers, which can be useful for constructing high-resolution genetic maps, performing genome-wide association studies, and designing genomic selection strategies in mei.

  14. Mutation analysis of BRCA1/2 mutations with special reference to polymorphic SNPs in Indian breast cancer patients.

    PubMed

    Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V

    2018-01-01

    Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.

  15. Polymorphisms in inflammation pathway genes and endometrial cancer risk

    PubMed Central

    Delahanty, Ryan J.; Xiang, Yong-Bing; Spurdle, Amanda; Beeghly-Fadiel, Alicia; Long, Jirong; Thompson, Deborah; Tomlinson, Ian; Yu, Herbert; Lambrechts, Diether; Dörk, Thilo; Goodman, Marc T.; Zheng, Ying; Salvesen, Helga B.; Bao, Ping-Ping; Amant, Frederic; Beckmann, Matthias W.; Coenegrachts, Lieve; Coosemans, An; Dubrowinskaja, Natalia; Dunning, Alison; Runnebaum, Ingo B.; Easton, Douglas; Ekici, Arif B.; Fasching, Peter A.; Halle, Mari K.; Hein, Alexander; Howarth, Kimberly; Gorman, Maggie; Kaydarova, Dylyara; Krakstad, Camilla; Lose, Felicity; Lu, Lingeng; Lurie, Galina; O’Mara, Tracy; Matsuno, Rayna K.; Pharoah, Paul; Risch, Harvey; Corssen, Madeleine; Trovik, Jone; Turmanov, Nurzhan; Wen, Wanqing; Lu, Wei; Cai, Qiuyin; Zheng, Wei; Shu, Xiao-Ou

    2013-01-01

    Background Experimental and epidemiological evidence have suggested that chronic inflammation may play a critical role in endometrial carcinogenesis. Methods To investigate this hypothesis, a two-stage study was carried out to evaluate single nucleotide polymorphisms (SNPs) in inflammatory pathway genes in association with endometrial cancer risk. In stage 1, 64 candidate pathway genes were identified and 4,542 directly genotyped or imputed SNPs were analyzed among 832 endometrial cancer cases and 2,049 controls, using data from the Shanghai Endometrial Cancer Genetics Study. Linkage disequilibrium of stage 1 SNPs significantly associated with endometrial cancer (P<0.05) indicated that the majority of associations could be linked to one of 24 distinct loci. One SNP from each of the 24 loci was then selected for follow-up genotyping. Of these, 21 SNPs were successfully designed and genotyped in stage 2, which consisted of ten additional studies including 6,604 endometrial cancer cases and 8,511 controls. Results Five of the 21 SNPs had significant allelic odds ratios and 95% confidence intervals as follows: FABP1, 0.92 (0.85-0.99); CXCL3, 1.16 (1.05-1.29); IL6, 1.08 (1.00-1.17); MSR1, 0.90 (0.82-0.98); and MMP9, 0.91 (0.87-0.97). Two of these polymorphisms were independently significant in the replication sample (rs352038 in CXCL3 and rs3918249 in MMP9). The association for the MMP9 polymorphism remained significant after Bonferroni correction and showed a significant association with endometrial cancer in both Asian- and European-ancestry samples. Conclusions These findings lend support to the hypothesis that genetic polymorphisms in genes involved in the inflammatory pathway may contribute to genetic susceptibility to endometrial cancer. Impact Statement This study adds to the growing evidence that inflammation plays an important role in endometrial carcinogenesis. PMID:23221126

  16. Replication of Caucasian loci associated with bone mineral density in Koreans.

    PubMed

    Kim, Y A; Choi, H J; Lee, J Y; Han, B G; Shin, C S; Cho, N H

    2013-10-01

    Most bone mineral density (BMD) loci were reported in Caucasian genome-wide association studies (GWAS). This study investigated the association between 59 known BMD loci (+200 suggestive SNPs) and DXA-derived BMD in East Asian population with respect to sex and site specificity. We also identified four novel BMD candidate loci from the suggestive SNPs. Most GWAS have reported BMD-related variations in Caucasian populations. This study investigates whether the BMD loci discovered in Caucasian GWAS are also associated with BMD in East Asian ethnic samples. A total of 2,729 unrelated Korean individuals from a population-based cohort were analyzed. We selected 747 single-nucleotide polymorphisms (SNPs). These markers included 547 SNPs from 59 loci with genome-wide significance (GWS, p value less than 5 × 10(-8)) levels and 200 suggestive SNPs that showed weaker BMD association with p value less than 5 × 10(-5). After quality control, 535 GWS SNPs and 182 suggestive SNPs were included in the replication analysis. Of the 535 GWS SNPs, 276 from 25 loci were replicated (p < 0.05) in the Korean population with 51.6 % replication rate. Of the 182 suggestive variants, 16 were replicated (p < 0.05, 8.8 % of replication rate), and five reached a significant combined p value (less than 7.0 × 10(-5), 0.05/717 SNPs, corrected for multiple testing). Two markers (rs11711157, rs3732477) are for the same signal near the gene CPN2 (carboxypeptidase N, polypeptide 2). The other variants, rs6436440 and rs2291296, were located in the genes AP1S3 (adaptor-related protein complex 1, sigma 3 subunit) and RARB (retinoic acid receptor, beta). Our results illustrate ethnic differences in BMD susceptibility genes and underscore the need for further genetic studies in each ethnic group. We were also able to replicate some SNPs with suggestive associations. These SNPs may be BMD-related genetic markers and should be further investigated.

  17. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation

    PubMed Central

    2012-01-01

    Background The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI) after BCS (breast conserving surgery). Methods A total of 57 breast cancer patients who underwent SSPBI were genotyped for SNPs (single nucleotide polymorphisms) in XRCC1, XRCC3, GST and RAD51 by Pyrosequencing technology. Univariate analysis (ORs and 95% CI) was performed to correlate SNPs with the risk of developing ≥ G2 fibrosis or fat necrosis. Results A higher significant risk of developing ≥ G2 fibrosis or fat necrosis in patients with: polymorphic variant GSTP1 (Ile105Val) (OR = 2.9; 95%CI, 0.88-10.14, p = 0.047). Conclusions The presence of some SNPs involved in DNA repair or response to oxidative stress seem to be able to predict late toxicity. Trial Registration ClinicalTrials.gov: NCT01316328 PMID:22272830

  18. Transcriptome and Complexity-Reduced, DNA-Based Identification of Intraspecies Single-Nucleotide Polymorphisms in the Polyploid Gossypium hirsutum L.

    PubMed Central

    Zhu, Qian-Hao; Spriggs, Andrew; Taylor, Jennifer M.; Llewellyn, Danny; Wilson, Iain

    2014-01-01

    Varietal single nucleotide polymorphisms (SNPs) are the differences within one of the two subgenomes between different tetraploid cotton varieties and have not been practically used in cotton genetics and breeding because they are difficult to identify due to low genetic diversity and very high sequence identity between homeologous genes in cotton. We have used transcriptome and restriction site−associated DNA sequencing to identify varietal SNPs among 18 G. hirsutum varieties based on the rationale that varietal SNPs can be more confidently called when flanked by subgenome-specific SNPs. Using transcriptome data, we successfully identified 37,413 varietal SNPs and, of these, 22,121 did not have an additional varietal SNP within their 20-bp flanking regions so can be used in most SNP genotyping assays. From restriction site−associated DNA sequencing data, we identified an additional 3090 varietal SNPs between two of the varieties. Of the 1583 successful SNP assays achieved using different genotyping platforms, 1363 were verified. Many of the SNPs behaved as dominant markers because of coamplification from homeologous loci, but the number of SNPs acting as codominant markers increased when one or more subgenome-specific SNP(s) were incorporated in their assay primers, giving them greater utility for breeding applications. A G. hirsutum genetic map with 1244 SNP markers was constructed covering 5557.42 centiMorgan and used to map qualitative and quantitative traits. This collection of G. hirsutum varietal SNPs complements existing intra-specific SNPs and provides the cotton community with a valuable marker resource applicable to genetic analyses and breeding programs. PMID:25106949

  19. Gene by Environment Investigation of Incident Lung Cancer Risk in African-Americans.

    PubMed

    David, Sean P; Wang, Ange; Kapphahn, Kristopher; Hedlin, Haley; Desai, Manisha; Henderson, Michael; Yang, Lingyao; Walsh, Kyle M; Schwartz, Ann G; Wiencke, John K; Spitz, Margaret R; Wenzlaff, Angela S; Wrensch, Margaret R; Eaton, Charles B; Furberg, Helena; Mark Brown, W; Goldstein, Benjamin A; Assimes, Themistocles; Tang, Hua; Kooperberg, Charles L; Quesenberry, Charles P; Tindle, Hilary; Patel, Manali I; Amos, Christopher I; Bergen, Andrew W; Swan, Gary E; Stefanick, Marcia L

    2016-02-01

    Genome-wide association studies have identified polymorphisms linked to both smoking exposure and risk of lung cancer. The degree to which lung cancer risk is driven by increased smoking, genetics, or gene-environment interactions is not well understood. We analyzed associations between 28 single nucleotide polymorphisms (SNPs) previously associated with smoking quantity and lung cancer in 7156 African-American females in the Women's Health Initiative (WHI), then analyzed main effects of top nominally significant SNPs and interactions between SNPs, cigarettes per day (CPD) and pack-years for lung cancer in an independent, multi-center case-control study of African-American females and males (1078 lung cancer cases and 822 controls). Nine nominally significant SNPs for CPD in WHI were associated with incident lung cancer (corrected p-values from 0.027 to 6.09 × 10(-5)). CPD was found to be a nominally significant effect modifier between SNP and lung cancer for six SNPs, including CHRNA5 rs2036527[A](betaSNP*CPD = - 0.017, p = 0.0061, corrected p = 0.054), which was associated with CPD in a previous genome-wide meta-analysis of African-Americans. These results suggest that chromosome 15q25.1 variants are robustly associated with CPD and lung cancer in African-Americans and that the allelic dose effect of these polymorphisms on lung cancer risk is most pronounced in lighter smokers.

  20. Association between mitochondrial DNA variations and schizophrenia in the northern Chinese Han population.

    PubMed

    Xu, Feng-Ling; Ding, Mei; Yao, Jun; Shi, Zhang-Sen; Wu, Xue; Zhang, Jing-Jing; Pang, Hao; Xing, Jia-Xin; Xuan, Jin-Feng; Wang, Bao-Jie

    2017-01-01

    To determine whether mitochondrial DNA (mtDNA) variations are associated with schizophrenia, 313 patients with schizophrenia and 326 unaffected participants of the northern Chinese Han population were included in a prospective study. Single-nucleotide polymorphisms (SNPs) including C5178A, A10398G, G13708A, and C13928G were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Hypervariable regions I and II (HVSI and HVSII) were analyzed by sequencing. The results showed that the 4 SNPs and 11 haplotypes, composed of the 4 SNPs, did not differ significantly between patient and control groups. No significant association between haplogroups and the risk of schizophrenia was ascertained after Bonferroni correction. Drawing a conclusion, there was no evidence of an association between mtDNA (the 4 SNPs and the control region) and schizophrenia in the northern Chinese Han population.

  1. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, G K; Hillier, L; Brandstrom, M

    2005-02-20

    We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to theirmore » wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.« less

  2. Single nucleotide polymorphisms of the bovine VEGF-B gene and their associations with growth traits in the Nanyang cattle breed.

    PubMed

    Pang, Y H; Lei, C Z; Zhang, C L; Lan, X Y; Shao, S M; Gao, X M; Chen, H

    2012-01-01

    PCR-SSCP and DNA sequencing methods were applied to reveal single nucleotide polymorphisms (SNPs) in the bovine VEGF-B gene in 675 samples belonging to three native Chinese cattle breeds. We found 3 SNPs and a duplication NC_007330.5: g. [782 A>G p. (Gly112 =) (;) 1000-1001dup CT (;) 1079 C>T (;) 2129 G>A p. (Arg184Gln)]. We also observed a statistically significant association of the polymorphism (1000-1001dup CT) in intron 3 of the VEGF-B gene with the body weight of the Nanyang cattle (p < 0.05). This polymorphisms of VEGF-B gene need to be verified among a larger cattle population before it can be identified as a marker for bovine body weight.

  3. Vitamin D receptor polymorphisms in patients with cutaneous melanoma

    PubMed Central

    Orlow, Irene; Roy, Pampa; Reiner, Anne S.; Yoo, Sarah; Patel, Himali; Paine, Susan; Armstrong, Bruce K.; Kricker, Anne; Marrett, Loraine D.; Millikan, Robert C.; Thomas, Nancy E.; Gruber, Stephen B.; Anton-Culver, Hoda; Rosso, Stefano; Gallagher, Richard P.; Dwyer, Terence; Kanetsky, Peter A.; Busam, Klaus; From, Lynn; Begg, Colin B.; Berwick, Marianne

    2011-01-01

    The vitamin D receptor (VDR) gene has been associated with cancer risk, but only a few polymorphisms have been studied in relation to melanoma risk and the results have been inconsistent. We examined 38 VDR gene SNPs in a large international multi-center population-based case-control study of melanoma. Buccal DNAs were obtained from 1207 people with incident multiple primary melanoma and 2469 with incident single primary melanoma. SNPs with known or suspected impact on VDR activity, htSNPs with ≥10% MAF in Caucasians, and SNPs reported as significant in other association studies were examined. Logistic regression was used to calculate the relative risks conferred by the individual SNP. Eight of 38 SNPs in the promoter, coding, and 3’ gene regions were individually significantly associated with multiple primary melanoma after adjusting for covariates. The estimated increase in risk for individuals who were homozygous for the minor allele ranged from 25% to 33% for 6 polymorphisms: rs10875712 (OR 1.28; 95%CI, 1.01–1.62), rs4760674 (OR 1.33; 95% CI, 1.06–1.67), rs7139166 (OR 1.26; 95%CI, 1.02–1.56), rs4516035 (OR 1.25; 95%CI, 1.01–1.55), rs11168287 (OR 1.27; 95%CI, 1.03–1.57), rs1544410 (OR 1.30; 95%CI, 1.04–1.63); for 2 polymorphisms, homozygous carriers had a decreased risk: rs7305032 (OR 0.81; 95%CI 0.65–1.02), rs7965281 (OR, 0.78; 95%CI, 0.62–0.99). We recognize the potential false positive findings due to multiple comparisons; however the 8 significant SNPs in this study outnumbered the 2 significant tests expected to occur by chance. The vitamin D receptor may play a role in melanomagenesis. PMID:21365644

  4. Genetic Polymorphisms in Host Antiviral Genes: Associations with Humoral and Cellular Immunity to Measles Vaccine

    PubMed Central

    Haralambieva, Iana H.; Ovsyannikova, Inna G.; Umlauf, Benjamin J.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2014-01-01

    Host antiviral genes are important regulators of antiviral immunity and plausible genetic determinants of immune response heterogeneity after vaccination. We genotyped and analyzed 307 common candidate tagSNPs from 12 antiviral genes in a cohort of 745 schoolchildren immunized with two doses of measles-mumps-rubella vaccine. Associations between SNPs/haplotypes and measles virus-specific immune outcomes were assessed using linear regression methodologies in Caucasians and African-Americans. Genetic variants within the DDX58/RIG-I gene, including a coding polymorphism (rs3205166/Val800Val), were associated as single-SNPs (p≤0.017; although these SNPs did not remain significant after correction for false discovery rate/FDR) and in haplotype-level analysis, with measles-specific antibody variations in Caucasians (haplotype allele p-value=0.021; haplotype global p-value=0.076). Four DDX58 polymorphisms, in high LD, demonstrated also associations (after correction for FDR) with variations in both measles-specific IFN-γ and IL-2 secretion in Caucasians (p≤0.001, q=0.193). Two intronic OAS1 polymorphisms, including the functional OAS1 SNP rs10774671 (p=0.003), demonstrated evidence of association with a significant allele-dose-related increase in neutralizing antibody levels in African-Americans. Genotype and haplotype-level associations demonstrated the role of ADAR genetic variants, including a non-synonymous SNP (rs2229857/Arg384Lys; p=0.01), in regulating measles virus-specific IFN-γ Elispot responses in Caucasians (haplotype global p-value=0.017). After correction FDR, 15 single-SNP associations (11 SNPs in Caucasians and 4 SNPs in African-Americans) still remained significant at the q-value<0.20. In conclusion, our findings strongly point to genetic variants/genes, involved in antiviral sensing and antiviral control, as critical determinants, differentially modulating the adaptive immune responses to live attenuated measles vaccine in Caucasians and African-Americans. PMID:21939710

  5. SNP discovery in common bean by restriction-associated DNA (RAD) sequencing for genetic diversity and population structure analysis.

    PubMed

    Valdisser, Paula Arielle M R; Pappas, Georgios J; de Menezes, Ivandilson P P; Müller, Bárbara S F; Pereira, Wendell J; Narciso, Marcelo G; Brondani, Claudio; Souza, Thiago L P O; Borba, Tereza C O; Vianello, Rosana P

    2016-06-01

    Researchers have made great advances into the development and application of genomic approaches for common beans, creating opportunities to driving more real and applicable strategies for sustainable management of the genetic resource towards plant breeding. This work provides useful polymorphic single-nucleotide polymorphisms (SNPs) for high-throughput common bean genotyping developed by RAD (restriction site-associated DNA) sequencing. The RAD tags were generated from DNA pooled from 12 common bean genotypes, including breeding lines of different gene pools and market classes. The aligned sequences identified 23,748 putative RAD-SNPs, of which 3357 were adequate for genotyping; 1032 RAD-SNPs with the highest ADT (assay design tool) score are presented in this article. The RAD-SNPs were structurally annotated in different coding (47.00 %) and non-coding (53.00 %) sequence components of genes. A subset of 384 RAD-SNPs with broad genome distribution was used to genotype a diverse panel of 95 common bean germplasms and revealed a successful amplification rate of 96.6 %, showing 73 % of polymorphic SNPs within the Andean group and 83 % in the Mesoamerican group. A slightly increased He (0.161, n = 21) value was estimated for the Andean gene pool, compared to the Mesoamerican group (0.156, n = 74). For the linkage disequilibrium (LD) analysis, from a group of 580 SNPs (289 RAD-SNPs and 291 BARC-SNPs) genotyped for the same set of genotypes, 70.2 % were in LD, decreasing to 0.10 %in the Andean group and 0.77 % in the Mesoamerican group. Haplotype patterns spanning 310 Mb of the genome (60 %) were characterized in samples from different origins. However, the haplotype frameworks were under-represented for the Andean (7.85 %) and Mesoamerican (5.55 %) gene pools separately. In conclusion, RAD sequencing allowed the discovery of hundreds of useful SNPs for broad genetic analysis of common bean germplasm. From now, this approach provides an excellent panel of molecular tools for whole genome analysis, allowing integrating and better exploring the common bean breeding practices.

  6. SNP discovery in the bovine milk transcriptome using RNA-Seq technology.

    PubMed

    Cánovas, Angela; Rincon, Gonzalo; Islas-Trejo, Alma; Wickramasinghe, Saumya; Medrano, Juan F

    2010-12-01

    High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. However, it also is an efficient way to discover coding SNPs. The objective of this study was to perform a SNP discovery analysis in the milk transcriptome using RNA-Seq. Seven milk samples from Holstein cows were analyzed by sequencing cDNAs using the Illumina Genome Analyzer system. We detected 19,175 genes expressed in milk samples corresponding to approximately 70% of the total number of genes analyzed. The SNP detection analysis revealed 100,734 SNPs in Holstein samples, and a large number of those corresponded to differences between the Holstein breed and the Hereford bovine genome assembly Btau4.0. The number of polymorphic SNPs within Holstein cows was 33,045. The accuracy of RNA-Seq SNP discovery was tested by comparing SNPs detected in a set of 42 candidate genes expressed in milk that had been resequenced earlier using Sanger sequencing technology. Seventy of 86 SNPs were detected using both RNA-Seq and Sanger sequencing technologies. The KASPar Genotyping System was used to validate unique SNPs found by RNA-Seq but not observed by Sanger technology. Our results confirm that analyzing the transcriptome using RNA-Seq technology is an efficient and cost-effective method to identify SNPs in transcribed regions. This study creates guidelines to maximize the accuracy of SNP discovery and prevention of false-positive SNP detection, and provides more than 33,000 SNPs located in coding regions of genes expressed during lactation that can be used to develop genotyping platforms to perform marker-trait association studies in Holstein cattle.

  7. Genotype imputation for African Americans using data from HapMap phase II versus 1000 genomes projects.

    PubMed

    Sung, Yun J; Gu, C Charles; Tiwari, Hemant K; Arnett, Donna K; Broeckel, Ulrich; Rao, Dabeeru C

    2012-07-01

    Genotype imputation provides imputation of untyped single nucleotide polymorphisms (SNPs) that are present on a reference panel such as those from the HapMap Project. It is popular for increasing statistical power and comparing results across studies using different platforms. Imputation for African American populations is challenging because their linkage disequilibrium blocks are shorter and also because no ideal reference panel is available due to admixture. In this paper, we evaluated three imputation strategies for African Americans. The intersection strategy used a combined panel consisting of SNPs polymorphic in both CEU and YRI. The union strategy used a panel consisting of SNPs polymorphic in either CEU or YRI. The merge strategy merged results from two separate imputations, one using CEU and the other using YRI. Because recent investigators are increasingly using the data from the 1000 Genomes (1KG) Project for genotype imputation, we evaluated both 1KG-based imputations and HapMap-based imputations. We used 23,707 SNPs from chromosomes 21 and 22 on Affymetrix SNP Array 6.0 genotyped for 1,075 HyperGEN African Americans. We found that 1KG-based imputations provided a substantially larger number of variants than HapMap-based imputations, about three times as many common variants and eight times as many rare and low-frequency variants. This higher yield is expected because the 1KG panel includes more SNPs. Accuracy rates using 1KG data were slightly lower than those using HapMap data before filtering, but slightly higher after filtering. The union strategy provided the highest imputation yield with next highest accuracy. The intersection strategy provided the lowest imputation yield but the highest accuracy. The merge strategy provided the lowest imputation accuracy. We observed that SNPs polymorphic only in CEU had much lower accuracy, reducing the accuracy of the union strategy. Our findings suggest that 1KG-based imputations can facilitate discovery of significant associations for SNPs across the whole MAF spectrum. Because the 1KG Project is still under way, we expect that later versions will provide better imputation performance. © 2012 Wiley Periodicals, Inc.

  8. Genetic Diversity of Sheep Breeds from Albania, Greece, and Italy Assessed by Mitochondrial DNA and Nuclear Polymorphisms (SNPs)

    PubMed Central

    Pariset, Lorraine; Mariotti, Marco; Gargani, Maria; Joost, Stephane; Negrini, Riccardo; Perez, Trinidad; Bruford, Michael; Ajmone Marsan, Paolo; Valentini, Alessio

    2011-01-01

    We employed mtDNA and nuclear SNPs to investigate the genetic diversity of sheep breeds of three countries of the Mediterranean basin: Albania, Greece, and Italy. In total, 154 unique mtDNA haplotypes were detected by means of D-loop sequence analysis. The major nucleotide diversity was observed in Albania. We identified haplogroups, A, B, and C in Albanian and Greek samples, while Italian individuals clustered in groups A and B. In general, the data show a pattern reflecting old migrations that occurred in postneolithic and historical times. PCA analysis on SNP data differentiated breeds with good correspondence to geographical locations. This could reflect geographical isolation, selection operated by local sheep farmers, and different flock management and breed admixture that occurred in the last centuries. PMID:22125424

  9. Different effects of apolipoprotein A5 SNPs and haplotypes on triglyceride concentration in three ethnic origins.

    PubMed

    Ken-Dror, Gie; Goldbourt, Uri; Dankner, Rachel

    2010-05-01

    Several polymorphisms in the ApoA5 gene emerged as important candidate genes in triglyceride metabolism. The aim of this study was to determine the associations between ApoA5 polymorphisms, plasma triglyceride concentrations and the presence of cardiovascular disease (CVD) in three ethnic origins. Genotypes for 15 single nucleotide polymorphisms (SNPs) were determined in 659 older adults (mean age 71+/-7 years) who immigrated to Israel or whose ancestors originated from East Europe (Ashkenazi), North Africa, Asia (Sephardic) or Yemen (Yemenite). The minor alleles of the four common SNPs (rs662799, rs651821, rs2072560 and rs2266788) are associated with an increase of 27-38% in triglyceride concentration among Ashkenazi and Yemenite Jews compared with the major alleles, but not among those of Sephardic origin. Conversely, among the Sephardic group, the presence of the minor allele in SNP rs3135506 compared with the major allele was associated with an increase of 34% in triglyceride concentration. The four SNPs were in significant linkage disequilibrium (D'=0.96-0.99), resulting in three haplotypes H1, H2 and H3, representing 98-99% of the population. Haplotype H2 was significantly associated with triglyceride concentration among Ashkenazi and Yemenite but not among Sephardic Jews. Conversely, haplotype H3 was associated with triglyceride concentration in Sephardic but not in Ashkenazi and Yemenite Jews. Ashkenazi carriers of H2 haplotype had a CVD odds ratio of 2.19 (95% CI: 1.05-4.58) compared with H1 (the most frequent), after adjustment for all other risk factors. These results suggest that different SNPs in ApoA5 polymorphisms may be associated with triglyceride concentration and CVD in each of these ethnic origins.

  10. Genetic polymorphisms within tumor necrosis factor gene promoter region: a role for susceptibility to ventilator-associated pneumonia.

    PubMed

    Kotsaki, Antigoni; Raftogiannis, Maria; Routsi, Christina; Baziaka, Fotini; Kotanidou, Anastasia; Antonopoulou, Anastasia; Orfanos, Stylianos E; Katsenos, Chrisostomos; Koutoukas, Pantelis; Plachouras, Diamantis; Mandragos, Konstantinos; Giamarellos-Bourboulis, Evangelos J

    2012-08-01

    Debatable findings exist among various studies regarding the impact of single nucleotide polymorphisms (SNPs) within the promoter region of the tumor necrosis factor (TNF) gene for susceptibility to infections. Their impact was investigated in a cohort of mechanically ventilated patients who developed ventilator-associated pneumonia (VAP). Two-hundred and thirteen mechanically ventilated patients who developed VAP were enrolled. Genomic DNA was extracted and SNPs at the -376, -308 and -238 position of the promoter region of the TNF gene were assessed by restriction fragment length polymorphisms. Monocytes were isolated from 47 patients when they developed sepsis and stimulated by bacterial endotoxin for the production of TNFα and of interleukin-6 (IL-6). Patients were divided into two groups; 166 patients bearing only wild-type alleles of all three studied polymorphisms; and 47 patients carrying at least one A allele of the three studied SNPs. Time between start of mechanical ventilation and advent of VAP was significantly shorter in the second group than in the first group (log-rank: 4.416, p: 0.041). When VAP supervened, disease severity did not differ between groups. Stimulation of TNFα and of IL-6 was much greater by monocytes for patients carrying A alleles. Carriage of at least one A allele of the three studied SNPs at the promoter region of the TNF-gene is associated with shorter time to development of VAP but it is not associated with disease severity. Findings may be related with a role of the studied SNPs in the production of pro-inflammatory cytokines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Functional polymorphisms of circadian negative feedback regulation genes are associated with clinical outcome in hepatocellular carcinoma patients receiving radical resection.

    PubMed

    Zhang, Zhaohui; Ma, Fei; Zhou, Feng; Chen, Yibing; Wang, Xiaoyan; Zhang, Hongxin; Zhu, Yong; Bi, Jianwei; Zhang, Yiguan

    2014-12-01

    Previous studies have demonstrated that circadian negative feedback loop genes play an important role in the development and progression of many cancers. However, the associations between single-nucleotide polymorphisms (SNPs) in these genes and the clinical outcomes of hepatocellular carcinoma (HCC) after surgical resection have not been studied so far. Thirteen functional SNPs in circadian genes were genotyped using the Sequenom iPLEX genotyping system in a cohort of 489 Chinese HCC patients who received radical resection. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the prognosis analysis. Cumulative effect analysis and survival tree analysis were used for the multiple SNPs analysis. Four individual SNPs, including rs3027178 in PER1, rs228669 and rs2640908 in PER3 and rs3809236 in CRY1, were significantly associated with overall survival (OS) of HCC patients, and three SNPs, including rs3027178 in PER1, rs228729 in PER3 and rs3809236 in CRY1, were significantly associated with recurrence-free survival (RFS). Moreover, we observed a cumulative effect of significant SNPs on OS and RFS (P for trend < 0.001 for both). Survival tree analysis indicated that wild genotype of rs228729 in PER3 was the primary risk factor contributing to HCC patients' RFS. Our study suggests that the polymorphisms in circadian negative feedback loop genes may serve as independent prognostic biomarkers in predicting clinical outcomes for HCC patients who received radical resection. Further studies with different ethnicities are needed to validate our findings and generalize its clinical utility.

  12. Interleukin 18 receptor 1 gene polymorphisms are associated with asthma.

    PubMed

    Zhu, Guohua; Whyte, Moira K B; Vestbo, Jorgen; Carlsen, Karin; Carlsen, Kai-Håkon; Lenney, Warren; Silverman, Michael; Helms, Peter; Pillai, Sreekumar G

    2008-09-01

    The interleukin 18 receptor (IL18R1) gene is a strong candidate gene for asthma. It has been implicated in the pathophysiology of asthma and maps to an asthma susceptibility locus on chromosome 2q12. The possibility of association between polymorphisms in IL18R1 and asthma was examined by genotyping seven SNPs in 294, 342 and 100 families from Denmark, United Kingdom and Norway and conducting family-based association analyses for asthma, atopic asthma and bronchial hyper-reactivity (BHR) phenotypes. Three SNPs in IL18R1 were associated with asthma (0.01131 < or = P < or = 0.01377), five with atopic asthma (0.00066 < or = P < or = 0.00405) and two with BHR (0.01450 < or = P < or = 0.03203) in the Danish population; two SNPs were associated with atopic asthma (0.00397 < or = P < or = 0.01481) and four with BHR (0.00435 < or = P < or = 0.03544) in the UK population; four SNPs showed associations with asthma (0.00015 < or = P < or = 0.03062), two with atopic asthma (0.01269 < or = P < or = 0.04042) and three with BHR (0.00259 < or = P < or = 0.01401) in the Norwegian population; five SNPs showed associations with asthma (0.00005 < or = P < or = 0.03744), five with atopic asthma (0.00001 < or = P < or = 0.04491) and three with BHR (0.03568 < or = P < or = 0.04778) in the combined population. Three intronic SNPs (rs1420099, rs1362348 and rs1974675) showed replicated association for at least one asthma-related phenotype. These results demonstrate significant association between polymorphisms in IL18R1 and asthma.

  13. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean

    PubMed Central

    Liu, Shulin; Zhou, Xiaoqiong; Zhang, Huairen; Wang, Chun-e; Yang, Wenming; Tian, Zhixi; Cheng, Hao; Yu, Deyue

    2017-01-01

    Isoflavones comprise a group of secondary metabolites produced almost exclusively by plants in the legume family, including soybean [Glycine max (L.) Merr.]. They play vital roles in plant defense and have many beneficial effects on human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Via a genome-wide association study (GWAS), we identified 28 single nucleotide polymorphisms (SNPs) that are significantly associated with isoflavone concentrations in soybean. One of these 28 SNPs was located in the 5’-untranslated region (5’-UTR) of an R2R3-type MYB transcription factor, GmMYB29, and this gene was thus selected as a candidate gene for further analyses. A subcellular localization study confirmed that GmMYB29 was located in the nucleus. Transient reporter gene assays demonstrated that GmMYB29 activated the IFS2 (isoflavone synthase 2) and CHS8 (chalcone synthase 8) gene promoters. Overexpression and RNAi-mediated silencing of GmMYB29 in soybean hairy roots resulted in increased and decreased isoflavone content, respectively. Moreover, a candidate-gene association analysis revealed that 11 natural GmMYB29 polymorphisms were significantly associated with isoflavone contents, and regulation of GmMYB29 expression could partially contribute to the observed phenotypic variation. Taken together, these results provide important genetic insights into the molecular mechanisms underlying isoflavone biosynthesis in soybean. PMID:28489859

  14. Canonical single nucleotide polymorphisms (SNPs) for high-resolution subtyping of Shiga-toxin producing Escherichia coli (STEC) O157:H7

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop a canonical SNP panel for subtyping of Shiga-toxin producing Escherichia coli (STEC). To this purpose, 906 putative SNPs were identified using resequencing tiling arrays. A subset of 391 SNPs was further screened using high-throughput TaqMan PCR against a d...

  15. Association of calpain 10 gene polymorphisms with type 2 diabetes mellitus in Southern Indians.

    PubMed

    Bodhini, Dhanasekaran; Radha, Venkatesan; Ghosh, Saurabh; Sanapala, Krishna R; Majumder, Partha P; Rao, Manchanahalli Rangaswamy Satyanarayana; Mohan, Viswanathan

    2011-05-01

    The aim was to investigate the association between the CAPN10 gene single nucleotide polymorphisms (SNPs) -44 (rs2975760), -43 (rs3792267), -19 (rs3842570), and -63 (rs5030952) and type 2 diabetes mellitus in an Asian Indian population in Southern India. A total of 1443 subjects, 794 normal glucose tolerant (NGT) and 649 type 2 diabetes mellitus subjects, were randomly selected from the Chennai Urban Rural Epidemiology Study. These subjects were genotyped for the 4 CAPN10 SNPs using polymerase chain reaction-restriction fragment length polymorphism and validated by direct sequencing. None of the 4 SNPs showed any significant differences in the genotypic distribution among the NGT and type 2 diabetes mellitus subjects (P = .20, .86, .34, and .39 for SNPs -44, -43, -19, and -63, respectively). The NGT subjects with the 11 genotype of the SNP -63 had significantly higher 2-hour postload plasma glucose (mean ± SD, 5.66 ± 1.05 mmol/L) levels compared with the combined 12 and 22 genotype group (5.33 ± 1.11 mmol/L, P = .004). The P value remained significant even after adjusting for age, sex, body mass index, smoking, and alcohol consumption (nominal P = .008). No significant difference in the biochemical parameters was observed when the subjects were stratified according to the other SNPs. The 2111 haplotype corresponding to SNPs -44, -43, -19, and -63 showed a significant difference in the proportion among NGT (0.18) and type 2 diabetes mellitus subjects (0.22, nominal P = .014). Although the Bonferroni correction based on the asymptotic test does not preserve this significance, the test based on the empirical distribution remained significant. In conclusion, our study raises the possibility that the 2111 haplotype of SNPs -44, -43, -19, and -63 may be associated with type 2 diabetes mellitus, although none of these SNPs may be individually associated with diabetes. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A Multi-Trait, Meta-analysis for Detecting Pleiotropic Polymorphisms for Stature, Fatness and Reproduction in Beef Cattle

    PubMed Central

    Bolormaa, Sunduimijid; Pryce, Jennie E.; Reverter, Antonio; Zhang, Yuandan; Barendse, William; Kemper, Kathryn; Tier, Bruce; Savin, Keith; Hayes, Ben J.; Goddard, Michael E.

    2014-01-01

    Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t'V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups. PMID:24675618

  17. Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene.

    PubMed

    Multani, Shaleen; Saranath, Dhananjaya

    2016-11-01

    Globocan 2012 reports the global oral cancer incidence of 300,373 new oral cancer cases annually, contributing to 2.1 % of the world cancer burden. The major well-established risk factors for oral cancer include tobacco, betel/areca nut, alcohol and high-risk oncogenic human papilloma virus (HPV) 16/18. However, only 5-10 % of individuals with high-risk lifestyle develop oral cancer. Thus, genomic variants in individuals represented as single nucleotide polymorphisms (SNPs) influence susceptibility to oral cancer. With a view to understanding the role of genomic variants in oral cancer, we reviewed SNPs in case-control studies with a minimum of 100 cases and 100 controls. PubMed and HuGE navigator search engines were used to obtain data published from 1990 to 2015, which identified 67 articles investigating the role of SNPs in oral cancer. Single publications reported 93 SNPs in 55 genes, with 34 SNPs associated with a risk of oral cancer. Meta-analysis of data in multiple studies defined nine SNPs associated with a risk of oral cancer. The genes were associated with critical functions deregulated in cancers, including cell proliferation, immune function, inflammation, transcription, DNA repair and xenobiotic metabolism.

  18. Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao.

    PubMed

    Lima, L S; Gramacho, K P; Carels, N; Novais, R; Gaiotto, F A; Lopes, U V; Gesteira, A S; Zaidan, H A; Cascardo, J C M; Pires, J L; Micheli, F

    2009-07-14

    In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.

  19. Polymorphisms within the FANCA gene associate with premature ovarian failure in Korean women.

    PubMed

    Pyun, Jung-A; Kim, Sunshin; Cha, Dong Hyun; Kwack, KyuBum

    2014-05-01

    This study investigated whether polymorphisms within the Fanconi anemia complementation group A (FANCA) gene contribute to the increased risk of premature ovarian failure (POF) in Korean women. Ninety-eight women with POF and 218 controls participated in this study. Genomic DNA from peripheral blood was isolated, and GoldenGate genotyping assay was used to identify single nucleotide polymorphisms (SNPs) within the FANCA gene. Two significant SNPs (rs1006547 and rs2239359; P < 0.05) were identified by logistic regression analysis, but results were insignificant after Bonferroni correction. Six SNPs formed a linkage disequilibrium block, and three main haplotypes were found. Two of three haplotypes (AAAGAA and GGGAGG) distributed highly in the POF group, whereas the remaining haplotype (GGAAGG) distributed highly in the control group by logistic regression analysis (highest odds ratio, 2.515; 95% CI, 1.515-4.175; P = 0.00036). Our observations suggest that genetic variations in the FANCA gene may increase the risk for POF in Korean women.

  20. Nonassociation of homocysteine gene polymorphisms with treatment outcome in South Indian Tamil Rheumatoid Arthritis patients.

    PubMed

    Muralidharan, Niveditha; Gulati, Reena; Misra, Durga Prasanna; Negi, Vir S

    2018-02-01

    The aim of the study was to look for any association of MTR 2756A>G and MTRR 66A>G gene polymorphisms with clinical phenotype, methotrexate (MTX) treatment response, and MTX-induced adverse events in South Indian Tamil patients with rheumatoid arthritis (RA). A total of 335 patients with RA were investigated. MTR 2756A>G gene polymorphism was analyzed by PCR-RFLP, and MTRR 66A>G SNP was analyzed by TaqMan 5' nuclease assay. The allele frequencies were compared with HapMap groups. MTR 2756G allele was found to be associated with risk of developing RA. The allele frequencies of MTR 2756A>G and MTRR 66A>G SNPs in controls differed significantly when compared with HapMap groups. Neither of the SNPs influenced the MTX treatment outcome and adverse effects. Neither of the SNPs seems to be associated with MTX treatment outcome and adverse events in South Indian Tamil patients with RA.

  1. Polymorphism of prion protein gene in Arctic fox (Vulpes lagopus).

    PubMed

    Wan, Jiayu; Bai, Xue; Liu, Wensen; Xu, Jing; Xu, Ming; Gao, Hongwei

    2009-07-01

    Prion diseases are fatal neurodegenerative disorders of humans and certain other mammals. Prion protein gene (Prnp) is associated with susceptibility and species barrier to prion diseases. No natural and experimental prion diseases have been documented to date in Arctic fox. In the present study, coding region of Prnp from 135 Arctic foxes were cloned and screened for polymorphisms. Our results indicated that the Arctic fox Prnp open reading frame (ORF) contains 771 nucleotides encoding 257 amino acids. Four single nucleotide polymorphisms (SNPs) (G312C, A337G, C541T, and A723G) were identified. SNPs G312C and A723G produced silent mutations, but SNPs A337G and C541T resulted in a M-V change at codon 113 and R-C at codon 181, respectively. The Arctic fox Prnp amino acid sequence was similar to that of the dog (XM 542906). In short, this study provides preliminary information about genotypes of Prnp in Arctic fox.

  2. Association of SNPs in dopamine and serotonin pathway genes and their interacting genes with temperament traits in Charolais cows.

    PubMed

    Garza-Brenner, E; Sifuentes-Rincón, A M; Randel, R D; Paredes-Sánchez, F A; Parra-Bracamonte, G M; Arellano Vera, W; Rodríguez Almeida, F A; Segura Cabrera, A

    2017-08-01

    Cattle temperament is a complex trait, and molecular studies aimed at defining this trait are scarce. We used an interaction networks approach to identify new genes (interacting genes) and to estimate their effects and those of 19 dopamine- and serotonin-related genes on the temperament traits of Charolais cattle. The genes proopiomelanocortin (POMC), neuropeptide Y (NPY), solute carrier family 18, member 2 (SLC18A2) and FBJ murine osteosarcoma viral oncogene homologue (FOSFBJ) were identified as new candidates. Their potential to be associated with temperament was estimated according to their reported biological activities, which included interactions with neural activity, receptor function, targeting or synthesis of neurotransmitters and association with behaviour. Pen score (PS) and exit velocity (EV) measures were determined from 412 Charolais cows to calculate their temperament score (TS). Based on the TS, calm (n = 55; TS, 1.09 ± 0.33) and temperamental (n = 58; TS, 2.27 ± 0.639) cows were selected and genotyped using a 248 single-nucleotide variation (SNV) panel. Of the 248 variations in the panel, only 151 were confirmed to be polymorphic (single-nucleotide polymorphisms; SNPs) in the tested population. Single-marker association analyses between genotypes and temperament measures (EV, PS and/or TS) indicated significant associations of six SNPs from four candidate genes. The markers rs109576799 and rs43696138, located in the DRD3 and HTR2A genes, respectively, were significantly associated with both EV and TS traits. Four markers, rs110365063 and rs137756569 from the POMC gene and rs110365063 and rs135155082 located in SLC18A2 and DRD2, respectively, were associated with PS. The variant rs110365063 located in bovine SLC18A2 causes a change in the amino acid sequence from Ala to Thr. Further studies are needed to confirm the association of genetic profile with cattle temperament; however, our study represents important progress in understanding the regulation of cattle temperament by different genes with divergent functions.

  3. Polymorphisms in the vitamin D receptor and their associations with risk of schizophrenia and selected anthropometric measures.

    PubMed

    Handoko, H Y; Nancarrow, D J; Mowry, B J; McGrath, J J

    2006-01-01

    The association between vitamin D levels and skeletal growth has long been recognized. However, exposure to low levels of vitamin D during early life is also known to alter brain development, and is a candidate risk factor for schizophrenia. This study examines the association between four polymorphisms in the vitamin D receptor (VDR) and 1) risk of schizophrenia, and 2) three anthropometric variables (height, head size, and head shape). Four single-nucleotide polymorphisms (SNPs; rs10735810/FokI, rs1544410/BsmI, rs7975232/ApaI, and rs731236/TaqI) in the VDR gene were genotyped in 179 individuals with schizophrenia and 189 healthy controls. No significant associations were detected between any of the four VDR SNPs and risk of schizophrenia. Patients were slightly but significantly shorter compared to controls. Of the four SNPs, only rs10735810/FokI was associated with any of the anthropometric measures: the M4 isoform of this SNP was significantly associated with larger head size (P = 0.002). In light of the evidence demonstrating a role for vitamin D during brain development, the association between polymorphisms in VDR and brain development warrants closer scrutiny.

  4. RAN/RANBP2 polymorphisms and neuroblastoma risk in Chinese children: a three-center case-control study.

    PubMed

    Wang, Juxiang; Zhuo, Zhenjian; Chen, Min; Zhu, Jinhong; Zhao, Jie; Zhang, Jiao; Chen, Shanshan; He, Jing; Zhou, Haixia

    2018-04-28

    The genetic etiology of sporadic neuroblastoma remains largely obscure. RAN and RANBP2 genes encode Ras-related nuclear protein and Ran-binding protein 2, respectively. These two proteins form Ran-RanBP2 complex that regulate various cellular activities including nuclear transport. Aberrant functions of the two proteins are implicated in carcinogenesis. Given the unknown role of RAN/RANBP2 single nucleotide polymorphisms (SNPs) in neuroblastoma risk, we performed a multi-center case-control study in Chinese children to assess the association of the RAN/RANBP2 SNPs with neuroblastoma risk. We analyzed three potentially functional SNPs in RAN gene (rs56109543 C>T, rs7132224 A>G, rs14035 C>T) and one in RANBP2 (rs2462788 C>T) in 429 cases and 884 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to access the association between these four polymorphisms and neuroblastoma risk. No single variant was found to statistically significantly associate with neuroblastoma risk. However, individuals with 3 protective genotypes were less likely to develop neuroblastoma, in comparison to non-carriers (adjusted OR=0.33; 95% CI=0.12-0.96; P =0.042), as well as those with 0-2 protective genotypes (adjusted OR=0.33; 95% CI=0.11-0.94; P =0.038). Stratified analysis revealed no significant association for any of the four polymorphisms. Further studies are warranted to validate the weak impact of RAN/RANBP2 SNPs on neuroblastoma risk.

  5. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.

    PubMed

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R; Taylor, Jeremy F; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The utility of this MOLO algorithm was also demonstrated in a real application, in which a 6K SNP panel was optimized conditional on 5,260 obligatory SNP selected based on SNP-trait association in U.S. Holstein animals. With this MOLO algorithm, both imputation error rate and genomic prediction error rate were minimal.

  6. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications

    PubMed Central

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R.; Taylor, Jeremy F.; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The utility of this MOLO algorithm was also demonstrated in a real application, in which a 6K SNP panel was optimized conditional on 5,260 obligatory SNP selected based on SNP-trait association in U.S. Holstein animals. With this MOLO algorithm, both imputation error rate and genomic prediction error rate were minimal. PMID:27583971

  7. Human leukocyte antigen class I region single-nucleotide polymorphisms are associated with leprosy susceptibility in Vietnam and India.

    PubMed

    Alter, Andrea; Huong, Nguyen Thu; Singh, Meenakshi; Orlova, Marianna; Van Thuc, Nguyen; Katoch, Kiran; Gao, Xiaojiang; Thai, Vu Hong; Ba, Nguyen Ngoc; Carrington, Mary; Abel, Laurent; Mehra, Narinder; Alcaïs, Alexandre; Schurr, Erwin

    2011-05-01

    Experimental evidence suggested the existence of unidentified leprosy susceptibility loci in the human leukocyte antigen (HLA) complex. To identify such genetic risk factors, a high-density association scan of a 1.9-mega-base (Mb) region in the HLA complex was performed. Among 682 single-nucleotide polymorphisms (SNPs), 59 were associated with leprosy (P <.01) in 198 Vietnamese single-case leprosy families. Genotyping of these SNPs in an independent sample of 292 Vietnamese single-case leprosy families replicated the association of 12 SNPs (P <.01). Multivariate analysis of these 12 SNPs showed that the association information could be captured by 2 intergenic HLA class I region SNPs (P = 9.4 × 10⁻⁹)-rs2394885 and rs2922997 (marginal multivariate P = 2.1 × 10⁻⁷ and P = .0016, respectively). SNP rs2394885 tagged the HLA-C*15:05 allele in the Vietnamese population. The identical associations were validated in a third sample of 364 patients with leprosy and 371 control subjects from North India. These results implicated class I alleles in leprosy pathogenesis.

  8. Human Leukocyte Antigen Class I Region Single-Nucleotide Polymorphisms are Associated with Leprosy Susceptibility in Vietnam and India

    PubMed Central

    Alter, Andrea; Huong, Nguyen Thu; Singh, Meenakshi; Orlova, Marianna; Van Thuc, Nguyen; Katoch, Kiran; Gao, Xiaojiang; Thai, Vu Hong; Ba, Nguyen Ngoc; Carrington, Mary; Abel, Laurent; Mehra, Narinder; Alcaïs, Alexandre

    2011-01-01

    Experimental evidence suggested the existence of unidentified leprosy susceptibility loci in the human leukocyte antigen (HLA) complex. To identify such genetic risk factors, a high-density association scan of a 1.9-mega-base (Mb) region in the HLA complex was performed. Among 682 single-nucleotide polymorphisms (SNPs), 59 were associated with leprosy (P <.01) in 198 Vietnamese single-case leprosy families. Genotyping of these SNPs in an independent sample of 292 Vietnamese single-case leprosy families replicated the association of 12 SNPs (P <.01). Multivariate analysis of these 12 SNPs showed that the association information could be captured by 2 intergenic HLA class I region SNPs (P = 9.4 × 10−9)—rs2394885 and rs2922997 (marginal multivariate P = 2.1 × 10−7 and P = .0016, respectively). SNP rs2394885 tagged the HLA-C*15:05 allele in the Vietnamese population. The identical associations were validated in a third sample of 364 patients with leprosy and 371 control subjects from North India. These results implicated class I alleles in leprosy pathogenesis. PMID:21459816

  9. Association of ITPA polymorphisms rs6051702/rs1127354 instead of rs7270101/rs1127354 as predictor of ribavirin-associated anemia in chronic hepatitis C treated patients.

    PubMed

    D'Avolio, Antonio; De Nicolò, Amedeo; Cusato, Jessica; Ciancio, Alessia; Boglione, Lucio; Strona, Silvia; Cariti, Giuseppe; Troshina, Giulia; Caviglia, Gian Paolo; Smedile, Antonina; Rizzetto, Mario; Di Perri, Giovanni

    2013-10-01

    Functional variants rs7270101 and rs1127354 of inosine triphosphatase (ITPA) were recently found to protect against ribavirin (RBV)-induced hemolytic anemia. However, no definitive data are yet available on the role of no functional rs6051702 polymorphism. Since a simultaneous evaluation of the three ITPA SNPs for hemolytic anemia has not yet been investigated, we aimed to understand the contribution of each SNPs and its potential clinical use to predict anemia in HCV treated patients. A retrospective analysis included 379 HCV treated patients. The ITPA variants rs6051702, rs7270101 and rs1127354 were genotyped and tested for association with achieving anemia at week 4. We also investigated, using multivariate logistic regression, the impact of each single and paired associated polymorphism on anemia onset. All SNPs were associated with Hb decrease. The carrier of at least one variant allele in the functional ITPA SNPs was associated with a lower decrement of Hb, as compared to patients without a variant allele. In multivariate logistic regression analyses the carrier of a variant allele in the rs6051702/rs1127354 association (OR=0.11, p=1.75×10(-5)) and Hb at baseline (OR=1.51, p=1.21×10(-4)) were independently associated with protection against clinically significant anemia at week 4. All ITPA polymorphisms considered were shown to be significantly associated with anemia onset. A multivariate regression model based on ITPA genetic polymorphisms was developed for predicting the risk of anemia. Considering the characterization of pre-therapy anemia predictors, rs6051702 SNP in association to rs1127354 is more informative in order to avoid this relevant adverse event. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A brain-derived neurotrophic factor polymorphism Val66Met identifies fibromyalgia syndrome subgroup with higher body mass index and C-reactive protein.

    PubMed

    Xiao, Yangming; Russell, I Jon; Liu, Ya-Guang

    2012-08-01

    A common single nucleotide polymorphism (SNP) in the gene of brain-derived neurotrophic factor (BDNF) results from a substitution at position 66 from valine (Val) to methionine (Met) and may predispose to human neuropsychiatric disorders. We proposed to determine whether these BDNF gene SNPs were associated with fibromyalgia syndrome (FMS) and/or any of its typical phenotypes. Patients with FMS (N = 95) and healthy normal controls (HNC, N = 58) were studied. Serum high-sensitivity C-reactive protein (hsCRP) levels were measured using an enzyme-linked immunosorbent assay (ELISA). The BDNF SNPs were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).The BDNF SNP distribution was 65 (68%) Val/Val, 28 (30%) Val/Met, and 2 (2%) Met/Met for FMS and 40 (69%), 17(29%), and 1 (2%) for HNC, respectively. The serum high-sensitivity C-reactive protein (hsCRP)and body mass index (BMI) in FMS were higher than in HNC. The FMS with BDNF Val66Val had significantly higher mean BMI (P = 0.0001) and hsCRP (P = 0.02) than did FMS carrying the Val66Met genotype. This pattern was not found in HNC. Phenotypic measures of subjective pain, pain threshold, depression, or insomnia did not relate to either of the BDNF SNPs in FMS. The relative distribution BDNF SNPs did not differ between FMS and HNC. The BDNF Val66Met polymorphism is not selective for FMS. The BDNF Val66Val SNP identifies a subgroup of FMS with elevated hsCRP and higher BMI. This is the first study to associate a BDNF polymorphism with a FMS subgroup phenotype.

  11. Genomic association for sexual precocity in beef heifers using pre-selection of genes and haplotype reconstruction

    PubMed Central

    Barbero, Marina M. D.; Oliveira, Henrique N.; de Camargo, Gregório M. F.; Fernandes Júnior, Gerardo A.; Aspilcueta-Borquis, Rusbel R.; Souza, Fabio R. P.; Boligon, Arione A.; Melo, Thaise P.; Regatieri, Inaê C.; Feitosa, Fabieli L. B.; Fonseca, Larissa F. S.; Magalhães, Ana F. B.; Costa, Raphael B.; Albuquerque, Lucia G.

    2018-01-01

    Reproductive traits are of the utmost importance for any livestock farming, but are difficult to measure and to interpret since they are influenced by various factors. The objective of this study was to detect associations between known polymorphisms in candidate genes related to sexual precocity in Nellore heifers, which could be used in breeding programs. Records of 1,689 precocious and non-precocious heifers from farms participating in the Conexão Delta G breeding program were analyzed. A subset of single nucleotide polymorphisms (SNP) located in the region of the candidate genes at a distance of up to 5 kb from the boundaries of each gene, were selected from the panel of 777,000 SNPs of the High-Density Bovine SNP BeadChip. Linear mixed models were used for statistical analysis of early heifer pregnancy, relating the trait with isolated SNPs or with haplotype groups. The model included the contemporary group (year and month of birth) as fixed effect and parent of the animal (sire effect) as random effect. The fastPHASE® and GenomeStudio® were used for reconstruction of the haplotypes and for analysis of linkage disequilibrium based on r2 statistics. A total of 125 candidate genes and 2,024 SNPs forming haplotypes were analyzed. Statistical analysis after Bonferroni correction showed that nine haplotypes exerted a significant effect (p<0.05) on sexual precocity. Four of these haplotypes were located in the Pregnancy-associated plasma protein-A2 gene (PAPP-A2), two in the Estrogen-related receptor gamma gene (ESRRG), and one each in the Pregnancy-associated plasma protein-A gene (PAPP-A), Kell blood group complex subunit-related family (XKR4) and mannose-binding lectin genes (MBL-1) genes. Although the present results indicate that the PAPP-A2, PAPP-A, XKR4, MBL-1 and ESRRG genes influence sexual precocity in Nellore heifers, further studies are needed to evaluate their possible use in breeding programs. PMID:29293544

  12. Genome-wide gene–environment interaction analysis for asbestos exposure in lung cancer susceptibility

    PubMed Central

    Wei, Qingyi Wei

    2012-01-01

    Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene–environment interactions. To determine gene–asbestos interactions in lung cancer risk, we conducted genome-wide gene–environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10–6, which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10–5). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene–asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk. Abbreviations:CIconfidence intervalEenvironmentFDRfalse discovery rateGgeneGSEAgene-set-enrichment analysisGWASgenome-wide association studiesi-GSEAimproved gene-set-enrichment analysis approachORodds ratioSNPsingle nucleotide polymorphism PMID:22637743

  13. Genomic association for sexual precocity in beef heifers using pre-selection of genes and haplotype reconstruction.

    PubMed

    Takada, Luciana; Barbero, Marina M D; Oliveira, Henrique N; de Camargo, Gregório M F; Fernandes Júnior, Gerardo A; Aspilcueta-Borquis, Rusbel R; Souza, Fabio R P; Boligon, Arione A; Melo, Thaise P; Regatieri, Inaê C; Feitosa, Fabieli L B; Fonseca, Larissa F S; Magalhães, Ana F B; Costa, Raphael B; Albuquerque, Lucia G

    2018-01-01

    Reproductive traits are of the utmost importance for any livestock farming, but are difficult to measure and to interpret since they are influenced by various factors. The objective of this study was to detect associations between known polymorphisms in candidate genes related to sexual precocity in Nellore heifers, which could be used in breeding programs. Records of 1,689 precocious and non-precocious heifers from farms participating in the Conexão Delta G breeding program were analyzed. A subset of single nucleotide polymorphisms (SNP) located in the region of the candidate genes at a distance of up to 5 kb from the boundaries of each gene, were selected from the panel of 777,000 SNPs of the High-Density Bovine SNP BeadChip. Linear mixed models were used for statistical analysis of early heifer pregnancy, relating the trait with isolated SNPs or with haplotype groups. The model included the contemporary group (year and month of birth) as fixed effect and parent of the animal (sire effect) as random effect. The fastPHASE® and GenomeStudio® were used for reconstruction of the haplotypes and for analysis of linkage disequilibrium based on r2 statistics. A total of 125 candidate genes and 2,024 SNPs forming haplotypes were analyzed. Statistical analysis after Bonferroni correction showed that nine haplotypes exerted a significant effect (p<0.05) on sexual precocity. Four of these haplotypes were located in the Pregnancy-associated plasma protein-A2 gene (PAPP-A2), two in the Estrogen-related receptor gamma gene (ESRRG), and one each in the Pregnancy-associated plasma protein-A gene (PAPP-A), Kell blood group complex subunit-related family (XKR4) and mannose-binding lectin genes (MBL-1) genes. Although the present results indicate that the PAPP-A2, PAPP-A, XKR4, MBL-1 and ESRRG genes influence sexual precocity in Nellore heifers, further studies are needed to evaluate their possible use in breeding programs.

  14. High-Density SNP Genotyping to Define β-Globin Locus Haplotypes

    PubMed Central

    Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S.; Quinn, Charles T.; Onyekwere, Onyinye C.; Pace, Betty S.

    2014-01-01

    Five major β-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, β-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the β-locus, which consists of five functional β-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the β-locus using DNA samples from either healthy African Americans with normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the β-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Gγ-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high density SNP mapping may be required to accurately define β-haplotypes that correlate with the different clinical phenotypes observed in SCD. PMID:18829352

  15. Association of the neuronal cell adhesion molecule (NRCAM) gene variants with autism.

    PubMed

    Marui, Tetsuya; Funatogawa, Ikuko; Koishi, Shinko; Yamamoto, Kenji; Matsumoto, Hideo; Hashimoto, Ohiko; Nanba, Eiji; Nishida, Hisami; Sugiyama, Toshiro; Kasai, Kiyoto; Watanabe, Keiichiro; Kano, Yukiko; Sasaki, Tsukasa; Kato, Nobumasa

    2009-02-01

    Autism is a severe neurodevelopmental disorder of early childhood. Genetic factors play an important role in the aetiology of the disorder. In this study, we considered the NRCAM gene as a candidate gene of autism. This gene is expressed in the central nervous system and located in the 7q region, a susceptibility locus of autism. We conducted a case-control study of 18 single nucleotide polymorphisms (SNPs) within the NRCAM gene for possible association with autism in 170 autistic patients and 214 normal controls in a Japanese population. Seven SNPs in the NRCAM gene were significantly associated with autism, among which rs2300045 indicated the most prominent result (p=0.0009 uncorrected, p=0.017 corrected). In haplotype analyses, several individual haplotypes, including a common NRCAM haplotype C-T-T-C-T-T-G-C for rs3763463, rs1859767, rs1034825, rs2300045, rs2300043, rs2300039, rs722519, and rs2216259, showed a significant association after Bonferroni correction (p=0.0035 uncorrected, p=0.028 corrected). These haplotypes were located in the 5' intron-2 region of the gene. In addition, we also assessed the above mentioned SNPs and haplotypes using the transmission disequilibrium test with 148 trios of autistic families. Haplotype G-T-T-T-T-C-G-C in the same eight SNPs was also associated with autism. In summary, our findings provide evidence for a significant association of NRCAM with autism. Considering the important role of the NRCAM gene in brain development, our results therefore indicated that the NRCAM gene is one of the strong candidate genes for autism.

  16. Kernel machine SNP set analysis provides new insight into the association between obesity and polymorphisms located on the chromosomal 16q.12.2 region: Tehran Lipid and Glucose Study.

    PubMed

    Javanrouh, Niloufar; Daneshpour, Maryam S; Soltanian, Ali Reza; Tapak, Leili

    2018-06-05

    Obesity is a serious health problem that leads to low quality of life and early mortality. To the purpose of prevention and gene therapy for such a worldwide disease, genome wide association study is a powerful tool for finding SNPs associated with increased risk of obesity. To conduct an association analysis, kernel machine regression is a generalized regression method, has an advantage of considering the epistasis effects as well as the correlation between individuals due to unknown factors. In this study, information of the people who participated in Tehran cardio-metabolic genetic study was used. They were genotyped for the chromosomal region, evaluation 986 variations located at 16q12.2; build 38hg. Kernel machine regression and single SNP analysis were used to assess the association between obesity and SNPs genotyped data. We found that associated SNP sets with obesity, were almost in the FTO (P = 0.01), AIKTIP (P = 0.02) and MMP2 (P = 0.02) genes. Moreover, two SNPs, i.e., rs10521296 and rs11647470, showed significant association with obesity using kernel regression (P = 0.02). In conclusion, significant sets were randomly distributed throughout the region with more density around the FTO, AIKTIP and MMP2 genes. Furthermore, two intergenic SNPs showed significant association after using kernel machine regression. Therefore, more studies have to be conducted to assess their functionality or precise mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Genetic Variants in SDC3 Gene are Significantly Associated with Growth Traits in Two Chinese Beef Cattle Breeds.

    PubMed

    Huang, Yong-Zhen; Wang, Qin; Zhang, Chun-Lei; Fang, Xing-Tang; Song, En-Liang; Chen, Hong

    2016-01-01

    Identification of the genes and polymorphisms underlying quantitative traits, and understanding these genes and polymorphisms affect economic growth traits, are important for successful marker-assisted selection and more efficient management strategies in commercial cattle (Bos taurus) population. Syndecan-3 (SDC3), a member of the syndecan family of type I transmembrane heparan sulfate proteoglycans is a novel regulator of feeding behavior and body weight. The aim of this study is to examine the association of the SDC3 polymorphism with growth traits in Chinese Jiaxian and Qinchuan cattle breeds (). Four single nucleotide polymorphisms (SNPs: 1-4) were detected in 555 cows from three Chinese native cattle breeds by means of sequencing pooled DNA samples and polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) methods. We found one SNP (g.28362A > G) in intron and three SNPs (g.30742T > G, g.30821C > T and 33418 A > G) in exons. The statistical analyses indicated that these SNPs of SDC3 gene were associated with bovine body height, body length, chest circumference, and circumference of cannon bone (P < 0.05). The mutant-type variant was superior for growth traits; the heterozygote was associated with higher growth traits compared to wild-type homozygote. Our result confirms the polymorphisms in the SDC3 gene are associated with growth traits that may be used for marker-assisted selection in beef cattle breeding programs.

  18. Hexose-6-phosphate dehydrogenase: a new risk gene for multiple sclerosis

    PubMed Central

    Alcina, Antonio; Ramagopalan, Sreeram V; Fernández, Óscar; Catalá-Rabasa, Antonio; Fedetz, María; Ndagire, Dorothy; Leyva, Laura; Arnal, Carmen; Delgado, Concepción; Lucas, Miguel; Izquierdo, Guillermo; Ebers, George C; Matesanz, Fuencisla

    2010-01-01

    A recent genome-wide association study (GWAS) performed by the The Wellcome Trust Case–Control Consortium based on 12 374 nonsynonymous single-nucleotide polymorphisms (SNPs) provided evidence for several genes involved in multiple sclerosis (MS) susceptibility. In this study, we aimed at verifying the association of 19 SNPs with MS, with P-values ≤0.005, in an independent cohort of 732 patients and 974 controls, all Caucasian from the South of Spain. We observed an association of the rs17368528 polymorphism with MS (P=0.04, odds ratio (OR)=0.801, 95% confidence interval (CI)=0.648–0.990). The association of this polymorphism with MS was further validated in an independent set of 1318 patients from the Canadian Collaborative Project (P=0.04, OR=0.838, 95% CI=0.716–0.964). This marker is located on chromosome 1p36.22, which is 1 Mb away from the MS-associated kinesin motor protein KIF1B, although linkage disequilibrium was not observed between these two markers. The rs17368528 SNP results in an amino-acid substitution (proline to leucine) in the fifth exon of the hexose-6-phosphate dehydrogenase (H6PD) gene, in which some variants have been reported to attenuate or abolish H6PD activity, in individuals with cortisone reductase deficiency. This study corroborates the association of one locus determined by GWAS and points to H6PD as a new candidate gene for MS. PMID:19935835

  19. Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms

    USDA-ARS?s Scientific Manuscript database

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...

  20. Interaction between LRP5 and periostin gene polymorphisms on serum periostin levels and cortical bone microstructure.

    PubMed

    Pepe, J; Bonnet, N; Herrmann, F R; Biver, E; Rizzoli, R; Chevalley, T; Ferrari, S L

    2018-02-01

    We investigated the interaction between periostin SNPs and the SNPs of the genes assumed to modulate serum periostin levels and bone microstructure in a cohort of postmenopausal women. We identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels and on radial cortical porosity. The purpose of this study is to investigate the interaction between periostin gene polymorphisms (SNPs) and other genes potentially responsible for modulating serum periostin levels and bone microstructure in a cohort of postmenopausal women. In 648 postmenopausal women from the Geneva Retirees Cohort, we analyzed 6 periostin SNPs and another 149 SNPs in 14 genes, namely BMP2, CTNNB1, ESR1, ESR2, LRP5, LRP6, PTH, SPTBN1, SOST, TGFb1, TNFRSF11A, TNFSF11, TNFRSF11B and WNT16. Volumetric BMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography at the distal radius and tibia. Serum periostin levels were associated with radial cortical porosity, including after adjustment for age, BMI, and years since menopause (p = 0.036). Sixteen SNPs in the ESR1, LRP5, TNFRSF11A, SOST, SPTBN1, TNFRSF11B and TNFSF11 genes were associated with serum periostin levels (p range 0.03-0.001) whereas 26 SNPs in 9 genes were associated with cortical porosity at the radius and/or at the tibia. WNT 16 was the gene with the highest number of SNPs associated with both trabecular and cortical microstructure. The periostin SNP rs9547970 was also associated with cortical porosity (p = 0.04). In particular, SNPs in LRP5, ESR1 and near the TNFRSF11A gene were associated with both cortical porosity and serum periostin levels. Eventually, we identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels (interaction p = 0.01) and on radial cortical porosity (interaction p = 0.005). These results suggest that periostin expression is genetically modulated, particularly by polymorphisms in the Wnt pathway, and is thereby implicated in the genetic variation of bone microstructure.

  1. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species

    PubMed Central

    Garcia-Lor, Andres; Curk, Franck; Snoussi-Trifa, Hager; Morillon, Raphael; Ancillo, Gema; Luro, François; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background and Aims Despite differences in morphology, the genera representing ‘true citrus fruit trees’ are sexually compatible, and their phylogenetic relationships remain unclear. Most of the important commercial ‘species’ of Citrus are believed to be of interspecific origin. By studying polymorphisms of 27 nuclear genes, the average molecular differentiation between species was estimated and some phylogenetic relationships between ‘true citrus fruit trees’ were clarified. Methods Sanger sequencing of PCR-amplified fragments from 18 genes involved in metabolite biosynthesis pathways and nine putative genes for salt tolerance was performed for 45 genotypes of Citrus and relatives of Citrus to mine single nucleotide polymorphisms (SNPs) and indel polymorphisms. Fifty nuclear simple sequence repeats (SSRs) were also analysed. Key Results A total of 16 238 kb of DNA was sequenced for each genotype, and 1097 single nucleotide polymorphisms (SNPs) and 50 indels were identified. These polymorphisms were more valuable than SSRs for inter-taxon differentiation. Nuclear phylogenetic analysis revealed that Citrus reticulata and Fortunella form a cluster that is differentiated from the clade that includes three other basic taxa of cultivated citrus (C. maxima, C. medica and C. micrantha). These results confirm the taxonomic subdivision between the subgenera Metacitrus and Archicitrus. A few genes displayed positive selection patterns within or between species, but most of them displayed neutral patterns. The phylogenetic inheritance patterns of the analysed genes were inferred for commercial Citrus spp. Conclusions Numerous molecular polymorphisms (SNPs and indels), which are potentially useful for the analysis of interspecific genetic structures, have been identified. The nuclear phylogenetic network for Citrus and its sexually compatible relatives was consistent with the geographical origins of these genera. The positive selection observed for a few genes will help further works to analyse the molecular basis of the variability of the associated traits. This study presents new insights into the origin of C. sinensis. PMID:23104641

  2. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the 'true citrus fruit trees' group (Citrinae, Rutaceae) and the origin of cultivated species.

    PubMed

    Garcia-Lor, Andres; Curk, Franck; Snoussi-Trifa, Hager; Morillon, Raphael; Ancillo, Gema; Luro, François; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Despite differences in morphology, the genera representing 'true citrus fruit trees' are sexually compatible, and their phylogenetic relationships remain unclear. Most of the important commercial 'species' of Citrus are believed to be of interspecific origin. By studying polymorphisms of 27 nuclear genes, the average molecular differentiation between species was estimated and some phylogenetic relationships between 'true citrus fruit trees' were clarified. Sanger sequencing of PCR-amplified fragments from 18 genes involved in metabolite biosynthesis pathways and nine putative genes for salt tolerance was performed for 45 genotypes of Citrus and relatives of Citrus to mine single nucleotide polymorphisms (SNPs) and indel polymorphisms. Fifty nuclear simple sequence repeats (SSRs) were also analysed. A total of 16 238 kb of DNA was sequenced for each genotype, and 1097 single nucleotide polymorphisms (SNPs) and 50 indels were identified. These polymorphisms were more valuable than SSRs for inter-taxon differentiation. Nuclear phylogenetic analysis revealed that Citrus reticulata and Fortunella form a cluster that is differentiated from the clade that includes three other basic taxa of cultivated citrus (C. maxima, C. medica and C. micrantha). These results confirm the taxonomic subdivision between the subgenera Metacitrus and Archicitrus. A few genes displayed positive selection patterns within or between species, but most of them displayed neutral patterns. The phylogenetic inheritance patterns of the analysed genes were inferred for commercial Citrus spp. Numerous molecular polymorphisms (SNPs and indels), which are potentially useful for the analysis of interspecific genetic structures, have been identified. The nuclear phylogenetic network for Citrus and its sexually compatible relatives was consistent with the geographical origins of these genera. The positive selection observed for a few genes will help further works to analyse the molecular basis of the variability of the associated traits. This study presents new insights into the origin of C. sinensis.

  3. Pharmacogenetics of human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1): gene resequencing, sequence variation, and functional genomics.

    PubMed

    Xu, Zhen-Hua; Thomae, Bianca A; Eckloff, Bruce W; Wieben, Eric D; Weinshilboum, Richard M

    2003-06-01

    3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy "sulfate donor" for reactions catalyzed by sulfotransferase (SULT) enzymes. The strict requirement of SULTs for PAPS suggests that PAPS synthesis might influence the rate of sulfate conjugation. In humans, PAPS is synthesized from ATP and SO(4)(2-) by two isoforms of PAPS synthetase (PAPSS): PAPSS1 and PAPSS2. As a step toward pharmacogenetic studies, we have resequenced the entire coding sequence of the human PAPSS1 gene, including exon-intron splice junctions, using DNA samples from 60 Caucasian-American and 58 African-American subjects. Twenty-one genetic polymorphisms were observed-1 insertion-deletion event and 20 single nucleotide polymorphisms (SNPs)-including two non-synonymous coding SNPs (cSNPs) that altered the following amino acids: Arg333Cys and Glu531Gln. Twelve pairs of these polymorphisms were tightly linked, and a total of twelve unequivocal haplotypes could be identified-two that were common to both ethnic groups and ten that were ethnic-specific. The Arg333Cys polymorphism, with an allele frequency of 2.5%, was observed only in DNA samples from Caucasian subjects. The Glu531Gln polymorphism was rare, with only a single copy of that allele in a DNA sample from an African-American subject. Transient expression in mammalian cells showed that neither of the non-synonymous cSNPs resulted in a change in the basal level of enzyme activity measured under optimal assay conditions. However, the Glu531Gln polymorphism altered the substrate kinetic properties of the enzyme. The Gln531 variant allozyme had a 5-fold higher K(m) value for SO(4)(2-) than did the wild-type allozyme and displayed monophasic kinetics for Na(2)SO(4). The wild-type allozyme (Glu531) showed biphasic kinetics for that substrate. These observations represent a step toward testing the hypothesis that genetic variation in PAPS synthesis catalyzed by PAPSS1 might alter in vivo sulfate conjugation.

  4. DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle.

    PubMed

    Magee, David A; Sikora, Klaudia M; Berkowicz, Erik W; Berry, Donagh P; Howard, Dawn J; Mullen, Michael P; Evans, Ross D; Spillane, Charles; MacHugh, David E

    2010-10-13

    Studies in mice and humans have shown that imprinted genes, whereby expression from one of the two parentally inherited alleles is attenuated or completely silenced, have a major effect on mammalian growth, metabolism and physiology. More recently, investigations in livestock species indicate that genes subject to this type of epigenetic regulation contribute to, or are associated with, several performance traits, most notably muscle mass and fat deposition. In the present study, a candidate gene approach was adopted to assess 17 validated single nucleotide polymorphisms (SNPs) and their association with a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. These SNPs are located proximal to, or within, the bovine orthologs of eight genes (CALCR, GRB10, PEG3, PHLDA2, RASGRF1, TSPAN32, ZIM2 and ZNF215) that have been shown to be imprinted in cattle or in at least one other mammalian species (i.e. human/mouse/pig/sheep). Heterozygosities for all SNPs analysed ranged from 0.09 to 0.46 and significant deviations from Hardy-Weinberg proportions (P ≤ 0.01) were observed at four loci. Phenotypic associations (P ≤ 0.05) were observed between nine SNPs proximal to, or within, six of the eight analysed genes and a number of performance traits evaluated, including milk protein percentage, somatic cell count, culled cow and progeny carcass weight, angularity, body conditioning score, progeny carcass conformation, body depth, rump angle, rump width, animal stature, calving difficulty, gestation length and calf perinatal mortality. Notably, SNPs within the imprinted paternally expressed gene 3 (PEG3) gene cluster were associated (P ≤ 0.05) with calving, calf performance and fertility traits, while a single SNP in the zinc finger protein 215 gene (ZNF215) was associated with milk protein percentage (P ≤ 0.05), progeny carcass weight (P ≤ 0.05), culled cow carcass weight (P ≤ 0.01), angularity (P ≤ 0.01), body depth (P ≤ 0.01), rump width (P ≤ 0.01) and animal stature (P ≤ 0.01). Of the eight candidate bovine imprinted genes assessed, DNA sequence polymorphisms in six of these genes (CALCR, GRB10, PEG3, RASGRF1, ZIM2 and ZNF215) displayed associations with several of the phenotypes included for analyses. The genotype-phenotype associations detected here are further supported by the biological function of these six genes, each of which plays important roles in mammalian growth, development and physiology. The associations between SNPs within the imprinted PEG3 gene cluster and traits related to calving, calf performance and gestation length suggest that this domain on chromosome 18 may play a role regulating pre-natal growth and development and fertility. SNPs within the bovine ZNF215 gene were associated with bovine growth and body conformation traits and studies in humans have revealed that the human ZNF215 ortholog belongs to the imprinted gene cluster associated with Beckwith-Wiedemann syndrome--a genetic disorder characterised by growth abnormalities. Similarly, the data presented here suggest that the ZNF215 gene may have an important role in regulating bovine growth. Collectively, our results support previous work showing that (candidate) imprinted genes/loci contribute to heritable variation in bovine performance traits and suggest that DNA sequence polymorphisms within these genes/loci represents an important reservoir of genomic markers for future genetic improvement of dairy and beef cattle populations.

  5. DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle

    PubMed Central

    2010-01-01

    Background Studies in mice and humans have shown that imprinted genes, whereby expression from one of the two parentally inherited alleles is attenuated or completely silenced, have a major effect on mammalian growth, metabolism and physiology. More recently, investigations in livestock species indicate that genes subject to this type of epigenetic regulation contribute to, or are associated with, several performance traits, most notably muscle mass and fat deposition. In the present study, a candidate gene approach was adopted to assess 17 validated single nucleotide polymorphisms (SNPs) and their association with a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. These SNPs are located proximal to, or within, the bovine orthologs of eight genes (CALCR, GRB10, PEG3, PHLDA2, RASGRF1, TSPAN32, ZIM2 and ZNF215) that have been shown to be imprinted in cattle or in at least one other mammalian species (i.e. human/mouse/pig/sheep). Results Heterozygosities for all SNPs analysed ranged from 0.09 to 0.46 and significant deviations from Hardy-Weinberg proportions (P ≤ 0.01) were observed at four loci. Phenotypic associations (P ≤ 0.05) were observed between nine SNPs proximal to, or within, six of the eight analysed genes and a number of performance traits evaluated, including milk protein percentage, somatic cell count, culled cow and progeny carcass weight, angularity, body conditioning score, progeny carcass conformation, body depth, rump angle, rump width, animal stature, calving difficulty, gestation length and calf perinatal mortality. Notably, SNPs within the imprinted paternally expressed gene 3 (PEG3) gene cluster were associated (P ≤ 0.05) with calving, calf performance and fertility traits, while a single SNP in the zinc finger protein 215 gene (ZNF215) was associated with milk protein percentage (P ≤ 0.05), progeny carcass weight (P ≤ 0.05), culled cow carcass weight (P ≤ 0.01), angularity (P ≤ 0.01), body depth (P ≤ 0.01), rump width (P ≤ 0.01) and animal stature (P ≤ 0.01). Conclusions Of the eight candidate bovine imprinted genes assessed, DNA sequence polymorphisms in six of these genes (CALCR, GRB10, PEG3, RASGRF1, ZIM2 and ZNF215) displayed associations with several of the phenotypes included for analyses. The genotype-phenotype associations detected here are further supported by the biological function of these six genes, each of which plays important roles in mammalian growth, development and physiology. The associations between SNPs within the imprinted PEG3 gene cluster and traits related to calving, calf performance and gestation length suggest that this domain on chromosome 18 may play a role regulating pre-natal growth and development and fertility. SNPs within the bovine ZNF215 gene were associated with bovine growth and body conformation traits and studies in humans have revealed that the human ZNF215 ortholog belongs to the imprinted gene cluster associated with Beckwith-Wiedemann syndrome--a genetic disorder characterised by growth abnormalities. Similarly, the data presented here suggest that the ZNF215 gene may have an important role in regulating bovine growth. Collectively, our results support previous work showing that (candidate) imprinted genes/loci contribute to heritable variation in bovine performance traits and suggest that DNA sequence polymorphisms within these genes/loci represents an important reservoir of genomic markers for future genetic improvement of dairy and beef cattle populations. PMID:20942903

  6. Validation of genetic polymorphisms on BTA14 associated with carcass trait in a commercial Hanwoo population.

    PubMed

    Sharma, A; Dang, C G; Kim, K S; Kim, J J; Lee, H K; Kim, H C; Yeon, S H; Kang, H S; Lee, S H

    2014-12-01

    The objective of this study was to validate the association of significant SNPs identified from a previous genome-wide association study with carcass weight (CWT) in a commercial Hanwoo population. We genotyped 13 SNPs located on BTA14 in 867 steers from Korea Hanwoo feedlot bulls. Of these 13 SNPs, five SNPs, namely rs29021868, rs110061498, rs109546980, rs42404006 and rs42303720, were found to be significantly associated (P < 0.001) with CWT. These five significant markers spanned the 24.3 to 29.4 Mb region of BTA14. The most significant marker (rs29021868) for CWT in this study had a 13.07 kg allele substitution effect and accounted for 2.4% of the additive genetic variance in the commercial Hanwoo population. The SNP marker rs109546980 was found to be significantly associated with both CWT (P < 0.001) and eye muscle area (P < 0.001) and could potentially be exploited for marker-assisted selection in Hanwoo cattle. We also genotyped the ss319607402 variation, which maps to intron2 of PLAG1 gene and which is already reported to be associated with height, to identify any significant association with carcass weight; however, no such association was observed in this Hanwoo commercial population. © 2014 Stichting International Foundation for Animal Genetics.

  7. Polymorphism of antimalaria drug metabolizing, nuclear receptor, and drug transport genes among malaria patients in Zanzibar, East Africa.

    PubMed

    Ferreira, Pedro Eduardo; Veiga, Maria Isabel; Cavaco, Isa; Martins, J Paulo; Andersson, Björn; Mushin, Shaliya; Ali, Abullah S; Bhattarai, Achuyt; Ribeiro, Vera; Björkman, Anders; Gil, José Pedro

    2008-02-01

    Artemisinin-based combination therapy is a main strategy for malaria control in Africa. Zanzibar introduced this new treatment policy in 2003. The authors have studied the prevalence of a number of functional single nucleotide polymorphisms (SNPs) in genes associated with the elimination of the artemisinin-based combination therapy compounds in use in Zanzibar to investigate the frequencies of subgroups potentially at higher drug exposure and therefore possible higher risk of toxicity. One hundred three unrelated children with uncomplicated malaria from the Unguja and Pemba islands of Zanzibar were enrolled. With use of polymerase chain reaction (PCR)-restriction fragment length polymorphism and real-time PCR-based allele discrimination methods, the CYP2B6 (G15631T), CYP3A4 (A-392G), CYP3A5 (A6986G, G14690A, 27131-132 insT, C3699T) SNPs and MDR1 SNPs C3435T, G2677T/A, and T-129C were analyzed. PCR product sequencing was applied to regulatory regions of MDR1, the CYP3A4 proximal promoter, and to exons 2 and 5 of PXR, a gene coding for a nuclear factor activated by artemisinin antimalarials and associated with the transcription induction of most of the studied genes. Homozygous subjects for alleles coding for low activity proteins were found at the following frequencies: 1) MDR1: 2.9%; 2) CYP2B6: 9.7%; 3) CYP3A5: 14.1%; and 4) CYP3A4: 49.5%. No functionally relevant allele was found in the analyzed regions of PXR. A new MDR1 SNP was found (T-158C), located in a putative antigen recognition element. Ten (10.1%) subjects were predicted to be low metabolizers simultaneously for CYP3A4 and CYP3A5. This fraction of the population is suggested to be under higher exposure to certain antimalarials, including lumefantrine and quinine.

  8. A selective sweep of >8 Mb on chromosome 26 in the Boxer genome.

    PubMed

    Quilez, Javier; Short, Andrea D; Martínez, Verónica; Kennedy, Lorna J; Ollier, William; Sanchez, Armand; Altet, Laura; Francino, Olga

    2011-07-01

    Modern dog breeds display traits that are either breed-specific or shared by a few breeds as a result of genetic bottlenecks during the breed creation process and artificial selection for breed standards. Selective sweeps in the genome result from strong selection and can be detected as a reduction or elimination of polymorphism in a given region of the genome. Extended regions of homozygosity, indicative of selective sweeps, were identified in a genome-wide scan dataset of 25 Boxers from the United Kingdom genotyped at ~20,000 single-nucleotide polymorphisms (SNPs). These regions were further examined in a second dataset of Boxers collected from a different geographical location and genotyped using higher density SNP arrays (~170,000 SNPs). A selective sweep previously associated with canine brachycephaly was detected on chromosome 1. A novel selective sweep of over 8 Mb was observed on chromosome 26 in Boxer and for a shorter region in English and French bulldogs. It was absent in 171 samples from eight other dog breeds and 7 Iberian wolf samples. A region of extended increased heterozygosity on chromosome 9 overlapped with a previously reported copy number variant (CNV) which was polymorphic in multiple dog breeds. A selective sweep of more than 8 Mb on chromosome 26 was identified in the Boxer genome. This sweep is likely caused by strong artificial selection for a trait of interest and could have inadvertently led to undesired health implications for this breed. Furthermore, we provide supporting evidence for two previously described regions: a selective sweep on chromosome 1 associated with canine brachycephaly and a CNV on chromosome 9 polymorphic in multiple dog breeds.

  9. Genome-wide association study identifies phospholipase C zeta 1 (PLCz1) as a stallion fertility locus in Hanoverian warmblood horses.

    PubMed

    Schrimpf, Rahel; Dierks, Claudia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2014-01-01

    A consistently high level of stallion fertility plays an economically important role in modern horse breeding. We performed a genome-wide association study for estimated breeding values of the paternal component of the pregnancy rate per estrus cycle (EBV-PAT) in Hanoverian stallions. A total of 228 Hanoverian stallions were genotyped using the Equine SNP50 Beadchip. The most significant association was found on horse chromosome 6 for a single nucleotide polymorphism (SNP) within phospholipase C zeta 1 (PLCz1). In the close neighbourhood to PLCz1 is located CAPZA3 (capping protein (actin filament) muscle Z-line, alpha 3). The gene PLCz1 encodes a protein essential for spermatogenesis and oocyte activation through sperm induced Ca2+-oscillation during fertilization. We derived equine gene models for PLCz1 and CAPZA3 based on cDNA and genomic DNA sequences. The equine PLCz1 had four different transcripts of which two contained a premature termination codon. Sequencing all exons and their flanking sequences using genomic DNA samples from 19 Hanoverian stallions revealed 47 polymorphisms within PLCz1 and one SNP within CAPZA3. Validation of these 48 polymorphisms in 237 Hanoverian stallions identified three intronic SNPs within PLCz1 as significantly associated with EBV-PAT. Bioinformatic analysis suggested regulatory effects for these SNPs via transcription factor binding sites or microRNAs. In conclusion, non-coding polymorphisms within PLCz1 were identified as conferring stallion fertility and PLCz1 as candidate locus for male fertility in Hanoverian warmblood. CAPZA3 could be eliminated as candidate gene for fertility in Hanoverian stallions.

  10. Genome-Wide Association Study Identifies Phospholipase C zeta 1 (PLCz1) as a Stallion Fertility Locus in Hanoverian Warmblood Horses

    PubMed Central

    Schrimpf, Rahel; Dierks, Claudia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2014-01-01

    A consistently high level of stallion fertility plays an economically important role in modern horse breeding. We performed a genome-wide association study for estimated breeding values of the paternal component of the pregnancy rate per estrus cycle (EBV-PAT) in Hanoverian stallions. A total of 228 Hanoverian stallions were genotyped using the Equine SNP50 Beadchip. The most significant association was found on horse chromosome 6 for a single nucleotide polymorphism (SNP) within phospholipase C zeta 1 (PLCz1). In the close neighbourhood to PLCz1 is located CAPZA3 (capping protein (actin filament) muscle Z-line, alpha 3). The gene PLCz1 encodes a protein essential for spermatogenesis and oocyte activation through sperm induced Ca2+-oscillation during fertilization. We derived equine gene models for PLCz1 and CAPZA3 based on cDNA and genomic DNA sequences. The equine PLCz1 had four different transcripts of which two contained a premature termination codon. Sequencing all exons and their flanking sequences using genomic DNA samples from 19 Hanoverian stallions revealed 47 polymorphisms within PLCz1 and one SNP within CAPZA3. Validation of these 48 polymorphisms in 237 Hanoverian stallions identified three intronic SNPs within PLCz1 as significantly associated with EBV-PAT. Bioinformatic analysis suggested regulatory effects for these SNPs via transcription factor binding sites or microRNAs. In conclusion, non-coding polymorphisms within PLCz1 were identified as conferring stallion fertility and PLCz1 as candidate locus for male fertility in Hanoverian warmblood. CAPZA3 could be eliminated as candidate gene for fertility in Hanoverian stallions. PMID:25354211

  11. Effect of epidermal growth factor receptor gene polymorphisms on prognosis in glioma patients

    PubMed Central

    Li, Jingjie; Yan, Mengdan; Xie, Zhilan; Zhu, Yuanyuan; Chen, Chao; Jin, Tianbo

    2016-01-01

    Previous studies suggested that single nucleotide polymorphisms (SNPs) in epidermal growth factor receptor (EGFR) are associated with risk of glioma. However, the associations between these SNPs and glioma patient prognosis have not yet been fully investigated. Therefore, the present study was aimed to evaluate the effects of EGFR polymorphisms on the glioma patient prognosis. We retrospectively evaluated 269 glioma patients and investigated associations between EGFR SNPs and patient prognosis using Cox proportional hazard models and Kaplan-Meier curves. Univariate analysis revealed that age, gross-total resection and chemotherapy were associated with the prognosis of glioma patients (p < 0.05). In addition, four EGFR SNPs (rs11506105, rs3752651, rs1468727 and rs845552) correlated with overall survival (OS) (Log-rank p = 0.011, 0.020, 0.008, and 0.009, respectively) and progression-free survival PFS (Log-rank p = 0.026, 0.024, 0.019 and 0.009, respectively). Multivariate analysis indicated that the rs11506105 G/G genotype, the rs3752651 and rs1468727 C/C genotype and the rs845552 A/A genotype correlated inversely with OS and PFS. In addition, OS among patients with the rs730437 C/C genotype (p = 0.030) was significantly lower OS than among patients with A/A genotype. These data suggest that five EGFR SNPs (rs11506105, rs3752651, rs1468727, rs845552 and rs730437) correlated with glioma patient prognosis, and should be furthered validated in studies of ethnically diverse patients. PMID:27437777

  12. A genotyping system capable of simultaneously analyzing >1000 single nucleotide polymorphisms in a haploid genome.

    PubMed

    Wang, Hui-Yun; Luo, Minjie; Tereshchenko, Irina V; Frikker, Danielle M; Cui, Xiangfeng; Li, James Y; Hu, Guohong; Chu, Yi; Azaro, Marco A; Lin, Yong; Shen, Li; Yang, Qifeng; Kambouris, Manousos E; Gao, Richeng; Shih, Weichung; Li, Honghua

    2005-02-01

    A high-throughput genotyping system for scoring single nucleotide polymorphisms (SNPs) has been developed. With this system, >1000 SNPs can be analyzed in a single assay, with a sensitivity that allows the use of single haploid cells as starting material. In the multiplex polymorphic sequence amplification step, instead of attaching universal sequences to the amplicons, primers that are unlikely to have nonspecific and productive interactions are used. Genotypes of SNPs are then determined by using the widely accessible microarray technology and the simple single-base extension assay. Three SNP panels, each consisting of >1000 SNPs, were incorporated into this system. The system was used to analyze 24 human genomic DNA samples. With 5 ng of human genomic DNA, the average detection rate was 98.22% when single probes were used, and 96.71% could be detected by dual probes in different directions. When single sperm cells were used, 91.88% of the SNPs were detectable, which is comparable to the level that was reached when very few genetic markers were used. By using a dual-probe assay, the average genotyping accuracy was 99.96% for 5 ng of human genomic DNA and 99.95% for single sperm. This system may be used to significantly facilitate large-scale genetic analysis even if the amount of DNA template is very limited or even highly degraded as that obtained from paraffin-embedded cancer specimens, and to make many unpractical research projects highly realistic and affordable.

  13. Analysis of TLR2, TLR4, and TLR9 single nucleotide polymorphisms in children with bacterial meningitis and their healthy family members.

    PubMed

    Gowin, Ewelina; Świątek-Kościelna, Bogna; Kałużna, Ewelina; Nowak, Jerzy; Michalak, Michał; Wysocki, Jacek; Januszkiewicz-Lewandowska, Danuta

    2017-07-01

    The aim was to analyse TLR2 rs5743708, TLR2 rs4696480, TLR4 rs4986790, TLR9 rs5743836, and TLR9 rs352140 single nucleotide polymorphisms (SNPs) in children with pneumococcal and meningococcal meningitis and their family members. The study group consisted of 39 children with bacterial meningitis (25 with meningococcal meningitis and 14 with pneumococcal meningitis) and 49 family members. Laboratory test results and the course of the diseases were analyzed. Genomic DNA was extracted from 1.2ml of peripheral blood in order to analyze the five SNPs. Patients with pneumococcal and meningococcal meningitis showed a similar male/female ratio, mean age, and duration of symptoms. There were no statistically significant differences in biochemical markers between the two groups. All patients possessed at least one polymorphic variant of the analyzed SNPs. The most common SNP was TLR9 rs352140, detected in 89.7% of patients. No significant differences in SNP frequency were found between patients, family members, and the general population. The allele frequencies in the population studied are in accordance with the literature data. The study did not find an association between the analyzed SNPs and susceptibility to bacterial meningitis. The role of SNPs in genes coding toll-like receptors and the interactions between them in controlling inflammation in the central nervous system needs further evaluation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Capturing haplotypes in germplasm core collections

    USDA-ARS?s Scientific Manuscript database

    Genomewide data sets of single nucleotide polymorphisms (SNPs) offer great potential to improve ex situ conservation. Two factors impede their use for producing core collections. First, due to the large number of SNPs, the assembly of collections that maximize diversity may be intractable using ex...

  15. Marker-assisted backcross approach for important agronomic traits of sorghum

    USDA-ARS?s Scientific Manuscript database

    Sequencing technologies are useful for identification of thousands of single nucleotide polymorphisms (SNPs) in a cost effective manner. QTL mapping, association mapping and Mutmap approaches provide opportunities for use of such SNPs to associate and identify genes that control important agronomic ...

  16. eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.

    PubMed

    Li, Haiquan; Pouladi, Nima; Achour, Ikbel; Gardeux, Vincent; Li, Jianrong; Li, Qike; Zhang, Hao Helen; Martinez, Fernando D; 'Skip' Garcia, Joe G N; Lussier, Yves A

    2015-12-01

    The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large number of downstream proteins. Indeed, we verify that this property is independent of the hubness in protein networks for which these mRNAs are transcribed. Our findings provide novel insights into the pleiotropy of mRNAs targeted by complex disease polymorphisms and the architecture of the information flow between the genetic polymorphisms and transcriptomes of complex diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A New Single Nucleotide Polymorphism Database for Rainbow Trout Generated Through Whole Genome Resequencing.

    PubMed

    Gao, Guangtu; Nome, Torfinn; Pearse, Devon E; Moen, Thomas; Naish, Kerry A; Thorgaard, Gary H; Lien, Sigbjørn; Palti, Yniv

    2018-01-01

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout ( Oncorhynchus mykiss ), SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL) and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway) that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU) and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1) which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup , followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs) and multi-sequence variants (MSVs). Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25). The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and heterozygosity within each population. We also provide functional annotation based on the genome position of each SNP and evaluate the use of clonal lines for filtering of PSVs and MSVs. These SNPs form a new database, which provides an important resource for a new high density SNP array design and for other SNP genotyping platforms used for genetic and genomics studies of this iconic salmonid fish species.

  18. Using microarray analysis to evaluate genetic polymorphisms involved in the metabolism of environmental chemicals.

    PubMed

    Ban, Susumu; Kondo, Tomoko; Ishizuka, Mayumi; Sasaki, Seiko; Konishi, Kanae; Washino, Noriaki; Fujita, Syoichi; Kishi, Reiko

    2007-05-01

    The field of molecular biology currently faces the need for a comprehensive method of evaluating individual differences derived from genetic variation in the form of single nucleotide polymorphisms (SNPs). SNPs in human genes are generally considered to be very useful in determining inherited genetic disorders, susceptibility to certain diseases, and cancer predisposition. Quick and accurate discrimination of SNPs is the key characteristic of technology used in DNA diagnostics. For this study, we first developed a DNA microarray and then evaluated its efficacy by determining the detection ability and validity of this method. Using DNA obtained from 380 pregnant Japanese women, we examined 13 polymorphisms of 9 genes, which are associated with the metabolism of environmental chemical compounds found in high frequency among Japanese populations. The ability to detect CYP1A1 I462V, CYP1B1 L432V, GSTP1 I105V and AhR R554K gene polymorphisms was above 98%, and agreement rates when compared with real time PCR analysis methods (kappa values) showed high validity: 0.98 (0.96), 0.97 (0.93), 0.90 (0.81), 0.90 (0.91), respectively. While this DNA microarray analysis should prove important as a method for initial screening, it is still necessary that we find better methods for improving the detection of other gene polymorphisms not part of this study.

  19. Genetic Diversity in the Prion Protein Gene (PRNP) of Domestic Cattle and Water Buffaloes in Vietnam, Indonesia and Thailand

    PubMed Central

    UCHIDA, Leo; HERIYANTO, Agus; THONGCHAI, Chalermchaikit; HANH, Tran Thi; HORIUCHI, Motohiro; ISHIHARA, Kanako; TAMURA, Yutaka; MURAMATSU, Yasukazu

    2014-01-01

    ABSTRACT There has been an accumulation of information on frequencies of insertion/deletion (indel) polymorphisms within the bovine prion protein gene (PRNP) and on the number of octapeptide repeats and single nucleotide polymorphisms (SNPs) in the coding region of bovine PRNP related to bovine spongiform encephalopathy (BSE) susceptibility. We investigated the frequencies of 23-bp indel polymorphism in the promoter region (23indel) and 12-bp indel polymorphism in intron 1 region (12indel), octapeptide repeat polymorphisms and SNPs in the bovine PRNP of cattle and water buffaloes in Vietnam, Indonesia and Thailand. The frequency of the deletion allele in the 23indel site was significantly low in cattle of Indonesia and Thailand and water buffaloes. The deletion allele frequency in the 12indel site was significantly low in all of the cattle and buffaloes categorized in each subgroup. In both indel sites, the deletion allele has been reported to be associated with susceptibility to classical BSE. In some Indonesian local cattle breeds, the frequency of the allele with 5 octapeptide repeats was significantly high despite the fact that the allele with 6 octapeptide repeats has been reported to be most frequent in many breeds of cattle. Four SNPs observed in Indonesian local cattle have not been reported for domestic cattle. This study provided information on PRNP of livestock in these Southeast Asian countries. PMID:24705506

  20. Genetic features of Mycobacterium tuberculosis modern Beijing sublineage

    PubMed Central

    Liu, Qingyun; Luo, Tao; Dong, Xinran; Sun, Gang; Liu, Zhu; Gan, Mingyun; Wu, Jie; Shen, Xin; Gao, Qian

    2016-01-01

    Mycobacterium tuberculosis (MTB) Beijing strains have caused a great concern because of their rapid emergence and increasing prevalence in worldwide regions. Great efforts have been made to investigate the pathogenic characteristics of Beijing strains such as hypervirulence, drug resistance and favoring transmission. Phylogenetically, MTB Beijing family was divided into modern and ancient sublineages. Modern Beijing strains displayed enhanced virulence and higher prevalence when compared with ancient Beijing strains, but the genetic basis for this difference remains unclear. In this study, by analyzing previously published sequencing data of 1082 MTB Beijing isolates, we determined the genetic changes that were commonly present in modern Beijing strains but absent in ancient Beijing strains. These changes include 44 single-nucleotide polymorphisms (SNPs) and two short genomic deletions. Through bioinformatics analysis, we demonstrated that these genetic changes had high probability of functional effects. For example, 4 genes were frameshifted due to premature stop mutation or genomic deletions, 19 nonsynonymous SNPs located in conservative codons, and there is a significant enrichment in regulatory network for all nonsynonymous mutations. Besides, three SNPs located in promoter regions were verified to alter downstream gene expressions. Our study precisely defined the genetic features of modern Beijing strains and provided interesting clues for future researches to elucidate the mechanisms that underlie this sublineage's successful expansion. These findings from the analysis of the modern Beijing sublineage could provide us a model to understand the dynamics of pathogenicity of MTB. PMID:26905026

  1. Polymorphisms of the resistin gene and their association with obesity and resistin levels in Malaysian Malays.

    PubMed

    Apalasamy, Yamunah Devi; Rampal, Sanjay; Salim, Agus; Moy, Foong Ming; Su, Tin Tin; Majid, Hazreen Abdul; Bulgiba, Awang; Mohamed, Zahurin

    2015-06-01

    Single nucleotide polymorphisms (SNP) in the resistin gene (RETN) are linked to obesity and resistin levels in various populations. However, results have been inconsistent. This study aimed to investigate association between polymorphisms in the resistin gene with obesity in a homogenous Malaysian Malay population. This study is also aimed to determine association between resistin levels with certain SNPs and haplotypes of RETN. A total of 631 Malaysian Malay subjects were included in this study and genotyping was carried out using Sequenom MassARRAY. There was no significant difference found in both allelic and genotype frequencies of each of the RETN SNPs between the obese and non-obese groups after Bonferroni correction. RETN rs34861192 and rs3219175 SNPs were significantly associated with log-resistin levels. The GG genotype carriers are found to have higher levels of log-resistin compared to A allele carriers. The RETN haplotypes (CAG, CGA and GA) were significantly associated with resistin levels. However, the haplotypes of the RETN gene were not associated with obesity. Resistin levels were not correlated to metabolic parameters such as body weight, waist circumference, body mass index, and lipid parameters. RETN SNPs and haplotypes are of apparent functional importance in the regulation of resistin levels but are not correlated with obesity and related markers.

  2. Development of genetic markers in abalone through construction of a SNP database.

    PubMed

    Kang, J-H; Appleyard, S A; Elliott, N G; Jee, Y-J; Lee, J B; Kang, S W; Baek, M K; Han, Y S; Choi, T-J; Lee, Y S

    2011-06-01

    In the absence of a reference genome, single-nucleotide polymorphisms (SNP) discovery in a group of abalone species was undertaken by random sequence assembly. A web-based interface was constructed, and 11 932 DNA sequences from the genus Haliotis were assembled, with 1321 contigs built. Of these, 118 contigs that consisted of at least ten annotation groups were selected. The 1577 putative SNPs were identified from the 118 contigs, with SNPs in several HSP70 gene contigs confirmed by PCR amplification of an 809-bp DNA fragment. SNPs in the HSP70 gene were compared across eight abalone species. A total of 129 polymorphic sites, including heterozygote sites within and among species, were observed. Phylogenetic analysis of the partial HSP70 gene region showed separation of the tested abalone into two groups, one reflecting the southern hemisphere species and the other the northern hemisphere species. Interestingly, Haliotis iris from New Zealand showed a closer relationship to species distributed in the northern Pacific region. Although HSP genes are known to be highly conserved among taxa, the validation of polymorphic SNPs from HSP70 in this mollusc demonstrates the applicability of cross-species SNP markers in abalone and the first step towards universal nuclear markers in Haliotis. © 2010 NFRDI, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.

  3. A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth.

    PubMed

    Butter, Falk; Kappei, Dennis; Buchholz, Frank; Vermeulen, Michiel; Mann, Matthias

    2010-04-01

    Single-nucleotide polymorphisms (SNPs) in the regulatory regions of the genome can have a profound impact on phenotype. The G3072A polymorphism in intron 3 of insulin-like growth factor 2 (IGF2) is implicated in higher muscle content and reduced fat in European pigs and is bound by a putative repressor. Here, we identify this repressor--which we call muscle growth regulator (MGR)--by using a DNA protein interaction screen based on quantitative mass spectrometry. MGR has a bipartite nuclear localization signal, two BED-type zinc fingers and is highly conserved between placental mammals. Surprisingly, the gene is located in an intron and belongs to the hobo-Ac-Tam3 transposase superfamily, suggesting regulatory use of a formerly parasitic element. In transactivation assays, MGR differentially represses the expression of the two SNP variants. Knockdown of MGR in C2C12 myoblast cells upregulates Igf2 expression and mild overexpression retards growth. Thus, MGR is the repressor responsible for enhanced muscle growth in the IGF2 G3072A polymorphism in commercially bred pigs.

  4. EPH Receptor B4 (EPHB4) Gene Polymorphisms and Risk of Intracranial Hemorrhage in Patients with Brain Arteriovenous Malformations

    PubMed Central

    Weinsheimer, Shantel; Kim, Helen; Pawlikowska, Ludmila; Chen, Yongmei; Lawton, Michael T.; Sidney, Stephen; Kwok, Pui-Yan; McCulloch, Charles E.; Young, William L.

    2009-01-01

    Background Brain arteriovenous malformations (BAVM) are a tangle of abnormal vessels directly shunting blood from the arterial to venous circulation and an important cause of intracranial hemorrhage (ICH). EphB4 is involved in arterial-venous determination during embryogenesis; altered signaling could lead to vascular instability resulting in ICH. We investigated the association of single-nucleotide polymorphisms (SNPs) and haplotypes in EPHB4 with risk of ICH at clinical presentation in BAVM patients. Methods and Results Eight haplotype-tagging SNPs spanning ∼29 kb were tested for association with ICH presentation in 146 Caucasian BAVM patients (phase I: 56 ICH, 90 non-ICH) using allelic, haplotypic, and principal components analysis. Associated SNPs were then genotyped in 102 additional cases (phase II: 37 ICH, 65 non-ICH) and data combined for multivariable logistic regression. Minor alleles of 2 SNPs were associated with reduced risk of ICH presentation (rs314313 C, P=0.005; rs314308 T, P=0.0004). Overall, haplotypes were also significantly associated with ICH presentation (χ2=17.24, 6 df, P=0.008); 2 haplotypes containing the rs314308 T allele (GCCTGGGT, P=0.003; GTCTGGGC, P=0.036) were associated with reduced risk. In principal components analysis, 2 components explained 91% of the variance, and complemented haplotype results by implicating 4 SNPs at the 5′ end, including rs314308 and rs314313. These 2 SNPs were replicated in the phase II cohort, and combined data resulted in greater significance (rs314313, P=0.0007; rs314308, P=0.00008). SNP association with ICH presentation persisted after adjusting for age, sex, BAVM size, and deep venous drainage. Conclusions EPHB4 polymorphisms are associated with risk of ICH presentation in BAVM patients, warranting further study. PMID:20031623

  5. Inverse correlation between HPSE gene single nucleotide polymorphisms and heparanase expression: possibility of multiple levels of heparanase regulation

    PubMed Central

    Ostrovsky, Olga; Korostishevsky, Michael; Shafat, Itay; Mayorov, Margarita; Ilan, Neta; Vlodavsky, Israel; Nagler, Arnon

    2009-01-01

    Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of heparan sulfate proteoglycans. Heparanase plays important roles in processes such as angiogenesis, tumor metastasis, tissue repair and remodeling, inflammation and autoimmunity. Genetic variations of the heparanase gene (HPSE) have been associated with heparanase transcription level. The present study was undertaken to identify haplotype or single nucleotide polymorphisms (SNPs) genotype combinations that correlate with heparanase expression both at the mRNA and protein levels. For this purpose, 11 HPSE gene SNPs were genotyped among 108 healthy individuals. Five out of the eleven polymorphisms revealed an association between the SNPs and heparanase expression. SNP rs4693608 exhibited a strong evidence of association. Analysis of haplotypes distribution revealed that the combination of two SNPs (rs4693608 and rs4364254) disclosed the most significant result. This approach allowed segregation of possible genotype combinations to three groups that correlate with low (LR: GG-CC, GG-CT, GG-TT, GA-CC), intermediate (MR: GA-CT, GA-TT) and high (HR: AA-TT, AA-CT) heparanase expression. Unexpectedly, LR genotype combinations were associated with low mRNA expressions level and high heparanase concentration in plasma, while HR genotype combinations were associated with high expression of mRNA and low plasma protein level. Because the main site of activity of secreted active heparanase is the extracellular matrix and cell surface, the origin and functional significance of plasma heparanase remain to be investigated. The current study indicates that rs4693608 and rs4364254 SNPs are involved in the regulation of heparanase expression and provides the basis for further studies on the association between HPSE gene SNPs and disease outcome. PMID:19406828

  6. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms

    PubMed Central

    Nimmakayala, Padma; Abburi, Venkata L.; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C. V. Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K.

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9–2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers. PMID:27857720

  7. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms.

    PubMed

    Nimmakayala, Padma; Abburi, Venkata L; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C V Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum , indicating a population bottleneck during domestication of C. baccatum . In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum , 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index ( F ST ) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9-2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers.

  8. Haplotype defined by the MLH1-93G/A polymorphism is associated with MLH1 promoter hypermethylation in sporadic colorectal cancers.

    PubMed

    Miyakura, Yasuyuki; Tahara, Makiko; Lefor, Alan T; Yasuda, Yoshikazu; Sugano, Kokichi

    2014-11-24

    Methylation of the MLH1 promoter region has been suggested to be a major mechanism of gene inactivation in sporadic microsatellite instability-positive (MSI-H) colorectal cancers (CRCs). Recently, single-nucleotide polymorphism (SNP) in the MLH1 promoter region (MLH1-93G/A; rs1800734) has been proposed to be associated with MLH1 promoter methylation, loss of MLH1 protein expression and MSI-H tumors. We examined the association of MLH1-93G/A and six other SNPs surrounding MLH1-93G/A with the methylation status in 210 consecutive sporadic CRCs in Japanese patients. Methylation of the MLH1 promoter region was evaluated by Na-bisulfite polymerase chain reaction (PCR)/single-strand conformation polymorphism (SSCP) analysis. The genotype frequencies of SNPs located in the 54-kb region surrounding the MLH1-93G/A SNP were examined by SSCP analysis. Methylation of the MLH1 promoter region was observed in 28.6% (60/210) of sporadic CRCs. The proportions of MLH1-93G/A genotypes A/A, A/G and G/G were 26% (n=54), 51% (n=108) and 23% (n=48), respectively, and they were significantly associated with the methylation status (p=0.01). There were no significant associations between genotype frequency of the six other SNPs and methylation status. The A-allele of MLH1-93G/A was more common in cases with methylation than the G-allele (p=0.0094), especially in females (p=0.0067). In logistic regression, the A/A genotype of the MLH1-93G/A SNP was shown to be the most significant risk factor for methylation of the MLH1 promoter region (odds ratio 2.82, p=0.003). Furthermore, a haplotype of the A-allele of rs2276807 located -47 kb upstream from the MLH1-93G/A SNP and the A-allele of MLH1-93G/A SNP was significantly associated with MLH1 promoter methylation. These results indicate that individuals, and particularly females, carrying the A-allele at the MLH1-93G/A SNP, especially in association with the A-allele of rs2276807, may harbor an increased risk of methylation of the MLH1 promoter region.

  9. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.

  10. The role of genetic variation of human metabolism for BMI, mental traits and mental disorders.

    PubMed

    Hebebrand, Johannes; Peters, Triinu; Schijven, Dick; Hebebrand, Moritz; Grasemann, Corinna; Winkler, Thomas W; Heid, Iris M; Antel, Jochen; Föcker, Manuel; Tegeler, Lisa; Brauner, Lena; Adan, Roger A H; Luykx, Jurjen J; Correll, Christoph U; König, Inke R; Hinney, Anke; Libuda, Lars

    2018-06-01

    The aim was to assess whether loci associated with metabolic traits also have a significant role in BMI and mental traits/disorders METHODS: We first assessed the number of single nucleotide polymorphisms (SNPs) with genome-wide significance for human metabolism (NHGRI-EBI Catalog). These 516 SNPs (216 independent loci) were looked-up in genome-wide association studies for association with body mass index (BMI) and the mental traits/disorders educational attainment, neuroticism, schizophrenia, well-being, anxiety, depressive symptoms, major depressive disorder, autism-spectrum disorder, attention-deficit/hyperactivity disorder, Alzheimer's disease, bipolar disorder, aggressive behavior, and internalizing problems. A strict significance threshold of p < 6.92 × 10 -6 was based on the correction for 516 SNPs and all 14 phenotypes, a second less conservative threshold (p < 9.69 × 10 -5 ) on the correction for the 516 SNPs only. 19 SNPs located in nine independent loci revealed p-values < 6.92 × 10 -6 ; the less strict criterion was met by 41 SNPs in 24 independent loci. BMI and schizophrenia showed the most pronounced genetic overlap with human metabolism with three loci each meeting the strict significance threshold. Overall, genetic variation associated with estimated glomerular filtration rate showed up frequently; single metabolite SNPs were associated with more than one phenotype. Replications in independent samples were obtained for BMI and educational attainment. Approximately 5-10% of the regions involved in the regulation of blood/urine metabolite levels seem to also play a role in BMI and mental traits/disorders and related phenotypes. If validated in metabolomic studies of the respective phenotypes, the associated blood/urine metabolites may enable novel preventive and therapeutic strategies. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. Genetic variants in VEGF pathway genes in neoadjuvant breast cancer patients receiving bevacizumab: Results from the randomized phase III GeparQuinto study.

    PubMed

    Hein, Alexander; Lambrechts, Diether; von Minckwitz, Gunter; Häberle, Lothar; Eidtmann, Holger; Tesch, Hans; Untch, Michael; Hilfrich, Jörn; Schem, Christian; Rezai, Mahdi; Gerber, Bernd; Dan Costa, Serban; Blohmer, Jens-Uwe; Schwedler, Kathrin; Kittel, Kornelia; Fehm, Tanja; Kunz, Georg; Beckmann, Matthias W; Ekici, Arif B; Hanusch, Claus; Huober, Jens; Liedtke, Cornelia; Mau, Christine; Moisse, Matthieu; Müller, Volkmar; Nekljudova, Valentina; Peuteman, Gilian; Rack, Brigitte; Rübner, Matthias; Van Brussel, Thomas; Wang, Liewei; Weinshilboum, Richard M; Loibl, Sibylle; Fasching, Peter A

    2015-12-15

    Studies assessing the effect of bevacizumab (BEV) on breast cancer (BC) outcome have shown different effects on progression-free and overall survival, suggesting that a subgroup of patients may benefit from this treatment. Unfortunately, no biomarkers exist to identify these patients. Here, we investigate whether single nucleotide polymorphisms (SNPs) in VEGF pathway genes correlate with pathological complete response (pCR) in the neoadjuvant GeparQuinto trial. HER2-negative patients were randomized into treatment arms receiving either BEV combined with standard chemotherapy or chemotherapy alone. In a pre-planned biomarker study, DNA was collected from 729 and 724 patients, respectively from both treatment arms, and genotyped for 125 SNPs. Logistic regression assessed interaction between individual SNPs and both treatment arms to predict pCR. Five SNPs may be associated with a better response to BEV, but none of them remained significant after correction for multiple testing. The two SNPs most strongly associated, rs833058 and rs699947, were located upstream of the VEGF-A promoter. Odds ratios for the homozygous common, heterozygous and homozygous rare rs833058 genotypes were 2.36 (95% CI, 1.49-3.75), 1.20 (95% CI, 0.88-1.64) and 0.61 (95% CI, 0.34-1.12). Notably, some SNPs in VEGF-A exhibited a more pronounced effect in the triple-negative subgroup. Several SNPs in VEGF-A may be associated with improved pCR when receiving BEV in the neoadjuvant setting. Although none of the observed effects survived correction for multiple testing, our observations are consistent with previous studies on BEV efficacy in BC. Further research is warranted to clarify the predictive value of these markers. © 2015 UICC.

  12. Monoamine oxidase A gene polymorphisms and enzyme activity associated with risk of gout in Taiwan aborigines.

    PubMed

    Tu, Hung-Pin; Ko, Albert Min-Shan; Wang, Shu-Jung; Lee, Chien-Hung; Lea, Rod A; Chiang, Shang-Lun; Chiang, Hung-Che; Wang, Tsu-Nai; Huang, Meng-Chuan; Ou, Tsan-Teng; Lin, Gau-Tyan; Ko, Ying-Chin

    2010-02-01

    Taiwanese aborigines have a high prevalence of hyperuricemia and gout. Uric acid levels and urate excretion have correlated with dopamine-induced glomerular filtration response. MAOs represent one of the major renal dopamine metabolic pathways. We aimed to identify the monoamine oxidase A (MAOA, Xp11.3) gene variants and MAO-A enzyme activity associated with gout risk. This study was to investigate the association between gout and the MAOA single-nucleotide polymorphisms (SNPs) rs5953210, rs2283725, and rs1137070 as well as between gout and the COMT SNPs rs4680 Val158Met for 374 gout cases and 604 controls. MAO-A activity was also measured. All three MAOA SNPs were significantly associated with gout. A synonymous MAOA SNP, rs1137070 Asp470Asp, located in exon 14, was associated with the risk of having gout (P = 4.0 x 10(-5), adjusted odds ratio 1.46, 95% confidence intervals [CI]: 1.11-1.91). We also showed that, when compared to individuals with the MAOA GAT haplotype, carriers of the AGC haplotype had a 1.67-fold (95% CI: 1.28-2.17) higher risk of gout. Moreover, we found that MAOA enzyme activity correlated positively with hyperuricemia and gout (P for trend = 2.00 x 10(-3) vs. normal control). We also found that MAOA enzyme activity by rs1137070 allele was associated with hyperuricemia and gout (P for trend = 1.53 x 10(-6) vs. wild-type allele). Thus, our results show that some MAOA alleles, which have a higher enzyme activity, predispose to the development of gout.

  13. Single-Nucleotide Polymorphisms Associated with Skin Naphthyl–Keratin Adduct Levels in Workers Exposed to Naphthalene

    PubMed Central

    Jiang, Rong; French, John E.; Stober, Vandy P.; Kang-Sickel, Juei-Chuan C.; Zou, Fei

    2012-01-01

    Background: Individual genetic variation that results in differences in systemic response to xenobiotic exposure is not accounted for as a predictor of outcome in current exposure assessment models. Objective: We developed a strategy to investigate individual differences in single-nucleotide polymorphisms (SNPs) as genetic markers associated with naphthyl–keratin adduct (NKA) levels measured in the skin of workers exposed to naphthalene. Methods: The SNP-association analysis was conducted in PLINK using candidate-gene analysis and genome-wide analysis. We identified significant SNP–NKA associations and investigated the potential impact of these SNPs along with personal and workplace factors on NKA levels using a multiple linear regression model and the Pratt index. Results: In candidate-gene analysis, a SNP (rs4852279) located near the CYP26B1 gene contributed to the 2-naphthyl–keratin adduct (2NKA) level. In the multiple linear regression model, the SNP rs4852279, dermal exposure, exposure time, task replacing foam, age, and ethnicity all were significant predictors of 2NKA level. In genome-wide analysis, no single SNP reached genome-wide significance for NKA levels (all p ≥ 1.05 × 10–5). Pathway and network analyses of SNPs associated with NKA levels were predicted to be involved in the regulation of cellular processes and homeostasis. Conclusions: These results provide evidence that a quantitative biomarker can be used as an intermediate phenotype when investigating the association between genetic markers and exposure–dose relationship in a small, well-characterized exposed worker population. PMID:22391508

  14. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales

    PubMed Central

    Gu, Wanjun; Gurguis, Christopher I.; Zhou, Jin J.; Zhu, Yihua; Ko, Eun-A.; Ko, Jae-Hong; Wang, Ting; Zhou, Tong

    2015-01-01

    Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016

  15. Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening

    PubMed Central

    Jenkins, Mark A; Makalic, Enes; Dowty, James G; Schmidt, Daniel F; Dite, Gillian S; MacInnis, Robert J; Ait Ouakrim, Driss; Clendenning, Mark; Flander, Louisa B; Stanesby, Oliver K; Hopper, John L; Win, Aung K; Buchanan, Daniel D

    2016-01-01

    Aim: To determine whether single nucleotide polymorphisms (SNPs) can be used to identify people who should be screened for colorectal cancer. Methods: We simulated one million people with and without colorectal cancer based on published SNP allele frequencies and strengths of colorectal cancer association. We estimated 5-year risks of colorectal cancer by number of risk alleles. Results: We identified 45 SNPs with an average 1.14-fold increase colorectal cancer risk per allele (range: 1.05–1.53). The colorectal cancer risk for people in the highest quintile of risk alleles was 1.81-times that for the average person. Conclusion: We have quantified the extent to which known susceptibility SNPs can stratify the population into clinically useful colorectal cancer risk categories. PMID:26846999

  16. Enhancer scanning to locate regulatory regions in genomic loci

    PubMed Central

    Buckley, Melissa; Gjyshi, Anxhela; Mendoza-Fandiño, Gustavo; Baskin, Rebekah; Carvalho, Renato S.; Carvalho, Marcelo A.; Woods, Nicholas T.; Monteiro, Alvaro N.A.

    2016-01-01

    The present protocol provides a rapid, streamlined and scalable strategy to systematically scan genomic regions for the presence of transcriptional regulatory regions active in a specific cell type. It creates genomic tiles spanning a region of interest that are subsequently cloned by recombination into a luciferase reporter vector containing the Simian Virus 40 promoter. Tiling clones are transfected into specific cell types to test for the presence of transcriptional regulatory regions. The protocol includes testing of different SNP (single nucleotide polymorphism) alleles to determine their effect on regulatory activity. This procedure provides a systematic framework to identify candidate functional SNPs within a locus during functional analysis of genome-wide association studies. This protocol adapts and combines previous well-established molecular biology methods to provide a streamlined strategy, based on automated primer design and recombinational cloning to rapidly go from a genomic locus to a set of candidate functional SNPs in eight weeks. PMID:26658467

  17. Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis.

    PubMed

    Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand

    2009-07-01

    In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.

  18. Genome scan study of prostate cancer in Arabs: identification of three genomic regions with multiple prostate cancer susceptibility loci in Tunisians.

    PubMed

    Shan, Jingxuan; Al-Rumaihi, Khalid; Rabah, Danny; Al-Bozom, Issam; Kizhakayil, Dhanya; Farhat, Karim; Al-Said, Sami; Kfoury, Hala; Dsouza, Shoba P; Rowe, Jillian; Khalak, Hanif G; Jafri, Shahzad; Aigha, Idil I; Chouchane, Lotfi

    2013-05-13

    Large databases focused on genetic susceptibility to prostate cancer have been accumulated from population studies of different ancestries, including Europeans and African-Americans. Arab populations, however, have been only rarely studied. Using Affymetrix Genome-Wide Human SNP Array 6, we conducted a genome-wide association study (GWAS) in which 534,781 single nucleotide polymorphisms (SNPs) were genotyped in 221 Tunisians (90 prostate cancer patients and 131 age-matched healthy controls). TaqMan SNP Genotyping Assays on 11 prostate cancer associated SNPs were performed in a distinct cohort of 337 individuals from Arab ancestry living in Qatar and Saudi Arabia (155 prostate cancer patients and 182 age-matched controls). In-silico expression quantitative trait locus (eQTL) analysis along with mRNA quantification of nearby genes was performed to identify loci potentially cis-regulated by the identified SNPs. Three chromosomal regions, encompassing 14 SNPs, are significantly associated with prostate cancer risk in the Tunisian population (P = 1 × 10-4 to P = 1 × 10-5). In addition to SNPs located on chromosome 17q21, previously found associated with prostate cancer in Western populations, two novel chromosomal regions are revealed on chromosome 9p24 and 22q13. eQTL analysis and mRNA quantification indicate that the prostate cancer associated SNPs of chromosome 17 could enhance the expression of STAT5B gene. Our findings, identifying novel GWAS prostate cancer susceptibility loci, indicate that prostate cancer genetic risk factors could be ethnic specific.

  19. Inhaled corticosteroid treatment modulates ZNF432 gene variant's effect on bronchodilator response in asthmatics

    PubMed Central

    Wu, Ann C.; Himes, Blanca E.; Lasky-Su, Jessica; Litonjua, Augusto; Peters, Stephen P.; Lima, John; Kubo, Michiaki; Tamari, Mayumi; Nakamura, Yusuke; Qiu, Weiliang; Weiss, Scott T.; Tantisira, Kelan

    2013-01-01

    Background Single nucleotide polymorphisms (SNPs) influence a patient's response to inhaled corticosteroids and β2-agonists, and the effect of treatment with inhaled corticosteroids is synergistic with the effect of β2-agonists. We hypothesized that use of inhaled corticosteroids could influence the effect of SNPs associated with bronchodilator response. Objective To assess whether, among asthma subjects, the association of SNPs with bronchodilator response is different between those treated with inhaled corticosteroids vs. those on placebo. Methods A genome-wide association analysis was conducted using 581 white subjects from the Childhood Asthma Management Program (CAMP). Using data for 449,540 SNPs, we conducted a gene by environment analysis in PLINK with inhaled corticosteroid treatment as the environmental exposure and bronchodilator response as the outcome measure. We attempted to replicate the top 12 SNPs in the Leukotriene Modifier Or Corticosteroid or Corticosteroid-Salmeterol (LOCCS) Trial. Results The combined P-value for the CAMP and LOCCS populations was 4.81E-08 for rs3752120, which is located in the zinc finger protein gene ZNF432, and has unknown function. Conclusions Inhaled corticosteroids appear to modulate the association of bronchodilator response with variant(s) in the ZNF432 gene among adults and children with asthma. Clinical Implications Clinicians who treat asthma patients with inhaled corticosteroids should be aware that the patient's genetic makeup likely influences response as measured in lung function. Capsule Summary Our study suggests that inhaled corticosteroids could influence the effect of multiple SNPs associated with bronchodilator response across the genome. PMID:24280104

  20. Polymorphisms in the promoter region of the bovine lactoferrin gene influence milk somatic cell score and milk production traits in Chinese Holstein cows.

    PubMed

    Mao, Yongjiang; Zhu, Xiaorui; Xing, Shiyu; Zhang, Meirong; Zhang, Huimin; Wang, Xiaolong; Karrow, Niel; Yang, Liguo; Yang, Zhangping

    2015-12-01

    Lactoferrin is an iron-binding protein found in cow's milk that plays an important role in preventing mastitis caused by intramammary infection. In this study, 20 Chinese Holstein cows were selected randomly for PCR amplification and sequencing of the bovine lactoferrin gene promoter region and used for SNP discovery in the region between nucleotide positions -461 to -132. Three SNPs (-270T>C, -190G>A and -156A>G) were identified in bovine lactoferrin, then Chinese Holstein cows (n=866) were genotyped using Sequenom MassARRAY (Sequenom Inc., San Diego, CA) based on the previous SNP information in this study, and the associations between SNPs or haplotype and milk somatic cell score (SCS) and production traits were analyzed by the least squares method in the GLM procedure of SAS. SNPs -270T>C and -156A>G showed close linkage disequilibrium (r(2)=0.76). The SNP -190G>A showed a significant association with SCS, and individuals with genotype GG had higher SCS than genotypes AG and AA. Associations were found between the SNPs -270T>C and -190G>A with SCS and the milk composition. The software MatInspector revealed that these SNPs were located within several potential transcription factor binding sites, including NF-κB p50, KLF7 and SP1, and may alter gene expression, but further investigation will be required to elucidate the biological and practical relevance of these SNPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Genome-wide association analysis of host genotype and plastic wing morphological variation of an endoparasitoid wasp Asobara japonica (Hymenoptera: Braconidae).

    PubMed

    Yamashita, Shinpei; Takigahira, Tomohiro; Takahashi, Kazuo H

    2018-06-01

    Accumulating evidence suggests that genotype of host insects influences the development of koinobiont endoparasitoids. Although there are many potential genetic variations that lead to the internal body environmental variations of host insects, association between the host genotype and the parasitoid development has not been examined in a genome-wide manner. In the present study, we used highly inbred whole genome sequenced strains of Drosophila melanogaster to associate single nucleotide polymorphisms (SNPs) of host flies with morphological traits of Asobara japonica, a larval-pupal parasitoid wasp that infected those hosts. We quantified the outline shape of the forewings of A. japonica with two major principal components (PC1 and PC2) calculated from Fourier coefficients obtained from elliptic Fourier analysis. We also quantified wing size and estimated wasp survival. We then examined the association between the PC scores, wing size and 1,798,561 SNPs and  the association between the estimated wasp survival and 1,790,544 SNPs. As a result, we obtained 22, 24 and 14 SNPs for PC1, PC2 and wing size and four SNPs for the estimated survival with P values smaller than 10 -5 . Based on the location of the SNPs, 12, 17, 11 and five protein coding genes were identified as potential candidates for PC1, PC2, wing size and the estimated survival, respectively. Based on the function of the candidate genes, it is suggested that the host genetic variation associated with the cell growth and morphogenesis may influence the wasp's morphogenetic variation.

  2. Ovine Reference Materials and Assays for Prion Genetic Testing

    USDA-ARS?s Scientific Manuscript database

    Codon variants implicated in scrapie susceptibility or disease progression include those at amino acid positions 112, 136, 141, 154, and 171. Nine single nucleotide polymorphisms (SNPs) determine which residues are encoded by the five implicated codons and accurately scoring these SNPs is essential...

  3. Large-scale enrichment and discovery of gene-associated SNPs

    USDA-ARS?s Scientific Manuscript database

    With the recent advent of massively parallel pyrosequencing by 454 Life Sciences it has become feasible to cost-effectively identify numerous single nucleotide polymorphisms (SNPs) within the recombinogenic regions of the maize (Zea mays L.) genome. We developed a modified version of hypomethylated...

  4. Single-nucleotide polymorphisms at the 9p21.3 genomic region not associated with the risk of cardiovascular disease in patients with rheumatoid arthritis.

    PubMed

    García-Bermúdez, M; López-Mejías, R; Genre, F; Castañeda, S; González-Juanatey, C; Llorca, J; Corrales, A; Miranda-Filloy, J A; Pina, T; Gómez-Vaquero, C; Rodríguez-Rodríguez, L; Fernández-Gutiérrez, B; Pascual-Salcedo, D; Balsa, A; López-Longo, F J; Carreira, P; Blanco, R; González-Álvaro, I; Martín, J; González-Gay, M A

    2013-12-01

    Rheumatoid arthritis (RA) is a chronic polygenic inflammatory disease associated with accelerated atherosclerosis and high risk of cardiovascular disease (CVD). In this study, we evaluated the potential association of 9p21.3 single-nucleotide polymorphisms (SNPs) - previously linked to coronary artery disease - and CVD risk in 2001 Spanish RA patients genotyped for 9p21.3 SNPs using TaqMan™ assays. Carotid intima media thickness (cIMT) and presence of carotid plaques were also analyzed. Cox regression model did not disclose significant differences between patients who experienced CVD and those who did not. Neither association was found between cIMT or carotid plaques and SNPs allele distribution. In conclusion, results do not support a role of rs10116277 or rs1537375 SNPs in CVD risk in Spanish RA patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. CGDSNPdb: a database resource for error-checked and imputed mouse SNPs.

    PubMed

    Hutchins, Lucie N; Ding, Yueming; Szatkiewicz, Jin P; Von Smith, Randy; Yang, Hyuna; de Villena, Fernando Pardo-Manuel; Churchill, Gary A; Graber, Joel H

    2010-07-06

    The Center for Genome Dynamics Single Nucleotide Polymorphism Database (CGDSNPdb) is an open-source value-added database with more than nine million mouse single nucleotide polymorphisms (SNPs), drawn from multiple sources, with genotypes assigned to multiple inbred strains of laboratory mice. All SNPs are checked for accuracy and annotated for properties specific to the SNP as well as those implied by changes to overlapping protein-coding genes. CGDSNPdb serves as the primary interface to two unique data sets, the 'imputed genotype resource' in which a Hidden Markov Model was used to assess local haplotypes and the most probable base assignment at several million genomic loci in tens of strains of mice, and the Affymetrix Mouse Diversity Genotyping Array, a high density microarray with over 600,000 SNPs and over 900,000 invariant genomic probes. CGDSNPdb is accessible online through either a web-based query tool or a MySQL public login. Database URL: http://cgd.jax.org/cgdsnpdb/

  6. Genetics of osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urano, Tomohiko; Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies onmore » twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.« less

  7. Genetic polymorphisms for estimating risk of atrial fibrillation: a literature-based meta-analysis

    PubMed Central

    Smith, J. Gustav; Almgren, Peter; Engström, Gunnar; Hedblad, Bo; Platonov, Pyotr G.; Newton-Cheh, Christopher; Melander, Olle

    2013-01-01

    Objectives Genome-wide association studies have recently identified genetic polymorphisms associated with common, etiologically complex diseases, for which direct-to-consumer genetic testing with provision of absolute genetic risk estimates is marketed by commercial companies. Polymorphisms associated with atrial fibrillation (AF) have shown relatively large risk estimates but the robustness of such estimates across populations and study designs has not been studied. Design A systematic literature review with meta-analysis and assessment of between-study heterogeneity was performed for single nucleotide polymorphisms (SNPs) in the six genetic regions associated with AF in genome-wide or candidate gene studies. Results Data from 18 samples of European ancestry (n=12,100 cases; 115,702 controls) were identified for the SNP on chromosome 4q25 (rs220733), 16 samples (n=12,694 cases; 132,602 controls) for the SNP on 16q22 (rs2106261) and 4 samples (n=5,272 cases; 59,725 controls) for the SNP in KCNH2 (rs1805123). Only the discovery studies were identified for SNPs on 1q21 and in GJA5 and IL6R, why no meta-analyses were performed for those SNPs. In overall random-effects meta-analyses, association with AF was observed for both SNPs from genome-wide studies on 4q25 (OR 1.67, 95% CI=1.50–1.86, p=2×10−21) and 16q22 (OR 1.21, 95% CI=1.13–1.29, p=1×10−8), but not the SNP in KCNH2 from candidate gene studies (p=0.15). There was substantial effect heterogeneity across case-control and cross-sectional studies for both polymorphisms (I2=0.50–0.78, p<0.05), but not across prospective cohort studies (I2=0.39, p=0.15). Both polymorphisms were robustly associated with AF for each study design individually (p<0.05). Conclusions In meta-analyses including up to 150,000 individuals, polymorphisms in two genetic regions were robustly associated with AF across all study designs but with substantial context-dependency of risk estimates. PMID:22690879

  8. Association of DPP4 Gene Polymorphisms with Type 2 Diabetes Mellitus in Malaysian Subjects

    PubMed Central

    Ahmed, Radwan H.; Huri, Hasniza Zaman; Al-Hamodi, Zaid; Salem, Sameer D.; Al-absi, Boshra; Muniandy, Sekaran

    2016-01-01

    Background Genetic polymorphisms of the Dipeptidyl Peptidase 4 (DPP4) gene may play a role in the etiology of type 2 diabetes mellitus (T2DM). This study aimed to investigate the possible association of single nucleotide polymorphisms (SNPs) of the DPP4 gene in Malaysian subjects with T2DM and evaluated whether they had an effect on the serum levels of soluble dipeptidyl peptidase 4 (sDPP-IV). Method Ten DPP4 SNPs were genotyped by TaqMan genotyping assays in 314 subjects with T2DM and 235 controls. Of these, 71 metabolic syndrome (MetS) subjects were excluded from subsequent analysis. The odds ratios (ORs) and their 95% confidence interval (CIs) were calculated using multiple logistic regression for the association between the SNPs of DPP4 and T2DM. In addition, the serum levels of sDPP-IV were investigated to evaluate the association of the SNPs of DPP4 with the sDPP-IV levels. Results Dominant, recessive, and additive genetic models were employed to test the association of DPP4 polymorphisms with T2DM, after adjusting for age, race, gender and BMI. The rs12617656 was associated with T2DM in Malaysian subjects in the recessive genetic model (OR = 1.98, p = 0.006), dominant model (OR = 1.95, p = 0.008), and additive model (OR = 1.63, p = 0.001). This association was more pronounced among Malaysian Indians, recessive (OR = 3.21, p = 0.019), dominant OR = 3.72, p = 0.003) and additive model (OR = 2.29, p = 0.0009). The additive genetic model showed that DPP4 rs4664443 and rs7633162 polymorphisms were associated with T2DM (OR = 1.53, p = 0.039), and (OR = 1.42, p = 0.020), respectively. In addition, the rs4664443 G>A polymorphism was associated with increased sDPP-IV levels (p = 0.042) in T2DM subjects. Conclusions DPP4 polymorphisms were associated with T2DM in Malaysian subjects, and linked to variations in sDPP-IV levels. In addition, these associations were more pronounced among Malaysian Indian subjects. PMID:27111895

  9. Association of DPP4 Gene Polymorphisms with Type 2 Diabetes Mellitus in Malaysian Subjects.

    PubMed

    Ahmed, Radwan H; Huri, Hasniza Zaman; Al-Hamodi, Zaid; Salem, Sameer D; Al-Absi, Boshra; Muniandy, Sekaran

    2016-01-01

    Genetic polymorphisms of the Dipeptidyl Peptidase 4 (DPP4) gene may play a role in the etiology of type 2 diabetes mellitus (T2DM). This study aimed to investigate the possible association of single nucleotide polymorphisms (SNPs) of the DPP4 gene in Malaysian subjects with T2DM and evaluated whether they had an effect on the serum levels of soluble dipeptidyl peptidase 4 (sDPP-IV). Ten DPP4 SNPs were genotyped by TaqMan genotyping assays in 314 subjects with T2DM and 235 controls. Of these, 71 metabolic syndrome (MetS) subjects were excluded from subsequent analysis. The odds ratios (ORs) and their 95% confidence interval (CIs) were calculated using multiple logistic regression for the association between the SNPs of DPP4 and T2DM. In addition, the serum levels of sDPP-IV were investigated to evaluate the association of the SNPs of DPP4 with the sDPP-IV levels. Dominant, recessive, and additive genetic models were employed to test the association of DPP4 polymorphisms with T2DM, after adjusting for age, race, gender and BMI. The rs12617656 was associated with T2DM in Malaysian subjects in the recessive genetic model (OR = 1.98, p = 0.006), dominant model (OR = 1.95, p = 0.008), and additive model (OR = 1.63, p = 0.001). This association was more pronounced among Malaysian Indians, recessive (OR = 3.21, p = 0.019), dominant OR = 3.72, p = 0.003) and additive model (OR = 2.29, p = 0.0009). The additive genetic model showed that DPP4 rs4664443 and rs7633162 polymorphisms were associated with T2DM (OR = 1.53, p = 0.039), and (OR = 1.42, p = 0.020), respectively. In addition, the rs4664443 G>A polymorphism was associated with increased sDPP-IV levels (p = 0.042) in T2DM subjects. DPP4 polymorphisms were associated with T2DM in Malaysian subjects, and linked to variations in sDPP-IV levels. In addition, these associations were more pronounced among Malaysian Indian subjects.

  10. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia.

    PubMed

    Lopez-Lopez, E; Martin-Guerrero, I; Ballesteros, J; Garcia-Orad, A

    2013-12-01

    Methotrexate (MTX) is an important component of therapy used to treat childhood acute lymphoblastic leukemia (ALL). Two single-nucleotide polymorphisms (SNPs) in the methylenetetrahydrofolate reductase (MTHFR) gene, C677T and A1298C, affect MTHFR activity. A large body of studies has investigated the potential role of MTHFR SNPs in MTX toxicity in pediatric ALL. However, the results are controversial. In this review and meta-analysis, we critically evaluate the relationship between the C677T and A1298C polymorphisms of MTHFR and MTX toxicity in pediatric ALL. The majority of published reports do not find associations between MTHFR polymorphisms and toxicity in pediatric ALL. When associations are reported, often the results are contradictory to each other. The meta-analysis confirms a lack of association. In conclusion, MTHFR, C677T and A1298C polymorphisms do not seem to be good markers of MTX-related toxicity in pediatric ALL.

  11. In silico identification of genetic variants in glucocerebrosidase (GBA) gene involved in Gaucher's disease using multiple software tools.

    PubMed

    Manickam, Madhumathi; Ravanan, Palaniyandi; Singh, Pratibha; Talwar, Priti

    2014-01-01

    Gaucher's disease (GD) is an autosomal recessive disorder caused by the deficiency of glucocerebrosidase, a lysosomal enzyme that catalyses the hydrolysis of the glycolipid glucocerebroside to ceramide and glucose. Polymorphisms in GBA gene have been associated with the development of Gaucher disease. We hypothesize that prediction of SNPs using multiple state of the art software tools will help in increasing the confidence in identification of SNPs involved in GD. Enzyme replacement therapy is the only option for GD. Our goal is to use several state of art SNP algorithms to predict/address harmful SNPs using comparative studies. In this study seven different algorithms (SIFT, MutPred, nsSNP Analyzer, PANTHER, PMUT, PROVEAN, and SNPs&GO) were used to predict the harmful polymorphisms. Among the seven programs, SIFT found 47 nsSNPs as deleterious, MutPred found 46 nsSNPs as harmful. nsSNP Analyzer program found 43 out of 47 nsSNPs are disease causing SNPs whereas PANTHER found 32 out of 47 as highly deleterious, 22 out of 47 are classified as pathological mutations by PMUT, 44 out of 47 were predicted to be deleterious by PROVEAN server, all 47 shows the disease related mutations by SNPs&GO. Twenty two nsSNPs were commonly predicted by all the seven different algorithms. The common 22 targeted mutations are F251L, C342G, W312C, P415R, R463C, D127V, A309V, G46E, G202E, P391L, Y363C, Y205C, W378C, I402T, S366R, F397S, Y418C, P401L, G195E, W184R, R48W, and T43R.

  12. Associations between incident ischemic stroke events and stroke and cardiovascular disease-related genome-wide association studies single nucleotide polymorphisms in the Population Architecture Using Genomics and Epidemiology study.

    PubMed

    Carty, Cara L; Buzková, Petra; Fornage, Myriam; Franceschini, Nora; Cole, Shelley; Heiss, Gerardo; Hindorff, Lucia A; Howard, Barbara V; Mann, Sue; Martin, Lisa W; Zhang, Ying; Matise, Tara C; Prentice, Ross; Reiner, Alexander P; Kooperberg, Charles

    2012-04-01

    Genome-wide association studies (GWAS) have identified loci associated with ischemic stroke (IS) and cardiovascular disease (CVD) in European-descent individuals, but their replication in different populations has been largely unexplored. Nine single nucleotide polymorphisms (SNPs) selected from GWAS and meta-analyses of stroke, and 86 SNPs previously associated with myocardial infarction and CVD risk factors, including blood lipids (high density lipoprotein [HDL], low density lipoprotein [LDL], and triglycerides), type 2 diabetes, and body mass index (BMI), were investigated for associations with incident IS in European Americans (EA) N=26 276, African-Americans (AA) N=8970, and American Indians (AI) N=3570 from the Population Architecture using Genomics and Epidemiology Study. Ancestry-specific fixed effects meta-analysis with inverse variance weighting was used to combine study-specific log hazard ratios from Cox proportional hazards models. Two of 9 stroke SNPs (rs783396 and rs1804689) were significantly associated with [corrected] IS hazard in AA; none were significant in this large EA cohort. Of 73 CVD risk factor SNPs tested in EA, 2 (HDL and triglycerides SNPs) were associated with IS. In AA, SNPs associated with LDL, HDL, and BMI were significantly associated with IS (3 of 86 SNPs tested). Out of 58 SNPs tested in AI, 1 LDL SNP was significantly associated with IS. Our analyses showing lack of replication in spite of reasonable power for many stroke SNPs and differing results by ancestry highlight the need to follow up on GWAS findings and conduct genetic association studies in diverse populations. We found modest IS associations with BMI and lipids SNPs, though these findings require confirmation.

  13. Single Nucleotide Polymorphisms of Stemness Genes Predicted to Regulate RNA Splicing, microRNA and Oncogenic Signaling are Associated with Prostate Cancer Survival.

    PubMed

    Freedman, Jennifer A; Wang, Yanru; Li, Xuechan; Liu, Hongliang; Moorman, Patricia G; George, Daniel J; Lee, Norman H; Hyslop, Terry; Wei, Qingyi; Patierno, Steven R

    2018-05-03

    Prostate cancer is a clinically and molecularly heterogeneous disease, with variation in outcomes only partially predicted by grade and stage. Additional tools to distinguish indolent from aggressive disease are needed. Phenotypic characteristics of stemness correlate with poor cancer prognosis. Given this correlation, we identified single nucleotide polymorphisms (SNPs) of stemness-related genes and examined their associations with prostate cancer survival. SNPs within stemness-related genes were analyzed for association with overall survival of prostate cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Significant SNPs predicted to be functional were selected for linkage disequilibrium analysis and combined and stratified analyses. Identified SNPs were evaluated for association with gene expression. SNPs of CD44 (rs9666607), ABCC1 (rs35605 and rs212091) and GDF15 (rs1058587) were associated with prostate cancer survival and predicted to be functional. A role for rs9666607 of CD44 and rs35605 of ABCC1 in RNA splicing regulation, rs212091 of ABCC1 in miRNA binding site activity and rs1058587 of GDF15 in causing an amino acid change was predicted. These SNPs represent potential novel prognostic markers for overall survival of prostate cancer and support a contribution of the stemness pathway to prostate cancer patient outcome.

  14. Single nucleotide polymorphisms in long noncoding RNA, ANRIL, are not associated with severe periodontitis but with adverse cardiovascular events among patients with cardiovascular disease.

    PubMed

    Schulz, S; Seitter, L; Werdan, K; Hofmann, B; Schaller, H-G; Schlitt, A; Reichert, S

    2018-05-06

    Biological plausibility of an association between severe periodontitis and cardiovascular disease (CVD) has been proven. Genetic characteristics play an important role in both complex inflammatory diseases. Polymorphisms (single nucleotide polymorphisms [SNPs]) in the long noncoding RNA, antisense noncoding RNA in the INK4 locus (ANRIL), were shown to play a leading role in both diseases. The primary objectives of the study were to assess, among cardiovascular (CV angiographically proven ≥50% stenosis of a main coronary artery) patients, the impact of ANRIL SNPs rs133049 and rs3217992 on the severity of periodontitis and the previous history of coronary events, as well as on the occurrence of further adverse CV events. The prevalence of severe periodontitis was analyzed in 1002 CV patients. ANRIL SNPs rs133049 and rs3217992 were genotyped. The prognostic value of both ANRIL SNPs for combined CV endpoint (stroke/transient ischemic attack [TIA], myocardial infarction, death from a CV-related event, death from stroke) was evaluated after a 3-year follow-up period. Hazard ratios (HRs) were adjusted for established CV risk factors applying Cox regression. ANRIL SNPs rs133049 and rs3217992 were not associated with severe periodontitis or history of CVD in CV patients. In the Kaplan-Meier survival curve including the log rank-test (P = .036) and Cox regression (hazard ratio = 1.684, P = .009) the AA genotype of rs3217992 was shown to be an independent predictor for adverse CV events after 3 years of follow-up. SNPs in ANRIL are not risk modulators for severe periodontitis and history of CVD in CV patients. The AA genotype of ANRIL SNPs rs3217992 possesses prognostic power for further CV events within 3 years of follow-up. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio)

    PubMed Central

    2014-01-01

    Background A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio. Results The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster. Conclusions The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species. PMID:24762296

  16. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio).

    PubMed

    Xu, Jian; Zhao, Zixia; Zhang, Xiaofeng; Zheng, Xianhu; Li, Jiongtang; Jiang, Yanliang; Kuang, Youyi; Zhang, Yan; Feng, Jianxin; Li, Chuangju; Yu, Juhua; Li, Qiang; Zhu, Yuanyuan; Liu, Yuanyuan; Xu, Peng; Sun, Xiaowen

    2014-04-24

    A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio. The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster. The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species.

  17. Lack of association between ESR1 gene polymorphisms and premature ovarian failure in Serbian women.

    PubMed

    Li, J; Vujovic, S; Dalgleish, R; Thompson, J; Dragojevic-Dikic, S; Al-Azzawi, F

    2014-06-01

    It has previously been reported that estrogen receptor-alpha (ERα) gene (ESR1: estrogen receptor 1) polymorphisms are associated with premature ovarian failure (POF). The aim of this study was to investigate whether these genetic polymorphisms of ESR1 are associated with POF in Serbian women. A series of 197 POF cases matched with 547 fertile controls was recruited by the Institute for Endocrinology, Diabetes and Metabolic Disorders of Serbia between 2007 and 2010. Genomic DNA was extracted from saliva using Oragene® DNA sample collection kits. Two single-nucleotide polymorphisms (SNPs), PvuII and XbaI, in ESR1 were genotyped by dynamic allele-specific hybridization. Haplotype analyses were performed with the restriction fragment length polymorphism method. SNP and haplotype effects were analyzed by logistic regression models. No significant difference was found in the distribution of ESR1 PvuII and XbaI polymorphisms or haplotypes between the POF and control groups. The two ESR1 SNPs, PvuII and XbaI, are not commonly associated with POF in Serbian women and may not contribute to the genetic basis of the condition.

  18. Toll-like receptor 2 gene polymorphisms in Chinese Holstein cattle and their associations with bovine tuberculosis.

    PubMed

    Zhao, Zhanqin; Xue, Yun; Hu, Zhigang; Zhou, Feng; Ma, Beibei; Long, Ta; Xue, Qiao; Liu, Huisheng

    2017-04-01

    This study evaluated whether there was an association between polymorphisms within the Toll-like receptor 2 gene (TLR2) of Chinese Holstein cattle and susceptibility to bovine tuberculosis (BTB). In a case-control study including 210 BTB cases and 237 control cattle, we found only two common single-nucleotide polymorphisms (SNPs) within the entire coding region of the TLR2 gene, A631G (rs95214857) and T1707C (rs1388116488). Additionally, the allele and genotype distributions of A631G and T1707C were not different between case and control groups, indicated that these SNPs were not associated with susceptibility to BTB. These results suggested that polymorphisms in the TLR2 gene might not play a significant role in the BTB risk in Chinese Holstein cattle. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. HERC1 polymorphisms: population-specific variations in haplotype composition.

    PubMed

    Yuasa, Isao; Umetsu, Kazuo; Nishimukai, Hiroaki; Fukumori, Yasuo; Harihara, Shinji; Saitou, Naruya; Jin, Feng; Chattopadhyay, Prasanta K; Henke, Lotte; Henke, Jürgen

    2009-08-01

    Human HERC1 is one of six HERC proteins and may play an important role in intracellular membrane trafficking. The human HERC1 gene is suggested to have been affected by local positive selection. To assess the global frequency distributions of coding and non-coding single nucleotide polymorphisms (SNPs) in the HERC1 gene, we developed a new simultaneous genotyping method for four SNPs, and applied this method to investigate 1213 individuals from 12 global populations. The results confirmed remarked differences in the allele and haplotype frequencies between East Asian and non-East Asian populations. One of the three common haplotypes observed was found to be characteristic of East Asians, who showed a relatively uniform distribution of haplotypes. Information on haplotypes would be useful for testing the function of polymorphisms in the HERC1 gene. This is the first study to investigate the distribution of HERC1 polymorphisms in various populations. (c) 2009 John Wiley & Sons, Ltd.

  20. Associations Between Polymorphisms in the Glucocorticoid-Receptor Gene and Cardiovascular Risk Factors in a Chinese Population

    PubMed Central

    Yan, Yu-Xiang; Dong, Jing; Wu, Li-Juan; Shao, Shuang; Zhang, Jie; Zhang, Ling; Wang, Wei; He, Yan; Liu, You-Qin

    2013-01-01

    Background Glucocorticoid is an important regulator of energy homeostasis. Glucocorticoid receptor (GR) gene polymorphisms that contribute to variability in glucocorticoid sensitivity have been identified. We explored the associations of single-nucleotide polymorphisms (SNPs) of the GR gene with traditional cardiovascular risk factors in the Chinese Han population. Methods We recruited 762 consecutive adults who underwent a regular physical examination at Beijing Xuanwu Hospital. Blood pressure, glucose, lipid levels (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein [LDL] cholesterol and triglycerides), body mass index (BMI), and waist-to-hip ratio were measured. Fourteen tag SNPs and 5 functional SNPs were selected and genotyped using the high-throughput Sequenom genotyping platform. Differences between genotypes/alleles for each SNP were adjusted for sex and age and tested using a general linear model procedure. Various models of inheritance, including additive, dominant, and recessive, were tested. Results Among the 19 SNPs examined, 5 markers were associated with cardiovascular risk factors. The rs41423247 GG genotype and the rs7701443 AA genotype were associated with higher BMI and systolic blood pressure (P < 0.0004), and the rs17209251 GG genotype was associated with higher systolic blood pressure (P < 0.0004). Lower systolic blood pressure, total cholesterol, and LDL cholesterol were observed among rs10052957 A allele carriers (P < 0.0004), and lower plasma glucose and LDL-cholesterol concentrations were observed among rs2963156 TT carriers (P < 0.0004). Conclusions Polymorphism of the GR gene was associated with cardiovascular risk factors and may contribute to susceptibility to cardiovascular disease. PMID:23892712

  1. Lack of association of two chromosome 10q24 SNPs with Alzheimer’s disease

    PubMed Central

    Minster, Ryan L.; DeKosky, Steven T.; Kamboh, M. Ilyas

    2006-01-01

    Several groups have reported evidence of linkage on chromosome 10 to late-onset Alzheimer’s disease (LOAD). In a recent scan of single nucleotide polymorphisms (SNPs) on chromosome 10, significant associations between the rs498055 and rs4417206 SNPs and risk of LOAD were observed. We examined the association of these two SNPs with LOAD risk in a large Caucasian American cohort comprising about 2,000 cases and controls. Neither SNP revealed significant association with LOAD risk or age-at-onset. PMID:17000046

  2. Identification of TNIP1 Polymorphisms by High Resolution Melting Analysis with Unlabelled Probe: Association with Systemic Lupus Erythematosus

    PubMed Central

    Zhang, Jie; Chen, Yuewen; Shao, Yong; Wu, Qi; Guan, Ming; Zhang, Wei; Wan, Jun; Yu, Bo

    2012-01-01

    Background. TNFα-induced protein 3 (TNFAIP3) interacting with protein 1 (TNIP1) acts as a negative regulator of NF-κB and plays an important role in maintaining the homeostasis of immune system. A recent genome-wide association study (GWAS) showed that the polymorphism of TNIP1 was associated with the disease risk of SLE in Caucasian. In this study, we investigated whether the association of TNIP1 with SLE was replicated in Chinese population. Methods. The association of TNIP1 SNP rs7708392 (G/C) was determined by high resolution melting (HRM) analysis with unlabeled probe in 285 SLE patients and 336 healthy controls. Results. A new SNP rs79937737 located on 5 bp upstream of rs7708392 was discovered during the HRM analysis. No association of rs7708392 or rs79937737 with the disease risk of SLE was found. Furthermore, rs7708392 and rs79937737 were in weak linkage disequilibrium (LD). Hypotypes analysis of the two SNPs also showed no association with SLE in Chinese population. Conclusions. High resolution melting analysis with unlabeled probes proves to be a powerful and efficient genotyping method for identifying and screening SNPs. No association of rs7708392 or rs79937737 with the disease risk of SLE was observed in Chinese population. PMID:22852072

  3. HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection

    PubMed Central

    McAulay, Karen A.; Higgins, Craig D.; Macsween, Karen F.; Lake, Annette; Jarrett, Ruth F.; Robertson, Faye L.; Williams, Hilary; Crawford, Dorothy H.

    2007-01-01

    Infectious mononucleosis (IM) is an immunopathological disease caused by EBV that occurs in young adults and is a risk factor for Hodgkin lymphoma (HL). An association between EBV-positive HL and genetic markers in the HLA class I locus has been identified, indicating that genetic differences in the HLA class I locus may alter disease phenotypes associated with EBV infection. To further determine whether HLA class I alleles may affect development of EBV-associated diseases, we analyzed 2 microsatellite markers and 2 SNPs located near the HLA class I locus in patients with acute IM and in asymptomatic EBV-seropositive and -seronegative individuals. Alleles of both microsatellite markers were significantly associated with development of IM. Specific alleles of the 2 SNPs were also significantly more frequent in patients with IM than in EBV-seronegative individuals. IM patients possessing the associated microsatellite allele had fewer lymphocytes and increased neutrophils relative to IM patients lacking the allele. These patients also displayed higher EBV titers and milder IM symptoms. The results of this study indicate that HLA class I polymorphisms may predispose patients to development of IM upon primary EBV infection, suggesting that genetic variation in T cell responses can influence the nature of primary EBV infection and the level of viral persistence. PMID:17909631

  4. Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population.

    PubMed

    Liu, Xiaoxi; Kawamura, Yoshiya; Shimada, Takafumi; Otowa, Takeshi; Koishi, Shinko; Sugiyama, Toshiro; Nishida, Hisami; Hashimoto, Ohiko; Nakagami, Ryoichi; Tochigi, Mamoru; Umekage, Tadashi; Kano, Yukiko; Miyagawa, Taku; Kato, Nobumasa; Tokunaga, Katsushi; Sasaki, Tsukasa

    2010-03-01

    The oxytocin receptor (OXTR) gene, which is located on chromosome 3p25.3, has been implicated as a candidate gene for susceptibility of autism spectrum disorder (ASD). Positive associations between OXTR and ASD have been reported in earlier studies. However, the results were inconsistent and demand further studies. In this study, we investigated the associations between OXTR and ASD in a Japanese population by analyzing 11 single-nucleotide polymorphisms (SNPs) using both family-based association test (FBAT) and population-based case-control test. No significant signal was detected in the FBAT test. However, significant differences were observed in allelic frequencies of four SNPs, including rs2254298 between patients and controls. The risk allele of rs2254298 was 'A', which was consistent with the previous study in Chinese, and not with the observations in Caucasian. The difference in the risk allele of this SNP in previous studies might be attributable to an ethnic difference in the linkage disequilibrium structure between the Asians and Caucasians. In addition, haplotype analysis exhibits a significant association between a five-SNP haplotype and ASD, including rs22542898. In conclusion, our study might support that OXTR has a significant role in conferring the risk of ASD in the Japanese population.

  5. HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection.

    PubMed

    McAulay, Karen A; Higgins, Craig D; Macsween, Karen F; Lake, Annette; Jarrett, Ruth F; Robertson, Faye L; Williams, Hilary; Crawford, Dorothy H

    2007-10-01

    Infectious mononucleosis (IM) is an immunopathological disease caused by EBV that occurs in young adults and is a risk factor for Hodgkin lymphoma (HL). An association between EBV-positive HL and genetic markers in the HLA class I locus has been identified, indicating that genetic differences in the HLA class I locus may alter disease phenotypes associated with EBV infection. To further determine whether HLA class I alleles may affect development of EBV-associated diseases, we analyzed 2 microsatellite markers and 2 SNPs located near the HLA class I locus in patients with acute IM and in asymptomatic EBV-seropositive and -seronegative individuals. Alleles of both microsatellite markers were significantly associated with development of IM. Specific alleles of the 2 SNPs were also significantly more frequent in patients with IM than in EBV-seronegative individuals. IM patients possessing the associated microsatellite allele had fewer lymphocytes and increased neutrophils relative to IM patients lacking the allele. These patients also displayed higher EBV titers and milder IM symptoms. The results of this study indicate that HLA class I polymorphisms may predispose patients to development of IM upon primary EBV infection, suggesting that genetic variation in T cell responses can influence the nature of primary EBV infection and the level of viral persistence.

  6. An APOE-independent cis-eSNP on chromosome 19q13.32 influences tau levels and late-onset Alzheimer's disease risk.

    PubMed

    Rao, Shuquan; Ghani, Mahdi; Guo, Zhiyun; Deming, Yuetiva; Wang, Kesheng; Sims, Rebecca; Mao, Canquan; Yao, Yao; Cruchaga, Carlos; Stephan, Dietrich A; Rogaeva, Ekaterina

    2018-06-01

    Although multiple susceptibility loci for late-onset Alzheimer's disease (LOAD) have been identified, a large portion of the genetic risk for this disease remains unexplained. LOAD risk may be associated with single-nucleotide polymorphisms responsible for changes in gene expression (eSNPs). To detect eSNPs associated with LOAD, we integrated data from LOAD genome-wide association studies and expression quantitative trait loci using Sherlock (a Bayesian statistical method). We identified a cis-regulatory eSNP (rs2927438) located on chromosome 19q13.32, for which subsequent analyses confirmed the association with both LOAD risk and the expression level of several nearby genes. Importantly, rs2927438 may represent an APOE-independent LOAD eSNP according to the weak linkage disequilibrium of rs2927438 with the 2 polymorphisms (rs7412 and rs429358) defining the APOE-ε2, -ε3, and -ε4 alleles. Furthermore, rs2927438 does not influence chromatin interaction events at the APOE locus or cis-regulation of APOE expression. Further exploratory analysis revealed that rs2927438 is significantly associated with tau levels in the cerebrospinal fluid. Our findings suggest that rs2927438 may confer APOE-independent risk for LOAD. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The analysis of APOL1 genetic variation and haplotype diversity provided by 1000 Genomes project.

    PubMed

    Peng, Ting; Wang, Li; Li, Guisen

    2017-08-11

    The APOL1 gene variants has been shown to be associated with an increased risk of multiple kinds of diseases, particularly in African Americans, but not in Caucasians and Asians. In this study, we explored the single nucleotide polymorphism (SNP) and haplotype diversity of APOL1 gene in different races provided by 1000 Genomes project. Variants of APOL1 gene in 1000 Genome Project were obtained and SNPs located in the regulatory region or coding region were selected for genetic variation analysis. Total 2504 individuals from 26 populations were classified as four groups that included Africa, Europe, Asia and Admixed populations. Tag SNPs were selected to evaluate the haplotype diversities in the four populations by HaploStats software. APOL1 gene was surrounded by some of the most polymorphic genes in the human genome, variation of APOL1 gene was common, with up to 613 SNP (1000 Genome Project reported) and 99 of them (16.2%) with MAF ≥ 1%. There were 79 SNPs in the URR and 92 SNPs in 3'UTR. Total 12 SNPs in URR and 24 SNPs in 3'UTR were considered as common variants with MAF ≥ 1%. It is worth noting that URR-1 was presents lower frequencies in European populations, while other three haplotypes taken an opposite pattern; 3'UTR presents several high-frequency variation sites in a short segment, and the differences of its haplotypes among different population were significant (P < 0.01), UTR-1 and UTR-5 presented much higher frequency in African population, while UTR-2, UTR-3 and UTR-4 were much lower. APOL1 coding region showed that two SNP of G1 with higher frequency are actually pull down the haplotype H-1 frequency when considering all populations pooled together, and the diversity among the four populations be widen by the G1 two mutation (P 1  = 3.33E-4 vs P 2  = 3.61E-30). The distributions of APOL1 gene variants and haplotypes were significantly different among the different populations, in either regulatory or coding regions. It could provide clues for the future genetic study of APOL1 related diseases.

  8. Genome Analysis of the Domestic Dog (Korean Jindo) by Massively Parallel Sequencing

    PubMed Central

    Kim, Ryong Nam; Kim, Dae-Soo; Choi, Sang-Haeng; Yoon, Byoung-Ha; Kang, Aram; Nam, Seong-Hyeuk; Kim, Dong-Wook; Kim, Jong-Joo; Ha, Ji-Hong; Toyoda, Atsushi; Fujiyama, Asao; Kim, Aeri; Kim, Min-Young; Park, Kun-Hyang; Lee, Kang Seon; Park, Hong-Seog

    2012-01-01

    Although pioneering sequencing projects have shed light on the boxer and poodle genomes, a number of challenges need to be met before the sequencing and annotation of the dog genome can be considered complete. Here, we present the DNA sequence of the Jindo dog genome, sequenced to 45-fold average coverage using Illumina massively parallel sequencing technology. A comparison of the sequence to the reference boxer genome led to the identification of 4 675 437 single nucleotide polymorphisms (SNPs, including 3 346 058 novel SNPs), 71 642 indels and 8131 structural variations. Of these, 339 non-synonymous SNPs and 3 indels are located within coding sequences (CDS). In particular, 3 non-synonymous SNPs and a 26-bp deletion occur in the TCOF1 locus, implying that the difference observed in cranial facial morphology between Jindo and boxer dogs might be influenced by those variations. Through the annotation of the Jindo olfactory receptor gene family, we found 2 unique olfactory receptor genes and 236 olfactory receptor genes harbouring non-synonymous homozygous SNPs that are likely to affect smelling capability. In addition, we determined the DNA sequence of the Jindo dog mitochondrial genome and identified Jindo dog-specific mtDNA genotypes. This Jindo genome data upgrade our understanding of dog genomic architecture and will be a very valuable resource for investigating not only dog genetics and genomics but also human and dog disease genetics and comparative genomics. PMID:22474061

  9. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption

    PubMed Central

    Sulem, Patrick; Gudbjartsson, Daniel F.; Geller, Frank; Prokopenko, Inga; Feenstra, Bjarke; Aben, Katja K.H.; Franke, Barbara; den Heijer, Martin; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Yanek, Lisa R.; Becker, Lewis C.; Boyd, Heather A.; Stacey, Simon N.; Walters, G. Bragi; Jonasdottir, Adalbjorg; Thorleifsson, Gudmar; Holm, Hilma; Gudjonsson, Sigurjon A.; Rafnar, Thorunn; Björnsdottir, Gyda; Becker, Diane M.; Melbye, Mads; Kong, Augustine; Tönjes, Anke; Thorgeirsson, Thorgeir; Thorsteinsdottir, Unnur; Kiemeney, Lambertus A.; Stefansson, Kari

    2011-01-01

    Coffee is the most commonly used stimulant and caffeine is its main psychoactive ingredient. The heritability of coffee consumption has been estimated at around 50%. We performed a meta-analysis of four genome-wide association studies of coffee consumption among coffee drinkers from Iceland (n = 2680), the Netherlands (n = 2791), the Sorbs Slavonic population isolate in Germany (n = 771) and the USA (n = 369) using both directly genotyped and imputed single nucleotide polymorphisms (SNPs) (2.5 million SNPs). SNPs at the two most significant loci were also genotyped in a sample set from Iceland (n = 2430) and a Danish sample set consisting of pregnant women (n = 1620). Combining all data, two sequence variants significantly associated with increased coffee consumption: rs2472297-T located between CYP1A1 and CYP1A2 at 15q24 (P = 5.4 · 10−14) and rs6968865-T near aryl hydrocarbon receptor (AHR) at 7p21 (P = 2.3 · 10−11). An effect of ∼0.2 cups a day per allele was observed for both SNPs. CYP1A2 is the main caffeine metabolizing enzyme and is also involved in drug metabolism. AHR detects xenobiotics, such as polycyclic aryl hydrocarbons found in roasted coffee, and induces transcription of CYP1A1 and CYP1A2. The association of these SNPs with coffee consumption was present in both smokers and non-smokers. PMID:21357676

  10. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases

    PubMed Central

    Yue, Ming; Zhou, Dianshuang; Zhi, Hui; Wang, Peng; Zhang, Yan; Gao, Yue; Guo, Maoni; Li, Xin; Wang, Yanxia

    2018-01-01

    Abstract The MiRNA SNP Disease Database (MSDD, http://www.bio-bigdata.com/msdd/) is a manually curated database that provides comprehensive experimentally supported associations among microRNAs (miRNAs), single nucleotide polymorphisms (SNPs) and human diseases. SNPs in miRNA-related functional regions such as mature miRNAs, promoter regions, pri-miRNAs, pre-miRNAs and target gene 3′-UTRs, collectively called ‘miRSNPs’, represent a novel category of functional molecules. miRSNPs can lead to miRNA and its target gene dysregulation, and resulting in susceptibility to or onset of human diseases. A curated collection and summary of miRSNP-associated diseases is essential for a thorough understanding of the mechanisms and functions of miRSNPs. Here, we describe MSDD, which currently documents 525 associations among 182 human miRNAs, 197 SNPs, 153 genes and 164 human diseases through a review of more than 2000 published papers. Each association incorporates information on the miRNAs, SNPs, miRNA target genes and disease names, SNP locations and alleles, the miRNA dysfunctional pattern, experimental techniques, a brief functional description, the original reference and additional annotation. MSDD provides a user-friendly interface to conveniently browse, retrieve, download and submit novel data. MSDD will significantly improve our understanding of miRNA dysfunction in disease, and thus, MSDD has the potential to serve as a timely and valuable resource. PMID:29106642

  11. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases.

    PubMed

    Yue, Ming; Zhou, Dianshuang; Zhi, Hui; Wang, Peng; Zhang, Yan; Gao, Yue; Guo, Maoni; Li, Xin; Wang, Yanxia; Zhang, Yunpeng; Ning, Shangwei; Li, Xia

    2018-01-04

    The MiRNA SNP Disease Database (MSDD, http://www.bio-bigdata.com/msdd/) is a manually curated database that provides comprehensive experimentally supported associations among microRNAs (miRNAs), single nucleotide polymorphisms (SNPs) and human diseases. SNPs in miRNA-related functional regions such as mature miRNAs, promoter regions, pri-miRNAs, pre-miRNAs and target gene 3'-UTRs, collectively called 'miRSNPs', represent a novel category of functional molecules. miRSNPs can lead to miRNA and its target gene dysregulation, and resulting in susceptibility to or onset of human diseases. A curated collection and summary of miRSNP-associated diseases is essential for a thorough understanding of the mechanisms and functions of miRSNPs. Here, we describe MSDD, which currently documents 525 associations among 182 human miRNAs, 197 SNPs, 153 genes and 164 human diseases through a review of more than 2000 published papers. Each association incorporates information on the miRNAs, SNPs, miRNA target genes and disease names, SNP locations and alleles, the miRNA dysfunctional pattern, experimental techniques, a brief functional description, the original reference and additional annotation. MSDD provides a user-friendly interface to conveniently browse, retrieve, download and submit novel data. MSDD will significantly improve our understanding of miRNA dysfunction in disease, and thus, MSDD has the potential to serve as a timely and valuable resource. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. High throughput SNP discovery and genotyping in hexaploid wheat.

    PubMed

    Rimbert, Hélène; Darrier, Benoît; Navarro, Julien; Kitt, Jonathan; Choulet, Frédéric; Leveugle, Magalie; Duarte, Jorge; Rivière, Nathalie; Eversole, Kellye; Le Gouis, Jacques; Davassi, Alessandro; Balfourier, François; Le Paslier, Marie-Christine; Berard, Aurélie; Brunel, Dominique; Feuillet, Catherine; Poncet, Charles; Sourdille, Pierre; Paux, Etienne

    2018-01-01

    Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.

  13. KIAA0319 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children

    PubMed Central

    Zhao, Hua; Chen, Yun; Zhang, Bao-ping; Zuo, Peng-xiang

    2016-01-01

    The gene KIAA0319 has been reported to be associated with developmental dyslexia (DD) in previous studies, although the results have not always been consistent. However, few studies have been conducted in Uyghur populations. In the present study, we aimed to investigate the association of KIAA0319 polymorphisms and DD in individuals of Uyghurian descent. We used a custom-by-design 48-Plex SNPscan Kit to genotype 18 single-nucleotide polymorphisms (SNPs) of KIAA0319 in a group of 196 children with dyslexia and 196 controls of Uyghur descent aged 8–12 years. As a result, 7 SNPs (Pmin=0.001) of KIAA0319 had nominal significant differences between the cases and controls under specific genotypic models. The two SNPs rs6935076 (P=0.020 under dominant model; P=0.028 under additive model) and rs3756821 (P=0.021 under additive model) remained significantly associated with dyslexia after Bonferroni correction. Linkage disequilibrium analysis showed three blocks within KIAA0319, and only a 10-SNP haplotype in block 3 was present at significantly different frequencies in the dyslexic children and controls. This study indicated that genetic polymorphisms of KIAA0319 are associated with an increased risk of DD in the Uyghur population. PMID:27098879

  14. Effect of the g.-723G-->T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of Polish Holstein-Friesian cattle.

    PubMed

    Robakowska-Hyzorek, Dagmara; Oprzadek, Jolanta; Zelazowska, Beata; Olbromski, Rafał; Zwierzchowski, Lech

    2010-06-01

    Myogenic factor 5 (Myf5), a product of the Myf5 gene, belongs to the MRF family of basic helix-loop-helix transcription factors that regulate myogenesis. Their roles in muscle growth and development make their genes candidates for molecular markers of meat production in livestock, but nucleotide sequence polymorphism has not been thoroughly studied in MRF genes. We detected four single nucleotide polymorphisms (SNPs) within exon 1 of the Myf5 gene, encoding the NH-terminal transactivation domain of the Myf5 protein. Three of these mutations change the amino acid sequence. The distribution of these SNPs was highly skewed in cattle populations; most of the mutations were found in only a few or even single individuals. Of the nine SNPs found in the promoter region of Myf5, one (transversion g.-723G-->T) was represented by all three genotypes distributed in the cattle populations studied. This polymorphism showed an influence on Myf5 gene expression in the longissimus dorsi muscle and was associated with sirloin weight and fat weight in sirloin in carcasses of Holstein-Friesian cattle.

  15. Severity of eating disorder symptoms related to oxytocin receptor polymorphisms in anorexia nervosa.

    PubMed

    Acevedo, Summer F; Valencia, Celeste; Lutter, Michael; McAdams, Carrie J

    2015-08-30

    Oxytocin is a peptide hormone important for social behavior and differences in psychological traits have been associated with variants of the oxytocin receptor gene in healthy people. We examined whether single nucleotide polymorphisms (SNPs) of the oxytocin receptor gene (OXTR) correlated with clinical symptoms in women with anorexia nervosa, bulimia nervosa, and healthy comparison (HC) women. Subjects completed clinical assessments and provided DNA for analysis. Subjects were divided into four groups: HC, subjects currently with anorexia nervosa (AN-C), subjects with a history of anorexia nervosa but in long-term weight recovery (AN-WR), and subjects with bulimia nervosa (BN). Five SNPs of the oxytocin receptor were examined. Minor allele carriers showed greater severity in most of the psychiatric symptoms. Importantly, the combination of having had anorexia and carrying either of the A alleles for two SNPS in the OXTR gene (rs53576, rs2254298) was associated with increased severity specifically for ED symptoms including cognitions and behaviors associated both with eating and appearance. A review of psychosocial data related to the OXTR polymorphisms examined is included in the discussion. OXTR polymorphisms may be a useful intermediate endophenotype to consider in the treatment of patients with anorexia nervosa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Polymorphisms in the Wilms Tumor Gene Are Associated With Interindividual Variations in Rubella Virus-Specific Cellular Immunity After Measles-Mumps-Rubella II Vaccination.

    PubMed

    Voigt, Emily A; Haralambieva, Iana H; Larrabee, Beth L; Kennedy, Richard B; Ovsyannikova, Inna G; Schaid, Daniel J; Poland, Gregory A

    2018-01-30

    Rubella vaccination induces widely variable immune responses in vaccine recipients. While rubella vaccination is effective at inducing immunity to rubella infection in most subjects, up to 5% of individuals do not achieve or maintain long-term protective immunity. To expand upon our previous work identifying genetic polymorphisms that are associated with these interindividual differences in humoral immunity to rubella virus, we performed a genome-wide association study in a large cohort of 1843 subjects to discover single-nucleotide polymorphisms (SNPs) associated with rubella virus-specific cellular immune responses. We identified SNPs in the Wilms tumor protein gene (WT1) that were significantly associated (P < 5 × 10-8) with interindividual variations in rubella-specific interleukin 6 secretion from subjects' peripheral blood mononuclear cells postvaccination. No SNPs were found to be significantly associated with variations in rubella-specific interferon-γ secretion. Our findings demonstrate that genetic polymorphisms in the WT1 gene in subjects of European ancestry are associated with interindividual differences in rubella virus-specific cellular immunity after measles-mumps-rubella II vaccination. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Associations of Polymorphisms in the Apolipoprotein APOA1-C3-A5 Gene Cluster with Acute Coronary Syndrome

    PubMed Central

    Ding, Yan; Zhu, Ming An; Wang, Zhi Xiao; Zhu, Jing; Feng, Jing Bo; Li, Dong Sheng

    2012-01-01

    Background. Acute coronary syndromes (ACSs) are clinically cardiovascular events associated with dyslipidemia in common. Single nucleotide polymorphisms (SNPs) and haplotypes in the APOA1/C3/A5 gene cluster are associated with diabetes and familial combined hyperlipidaemia (FCH). Little is known about whether the polymorphisms in these genes affect lipid homeostasis in patients with ACSs. The present paper aimed to examine these associations with 4 SNPs in the APOA1 −75G > A, the APOC3 −455T > C, and APOA5 −1131T > C, c.553G > T variant to ACSs in Chinese Han. Methods. Chinese Han of 229 patients with ACSs and 254 unrelated controls were analyzed. Four SNPs in APOA1/C3/A5 cluster were genotyped and lipid was determined. Results. Our data show that minor allelic frequencies of APOC3 −455T > C, APOA5 −1131T > C, and c.553G > T polymorphisms in patients with ACSs were significantly higher than control group (P < 0.05). Furthermore, the 3 polymorphic sites were strongly of linkage disequilibrium, and minor alleles of 3 SNP sites had higher TG level than wild alleles (P < 0.05), APOC3 −455C and APOA5 c.553T allele carriers also had lower level of HDL-C. Conclusions. The minor alleles of APOC3 −455T > C, APOA5 −1131T > C, and c.553G > T polymorphisms are closely associated with ACSs. PMID:22675253

  18. PPIA rs6850: A > G single-nucleotide polymorphism is associated with raised plasma cyclophilin A levels in patients with coronary artery disease.

    PubMed

    Vinitha, A; Kutty, V Raman; Vivekanand, A; Reshmi, G; Divya, G; Sumi, S; Santosh, K R; Pratapachandran, N S; Ajit, Mullassari S; Kartha, C C; Ramachandran, Surya

    2016-01-01

    Plasma level of cyclophilin A is a promising marker of vascular disease in patients with type 2 diabetes. Genetic variants in the peptidylprolyl isomerase A gene, encoding human cyclophilin may alter protein synthesis thus affecting its activity, function, and circulating plasma levels. We examined the effect of single-nucleotide polymorphisms (SNPs) within the PPIA gene on plasma levels of cyclophilin A and coupled this with status of vascular disease in patients with and without type 2 diabetes in 212 South Indian subjects. The regulatory region of PPIA gene was sequenced for SNPs. The association of SNPs with known blood markers of type 2 diabetes and coronary artery disease such as HbA1c, low- and high-density lipoproteins, triglycerides, fasting and postprandial blood sugar levels, and cyclophilin A were probed. We identified three SNPs namely, rs6850: A > G; (AG/-) c.*227_*228delAG and (-/T) c.*318_*319insT. Welchs two-sample t test indicated an association of SNP rs6850: A > G, located at the 5' UTR region with increased plasma levels of cyclophilin A in patients with coronary artery disease and with coronary artery disease associated with diabetes. The presence of rs6850: A > G variant was significantly associated with coronary artery disease irrespective of whether the patients had diabetes or not. In silico analysis of the sequence using different tools and matrix libraries did not predict any significant differential binding sites for rs6850: A > G, c.*227_*228delAG and c.*318_*319insT. Our results indicate that the SNP rs6850: A > G is associated with increased risk for elevated plasma levels of cyclophilin A and coronary artery disease in patients with and without type 2 diabetes.

  19. Effects of lifestyle and single nucleotide polymorphisms on breast cancer risk: a case-control study in Japanese women.

    PubMed

    Mizoo, Taeko; Taira, Naruto; Nishiyama, Keiko; Nogami, Tomohiro; Iwamoto, Takayuki; Motoki, Takayuki; Shien, Tadahiko; Matsuoka, Junji; Doihara, Hiroyoshi; Ishihara, Setsuko; Kawai, Hiroshi; Kawasaki, Kensuke; Ishibe, Youichi; Ogasawara, Yutaka; Komoike, Yoshifumi; Miyoshi, Shinichiro

    2013-12-01

    Lifestyle factors, including food and nutrition, physical activity, body composition and reproductive factors, and single nucleotide polymorphisms (SNPs) are associated with breast cancer risk, but few studies of these factors have been performed in the Japanese population. Thus, the goals of this study were to validate the association between reported SNPs and breast cancer risk in the Japanese population and to evaluate the effects of SNP genotypes and lifestyle factors on breast cancer risk. A case-control study in 472 patients and 464 controls was conducted from December 2010 to November 2011. Lifestyle was examined using a self-administered questionnaire. We analyzed 16 breast cancer-associated SNPs based on previous GWAS or candidate-gene association studies. Age or multivariate-adjusted odds ratios (OR) and 95% confidence intervals (95% CI) were estimated from logistic regression analyses. High BMI and current or former smoking were significantly associated with an increased breast cancer risk, while intake of meat, mushrooms, yellow and green vegetables, coffee, and green tea, current leisure-time exercise, and education were significantly associated with a decreased risk. Three SNPs were significantly associated with a breast cancer risk in multivariate analysis: rs2046210 (per allele OR=1.37 [95% CI: 1.11-1.70]), rs3757318 (OR=1.33[1.05-1.69]), and rs3803662 (OR=1.28 [1.07-1.55]). In 2046210 risk allele carriers, leisure-time exercise was associated with a significantly decreased risk for breast cancer, whereas current smoking and high BMI were associated with a significantly decreased risk in non-risk allele carriers. In Japanese women, rs2046210 and 3757318 located near the ESR1 gene are associated with a risk of breast cancer, as in other Asian women. However, our findings suggest that exercise can decrease this risk in allele carriers.

  20. Chromosome 7p linkage and association study for diabetes related traits and type 2 diabetes in an African-American population enriched for nephropathy.

    PubMed

    Leak, Tennille S; Langefeld, Carl D; Keene, Keith L; Gallagher, Carla J; Lu, Lingyi; Mychaleckyj, Josyf C; Rich, Stephen S; Freedman, Barry I; Bowden, Donald W; Sale, Michèle M

    2010-02-08

    Previously we performed a linkage scan of 638 African American affected sibling pairs (ASP) with type 2 diabetes (T2D) enriched for end-stage renal disease (ESRD). Ordered subset linkage analysis (OSA) revealed a linkage peak on chromosome 7p in the subset of families with earlier age of T2D diagnosis. We fine mapped this region by genotyping 11 additional polymorphic markers in the same ASP and investigated a total of 68 single nucleotide polymorphisms (SNPs) in functional candidate genes (GCK1, IL6, IGFBP1 and IGFBP3) for association with age of T2D diagnosis, age of ESRD diagnosis, duration of T2D to onset of ESRD, body mass index (BMI) in African American cases and T2D-ESRD in an African American case-control cohort. OSA of fine mapping markers supported linkage at 28 cM on 7p (near D7S3051) in early-onset T2D families (max. LOD = 3.61, P = 0.002). SNPs in candidate genes and 70 ancestry-informative markers (AIMs) were evaluated in 577 African American T2D-ESRD cases and 596 African American controls. The most significant association was observed between ESRD age of diagnosis and SNP rs730497, located in intron 1 of the GCK1 gene (recessive T2D age-adjusted P = 0.0006). Nominal associations were observed with GCK1 SNPs and T2D age of diagnosis (BMI-adjusted P = 0.014 to 0.032). Also, one IGFBP1 and four IGFBP3 SNPs showed nominal genotypic association with T2D-ESRD (P = 0.002-0.049). After correcting for multiple tests, only rs730497 remanined significant. Variant rs730947 in the GCK1 gene appears to play a role in early ESRD onset in African Americans.

  1. Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms.

    PubMed

    Monsuur, Alienke J; de Bakker, Paul I W; Zhernakova, Alexandra; Pinto, Dalila; Verduijn, Willem; Romanos, Jihane; Auricchio, Renata; Lopez, Ana; van Heel, David A; Crusius, J Bart A; Wijmenga, Cisca

    2008-05-28

    The HLA genes, located in the MHC region on chromosome 6p21.3, play an important role in many autoimmune disorders, such as celiac disease (CD), type 1 diabetes (T1D), rheumatoid arthritis, multiple sclerosis, psoriasis and others. Known HLA variants that confer risk to CD, for example, include DQA1*05/DQB1*02 (DQ2.5) and DQA1*03/DQB1*0302 (DQ8). To diagnose the majority of CD patients and to study disease susceptibility and progression, typing these strongly associated HLA risk factors is of utmost importance. However, current genotyping methods for HLA risk factors involve many reactions, and are complicated and expensive. We sought a simple experimental approach using tagging SNPs that predict the CD-associated HLA risk factors. Our tagging approach exploits linkage disequilibrium between single nucleotide polymorphism (SNPs) and the CD-associated HLA risk factors DQ2.5 and DQ8 that indicate direct risk, and DQA1*0201/DQB1*0202 (DQ2.2) and DQA1*0505/DQB1*0301 (DQ7) that attribute to the risk of DQ2.5 to CD. To evaluate the predictive power of this approach, we performed an empirical comparison of the predicted DQ types, based on these six tag SNPs, with those executed with current validated laboratory typing methods of the HLA-DQA1 and -DQB1 genes in three large cohorts. The results were validated in three European celiac populations. Using this method, only six SNPs were needed to predict the risk types carried by >95% of CD patients. We determined that for this tagging approach the sensitivity was >0.991, specificity >0.996 and the predictive value >0.948. Our results show that this tag SNP method is very accurate and provides an excellent basis for population screening for CD. This method is broadly applicable in European populations.

  2. Polygenic influences on dyslipidemias.

    PubMed

    Dron, Jacqueline S; Hegele, Robert A

    2018-04-01

    Rare large-effect genetic variants underlie monogenic dyslipidemias, whereas common small-effect genetic variants - single nucleotide polymorphisms (SNPs) - have modest influences on lipid traits. Over the past decade, these small-effect SNPs have been shown to cumulatively exert consistent effects on lipid phenotypes under a polygenic framework, which is the focus of this review. Several groups have reported polygenic risk scores assembled from lipid-associated SNPs, and have applied them to their respective phenotypes. For lipid traits in the normal population distribution, polygenic effects quantified by a score that integrates several common polymorphisms account for about 20-30% of genetic variation. Among individuals at the extremes of the distribution, that is, those with clinical dyslipidemia, the polygenic component includes both rare variants with large effects and common polymorphisms: depending on the trait, 20-50% of susceptibility can be accounted for by this assortment of genetic variants. Accounting for polygenic effects increases the numbers of dyslipidemic individuals who can be explained genetically, but a substantial proportion of susceptibility remains unexplained. Whether documenting the polygenic basis of dyslipidemia will affect outcomes in clinical trials or prospective observational studies remains to be determined.

  3. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle

    PubMed Central

    2013-01-01

    Background Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of high (≥ 1.7; n = 288) or low (≤ −2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs using the Sequenom MassARRAY® system. Three types of SNPs were evaluated: SNPs previously reported to be associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and production traits were analyzed. Results A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22 with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele substitution effects for several SNPs associated with production traits were in the opposite direction as DPR. Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits. Conclusion SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated with DPR are likely to be important for understanding the physiology of reproduction. Given the large number of SNPs associated with DPR that were not negatively associated with production traits, it should be possible to select for DPR without compromising production. PMID:23759029

  4. An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies.

    PubMed

    Setsirichok, Damrongrit; Tienboon, Phuwadej; Jaroonruang, Nattapong; Kittichaijaroen, Somkit; Wongseree, Waranyu; Piroonratana, Theera; Usavanarong, Touchpong; Limwongse, Chanin; Aporntewan, Chatchawit; Phadoongsidhi, Marong; Chaiyaratana, Nachol

    2013-01-01

    This article presents the ability of an omnibus permutation test on ensembles of two-locus analyses (2LOmb) to detect pure epistasis in the presence of genetic heterogeneity. The performance of 2LOmb is evaluated in various simulation scenarios covering two independent causes of complex disease where each cause is governed by a purely epistatic interaction. Different scenarios are set up by varying the number of available single nucleotide polymorphisms (SNPs) in data, number of causative SNPs and ratio of case samples from two affected groups. The simulation results indicate that 2LOmb outperforms multifactor dimensionality reduction (MDR) and random forest (RF) techniques in terms of a low number of output SNPs and a high number of correctly-identified causative SNPs. Moreover, 2LOmb is capable of identifying the number of independent interactions in tractable computational time and can be used in genome-wide association studies. 2LOmb is subsequently applied to a type 1 diabetes mellitus (T1D) data set, which is collected from a UK population by the Wellcome Trust Case Control Consortium (WTCCC). After screening for SNPs that locate within or near genes and exhibit no marginal single-locus effects, the T1D data set is reduced to 95,991 SNPs from 12,146 genes. The 2LOmb search in the reduced T1D data set reveals that 12 SNPs, which can be divided into two independent sets, are associated with the disease. The first SNP set consists of three SNPs from MUC21 (mucin 21, cell surface associated), three SNPs from MUC22 (mucin 22), two SNPs from PSORS1C1 (psoriasis susceptibility 1 candidate 1) and one SNP from TCF19 (transcription factor 19). A four-locus interaction between these four genes is also detected. The second SNP set consists of three SNPs from ATAD1 (ATPase family, AAA domain containing 1). Overall, the findings indicate the detection of pure epistasis in the presence of genetic heterogeneity and provide an alternative explanation for the aetiology of T1D in the UK population.

  5. Analysis of Over 10,000 Cases Finds No Association between Previously-Reported Candidate Polymorphisms and Ovarian Cancer Outcome

    PubMed Central

    White, Kristin L.; Vierkant, Robert A.; Fogarty, Zachary C.; Charbonneau, Bridget; Block, Matthew S.; Pharoah, Paul D.P.; Chenevix-Trench, Georgia; Rossing, Mary Anne; Cramer, Daniel W.; Pearce, C. Leigh; Schildkraut, Joellen M.; Menon, Usha; Kjaer, Susanne Kruger; Levine, Douglas A.; Gronwald, Jacek; Culver, Hoda Anton; Whittemore, Alice S.; Karlan, Beth Y.; Lambrechts, Diether; Wentzensen, Nicolas; Kupryjanczyk, Jolanta; Chang-Claude, Jenny; Bandera, Elisa V.; Hogdall, Estrid; Heitz, Florian; Kaye, Stanley B.; Fasching, Peter A.; Campbell, Ian; Goodman, Marc T.; Pejovic, Tanja; Bean, Yukie; Lurie, Galina; Eccles, Diana; Hein, Alexander; Beckmann, Matthias W.; Ekici, Arif B.; Paul, James; Brown, Robert; Flanagan, James; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Claus K.; Lundvall, Lene; Olson, Sara H.; Orlow, Irene; Paddock, Lisa E.; Rudolph, Anja; Eilber, Ursula; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K.; Ziolkowska-Seta, Izabela; Brinton, Louise; Yang, Hannah; Garcia-Closas, Montserrat; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Walsh, Christine; Lester, Jenny; Sieh, Weiva; McGuire, Valerie; Rothstein, Joseph H.; Ziogas, Argyrios; Lubiński, Jan; Cybulski, Cezary; Menkiszak, Janusz; Jensen, Allan; Gayther, Simon A.; Ramus, Susan J.; Gentry-Maharaj, Aleksandra; Berchuck, Andrew; Wu, Anna H.; Pike, Malcolm C.; Van Den Berg, David; Terry, Kathryn L.; Vitonis, Allison F.; Doherty, Jennifer A.; Johnatty, Sharon; deFazio, Anna; Song, Honglin; Tyrer, Jonathan; Sellers, Thomas A.; Phelan, Catherine M.; Kalli, Kimberly R.; Cunningham, Julie M.; Fridley, Brooke L.; Goode, Ellen L.

    2013-01-01

    Background Ovarian cancer is a leading cause of cancer-related death among women. In an effort to understand contributors to disease outcome, we evaluated single-nucleotide polymorphisms (SNPs) previously associated with ovarian cancer recurrence or survival, specifically in angiogenesis, inflammation, mitosis, and drug disposition genes. Methods Twenty-seven SNPs in VHL, HGF, IL18, PRKACB, ABCB1, CYP2C8, ERCC2, and ERCC1 previously associated with ovarian cancer outcome were genotyped in 10,084 invasive cases from 28 studies from the Ovarian Cancer Association Consortium with over 37,000 observed person-years and 4,478 deaths. Cox proportional hazards models were used to examine the association between candidate SNPs and ovarian cancer recurrence or survival with and without adjustment for key covariates. Results We observed no association between genotype and ovarian cancer recurrence or survival for any of the SNPs examined. Conclusions These results refute prior associations between these SNPs and ovarian cancer outcome and underscore the importance of maximally powered genetic association studies. Impact These variants should not be used in prognostic models. Alternate approaches to uncovering inherited prognostic factors, if they exist, are needed. PMID:23513043

  6. Modulation of C-reactive protein and plasma omega-6 fatty acid levels by phospholipase A2 gene polymorphisms following a 6-week supplementation with fish oil.

    PubMed

    Tremblay, B L; Rudkowska, I; Couture, P; Lemieux, S; Julien, P; Vohl, M C

    2015-12-01

    This clinical trial investigated the impact of a six-week supplementation with fish oil and single nucleotide polymorphisms (SNPs) in PLA2G4A and PLA2G6 genes on total omega-6 fatty acid (n-6 FA) levels in plasma phospholipids (PL) and plasma C-reactive protein (CRP) levels in 191 subjects. Interaction effects between SNPs and supplementation modulated total n-6 FAs and CRP levels in both men and women. Associations between SNPs and total n-6 FA levels and between SNPs and CRP levels were identified in men, independently of supplementation. Supplementation decreased total n-6 FAs without affecting plasma CRP levels. Changes in CRP levels correlated positively with changes in total n-6 FAs in men (r=0.25 p=0.01), but not in women. In conclusion, total n-6 FA levels in plasma PL and plasma CRP levels are modulated by SNPs within PLA2G4A and PLA2G6 genes alone or in combination with fish oil supplementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury.

    PubMed

    Jha, Ruchira Menka; Koleck, Theresa A; Puccio, Ava M; Okonkwo, David O; Park, Seo-Young; Zusman, Benjamin E; Clark, Robert S B; Shutter, Lori A; Wallisch, Jessica S; Empey, Philip E; Kochanek, Patrick M; Conley, Yvette P

    2018-04-19

    ABCC8 encodes sulfonylurea receptor 1, a key regulatory protein of cerebral oedema in many neurological disorders including traumatic brain injury (TBI). Sulfonylurea-receptor-1 inhibition has been promising in ameliorating cerebral oedema in clinical trials. We evaluated whether ABCC8 tag single-nucleotide polymorphisms predicted oedema and outcome in TBI. DNA was extracted from 485 prospectively enrolled patients with severe TBI. 410 were analysed after quality control. ABCC8 tag single-nucleotide polymorphisms (SNPs) were identified (Hapmap, r 2 >0.8, minor-allele frequency >0.20) and sequenced (iPlex-Gold, MassArray). Outcomes included radiographic oedema, intracranial pressure (ICP) and 3-month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modelling, amino acid topology and functional predictions were determined using established software programs. Wild-type rs7105832 and rs2237982 alleles and genotypes were associated with lower average ICP (β=-2.91, p=0.001; β=-2.28, p=0.003) and decreased radiographic oedema (OR 0.42, p=0.012; OR 0.52, p=0.017). Wild-type rs2237982 also increased favourable 3-month GOS (OR 2.45, p=0.006); this was partially mediated by oedema (p=0.03). Different polymorphisms predicted 3-month outcome: variant rs11024286 increased (OR 1.84, p=0.006) and wild-type rs4148622 decreased (OR 0.40, p=0.01) the odds of favourable outcome. Significant tag and concordant proxy SNPs regionally span introns/exons 2-15 of the 39-exon gene. This study identifies four ABCC8 tag SNPs associated with cerebral oedema and/or outcome in TBI, tagging a region including 33 polymorphisms. In polymorphisms predictive of oedema, variant alleles/genotypes confer increased risk. Different variant polymorphisms were associated with favourable outcome, potentially suggesting distinct mechanisms. Significant polymorphisms spatially clustered flanking exons encoding the sulfonylurea receptor site and transmembrane domain 0/loop 0 (juxtaposing the channel pore/binding site). This, if validated, may help build a foundation for developing future strategies that may guide individualised care, treatment response, prognosis and patient selection for clinical trials. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. ESR1 and ESR2 polymorphisms in the BIG 1-98 trial comparing adjuvant letrozole versus tamoxifen or their sequence for early breast cancer.

    PubMed

    Leyland-Jones, Brian; Gray, Kathryn P; Abramovitz, Mark; Bouzyk, Mark; Young, Brandon; Long, Bradley; Kammler, Roswitha; Dell'Orto, Patrizia; Biasi, Maria Olivia; Thürlimann, Beat; Harvey, Vernon; Neven, Patrick; Arnould, Laurent; Maibach, Rudolf; Price, Karen N; Coates, Alan S; Goldhirsch, Aron; Gelber, Richard D; Pagani, Olivia; Viale, Giuseppe; Rae, James M; Regan, Meredith M

    2015-12-01

    Estrogen receptor 1 (ESR1) and ESR2 gene polymorphisms have been associated with endocrine-mediated physiological mechanisms, and inconsistently with breast cancer risk and outcomes, bone mineral density changes, and hot flushes/night sweats. DNA was isolated and genotyped for six ESR1 and two ESR2 single-nucleotide polymorphisms (SNPs) from tumor specimens from 3691 postmenopausal women with hormone receptor-positive breast cancer enrolled in the BIG 1-98 trial to receive tamoxifen and/or letrozole for 5 years. Associations with recurrence and adverse events (AEs) were assessed using Cox proportional hazards models. 3401 samples were successfully genotyped for five SNPs. ESR1 rs9340799(XbaI) (T>C) variants CC or TC were associated with reduced breast cancer risk (HR = 0.82,95% CI = 0.67-1.0), and ESR1 rs2077647 (T>C) variants CC or TC was associated with reduced distant recurrence risk (HR = 0.69, 95% CI = 0.53-0.90), both regardless of the treatments. No differential treatment effects (letrozole vs. tamoxifen) were observed for the association of outcome with any of the SNPs. Letrozole-treated patients with rs2077647 (T>C) variants CC and TC had a reduced risk of bone AE (HR = 0.75, 95% CI = 0.58-0.98, P interaction = 0.08), whereas patients with rs4986938 (G>A) genotype variants AA and AG had an increased risk of bone AE (HR = 1.37, 95% CI = 1.01-1.84, P interaction = 0.07). We observed that (1) rare ESR1 homozygous polymorphisms were associated with lower recurrence, and (2) ESR1 and ESR2 SNPs were associated with bone AEs in letrozole-treated patients. Genes that are involved in estrogen signaling and synthesis have the potential to affect both breast cancer recurrence and side effects, suggesting that individual treatment strategies can incorporate not only oncogenic drivers but also SNPs related to estrogen activity.

  9. Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome.

    PubMed

    Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Benita, Miri; Ish-Shalom, Mazal; Sharabi-Schwager, Michal; Rozen, Ada; Saada, David; Cohen, Yuval; Ophir, Ron

    2015-11-14

    Germplasm collections are an important source for plant breeding, especially in fruit trees which have a long duration of juvenile period. Thus, efforts have been made to study the diversity of fruit tree collections. Even though mango is an economically important crop, most of the studies on diversity in mango collections have been conducted with a small number of genetic markers. We describe a de novo transcriptome assembly from mango cultivar 'Keitt'. Variation discovery was performed using Illumina resequencing of 'Keitt' and 'Tommy Atkins' cultivars identified 332,016 single-nucleotide polymorphisms (SNPs) and 1903 simple-sequence repeats (SSRs). Most of the SSRs (70.1%) were of trinucleotide with the preponderance of motif (GGA/AAG)n and only 23.5% were di-nucleotide SSRs with the mostly of (AT/AT)n motif. Further investigation of the diversity in the Israeli mango collection was performed based on a subset of 293 SNPs. Those markers have divided the Israeli mango collection into two major groups: one group included mostly mango accessions from Southeast Asia (Malaysia, Thailand, Indonesia) and India and the other with mainly of Floridian and Israeli mango cultivars. The latter group was more polymorphic (FS=-0.1 on the average) and was more of an admixture than the former group. A slight population differentiation was detected (FST=0.03), suggesting that if the mango accessions of the western world apparently was originated from Southeast Asia, as has been previously suggested, the duration of cultivation was not long enough to develop a distinct genetic background. Whole-transcriptome reconstruction was used to significantly broaden the mango's genetic variation resources, i.e., SNPs and SSRs. The set of SNP markers described in this study is novel. A subset of SNPs was sampled to explore the Israeli mango collection and most of them were polymorphic in many mango accessions. Therefore, we believe that these SNPs will be valuable as they recapitulate and strengthen the history of mango diversity.

  10. Association of Androgen Metabolism Gene Polymorphisms with Prostate Cancer Risk and Androgen Concentrations: Results from the Prostate Cancer Prevention Trial

    PubMed Central

    Price, Douglas K.; Chau, Cindy H.; Till, Cathee; Goodman, Phyllis J.; Leach, Robin J.; Johnson-Pais, Teresa L.; Hsing, Ann W.; Hoque, Ashraful; Parnes, Howard L.; Schenk, Jeannette M.; Tangen, Catherine M.; Thompson, Ian M.; Reichardt, Juergen K.V.; Figg, William D.

    2016-01-01

    Background Prostate cancer is highly influenced by androgens and genes. We investigated whether genetic polymorphisms along the androgen biosynthesis and metabolism pathways are associated with androgen concentrations or risk of prostate cancer or high-grade disease from finasteride treatment. Methods A nested case-control study from the Prostate Cancer Prevention Trial using cases drawn from men with biopsy-proven prostate cancer and biopsy-negative, frequency-matched controls was conducted to investigate the association of 51 single nucleotide polymorphisms (SNPs) in 12 genes of the androgen pathway with total, low-grade, and high-grade prostate cancer incidence and serum hormone concentrations. Results There were significant associations of genetic polymorphisms in SRD5A1 (rs3736316, rs3822430, rs1560149, rs248797, and rs472402) and SRD5A2 (rs2300700) with risk of high-grade prostate cancer in the placebo arm of the PCPT; two SNPs were significantly associated with increased risk (SRD5A1 rs472402 [OR, 1.70; 95% CI, 1.05-2.75, Ptrend=0.03]; SRD5A2 rs2300700 [OR, 1.94; 95% CI, 1.19-3.18, Ptrend=0.01]). Eleven SNPs in SRD5A1, SRD5A2, CYP1B1, and CYP3A4 were found to be associated with modifying mean serum androgen and sex hormone-binding globulin concentrations; two SNPs (SRD5A1 rs824811 and CYP1B1 rs10012, Ptrend<0.05) consistently and significantly altered all androgen concentrations. Several SNPs (rs3822430, rs2300700; CYP3A43 rs800672; CYP19 rs700519; Ptrend<0.05) were significantly associated with both circulating hormone levels and prostate cancer risk. Conclusion Germline genetic variations of androgen-related pathway genes are associated with serum androgen concentrations and risk of prostate cancer. Further studies to examine the functional consequence of novel causal variants are warranted. PMID:27164191

  11. High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR--an example in citrus.

    PubMed

    Distefano, Gaetano; Caruso, Marco; La Malfa, Stefano; Gentile, Alessandra; Wu, Shu-Biao

    2012-01-01

    High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR markers in a wide range of applications in all other species.

  12. Association of two synonymous splicing-associated CpG single nucleotide polymorphisms in calpain 10 and solute carrier family 2 member 2 with type 2 diabetes

    PubMed Central

    Karambataki, Maria; Malousi, Andigoni; Tzimagiorgis, Georgios; Haitoglou, Constantinos; Fragou, Aikaterini; Georgiou, Elisavet; Papadopoulou, Foteini; Krassas, Gerasimos E.; Kouidou, Sofia

    2017-01-01

    Coding synonymous single nucleotide polymorphisms (SNPs) have attracted little attention until recently. However, such SNPs located in epigenetic, CpG sites modifying exonic splicing enhancers (ESEs) can be informative with regards to the recently verified association of intragenic methylation and splicing. The present study describes the association of type 2 diabetes (T2D) with the exonic, synonymous, epigenetic SNPs, rs3749166 in calpain 10 (CAPN10) glucose transporter (GLUT4) translocator and rs5404 in solute carrier family 2, member 2 (SLC2A2), also termed GLUT2, which, according to prior bioinformatic analysis, strongly modify the splicing potential of glucose transport-associated genes. Previous association studies reveal that only rs5404 exhibits a strong negative T2D association, while data on the CAPN10 polymorphism are contradictory. In the present study DNA from blood samples of 99 Greek non-diabetic control subjects and 71 T2D patients was analyzed. In addition, relevant publicly available cases (40) resulting from examination of 110 Personal Genome Project data files were analyzed. The frequency of the rs3749166 A allele, was similar in the patients and non-diabetic control subjects. However, AG heterozygotes were more frequent among patients (73.24% for Greek patients and 54.55% for corresponding non-diabetic control subjects; P=0.0262; total cases, 52.99 and 75.00%, respectively; P=0.0039). The rs5404 T allele was only observed in CT heterozygotes (Greek non-diabetic control subjects, 39.39% and Greek patients, 22.54%; P=0.0205; total cases, 34.69 and 21.28%, respectively; P=0.0258). Notably, only one genotype, heterozygous AG/CC, was T2D-associated (Greek non-diabetic control subjects, 29.29% and Greek patients, 56.33%; P=0.004; total cases, 32.84 and 56.58%, respectively; P=0.0008). Furthermore, AG/CC was strongly associated with very high (≥8.5%) glycosylated plasma hemoglobin levels among patients (P=0.0002 for all cases). These results reveal the complex heterozygotic SNP association with T2D, and indicate possible synergies of these epigenetic, splicing-regulatory, synonymous SNPs, which modify the splicing potential of two alternative glucose transport-associated genes. PMID:28357066

  13. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments.

    PubMed

    Feltus, F Alex; Wan, Jun; Schulze, Stefan R; Estill, James C; Jiang, Ning; Paterson, Andrew H

    2004-09-01

    Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% +/- 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% +/- 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp.

  14. An SNP Resource for Rice Genetics and Breeding Based on Subspecies Indica and Japonica Genome Alignments

    PubMed Central

    Feltus, F. Alex; Wan, Jun; Schulze, Stefan R.; Estill, James C.; Jiang, Ning; Paterson, Andrew H.

    2004-01-01

    Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% ± 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% ± 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp. PMID:15342564

  15. The genetic association study between polymorphisms in uncoupling protein 2 and uncoupling protein 3 and metabolic data in dogs.

    PubMed

    Udagawa, Chihiro; Tada, Naomi; Asano, Junzo; Ishioka, Katsumi; Ochiai, Kazuhiko; Bonkobara, Makoto; Tsuchida, Shuichi; Omi, Toshinori

    2014-12-11

    The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs. We identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n=119). An association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n=50) showed that none of the UCP2 polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron 1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland Sheepdogs, n=30), compared with the control breed (Shiba, n=30). The results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to increased precision of these results.

  16. Genome-wide analysis of intraspecific DNA polymorphism in 'Micro-Tom', a model cultivar of tomato (Solanum lycopersicum).

    PubMed

    Kobayashi, Masaaki; Nagasaki, Hideki; Garcia, Virginie; Just, Daniel; Bres, Cécile; Mauxion, Jean-Philippe; Le Paslier, Marie-Christine; Brunel, Dominique; Suda, Kunihiro; Minakuchi, Yohei; Toyoda, Atsushi; Fujiyama, Asao; Toyoshima, Hiromi; Suzuki, Takayuki; Igarashi, Kaori; Rothan, Christophe; Kaminuma, Eli; Nakamura, Yasukazu; Yano, Kentaro; Aoki, Koh

    2014-02-01

    Tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. The genome sequencing of the tomato cultivar 'Heinz 1706' was recently completed. To accelerate the progress of tomato genomics studies, systematic bioresources, such as mutagenized lines and full-length cDNA libraries, have been established for the cultivar 'Micro-Tom'. However, these resources cannot be utilized to their full potential without the completion of the genome sequencing of 'Micro-Tom'. We undertook the genome sequencing of 'Micro-Tom' and here report the identification of single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) between 'Micro-Tom' and 'Heinz 1706'. The analysis demonstrated the presence of 1.23 million SNPs and 0.19 million indels between the two cultivars. The density of SNPs and indels was high in chromosomes 2, 5 and 11, but was low in chromosomes 6, 8 and 10. Three known mutations of 'Micro-Tom' were localized on chromosomal regions where the density of SNPs and indels was low, which was consistent with the fact that these mutations were relatively new and introgressed into 'Micro-Tom' during the breeding of this cultivar. We also report SNP analysis for two 'Micro-Tom' varieties that have been maintained independently in Japan and France, both of which have served as standard lines for 'Micro-Tom' mutant collections. Approximately 28,000 SNPs were identified between these two 'Micro-Tom' lines. These results provide high-resolution DNA polymorphic information on 'Micro-Tom' and represent a valuable contribution to the 'Micro-Tom'-based genomics resources.

  17. IL28B polymorphisms of both recipient and donor cooperate to influence IFN treatment response in HCV recurrence after liver transplantation, but IL28B SNPs of the recipient play a major role in IFN-induced blocking of HCV replication.

    PubMed

    Barbera, Floriana; Russelli, Giovanna; Pipitone, Loredana; Pietrosi, Giada; Corsale, Sveva; Vizzini, Giovanni; Gridelli, Bruno; Conaldi, Pier Giulio

    2015-04-01

    Single nucleotide polymorphisms (SNPs) of the IL28B locus are associated with a positive response to pegylated interferon-alpha and ribavirin (pegIFN-alpha/RBV) treatment of HCV-infected patients. This study evaluated the association between SNPs rs12980275, rs12979860 and rs8099917 and treatment outcome of HCV recurrent infection in HCV-positive patients who underwent liver transplant. We aimed to assess to what extent recipient and/or graft donor IL28B polymorphisms contribute to HCV clearance after transplantation influencing the response to the antiviral treatment. We found that the allele frequencies in donors were in agreement with the pattern expected in the European population. The frequency of favourable genotypes was significantly lower in recipients than in donors, reasonably because the recipients represented a group of patients affected by chronic Hepatitis C. Our study demonstrated that the positive outcome of the pegIFN-alpha/RBV treatment of HCV recurrence is associated with the co-presence of favourable genotypes of both donors and recipients. However, IL28B SNPs of the recipient seem to play a major role in this clinical setting. In particular, homozygosis of rs12979860 favourable genotype in recipients was associated with sustained virological response independently from the donor's genotype. Thus, identification of these SNPs may be useful to predict the response to IFN-based therapy of HCV recurrent infection in liver-transplanted patients.

  18. A web-based genome browser for 'SNP-aware' assay design

    USDA-ARS?s Scientific Manuscript database

    Human and animal genomes contain an abundance of single nucleotide polymorphisms (SNPs) that are useful for genetic testing. However, the relatively large number of SNPs present in diverse populations can pose serious problems when designing assays. It is important to “mask” some SNP positions so ...

  19. Population-Specific Patterns of Linkage Disequilibrium and SNP Variation in Spring and Winter Polyploid Wheat

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and po...

  20. Common variant of ALPK1 is not associated with gout: a replication study.

    PubMed

    Chiba, Toshinori; Matsuo, Hirotaka; Sakiyama, Masayuki; Nakayama, Akiyoshi; Shimizu, Seiko; Wakai, Kenji; Suma, Shino; Nakashima, Hiroshi; Sakurai, Yutaka; Shimizu, Toru; Ichida, Kimiyoshi; Shinomiya, Nariyoshi

    2015-01-01

    Gout is one of the most kinds of common inflammatory arthritis as a consequence of hyperuricemia. Alpha-protein kinase 1 (ALPK1) gene locates in a gout-susceptibility locus on chromosome 4q21-31, and encodes ALPK1 protein which plays a pivotal role in the phosphorylation of myosin 1. In the previous genetic study of Taiwanese populations, 3 single nucleotide polymorphisms (SNPs), rs11726117, rs231247 and rs231253, in ALPK1 gene were reported to have a significant association with gout. However, no replication study has been performed to confirm this association. Therefore, we first conducted a replication study with clinically defined gout patients in a different population. Linkage disequilibrium (LD) analyzes of the 3 SNPs in ALPK1 revealed that these SNPs are in strong LD in a Japanese population. Among the 3 SNPs of ALPK1, rs11726117 (M861T) is the only missense SNP. Therefore, rs11726117 was genotyped in a Japanese population of 903 clinically defined gout cases and 1,302 controls, and was evaluated for a possible association with gout. The minor allele frequencies of rs11726117 were 0.26 and 0.25 in the case and control groups, respectively. The association analysis has not detected a significant association between rs11726117 and gout susceptibility in a Japanese population (p = 0.44). Because ABCG2, a major causative gene for gout, also locates in the gout-susceptibility locus on chromosome 4q, these findings suggest that among genes in a gout-susceptibility locus, not ALPK1 but ABCG2 could be important as a gout-susceptible gene.

  1. Discrimination of candidate subgenome-specific loci by linkage map construction with an S1 population of octoploid strawberry (Fragaria × ananassa).

    PubMed

    Nagano, Soichiro; Shirasawa, Kenta; Hirakawa, Hideki; Maeda, Fumi; Ishikawa, Masami; Isobe, Sachiko N

    2017-05-12

    The strawberry, Fragaria × ananassa, is an allo-octoploid (2n = 8x = 56) and outcrossing species. Although it is the most widely consumed berry crop in the world, its complex genome structure has hindered its genetic and genomic analysis, and thus discrimination of subgenome-specific loci among the homoeologous chromosomes is needed. In the present study, we identified candidate subgenome-specific single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) loci, and constructed a linkage map using an S 1 mapping population of the cultivar 'Reikou' with an IStraw90 Axiom® SNP array and previously published SSR markers. The 'Reikou' linkage map consisted of 11,574 loci (11,002 SNPs and 572 SSR loci) spanning 2816.5 cM of 31 linkage groups. The 11,574 loci were located on 4738 unique positions (bin) on the linkage map. Of the mapped loci, 8999 (8588 SNPs and 411 SSR loci) showed a 1:2:1 segregation ratio of AA:AB:BB allele, which suggested the possibility of deriving loci from candidate subgenome-specific sequences. In addition, 2575 loci (2414 SNPs and 161 SSR loci) showed a 3:1 segregation of AB:BB allele, indicating they were derived from homoeologous genomic sequences. Comparative analysis of the homoeologous linkage groups revealed differences in genome structure among the subgenomes. Our results suggest that candidate subgenome-specific loci are randomly located across the genomes, and that there are small- to large-scale structural variations among the subgenomes. The mapped SNPs and SSR loci on the linkage map are expected to be seed points for the construction of pseudomolecules in the octoploid strawberry.

  2. Genes and abdominal aortic aneurysm.

    PubMed

    Hinterseher, Irene; Tromp, Gerard; Kuivaniemi, Helena

    2011-04-01

    Abdominal aortic aneurysm (AAA) is a multifactorial disease with a strong genetic component. Since the first candidate gene studies were published 20 years ago, approximately 100 genetic association studies using single nucleotide polymorphisms (SNPs) in biologically relevant genes have been reported on AAA. These studies investigated SNPs in genes of the extracellular matrix, the cardiovascular system, the immune system, and signaling pathways. Very few studies were large enough to draw firm conclusions and very few results could be replicated in another sample set. The more recent unbiased approaches are family-based DNA linkage studies and genome-wide genetic association studies, which have the potential of identifying the genetic basis for AAA, only when appropriately powered and well-characterized large AAA cohorts are used. SNPs associated with AAA have already been identified in these large multicenter studies. One significant association was of a variant in a gene called contactin-3, which is located on chromosome 3p12.3. However, two follow-up studies could not replicate this association. Two other SNPs, which are located on chromosome 9p21 and 9q33, were replicated in other samples. The two genes with the strongest supporting evidence of contribution to the genetic risk for AAA are the CDKN2BAS gene, also known as ANRIL, which encodes an antisense ribonucleic acid that regulates expression of the cyclin-dependent kinase inhibitors CDKN2A and CDKN2B, and DAB2IP, which encodes an inhibitor of cell growth and survival. Functional studies are now needed to establish the mechanisms by which these genes contribute toward AAA pathogenesis. Copyright © 2011 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.

  3. Common Variants in Cardiac Ion Channel Genes are Associated with Sudden Cardiac Death

    PubMed Central

    Albert, Christine M.; MacRae, Calum A.; Chasman, Daniel I.; VanDenburgh, Martin; Buring, Julie E; Manson, JoAnn E; Cook, Nancy R; Newton-Cheh, Christopher

    2010-01-01

    Background Rare variants in cardiac ion channel genes are associated with sudden cardiac death (SCD) in rare primary arrhythmic syndromes; however, it is unknown whether common variation in these same genes may contribute to SCD risk at the population level. Methods and Results We examined the association between 147 single nucleotide polymorphisms (SNPs) (137 tag, 5 non-coding SNPs associated with QT interval duration and 5 nonsynonymous SNPs) in 5 cardiac ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 and sudden and/or arrhythmic death in a combined nested case-control analysis among 516 cases and 1522 matched controls of European ancestry enrolled in six prospective cohort studies. After accounting for multiple testing, two SNPs (rs2283222 located in intron 11 in KCNQ1 and rs11720524 located in intron 1 in SCN5A) remained significantly associated with sudden/arrhythmic death (FDR = 0.01 and 0.03 respectively). Each increasing copy of the major T allele of rs2283222 or the major C allele of rs1172052 was associated with an OR = 1.36 (95% CI 1.16-1.60, P=0.0002) and 1.30 (95% CI 1.12-1.51, P=0.0005) respectively. Control for cardiovascular risk factors and/or limiting the analysis to definite SCDs did not significantly alter these relationships. Conclusion In this combined analysis of 6 prospective cohort studies, two common intronic variants in KCNQ1 and SCN5A were associated with SCD in individuals of European ancestry. Further study in other populations and investigation into the functional abnormalities associated with non-coding variation in these genes may lead to important insights into predisposition to lethal arrhythmias. PMID:20400777

  4. [Natural nucleotide polymorphism of the Srlk gene that determines salt stress tolerance in alfalfa (Medicago sativa L)].

    PubMed

    Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K

    2014-04-01

    Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.

  5. Trichomonas vaginalis Metronidazole Resistance Is Associated with Single Nucleotide Polymorphisms in the Nitroreductase Genes ntr4Tv and ntr6Tv

    PubMed Central

    Paulish-Miller, Teresa E.; Augostini, Peter; Schuyler, Jessica A.; Smith, William L.; Mordechai, Eli; Adelson, Martin E.; Gygax, Scott E.; Secor, William E.

    2014-01-01

    Metronidazole resistance in the sexually transmitted parasite Trichomonas vaginalis is a problematic public health issue. We have identified single nucleotide polymorphisms (SNPs) in two nitroreductase genes (ntr4Tv and ntr6Tv) associated with resistance. These SNPs were associated with one of two distinct T. vaginalis populations identified by multilocus sequence typing, yet one SNP (ntr6Tv A238T), which results in a premature stop codon, was associated with resistance independent of population structure and may be of diagnostic value. PMID:24550324

  6. Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...

  7. Design of a 9K illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing.

    PubMed

    Malenfant, René M; Coltman, David W; Davis, Corey S

    2015-05-01

    Single-nucleotide polymorphisms (SNPs) offer numerous advantages over anonymous markers such as microsatellites, including improved estimation of population parameters, finer-scale resolution of population structure and more precise genomic dissection of quantitative traits. However, many SNPs are needed to equal the resolution of a single microsatellite, and reliable large-scale genotyping of SNPs remains a challenge in nonmodel species. Here, we document the creation of a 9K Illumina Infinium BeadChip for polar bears (Ursus maritimus), which will be used to investigate: (i) the fine-scale population structure among Canadian polar bears and (ii) the genomic architecture of phenotypic traits in the Western Hudson Bay subpopulation. To this end, we used restriction-site associated DNA (RAD) sequencing from 38 bears across their circumpolar range, as well as blood/fat transcriptome sequencing of 10 individuals from Western Hudson Bay. Six-thousand RAD SNPs and 3000 transcriptomic SNPs were selected for the chip, based primarily on genomic spacing and gene function respectively. Of the 9000 SNPs ordered from Illumina, 8042 were successfully printed, and - after genotyping 1450 polar bears - 5441 of these SNPs were found to be well clustered and polymorphic. Using this array, we show rapid linkage disequilibrium decay among polar bears, we demonstrate that in a subsample of 78 individuals, our SNPs detect known genetic structure more clearly than 24 microsatellites genotyped for the same individuals and that these results are not driven by the SNP ascertainment scheme. Here, we present one of the first large-scale genotyping resources designed for a threatened species. © 2014 John Wiley & Sons Ltd.

  8. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

    PubMed Central

    Ramos, Antonio M.; Crooijmans, Richard P. M. A.; Affara, Nabeel A.; Amaral, Andreia J.; Archibald, Alan L.; Beever, Jonathan E.; Bendixen, Christian; Churcher, Carol; Clark, Richard; Dehais, Patrick; Hansen, Mark S.; Hedegaard, Jakob; Hu, Zhi-Liang; Kerstens, Hindrik H.; Law, Andy S.; Megens, Hendrik-Jan; Milan, Denis; Nonneman, Danny J.; Rohrer, Gary A.; Rothschild, Max F.; Smith, Tim P. L.; Schnabel, Robert D.; Van Tassell, Curt P.; Taylor, Jeremy F.; Wiedmann, Ralph T.; Schook, Lawrence B.; Groenen, Martien A. M.

    2009-01-01

    Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs. PMID:19654876

  9. Genetic polymorphisms to predict gains in maximal O2 uptake and knee peak torque after a high intensity training program in humans.

    PubMed

    Yoo, Jinho; Kim, Bo-Hyung; Kim, Soo-Hwan; Kim, Yangseok; Yim, Sung-Vin

    2016-05-01

    The study aimed to identify single nucleotide polymorphisms (SNPs) that significantly influenced the level of improvement of two kinds of training responses, including maximal O2 uptake (V'O2max) and knee peak torque of healthy adults participating in the high intensity training (HIT) program. The study also aimed to use these SNPs to develop prediction models for individual training responses. 79 Healthy volunteers participated in the HIT program. A genome-wide association study, based on 2,391,739 SNPs, was performed to identify SNPs that were significantly associated with gains in V'O2max and knee peak torque, following 9 weeks of the HIT program. To predict two training responses, two independent SNPs sets were determined using linear regression and iterative binary logistic regression analysis. False discovery rate analysis and permutation tests were performed to avoid false-positive findings. To predict gains in V'O2max, 7 SNPs were identified. These SNPs accounted for 26.0 % of the variance in the increment of V'O2max, and discriminated the subjects into three subgroups, non-responders, medium responders, and high responders, with prediction accuracy of 86.1 %. For the knee peak torque, 6 SNPs were identified, and accounted for 27.5 % of the variance in the increment of knee peak torque. The prediction accuracy discriminating the subjects into the three subgroups was estimated as 77.2 %. Novel SNPs found in this study could explain, and predict inter-individual variability in gains of V'O2max, and knee peak torque. Furthermore, with these genetic markers, a methodology suggested in this study provides a sound approach for the personalized training program.

  10. Development and evaluation of high-density Axiom® CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea.

    PubMed

    Roorkiwal, Manish; Jain, Ankit; Kale, Sandip M; Doddamani, Dadakhalandar; Chitikineni, Annapurna; Thudi, Mahendar; Varshney, Rajeev K

    2018-04-01

    To accelerate genomics research and molecular breeding applications in chickpea, a high-throughput SNP genotyping platform 'Axiom ® CicerSNP Array' has been designed, developed and validated. Screening of whole-genome resequencing data from 429 chickpea lines identified 4.9 million SNPs, from which a subset of 70 463 high-quality nonredundant SNPs was selected using different stringent filter criteria. This was further narrowed down to 61 174 SNPs based on p-convert score ≥0.3, of which 50 590 SNPs could be tiled on array. Among these tiled SNPs, a total of 11 245 SNPs (22.23%) were from the coding regions of 3673 different genes. The developed Axiom ® CicerSNP Array was used for genotyping two recombinant inbred line populations, namely ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261). Genotyping data reflected high success and polymorphic rate, with 15 140 (29.93%; ICCRIL03) and 20 018 (39.57%; ICCRIL04) polymorphic SNPs. High-density genetic maps comprising 13 679 SNPs spanning 1033.67 cM and 7769 SNPs spanning 1076.35 cM were developed for ICCRIL03 and ICCRIL04 populations, respectively. QTL analysis using multilocation, multiseason phenotyping data on these RILs identified 70 (ICCRIL03) and 120 (ICCRIL04) main-effect QTLs on genetic map. Higher precision and potential of this array is expected to advance chickpea genetics and breeding applications. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Cyclooxygenase 2 gene polymorphisms and chronic periodontitis in a North Indian population: a pilot study

    PubMed Central

    Daing, Anika; Singh, Sarvendra Vikram; Saimbi, Charanjeet Singh; Khan, Mohammad Akhlaq

    2012-01-01

    Purpose Cyclooxygenase (COX) enzyme catalyzes the production of prostaglandins, which are important mediators of tissue destruction in periodontitis. Single nucleotide polymorphisms of COX2 enzyme have been associated with increasing susceptibility to inflammatory diseases. The present study evaluates the association of two single nucleotide polymorphisms in COX2 gene (-1195G>A and 8473C>T) with chronic periodontitis in North Indians. Methods Both SNPs and their haplotypes were used to explore the associations between COX2 polymorphisms and chronic periodontitis in 56 patients and 60 controls. Genotyping was done by polymerase chain reaction followed by restriction fragment length polymorphism. Chi-square test and logistic regression analysis were performed for association analysis. Results By the individual genotype analysis, mutant genotypes (GA and AA) of COX2 -1195 showed more than a two fold risk (odds ratio [OR]>2) and COX2 8473 (TC and CC) showed a reduced risk for the disease, but the findings were not statistically significant. Haplotype analysis showed that the frequency of the haplotype AT was higher in the case group and a significant association was found for haplotype AT (OR, 1.79; 95% confidence interval, 1.03 to 3.11; P=0.0370) indicating an association between the AT haplotype of COX2 gene SNPs and chronic periodontitis. Conclusions Individual genotypes of both the SNPs were not associated while haplotype AT was found to be associated with chronic periodontitis in North Indians. PMID:23185695

  12. Bovine GDF10 gene polymorphism analysis and its association with body measurement traits in Chinese indigenous cattle.

    PubMed

    Adoligbe, C; Zan, Linsen; Farougou, S; Wang, Hongbao; Ujjan, J A

    2012-04-01

    The objective of this research was to detect bovine GDF10 gene polymorphism and analyze its association with body measurement traits (BMT) of animals sampled from 6 different Chinese indigenous cattle populations. The populations included Xuelong (Xl), Luxi (Lx), Qinchuan (Qc), Jiaxian red (Jx), Xianang (Xn) and Nanyang (Ny). Blood samples were taken from a total of 417 female animals stratified into age categories of 12-36 months. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was employed to find out GDF10 single polymorphism nucleotide (SNPs) and explore their possible association with BMT. Sequence analysis of GDF10 gene revealed 3 SNPs in total: 1 in exon1 (G142A) and 2 in exon3 (A11471G, and T12495C). G142A and T12495C SNPs are both synonymous mutation. They showed 2 genotypes namely respectively (GG, GA) and (PP and PB). A11471G SNP is a missense mutation leading to the change of Alanine to Threonine amino acid. It showed three genotypes namely AA, BB and AB. Analysis of association of polymorphism with body measurement traits at the three locus showed that there were significant effects on BMT in Qc, Jx and Ny cattle population. These results suggest that the GDF10 gene might have potential effects on body measurement traits in the above mentioned cattle populations and could be used for marker-assisted selection.

  13. Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression

    PubMed Central

    Darabi, Hatef; McCue, Karen; Beesley, Jonathan; Michailidou, Kyriaki; Nord, Silje; Kar, Siddhartha; Humphreys, Keith; Thompson, Deborah; Ghoussaini, Maya; Bolla, Manjeet K.; Dennis, Joe; Wang, Qin; Canisius, Sander; Scott, Christopher G.; Apicella, Carmel; Hopper, John L.; Southey, Melissa C.; Stone, Jennifer; Broeks, Annegien; Schmidt, Marjanka K.; Scott, Rodney J.; Lophatananon, Artitaya; Muir, Kenneth; Beckmann, Matthias W.; Ekici, Arif B.; Fasching, Peter A.; Heusinger, Katharina; dos-Santos-Silva, Isabel; Peto, Julian; Tomlinson, Ian; Sawyer, Elinor J.; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E.; Flyger, Henrik; Benitez, Javier; González-Neira, Anna; Anton-Culver, Hoda; Neuhausen, Susan L.; Arndt, Volker; Brenner, Hermann; Engel, Christoph; Meindl, Alfons; Schmutzler, Rita K.; Arnold, Norbert; Brauch, Hiltrud; Hamann, Ute; Chang-Claude, Jenny; Khan, Sofia; Nevanlinna, Heli; Ito, Hidemi; Matsuo, Keitaro; Bogdanova, Natalia V.; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Kosma, Veli-Matti; Mannermaa, Arto; Tseng, Chiu-chen; Wu, Anna H.; Floris, Giuseppe; Lambrechts, Diether; Rudolph, Anja; Peterlongo, Paolo; Radice, Paolo; Couch, Fergus J.; Vachon, Celine; Giles, Graham G.; McLean, Catriona; Milne, Roger L.; Dugué, Pierre-Antoine; Haiman, Christopher A.; Maskarinec, Gertraud; Woolcott, Christy; Henderson, Brian E.; Goldberg, Mark S.; Simard, Jacques; Teo, Soo H.; Mariapun, Shivaani; Helland, Åslaug; Haakensen, Vilde; Zheng, Wei; Beeghly-Fadiel, Alicia; Tamimi, Rulla; Jukkola-Vuorinen, Arja; Winqvist, Robert; Andrulis, Irene L.; Knight, Julia A.; Devilee, Peter; Tollenaar, Robert A.E.M.; Figueroa, Jonine; García-Closas, Montserrat; Czene, Kamila; Hooning, Maartje J.; Tilanus-Linthorst, Madeleine; Li, Jingmei; Gao, Yu-Tang; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S.; Luben, Robert; Khaw, Kay-Tee; Choi, Ji-Yeob; Kang, Daehee; Hartman, Mikael; Lim, Wei Yen; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; McKay, James; Sangrajrang, Suleeporn; Toland, Amanda E.; Yannoukakos, Drakoulis; Shen, Chen-Yang; Yu, Jyh-Cherng; Ziogas, Argyrios; Schoemaker, Minouk J.; Swerdlow, Anthony; Borresen-Dale, Anne-Lise; Kristensen, Vessela; French, Juliet D.; Edwards, Stacey L.; Dunning, Alison M.; Easton, Douglas F.; Hall, Per; Chenevix-Trench, Georgia

    2015-01-01

    Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82–0.88]) and ER-negative (OR = 0.87 [0.82–0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 [0.91–0.95] and OR = 1.06 [1.03–1.09]) and ER-negative (OR = 0.95 [0.91–0.98] and OR = 1.08 [1.04–1.13]) disease. There was weaker evidence for iCHAV4, located 5′ of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90–0.96]). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1–4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer. PMID:26073781

  14. Genomic variation at the tips of the adaptive radiation of Darwin's finches.

    PubMed

    Chaves, Jaime A; Cooper, Elizabeth A; Hendry, Andrew P; Podos, Jeffrey; De León, Luis F; Raeymaekers, Joost A M; MacMillan, W Owen; Uy, J Albert C

    2016-11-01

    Adaptive radiation unfolds as selection acts on the genetic variation underlying functional traits. The nature of this variation can be revealed by studying the tips of an ongoing adaptive radiation. We studied genomic variation at the tips of the Darwin's finch radiation; specifically focusing on polymorphism within, and variation among, three sympatric species of the genus Geospiza. Using restriction site-associated DNA (RAD-seq), we characterized 32 569 single-nucleotide polymorphisms (SNPs), from which 11 outlier SNPs for beak and body size were uncovered by a genomewide association study (GWAS). Principal component analysis revealed that these 11 SNPs formed four statistically linked groups. Stepwise regression then revealed that the first PC score, which included 6 of the 11 top SNPs, explained over 80% of the variation in beak size, suggesting that selection on these traits influences multiple correlated loci. The two SNPs most strongly associated with beak size were near genes associated with beak morphology across deeper branches of the radiation: delta-like 1 homologue (DLK1) and high-mobility group AT-hook 2 (HMGA2). Our results suggest that (i) key adaptive traits are associated with a small fraction of the genome (11 of 32 569 SNPs), (ii) SNPs linked to the candidate genes are dispersed throughout the genome (on several chromosomes), and (iii) micro- and macro-evolutionary variation (roots and tips of the radiation) involve some shared and some unique genomic regions. © 2016 John Wiley & Sons Ltd.

  15. Forensic genetic informativeness of an SNP panel consisting of 19 multi-allelic SNPs.

    PubMed

    Gao, Zehua; Chen, Xiaogang; Zhao, Yuancun; Zhao, Xiaohong; Zhang, Shu; Yang, Yiwen; Wang, Yufang; Zhang, Ji

    2018-05-01

    Current research focusing on forensic personal identification, phenotype inference and ancestry information on single-nucleotide polymorphisms (SNPs) has been widely reported. In the present study, we focused on tetra-allelic SNPs in the Chinese Han population. A total of 48 tetra-allelic SNPs were screened out from the Chinese Han population of the 1000 Genomes Database, including Chinese Han in Beijing (CHB) and Chinese Han South (CHS). Considering the forensic genetic requirement for the polymorphisms, only 11 tetra-allelic SNPs with a heterozygosity >0.06 were selected for further multiplex panel construction. In order to meet the demands of personal identification and parentage identification, an additional 8 tri-allelic SNPs were combined into the final multiplex panel. To ensure application in the degraded DNA analysis, all the PCR products were designed to be 87-188 bp. Employing multiple PCR reactions and SNaPshot minisequencing, 511 unrelated Chinese Han individuals from Sichuan were genotyped. The combined match probability (CMP), combined discrimination power (CDP), and cumulative probability of exclusion (CPE) of the panel were 6.07 × 10 -11 , 0.9999999999393 and 0.996764, respectively. Based on the population data retrieved from the 1000 Genomes Project, Fst values between Chinese Han in Sichuan (SCH) and all the populations included in the 1000 Genomes Project were calculated. The results indicated that two SNPs in this panel may contain ancestry information and may be used as markers of forensic biogeographical ancestry inference. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. HTRA1 promoter polymorphism predisposes Japanese to age-related macular degeneration.

    PubMed

    Yoshida, Tsunehiko; DeWan, Andrew; Zhang, Hong; Sakamoto, Ryosuke; Okamoto, Haru; Minami, Masayoshi; Obazawa, Minoru; Mizota, Atsushi; Tanaka, Minoru; Saito, Yoshihiro; Takagi, Ikue; Hoh, Josephine; Iwata, Takeshi

    2007-04-04

    To study the effect of candidate single nucleotide polymorphisms (SNPs) on chromosome 10q26, recently shown to be associated with wet age-related macular degeneration (AMD) in Chinese and Caucasian cohorts, in a Japanese cohort. Using genomic DNA isolated from peripheral blood of wet AMD cases and age-matched controls, we genotyped two SNPs, rs10490924, and rs11200638, on chromosome 10q26, 6.6 kb and 512 bp upstream of the HTRA1 gene, respectively, using temperature gradient capillary electrophoresis (TGCE) and direct sequencing. Association tests were performed for individual SNPs and jointly with SNP complement factor H (CFH) Y402H. The two SNPs, rs10490924 and rs11200638, are in complete linkage disequilibrium (D'=1). Previous sequence comparisons among seventeen species revealed that the genomic region containing rs11200638 was highly conserved while the region surrounding rs10490924 was not. The allelic association test for rs11200638 yielded a p-value <10(-11). SNP rs11200638 conferred disease risk in an autosomal recessive fashion: Odds ratio was 10.1 (95% CI 4.36, 23.06), adjusted for SNP CFH 402, for those carrying two copies of the risk allele, whereas indistinguishable from unity if carrying only one risk allele. The HTRA1 promoter polymorphism, rs11200638, is a strong candidate with a functional consequence that predisposes Japanese to develop neovascular AMD.

  17. Fatal Methadone Toxicity: Potential Role of CYP3A4 Genetic Polymorphism

    PubMed Central

    Richards-Waugh, Lauren L.; Primerano, Donald A.; Dementieva, Yulia; Kraner, James C.; Rankin, Gary O.

    2014-01-01

    Methadone is difficult to administer as a therapeutic agent because of a wide range of interindividual pharmacokinetics, likely due to genetic variability of the CYP450 enzymes responsible for metabolism to its principal metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). CYP3A4 is one of the primary CYP450 isoforms responsible for the metabolism of methadone to EDDP in humans. The purpose of this study was to evaluate the role of CYP3A4 genetic polymorphisms in accidental methadone fatalities. A study cohort consisting of 136 methadone-only and 92 combined methadone/benzodiazepine fatalities was selected from cases investigated at the West Virginia and Kentucky Offices of the Chief Medical Examiner. Seven single nucleotide polymorphisms (SNPs) were genotyped within the CYP3A4 gene. Observed allelic and genotypic frequencies were compared with expected frequencies obtained from The National Center for Biotechnology Information dbSNP database. SNPs rs2242480 and rs2740574 demonstrated an apparent enrichment within the methadone-only overdose fatalities compared with the control group and the general population. This enrichment was not apparent in the methadone/benzodiazepine cases for these two SNPs. Our findings indicate that there may be two or more SNPs on the CYP3A4 gene that cause or contribute to the methadone poor metabolizer phenotype. PMID:25217544

  18. Re-sequencing of the APOAI promoter region and the genetic association of the -75G > A polymorphism with increased cholesterol and low density lipoprotein levels among a sample of the Kuwaiti population

    PubMed Central

    2013-01-01

    Background APOAI, a member of the APOAI/CIII/IV/V gene cluster on chromosome 11q23-24, encodes a major protein component of HDL that has been associated with serum lipid levels. The aim of this study was to determine the genetic association of polymorphisms in the APOAI promoter region with plasma lipid levels in a cohort of healthy Kuwaiti volunteers. Methods A 435 bp region of the APOAI promoter was analyzed by re-sequencing in 549 Kuwaiti samples. DNA was extracted from blood taken from 549 healthy Kuwaiti volunteers who had fasted for the previous 12 h. Univariate and multivariate analysis was used to determine allele association with serum lipid levels. Results The target sequence included a partial segment of the promoter region, 5’UTR and exon 1 located between nucleotides −141 to +294 upstream of the APOAI gene on chromosome 11. No novel single nucleotide polymorphisms (SNPs) were observed. The sequences obtained were deposited with the NCBI GenBank with accession number [GenBank: JX438706]. The allelic frequencies for the three SNPs were as follows: APOAI rs670G = 0.807; rs5069C = 0.964; rs1799837G = 0.997 and found to be in HWE. A significant association (p < 0.05) was observed for the APOAI rs670 polymorphism with increased serum LDL-C. Multivariate analysis showed that APOAI rs670 was an independent predictive factor when controlling for age, sex and BMI for both LDL-C (OR: 1.66, p = 0.014) and TC (OR: 1.77, p = 0.006) levels. Conclusion This study is the first to report sequence analysis of the APOAI promoter in an Arab population. The unexpected positive association found between the APOAI rs670 polymorphism and increased levels of LDL-C and TC may be due to linkage disequilibrium with other polymorphisms in candidate and neighboring genes known to be associated with lipid metabolism and transport. PMID:24028463

  19. Re-sequencing of the APOAI promoter region and the genetic association of the -75G > A polymorphism with increased cholesterol and low density lipoprotein levels among a sample of the Kuwaiti population.

    PubMed

    Al-Bustan, Suzanne A; Al-Serri, Ahmad E; Annice, Babitha G; Alnaqeeb, Majed A; Ebrahim, Ghada A

    2013-09-12

    APOAI, a member of the APOAI/CIII/IV/V gene cluster on chromosome 11q23-24, encodes a major protein component of HDL that has been associated with serum lipid levels. The aim of this study was to determine the genetic association of polymorphisms in the APOAI promoter region with plasma lipid levels in a cohort of healthy Kuwaiti volunteers. A 435 bp region of the APOAI promoter was analyzed by re-sequencing in 549 Kuwaiti samples. DNA was extracted from blood taken from 549 healthy Kuwaiti volunteers who had fasted for the previous 12 h. Univariate and multivariate analysis was used to determine allele association with serum lipid levels. The target sequence included a partial segment of the promoter region, 5'UTR and exon 1 located between nucleotides -141 to +294 upstream of the APOAI gene on chromosome 11. No novel single nucleotide polymorphisms (SNPs) were observed. The sequences obtained were deposited with the NCBI GenBank with accession number [GenBank: JX438706]. The allelic frequencies for the three SNPs were as follows: APOAI rs670G = 0.807; rs5069C = 0.964; rs1799837G = 0.997 and found to be in HWE. A significant association (p < 0.05) was observed for the APOAI rs670 polymorphism with increased serum LDL-C. Multivariate analysis showed that APOAI rs670 was an independent predictive factor when controlling for age, sex and BMI for both LDL-C (OR: 1.66, p = 0.014) and TC (OR: 1.77, p = 0.006) levels. This study is the first to report sequence analysis of the APOAI promoter in an Arab population. The unexpected positive association found between the APOAI rs670 polymorphism and increased levels of LDL-C and TC may be due to linkage disequilibrium with other polymorphisms in candidate and neighboring genes known to be associated with lipid metabolism and transport.

  20. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice

    PubMed Central

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-01-01

    Deep rooting is a very important trait for plants’ drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. PMID:26022253

  1. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine

    2015-08-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  2. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder.

    PubMed

    Czarny, Piotr; Kwiatkowski, Dominik; Toma, Monika; Gałecki, Piotr; Orzechowska, Agata; Bobińska, Kinga; Bielecka-Kowalska, Anna; Szemraj, Janusz; Berk, Michael; Anderson, George; Śliwiński, Tomasz

    2016-11-20

    BACKGROUND Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. MATERIAL AND METHODS Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). RESULTS We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. CONCLUSIONS The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease.

  3. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder

    PubMed Central

    Czarny, Piotr; Kwiatkowski, Dominik; Toma, Monika; Gałecki, Piotr; Orzechowska, Agata; Bobińska, Kinga; Bielecka-Kowalska, Anna; Szemraj, Janusz; Berk, Michael; Anderson, George; Śliwiński, Tomasz

    2016-01-01

    Background Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. Material/Methods Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). Results We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. Conclusions The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease. PMID:27866211

  4. HapMap-based study on the association between MPO and GSTP1 gene polymorphisms and lung cancer susceptibility in Chinese Han population

    PubMed Central

    Gu, Jun-dong; Hua, Feng; Mei, Chao-rong; Zheng, De-jie; Wang, Guo-fan; Zhou, Qing-hua

    2014-01-01

    Aim: Myeloperoxidase (MPO) and glutathione S-transferase pi 1 (GSTP1) are important carcinogen-metabolizing enzymes. The aim of this study was to investigate the association between the common polymorphisms of MPO and GSTP1 genes and lung cancer risk in Chinese Han population. Methods: A total of 266 subjects with lung cancer and 307 controls without personal history of the disease were recruited in this case control study. The tagSNPs approach was used to assess the common polymorphisms of MOP and GSTP1 genes and lung cancer risk according to the disequilibrium information from the HapMap project. The tagSNP rs7208693 was selected as the polymorphism site for MPO, while the haplotype-tagging SNPs rs1695, rs4891, rs762803 and rs749174 were selected as the polymorphism sites for GSTP1. The gene polymorphisms were confirmed using real-time PCR, cloning and sequencing. Results: The four GSTP1 haplotype-tagging SNPs rs1695, rs4891, rs762803 and rs749174, but not the MPO tagSNP rs7208693, exhibited an association with lung cancer susceptibility in smokers in the overall population and in the studied subgroups. When Phase 2 software was used to reconstruct the haplotype for GSTP1, the haplotype CACA (rs749174+rs1695 + rs762803+rs4891) exhibited an increased risk of lung cancer among smokers (adjust odds ratio 1.53; 95%CI 1.04–2.25, P=0.033). Furthermore, diplotype analyses demonstrated that the significant association between the risk haplotype and lung cancer. The risk haplotypes co-segregated with one or more biologically functional polymorphisms and corresponded to a recessive inheritance model. Conclusion: The common polymorphisms of the GSTP1 gene may be the candidates for SNP markers for lung cancer susceptibility in Chinese Han population. PMID:24786234

  5. TLR9 Gene Region Polymorphisms and Susceptibility to Tuberculosis in Vietnam

    PubMed Central

    Graustein, AD; Horne, DJ; Arentz, M; Bang, ND; Chau, TTH; Thwaites, GE; Caws, M; Thuong, NTT; Dunstan, SJ; Hawn, TR

    2015-01-01

    Summary Humans exposed to Mycobacterium tuberculosis (Mtb) show variation in susceptibility to infection and differences in tuberculosis (TB) disease outcome. Toll-like receptor 9 (TLR9) is a pattern recognition receptor that mediates recognition of Mtb and modulates Mtb-specific T-cell responses. Using a case-population design, we evaluated whether single nucleotide polymorphisms (SNPs) in the TLR9 gene region are associated with susceptibility to pulmonary or meningeal TB as well as neurologic presentation and mortality in the meningeal TB group. In a discovery cohort (n = 352 cases, 382 controls), three SNPs were associated with TB (all forms, p<0.05) while three additional SNPs neared significance (0.05

  6. Interactions between C-reactive protein genotypes with markers of nutritional status in relation to inflammation.

    PubMed

    Nienaber-Rousseau, Cornelie; Swanepoel, Bianca; Dolman, Robin C; Pieters, Marlien; Conradie, Karin R; Towers, G Wayne

    2014-11-11

    Inflammation, as indicated by C-reactive protein concentrations (CRP), is a risk factor for chronic diseases. Both genetic and environmental factors affect susceptibility to inflammation. As dietary interventions can influence inflammatory status, we hypothesized that dietary effects could be influenced by interactions with single nucleotide polymorphisms (SNPs) in the CRP gene. We determined 12 CRP SNPs, as well as various nutrition status markers in 2010 black South Africans and analyzed their effect on CRP. Interactions were observed for several genotypes with obesity in determining CRP. Lipid intake modulated the pro-inflammatory effects of some SNPs, i.e., an increase in both saturated fatty acid and monounsaturated fatty acid intake in those homozygous for the polymorphic allele at rs2808630 was associated with a larger increase in CRP. Those harboring the minor alleles at rs3093058 and rs3093062 presented with significantly higher CRP in the presence of increased triglyceride or cholesterol intake. When harboring the minor allele of these SNPs, a high omega-6 to -3 ratio was, however, found to be anti-inflammatory. Carbohydrate intake also modulated CRP SNPs, as HbA1C and fasting glucose levels interacted with some SNPs to influence the CRP. This investigation highlights the impact that nutritional status can have on reducing the inherent genetic susceptibility to a heightened systemic inflammatory state.

  7. Identification of a single nucleotide polymorphism indicative of high risk in acute myocardial infarction

    PubMed Central

    Shalia, Kavita; Saranath, Dhananjaya; Rayar, Jaipreet; Shah, Vinod K.; Mashru, Manoj R.; Soneji, Surendra L.

    2017-01-01

    Background & objectives: Acute myocardial infarction (AMI) is a major health concern in India. The aim of the study was to identify single nucleotide polymorphisms (SNPs) associated with AMI in patients using dedicated chip and validating the identified SNPs on custom-designed chips using high-throughput microarray analysis. Methods: In pilot phase, 48 AMI patients and 48 healthy controls were screened for SNPs using human CVD55K BeadChip with 48,472 SNP probes on Illumina high-throughput microarray platform. The identified SNPs were validated by genotyping additional 160 patients and 179 controls using custom-made Illumina VeraCode GoldenGate Genotyping Assay. Analysis was carried out using PLINK software. Results: From the pilot phase, 98 SNPs present on 94 genes were identified with increased risk of AMI (odds ratio of 1.84-8.85, P=0.04861-0.003337). Five of these SNPs demonstrated association with AMI in the validation phase (P<0.05). Among these, one SNP rs9978223 on interferon gamma receptor 2 [IFNGR2, interferon (IFN)-gamma transducer 1] gene showed a significant association (P=0.00021) with AMI below Bonferroni corrected P value (P=0.00061). IFNGR2 is the second subunit of the receptor for IFN-gamma, an important cytokine in inflammatory reactions. Interpretation & conclusions: The study identified an SNP rs9978223 on IFNGR2 gene, associated with increased risk in AMI patient from India. PMID:29434065

  8. Worldwide Distribution of Four SNPs in X‐Ray and Repair and Cross‐Complementing Group 1 (XRCC1)

    PubMed Central

    Takeshita, Haruo; Yasuda, Toshihiro; Kimura‐Kataoka, Kaori

    2014-01-01

    Abstract Purpose X‐ray repair cross‐complementing group 1 (XRCC1) repairs single‐strand breaks in DNA. Several reports have shown the association of single nucleotide polymorphisms (SNPs) (Arg194Trp, Pro206Pro, Arg280His, Arg399Gln) in XRCC1 to diseases. Limited population data are available regarding SNPs in XRCC1, especially in African populations. In this study, genotype distributions of four SNPs in worldwide populations were examined and compared with those reported previously. Materials and Methods Four SNPs (Arg194Trp, Pro206Pro, Arg280His, Arg399Gln) in XRCC1 from genomic DNA samples of 10 populations were evaluated by using polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results The frequency of the minor allele corresponding to the Trp allele of XRCC1Arg194Trp was higher in Asian populations than in African and Caucasian populations. As for XRCC1Pro206Pro, Africans showed higher minor allele frequencies than did Asian populations, except for Tamils and Sinhalese. XRCC1 Arg280His frequencies were similar among Africans and Caucasians but differed among Asian populations. Similarly, lower mutant XRCC1 Arg399Gln frequencies were observed in Africans. Conclusions This study is the first to show the existence of a certain genetic heterogeneity in the worldwide distribution of four SNPs in XRCC1. PMID:25387884

  9. Single nucleotide polymorphisms and haplotype frequencies of CYP3A5 in a Japanese population.

    PubMed

    Saeki, Mayumi; Saito, Yoshiro; Nakamura, Takahiro; Murayama, Norie; Kim, Su-Ryang; Ozawa, Shogo; Komamura, Kazuo; Ueno, Kazuyuki; Kamakura, Shiro; Nakajima, Toshiharu; Saito, Hirohisa; Kitamura, Yutaka; Kamatani, Naoyuki; Sawada, Jun-ichi

    2003-06-01

    In order to identify single nucleotide polymorphisms (SNPs) and haplotype frequencies of CYP3A5 in a Japanese population, we sequenced the proximal promoter region, all exons, and the surrounding intronic regions using genomic DNA from 187 Japanese subjects. Thirteen SNPs, including seven novel ones: 13108T>C, 16025A>G, 16903A>G, 16993C>G, 27448C>A, 29782A>G, and 31551T>C (A of the translational start codon of GenBank Accession # NG_000004.2 is numbered 1 according to the CYP Allele Nomenclature), were identified. The most common SNP was 6986A>G (key SNP for CYP3A5*3), with a 0.759 frequency. Two novel SNPs, 29782A>G (I456V) and 31551T>C (I488T), as well as 12952T>C (*5 marker) were found, but these alterations were always associated with the *3A marker SNPs, 6986A>G and 31611C>T. Using these 13 SNPs, haplotype analysis was performed and five novel *1 haplotypes (subtypes) (*1e to *1i) and six novel *3 haplotypes (subtypes) (*3d to *3i) were identified. Our findings suggest that CYP3A5*3 is the major defective allele and that other functional exonic SNPs are rare in the Japanese. Copyright 2003 Wiley-Liss, Inc.

  10. Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations.

    PubMed

    Yáñez, J M; Naswa, S; López, M E; Bassini, L; Correa, K; Gilbey, J; Bernatchez, L; Norris, A; Neira, R; Lhorente, J P; Schnable, P S; Newman, S; Mileham, A; Deeb, N; Di Genova, A; Maass, A

    2016-07-01

    A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype-phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole-genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom(®) myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high-density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high-resolution genomewide information. © 2016 John Wiley & Sons Ltd.

  11. Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus.

    PubMed

    Sakiyama, Masayuki; Matsuo, Hirotaka; Nakaoka, Hirofumi; Yamamoto, Ken; Nakayama, Akiyoshi; Nakamura, Takahiro; Kawai, Sayo; Okada, Rieko; Ooyama, Hiroshi; Shimizu, Toru; Shinomiya, Nariyoshi

    2016-05-16

    Gout is a common disease resulting from hyperuricemia. Recently, a genome-wide association study identified an association between gout and a single nucleotide polymorphism (SNP) rs2188380, located on an intergenic region between MYL2 and CUX2 on chromosome 12. However, other genes around rs2188380 could possibly be gout susceptibility genes. Therefore, we performed a fine-mapping study of the MYL2-CUX2 region. From 8,595 SNPs in the MYL2-CUX2 region, 9 tag SNPs were selected, and genotyping of 1,048 male gout patients and 1,334 male controls was performed by TaqMan method. Eight SNPs showed significant associations with gout after Bonferroni correction. rs671 (Glu504Lys) of ALDH2 had the most significant association with gout (P = 1.7 × 10(-18), odds ratio = 0.53). After adjustment for rs671, the other 8 SNPs no longer showed a significant association with gout, while the significant association of rs671 remained. rs671 has been reportedly associated with alcohol drinking behavior, and it is well-known that alcohol drinking elevates serum uric acid levels. These data suggest that rs671, a common functional SNP of ALDH2, is a genuine gout-associated SNP in the MYL2-CUX2 locus and that "A" allele (Lys) of rs671 plays a protective role in the development of gout.

  12. Efficiently Identifying Significant Associations in Genome-wide Association Studies

    PubMed Central

    Eskin, Eleazar

    2013-01-01

    Abstract Over the past several years, genome-wide association studies (GWAS) have implicated hundreds of genes in common disease. More recently, the GWAS approach has been utilized to identify regions of the genome that harbor variation affecting gene expression or expression quantitative trait loci (eQTLs). Unlike GWAS applied to clinical traits, where only a handful of phenotypes are analyzed per study, in eQTL studies, tens of thousands of gene expression levels are measured, and the GWAS approach is applied to each gene expression level. This leads to computing billions of statistical tests and requires substantial computational resources, particularly when applying novel statistical methods such as mixed models. We introduce a novel two-stage testing procedure that identifies all of the significant associations more efficiently than testing all the single nucleotide polymorphisms (SNPs). In the first stage, a small number of informative SNPs, or proxies, across the genome are tested. Based on their observed associations, our approach locates the regions that may contain significant SNPs and only tests additional SNPs from those regions. We show through simulations and analysis of real GWAS datasets that the proposed two-stage procedure increases the computational speed by a factor of 10. Additionally, efficient implementation of our software increases the computational speed relative to the state-of-the-art testing approaches by a factor of 75. PMID:24033261

  13. Genome-Wide Association Study of Dietary Pattern Scores

    PubMed Central

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2017-01-01

    Dietary patterns, representing global food supplies rather than specific nutrients or food intakes, have been associated with cardiovascular disease (CVD) incidence and mortality. The contribution of genetic factors in the determination of food intakes, preferences and dietary patterns has been previously established. The current study aimed to identify novel genetic factors associated with reported dietary pattern scores. Reported dietary patterns scores were derived from reported dietary intakes for the preceding month and were obtained through a food frequency questionnaire and genome-wide association study (GWAS) conducted in a study sample of 141 individuals. Reported Prudent and Western dietary patterns demonstrated nominal associations (p < 1 × 10−5) with 78 and 27 single nucleotide polymorphisms (SNPs), respectively. Among these, SNPs annotated to genes previously associated with neurological disorders, CVD risk factors and obesity were identified. Further assessment of SNPs demonstrated an impact on gene expression levels in blood for SNPs located within/near BCKDHB (p = 0.02) and the hypothalamic glucosensor PFKFB3 (p = 0.0004) genes, potentially mediated through an impact on the binding of transcription factors (TFs). Overrepresentations of glucose/energy homeostasis and hormone response TFs were also observed from SNP-surrounding sequences. Results from the current GWAS study suggest an interplay of genes involved in the metabolic response to dietary patterns on obesity, glucose metabolism and food-induced response in the brain in the adoption of dietary patterns. PMID:28644415

  14. Studying the genetic basis of speciation in high gene flow marine invertebrates

    PubMed Central

    2016-01-01

    A growing number of genes responsible for reproductive incompatibilities between species (barrier loci) exhibit the signals of positive selection. However, the possibility that genes experiencing positive selection diverge early in speciation and commonly cause reproductive incompatibilities has not been systematically investigated on a genome-wide scale. Here, I outline a research program for studying the genetic basis of speciation in broadcast spawning marine invertebrates that uses a priori genome-wide information on a large, unbiased sample of genes tested for positive selection. A targeted sequence capture approach is proposed that scores single-nucleotide polymorphisms (SNPs) in widely separated species populations at an early stage of allopatric divergence. The targeted capture of both coding and non-coding sequences enables SNPs to be characterized at known locations across the genome and at genes with known selective or neutral histories. The neutral coding and non-coding SNPs provide robust background distributions for identifying FST-outliers within genes that can, in principle, identify specific mutations experiencing diversifying selection. If natural hybridization occurs between species, the neutral coding and non-coding SNPs can provide a neutral admixture model for genomic clines analyses aimed at finding genes exhibiting strong blocks to introgression. Strongylocentrotid sea urchins are used as a model system to outline the approach but it can be used for any group that has a complete reference genome available. PMID:29491951

  15. Analysis of 60 reported glioma risk SNPs replicates published GWAS findings but fails to replicate associations from published candidate-gene studies.

    PubMed

    Walsh, Kyle M; Anderson, Erik; Hansen, Helen M; Decker, Paul A; Kosel, Matt L; Kollmeyer, Thomas; Rice, Terri; Zheng, Shichun; Xiao, Yuanyuan; Chang, Jeffrey S; McCoy, Lucie S; Bracci, Paige M; Wiemels, Joe L; Pico, Alexander R; Smirnov, Ivan; Lachance, Daniel H; Sicotte, Hugues; Eckel-Passow, Jeanette E; Wiencke, John K; Jenkins, Robert B; Wrensch, Margaret R

    2013-02-01

    Genomewide association studies (GWAS) and candidate-gene studies have implicated single-nucleotide polymorphisms (SNPs) in at least 45 different genes as putative glioma risk factors. Attempts to validate these associations have yielded variable results and few genetic risk factors have been consistently replicated. We conducted a case-control study of Caucasian glioma cases and controls from the University of California San Francisco (810 cases, 512 controls) and the Mayo Clinic (852 cases, 789 controls) in an attempt to replicate previously reported genetic risk factors for glioma. Sixty SNPs selected from the literature (eight from GWAS and 52 from candidate-gene studies) were successfully genotyped on an Illumina custom genotyping panel. Eight SNPs in/near seven different genes (TERT, EGFR, CCDC26, CDKN2A, PHLDB1, RTEL1, TP53) were significantly associated with glioma risk in the combined dataset (P < 0.05), with all associations in the same direction as in previous reports. Several SNP associations showed considerable differences across histologic subtype. All eight successfully replicated associations were first identified by GWAS, although none of the putative risk SNPs from candidate-gene studies was associated in the full case-control sample (all P values > 0.05). Although several confirmed associations are located near genes long known to be involved in gliomagenesis (e.g., EGFR, CDKN2A, TP53), these associations were first discovered by the GWAS approach and are in noncoding regions. These results highlight that the deficiencies of the candidate-gene approach lay in selecting both appropriate genes and relevant SNPs within these genes. © 2012 WILEY PERIODICALS, INC.

  16. Evolutionary selective pressure on three mitochondrial SNPs is consistent with their influence on metabolic efficiency in Pima Indians.

    PubMed

    Chamala, Srikar; Beckstead, Wesley A; Rowe, Mark J; McClellan, David A

    2007-01-01

    We investigated whether the effect of evolutionary selection on three recent Single Nucleotide Polymorphisms (SNPs) in the mitochondrial sub-haplogroups of Pima Indians is consistent with their effects on metabolic efficiency. The mitochondrial SNPs impact metabolic rate and respiratory quotient, and may be adaptations to caloric restriction in a desert habitat. Using TreeSAAP software, we examined evolutionary selection in 107 mammalian species at these SNPs, characterising the biochemical shifts produced by the amino acid substitutions. Our results suggest that two SNPs were affected by selection during mammalian evolution in a manner consistent with their effects on metabolic efficiency in Pima Indians.

  17. The linkage disequilibrium pattern of the angiotensin converting enzyme gene in Arabic and Asian population groups.

    PubMed

    Kharrat, Najla; Abdelmouleh, Wafa; Abdelhedi, Rania; Alfadhli, Suad; Rebai, Ahmed

    2012-01-01

    DNA variations within the Angiotensin-Converting Enzyme (ACE) gene have been shown to be involved in the aetiology of several common diseases and the therapeutic response. This study reports a comparison of haplotype analysis of five SNPs in the ACE gene region using a sample of 100 healthy subjects derived from five different populations (Tunisian, Iranian, Kuwaiti, Bahraini and Indian). Strong linkage disequilibrium was found among all SNPs studied for all populations. Two SNPs (rs1800764 and rs4340) were identified as key SNPs for all populations. These SNPs will be valuable for future effective association studies of the ACE gene polymorphisms in Arab and Asian populations.

  18. Association between UGT2B7 gene polymorphisms and fentanyl sensitivity in patients undergoing painful orthognathic surgery

    PubMed Central

    Muraoka, Wataru; Nishizawa, Daisuke; Fukuda, Kenichi; Kasai, Shinya; Hasegawa, Junko; Wajima, Koichi; Nakagawa, Taneaki

    2016-01-01

    Background Fentanyl is often used instead of morphine for the treatment of pain because it has fewer side effects. The metabolism of morphine by glucuronidation is known to be influenced by polymorphisms of the UGT2B7 gene. Some metabolic products of fentanyl are reportedly metabolized by glucuronate conjugation. The genes that are involved in the metabolic pathway of fentanyl may also influence fentanyl sensitivity. We analyzed associations between fentanyl sensitivity and polymorphisms of the UGT2B7 gene to clarify the hereditary determinants of individual differences in fentanyl sensitivity. Results This study examined whether single-nucleotide polymorphisms (SNPs) of the UGT2B7 gene affect cold pain sensitivity and the analgesic effects of fentanyl, evaluated by a standardized pain test and fentanyl requirements in healthy Japanese subjects who underwent uniform surgical procedures. The rs7439366 SNP of UGT2B7 is reportedly associated with the metabolism and analgesic effects of morphine. We found that this SNP is also associated with the analgesic effects of fentanyl in the cold pressor-induced pain test. It suggested that the C allele of the rs7439366 SNP may enhance analgesic efficacy. Two SNPs of UGT2B7, rs4587017 and rs1002849, were also found to be novel SNPs that may influence the analgesic effects of fentanyl in the cold pressor-induced pain test. Conclusions Fentanyl sensitivity for cold pressor-induced pain was associated with the rs7439366, rs4587017, and rs1002849 SNPs of the UGT2B7 gene. Our findings may provide valuable information for achieving satisfactory pain control and open to new avenues for personalized pain treatment. PMID:28256933

  19. The evaluation of endothelin 1 (EDN1) and endothelin receptor type A (EDNRA) gene polymorphisms in Hashimoto's thyroiditis.

    PubMed

    Aydin, A Fatih; Vural, Pervin; Oruç, Çoşkun Umut; Doğru-Abbasoğlu, Semra; Özderya, Ayşenur; Karadağ, Berrin; Uysal, Müjdat

    2014-07-01

    Endothelin1 (EDN1) is well established marker of inflammation. The functions of EDN1 are mediated mainly by endothelin receptors type A (EDNRA). The etiopathogenesis of Hashimoto's thyroiditis (HT) remains still elusive although the role of chronic inflammation and subsequent endothelial dysfunction has been established. This study examined firstly the possible association of EDN1 (G5665Tand T-1370G) and EDNRA (C+70G and G-231A) single nucleotide polymorphisms (SNPs) with the occurrence of HT, and evaluates the relationship between genotypes and clinical/laboratory manifestation of HT. We analyzed genotype and allele distributions of above mentioned polymorphisms in 163 patients with HT and 181 healthy controls by real-time PCR combined with melting curve analysis. No significant associations between HT and variant alleles of EDN1 5665 and -1370, as well as EDNRA +70 and -231 SNPs were found. Haplotype analysis demonstrated that there was a strong (D'=0.76, r(2)=0.487) and weak (D'=0.403, r(2)=0.086) linkage disequilibrium (LD) between EDN1 -1370 and 5665, and between EDNRA -231 and +70 SNPs, respectively. However, haplotype frequencies in patients were similar to those in controls. In addition, it was observed that the EDNRA +70 G allele had protective effect against early (at age before 40 years) disease onset of HT (OR: 0.51, 95% CI=0.32-0.79, p=0.003). Although no significant associations between susceptibility to HT with EDN1 5665 and -1370, as well as with EDNRA+70 and -231 SNPs were found, EDNRA +70 polymorphism was related with decreased risk for early onset HT. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Influence of angiotensin converting enzyme (ACE) gene rs4362 polymorphism on the progression of kidney failure in patients with autosomal dominant polycystic kidney disease (ADPKD).

    PubMed

    Ramanathan, Gnanasambandan; Ghosh, Santu; Elumalai, Ramprasad; Periyasamy, Soundararajan; Lakkakula, Bhaskar V K S

    2016-06-01

    Autosomal dominant polycystic kidney disease (ADPKD) is an inherited systemic disorder, characterized by the fluid filled cysts in the kidneys leading to end stage renal failure in later years of life. Hypertension is one of the major factors independently contributing to the chronic kidney disease (CKD) progression. The renin-angiotensin aldosterone system (RAAS) genes have been extensively studied as hypertension candidate genes. The aim of the present study was to investigate the role of angiotensin converting enzyme tagging - single nucleotide polymorphisms (ACE tag-SNPs) in progression of CKD in patients with ADPKD. m0 ethods: In the present study six ACE tagSNPs (angiotensin converting enzyme tag single nucleotide polymorphisms) and insertion/deletion (I/D) in 102 ADPKD patients and 106 control subjects were investigated. The tagSNPs were genotyped using FRET-based KASPar method and ACE ID by polymerase chain reaction (PCR) and electrophoresis. Genotypes and haplotypes were compared between ADPKD patients and controls. Univariate and multivariate logistic regression analyses were performed to assess the effect of genotypes and hypertension on CKD advancement. Mantel-Haenszel (M-H) stratified analysis was performed to study the relationship between different CKD stages and hypertension and their interaction. All loci were polymorphic and except rs4293 SNP the remaining loci followed Hardy-Weinberg equilibrium. Distribution of ACE genotypes and haplotypes in controls and ADPKD patients was not significant. A significant linkage disequilibrium (LD) was observed between SNPs forming two LD blocks. The univariate analysis revealed that the age, hypertension, family history of diabetes and ACE rs4362 contributed to the advancement of CKD. The results suggest that the ACE genotypes are effect modifiers of the relationship between hypertension and CKD advancement among the ADPKD patients.

  1. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder.

    PubMed

    Zhang, JieXu; Chen, YanBo; Zhang, KeRang; Yang, Hong; Sun, Yan; Fang, Yue; Shen, Yan; Xu, Qi

    2010-11-01

    The genetic basis of major depressive disorder (MDD) has been explored extensively, but the mode of transmission of the disease has yet to be established. To better understand the mechanism by which the monoamine oxidase A (MAOA) gene may play a role in developing MDD, the present work examined the cis-phase interaction between genetic variants within the MAOA gene for the pathogenesis of MDD. A variable number tandem repeat (VNTR) and 19 single nucleotide polymorphisms (SNPs) within the gene were genotyped in 512 unrelated patients with MDD and 567 unrelated control subjects among a Chinese population. Quantitative real-time polymerase chain reaction analysis was applied to test the effect of genetic variants on expression of the MAOA gene in MDD. Neither the VNTR polymorphism nor seven informative SNPs showed allelic association with MDD, but the cis-acting interactions between the VNTR polymorphism and four individual SNPs were strongly associated with MDD risk, of which the VNTR-rs1465107 combination showed the strongest association (p = .000011). Quantitative real-time polymerase chain reaction analysis showed that overall relative quantity of MAOA messenger RNA was significantly higher in patients with MDD than in control subjects (fold change = 5.28, p = 1.7 × 10⁻⁷) and that in the male subjects carrying the VNTR-L, rs1465107-A, rs6323-G, rs2072743-A, or rs1137070-T alleles, expression of MAOA messenger RNA was significantly higher in the patient group than in the control group. The cis-phase interaction between the VNTR polymorphism and functional SNPs may contribute to the etiology of MDD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Association between tumour necrosis-α gene polymorphisms and acne vulgaris in a Pakistani population.

    PubMed

    Aisha, N M; Haroon, J; Hussain, S; Tahir, C M; Ikramullah, M; Rahim, H; Kishwar, N; Younis, S; Hassan, M J; Javed, Q

    2016-04-01

    The cytokine tumour necrosis factor (TNF)-α is a well-studied potent candidate mediator that is systemically involved in a variety of inflammatory diseases. Several single nucleotide polymorphisms (SNPs) of the TNF-α gene have been studied with regard the pathogenesis of acne vulgaris, but the results have been inconclusive. This case-control study investigated the association of the TNF -308 G>A and -238 G>A SNPs with acne vulgaris in a high-risk Pakistani population. In total, 160 healthy controls and 140 patients with acne were enrolled in this study. Polymorphisms were determined by PCR and restriction fragment length polymorphism analysis. Our data showed that the TNF -308 G>A and TNF -238 G>A SNPs were present at a significantly higher rate in cases than in controls (P < 0.01 and P < 0.02; respectively). There was a significant difference between the G and A alleles from patients with acne and controls for -308 G>A (OR = 1.5, 95% CI = 1.07-2.19, P < 0.02) and -238 G>A (OR=1.6, 95% CI = 1.06-2.44, P = 0.02) genotype. Moreover, the severity of acne was significantly associated with TNF genotype (TNF -308 G>A: χ² = 34.6, P < 0.001; TNF -238 G>AL χ² = 12.9, P < 0.01). Our data suggest that the TNF -308 G>A and TNF -238 G>A SNPs may contribute to the pathogenesis of acne in the study population. Furthermore, patients with severe acne showed an increased frequency of mutant TNF genotypes at -308 and -238 compared with patients with less severe acne. © 2015 British Association of Dermatologists.

  3. Association between polymorphisms in cancer-related genes and early onset of esophageal adenocarcinoma.

    PubMed

    Wu, I-Chen; Zhao, Yang; Zhai, Rihong; Liu, Geoffrey; Ter-Minassian, Monica; Asomaning, Kofi; Su, Li; Liu, Chen-Yu; Chen, Feng; Kulke, Matthew H; Heist, Rebecca S; Christiani, David C

    2011-04-01

    There is an increasing incidence of esophageal adenocarcinoma (EA) among younger people in the western populations. However, the association between genetic polymorphisms and the age of EA onset is unclear. In this study, 1330 functional/tagging single-nucleotide polymorphisms (SNPs) from 354 cancer-related genes were genotyped in 335 white EA patients. Twenty important SNPs that have the highest importance scores and lowest classification error rate were identified by the random forest algorithm to be associated with early onset of EA (age ≤ 55 years). Subsequent logistic regression analysis indicated that 10 SNPs (rs2070744 of NOS3, rs720321 of BCL2, rs17757541 of BCL2, rs11775256 of TNFRSF10A, rs1035142 of CASP8, rs2236302 of MMP14, rs4740363 of ABL1, rs696217 of GHRL, rs2445762 of CYP19A1, and rs11941492 of VEGFR2/KDR) were significantly associated with early onset of EA (≤55 vs >55 years, all P < .05 after adjusting for co-variates and false discovery rate). Among them, five SNPs in the NOS3, BCL2, TNFRSF10A, and CASP8 genes were known to be involved in apoptosis processes. In Kaplan-Meier analyses, rs2070744 of NOS3, rs720321 of BCL2, and rs1035142 of CASP8 were also significantly associated with early onset of EA. Moreover, there was a higher risk of developing EA at a younger age when one had more risk genotypes. In conclusion, polymorphisms in cancer-related genes, especially those in the apoptotic pathway, play an important role in the development of younger-aged EA in a dose-response manner.

  4. Association analysis of vitamin D receptor gene polymorphisms and bone mineral density in postmenopausal Mexican-Mestizo women.

    PubMed

    González-Mercado, A; Sánchez-López, J Y; Regla-Nava, J A; Gámez-Nava, J I; González-López, L; Duran-Gonzalez, J; Celis, A; Perea-Díaz, F J; Salazar-Páramo, M; Ibarra, B

    2013-07-30

    We investigated associations between vitamin D receptor (VDR) gene polymorphisms, FokI T>C (rs2228570), BsmI G>A (rs1544410), ApaI G>T (rs7975232), and TaqI T>C (rs731236), with bone mineral density (BMD) in postmenopausal Mexican-Mestizo women. Three hundred and twenty postmenopausal women participated, who were classified according to World Health Organization criteria as non-osteoporotic (Non-OP; N = 88), osteopenic (Opn; N = 144), and osteoporotic (OP; N = 88). BMD measurements at the lumbar (L1-L4) spine and at the left and right femoral neck were obtained by dual-energy X-ray absorptiometry. Single nucleotide polymorphisms (SNPs) were genotyped using real-time polymerase chain reaction and TaqMan probes. Genotype and allelic frequencies of the 4 VDR SNPs were similar among the 3 groups. Polymorphic allele frequencies were as follows: FokI (C) 0.53, 0.49, 0.56; BsmI (A) 0.26, 0.22, 0.23; ApaI (T) 0.43, 0.39, 0.44; TaqI (C) 0.27, 0.22, 0.23 for the Non-OP, Opn, and OP groups, respectively. Although no associations were found between the SNPs and BMD, based on the putative function of the FokI SNP, we constructed, for the first time, the haplotype with the 4 VDR SNPs, and found that the CGGT haplotype differed between the Non- OP and OP groups (21.8 vs 31.8%, P < 0.05). The risk analysis for this haplotype was nearly significant under the dominant model (OR = 1.783, 95%CI = 0.98-3.25, P = 0.058). This result suggests a possible susceptibility effect of the C allele of the FokI SNP for the development of osteoporosis in postmenopausal Mexican-Mestizo women.

  5. Vitamin D receptor polymorphisms and survival in patients with cutaneous melanoma: a population-based study.

    PubMed

    Orlow, Irene; Reiner, Anne S; Thomas, Nancy E; Roy, Pampa; Kanetsky, Peter A; Luo, Li; Paine, Susan; Armstrong, Bruce K; Kricker, Anne; Marrett, Loraine D; Rosso, Stefano; Zanetti, Roberto; Gruber, Stephen B; Anton-Culver, Hoda; Gallagher, Richard P; Dwyer, Terence; Busam, Klaus; Begg, Colin B; Berwick, Marianne

    2016-01-01

    Factors known to affect melanoma survival include age at presentation, sex and tumor characteristics. Polymorphisms also appear to modulate survival following diagnosis. Result from other studies suggest that vitamin D receptor (VDR) polymorphisms (SNPs) impact survival in patients with glioma, renal cell carcinoma, lung, breast, prostate and other cancers; however, a comprehensive study of VDR polymorphisms and melanoma-specific survival is lacking. We aimed to investigate whether VDR genetic variation influences survival in patients with cutaneous melanoma. The analysis involved 3566 incident single and multiple primary melanoma cases enrolled in the international population-based Genes, Environment, and Melanoma Study. Melanoma-specific survival outcomes were calculated for each of 38 VDR SNPs using a competing risk analysis after adjustment for covariates. There were 254 (7.1%) deaths due to melanoma during the median 7.6 years follow-up period. VDR SNPs rs7299460, rs3782905, rs2239182, rs12370156, rs2238140, rs7305032, rs1544410 (BsmI) and rs731236 (TaqI) each had a statistically significant (trend P values < 0.05) association with melanoma-specific survival in multivariate analysis. One functional SNP (rs2239182) remained significant after adjustment for multiple testing using the Monte Carlo method. None of the SNPs associated with survival were significantly associated with Breslow thickness, ulceration or mitosis. These results suggest that the VDR gene may influence survival from melanoma, although the mechanism by which VDR exerts its effect does not seem driven by tumor aggressiveness. Further investigations are needed to confirm our results and to understand the relationship between VDR and survival in the combined context of tumor and host characteristics. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Vitamin D receptor polymorphisms and survival in patients with cutaneous melanoma: a population-based study

    PubMed Central

    Orlow, Irene; Reiner, Anne S.; Thomas, Nancy E.; Roy, Pampa; Kanetsky, Peter A.; Luo, Li; Paine, Susan; Armstrong, Bruce K.; Kricker, Anne; Marrett, Loraine D.; Rosso, Stefano; Zanetti, Roberto; Gruber, Stephen B.; Anton-Culver, Hoda; Gallagher, Richard P.; Dwyer, Terence; Busam, Klaus; Begg, Colin B.; Berwick, Marianne

    2016-01-01

    Factors known to affect melanoma survival include age at presentation, sex and tumor characteristics. Polymorphisms also appear to modulate survival following diagnosis. Result from other studies suggest that vitamin D receptor (VDR) polymorphisms (SNPs) impact survival in patients with glioma, renal cell carcinoma, lung, breast, prostate and other cancers; however, a comprehensive study of VDR polymorphisms and melanoma-specific survival is lacking. We aimed to investigate whether VDR genetic variation influences survival in patients with cutaneous melanoma. The analysis involved 3566 incident single and multiple primary melanoma cases enrolled in the international population-based Genes, Environment, and Melanoma Study. Melanoma-specific survival outcomes were calculated for each of 38 VDR SNPs using a competing risk analysis after adjustment for covariates. There were 254 (7.1%) deaths due to melanoma during the median 7.6 years follow-up period. VDR SNPs rs7299460, rs3782905, rs2239182, rs12370156, rs2238140, rs7305032, rs1544410 (BsmI) and rs731236 (TaqI) each had a statistically significant (trend P values < 0.05) association with melanoma-specific survival in multivariate analysis. One functional SNP (rs2239182) remained significant after adjustment for multiple testing using the Monte Carlo method. None of the SNPs associated with survival were significantly associated with Breslow thickness, ulceration or mitosis. These results suggest that the VDR gene may influence survival from melanoma, although the mechanism by which VDR exerts its effect does not seem driven by tumor aggressiveness. Further investigations are needed to confirm our results and to understand the relationship between VDR and survival in the combined context of tumor and host characteristics. PMID:26521212

  7. ErbB polymorphisms: insights and implications for response to targeted cancer therapeutics.

    PubMed

    Alaoui-Jamali, Moulay A; Morand, Grégoire B; da Silva, Sabrina Daniela

    2015-01-01

    Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs), polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3, and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary) and to acquired (secondary) resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.

  8. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geraldes, Armando; Hannemann, Jan; Grassa, Chris

    2013-01-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. Despite the declining costs of genotyping by sequencing, for most studies, the use of large SNP genotyping arrays still offers the most cost-effective solution for large-scale targeted genotyping. Here we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species range. Due to the rapid decay of linkage disequilibrium in P. trichocarpa we adopted a candidate gene approach to the arraymore » design that resulted in the selection of 34,131 SNPs, the majority of which are located in, or within 2 kb, of 3,543 candidate genes. A subset of the SNPs (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%, indicating that high-quality data are generated with this array. We demonstrate that even among small numbers of samples (n=10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that due to ascertainment bias the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca (P. balsamifera and P. angustifolia). Finally, we provide evidence for the utility of the array for intraspecific studies of genetic differentiation and for species assignment and the detection of natural hybrids.« less

  9. Major histocompatibility complex and other allergy-related candidate genes associated with insect bite hypersensitivity in Icelandic horses.

    PubMed

    Klumplerova, Marie; Vychodilova, Leona; Bobrova, Olga; Cvanova, Michaela; Futas, Jan; Janova, Eva; Vyskocil, Mirko; Vrtkova, Irena; Putnova, Lenka; Dusek, Ladislav; Marti, Eliane; Horin, Petr

    2013-04-01

    Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of insects. IBH is a multifactorial disease with contribution of genetic and environmental factors. Candidate gene association analysis of IBH was performed in a group of 89 Icelandic horses all born in Iceland and imported to Europe. Horses were classified in IBH-affected and non-affected based on clinical signs and history of recurrent dermatitis, and on the results of an in vitro sulfidoleukotriene (sLT)-release assay with Culicoides nubeculosus and Simulium vittatum extract. Different genetic markers were tested for association with IBH by the Fisher's exact test. The effect of the major histocompatibility complex (MHC) gene region was studied by genotyping five microsatellites spanning the MHC region (COR112, COR113, COR114, UM011 and UMN-JH34-2), and exon 2 polymorphisms of the class II Eqca-DRA gene. Associations with Eqca-DRA and COR113 were identified (p < 0.05). In addition, a panel of 20 single nucleotide polymorphisms (SNPs) in 17 candidate allergy-related genes was tested. During the initial screen, no marker from the panel was significantly (p < 0.05) associated with IBH. Five SNPs associated with IBH at p < 0.10 were therefore used for analysis of combined genotypes. Out of them, SNPs located in the genes coding for the CD14 receptor (CD14), interleukin 23 receptor (IL23R), thymic stromal lymphopoietin (TSLP) and transforming growth factor beta 3 (TGFB3) molecules were associated with IBH as parts of complex genotypes. These results are supported by similar associations and by expression data from different horse populations and from human studies.

  10. SiNoPsis: Single Nucleotide Polymorphisms selection and promoter profiling.

    PubMed

    Boloc, Daniel; Rodríguez, Natalia; Gassó, Patricia; Abril, Josep F; Bernardo, Miquel; Lafuente, Amalia; Mas, Sergi

    2017-09-14

    The selection of a Single Nucleotide Polymorphism (SNP) using bibliographic methods can be a very time-consuming task. Moreover, a SNP selected in this way may not be easily visualized in its genomic context by a standard user hoping to correlate it with other valuable information. Here we propose a web form built on top of Circos that can assist SNP-centred screening, based on their location in the genome and the regulatory modules they can disrupt. Its use may allow researchers to prioritize SNPs in genotyping and disease studies. SiNoPsis is bundled as a web portal. It focuses on the different structures involved in the genomic expression of a gene, especially those found in the core promoter upstream region. These structures include transcription factor binding sites (for promoter and enhancer signals), histones, and promoter flanking regions. Additionally, the tool provides eQTL and linkage disequilibrium (LD) properties for a given SNP query, yielding further clues about other indirectly associated SNPs. Possible disruptions of the aforementioned structures affecting gene transcription are reported using multiple resource databases. SiNoPsis has a simple user-friendly interface, which allows single queries by gene symbol, genomic coordinates, Ensembl gene identifiers, RefSeq transcript identifiers and SNPs. It is the only portal providing useful SNP selection based on regulatory modules and LD with functional variants in both textual and graphic modes (by properly defining the arguments and parameters needed to run Circos). SiNoPsis is freely available at https://compgen.bio.ub.edu/SiNoPsis /. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Association of the homeobox transcription factor gene ENGRAILED 2 with autistic disorder in Chinese children.

    PubMed

    Yang, Pinchen; Lung, For-Wey; Jong, Yuh-Jyh; Hsieh, Hsin-Yi; Liang, Chung-Ling; Juo, Suh-Hang Hank

    2008-01-01

    Autism is a neurodevelopmental disorder with a strong genetic component. Previous studies have mapped the disease to chromosome 7q, where the homeobox transcription factor ENGRAILED 2 (EN2) gene is located. EN2 is specifically involved in patterning the region that gives rise to the cerebellum. In the present work, we carried out a case-control study to determine whether 2 intronic single-nucleotide polymorphisms (SNPs) of EN2 are a susceptibility to autism in a Han Chinese population. We enrolled 184 cases of DSM-IV-TR diagnosed autistic disorder, 225 controls of unrelated healthy volunteers and 409 randomly selected controls from the community who lives in the adjacent geographical regions for this study. Two SNPs (rs1861972, rs1861973) at the EN2 gene that have been reported to be associated with autism underwent analysis among our studied cohorts. Both the UNPHASE and PHASE statistical programs were utilized for evaluating the association of EN2 SNPs with autism based on allelic and genotypic frequencies and haplotype compositions accompanied with the goodness-of-fit method of the chi(2) test. The gender difference was also investigated by using 2-side Fisher's exact test treated as a covariate in logistic regression analysis. Both the allelic and genotypic distributions of the 2 polymorphisms were concordant with Hardy-Weinberg equilibrium. Significant differences were found for cases versus community and overall controls. By using the UNPHASE and PHASE programs, the 2-marker haplotype A-C of EN2 was identified to have a protective effect for autism, indicating that the ethnic difference might confound the EN2 association with autism. Therefore, more EN2 gene association studies of Han Chinese populations are warranted to confirm this finding. 2008 S. Karger AG, Basel.

  12. Mapping a Mutation in "Caenorhabditis elegans" Using a Polymerase Chain Reaction-Based Approach

    ERIC Educational Resources Information Center

    Myers, Edith M.

    2014-01-01

    Many single nucleotide polymorphisms (SNPs) have been identified within the "Caenorhabditis elegans" genome. SNPs present in the genomes of two isogenic "C. elegans" strains have been routinely used as a tool in forward genetics to map a mutation to a particular chromosome. This article describes a laboratory exercise in which…

  13. Association between IL-10a SNPs and resistance to cyprinid herpesvirus-3 infection in common carp (Cyprinus carpio)

    USDA-ARS?s Scientific Manuscript database

    Analysis of gene polymorphisms and disease association is essential for assessing putative candidate genes affecting susceptibility or resistance to disease. In this paper, we report the results of an association analysis between SNPs in common carp innate immune response genes and resistance to Cy...

  14. Single nucleotide polymorphisms in candidate genes related to daughter pregnancy rate in Holstein cows

    USDA-ARS?s Scientific Manuscript database

    ABSTRACT: Previously, a candidate gene approach identified 40 SNPs associated with daughter pregnancy rate (DPR) in dairy bulls. We evaluated 39 of these SNPs for relationship to DPR in a separate population of Holstein cows grouped on their predicted transmitting ability for DPR: <= -1 (n=1266) a...

  15. SEAN: SNP prediction and display program utilizing EST sequence clusters.

    PubMed

    Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek

    2006-02-15

    SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.

  16. Polymorphisms in the FGF2 gene and risk of serous ovarian cancer: results from the Ovarian Cancer Association Consortium

    PubMed Central

    Johnatty, Sharon E.; Beesley, Jonathan; Chen, Xiaoqing; Spurdle, Amanda B.; deFazio, Anna; Webb, Penelope M; Goode, Ellen L.; Rider, David N.; Vierkant, Robert A.; Anderson, Stephanie; Wu, Anna H.; Pike, Malcolm; Van Den Berg, David; Moysich, Kirsten; Ness, Roberta; Doherty, Jennifer; Rossing, Mary-Anne; Pearce, Celeste Leigh; Chenevix-Trench, Georgia

    2009-01-01

    Fibroblast growth factor (FGF)-2 (basic) is a potent angiogenic molecule involved in tumour progression, and is one of several growth factors with a central role in ovarian carcinogenesis. We hypothesised that common single nucleotide polymorphisms (SNPs) in the FGF2 gene may alter angiogenic potential and thereby susceptibility to ovarian cancer. We analysed 25 FGF2 tgSNPs using five independent study populations from the United States and Australia. Analysis was restricted to non-Hispanic White women with serous ovarian carcinoma (1269 cases and 2829 controls). There were no statistically significant associations between any FGF2 SNPs and ovarian cancer risk. There were two nominally statistically significant associations between heterozygosity for two FGF2 SNPs (rs308379 and rs308447; p<0.05) and serous ovarian cancer risk in the combined dataset, but rare homozygous estimates did not achieve statistical significance, nor were they consistent with the log additive model of inheritance. Overall genetic variation in FGF2 does not appear to play a role in susceptibility to ovarian cancer. PMID:19456219

  17. Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli

    PubMed Central

    Nadif, Rachel; Mintz, Margaret; Jedlicka, Anne; Bertrand, Jean-Pierre; Kleeberger, Steven R.; Kauffmann, Francine

    2005-01-01

    We tested the hypotheses that catalase activity is modified by CAT single nucleotide polymorphisms (SNPs) (–262;–844), and by their interactions with oxidant exposures (coal dusts, smoking), lymphotoxin alpha (LTA, NcoI) and tumor necrosis factor (TNF, -308) in 196 miners. Erythrocyte catalase, superoxide dismutase, and glutathione peroxidase activities were measured. The CAT –262 SNP was related to lower catalase activity (104, 87 and 72 k/g hemoglobin for CC, CT and TT respectively, p<0.0001). Regardless of CAT SNPs, the LTA NcoI but not the TNF –308 SNP was associated with catalase activity (p=0.04 and p=0.8). CAT –262 T carriers were less frequent in highly exposed miners (OR=0.39 [0.20 – 0.78], p=0.007). In CAT –262 T carriers only, catalase activity decreased with high dust exposure (p=0.01). Haplotype analyses (combined CAT SNPs) confirm these results. Results show that CAT –262 and LTA NcoI SNPs, and interaction with coal dust exposure, influenced catalase activity. PMID:16298864

  18. Integrating common and rare genetic variation in diverse human populations.

    PubMed

    Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Dermitzakis, Emmanouil; Schaffner, Stephen F; Yu, Fuli; Peltonen, Leena; Dermitzakis, Emmanouil; Bonnen, Penelope E; Altshuler, David M; Gibbs, Richard A; de Bakker, Paul I W; Deloukas, Panos; Gabriel, Stacey B; Gwilliam, Rhian; Hunt, Sarah; Inouye, Michael; Jia, Xiaoming; Palotie, Aarno; Parkin, Melissa; Whittaker, Pamela; Yu, Fuli; Chang, Kyle; Hawes, Alicia; Lewis, Lora R; Ren, Yanru; Wheeler, David; Gibbs, Richard A; Muzny, Donna Marie; Barnes, Chris; Darvishi, Katayoon; Hurles, Matthew; Korn, Joshua M; Kristiansson, Kati; Lee, Charles; McCarrol, Steven A; Nemesh, James; Dermitzakis, Emmanouil; Keinan, Alon; Montgomery, Stephen B; Pollack, Samuela; Price, Alkes L; Soranzo, Nicole; Bonnen, Penelope E; Gibbs, Richard A; Gonzaga-Jauregui, Claudia; Keinan, Alon; Price, Alkes L; Yu, Fuli; Anttila, Verneri; Brodeur, Wendy; Daly, Mark J; Leslie, Stephen; McVean, Gil; Moutsianas, Loukas; Nguyen, Huy; Schaffner, Stephen F; Zhang, Qingrun; Ghori, Mohammed J R; McGinnis, Ralph; McLaren, William; Pollack, Samuela; Price, Alkes L; Schaffner, Stephen F; Takeuchi, Fumihiko; Grossman, Sharon R; Shlyakhter, Ilya; Hostetter, Elizabeth B; Sabeti, Pardis C; Adebamowo, Clement A; Foster, Morris W; Gordon, Deborah R; Licinio, Julio; Manca, Maria Cristina; Marshall, Patricia A; Matsuda, Ichiro; Ngare, Duncan; Wang, Vivian Ota; Reddy, Deepa; Rotimi, Charles N; Royal, Charmaine D; Sharp, Richard R; Zeng, Changqing; Brooks, Lisa D; McEwen, Jean E

    2010-09-02

    Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of

  19. A Study on Genetic Variants of Fibroblast Growth Factor Receptor 2 (FGFR2) and the Risk of Breast Cancer from North India

    PubMed Central

    Siddiqui, Sarah; Chattopadhyay, Shilpi; Akhtar, Md. Salman; Najm, Mohammad Zeeshan; Deo, S. V. S.; Shukla, N. K.; Husain, Syed Akhtar

    2014-01-01

    Genome-Wide Association Studies (GWAS) have identified Fibroblast growth factor receptor 2 (FGFR2) as a candidate gene for breast cancer with single nucleotide polymorphisms (SNPs) located in intron 2 region as the susceptibility loci strongly associated with the risk. However, replicate studies have often failed to extrapolate the association to diverse ethnic regions. This hints towards the existing heterogeneity among different populations, arising due to differential linkage disequilibrium (LD) structures and frequencies of SNPs within the associated regions of the genome. It is therefore important to revisit the previously linked candidates in varied population groups to unravel the extent of heterogeneity. In an attempt to investigate the role of FGFR2 polymorphisms in susceptibility to the risk of breast cancer among North Indian women, we genotyped rs2981582, rs1219648, rs2981578 and rs7895676 polymorphisms in 368 breast cancer patients and 484 healthy controls by Polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) assay. We observed a statistically significant association with breast cancer risk for all the four genetic variants (P<0.05). In per-allele model for rs2981582, rs1219648, rs7895676 and in dominant model for rs2981578, association remained significant after bonferroni correction (P<0.0125). On performing stratified analysis, significant correlations with various clinicopathological as well as environmental and lifestyle characteristics were observed. It was evident that rs1219648 and rs2981578 interacted with exogenous hormone use and advanced clinical stage III (after Bonferroni correction, P<0.000694), respectively. Furthermore, combined analysis on these four loci revealed that compared to women with 0–1 risk loci, those with 2–4 risk loci had increased risk (OR = 1.645, 95%CI = 1.152–2.347, P = 0.006). In haplotype analysis, for rs2981578, rs2981582 and rs1219648, risk haplotype (GTG) was associated with a significantly increased risk compared to the common (ACA) haplotype (OR = 1.365, 95% CI = 1.086–1.717, P = 0.008). Our results suggest that intron 2 SNPs of FGFR2 may contribute to genetic susceptibility of breast cancer in North India population. PMID:25333473

  20. CCR5 gene polymorphism is a genetic risk factor for radiographic severity of rheumatoid arthritis.

    PubMed

    Han, S W; Sa, K H; Kim, S I; Lee, S I; Park, Y W; Lee, S S; Yoo, W H; Soe, J S; Nam, E J; Lee, J; Park, J Y; Kang, Y M

    2012-11-01

    The chemokine receptor [C-C chemokine receptor 5 (CCR5)] is expressed on diverse immune effecter cells and has been implicated in the pathogenesis of rheumatoid arthritis (RA). This study sought to determine whether single-nucleotide polymorphisms (SNPs) in the CCR5 gene and their haplotypes were associated with susceptibility to and severity of RA. Three hundred fifty-seven patients with RA and 383 healthy unrelated controls were recruited. Using a pyrosequencing assay, we examined four polymorphisms -1118 CTAT(ins) (/del) (rs10577983), 303 A>G (rs1799987), 927 C>T (rs1800024), and 4838 G>T (rs1800874) of the CCR5 gene, which were distributed over the promoter region as well as the 5' and 3' untranslated regions. No significant difference in the genotype, allele, and haplotype frequencies of the four selected SNPs was observed between RA patients and controls. CCR5 polymorphisms of -1118 CTAT(del) (P = 0.012; corrected P = 0.048) and 303 A>G (P = 0.012; corrected P = 0.048) showed a significant association with radiographic severity in a recessive model, and, as a result of multivariate logistic regression analysis, were found to be an independent predictor of radiographic severity. When we separated the erosion score from the total Sharp score, the statistical significance of CCR5 polymorphisms showed an increase; -1118 CTAT(ins) (/del) (P = 0.007; corrected P = 0.028) and 303 A>G (P = 0.007; corrected P = 0.028). Neither SNPs nor haplotypes of the CCR5 gene showed a significant association with joint space narrowing score. These results indicate that genetic polymorphisms of CCR5 are an independent risk factor for radiographic severity denoted by modified Sharp score, particularly joint erosion in RA. © 2012 John Wiley & Sons A/S.

  1. Promoter Polymorphisms in the Nitric Oxide Synthase 3 Gene Are Associated With Ischemic Stroke Susceptibility in Young Black Women

    PubMed Central

    Howard, Timothy D.; Giles, Wayne H.; Xu, Jianfeng; Wozniak, Marcella A.; Malarcher, Ann M.; Lange, Leslie A.; Macko, Richard F.; Basehore, Monica J.; Meyers, Deborah A.; Cole, John W.; Kittner, Steven J.

    2006-01-01

    Background and Purpose Endothelial nitric oxide exerts a variety of protective effects on endothelial cells and blood vessels, and therefore the nitric oxide synthase 3 gene (NOS3) is a logical candidate gene for stroke susceptibility. Methods We used the population-based Stroke Prevention in Young Women case-control study to assess the association of five NOS3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black), 15 to 44 years of age. Polymorphisms included 3 single nucleotide polymorphisms (SNPs) in the promoter region (−1468 T>A, −922 G>A, −786 T>C), 1 SNP in exon 7 (G894T), and 1 insertion/deletion polymorphism within intron 4. Results Significant associations with both the −922 G>A and −786 T>C SNPs with ischemic stroke were observed in the black, but not the white, population. This association was attributable to an increased prevalence of the −922 A allele (OR=3.0, 95% CI=1.3 to 6.8; P=0.005) and the −786 T allele (OR=2.9, 95% CI=1.3 to 6.4; P=0.005) in cases versus controls. These 2 SNPs were in strong linkage disequilibrium (D′=1.0), making it impossible to determine, within the confines of this genetic study, whether 1 or both of these polymorphisms are functionally related to NOS3 expression. Two sets of haplotypes were also identified, 1 of which may confer an increased susceptibility to stroke in blacks, whereas the other appears to be protective. Conclusion Promoter variants in NOS3 may be associated with ischemic stroke susceptibility among young black women. PMID:16100023

  2. Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women.

    PubMed

    Howard, Timothy D; Giles, Wayne H; Xu, Jianfeng; Wozniak, Marcella A; Malarcher, Ann M; Lange, Leslie A; Macko, Richard F; Basehore, Monica J; Meyers, Deborah A; Cole, John W; Kittner, Steven J

    2005-09-01

    Endothelial nitric oxide exerts a variety of protective effects on endothelial cells and blood vessels, and therefore the nitric oxide synthase 3 gene (NOS3) is a logical candidate gene for stroke susceptibility. We used the population-based Stroke Prevention in Young Women case-control study to assess the association of five NOS3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black), 15 to 44 years of age. Polymorphisms included 3 single nucleotide polymorphisms (SNPs) in the promoter region (-1468 T>A, -922 G>A, -786 T>C), 1 SNP in exon 7 (G894T), and 1 insertion/deletion polymorphism within intron 4. Significant associations with both the -922 G>A and -786 T>C SNPs with ischemic stroke were observed in the black, but not the white, population. This association was attributable to an increased prevalence of the -922 A allele (OR=3.0, 95% CI=1.3 to 6.8; P=0.005) and the -786 T allele (OR=2.9, 95% CI=1.3 to 6.4; P=0.005) in cases versus controls. These 2 SNPs were in strong linkage disequilibrium (D'=1.0), making it impossible to determine, within the confines of this genetic study, whether 1 or both of these polymorphisms are functionally related to NOS3 expression. Two sets of haplotypes were also identified, 1 of which may confer an increased susceptibility to stroke in blacks, whereas the other appears to be protective. Promoter variants in NOS3 may be associated with ischemic stroke susceptibility among young black women.

  3. Frequency distribution of polymorphisms of CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes in the Yakut population.

    PubMed

    Vasilyev, Filipp Filippovich; Danilova, Diana Aleksandrovna; Kaimonov, Vladimir Sergeevich; Chertovskih, Yana Valerievna; Maksimova, Nadezda Romanovna

    2016-01-01

    Allele frequencies of single nucleotide polymorphisms (SNPs) are variable among different populations; therefore the study of SNPs in ethnic groups is important for establishing the clinical significance of the screening of these polymorphisms. The main goal of the research is to study the polymorphisms of CYP2C9, CYP2C19, VKORC1, and SLCO1B1 in Yakuts. Genomic DNA from 229 Yakut subjects were analyzed by real-time polymerase chain reaction (PCR) (SLCO1B1 +521T > C, VKORC1 -1639G>A, CYP2C19 +681G>A, +636G>A, CYP2C9 +430С>T, +1075A>C). Genotype frequencies of polymorphisms in the population of the Yakuts were more characteristic of the Asian population. The results have been included in the software application "Lekgen" that we developed for the interpretation of pharmacogenetic testing. The data of our study obtained on frequency carriers of polymorphisms of genes SLCO1B1, CYP2C19, CYP2C9, VKORC1 among the Yakuts may be useful in developing recommendations for a personalized therapy.

  4. Frequency distribution of polymorphisms of CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes in the Yakut population

    PubMed Central

    Vasilyev, Filipp Filippovich; Danilova, Diana Aleksandrovna; Kaimonov, Vladimir Sergeevich; Chertovskih, Yana Valerievna; Maksimova, Nadezda Romanovna

    2016-01-01

    Allele frequencies of single nucleotide polymorphisms (SNPs) are variable among different populations; therefore the study of SNPs in ethnic groups is important for establishing the clinical significance of the screening of these polymorphisms. The main goal of the research is to study the polymorphisms of CYP2C9, CYP2C19, VKORC1, and SLCO1B1 in Yakuts. Genomic DNA from 229 Yakut subjects were analyzed by real-time polymerase chain reaction (PCR) (SLCO1B1 +521T > C, VKORC1 -1639G>A, CYP2C19 +681G>A, +636G>A, CYP2C9 +430С>T, +1075A>C). Genotype frequencies of polymorphisms in the population of the Yakuts were more characteristic of the Asian population. The results have been included in the software application “Lekgen” that we developed for the interpretation of pharmacogenetic testing. The data of our study obtained on frequency carriers of polymorphisms of genes SLCO1B1, CYP2C19, CYP2C9, VKORC1 among the Yakuts may be useful in developing recommendations for a personalized therapy. PMID:27499796

  5. Impact of single nucleotide polymorphisms of cytarabine metabolic genes on drug toxicity in childhood acute lymphoblastic leukemia.

    PubMed

    Gabor, Krisztina Mita; Schermann, Geza; Lautner-Csorba, Orsolya; Rarosi, Ferenc; Erdelyi, Daniel J; Endreffy, Emoke; Berek, Krisztina; Bartyik, Katalin; Bereczki, Csaba; Szalai, Csaba; Semsei, Agnes F

    2015-04-01

    Cytarabine (cytosine arabinoside, ara-C) is a chemotherapeutical agent used in the treatment of pediatric acute lymphoblastic leukemia (ALL). Adverse drug reactions, such as interpatient variability in sensitivity to ara-C, are considerable and may cause difficulties during chemotherapy. Single nucleotide polymorphisms (SNPs) can play a significant role in modifying nucleoside-drug pharmacokinetics and pharmacodynamics and thus the development of adverse effects. Our aim was to determine whether polymorphisms in genes encoding transporters and enzymes responsible for the metabolism of ara-C are associated with toxicity and clinical outcome in a patient population with childhood ALL. We studied 8 SNPs in the CDA, DCK, DCTD, SLC28A3, and SLC29A1 genes in 144 patients with childhood acute lymphoblastic leukemia treated according to ALLIC BFM 1990, 1995 and 2002 protocols. DCK rs12648166 and DCK rs4694362 SNPs were associated with hematologic toxicity (OR = 2.63, CI 95% = 1.37-5.04, P = 0.0036 and OR = 2.53, CI 95% = 1.34-4.80, P = 0.0044, respectively). Our results indicate that DCK polymorphisms might be important genetic risk factors for hematologic toxicity during ALL treatment with ara-C. Individualized chemotherapy based on genetic profiling may help to optimize ara-C dosing, leading to improvements in clinical outcome and reduced toxicity. © 2015 Wiley Periodicals, Inc.

  6. ADAM33 polymorphisms are associated with asthma and a distinctive palm dermatoglyphic pattern

    PubMed Central

    XUE, WEILIN; HAN, WEI; ZHOU, ZHAO-SHAN

    2013-01-01

    A close correlation between asthma and palm dermatoglyphic patterns has been observed in previous studies, but the underlying genetic mechanisms have not been investigated. A disintegrin and metalloprotein-33 (ADAM33) polymorphisms are important in the development of asthma and other atopic diseases. To investigate the underlying mechanisms of the association between asthma and distinctive palm dermatoglyphic patterns, thirteen ADAM33 single-nucleotide polymorphisms (SNPs) were analyzed for the association between asthma and palm dermatoglyphic patterns in a population of 400 asthmatic patients and 200 healthy controls. Based on the results, five SNPs, rs44707 (codominant model, P=0.031; log-additive model, P=0.0084), rs2787094 (overdominant model, P=0.049), rs678881 (codominant model, P=0.028; overdominant model, P=0.0083), rs677044 (codominant model, P=0.013; log-additive model, P=0.0033) and rs512625 (dominant model, P=0.033), were associated with asthma in this population. Two SNPs, rs44707 (dominant model, P=0.042) and rs2787094 (codominant model, P=0.014; recessive model, P=0.0038), were observed in the asthma patients with the distinctive palm pattern. As rs44707 and rs2787094 are associated with asthma and a distinctive palm pattern, the data suggest that ADAM33 polymorphisms are correlated with asthma and may be the underlying genetic basis of the association between asthma and palm dermatoglyphic patterns. PMID:24141861

  7. Association of twelve polymorphisms in three onco-lncRNA genes with hepatocellular cancer risk and prognosis: A case-control study

    PubMed Central

    Wang, Ben-Gang; Xu, Qian; Lv, Zhi; Fang, Xin-Xin; Ding, Han-Xi; Wen, Jing; Yuan, Yuan

    2018-01-01

    AIM To evaluate the association of 12 tag single nucleotide polymorphisms (tagSNPs) in three onco-long non-coding RNA (lncRNA) genes (HOTTIP, CCAT2, MALAT1) with the risk and prognosis of hepatocellular cancer (HCC). METHODS Twelve tagSNPs covering the three onco-lncRNAs were genotyped by the KASP method in a total of 1338 samples, including 521 HCC patients and frequency-matched 817 controls. The samples were obtained from an unrelated Chinese population at the First Hospital of China Medical University from 2012-2015. The expression quantitative trait loci (eQTL) analyses were conducted to explore further the potential function of the promising SNPs. RESULTS Three SNPs in HOTTIP, one promoter SNP in MALAT1, and one haplotype of HOTTIP were associated with HCC risk. The HOTTIP rs17501292, rs2067087, and rs17427960 SNPs were increased to 1.55-, 1.20-, and 1.18-fold HCC risk under allelic models (P = 0.012, 0.017 and 0.049, respectively). MALAT1 rs4102217 SNP was increased to a 1.32-fold HCC risk under dominant models (P = 0.028). In addition, the two-way interaction of HOTTIP rs17501292-MALAT1 rs619586 polymorphisms showed a decreased effect on HCC risk (Pinteraction = 0.028, OR = 0.30) and epistasis with each other. HOTTIP rs3807598 variant genotype showed significantly longer survival time in HBV negative subgroup (P = 0.049, HR = 0.12), and MALAT1 rs591291 showed significantly better prognosis in female and HBV negative subgroups (P = 0.022, HR = 0.37; P = 0.042, HR = 0.25, respectively). In the study, no significant effect was observed in eQTL analysis. CONCLUSION Specific lncRNA (HOTTIP and MALAT1) SNPs have potential to be biomarkers for HCC risk and prognosis. PMID:29930469

  8. Cytochrome P450 2E1 gene polymorphisms/haplotypes and anti-tuberculosis drug-induced hepatitis in a Chinese cohort.

    PubMed

    Tang, Shaowen; Lv, Xiaozhen; Zhang, Yuan; Wu, Shanshan; Yang, Zhirong; Xia, Yinyin; Tu, Dehua; Deng, Peiyuan; Ma, Yu; Chen, Dafang; Zhan, Siyan

    2013-01-01

    The pathogenic mechanism of anti-tuberculosis (anti-TB) drug-induced hepatitis is associated with drug metabolizing enzymes. No tagging single-nucleotide polymorphisms (tSNPs) of cytochrome P450 2E1(CYP2E1) in the risk of anti-TB drug-induced hepatitis have been reported. The present study was aimed at exploring the role of tSNPs in CYP2E1 gene in a population-based anti-TB treatment cohort. A nested case-control study was designed. Each hepatitis case was 14 matched with controls by age, gender, treatment history, disease severity and drug dosage. The tSNPs were selected by using Haploview 4.2 based on the HapMap database of Han Chinese in Beijing, and detected by using TaqMan allelic discrimination technology. Eighty-nine anti-TB drug-induced hepatitis cases and 356 controls were included in this study. 6 tSNPs (rs2031920, rs2070672, rs915908, rs8192775, rs2515641, rs2515644) were genotyped and minor allele frequencies of these tSNPs were 21.9%, 23.0%, 19.1%, 23.6%, 20.8% and 44.4% in the cases and 20.9%, 22.7%, 18.9%, 23.2%, 18.2% and 43.2% in the controls, respectively. No significant difference was observed in genotypes or allele frequencies of the 6 tSNPs between case group and control group, and neither of haplotypes in block 1 nor in block 2 was significantly associated with the development of hepatitis. Based on the Chinese anti-TB treatment cohort, we did not find a statistically significant association between genetic polymorphisms of CYP2E1 and the risk of anti-TB drug-induced hepatitis. None of the haplotypes showed a significant association with the development of hepatitis in Chinese TB population.

  9. Mapping the four-horned locus and testing the polled locus in three Chinese sheep breeds.

    PubMed

    He, Xiaohong; Zhou, Zhengkui; Pu, Yabin; Chen, Xiaofei; Ma, Yuehui; Jiang, Lin

    2016-10-01

    Four-horned sheep are an ideal animal model for illuminating the genetic basis of horn development. The objective of this study was to locate the genetic region responsible for the four-horned phenotype and to verify a previously reported polled locus in three Chinese breeds. A genome-wide association study (GWAS) was performed using 34 two-horned and 32 four-horned sheep from three Chinese indigenous breeds: Altay, Mongolian and Sishui Fur sheep. The top two significant single nucleotide polymorphisms (SNPs) associated with the four-horned phenotype were both located in a region spanning positions 132.6 to 132.7 Mb on sheep chromosome 2. Similar locations for the four-horned trait were previously identified in Jacob, Navajo-Churro, Damara and Sishui Fur sheep, suggesting a common genetic component underlying the four-horned phenotype. The two identified SNPs were both downstream of the metaxin 2 (MTX2) gene and the HOXD gene cluster. For the top SNP-OAR2:g.132619300G>A-the strong associations of the AA and AG genotypes with the four-horned phenotype and the GG genotype with the two-horned phenotype indicated the dominant inheritance of the four-horned trait. No significant SNPs for the polled phenotype were identified in the GWAS analysis, and a PCR analysis for the detection of the 1.8-kb insertion associated with polled sheep in other breeds failed to verify the association with polledness in the three Chinese breeds. This study supports the hypothesis that two different loci are responsible for horn existence and number. This study contributes to the understanding of the molecular regulation of horn development and enriches the knowledge of qualitative traits in domestic animals. © 2016 Stichting International Foundation for Animal Genetics.

  10. Type 2 diabetes (T2D) associated polymorphisms regulate expression of adjacent transcripts in transformed lymphocytes, adipose, and muscle from Caucasian and African-American subjects.

    PubMed

    Sharma, Neeraj K; Langberg, Kurt A; Mondal, Ashis K; Elbein, Steven C; Das, Swapan K

    2011-02-01

    Genome-wide association scans (GWAS) have identified novel single nucleotide polymorphisms (SNPs) that increase T2D susceptibility and indicated the role of nearby genes in T2D pathogenesis. We hypothesized that T2D-associated SNPs act as cis-regulators of nearby genes in human tissues and that expression of these transcripts may correlate with metabolic traits, including insulin sensitivity (S(I)). Association of SNPs with the expression of their nearest transcripts was tested in adipose and muscle from 168 healthy individuals who spanned a broad range of S(I) and body mass index (BMI) and in transformed lymphocytes (TLs). We tested correlations between the expression of these transcripts in adipose and muscle with metabolic traits. Utilizing allelic expression imbalance (AEI) analysis we examined the presence of other cis-regulators for those transcripts in TLs. SNP rs9472138 was significantly (P = 0.037) associated with the expression of VEGFA in TLs while rs6698181 was detected as a cis-regulator for the PKN2 in muscle (P = 0.00027) and adipose (P = 0.018). Significant association was also observed for rs17036101 (P = 0.001) with expression of SYN2 in adipose of Caucasians. Among 19 GWAS-implicated transcripts, expression of VEGFA in adipose was correlated with BMI (r = -0.305) and S(I) (r = 0.230). Although only a minority of the T2D-associated SNPs were validated as cis-eQTLs for nearby transcripts, AEI analysis indicated presence of other cis-regulatory polymorphisms in 54% of these transcripts. Our study suggests that a small subset of GWAS-identified SNPs may increase T2D susceptibility by modulating expression of nearby transcripts in adipose or muscle.

  11. SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Qijian; Jia, Gaofeng; Hyten, David L.

    A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of largemore » scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad.« less

  12. SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean

    DOE PAGES

    Song, Qijian; Jia, Gaofeng; Hyten, David L.; ...

    2015-08-28

    A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of largemore » scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad.« less

  13. Performance of Single Nucleotide Polymorphisms versus Haplotypes for Genome-Wide Association Analysis in Barley

    PubMed Central

    Jannink, Jean-Luc

    2010-01-01

    Genome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley (Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops. To accomplish this, we used genotype and phenotype data from the Barley Coordinated Agricultural Project and constructed haplotypes using three different methods. Marker-trait associations were tested by the efficient mixed-model association algorithm (EMMA). When QTL were simulated using single SNPs dropped from the marker dataset, a simple sliding window performed as well or better than single SNPs or the more sophisticated methods of blocking SNPs into haplotypes. Moreover, the haplotype analyses performed better 1) when QTL were simulated as polymorphisms that arose subsequent to marker variants, and 2) in analysis of empirical heading date data. These results demonstrate that the information content of haplotypes is dependent on the particular mutational and recombinational history of the QTL and nearby markers. Analysis of the empirical data also confirmed our intuition that the distribution of QTL alleles in nature is often unlike the distribution of marker variants, and hence utilizing haplotype information could capture associations that would elude single SNPs. We recommend routine use of both single SNP and haplotype markers for GWAS to take advantage of the full information content of the genotype data. PMID:21124933

  14. SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean.

    PubMed

    Song, Qijian; Jia, Gaofeng; Hyten, David L; Jenkins, Jerry; Hwang, Eun-Young; Schroeder, Steven G; Osorno, Juan M; Schmutz, Jeremy; Jackson, Scott A; McClean, Phillip E; Cregan, Perry B

    2015-08-28

    A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of large scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad. Copyright © 2015 Song et al.

  15. Identification and validation of single nucleotide polymorphisms in growth- and maturation-related candidate genes in sole (Solea solea L.).

    PubMed

    Diopere, Eveline; Hellemans, Bart; Volckaert, Filip A M; Maes, Gregory E

    2013-03-01

    Genomic methodologies applied in evolutionary and fisheries research have been of great benefit to understand the marine ecosystem and the management of natural resources. Although single nucleotide polymorphisms (SNPs) are attractive for the study of local adaptation, spatial stock management and traceability, and investigating the effects of fisheries-induced selection, they have rarely been exploited in non-model organisms. This is partly due to difficulties in finding and validating SNPs in species with limited or no genomic resources. Complementary to random genome-scan approaches, a targeted candidate gene approach has the potential to unveil pre-selected functional diversity and provides more in depth information on the action of selection at specific genes. For example genes can be under selective pressure due to climate change and sustained periods of heavy fishing pressure. In this study, we applied a candidate gene approach in sole (Solea solea L.), an important member of the demersal ecosystem. As consumption flatfish it is heavy exploited and has experienced associated life-history changes over the last 60years. To discover novel genetic polymorphisms in or around genes linked to important life history traits in sole, we screened a total of 76 candidate genes related to growth and maturation using a targeted resequencing approach. We identified in total 86 putative SNPs in 22 genes and validated 29 SNPs using a multiplex single-base extension genotyping assay. We found 22 informative SNPs, of which two represent non-synonymous mutations, potentially of functional relevance. These novel markers should be rapidly and broadly applicable in analyses of natural sole populations, as a measure of the evolutionary signature of overfishing and for initiatives on marker assisted selection. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. What can time-frequency and phase coherence measures tell us about the genetic basis of P3 amplitude?

    PubMed Central

    McGue, Matt; Iacono, William G.

    2017-01-01

    In a recent comprehensive investigation, we largely failed to identify significant genetic markers associated with P3 amplitude or to corroborate previous associations between P3 and specific single nucleotide polymorphisms (SNPs) or genes. In the present study we extended this line of investigation to examine time-frequency (TF) activity and intertrial phase coherence (ITPC) in the P3 time window, both of which are associated with P3 amplitude. Previous genome-wide research has reported associations between P3-related theta and delta activity and individual genetic variants. A large, population-based sample of 4211 subjects, comprising male and female adolescent twins and their parents, was genotyped for 527,828 single nucleotide polymorphisms (SNPs), from which over six million SNPs were accurately imputed. Heritability estimates were greater for TF energy than ITPC, whether based on biometric models or the combined influence of all measured SNPs (derived from genome-wide complex trait analysis). The magnitude of overlap in the specific SNPs associated with delta energy and ITPC and P3 amplitude was significant. A genome-wide analysis of all SNPs, accompanied by an analysis of approximately 17,600 genes, indicated a region of chromosome 2 around TEKT4 that was significantly associated with theta ITPC. Analysis of candidate SNPs and genes previously reported to be associated with P3 or related phenotypes yielded one association surviving correction for multiple tests: between theta energy and CRHR1. However, we did not obtain significant associations for SNPs implicated in previous genome-wide studies of TF measures. Identifying specific genetic variants associated with P3 amplitude remains a challenge. PMID:27871913

  17. Genetic Determinants of Enterovirus Infections: Polymorphisms in Type 1 Diabetes and Innate Immune Genes in the MIDIA Study.

    PubMed

    Witsø, Elisabet; Cinek, Ondrej; Tapia, German; Brorsson, Caroline A; Stene, Lars C; Gjessing, Håkon K; Rasmussen, Trond; Bergholdt, Regine; Pociot, Flemming M; Rønningen, Kjersti S

    2015-12-01

    Enteroviruses have been suggested as triggers of type 1 diabetes (T1D). We aimed to assess whether established T1D susceptibility single nucleotide polymorphisms (SNPs) and candidate SNPs in innate immune genes were associated with the frequency of enterovirus infection in otherwise healthy children. Fifty-six established T1D SNPs and 97 other candidate immunity SNPs were typed in 419 children carrying the T1D high-risk genotype, HLA-DR4-DQ8/DR3-DQ2 genotype, and 373 children without this genotype. Enteroviral RNA was detected using real-time polymerase chain reaction, with primers detecting essentially all enterovirus serotypes, in 7,393 longitudinal stool samples collected monthly (age range 3-36 months). The most significant association was with two T1D SNPs, rs12150079 (ZPBP2/ORMDL3/GSDMB region) (enterovirus frequency: AA 7.3%, AG 8.7%, GG 9.7%, RR = 0.86, overall p = 1.87E-02) and rs229541 (C1QTNF6/SSTR3/RAC2) (enterovirus frequency: CC 7.8%, CT 9.7%, TT 9.4%, RR = 1.13, overall p = 3.6E-02), followed by TLR8 (rs2407992) (p = 3.8E-02), TLR3 (1914926) (p = 4.9E-02), and two other T1D SNPs (IFIH1 rs3747517, p = 4.9E-02 and PTPN22, rs2476601, p = 5.3E-02). However, the quantile-quantile plot of p-values with confidence intervals for all 153 SNPs did not reveal clear evidence for rejection of the complete null hypothesis. Among a number of SNPs in candidate genes, we found no evidence for strong associations with enterovirus presence in stool samples from Norwegian children.

  18. Genotyping of Single Nucleotide Polymorphisms in DNA Isolated from Serum Using Sequenom MassARRAY Technology.

    PubMed

    Clendenen, Tess V; Rendleman, Justin; Ge, Wenzhen; Koenig, Karen L; Wirgin, Isaac; Currie, Diane; Shore, Roy E; Kirchhoff, Tomas; Zeleniuch-Jacquotte, Anne

    2015-01-01

    Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA. We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs) using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women's Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison. We observed that 60 of the 81 SNPs (74%) had high call frequencies (≥95%) using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95%) had highly concordant (>98%) genotype calls across all three sample types. High purity was not a critical factor to successful genotyping. Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.

  19. Mining the transcriptomes of four commercially important shellfish species for single nucleotide polymorphisms within biomineralization genes.

    PubMed

    Vendrami, David L J; Shah, Abhijeet; Telesca, Luca; Hoffman, Joseph I

    2016-06-01

    Transcriptional profiling not only provides insights into patterns of gene expression, but also generates sequences that can be mined for molecular markers, which in turn can be used for population genetic studies. As part of a large-scale effort to better understand how commercially important European shellfish species may respond to ocean acidification, we therefore mined the transcriptomes of four species (the Pacific oyster Crassostrea gigas, the blue mussel Mytilus edulis, the great scallop Pecten maximus and the blunt gaper Mya truncata) for single nucleotide polymorphisms (SNPs). Illumina data for C. gigas, M. edulis and P. maximus and 454 data for M. truncata were interrogated using GATK and SWAP454 respectively to identify between 8267 and 47,159 high quality SNPs per species (total=121,053 SNPs residing within 34,716 different contigs). We then annotated the transcripts containing SNPs to reveal homology to diverse genes. Finally, as oceanic pH affects the ability of organisms to incorporate calcium carbonate, we honed in on genes implicated in the biomineralization process to identify a total of 1899 SNPs in 157 genes. These provide good candidates for biomarkers with which to study patterns of selection in natural or experimental populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation

    PubMed Central

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-01-01

    Interindividual variability in the response of plasma triglyceride concentrations (TG) following fish oil consumption has been observed. Our objective was to examine the associations between single-nucleotide polymorphisms (SNPs) within genes encoding proteins involved in de novo lipogenesis and the relative change in plasma TG levels following a fish oil supplementation. Two hundred and eight participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid. SNPs within SREBF1, ACLY, and ACACA genes were genotyped using TAQMAN methodology. After correction for multiple comparison, only two SNPs, rs8071753 (ACLY) and rs1714987 (ACACA), were associated with the relative change in plasma TG concentrations (P = 0.004 and P = 0.005, respectively). These two SNPs explained 7.73% of the variance in plasma TG relative change following fish oil consumption. Genotype frequencies of rs8071753 according to the TG response groups (responders versus nonresponders) were different (P = 0.02). We conclude that the presence of certain SNPs within genes, such as ACLY and ACACA, encoding proteins involved in de novo lipogenesis seem to influence the plasma TG response following fish oil consumption. PMID:23886516

  1. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation.

    PubMed

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-10-01

    Interindividual variability in the response of plasma triglyceride concentrations (TG) following fish oil consumption has been observed. Our objective was to examine the associations between single-nucleotide polymorphisms (SNPs) within genes encoding proteins involved in de novo lipogenesis and the relative change in plasma TG levels following a fish oil supplementation. Two hundred and eight participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9-2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid. SNPs within SREBF1, ACLY, and ACACA genes were genotyped using TAQMAN methodology. After correction for multiple comparison, only two SNPs, rs8071753 (ACLY) and rs1714987 (ACACA), were associated with the relative change in plasma TG concentrations (P = 0.004 and P = 0.005, respectively). These two SNPs explained 7.73% of the variance in plasma TG relative change following fish oil consumption. Genotype frequencies of rs8071753 according to the TG response groups (responders versus nonresponders) were different (P = 0.02). We conclude that the presence of certain SNPs within genes, such as ACLY and ACACA, encoding proteins involved in de novo lipogenesis seem to influence the plasma TG response following fish oil consumption.

  2. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates.

    PubMed

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-07-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains.

  3. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates

    PubMed Central

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-01-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains. PMID:26130851

  4. Chromatin remodeling gene EZH2 involved in the genetic etiology of autism in Chinese Han population.

    PubMed

    Li, Jun; You, Yang; Yue, Weihua; Yu, Hao; Lu, Tianlan; Wu, Zhiliu; Jia, Meixiang; Ruan, Yanyan; Liu, Jing; Zhang, Dai; Wang, Lifang

    2016-01-01

    Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders. Epigenetic factors play a critical role in the etiology of ASD. Enhancer of zest homolog 2 (EZH2), which encodes a histone methyltransferase, plays an important role in the process of chromatin remodeling during neurodevelopment. Further, EZH2 is located in chromosome 7q35-36, which is one of the linkage regions for autism. However, the genetic relationship between autism and EZH2 remains unclear. To investigate the association between EZH2 and autism in Chinese Han population, we performed a family-based association study between autism and three tagged single nucleotide polymorphisms (SNPs) that covered 95.4% of the whole region of EZH2. In the discovery cohort of 239 trios, two SNPs (rs740949 and rs6464926) showed a significant association with autism. To decrease false positive results, we expanded the sample size to 427 trios. A SNP (rs6464926) was significantly associated with autism even after Bonferroni correction (p=0.008). Haplotype G-T (rs740949 and rs6464926) was a risk factor for autism (Z=2.655, p=0.008, Global p=0.024). In silico function prediction for SNPs indicated that these two SNPs might be regulatory SNPs. Expression pattern of EZH2 showed that it is highly expressed in human embryonic brains. In conclusion, our findings demonstrate that EZH2 might contribute to the genetic etiology of autism in Chinese Han population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. High throughput SNP discovery and genotyping in hexaploid wheat

    PubMed Central

    Navarro, Julien; Kitt, Jonathan; Choulet, Frédéric; Leveugle, Magalie; Duarte, Jorge; Rivière, Nathalie; Eversole, Kellye; Le Gouis, Jacques; Davassi, Alessandro; Balfourier, François; Le Paslier, Marie-Christine; Berard, Aurélie; Brunel, Dominique; Feuillet, Catherine; Poncet, Charles; Sourdille, Pierre

    2018-01-01

    Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research. PMID:29293495

  6. [The joint applications of DNA chips and single nucleotide polymorphisms in forensic science].

    PubMed

    Bai, Peng; Tian, Li; Zhou, Xue-ping

    2005-05-01

    DNA chip technology, being a new high-technology, shows its vigorous life and rapid growth. Single Nucleotide Polymorphisms (SNPs) is the most common diversity in the human genome. It provides suitable genetic markers which play a key role in disease linkage study, pharmacogenomics, forensic medicine, population evolution and immigration study. Their advantage such as being analyzed with DNA chips technology, is predicted to play an important role in the field of forensic medicine, especially in paternity test and individual identification. This report mainly reviews the characteristics of DNA chip and SNPs, and their joint applications in the practice of forensic medicine.

  7. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load.

    PubMed

    Takeshima, Shin-Nosuke; Sasaki, Shinji; Meripet, Polat; Sugimoto, Yoshikazu; Aida, Yoko

    2017-04-04

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma that has spread worldwide and causes serious problems for the cattle industry. The BLV proviral load, which represents the BLV genome integrated into host genome, is a useful index for estimating disease progression and transmission risk. Here, we conducted a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with BLV proviral load in Japanese Black cattle. The study examined 93 cattle with a high proviral load and 266 with a low proviral load. Three SNPs showed a significant association with proviral load. One SNP was detected in the CNTN3 gene on chromosome 22, and two (which were not in linkage disequilibrium) were detected in the bovine major histocompatibility complex region on chromosome 23. These results suggest that polymorphisms in the major histocompatibility complex region affect proviral load. This is the first report to detect SNPs associated with BLV proviral load in Japanese Black cattle using whole genome association study, and understanding host factors may provide important clues for controlling the spread of BLV in Japanese Black cattle.

  8. The Associations between RNA Splicing Complex Gene SF3A1 Polymorphisms and Colorectal Cancer Risk in a Chinese Population.

    PubMed

    Chen, Xiaohua; Du, Hua; Liu, Binjian; Zou, Li; Chen, Wei; Yang, Yang; Zhu, Ying; Gong, Yajie; Tian, Jianbo; Li, Feng; Zhong, Shan

    2015-01-01

    Aberrant alternative splicing included alterations in components of the mRNA splicing machinery often occurred in colon cancer. However, the role of SF3A1, one key component of the mRNA splicing machinery, on colorectal cancer (CRC) risk was still not elucidated. We performed a hospital-based case-control study containing 801 CRC patients and 817 cancer-free controls to examine the association between SF3A1 polymorphisms and CRC risk in a Chinese population. Four candidate SNPs (rs10376, rs5753073, rs2839998 and rs2074733) were selected based on bioinformatics analysis and previous findings. The results showed no significant associations between these SNPs and CRC risk (P > 0.05). Besides, the stratified analysis based on the smoking and alcohol use status obtained no statistically significant results. Our study was the first one to investigate the association between SF3A1 polymorphisms and CRC risk. The results suggested these four SNPs in SF3A1 were not associated with CRC risk in a Chinese population, however, further more studies are needed to confirm our findings.

  9. Association of ARID5B gene variants with acute lymphoblastic leukemia in Yemeni children.

    PubMed

    Al-Absi, Boshra; Noor, Suzita M; Saif-Ali, Riyadh; Salem, Sameer D; Ahmed, Radwan H; Razif, Muhammad Fm; Muniandy, Sekaran

    2017-04-01

    Studies have shown an association between ARID5B gene polymorphisms and childhood acute lymphoblastic leukemia. However, the association between ARID5B variants and acute lymphoblastic leukemia among the Arab population still needs to be studied. The aim of this study was to investigate the association between ARID5B variants with acute lymphoblastic leukemia in Yemeni children. A total of 14 ARID5B gene single nucleotide polymorphisms (SNPs) were genotyped in 289 Yemeni children, of whom 136 had acute lymphoblastic leukemia and 153 were controls, using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Using logistic regression adjusted for age and gender, the risks of acute lymphoblastic leukemia were presented as odds ratios and 95% confidence intervals. We found that nine SNPs were associated with acute lymphoblastic leukemia under additive genetic models: rs7073837, rs10740055, rs7089424, rs10821936, rs4506592, rs10994982, rs7896246, rs10821938, and rs7923074. Furthermore, the recessive models revealed that six SNPs were risk factors for acute lymphoblastic leukemia: rs10740055, rs7089424, rs10994982, rs7896246, rs10821938, and rs7923074. The gender-specific impact of these SNPs under the recessive genetic model revealed that SNPs rs10740055, rs10994982, and rs6479779 in females, and rs10821938 and rs7923074 in males were significantly associated with acute lymphoblastic leukemia risk. Under the dominant model, SNPs rs7073837, rs10821936, rs7896246, and rs6479778 in males only showed striking association with acute lymphoblastic leukemia. The additive model revealed that SNPs with significant association with acute lymphoblastic leukemia were rs10821936 (both males and females); rs7073837, rs10740055, rs10994982, and rs4948487 (females only); and rs7089424, rs7896246, rs10821938, and rs7923074 (males only). In addition, the ARID5B haplotype block (CGAACACAA) showed a higher risk for acute lymphoblastic leukemia. The haplotype (CCCGACTGC) was associated with protection against acute lymphoblastic leukemia. In conclusion, our study has shown that ARID5B variants are associated with acute lymphoblastic leukemia in Yemeni children with several gender biases of ARID5B single nucleotide polymorphisms reported.

  10. SNP-markers in Allium species to facilitate introgression breeding in onion.

    PubMed

    Scholten, Olga E; van Kaauwen, Martijn P W; Shahin, Arwa; Hendrickx, Patrick M; Keizer, L C Paul; Burger, Karin; van Heusden, Adriaan W; van der Linden, C Gerard; Vosman, Ben

    2016-08-31

    Within onion, Allium cepa L., the availability of disease resistance is limited. The identification of sources of resistance in related species, such as Allium roylei and Allium fistulosum, was a first step towards the improvement of onion cultivars by breeding. SNP markers linked to resistance and polymorphic between these related species and onion cultivars are a valuable tool to efficiently introgress disease resistance genes. In this paper we describe the identification and validation of SNP markers valuable for onion breeding. Transcriptome sequencing resulted in 192 million RNA seq reads from the interspecific F1 hybrid between A. roylei and A. fistulosum (RF) and nine onion cultivars. After assembly, reliable SNPs were discovered in about 36 % of the contigs. For genotyping of the interspecific three-way cross population, derived from a cross between an onion cultivar and the RF (CCxRF), 1100 SNPs that are polymorphic in RF and monomorphic in the onion cultivars (RF SNPs) were selected for the development of KASP assays. A molecular linkage map based on 667 RF-SNP markers was constructed for CCxRF. In addition, KASP assays were developed for 1600 onion-SNPs (SNPs polymorphic among onion cultivars). A second linkage map was constructed for an F2 of onion x A. roylei (F2(CxR)) that consisted of 182 onion-SNPs and 119 RF-SNPs, and 76 previously mapped markers. Markers co-segregating in both the F2(CxR) and the CCxRF population were used to assign the linkage groups of RF to onion chromosomes. To validate usefulness of these SNP markers, QTL mapping was applied in the CCxRF population that segregates for resistance to Botrytis squamosa and resulted in a QTL for resistance on chromosome 6 of A. roylei. Our research has more than doubled the publicly available marker sequences of expressed onion genes and two onion-related species. It resulted in a detailed genetic map for the interspecific CCxRF population. This is the first paper that reports the detection of a QTL for resistance to B. squamosa in A. roylei.

  11. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library.

    PubMed

    Sánchez, Cecilia Castaño; Smith, Timothy P L; Wiedmann, Ralph T; Vallejo, Roger L; Salem, Mohamed; Yao, Jianbo; Rexroad, Caird E

    2009-11-25

    To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population. The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme HaeIII; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the validated markers were associated with rainbow trout transcripts. The use of reduced representation libraries and pyrosequencing technology proved to be an effective strategy for the discovery of a high number of putative SNPs in rainbow trout; however, modifications to the technique to decrease the false discovery rate resulting from the evolutionary recent genome duplication would be desirable.

  12. Identification of leptin gene polymorphisms associated with carcass traits and fatty acid composition in Japanese Black cattle.

    PubMed

    Kawaguchi, Fuki; Okura, Kazuki; Oyama, Kenji; Mannen, Hideyuki; Sasazaki, Shinji

    2017-03-01

    Previous studies have indicated that some leptin gene polymorphisms were associated with economically important traits in cattle breeds. However, polymorphisms in the leptin gene have not been reported thus far in Japanese Black cattle. Here, we aimed to identify the leptin gene polymorphisms which are associated with carcass traits and fatty acid composition in Japanese Black cattle. We sequenced the full-length coding sequence of leptin gene for eight Japanese Black cattle. Sequence comparison revealed eight single nucleotide polymorphisms (SNPs). Three of these were predicted to cause amino acid substitutions: Y7F, R25C and A80V. Then, we genotyped these SNPs in two populations (JB1 with 560 animals and JB2 with 450 animals) and investigated the effects on the traits. Y7F in JB1 and A80V in JB2 were excluded from statistical analysis because the minor allele frequencies were low (< 0.1). Association analysis revealed that Y7F had a significant effect on the dressed carcass weight in JB2; R25C had a significant effect on C18:0 and C14:1 in JB1 and JB2, respectively; and A80V had a significant effect on C16:0, C16:1, C18:1, monounsaturated fatty acid and saturated fatty acid in JB1. The results suggested that these SNPs could be used as an effective marker for the improvement of Japanese Black cattle. © 2016 Japanese Society of Animal Science.

  13. GESPA: classifying nsSNPs to predict disease association.

    PubMed

    Khurana, Jay K; Reeder, Jay E; Shrimpton, Antony E; Thakar, Juilee

    2015-07-25

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs. GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino acids in orthologs and paralogs and supplementing this information with data from medical literature. The development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally, GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in existing software. GESPA's overall accuracy exceeds existing computational methods for predicting nsSNP pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data. GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at http://sourceforge.net/projects/gespa.

  14. No association of toll-like receptor 2 polymorphisms with Alzheimer's disease in Han Chinese.

    PubMed

    Yu, Jin-Tai; Sun, Yan-Ping; Ou, Jiang-Rong; Cui, Wei-Zhen; Zhang, Wei; Tan, Lan

    2011-10-01

    Toll-like receptor 2 (TLR2) represents a reasonable functional and positional candidate gene for Alzheimer's disease (AD) as it is located under the linkage region of AD on chromosome 4q, and is functionally involved in the microglia-mediated inflammatory response and amyloid β (Aβ) clearance. In the current study, 7 single nucleotide polymorphisms (SNPs) that span the TLR2 were selected and their associations with late-onset AD (LOAD) risk were assessed in a case-control sample comprising 785 individuals in a Han Chinese population. No significant differences in the frequency of TLR2 alleles, genotypes, and haplotypes in the AD cases were detected compared with the controls. TLR2 gene might not play a major role in the genetic predisposition to late-onset Alzheimer's disease in this population. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Association of androgen metabolism gene polymorphisms with prostate cancer risk and androgen concentrations: Results from the Prostate Cancer Prevention Trial.

    PubMed

    Price, Douglas K; Chau, Cindy H; Till, Cathee; Goodman, Phyllis J; Leach, Robin J; Johnson-Pais, Teresa L; Hsing, Ann W; Hoque, Ashraful; Parnes, Howard L; Schenk, Jeannette M; Tangen, Catherine M; Thompson, Ian M; Reichardt, Juergen K V; Figg, William D

    2016-08-01

    Prostate cancer is highly influenced by androgens and genes. The authors investigated whether genetic polymorphisms along the androgen biosynthesis and metabolism pathways are associated with androgen concentrations or with the risk of prostate cancer or high-grade disease from finasteride treatment. A nested case-control study from the Prostate Cancer Prevention Trial using data from men who had biopsy-proven prostate cancer (cases) and a group of biopsy-negative, frequency-matched controls was conducted to investigate the association of 51 single nucleotide polymorphisms (SNPs) in 12 genes of the androgen pathway with overall (total), low-grade, and high-grade prostate cancer incidence and serum hormone concentrations. There were significant associations of genetic polymorphisms in steroid 5α-reductase 1 (SRD5A1) (reference SNPs: rs3736316, rs3822430, rs1560149, rs248797, and rs472402) and SRD5A2 (rs2300700) with the risk of high-grade prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial; 2 SNPs were significantly associated with an increased risk (SRD5A1 rs472402 [odds ratio, 1.70; 95% confidence interval, 1.05-2.75; Ptrend = .03] and SRD5A2 rs2300700 [odds ratio, 1.94; 95% confidence interval, 1.19-3.18; Ptrend = .01]). Eleven SNPs in SRD5A1, SRD5A2, cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), and CYP3A4 were associated with modifying the mean concentrations of serum androgen and sex hormone-binding globulin; and 2 SNPs (SRD5A1 rs824811 and CYP1B1 rs10012; Ptrend < .05) consistently and significantly altered all androgen concentrations. Several SNPs (SRD5A1 rs3822430, SRD5A2 rs2300700, CYP3A43 rs800672, and CYP19 rs700519; Ptrend < .05) were significantly associated with both circulating hormone levels and prostate cancer risk. Germline genetic variations of androgen-related pathway genes are associated with serum androgen concentrations and the risk of prostate cancer. Further studies to examine the functional consequence of novel causal variants are warranted. Cancer 2016;122:2332-2340. © 2016 American Cancer Society. © 2016 American Cancer Society.

  16. Single Nucleotide Polymorphism (SNP)-Strings: An Alternative Method for Assessing Genetic Associations

    PubMed Central

    Goodin, Douglas S.; Khankhanian, Pouya

    2014-01-01

    Background Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms (SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association. Methodology/Principal Findings Here we develop a method to identify the two SNP-haplotypes, which combine to produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic regions were modeled; DRB1 (a Class II molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase that degrades both neuropeptides and β-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding the putative disease-associated gene and spanning ∼200 kb of DNA. The SNP-information was converted into an ordered-set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1), representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that the SNP-string method is more accurate across the entire region. Conclusions/Significance Accurate haplotype identification will enhance the detection of genetic-associations. The SNP-string method provides a simple means to accomplish this and can be extended to cover larger genomic regions, thereby improving a GWAS’s power, even for those published previously. PMID:24727690

  17. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations.

    PubMed

    Gomez-Uchida, Daniel; Seeb, James E; Smith, Matt J; Habicht, Christopher; Quinn, Thomas P; Seeb, Lisa W

    2011-02-18

    Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic.

  18. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations

    PubMed Central

    2011-01-01

    Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic. PMID:21332997

  19. A new single-nucleotide polymorphism database for rainbow trout generated through whole genome re-sequencing

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  20. Polymorphic amplified typing sequences (PATS) and pulsed-field gel electrophoresis (PFGE) yield comparable results in the strain typing of a diverse set of bovine Escherichia coli O157 isolates

    USDA-ARS?s Scientific Manuscript database

    The PCR-based Escherichia coli O157 (O157) strain typing system, Polymorphic Amplified Typing Sequences (PATS), targets insertions-deletions (Indels) and single nucleotide polymorphisms (SNPs) at the XbaI and AvrII(BlnI) restriction enzyme sites, respectively, besides amplifying four known virulenc...

Top