Fuzzy Logic-Based Audio Pattern Recognition
NASA Astrophysics Data System (ADS)
Malcangi, M.
2008-11-01
Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.
NASA Technical Reports Server (NTRS)
Apostol, Tom M. (Editor)
1991-01-01
In this 'Project Mathematics! series, sponsored by California Institute for Technology (CalTech), the mathematical concept of polynomials in rectangular coordinate (x, y) systems are explored. sing film footage of real life applications and computer animation sequences, the history of, the application of, and the different linear coordinate systems for quadratic, cubic, intersecting, and higher degree of polynomials are discussed.
DWT-Based High Capacity Audio Watermarking
NASA Astrophysics Data System (ADS)
Fallahpour, Mehdi; Megías, David
This letter suggests a novel high capacity robust audio watermarking algorithm by using the high frequency band of the wavelet decomposition, for which the human auditory system (HAS) is not very sensitive to alteration. The main idea is to divide the high frequency band into frames and then, for embedding, the wavelet samples are changed based on the average of the relevant frame. The experimental results show that the method has very high capacity (about 5.5kbps), without significant perceptual distortion (ODG in [-1, 0] and SNR about 33dB) and provides robustness against common audio signal processing such as added noise, filtering, echo and MPEG compression (MP3).
Layered indexing of home video based on audio signals
NASA Astrophysics Data System (ADS)
Ogawa, Tomomi; Aizawa, Kiyoharu
2003-12-01
In this paper, we propose a home video indexing using an audio information to detect an event both a rules-based method and a GMM-based method. Although exclusive audio segmentation and classification was usually used, various sounds overlap in practice, in which case an audio in which various sound overlapped is expressed by a labeling layered index. With the rules-based method, low-level audio features are used to determine indexes, which are classied such as speech, silence, music, and EVN(Environment Noise). The GMM-based method which uses the same features as the rule based method also classifies an audio into the four classes. Smoothing is applied in order to determine the index. We show experiments in a few home video data.
New Polynomial-Based Molecular Descriptors with Low Degeneracy
Dehmer, Matthias; Mueller, Laurin A. J.; Graber, Armin
2010-01-01
In this paper, we introduce a novel graph polynomial called the ‘information polynomial’ of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power. PMID:20689599
Complex Chebyshev-polynomial-based unified model (CCPBUM) neural networks
NASA Astrophysics Data System (ADS)
Jeng, Jin-Tsong; Lee, Tsu-Tian
1998-03-01
In this paper, we propose complex Chebyshev Polynomial Based unified model neural network for the approximation of complex- valued function. Based on this approximate transformable technique, we have derived the relationship between the single-layered neural network and multi-layered perceptron neural network. It is shown that the complex Chebyshev Polynomial Based unified model neural network can be represented as a functional link network that are based on Chebyshev polynomial. We also derived a new learning algorithm for the proposed network. It turns out that the complex Chebyshev Polynomial Based unified model neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional complex feedforward/recurrent neural network.
Audio CAPTCHA for SIP-Based VoIP
NASA Astrophysics Data System (ADS)
Soupionis, Yannis; Tountas, George; Gritzalis, Dimitris
Voice over IP (VoIP) introduces new ways of communication, while utilizing existing data networks to provide inexpensive voice communications worldwide as a promising alternative to the traditional PSTN telephony. SPam over Internet Telephony (SPIT) is one potential source of future annoyance in VoIP. A common way to launch a SPIT attack is the use of an automated procedure (bot), which generates calls and produces audio advertisements. In this paper, our goal is to design appropriate CAPTCHA to fight such bots. We focus on and develop audio CAPTCHA, as the audio format is more suitable for VoIP environments and we implement it in a SIP-based VoIP environment. Furthermore, we suggest and evaluate the specific attributes that audio CAPTCHA should incorporate in order to be effective, and test it against an open source bot implementation.
Discontinuous Galerkin method based on non-polynomial approximation spaces
Yuan Ling . E-mail: lyuan@dam.brown.edu; Shu Chiwang . E-mail: shu@dam.brown.edu
2006-10-10
In this paper, we develop discontinuous Galerkin (DG) methods based on non-polynomial approximation spaces for numerically solving time dependent hyperbolic and parabolic and steady state hyperbolic and elliptic partial differential equations (PDEs). The algorithm is based on approximation spaces consisting of non-polynomial elementary functions such as exponential functions, trigonometric functions, etc., with the objective of obtaining better approximations for specific types of PDEs and initial and boundary conditions. It is shown that L {sup 2} stability and error estimates can be obtained when the approximation space is suitably selected. It is also shown with numerical examples that a careful selection of the approximation space to fit individual PDE and initial and boundary conditions often provides more accurate results than the DG methods based on the polynomial approximation spaces of the same order of accuracy.
Audio-Visual Speaker Diarization Based on Spatiotemporal Bayesian Fusion.
Gebru, Israel; Ba, Sileye; Li, Xiaofei; Horaud, Radu
2017-01-05
Speaker diarization consists of assigning speech signals to people engaged in a dialogue. An audio-visual spatiotemporal diarization model is proposed. The model is well suited for challenging scenarios that consist of several participants engaged in multi-party interaction while they move around and turn their heads towards the other participants rather than facing the cameras and the microphones. Multiple-person visual tracking is combined with multiple speech-source localization in order to tackle the speech-to-person association problem. The latter is solved within a novel audio-visual fusion method on the following grounds: binaural spectral features are first extracted from a microphone pair, then a supervised audio-visual alignment technique maps these features onto an image, and finally a semisupervised clustering method assigns binaural spectral features to visible persons. The main advantage of this method over previous work is that it processes in a principled way speech signals uttered simultaneously by multiple persons. The diarization itself is cast into a latent-variable temporal graphical model that infers speaker identities and speech turns, based on the output of an audio-visual association process, executed at each time slice, and on the dynamics of the diarization variable itself. The proposed formulation yields an efficient exact inference procedure. A novel dataset, that contains audio-visual training data as well as a number of scenarios involving several participants engaged in formal and informal dialogue, is introduced. The proposed method is thoroughly tested and benchmarked with respect to several state-of-the art diarization algorithms.
Audio Watermarking Based on HAS and Neural Networks in DCT Domain
NASA Astrophysics Data System (ADS)
Tsai, Hung-Hsu; Cheng, Ji-Shiung; Yu, Pao-Ta
2003-12-01
We propose a new intelligent audio watermarking method based on the characteristics of the HAS and the techniques of neural networks in the DCT domain. The method makes the watermark imperceptible by using the audio masking characteristics of the HAS. Moreover, the method exploits a neural network for memorizing the relationships between the original audio signals and the watermarked audio signals. Therefore, the method is capable of extracting watermarks without original audio signals. Finally, the experimental results are also included to illustrate that the method significantly possesses robustness to be immune against common attacks for the copyright protection of digital audio.
Generalized Gegenbauer Koornwinder's type polynomials change of bases
NASA Astrophysics Data System (ADS)
AlQudah, Mohammad; AlMheidat, Maalee
2017-07-01
In this paper we characterize the generalized Gegenbauer polynomials using Bernstein basis, and derive the matrix of transformation of the generalized Gegenbauer polynomial basis form into the Bernstein polynomial basis and vice versa.
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
NASA Astrophysics Data System (ADS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
Ahlfeld, R. Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
Robust video and audio-based synchronization of multimedia files
NASA Astrophysics Data System (ADS)
Raichel, Benjamin A.; Bajcsy, Peter
2010-02-01
This paper addresses the problem of robust and automated synchronization of multiple audio and video signals. The input signals are from a set of independent multimedia recordings coming from several camcorders and microphones. While the camcorders are static, the microphones are mobile as they are attached to people. The motivation for synchronization of all signals is to support studies and understanding of human interaction in a decision support environment that have been limited so far due to the difficulties in automated processing of any observations during the decision making sessions. The application of our work is to environments supporting decisions. The data sets for this work have been acquired during training exercises of response teams, rescue workers, and fire fighters at multiple locations. The developed synchronization methodology for a set of independent multimedia recordings is based on introducing aural and visual landmarks with a bell and room light switches. Our approach to synchronization is based on detecting the landmarks in audio and video signals per camcorder and per microphone, and then fusing the results to increase robustness and accuracy of the synchronization. We report synchronization results that demonstrate accuracy of synchronization based on video and audio.
Audio-Based versus Text-Based Asynchronous Online Discussion: Two Case Studies
ERIC Educational Resources Information Center
Hew, Khe Foon; Cheung, Wing Sum
2013-01-01
The main objective of this paper is to examine the use of audio- versus text-based asynchronous online discussions. We report two case studies conducted within the context of semester-long teacher education courses at an Asian Pacific university. Forty-one graduate students participated in Study I. After the online discussions (both audio-based as…
Defraene, Bruno; van Waterschoot, Toon; Diehl, Moritz; Moonen, Marc
2016-07-01
Subjective audio quality evaluation experiments have been conducted to assess the performance of embedded-optimization-based precompensation algorithms for mitigating perceptible linear and nonlinear distortion in audio signals. It is concluded with statistical significance that the perceived audio quality is improved by applying an embedded-optimization-based precompensation algorithm, both in case (i) nonlinear distortion and (ii) a combination of linear and nonlinear distortion is present. Moreover, a significant positive correlation is reported between the collected subjective and objective PEAQ audio quality scores, supporting the validity of using PEAQ to predict the impact of linear and nonlinear distortion on the perceived audio quality.
Fast complex memory polynomial-based adaptive digital predistorter
NASA Astrophysics Data System (ADS)
Singh Sappal, Amandeep; Singh Patterh, Manjeet; Sharma, Sanjay
2011-07-01
Today's 3G wireless systems require both high linearity and high power amplifier (PA) efficiency. The high peak-to-average ratios of the digital modulation schemes used in 3G wireless systems require that the RF PA maintain high linearity over a large range while maintaining this high efficiency; these two requirements are often at odds with each other with many of the traditional amplifier architectures. In this article, a fast and easy-to-implement adaptive digital predistorter has been presented for Wideband Code Division Multiplexed signals using complex memory polynomial work function. The proposed algorithm has been implemented to test a Motorola LDMOSFET PA. The proposed technique also takes care of the memory effects of the PA, which have been ignored in many proposed techniques in the literature. The results show that the new complex memory polynomial-based adaptive digital predistorter has better linearisation performance than conventional predistortion techniques.
The method of narrow-band audio classification based on universal noise background model
NASA Astrophysics Data System (ADS)
Rui, Rui; Bao, Chang-chun
2013-03-01
Audio classification is the basis of content-based audio analysis and retrieval. The conventional classification methods mainly depend on feature extraction of audio clip, which certainly increase the time requirement for classification. An approach for classifying the narrow-band audio stream based on feature extraction of audio frame-level is presented in this paper. The audio signals are divided into speech, instrumental music, song with accompaniment and noise using the Gaussian mixture model (GMM). In order to satisfy the demand of actual environment changing, a universal noise background model (UNBM) for white noise, street noise, factory noise and car interior noise is built. In addition, three feature schemes are considered to optimize feature selection. The experimental results show that the proposed algorithm achieves a high accuracy for audio classification, especially under each noise background we used and keep the classification time less than one second.
Navigation for the Blind through Audio-Based Virtual Environments.
Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi
2010-01-01
We present the design, development and an initial study changes and adaptations related to navigation that take place in the brain, by incorporating an Audio-Based Environments Simulator (AbES) within a neuroimaging environment. This virtual environment enables a blind user to navigate through a virtual representation of a real space in order to train his/her orientation and mobility skills. Our initial results suggest that this kind of virtual environment could be highly efficient as a testing, training and rehabilitation platform for learning and navigation.
Improvement of information fusion-based audio steganalysis
NASA Astrophysics Data System (ADS)
Kraetzer, Christian; Dittmann, Jana
2010-01-01
In the paper we extend an existing information fusion based audio steganalysis approach by three different kinds of evaluations: The first evaluation addresses the so far neglected evaluations on sensor level fusion. Our results show that this fusion removes content dependability while being capable of achieving similar classification rates (especially for the considered global features) if compared to single classifiers on the three exemplarily tested audio data hiding algorithms. The second evaluation enhances the observations on fusion from considering only segmental features to combinations of segmental and global features, with the result of a reduction of the required computational complexity for testing by about two magnitudes while maintaining the same degree of accuracy. The third evaluation tries to build a basis for estimating the plausibility of the introduced steganalysis approach by measuring the sensibility of the models used in supervised classification of steganographic material against typical signal modification operations like de-noising or 128kBit/s MP3 encoding. Our results show that for some of the tested classifiers the probability of false alarms rises dramatically after such modifications.
A content-based digital audio watermarking algorithm
NASA Astrophysics Data System (ADS)
Zhang, Liping; Zhao, Yi; Xu, Wen Li
2015-12-01
Digital audio watermarking embeds inaudible information into digital audio data for the purposes of copyright protection, ownership verification, covert communication, and/or auxiliary data carrying. In this paper, we present a novel watermarking scheme to embed a meaningful gray image into digital audio by quantizing the wavelet coefficients (using integer lifting wavelet transform) of audio samples. Our audio-dependent watermarking procedure directly exploits temporal and frequency perceptual masking of the human auditory system (HAS) to guarantee that the embedded watermark image is inaudible and robust. The watermark is constructed by utilizing still image compression technique, breaking each audio clip into smaller segments, selecting the perceptually significant audio segments to wavelet transform, and quantizing the perceptually significant wavelet coefficients. The proposed watermarking algorithm can extract the watermark image without the help from the original digital audio signals. We also demonstrate the robustness of that watermarking procedure to audio degradations and distortions, e.g., those that result from noise adding, MPEG compression, low pass filtering, resampling, and requantization.
Estimation of the entropy based on its polynomial representation.
Vinck, Martin; Battaglia, Francesco P; Balakirsky, Vladimir B; Vinck, A J Han; Pennartz, Cyriel M A
2012-05-01
Estimating entropy from empirical samples of finite size is of central importance for information theory as well as the analysis of complex statistical systems. Yet, this delicate task is marred by intrinsic statistical bias. Here we decompose the entropy function into a polynomial approximation function and a remainder function. The approximation function is based on a Taylor expansion of the logarithm. Given n observations, we give an unbiased, linear estimate of the first n power series terms based on counting sets of k coincidences. For the remainder function we use nonlinear Bayesian estimation with a nearly flat prior distribution on the entropy that was developed by Nemenman, Shafee, and Bialek. Our simulations show that the combined entropy estimator has reduced bias in comparison to other available estimators.
Estimation of the entropy based on its polynomial representation
NASA Astrophysics Data System (ADS)
Vinck, Martin; Battaglia, Francesco P.; Balakirsky, Vladimir B.; Vinck, A. J. Han; Pennartz, Cyriel M. A.
2012-05-01
Estimating entropy from empirical samples of finite size is of central importance for information theory as well as the analysis of complex statistical systems. Yet, this delicate task is marred by intrinsic statistical bias. Here we decompose the entropy function into a polynomial approximation function and a remainder function. The approximation function is based on a Taylor expansion of the logarithm. Given n observations, we give an unbiased, linear estimate of the first n power series terms based on counting sets of k coincidences. For the remainder function we use nonlinear Bayesian estimation with a nearly flat prior distribution on the entropy that was developed by Nemenman, Shafee, and Bialek. Our simulations show that the combined entropy estimator has reduced bias in comparison to other available estimators.
Paper-Based Textbooks with Audio Support for Print-Disabled Students.
Fujiyoshi, Akio; Ohsawa, Akiko; Takaira, Takuya; Tani, Yoshiaki; Fujiyoshi, Mamoru; Ota, Yuko
2015-01-01
Utilizing invisible 2-dimensional codes and digital audio players with a 2-dimensional code scanner, we developed paper-based textbooks with audio support for students with print disabilities, called "multimodal textbooks." Multimodal textbooks can be read with the combination of the two modes: "reading printed text" and "listening to the speech of the text from a digital audio player with a 2-dimensional code scanner." Since multimodal textbooks look the same as regular textbooks and the price of a digital audio player is reasonable (about 30 euro), we think multimodal textbooks are suitable for students with print disabilities in ordinary classrooms.
Enhanced Access Polynomial Based Self-healing Key Distribution
NASA Astrophysics Data System (ADS)
Dutta, Ratna; Mukhopadhyay, Sourav; Dowling, Tom
A fundamental concern of any secure group communication system is that of key management. Wireless environments create new key management problems and requirements to solve these problems. One such core requirement in these emerging networks is that of self-healing. In systems where users can be offline and miss updates self healing allows a user to recover lost keys and get back into the secure communication without putting extra burden on the group manager. Clearly self healing must be only available to authorized users and this creates more challenges in that we must ensure unauthorized or revoked users cannot, themselves or by means of collusion, avail of self healing. To this end we enhance the one-way key chain based self-healing key distribution of Dutta et al. by introducing a collusion resistance property between the revoked users and the newly joined users. Our scheme is based on the concept of access polynomials. These can be loosely thought of as white lists of authorized users as opposed to the more widely used revocation polynomials or black lists of revoked users. We also allow each user a pre-arranged life cycle distributed by the group manager. Our scheme provides better efficiency in terms of storage, and the communication and computation costs do not increase as the number of sessions grows as compared to most current schemes. We analyze our scheme in an appropriate security model and prove that the proposed scheme is computationally secure and not only achieving forward and backward secrecy, but also resisting collusion between the new joined users and the revoked users. Unlike most existing schemes the new scheme allows temporary revocation. Also unlike existing schemes, our construction does not collapse if the number of revoked users crosses a threshold value. This feature increases resilience against revocation based denial of service (DOS) attacks and thus improves availability of communication channel.
Luminance-Chrominance Gain Equalizer Based on Bernstein Polynomials
NASA Astrophysics Data System (ADS)
Chutchavong, Vanvisa; Sangaroon, Ornlarp; Benjangkaprasert, Chawalit; Janchitrapongvej, Kanok
This paper presents a linear luminance-chrominance gain equalizer for correcting the linear chrominance gain distortion in the color TV transmission system. The proposed gain equalizer was implemented based on Bernstein polynomials. As it is known that the Bernstein filter has flexible parameters to adjust the circuit performance for the best results. In addition, the modulated 20T sine-squared pulse test signal is generated for testing the performance of the proposed gain equalizer, which can be measured all three types of the linear chrominance distortions. As the results, the proposed gain equalizer is also proved to be efficient in equalizing both the low gain and the high gain chrominance distortions without degrading its phase characteristics.
Audio-visual event detection based on mining of semantic audio-visual labels
NASA Astrophysics Data System (ADS)
Goh, King-Shy; Miyahara, Koji; Radhakrishnan, Regunathan; Xiong, Ziyou; Divakaran, Ajay
2003-12-01
Removing commercials from television programs is a much sought-after feature for a personal video recorder. In this paper, we employ an unsupervised clustering scheme (CM_Detect) to detect commercials in television programs. Each program is first divided into W8-minute chunks, and we extract audio and visual features from each of these chunks. Next, we apply k-means clustering to assign each chunk with a commercial/program label. In contrast to other methods, we do not make any assumptions regarding the program content. Thus, our method is highly content-adaptive and computationally inexpensive. Through empirical studies on various content, including American news, Japanese news, and sports programs, we demonstrate that our method is able to filter out most of the commercials without falsely removing the regular program.
Audio coding based on rate distortion and perceptual optimization
NASA Astrophysics Data System (ADS)
Erne, Markus; Moschytz, George
2000-04-01
The time-frequency tiling, bit allocation and the quantizer of most perceptual coding algorithms is either fixed or controlled by a perceptual mode. The large variety of existing audio signals, each exhibiting different coding requirements due to their different temporal and spectral fine-structure suggests to use a signal-adaptive algorithm. The framework which is described in this is paper makes use of a signal-adaptive wavelet filterbank which allows to switch any node of the wavelet-packet tree individually. Therefore each subband can have an individual time- segmentation and the overall time-frequency tiling can be adapted to the signal using optimization techniques. A rate- distortion optimality can be defined which will minimize the distortion for a given rate in every subband, based on a perceptual model. Due to the additivity of the rate and distortion measure over disjoint covers of the input signal, an overall cost function including the switching cost for the filterbank switching can be defined. By the use of dynamic programming techniques, the wavelet-packet tree can be pruned base don a top-down or bottom-up 'split-merge' decision in every node of the wavelet-tree. Additionally we can profit form temporal masking due to the fact that each subband can have an individual segmentation in time without introducing time domain artifacts such as pre-echo distortion.
TECHNICAL NOTE: Portable audio electronics for impedance-based measurements in microfluidics
NASA Astrophysics Data System (ADS)
Wood, Paul; Sinton, David
2010-08-01
We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1-50 mM), flow rate (2-120 µL min-1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ~10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems.
Fast Minimum Variance Beamforming Based on Legendre Polynomials.
Bae, MooHo; Park, Sung Bae; Kwon, Sung Jae
2016-09-01
Currently, minimum variance beamforming (MV) is actively investigated as a method that can improve the performance of an ultrasound beamformer, in terms of the lateral and contrast resolution. However, this method has the disadvantage of excessive computational complexity since the inverse spatial covariance matrix must be calculated. Some noteworthy methods among various attempts to solve this problem include beam space adaptive beamforming methods and the fast MV method based on principal component analysis, which are similar in that the original signal in the element space is transformed to another domain using an orthonormal basis matrix and the dimension of the covariance matrix is reduced by approximating the matrix only with important components of the matrix, hence making the inversion of the matrix very simple. Recently, we proposed a new method with further reduced computational demand that uses Legendre polynomials as the basis matrix for such a transformation. In this paper, we verify the efficacy of the proposed method through Field II simulations as well as in vitro and in vivo experiments. The results show that the approximation error of this method is less than or similar to those of the above-mentioned methods and that the lateral response of point targets and the contrast-to-speckle noise in anechoic cysts are also better than or similar to those methods when the dimensionality of the covariance matrices is reduced to the same dimension.
Nonlinear dynamic macromodeling techniques for audio systems
NASA Astrophysics Data System (ADS)
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
NASA Astrophysics Data System (ADS)
Nasrudin, Ajeng Ratih; Setiawan, Wawan; Sanjaya, Yayan
2017-05-01
This study is titled the impact of audio narrated animation on students' understanding in learning humanrespiratory system based on gender. This study was conducted in eight grade of junior high school. This study aims to investigate the difference of students' understanding and learning environment at boys and girls classes in learning human respiratory system using audio narrated animation. Research method that is used is quasy experiment with matching pre-test post-test comparison group design. The procedures of study are: (1) preliminary study and learning habituation using audio narrated animation; (2) implementation of learning using audio narrated animation and taking data; (3) analysis and discussion. The result of analysis shows that there is significant difference on students' understanding and learning environment at boys and girls classes in learning human respiratory system using audio narrated animation, both in general and specifically in achieving learning indicators. The discussion related to the impact of audio narrated animation, gender characteristics, and constructivist learning environment. It can be concluded that there is significant difference of students' understanding at boys and girls classes in learning human respiratory system using audio narrated animation. Additionally, based on interpretation of students' respond, there is the difference increment of agreement level in learning environment.
The Use of Audio in Computer-Based Instruction.
ERIC Educational Resources Information Center
Koroghlanian, Carol M.; Sullivan, Howard J.
This study investigated the effects of audio and text density on the achievement, time-in-program, and attitudes of 134 undergraduates. Data concerning the subjects' preexisting computer skills and experience, as well as demographic information, were also collected. The instruction in visual design principles was delivered by computer and included…
StirMark Benchmark: audio watermarking attacks based on lossy compression
NASA Astrophysics Data System (ADS)
Steinebach, Martin; Lang, Andreas; Dittmann, Jana
2002-04-01
StirMark Benchmark is a well-known evaluation tool for watermarking robustness. Additional attacks are added to it continuously. To enable application based evaluation, in our paper we address attacks against audio watermarks based on lossy audio compression algorithms to be included in the test environment. We discuss the effect of different lossy compression algorithms like MPEG-2 audio Layer 3, Ogg or VQF on a selection of audio test data. Our focus is on changes regarding the basic characteristics of the audio data like spectrum or average power and on removal of embedded watermarks. Furthermore we compare results of different watermarking algorithms and show that lossy compression is still a challenge for most of them. There are two strategies for adding evaluation of robustness against lossy compression to StirMark Benchmark: (a) use of existing free compression algorithms (b) implementation of a generic lossy compression simulation. We discuss how such a model can be implemented based on the results of our tests. This method is less complex, as no real psycho acoustic model has to be applied. Our model can be used for audio watermarking evaluation of numerous application fields. As an example, we describe its importance for e-commerce applications with watermarking security.
NASA Astrophysics Data System (ADS)
Shimizu, Dominique
Though blended course audio feedback has been associated with several measures of course satisfaction at the postsecondary and graduate levels compared to text feedback, it may take longer to prepare and positive results are largely unverified in K-12 literature. The purpose of this quantitative study was to investigate the time investment and learning impact of audio communications with 228 secondary students in a blended online learning biology unit at a central Florida public high school. A short, individualized audio message regarding the student's progress was given to each student in the audio group; similar text-based messages were given to each student in the text-based group on the same schedule; a control got no feedback. A pretest and posttest were employed to measure learning gains in the three groups. To compare the learning gains in two types of feedback with each other and to no feedback, a controlled, randomized, experimental design was implemented. In addition, the creation and posting of audio and text feedback communications were timed in order to assess whether audio feedback took longer to produce than text only feedback. While audio feedback communications did take longer to create and post, there was no difference between learning gains as measured by posttest scores when student received audio, text-based, or no feedback. Future studies using a similar randomized, controlled experimental design are recommended to verify these results and test whether the trend holds in a broader range of subjects, over different time frames, and using a variety of assessment types to measure student learning.
NASA Astrophysics Data System (ADS)
Lee, Taewon; Lee, Yeon Ju; Cho, Seungryong
2017-02-01
In this paper, we develop an improved auto-focusing capability of a panoramic dental tomosynthesis imager. We propose an auto-focusing algorithm with an efficient sharpness indicator based on exponential polynomials which provides better quantitation of steep gradients than the conventional one based on algebraic polynomials. With its accurate estimation of the sharpness of the reconstructed slices, the proposed method resulted in a better performance of automatically extracting in-focus slices in the dental panoramic tomosynthesis.
NASA Astrophysics Data System (ADS)
Coelho, Rodrigo C. V.; Ilha, Anderson S.; Doria, Mauro M.
2016-10-01
A lattice Boltzmann method is proposed based on the expansion of the equilibrium distribution function in powers of a new set of generalized orthonormal polynomials which are here presented. The new polynomials are orthonormal under the weight defined by the equilibrium distribution function itself. The D-dimensional Hermite polynomials is a sub-case of the present ones, associated to the particular weight of a Gaussian function. The proposed lattice Boltzmann method allows for the treatment of semi-classical fluids, such as electrons in metals under the Drude-Sommerfeld model, which is a particular case that we develop and validate by the Riemann problem.
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power
Inexpensive Audio Activities: Earbud-based Sound Experiments
NASA Astrophysics Data System (ADS)
Allen, Joshua; Boucher, Alex; Meggison, Dean; Hruby, Kate; Vesenka, James
2016-11-01
Inexpensive alternatives to a number of classic introductory physics sound laboratories are presented including interference phenomena, resonance conditions, and frequency shifts. These can be created using earbuds, economical supplies such as Giant Pixie Stix® wrappers, and free software available for PCs and mobile devices. We describe two interference laboratories (beat frequency and two-speaker interference) and two resonance laboratories (quarter- and half-wavelength). Lastly, a Doppler laboratory using rotating earbuds is explained. The audio signal captured by all experiments is analyzed on free spectral analysis software and many of the experiments incorporate the unifying theme of measuring the speed of sound in air.
Hierarchical structure for audio-video based semantic classification of sports video sequences
NASA Astrophysics Data System (ADS)
Kolekar, M. H.; Sengupta, S.
2005-07-01
A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.
Novel Threshold Changeable Secret Sharing Schemes Based on Polynomial Interpolation.
Yuan, Lifeng; Li, Mingchu; Guo, Cheng; Choo, Kim-Kwang Raymond; Ren, Yizhi
2016-01-01
After any distribution of secret sharing shadows in a threshold changeable secret sharing scheme, the threshold may need to be adjusted to deal with changes in the security policy and adversary structure. For example, when employees leave the organization, it is not realistic to expect departing employees to ensure the security of their secret shadows. Therefore, in 2012, Zhang et al. proposed (t → t', n) and ({t1, t2,⋯, tN}, n) threshold changeable secret sharing schemes. However, their schemes suffer from a number of limitations such as strict limit on the threshold values, large storage space requirement for secret shadows, and significant computation for constructing and recovering polynomials. To address these limitations, we propose two improved dealer-free threshold changeable secret sharing schemes. In our schemes, we construct polynomials to update secret shadows, and use two-variable one-way function to resist collusion attacks and secure the information stored by the combiner. We then demonstrate our schemes can adjust the threshold safely.
Novel Threshold Changeable Secret Sharing Schemes Based on Polynomial Interpolation
Li, Mingchu; Guo, Cheng; Choo, Kim-Kwang Raymond; Ren, Yizhi
2016-01-01
After any distribution of secret sharing shadows in a threshold changeable secret sharing scheme, the threshold may need to be adjusted to deal with changes in the security policy and adversary structure. For example, when employees leave the organization, it is not realistic to expect departing employees to ensure the security of their secret shadows. Therefore, in 2012, Zhang et al. proposed (t → t′, n) and ({t1, t2,⋯, tN}, n) threshold changeable secret sharing schemes. However, their schemes suffer from a number of limitations such as strict limit on the threshold values, large storage space requirement for secret shadows, and significant computation for constructing and recovering polynomials. To address these limitations, we propose two improved dealer-free threshold changeable secret sharing schemes. In our schemes, we construct polynomials to update secret shadows, and use two-variable one-way function to resist collusion attacks and secure the information stored by the combiner. We then demonstrate our schemes can adjust the threshold safely. PMID:27792784
Reduction in time-to-sleep through EEG based brain state detection and audio stimulation.
Zhuo Zhang; Cuntai Guan; Ti Eu Chan; Juanhong Yu; Aung Aung Phyo Wai; Chuanchu Wang; Haihong Zhang
2015-08-01
We developed an EEG- and audio-based sleep sensing and enhancing system, called iSleep (interactive Sleep enhancement apparatus). The system adopts a closed-loop approach which optimizes the audio recording selection based on user's sleep status detected through our online EEG computing algorithm. The iSleep prototype comprises two major parts: 1) a sleeping mask integrated with a single channel EEG electrode and amplifier, a pair of stereo earphones and a microcontroller with wireless circuit for control and data streaming; 2) a mobile app to receive EEG signals for online sleep monitoring and audio playback control. In this study we attempt to validate our hypothesis that appropriate audio stimulation in relation to brain state can induce faster onset of sleep and improve the quality of a nap. We conduct experiments on 28 healthy subjects, each undergoing two nap sessions - one with a quiet background and one with our audio-stimulation. We compare the time-to-sleep in both sessions between two groups of subjects, e.g., fast and slow sleep onset groups. The p-value obtained from Wilcoxon Signed Rank Test is 1.22e-04 for slow onset group, which demonstrates that iSleep can significantly reduce the time-to-sleep for people with difficulty in falling sleep.
A general U-block model-based design procedure for nonlinear polynomial control systems
NASA Astrophysics Data System (ADS)
Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua
2016-10-01
The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.
Content-based audio authentication using a hierarchical patchwork watermark embedding
NASA Astrophysics Data System (ADS)
Gulbis, Michael; Müller, Erika
2010-05-01
Content-based audio authentication watermarking techniques extract perceptual relevant audio features, which are robustly embedded into the audio file to protect. Manipulations of the audio file are detected on the basis of changes between the original embedded feature information and the anew extracted features during verification. The main challenges of content-based watermarking are on the one hand the identification of a suitable audio feature to distinguish between content preserving and malicious manipulations. On the other hand the development of a watermark, which is robust against content preserving modifications and able to carry the whole authentication information. The payload requirements are significantly higher compared to transaction watermarking or copyright protection. Finally, the watermark embedding should not influence the feature extraction to avoid false alarms. Current systems still lack a sufficient alignment of watermarking algorithm and feature extraction. In previous work we developed a content-based audio authentication watermarking approach. The feature is based on changes in DCT domain over time. A patchwork algorithm based watermark was used to embed multiple one bit watermarks. The embedding process uses the feature domain without inflicting distortions to the feature. The watermark payload is limited by the feature extraction, more precisely the critical bands. The payload is inverse proportional to segment duration of the audio file segmentation. Transparency behavior was analyzed in dependence of segment size and thus the watermark payload. At a segment duration of about 20 ms the transparency shows an optimum (measured in units of Objective Difference Grade). Transparency and/or robustness are fast decreased for working points beyond this area. Therefore, these working points are unsuitable to gain further payload, needed for the embedding of the whole authentication information. In this paper we present a hierarchical extension
Bandwidth-Scalable Stereo Audio Coding Based on a Layered Structure
NASA Astrophysics Data System (ADS)
Lee, Young Han; Kim, Deok Su; Kim, Hong Kook; Sung, Jongmo; Lee, Mi Suk; Bae, Hyun Joo
In this paper, we propose a bandwidth-scalable stereo audio coding method based on a layered structure. The proposed stereo coding method encodes super-wideband (SWB) stereo signals and is able to decode either wideband (WB) stereo signals or SWB stereo signals, depending on the network congestion. The performance of the proposed stereo coding method is then compared with that of a conventional stereo coding method that separately decodes WB or SWB stereo signals, in terms of subjective quality, algorithmic delay, and computational complexity. Experimental results show that when stereo audio signals sampled at a rate of 32kHz are compressed to 64kbit/s, the proposed method provides significantly better audio quality with a 64-sample shorter algorithmic delay, and comparable computational complexity.
An Accurate Projector Calibration Method Based on Polynomial Distortion Representation
Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua
2015-01-01
In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247
An accurate projector calibration method based on polynomial distortion representation.
Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua
2015-10-20
In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system.
An Exploratory Crossover Study of Learner Perceptions of Use of Audio in Multimedia-Based Tutorials
ERIC Educational Resources Information Center
Yu, Chong Ho; Jannasch-Pennell, Angel; DiGangi, Samuel; Kaprolet, Charles
2009-01-01
While multimedia-based training is prevalent in education, previous studies do not reach consensus on its application. This discrepancy might be due to the fact that multimedia programs implemented in various training programs are very diverse. A multimedia program might include graphics, animation, video, audio, and interactive exercises. This…
Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah
2017-03-24
Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure.
Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah
2017-01-01
Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure. PMID:28338632
Online segmentation of time series based on polynomial least-squares approximations.
Fuchs, Erich; Gruber, Thiemo; Nitschke, Jiri; Sick, Bernhard
2010-12-01
The paper presents SwiftSeg, a novel technique for online time series segmentation and piecewise polynomial representation. The segmentation approach is based on a least-squares approximation of time series in sliding and/or growing time windows utilizing a basis of orthogonal polynomials. This allows the definition of fast update steps for the approximating polynomial, where the computational effort depends only on the degree of the approximating polynomial and not on the length of the time window. The coefficients of the orthogonal expansion of the approximating polynomial-obtained by means of the update steps-can be interpreted as optimal (in the least-squares sense) estimators for average, slope, curvature, change of curvature, etc., of the signal in the time window considered. These coefficients, as well as the approximation error, may be used in a very intuitive way to define segmentation criteria. The properties of SwiftSeg are evaluated by means of some artificial and real benchmark time series. It is compared to three different offline and online techniques to assess its accuracy and runtime. It is shown that SwiftSeg-which is suitable for many data streaming applications-offers high accuracy at very low computational costs.
Security analysis of an encryption scheme based on nonpositional polynomial notations
NASA Astrophysics Data System (ADS)
Kapalova, Nursulu; Dyusenbayev, Dilmukhanbet
2016-01-01
The aim of the research was to conduct a cryptographic analysis of an encryption scheme developed on the basis of nonpositional polynomial notations to estimate the algorithm strength. Nonpositional polynomial notations (NPNs) are residue number systems (RNSs) based on irreducible polynomials over GF(2). To evaluate if the algorithms developed on the basis of NPNs are secure, mathematical models of cryptanalysis involving algebraic, linear and differential methods have been designed. The cryptanalysis is as follows. A system of nonlinear equations is obtained from a function transforming plaintext into ciphertext with a key. Next, a possibility of transition of the nonlinear system to a linear one is considered. The cryptanalysis was conducted for the cases with known: 1) ciphertext; 2) plaintext and the related ciphertext; 3) plaintext file format; and 4) ASCII-encoded plaintext.
Aspherical surface profile fitting based on the relationship between polynomial and inner products
NASA Astrophysics Data System (ADS)
Cheng, Xuemin; Yang, Yikang; Hao, Qun
2016-01-01
High-precision aspherical polynomial fitting is essential to image quality evaluation in optical design and optimization. However, conventional fitting methods cannot reach optimal fitting precision and may somehow induce numerical ill-conditioning, such as excessively high coefficients. For this reason, a projection from polynomial equations to vector space was here proposed such that polynomial solutions could be obtained based on matrix and vector operation, so avoiding the problem of excessive coefficients. The Newton-Raphson iteration method was used to search for optimal fitting of the spherical surface. The profile fitting test showed that the proposed approach was able to obtain results with high precision and small value, which solved the numerical ill-conditioning phenomenon effectively.
A randomized controlled trial of an audio-based treatment program for child anxiety disorders.
Infantino, Alyssa; Donovan, Caroline L; March, Sonja
2016-04-01
The aim of this study was to investigate the efficacy of an audio-based cognitive-behavioural therapy (CBT) program for child anxiety disorders. Twenty-four children aged 5-11 years were randomly allocated into either the audio-based CBT program condition (Audio, n = 12) or a waitlist control (WL; n = 12) group. Outcome measures included a clinical diagnostic interview, clinician-rated global assessment of functioning, and parent and child self-report ratings of anxiety and internalisation. Assessments were conducted prior to treatment, 12 weeks following treatment, and at 3-month follow-up. Results indicated that at post-assessment, 58.3% of children receiving treatment compared to 16.7% of waitlist children were free of their primary diagnosis, with this figure rising to 66.67% at the 3-month follow-up time point. Additionally, at post-assessment, 25.0% of children in the treatment condition compared to .0% of the waitlist condition were free of all anxiety diagnoses, with this figure rising to 41.67% for the treatment group at 3-month follow-up. Overall, the findings suggest that the audio program tested in this study has the potential to be an efficacious treatment alternative for anxious children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Luque, Joaquín; Larios, Diego F; Personal, Enrique; Barbancho, Julio; León, Carlos
2016-05-18
Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance.
Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos
2016-01-01
Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375
NASA Astrophysics Data System (ADS)
Wang, Zhengzi
2015-08-01
The influence of ambient temperature is a big challenge to robust infrared face recognition. This paper proposes a new ambient temperature normalization algorithm to improve the performance of infrared face recognition under variable ambient temperatures. Based on statistical regression theory, a second order polynomial model is learned to describe the ambient temperature's impact on infrared face image. Then, infrared image was normalized to reference ambient temperature by the second order polynomial model. Finally, this normalization method is applied to infrared face recognition to verify its efficiency. The experiments demonstrate that the proposed temperature normalization method is feasible and can significantly improve the robustness of infrared face recognition.
ERIC Educational Resources Information Center
Copley, Jonathan
2007-01-01
Podcasting has become a popular medium for accessing and assimilating information and podcasts are increasingly being used to deliver audio recordings of lectures to campus-based students. This paper describes a simple, cost-effective and file size-efficient method for producing video podcasts combining lecture slides and audio without a…
ERIC Educational Resources Information Center
Copley, Jonathan
2007-01-01
Podcasting has become a popular medium for accessing and assimilating information and podcasts are increasingly being used to deliver audio recordings of lectures to campus-based students. This paper describes a simple, cost-effective and file size-efficient method for producing video podcasts combining lecture slides and audio without a…
Robust audio watermark method using sinusoid patterns based on pseudo-random sequences
NASA Astrophysics Data System (ADS)
Liu, Zheng; Kobayashi, Yoshiyuki; Sawato, Shusaku; Inoue, Akira
2003-06-01
In recent years, the spread spectrum watermarking technology has become the most promising technique that not only widely used for still image and video watermarking, but also used for audio watermarking. However, some technique problems such as requiring psycho-acoustic shaping used for reducing audible noise have greatly limited the utility of spread spectrum watermarking technology in audio watermarking. In this paper, we propose a novel audio watermarking method using spread spectrum watermarking technology by which we can embed watermark audio signals inaudibly with a robust to a wide range of unintended and intended attacks. In proposed method, the watermark is represented by sinusoidal patterns consisting of sinusoids with the phase-modulated by the elements of pseudo-random sequence. We theoretically and experimentally confirmed that the sinusoidal patterns based on pseudo-random sequences keep the same correlation property of pseudo-random sequences and have the characteristics of high robustness with less noise, being easy to manipulate, and without requirement of psycho-acoustic shaping. The watermark detection is done by blind detection and the effectiveness of proposed method have been certificated by the test of STEP2001.
QoS-based real-time audio streaming in IPv6 networks
NASA Astrophysics Data System (ADS)
Schmid, Stefan; Scott, Andrew C.; Hutchison, David; Froitzheim, Konrad
1998-12-01
Live audio streaming is an important component of Internet multimedia. The currently deployed Internet offers poor support for such streams due to the lack of QoS capabilities. However, IPv6, the new Internet Protocol has now included provision for QoS. The introduction of a flow label in the protocol header is intended to enable classification of packets according to their destination and service. Reservation protocols such as RSVP can make use of this stream identifier to reserve resources for particular streams in the routers along the transport path. This paper explores the effectiveness of resource reservation in IPv6 networks for live audio streaming. An important area for investigation is whether there is an efficiency gain due to the employment of low level flow labels. The paper summarizes the result of our extensive measurements and comparisons with currently deployed technologies. Specific attention is paid to the performance characteristics of real time applications, notably the delay, jitter and bandwidth. The results are based on a specially developed audio streaming application which enables RSVP over IPv6 using flow labels. Since the integration of RSVP in IPv6 is still work-in-progress, we had to modify the currently available RSVP implementation in order to access the IPv6 flow label. For audio data transport, we use the real-time transport protocol (RTP). The real-time transport control protocol, known as the feedback channel of RTP, forms with its receiver reports the basis of our benchmark tests.
ERIC Educational Resources Information Center
Kaye, Alan L.
2008-01-01
Take a look around the bus or subway and see just how many people are bumping along to an iPod or an MP3 player. What they are listening to is their secret, but the many signature earbuds in sight should give one a real sense of just how pervasive digital audio has become. This article describes how that popularity is mirrored in library audio…
ERIC Educational Resources Information Center
Kaye, Alan L.
2008-01-01
Take a look around the bus or subway and see just how many people are bumping along to an iPod or an MP3 player. What they are listening to is their secret, but the many signature earbuds in sight should give one a real sense of just how pervasive digital audio has become. This article describes how that popularity is mirrored in library audio…
The use of ambient audio to increase safety and immersion in location-based games
NASA Astrophysics Data System (ADS)
Kurczak, John Jason
The purpose of this thesis is to propose an alternative type of interface for mobile software being used while walking or running. Our work addresses the problem of visual user interfaces for mobile software be- ing potentially unsafe for pedestrians, and not being very immersive when used for location-based games. In addition, location-based games and applications can be dif- ficult to develop when directly interfacing with the sensors used to track the user's location. These problems need to be addressed because portable computing devices are be- coming a popular tool for navigation, playing games, and accessing the internet while walking. This poses a safety problem for mobile users, who may be paying too much attention to their device to notice and react to hazards in their environment. The difficulty of developing location-based games and other location-aware applications may significantly hinder the prevalence of applications that explore new interaction techniques for ubiquitous computing. We created the TREC toolkit to address the issues with tracking sensors while developing location-based games and applications. We have developed functional location-based applications with TREC to demonstrate the amount of work that can be saved by using this toolkit. In order to have a safer and more immersive alternative to visual interfaces, we have developed ambient audio interfaces for use with mobile applications. Ambient audio uses continuous streams of sound over headphones to present information to mobile users without distracting them from walking safely. In order to test the effectiveness of ambient audio, we ran a study to compare ambient audio with handheld visual interfaces in a location-based game. We compared players' ability to safely navigate the environment, their sense of immersion in the game, and their performance at the in-game tasks. We found that ambient audio was able to significantly increase players' safety and sense of immersion compared to a
A comparison of high-order polynomial and wave-based methods for Helmholtz problems
NASA Astrophysics Data System (ADS)
Lieu, Alice; Gabard, Gwénaël; Bériot, Hadrien
2016-09-01
The application of computational modelling to wave propagation problems is hindered by the dispersion error introduced by the discretisation. Two common strategies to address this issue are to use high-order polynomial shape functions (e.g. hp-FEM), or to use physics-based, or Trefftz, methods where the shape functions are local solutions of the problem (typically plane waves). Both strategies have been actively developed over the past decades and both have demonstrated their benefits compared to conventional finite-element methods, but they have yet to be compared. In this paper a high-order polynomial method (p-FEM with Lobatto polynomials) and the wave-based discontinuous Galerkin method are compared for two-dimensional Helmholtz problems. A number of different benchmark problems are used to perform a detailed and systematic assessment of the relative merits of these two methods in terms of interpolation properties, performance and conditioning. It is generally assumed that a wave-based method naturally provides better accuracy compared to polynomial methods since the plane waves or Bessel functions used in these methods are exact solutions of the Helmholtz equation. Results indicate that this expectation does not necessarily translate into a clear benefit, and that the differences in performance, accuracy and conditioning are more nuanced than generally assumed. The high-order polynomial method can in fact deliver comparable, and in some cases superior, performance compared to the wave-based DGM. In addition to benchmarking the intrinsic computational performance of these methods, a number of practical issues associated with realistic applications are also discussed.
Advances in Audio-Based Systems to Monitor Patient Adherence and Inhaler Drug Delivery.
Taylor, Terence E; Zigel, Yaniv; De Looze, Céline; Sulaiman, Imran; Costello, Richard W; Reilly, Richard B
2017-09-05
Hundreds of millions of people worldwide have asthma and COPD. Current medications to control these chronic respiratory diseases can be administered using inhaler devices, such as the pressurized metered dose inhaler and the dry powder inhaler. Provided that they are used as prescribed, inhalers can improve patient clinical outcomes and quality of life. Poor patient inhaler adherence (both time of use and user technique) is, however, a major clinical concern and is associated with poor disease control, increased hospital admissions, and increased mortality rates, particularly in low- and middle-income countries. There are currently limited methods available to health-care professionals to objectively and remotely monitor patient inhaler adherence. This review describes recent sensor-based technologies that use audio-based approaches that show promising opportunities for monitoring inhaler adherence in clinical practice. This review discusses how one form of sensor-based technology, audio-based monitoring systems, can provide clinically pertinent information regarding patient inhaler use over the course of treatment. Audio-based monitoring can provide health-care professionals with quantitative measurements of the drug delivery of inhalers, signifying a clear clinical advantage over other methods of assessment. Furthermore, objective audio-based adherence measures can improve the predictability of patient outcomes to treatment compared with current standard methods of adherence assessment used in clinical practice. Objective feedback on patient inhaler adherence can be used to personalize treatment for the patient, which may enhance precision medicine in the treatment of chronic respiratory diseases. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Robust High-Capacity Audio Watermarking Based on FFT Amplitude Modification
NASA Astrophysics Data System (ADS)
Fallahpour, Mehdi; Megías, David
This paper proposes a novel robust audio watermarking algorithm to embed data and extract it in a bit-exact manner based on changing the magnitudes of the FFT spectrum. The key point is selecting a frequency band for embedding based on the comparison between the original and the MP3 compressed/decompressed signal and on a suitable scaling factor. The experimental results show that the method has a very high capacity (about 5kbps), without significant perceptual distortion (ODG about -0.25) and provides robustness against common audio signal processing such as added noise, filtering and MPEG compression (MP3). Furthermore, the proposed method has a larger capacity (number of embedded bits to number of host bits rate) than recent image data hiding methods.
Coherent orthogonal polynomials
Celeghini, E.; Olmo, M.A. del
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines
Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices.
Dehmer, Matthias; Emmert-Streib, Frank; Shi, Yongtang; Stefu, Monica; Tripathi, Shailesh
2015-01-01
In this paper, we study the discrimination power of graph measures that are based on graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrugger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix, Applied Mathematics and Computation, 268(2015), 164-168]. We demonstrate that by using the new functional matrix approach, exhaustively generated graphs can be discriminated more uniquely than shown in the mentioned previous work.
Charge-based MOSFET model based on the Hermite interpolation polynomial
NASA Astrophysics Data System (ADS)
Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt
2017-04-01
An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.
Robust Audio Watermarking Scheme Based on Deterministic Plus Stochastic Model
NASA Astrophysics Data System (ADS)
Dhar, Pranab Kumar; Kim, Cheol Hong; Kim, Jong-Myon
Digital watermarking has been widely used for protecting digital contents from unauthorized duplication. This paper proposes a new watermarking scheme based on spectral modeling synthesis (SMS) for copyright protection of digital contents. SMS defines a sound as a combination of deterministic events plus a stochastic component that makes it possible for a synthesized sound to attain all of the perceptual characteristics of the original sound. In our proposed scheme, watermarks are embedded into the highest prominent peak of the magnitude spectrum of each non-overlapping frame in peak trajectories. Simulation results indicate that the proposed watermarking scheme is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, and MP3 compression and achieves similarity values ranging from 17 to 22. In addition, our proposed scheme achieves signal-to-noise ratio (SNR) values ranging from 29 dB to 30 dB.
Distance-based topological polynomials and indices of friendship graphs.
Gao, Wei; Farahani, Mohammad Reza; Imran, Muhammad; Rajesh Kanna, M R
2016-01-01
Drugs and chemical compounds are often modeled as graphs in which the each vertex of the graph expresses an atom of molecule and covalent bounds between atoms are represented by the edges between their corresponding vertices. The topological indicators defined over this molecular graph have been shown to be strongly correlated to various chemical properties of the compounds. In this article, by means of graph structure analysis, we determine several distance based topological indices of friendship graph [Formula: see text] which is widely appeared in various classes of new nanomaterials, drugs and chemical compounds.
Evaluation of listener-based anuran surveys with automated audio recording devices
Shearin, A. F.; Calhoun, A.J.K.; Loftin, C.S.
2012-01-01
Volunteer-based audio surveys are used to document long-term trends in anuran community composition and abundance. Current sampling protocols, however, are not region- or species-specific and may not detect relatively rare or audibly cryptic species. We used automated audio recording devices to record calling anurans during 2006–2009 at wetlands in Maine, USA. We identified species calling, chorus intensity, time of day, and environmental variables when each species was calling and developed logistic and generalized mixed models to determine the time interval and environmental variables that optimize detection of each species during peak calling periods. We detected eight of nine anurans documented in Maine. Individual recordings selected from the sampling period (0.5 h past sunset to 0100 h) described in the North American Amphibian Monitoring Program (NAAMP) detected fewer species than were detected in recordings from 30 min past sunset until sunrise. Time of maximum detection of presence and full chorusing for three species (green frogs, mink frogs, pickerel frogs) occurred after the NAAMP sampling end time (0100 h). The NAAMP protocol’s sampling period may result in omissions and misclassifications of chorus sizes for certain species. These potential errors should be considered when interpreting trends generated from standardized anuran audio surveys.
ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform
Wang, Yong; Abdelkader, Ali Cherif; Zhao, Bin; Wang, Jinxiang
2015-01-01
Inverse synthetic aperture radar (ISAR) imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS) after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID) technique. In this paper, a novel parameters estimation algorithm of the multi-component PPS with order three (cubic phase signal-CPS) based on the modified discrete polynomial-phase transform (MDPT) is proposed, and the corresponding new ISAR imaging algorithm is presented consequently. This algorithm is efficient and accurate to generate a focused ISAR image, and the results of real data demonstrate the effectiveness of it. PMID:26404299
Delles, Michael; Rengier, Fabian; Ley, Sebastian; von Tengg-Kobligk, Hendrik; Kauczor, Hans-Ulrich; Dillmann, Rüdiger; Unterhinninghofen, Roland
2011-01-01
In cardiovascular diagnostics, phase-contrast MRI is a valuable technique for measuring blood flow velocities and computing blood pressure values. Unfortunately, both velocity and pressure data typically suffer from the strong image noise of velocity-encoded MRI. In the past, separate approaches of regularization with physical a-priori knowledge and data representation with continuous functions have been proposed to overcome these drawbacks. In this article, we investigate polynomial regularization as an exemplary specification of combining these two techniques. We perform time-resolved three-dimensional velocity measurements and pressure gradient computations on MRI acquisitions of steady flow in a physical phantom. Results based on the higher quality temporal mean data are used as a reference. Thereby, we investigate the performance of our approach of polynomial regularization, which reduces the root mean squared errors to the reference data by 45% for velocities and 60% for pressure gradients.
ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform.
Wang, Yong; Abdelkader, Ali Cherif; Zhao, Bin; Wang, Jinxiang
2015-09-03
Inverse synthetic aperture radar (ISAR) imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS) after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID) technique. In this paper, a novel parameters estimation algorithm of the multi-component PPS with order three (cubic phase signal-CPS) based on the modified discrete polynomial-phase transform (MDPT) is proposed, and the corresponding new ISAR imaging algorithm is presented consequently. This algorithm is efficient and accurate to generate a focused ISAR image, and the results of real data demonstrate the effectiveness of it.
Polynomial-based approximate solutions to the Boussinesq equation near a well
NASA Astrophysics Data System (ADS)
Telyakovskiy, Aleksey S.; Kurita, Satoko; Allen, Myron B.
2016-10-01
This paper presents a method for constructing polynomial-based approximate solutions to the Boussinesq equation with cylindrical symmetry. This equation models water injection at a single well in an unconfined aquifer; as a sample problem we examine recharge of an initially empty aquifer. For certain injection regimes it is possible to introduce similarity variables, reducing the original problem to a boundary-value problem for an ordinary differential equation. The approximate solutions introduced here incorporate both a singular part to model the behavior near the well and a polynomial part to model the behavior in the far field. Although the nonlinearity of the problem prevents decoupling of the singular and polynomial parts, the paper presents an approach for calculating the solution based on its spatial moments. This approach yields closed-form expressions for the position of the wetting front and for the form of the phreatic surface. Comparison with a highly accurate numerical solution verifies the accuracy of the newly derived approximate solutions.
NASA Astrophysics Data System (ADS)
Gosselin, Jeremy M.; Dosso, Stan E.; Cassidy, John F.; Quijano, Jorge E.; Molnar, Sheri; Dettmer, Jan
2017-10-01
This paper develops and applies a Bernstein-polynomial parametrization to efficiently represent general, gradient-based profiles in nonlinear geophysical inversion, with application to ambient-noise Rayleigh-wave dispersion data. Bernstein polynomials provide a stable parametrization in that small perturbations to the model parameters (basis-function coefficients) result in only small perturbations to the geophysical parameter profile. A fully nonlinear Bayesian inversion methodology is applied to estimate shear wave velocity (VS) profiles and uncertainties from surface wave dispersion data extracted from ambient seismic noise. The Bayesian information criterion is used to determine the appropriate polynomial order consistent with the resolving power of the data. Data error correlations are accounted for in the inversion using a parametric autoregressive model. The inversion solution is defined in terms of marginal posterior probability profiles for VS as a function of depth, estimated using Metropolis-Hastings sampling with parallel tempering. This methodology is applied to synthetic dispersion data as well as data processed from passive array recordings collected on the Fraser River Delta in British Columbia, Canada. Results from this work are in good agreement with previous studies, as well as with co-located invasive measurements. The approach considered here is better suited than `layered' modelling approaches in applications where smooth gradients in geophysical parameters are expected, such as soil/sediment profiles. Further, the Bernstein polynomial representation is more general than smooth models based on a fixed choice of gradient type (e.g. power-law gradient) because the form of the gradient is determined objectively by the data, rather than by a subjective parametrization choice.
Rougui, J E; Istrate, D; Souidene, W; Opitz, M; Riemann, M
2009-01-01
This work proposes a system for Acoustic Event Detection and Classification (AEDC) using enhanced audio signal provided by a CMT (Coincidence Microphone Technology) microphone. The CMT microphone through signal processing algorithm provides an enhanced signal in several azimuths with a step of 15 degrees . The AEC module exploits this technology to increase classification performance. The automatic detection system based on DWT uses an adaptive threshold for a different energy level and sampling rate quality. The classification system is based on an unsupervised order estimation of Gaussian mixture model adapted to the variability of sound event acoustic information and the representation cost.
Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map
2014-01-01
We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970
Description of an Audio-Based Paced Respiration Intervention for Vasomotor Symptoms
Burns, Debra S.; Drews, Michael R.; Carpenter, Janet S.
2013-01-01
Millions of women experience menopause-related hot flashes or flushes that may have a negative effect on their quality of life. Hormone therapy is an effective treatment, however, it may be contraindicated or unacceptable for some women based on previous health complications or an undesirable risk–benefit ratio. Side effects and the unacceptability of hormone therapy have created a need for behavioral interventions to reduce hot flashes. A variety of complex, multimodal behavioral, relaxation-based interventions have been studied with women (n = 88) and showed generally favorable results. However, currently extensive resource commitments reduce the translation of these interventions into standard care. Slow, deep breathing is a common component in most interventions and may be the active ingredient leading to reduced hot flashes. This article describes the content of an audio-based program designed to teach paced breathing to reduce hot flashes. Intervention content was based on skills training theory and music entrainment. The audio intervention provides an efficient way to deliver a breathing intervention that may be beneficial to other clinical populations. PMID:23914283
Kernel-Based Sensor Fusion With Application to Audio-Visual Voice Activity Detection
NASA Astrophysics Data System (ADS)
Dov, David; Talmon, Ronen; Cohen, Israel
2016-12-01
In this paper, we address the problem of multiple view data fusion in the presence of noise and interferences. Recent studies have approached this problem using kernel methods, by relying particularly on a product of kernels constructed separately for each view. From a graph theory point of view, we analyze this fusion approach in a discrete setting. More specifically, based on a statistical model for the connectivity between data points, we propose an algorithm for the selection of the kernel bandwidth, a parameter, which, as we show, has important implications on the robustness of this fusion approach to interferences. Then, we consider the fusion of audio-visual speech signals measured by a single microphone and by a video camera pointed to the face of the speaker. Specifically, we address the task of voice activity detection, i.e., the detection of speech and non-speech segments, in the presence of structured interferences such as keyboard taps and office noise. We propose an algorithm for voice activity detection based on the audio-visual signal. Simulation results show that the proposed algorithm outperforms competing fusion and voice activity detection approaches. In addition, we demonstrate that a proper selection of the kernel bandwidth indeed leads to improved performance.
Jiang, T; Li, Y
1997-01-01
In an earlier paper (1996), we proposed a set of generalized defuzzification strategies which can be characterized as single-mode-oriented strategies. A single-mode-oriented defuzzification strategy, although useful in many research projects and real world applications, cannot be applied to a multimode situation where two or more distinct possibility peaks exist in its membership function distribution. In this paper, for multimode-oriented generalized defuzzification applications, a multimode-oriented polynomial transformation based defuzzification strategy (M-PTD) is introduced. The new M-PTD strategy, which uses the Kalman filter in parameter learning procedure, offers a constraint-free and self-renewal defuzzification solution.
ERIC Educational Resources Information Center
Dobbs, David E.
2010-01-01
This note develops and implements the theory of polynomial asymptotes to (graphs of) rational functions, as a generalization of the classical topics of horizontal asymptotes and oblique/slant asymptotes. Applications are given to hyperbolic asymptotes. Prerequisites include the division algorithm for polynomials with coefficients in the field of…
ERIC Educational Resources Information Center
Dobbs, David E.
2010-01-01
This note develops and implements the theory of polynomial asymptotes to (graphs of) rational functions, as a generalization of the classical topics of horizontal asymptotes and oblique/slant asymptotes. Applications are given to hyperbolic asymptotes. Prerequisites include the division algorithm for polynomials with coefficients in the field of…
A Novel Chewing Detection System Based on PPG, Audio, and Accelerometry.
Papapanagiotou, Vasileios; Diou, Christos; Zhou, Lingchuan; van den Boer, Janet; Mars, Monica; Delopoulos, Anastasios
2017-05-01
In the context of dietary management, accurate monitoring of eating habits is receiving increased attention. Wearable sensors, combined with the connectivity and processing of modern smartphones, can be used to robustly extract objective and real-time measurements of human behavior. In particular, for the task of chewing detection, several approaches based on an in-ear microphone can be found in the literature, while other types of sensors have also been reported, such as strain sensors. In this paper, performed in the context of the SPLENDID project, we propose to combine an in-ear microphone with a photoplethysmography (PPG) sensor placed in the ear concha, in a new high accuracy and low sampling rate prototype chewing detection system. We propose a pipeline that initially processes each sensor signal separately, and then fuses both to perform the final detection. Features are extracted from each modality, and support vector machine (SVM) classifiers are used separately to perform snacking detection. Finally, we combine the SVM scores from both signals in a late-fusion scheme, which leads to increased eating detection accuracy. We evaluate the proposed eating monitoring system on a challenging, semifree living dataset of 14 subjects, which includes more than 60 h of audio and PPG signal recordings. Results show that fusing the audio and PPG signals significantly improves the effectiveness of eating event detection, achieving accuracy up to 0.938 and class-weighted accuracy up to 0.892.
A trans-dimensional polynomial-spline parameterization for gradient-based geoacoustic inversion.
Steininger, Gavin; Dosso, Stan E; Holland, Charles W; Dettmer, Jan
2014-10-01
This paper presents a polynomial spline-based parameterization for trans-dimensional geoacoustic inversion. The parameterization is demonstrated for both simulated and measured data and shown to be an effective method of representing sediment geoacoustic profiles dominated by gradients, as typically occur, for example, in muddy seabeds. Specifically, the spline parameterization is compared using the deviance information criterion (DIC) to the standard stack-of-homogeneous layers parameterization for the inversion of bottom-loss data measured at a muddy seabed experiment site on the Malta Plateau. The DIC is an information criterion that is well suited to trans-D Bayesian inversion and is introduced to geoacoustics in this paper. Inversion results for both parameterizations are in good agreement with measurements on a sediment core extracted at the site. However, the spline parameterization more accurately resolves the power-law like structure of the core density profile and provides smaller overall uncertainties in geoacoustic parameters. In addition, the spline parameterization is found to be more parsimonious, and hence preferred, according to the DIC. The trans-dimensional polynomial spline approach is general, and applicable to any inverse problem for gradient-based profiles. [Work supported by ONR.].
Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.
Petrinović, Davor; Brezović, Marko
2011-04-01
We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE
[Speaker gender identification based on audio fractal dimension and pitch feature].
Wang, Zhenhua; Yang, Cuirong; Wu, Wei; Fan, Yingle
2008-08-01
Automatic speaker gender identification based on voice feature is an important task in voice processing and analysis fields. In this paper non-linear parameters such as fractal dimension are applied to be one part of feature space for improving the ability of describing speaker gender feature through conventional linear parameters method. Pitch is picked using lifting scheme, and audio fractal dimension is extracted. Then based on Takens theory, the time delay method is used to reconstruct the phase space of fractal dimension sequence. And fractal dimension complexity is obtained by calculating Approximate Entropy. Three dimension feature vectors, including the pitch, the fractal dimension and the fractal dimension complexity, are applied to speaker gender identification. Experiment results show that through adding non-linear parameters, compared with the linear parameter using one dimension only such as pitch, the proposed method is more accurate and robust, and thus provides a new way for speaker gender identification.
Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro; Abgrall, Remi
2014-11-01
Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.
NASA Astrophysics Data System (ADS)
Liu, Jie; Sun, Xingsheng; Han, Xu; Jiang, Chao; Yu, Dejie
2015-05-01
Based on the Gegenbauer polynomial expansion theory and regularization method, an analytical method is proposed to identify dynamic loads acting on stochastic structures. Dynamic loads are expressed as functions of time and random parameters in time domain and the forward model of dynamic load identification is established through the discretized convolution integral of loads and the corresponding unit-pulse response functions of system. Random parameters are approximated through the random variables with λ-probability density function (PDFs) or their derivative PDFs. For this kind of random variables, Gegenbauer polynomial expansion is the unique correct choice to transform the problem of load identification for a stochastic structure into its equivalent deterministic system. Just via its equivalent deterministic system, the load identification problem of a stochastic structure can be solved by any available deterministic methods. With measured responses containing noise, the improved regularization operator is adopted to overcome the ill-posedness of load reconstruction and to obtain the stable and approximate solutions of certain inverse problems and the valid assessments of the statistics of identified loads. Numerical simulations demonstrate that with regard to stochastic structures, the identification and assessment of dynamic loads are achieved steadily and effectively by the presented method.
NASA Astrophysics Data System (ADS)
Li, Jun-Bao
2012-09-01
This paper presents Gabor filter based optical image recognition using Fractional Power Polynomial model based Common Kernel Discriminant Locality Preserving Projection. This method tends to solve the nonlinear classification problem endured by optical image recognition owing to the complex illumination condition in practical applications, such as face recognition. The first step is to apply Gabor filter to extract desirable textural features characterized by spatial frequency, spatial locality and orientation selectivity to cope with the variations in illumination. In the second step we propose Class-wise Locality Preserving Projection through creating the nearest neighbor graph guided by the class labels for the textural features reduction. Finally we present Common Kernel Discriminant Vector with Fractional Power Polynomial model to reduce the dimensions of the textural features for recognition. For the performance evaluation on optical image recognition, we test the proposed method on a challenging optical image recognition problem, face recognition.
Age Matters: Student Experiences with Audio Learning Guides in University-Based Continuing Education
ERIC Educational Resources Information Center
Mercer, Lorraine; Pianosi, Birgit
2012-01-01
The primary objective of this research was to explore the experiences of undergraduate distance education students using sample audio versions (provided on compact disc) of the learning guides for their courses. The results of this study indicated that students responded positively to the opportunity to have word-for-word audio versions of their…
Forensic audio watermark detection
NASA Astrophysics Data System (ADS)
Steinebach, Martin; Zmudzinski, Sascha; Petrautzki, Dirk
2012-03-01
Digital audio watermarking detection is often computational complex and requires at least as much audio information as required to embed a complete watermark. In some applications, especially real-time monitoring, this is an important drawback. The reason for this is the usage of sync sequences at the beginning of the watermark, allowing a decision about the presence only if at least the sync has been found and retrieved. We propose an alternative method for detecting the presence of a watermark. Based on the knowledge of the secret key used for embedding, we create a mark for all potential marking stages and then use a sliding window to test a given audio file on the presence of statistical characteristics caused by embedding. In this way we can detect a watermark in less than 1 second of audio.
NASA Astrophysics Data System (ADS)
Dragomirescu, Florica Ioana
2012-11-01
The main motivation for a temporal stability investigation of initially localized perturbations in a swirling flow stability problem consists in pointing out the critical frequencies at which instability can sets in, an important key in predicting and understanding the flow particularities. The linearized disturbance equations define a second order ordinary differential equation with non-constant coefficients which we solve in order to determine the critical frequency in different physical parameters spaces. A non-classical polynomials based spectral method is proposed for the numerical treatment of the resulting generalized eigenvalue problem governing the stability of the flow. Numerical investigation are performed in the inviscid case for a moderate level of swirl and dominant temporal instability modes are retrieved for each Fourier component pair. The obtained values of the growth rate associated with the most amplified wavenumber are compared with existing inviscid temporal instability evaluations and good agreements are found.
Krishnamoorthi, R; Anna Poorani, G
2016-01-01
Iris normalization is an important stage in any iris biometric, as it has a propensity to trim down the consequences of iris distortion. To indemnify the variation in size of the iris owing to the action of stretching or enlarging the pupil in iris acquisition process and camera to eyeball distance, two normalization schemes has been proposed in this work. In the first method, the iris region of interest is normalized by converting the iris into the variable size rectangular model in order to avoid the under samples near the limbus border. In the second method, the iris region of interest is normalized by converting the iris region into a fixed size rectangular model in order to avoid the dimensional discrepancies between the eye images. The performance of the proposed normalization methods is evaluated with orthogonal polynomials based iris recognition in terms of FAR, FRR, GAR, CRR and EER.
Vega, Sonia; Abian, Olga; Velazquez-Campoy, Adrian
2015-04-01
Isothermal titration calorimetry (ITC) has become the gold-standard technique for studying binding processes due to its high precision and sensitivity, as well as its capability for the simultaneous determination of the association equilibrium constant, the binding enthalpy and the binding stoichiometry. The current widespread use of ITC for biological systems has been facilitated by technical advances and the availability of commercial calorimeters. However, the complexity of data analysis for non-standard models is one of the most significant drawbacks in ITC. Many models for studying macromolecular interactions can be found in the literature, but it looks like each biological system requires specific modeling and data analysis approaches. The aim of this article is to solve this lack of unity and provide a unified methodological framework for studying binding interactions by ITC that can be applied to any experimental system. The apparent complexity of this methodology, based on the binding polynomial, is overcome by its easy generalization to complex systems.
Orthogonal polynomial Schauder bases in C[-1,1] with optimal growth of degrees
Skopina, M A
2001-04-30
For each {epsilon}>0 an orthogonal Schauder basis of algebraic polynomials P{sub n} in C[-1,1] is constructed such that the degrees of the polynomials have the estimate n(1+{epsilon}). This growth rate is the lowest possible.
NASA Astrophysics Data System (ADS)
Karam, Walid; Mokbel, Chafic; Greige, Hanna; Chollet, Gerard
2006-05-01
A GMM based audio visual speaker verification system is described and an Active Appearance Model with a linear speaker transformation system is used to evaluate the robustness of the verification. An Active Appearance Model (AAM) is used to automatically locate and track a speaker's face in a video recording. A Gaussian Mixture Model (GMM) based classifier (BECARS) is used for face verification. GMM training and testing is accomplished on DCT based extracted features of the detected faces. On the audio side, speech features are extracted and used for speaker verification with the GMM based classifier. Fusion of both audio and video modalities for audio visual speaker verification is compared with face verification and speaker verification systems. To improve the robustness of the multimodal biometric identity verification system, an audio visual imposture system is envisioned. It consists of an automatic voice transformation technique that an impostor may use to assume the identity of an authorized client. Features of the transformed voice are then combined with the corresponding appearance features and fed into the GMM based system BECARS for training. An attempt is made to increase the acceptance rate of the impostor and to analyzing the robustness of the verification system. Experiments are being conducted on the BANCA database, with a prospect of experimenting on the newly developed PDAtabase developed within the scope of the SecurePhone project.
NASA Astrophysics Data System (ADS)
Jeng, Jin-Tsong; Lee, Tsu-Tian
1998-03-01
In this paper, we propose a neural network model with a faster learning speed and a good approximate capability in the function approximation for solving worst-case identification of nonlinear systems H(infinity ) problems. Specifically, via the approximate transformable technique, we develop a Chebyshev Polynomials Based unified model neural network for solving the worst-case identification of nonlinear systems H(infinity ) problems. Based on this approximate transformable technique, the relationship between the single-layered neural network and multi-layered perceptron neural network is derived. It is shown that the Chebyshev Polynomials Based unified model neural network can be represented as a functional link network that is based on Chebyshev polynomials. We also derive a new learning algorithm such that the infinity norm of the transfer function from the input to the output is under a prescribed level. It turns out that the Chebyshev Polynomials Based unified model neural network not only has the same capability of universal approximator, but also has a faster learning speed than multi-layered perceptron or the recurrent neural network in the deterministic worst-case identification of nonlinear systems H(infinity ) problems.
Phase demodulation method from a single fringe pattern based on correlation with a polynomial form.
Robin, Eric; Valle, Valéry; Brémand, Fabrice
2005-12-01
The method presented extracts the demodulated phase from only one fringe pattern. Locally, this method approaches the fringe pattern morphology with the help of a mathematical model. The degree of similarity between the mathematical model and the real fringe is estimated by minimizing a correlation function. To use an optimization process, we have chosen a polynomial form such as a mathematical model. However, the use of a polynomial form induces an identification procedure with the purpose of retrieving the demodulated phase. This method, polynomial modulated phase correlation, is tested on several examples. Its performance, in terms of speed and precision, is presented on very noised fringe patterns.
NASA Astrophysics Data System (ADS)
Erdogan, Eren; Onur Karslioglu, Mahmut; Durmaz, Murat; Aghakarimi, Armin
2014-05-01
In this study, particle filter (PF) which is mainly based on the Monte Carlo simulation technique has been carried out for polynomial modeling of the local ionospheric conditions above the selected ground based stations. Less sensitivity to the errors caused by linearization of models and the effect of unknown or unmodeled components in the system model is one of the advantages of the particle filter as compared to the Kalman filter which is commonly used as a recursive filtering method in VTEC modeling. Besides, probability distribution of the system models is not necessarily required to be Gaussian. In this work third order polynomial function has been incorporated into the particle filter implementation to represent the local VTEC distribution. Coefficients of the polynomial model presenting the ionospheric parameters and the receiver inter frequency biases are the unknowns forming the state vector which has been estimated epoch-wise for each ground station. To consider the time varying characteristics of the regional VTEC distribution, dynamics of the state vector parameters changing permanently have been modeled using the first order Gauss-Markov process. In the processing of the particle filtering, multi-variety probability distribution of the state vector through the time has been approximated by means of randomly selected samples and their associated weights. A known drawback of the particle filtering is that the increasing number of the state vector parameters results in an inefficient filter performance and requires more samples to represent the probability distribution of the state vector. Considering the total number of unknown parameters for all ground stations, estimation of these parameters which were inserted into a single state vector has caused the particle filter to produce inefficient results. To solve this problem, the PF implementation has been carried out separately for each ground station at current time epochs. After estimation of unknown
Nested polynomial trends for the improvement of Gaussian process-based predictors
NASA Astrophysics Data System (ADS)
Perrin, G.; Soize, C.; Marque-Pucheu, S.; Garnier, J.
2017-10-01
The role of simulation keeps increasing for the sensitivity analysis and the uncertainty quantification of complex systems. Such numerical procedures are generally based on the processing of a huge amount of code evaluations. When the computational cost associated with one particular evaluation of the code is high, such direct approaches based on the computer code only, are not affordable. Surrogate models have therefore to be introduced to interpolate the information given by a fixed set of code evaluations to the whole input space. When confronted to deterministic mappings, the Gaussian process regression (GPR), or kriging, presents a good compromise between complexity, efficiency and error control. Such a method considers the quantity of interest of the system as a particular realization of a Gaussian stochastic process, whose mean and covariance functions have to be identified from the available code evaluations. In this context, this work proposes an innovative parametrization of this mean function, which is based on the composition of two polynomials. This approach is particularly relevant for the approximation of strongly non linear quantities of interest from very little information. After presenting the theoretical basis of this method, this work compares its efficiency to alternative approaches on a series of examples.
Audio-biofeedback for balance improvement: an accelerometry-based system.
Chiari, Lorenzo; Dozza, Marco; Cappello, Angelo; Horak, Fay B; Macellari, Velio; Giansanti, Daniele
2005-12-01
This paper introduces a prototype audio-biofeedback system for balance improvement through the sonification using trunk kinematic information. In tests of this system, normal healthy subjects performed several trials in which they stood quietly in three sensory conditions while wearing an accelerometric sensory unit and headphones. The audio-biofeedback system converted in real-time the two-dimensional horizontal trunk accelerations into a stereo sound by modulating its frequency, level, and left/right balance. Preliminary results showed that subjects improved balance using this audio-biofeedback system and that this improvement was greater the more that balance was challenged by absent or unreliable sensory cues. In addition, high correlations were found between the center of pressure displacement and trunk acceleration, suggesting accelerometers may be useful for quantifying standing balance.
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H.
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Papadopoulos, Anthony
2009-01-01
The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined. PMID:19333397
Multivariate Polynomials Estimation Based on GradientBoost in Multimodal Biometrics
NASA Astrophysics Data System (ADS)
Parviz, Mehdi; Moin, M. Shahram
One of the traditional criteria to estimate the value of coefficients of multivariate polynomials in regression applications is MSE, which is known as OWM in classifier combination literature. In this paper, we address the use of GradientBoost algorithm to estimate coefficients of multivariate polynomials for score fusion level in multimodal biometric systems. Our experiments on NIST-bssr1 score database showed an improvement in verification accuracy and also reduction of number of coefficients, which increased the memory efficiency. In addition, we examined combination of OWM, and GradientBoost which showed better ROC performance and lower model order compared to OWM alone.
Zhang, Zhengyi; Zhang, Gaoyan; Zhang, Yuanyuan; Liu, Hong; Xu, Junhai; Liu, Baolin
2017-09-27
This study aimed to investigate the functional connectivity in the brain during the cross-modal integration of polyphonic characters in Chinese audio-visual sentences. The visual sentences were all semantically reasonable and the audible pronunciations of the polyphonic characters in corresponding sentences contexts varied in four conditions. To measure the functional connectivity, correlation, coherence and phase synchronization index (PSI) were used, and then multivariate pattern analysis was performed to detect the consensus functional connectivity patterns. These analyses were confined in the time windows of three event-related potential components of P200, N400 and late positive shift (LPS) to investigate the dynamic changes of the connectivity patterns at different cognitive stages. We found that when differentiating the polyphonic characters with abnormal pronunciations from that with the appreciate ones in audio-visual sentences, significant classification results were obtained based on the coherence in the time window of the P200 component, the correlation in the time window of the N400 component and the coherence and PSI in the time window the LPS component. Moreover, the spatial distributions in these time windows were also different, with the recruitment of frontal sites in the time window of the P200 component, the frontal-central-parietal regions in the time window of the N400 component and the central-parietal sites in the time window of the LPS component. These findings demonstrate that the functional interaction mechanisms are different at different stages of audio-visual integration of polyphonic characters.
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony J.; Munoz, Cesar A.
2014-01-01
Sturm's Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semiopen interval. This paper presents a formalization of this theorem in the PVS theorem prover, as well as a decision procedure that checks whether a polynomial is always positive, nonnegative, nonzero, negative, or nonpositive on any input interval. The soundness and completeness of the decision procedure is proven in PVS. The procedure and its correctness properties enable the implementation of a PVS strategy for automatically proving existential and universal univariate polynomial inequalities. Since the decision procedure is formally verified in PVS, the soundness of the strategy depends solely on the internal logic of PVS rather than on an external oracle. The procedure itself uses a combination of Sturm's Theorem, an interval bisection procedure, and the fact that a polynomial with exactly one root in a bounded interval is always nonnegative on that interval if and only if it is nonnegative at both endpoints.
NASA Technical Reports Server (NTRS)
Logalbo, P.; Benedicto, J.; Viola, R.
1993-01-01
Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.
NASA Astrophysics Data System (ADS)
Esquef, Paulo A. A.
The first reproducible recording of human voice was made in 1877 on a tinfoil cylinder phonograph devised by Thomas A. Edison. Since then, much effort has been expended to find better ways to record and reproduce sounds. By the mid-1920s, the first electrical recordings appeared and gradually took over purely acoustic recordings. The development of electronic computers, in conjunction with the ability to record data onto magnetic or optical media, culminated in the standardization of compact disc format in 1980. Nowadays, digital technology is applied to several audio applications, not only to improve the quality of modern and old recording/reproduction techniques, but also to trade off sound quality for less storage space and less taxing transmission capacity requirements.
Vector quantizer based on brightness maps for image compression with the polynomial transform
NASA Astrophysics Data System (ADS)
Escalante-Ramirez, Boris; Moreno-Gutierrez, Mauricio; Silvan-Cardenas, Jose L.
2002-11-01
We present a vector quantization scheme acting on brightness fields based on distance/distortion criteria correspondent with psycho-visual aspects. These criteria quantify sensorial distortion between vectors that represent either portions of a digital image or alternatively, coefficients of a transform-based coding system. In the latter case, we use an image representation model, namely the Hermite transform, that is based on some of the main perceptual characteristics of the human vision system (HVS) and in their response to light stimulus. Energy coding in the brightness domain, determination of local structure, code-book training and local orientation analysis are all obtained by means of the Hermite transform. This paper, for thematic reasons, is divided in four sections. The first one will shortly highlight the importance of having newer and better compression algorithms. This section will also serve to explain briefly the most relevant characteristics of the HVS, advantages and disadvantages related with the behavior of our vision in front of ocular stimulus. The second section shall go through a quick review of vector quantization techniques, focusing their performance on image treatment, as a preview for the image vector quantizer compressor actually constructed in section 5. Third chapter was chosen to concentrate the most important data gathered on brightness models. The building of this so-called brightness maps (quantification of the human perception on the visible objects reflectance), in a bi-dimensional model, will be addressed here. The Hermite transform, a special case of polynomial transforms, and its usefulness, will be treated, in an applicable discrete form, in the fourth chapter. As we have learned from previous works 1, Hermite transform has showed to be a useful and practical solution to efficiently code the energy within an image block, deciding which kind of quantization is to be used upon them (whether scalar or vector). It will also be
Linear precoding based on polynomial expansion: reducing complexity in massive MIMO.
Mueller, Axel; Kammoun, Abla; Björnson, Emil; Debbah, Mérouane
Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or less automatically by enlarging system dimensions. However, the computational precoding complexity grows with the system dimensions. For example, the close-to-optimal and relatively "antenna-efficient" regularized zero-forcing (RZF) precoding is very complicated to implement in practice, since it requires fast inversions of large matrices in every coherence period. Motivated by the high performance of RZF, we propose to replace the matrix inversion and multiplication by a truncated polynomial expansion (TPE), thereby obtaining the new TPE precoding scheme which is more suitable for real-time hardware implementation and significantly reduces the delay to the first transmitted symbol. The degree of the matrix polynomial can be adapted to the available hardware resources and enables smooth transition between simple maximum ratio transmission and more advanced RZF. By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.
pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis
Giannakopoulos, Theodoros
2015-01-01
Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library. PMID:26656189
pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis.
Giannakopoulos, Theodoros
2015-01-01
Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library.
Towards top-hat spatial shaping of ultrafast laser beam based on Zernike polynomials
NASA Astrophysics Data System (ADS)
Mauclair, Cyril; Faure, Nicolas; Houzet, Julien
2016-04-01
Femtosecond laser micro machining of surfaces knows a gain of interest as it demonstrates efficient and precise processing with reduced side effects around the irradiated zone, and also because of the remarkable costs reduction and reliability improvements of nowadays commercially available sources. Controlling the intensity distribution spatially can offer a supplementary degree of flexibility and precision in achieving user-defined ablation spatial profile, drilling, cutting of materials or in-volume laser-induced modifications. In this scope, the possibility to generate a top-hat intensity distribution by spatially shaping the beam wavefront is studied in this work. An optimization of Zernike polynomials coefficients is conducted to numerically determine an adequate phase mask that shapes the laser intensity distribution following a targeted top hat distribution in the processing plane, usually at the focal length of a converging lens. The efficiency of the method is numerically investigated in the optimization by evaluation of the root mean square error (RMS) between the top-hat target and the calculated laser distribution in the far field. We numerically verify that acceptable top-hat beam shaping of various size can be achieved with a sufficient number of Zernike polynomials, opening the way to phase mask calculations adapted to the wavefront modulator ability to reproduce Zernike polynomials.
A context-aware-based audio guidance system for blind people using a multimodal profile model.
Lin, Qing; Han, Youngjoon
2014-10-09
A wearable guidance system is designed to provide context-dependent guidance messages to blind people while they traverse local pathways. The system is composed of three parts: moving scene analysis, walking context estimation and audio message delivery. The combination of a downward-pointing laser scanner and a camera is used to solve the challenging problem of moving scene analysis. By integrating laser data profiles and image edge profiles, a multimodal profile model is constructed to estimate jointly the ground plane, object locations and object types, by using a Bayesian network. The outputs of the moving scene analysis are further employed to estimate the walking context, which is defined as a fuzzy safety level that is inferred through a fuzzy logic model. Depending on the estimated walking context, the audio messages that best suit the current context are delivered to the user in a flexible manner. The proposed system is tested under various local pathway scenes, and the results confirm its efficiency in assisting blind people to attain autonomous mobility.
A Context-Aware-Based Audio Guidance System for Blind People Using a Multimodal Profile Model
Lin, Qing; Han, Youngjoon
2014-01-01
A wearable guidance system is designed to provide context-dependent guidance messages to blind people while they traverse local pathways. The system is composed of three parts: moving scene analysis, walking context estimation and audio message delivery. The combination of a downward-pointing laser scanner and a camera is used to solve the challenging problem of moving scene analysis. By integrating laser data profiles and image edge profiles, a multimodal profile model is constructed to estimate jointly the ground plane, object locations and object types, by using a Bayesian network. The outputs of the moving scene analysis are further employed to estimate the walking context, which is defined as a fuzzy safety level that is inferred through a fuzzy logic model. Depending on the estimated walking context, the audio messages that best suit the current context are delivered to the user in a flexible manner. The proposed system is tested under various local pathway scenes, and the results confirm its efficiency in assisting blind people to attain autonomous mobility. PMID:25302812
Connors, Erin C; Yazzolino, Lindsay A; Sánchez, Jaime; Merabet, Lotfi B
2013-03-27
Audio-based Environment Simulator (AbES) is virtual environment software designed to improve real world navigation skills in the blind. Using only audio based cues and set within the context of a video game metaphor, users gather relevant spatial information regarding a building's layout. This allows the user to develop an accurate spatial cognitive map of a large-scale three-dimensional space that can be manipulated for the purposes of a real indoor navigation task. After game play, participants are then assessed on their ability to navigate within the target physical building represented in the game. Preliminary results suggest that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building as indexed by their performance on a series of navigation tasks. These tasks included path finding through the virtual and physical building, as well as a series of drop off tasks. We find that the immersive and highly interactive nature of the AbES software appears to greatly engage the blind user to actively explore the virtual environment. Applications of this approach may extend to larger populations of visually impaired individuals.
NASA Astrophysics Data System (ADS)
Liang, Yanfeng; Naqvi, Syed Mohsen; Chambers, Jonathon A.
2012-12-01
Fast fixed-point independent vector analysis (FastIVA) is an improved independent vector analysis (IVA) method, which can achieve faster and better separation performance than original IVA. As an example IVA method, it is designed to solve the permutation problem in frequency domain independent component analysis by retaining the higher order statistical dependency between frequencies during learning. However, the performance of all IVA methods is limited due to the dimensionality of the parameter space commonly encountered in practical frequency-domain source separation problems and the spherical symmetry assumed with the source model. In this article, a particular permutation problem encountered in using the FastIVA algorithm is highlighted, namely the block permutation problem. Therefore a new audio video based fast fixed-point independent vector analysis algorithm is proposed, which uses video information to provide a smart initialization for the optimization problem. The method cannot only avoid the ill convergence resulting from the block permutation problem but also improve the separation performance even in noisy and high reverberant environments. Different multisource datasets including the real audio video corpus AV16.3 are used to verify the proposed method. For the evaluation of the separation performance on real room recordings, a new pitch based evaluation criterion is also proposed.
Milgram, A
2011-02-21
This comment addresses critics on the claimed stability of solution to the accelerated-predator-satiety Lotka-Volterra predator-prey problem, proposed by Dubey al. (2010. A solution to the accelerated-predator-satiety Lotka-Volterra predator-prey problem using Boubaker polynomial expansion scheme. Journal of Theoretical Biology 264, 154-160). Critics are based on incompatibilities between the claimed asymptotic behavior and the presumed Malthusian growth of prey population in absence of predator. Copyright Â© 2010 Elsevier Ltd. All rights reserved.
Suwansukho, Kajpanya; Sumriddetchkajorn, Sarun; Buranasiri, Prathan
2014-04-01
With our single-wavelength spectral-imaging-based Thai jasmine rice identification system, we emphasize here that a combination of an appropriate polynomial fitting function on the determined chain code and a well-trained neural network configuration is highly sufficient in achieving a low false acceptance rate (FAR) and a low false rejection rate (FRR). Experimental demonstration shows promising results in identifying our desired Thai jasmine rice from six unwanted rice varieties with FAR and FRR values of 6.2% and 7.1%, respectively. Additional key performances include a much faster identification time of 30.5 s, chemical-free analysis, robustness, and adaptive learning.
Audio-visual interactions in environment assessment.
Preis, Anna; Kociński, Jędrzej; Hafke-Dys, Honorata; Wrzosek, Małgorzata
2015-08-01
The aim of the study was to examine how visual and audio information influences audio-visual environment assessment. Original audio-visual recordings were made at seven different places in the city of Poznań. Participants of the psychophysical experiments were asked to rate, on a numerical standardized scale, the degree of comfort they would feel if they were in such an environment. The assessments of audio-visual comfort were carried out in a laboratory in four different conditions: (a) audio samples only, (b) original audio-visual samples, (c) video samples only, and (d) mixed audio-visual samples. The general results of this experiment showed a significant difference between the investigated conditions, but not for all the investigated samples. There was a significant improvement in comfort assessment when visual information was added (in only three out of 7 cases), when conditions (a) and (b) were compared. On the other hand, the results show that the comfort assessment of audio-visual samples could be changed by manipulating the audio rather than the video part of the audio-visual sample. Finally, it seems, that people could differentiate audio-visual representations of a given place in the environment based rather of on the sound sources' compositions than on the sound level. Object identification is responsible for both landscape and soundscape grouping.
A ROM-less direct digital frequency synthesizer based on hybrid polynomial approximation.
Omran, Qahtan Khalaf; Islam, Mohammad Tariqul; Misran, Norbahiah; Faruque, Mohammad Rashed Iqbal
2014-01-01
In this paper, a novel design approach for a phase to sinusoid amplitude converter (PSAC) has been investigated. Two segments have been used to approximate the first sine quadrant. A first linear segment is used to fit the region near the zero point, while a second fourth-order parabolic segment is used to approximate the rest of the sine curve. The phase sample, where the polynomial changed, was chosen in such a way as to achieve the maximum spurious free dynamic range (SFDR). The invented direct digital frequency synthesizer (DDFS) has been encoded in VHDL and post simulation was carried out. The synthesized architecture exhibits a promising result of 90 dBc SFDR. The targeted structure is expected to show advantages for perceptible reduction of hardware resources and power consumption as well as high clock speeds.
NASA Astrophysics Data System (ADS)
Suwansukho, Kajpanya; Sumriddetchkajorn, Sarun; Buranasiri, Prathan
2013-06-01
We previously showed that a combination of image thresholding, chain coding, elliptic Fourier descriptors, and artificial neural network analysis provided a low false acceptance rate (FAR) and a false rejection rate (FRR) of 11.0% and 19.0%, respectively, in identify Thai jasmine rice from three unwanted rice varieties. In this work, we highlight that only a polynomial function fitting on the determined chain code and the neural network analysis are highly sufficient in obtaining a very low FAR of < 3.0% and a very low 0.3% FRR for the separation of Thai jasmine rice from Chainat 1 (CNT1), Prathumtani 1 (PTT1), and Hom-Pitsanulok (HPSL) rice varieties. With this proposed approach, the analytical time is tremendously suppressed from 4,250 seconds down to 2 seconds, implying extremely high potential in practical deployment.
A ROM-Less Direct Digital Frequency Synthesizer Based on Hybrid Polynomial Approximation
Omran, Qahtan Khalaf; Islam, Mohammad Tariqul; Misran, Norbahiah; Faruque, Mohammad Rashed Iqbal
2014-01-01
In this paper, a novel design approach for a phase to sinusoid amplitude converter (PSAC) has been investigated. Two segments have been used to approximate the first sine quadrant. A first linear segment is used to fit the region near the zero point, while a second fourth-order parabolic segment is used to approximate the rest of the sine curve. The phase sample, where the polynomial changed, was chosen in such a way as to achieve the maximum spurious free dynamic range (SFDR). The invented direct digital frequency synthesizer (DDFS) has been encoded in VHDL and post simulation was carried out. The synthesized architecture exhibits a promising result of 90 dBc SFDR. The targeted structure is expected to show advantages for perceptible reduction of hardware resources and power consumption as well as high clock speeds. PMID:24892092
Huang, Tianjin; Jia, Li; Menenti, Massimo; Lu, Jing
2017-01-01
We present in this paper a polynomial fitting method applicable to segments of footprints measured by the Geoscience Laser Altimeter System (GLAS) to estimate glacier thickness change. Our modification makes the method applicable to complex topography, such as a large mountain glacier. After a full analysis of the planar fitting method to characterize errors of estimates due to complex topography, we developed an improved fitting method by adjusting a binary polynomial surface to local topography. The improved method and the planar fitting method were tested on the accumulation areas of the Naimona’nyi glacier and Yanong glacier on along-track facets with lengths of 1000 m, 1500 m, 2000 m, and 2500 m, respectively. The results show that the improved method gives more reliable estimates of changes in elevation than planar fitting. The improved method was also tested on Guliya glacier with a large and relatively flat area and the Chasku Muba glacier with very complex topography. The results in these test sites demonstrate that the improved method can give estimates of glacier thickness change on glaciers with a large area and a complex topography. Additionally, the improved method based on GLAS Data and Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-DEM) can give estimates of glacier thickness change from 2000 to 2008/2009, since it takes the 2000 SRTM-DEM as a reference, which is a longer period than 2004 to 2008/2009, when using the GLAS data only and the planar fitting method. PMID:28783059
Huang, Tianjin; Jia, Li; Menenti, Massimo; Lu, Jing; Zhou, Jie; Hu, Guangcheng
2017-08-05
We present in this paper a polynomial fitting method applicable to segments of footprints measured by the Geoscience Laser Altimeter System (GLAS) to estimate glacier thickness change. Our modification makes the method applicable to complex topography, such as a large mountain glacier. After a full analysis of the planar fitting method to characterize errors of estimates due to complex topography, we developed an improved fitting method by adjusting a binary polynomial surface to local topography. The improved method and the planar fitting method were tested on the accumulation areas of the Naimona'nyi glacier and Yanong glacier on along-track facets with lengths of 1000 m, 1500 m, 2000 m, and 2500 m, respectively. The results show that the improved method gives more reliable estimates of changes in elevation than planar fitting. The improved method was also tested on Guliya glacier with a large and relatively flat area and the Chasku Muba glacier with very complex topography. The results in these test sites demonstrate that the improved method can give estimates of glacier thickness change on glaciers with a large area and a complex topography. Additionally, the improved method based on GLAS Data and Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-DEM) can give estimates of glacier thickness change from 2000 to 2008/2009, since it takes the 2000 SRTM-DEM as a reference, which is a longer period than 2004 to 2008/2009, when using the GLAS data only and the planar fitting method.
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.
2016-01-01
In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.
Tutte polynomial of the Apollonian network
NASA Astrophysics Data System (ADS)
Liao, Yunhua; Hou, Yaoping; Shen, Xiaoling
2014-10-01
The Tutte polynomial of a graph, or equivalently the q-state Potts model partition function, is a two-variable polynomial graph invariant of considerable importance in both combinatorics and statistical physics. The computation of this invariant for a graph is, in general, NP-hard. The aim of this paper is to compute the Tutte polynomial of the Apollonian network. Based on the well-known duality property of the Tutte polynomial, we extend the subgraph-decomposition method. In particular, we do not calculate the Tutte polynomial of the Apollonian network directly, instead we calculate the Tutte polynomial of the Apollonian dual graph. By using the close relation between the Apollonian dual graph and the Hanoi graph, we express the Tutte polynomial of the Apollonian dual graph in terms of that of the Hanoi graph. As an application, we also give the number of spanning trees of the Apollonian network.
ERIC Educational Resources Information Center
Rahnlom, Harold F.; Pedrick, Lillian
1978-01-01
This article describes Zimdex, an audio indexing system developed to solve the problem of indexing audio materials for individual instruction in the content area of the mathematics of life insurance. (Author)
Silbar, R.R.
1998-09-28
WhistleSoft, Inc., proposed to convert a successful pedagogical experiment into multimedia software, making it accessible to a much broader audience. A colleague, Richard J. Jacob, has been teaching a workshop course in mathematical methods at Arizona State University (ASU) for lower undergraduate science majors. Students work at their own pace through paper-based tutorials containing many exercises, either with pencil and paper or with computer tools such as spreadsheets. These tutorial modules cry out for conversion into an interactive computer-based tutorial course that is suitable both for the classroom and for self-paced, independent learning. WhistleSoft has made a prototype of one such module, Legendre Polynomials, under Subcontract (No F97440018-35) with the Los Alamos Laboratory`s Technology Commercialization Office for demonstration and marketing purposes.
NASA Astrophysics Data System (ADS)
Lv, Qian; Su, Tao; Zheng, Jibin
2016-01-01
In inverse synthetic aperture radar (ISAR) imaging of targets with complex motion, the azimuth echoes have to be modeled as multicomponent cubic phase signals (CPSs) after motion compensation. For the CPS model, the chirp rate and the quadratic chirp rate deteriorate the ISAR image quality due to the Doppler frequency shift; thus, an effective parameter estimation algorithm is required. This paper focuses on a parameter estimation algorithm for multicomponent CPSs based on the local polynomial ambiguity function (LPAF), which is simple and can be easily implemented via the complex multiplication and fast Fourier transform. Compared with the existing parameter estimation algorithm for CPS, the proposed algorithm can achieve a better compromise between performance and computational complexity. Then, the high-quality ISAR image can be obtained by the proposed LPAF-based ISAR imaging algorithm. The results of the simulated data demonstrate the effectiveness of the proposed algorithm.
Karagiannis, Georgios Lin, Guang
2014-02-15
Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, by coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.
Karagiannis, Georgios; Lin, Guang
2014-02-15
Generalized polynomial chaos (gPC) expansions allow the representation of the solution of a stochastic system as a series of polynomial terms. The number of gPC terms increases dramatically with the dimension of the random input variables. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs if the evaluations of the system are expensive, the evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solution, both in spacial and random domains, by coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spacial points via (1) Bayesian model average or (2) medial probability model, and their construction as functions on the spacial domain via spline interpolation. The former accounts the model uncertainty and provides Bayes-optimal predictions; while the latter, additionally, provides a sparse representation of the solution by evaluating the expansion on a subset of dominating gPC bases when represented as a gPC expansion. Moreover, the method quantifies the importance of the gPC bases through inclusion probabilities. We design an MCMC sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed method is suitable for, but not restricted to, problems whose stochastic solution is sparse at the stochastic level with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the good performance of the proposed method and make comparisons with others on 1D, 14D and 40D in random space elliptic stochastic partial differential equations.
Improved polynomial remainder sequences for Ore polynomials.
Jaroschek, Maximilian
2013-11-01
Polynomial remainder sequences contain the intermediate results of the Euclidean algorithm when applied to (non-)commutative polynomials. The running time of the algorithm is dependent on the size of the coefficients of the remainders. Different ways have been studied to make these as small as possible. The subresultant sequence of two polynomials is a polynomial remainder sequence in which the size of the coefficients is optimal in the generic case, but when taking the input from applications, the coefficients are often larger than necessary. We generalize two improvements of the subresultant sequence to Ore polynomials and derive a new bound for the minimal coefficient size. Our approach also yields a new proof for the results in the commutative case, providing a new point of view on the origin of the extraneous factors of the coefficients.
Chaos, Fractals, and Polynomials.
ERIC Educational Resources Information Center
Tylee, J. Louis; Tylee, Thomas B.
1996-01-01
Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)
Factoring Polynomials and Fibonacci.
ERIC Educational Resources Information Center
Schwartzman, Steven
1986-01-01
Discusses the factoring of polynomials and Fibonacci numbers, offering several challenges teachers can give students. For example, they can give students a polynomial containing large numbers and challenge them to factor it. (JN)
Factoring Polynomials and Fibonacci.
ERIC Educational Resources Information Center
Schwartzman, Steven
1986-01-01
Discusses the factoring of polynomials and Fibonacci numbers, offering several challenges teachers can give students. For example, they can give students a polynomial containing large numbers and challenge them to factor it. (JN)
Chaos, Fractals, and Polynomials.
ERIC Educational Resources Information Center
Tylee, J. Louis; Tylee, Thomas B.
1996-01-01
Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)
Generalised polynomial chaos-based uncertainty quantification for planning MRgLITT procedures.
Fahrenholtz, Samuel J; Stafford, R Jason; Maier, Florian; Hazle, John D; Fuentes, David
2013-06-01
A generalised polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided laser-induced thermal therapies (MRgLITT). The Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n = 4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. Optical parameters provided the highest variance in the model output (peak standard deviation: anisotropy 3.51 °C, absorption 2.94 °C, scattering 1.84 °C, conductivity 1.43 °C, and perfusion 0.94 °C). Further, within the statistical sense considered, a non-linear model of the temperature and damage-dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. Given parameter uncertainties and mathematical modelling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning.
Generalized Polynomial Chaos Based Uncertainty Quantification for Planning MRgLITT Procedures
Fahrenholtz, S.; Stafford, R. J.; Maier, F.; Hazle, J. D.; Fuentes, D.
2014-01-01
Purpose A generalized polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided Laser Induced Thermal Therapies (MRgLITT). Methods Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n=4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. Results Within the range of physically meaningful constitutive values relevant to the ablative temperature regime of MRgLITT, the sensitivity study indicated that the optical parameters, particularly the anisotropy factor, created the most variance in the stochastic model's output temperature prediction. Further, within the statistical sense considered, a nonlinear model of the temperature and damage dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. Conclusions Given parameter uncertainties and mathematical modeling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning. PMID:23692295
Three-Dimensional Audio Client Library
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2005-01-01
The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.
Digital Advances in Contemporary Audio Production.
ERIC Educational Resources Information Center
Shields, Steven O.
Noting that a revolution in sonic high fidelity occurred during the 1980s as digital-based audio production methods began to replace traditional analog modes, this paper offers both an overview of digital audio theory and descriptions of some of the related digital production technologies that have begun to emerge from the mating of the computer…
Digital Advances in Contemporary Audio Production.
ERIC Educational Resources Information Center
Shields, Steven O.
Noting that a revolution in sonic high fidelity occurred during the 1980s as digital-based audio production methods began to replace traditional analog modes, this paper offers both an overview of digital audio theory and descriptions of some of the related digital production technologies that have begun to emerge from the mating of the computer…
Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.
2013-01-01
The Standard-Based Polynomial Interpolation (SBPIn) method is a new simple three-step protocol proposed to address common gel-to-gel variations for the comparison of sample profiles across multiple DGGE gels. The advantages of this method include no requirement for additional software or modification of the standard DGGE protocol. PMID:23234884
Cross-modal retrieval of scripted speech audio
NASA Astrophysics Data System (ADS)
Owen, Charles B.; Makedon, Fillia
1997-12-01
This paper describes an approach to the problem of searching speech-based digital audio using cross-modal information retrieval. Audio containing speech (speech-based audio) is difficult to search. Open vocabulary speech recognition is advancing rapidly, but cannot yield high accuracy in either search or transcription modalities. However, text can be searched quickly and efficiently with high accuracy. Script- light digital audio is audio that has an available transcription. This is a surprisingly large class of content including legal testimony, broadcasting, dramatic productions and political meetings and speeches. An automatic mechanism for deriving the synchronization between the transcription and the audio allows for very accurate retrieval of segments of that audio. The mechanism described in this paper is based on building a transcription graph from the text and computing biphone probabilities for the audio. A modified beam search algorithm is presented to compute the alignment.
NASA Astrophysics Data System (ADS)
Davis, Mark
This chapter surveys devices and systems associated with audio and electroacoustics: the acquisition, transmission, storage, and reproduction of audio. The chapter provides an historical overview of the field since before the days of Edison and Bell to the present day, and analyzes performance of audio transducers, components and systems from basic psychoacoustic principles, to arrive at an assessment of the perceptual performance of such elements and an indication of possible directions for future progress.
NASA Astrophysics Data System (ADS)
Davis, Mark F.
This chapter surveys devices and systems associated with audio and electroacoustics: The acquisition, transmission, storage, and reproduction of audio. The chapter provides an historical overview of the field since before the days of Edison and Bell to the present day, and analyzes performance of audio transducers, components and systems from basic psychoacoustic principles, to arrive at an assessment of the perceptual performance of such elements and an indication of possible directions for future progress.
Arends, Johan B; van Dorp, Jasper; van Hoek, Dennis; Kramer, Niels; van Mierlo, Petra; van der Vorst, Derek; Tan, Francis I Y
2016-09-01
We evaluated the performance of audio-based detection of major seizures (tonic-clonic and long generalized tonic) in adult patients with intellectual disability living in an institute for residential care. First, we checked in a random sample (n=17, 102 major seizures) how many patients have recognizable sounds during these seizures. In the second part of this trial, we followed 10 patients (who had major seizures with recognizable sounds) during four weeks with an acoustic monitoring system developed by CLB ('CLB-monitor') and video camera. In week 1, we adapted the sound detection threshold until, per night, a maximum of 20 sounds was found. During weeks 2-4, we selected the epilepsy-related sounds and performed independent video verification and labeling ('snoring', 'laryngeal contraction') of the seizures. The video images were also fully screened for false negatives. In the third part, algorithms in the CLB-monitor detected one specific sound (sleep-related snoring) to illustrate the value of automatic sound recognition. Part 1: recognizable sounds (louder than whispering) occurred in 23 (51%) of the 45 major seizures, 20 seizures (45%) were below this threshold, and 2 (4%) were without any sound. Part 2: in the follow-up group (n=10, 112 major seizures; mean: 11.2, range: 1-30), we found a mean sensitivity of 0.81 (range: 0.33-1.00) and a mean positive predictive value of 0.40 (range: 0.06-1.00). All false positive alarms (mean value: 1.29 per night) were due to minor seizures. We missed 4 seizures (3%) because of lack of sound and 10 (9%) because of sounds below the system threshold. Part 3: the machine-learning algorithms in the CLB-monitor resulted in an overall accuracy for 'snoring' of 98.3%. Audio detection of major seizures is possible in half of the patients. Lower sound detection thresholds may increase the proportion of suitable candidates. Human selection of seizure-related sounds has a high sensitivity and moderate positive predictive value
Independent component analysis for audio signal separation
NASA Astrophysics Data System (ADS)
Wellhausen, Jens; Gnann, Volker
2005-10-01
In this paper an audio separation algorithm is presented, which is based on Independent Component Analysis (ICA). Audio separation could be the basis for many applications for example in the field of telecommunications, quality enhancement of audio recordings or audio classification tasks. Well known ICA algorithms are not usable for real-world recordings at the time, because they are designed for signal mixtures based on linear and over time constant mixing matrices. To adapt a standard ICA algorithm for real-world two-channel auditory scenes with two audio sources, the input audio streams are segmented in the time domain and a constant mixing matrix within a segment is assumed. The next steps are a time-delay estimation for each audio source in the mixture and a determination of the number of existing sources. In the following processing steps, for each source the input signals are time shifted and a standard ICA for linear mixtures is performed. After that, the remaining tasks are an evaluation of the ICA results and the construction of the resulting audio streams containing the separated sources.
47 CFR 87.483 - Audio visual warning systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Audio visual warning systems. 87.483 Section 87... AVIATION SERVICES Stations in the Radiodetermination Service § 87.483 Audio visual warning systems. An audio visual warning system (AVWS) is a radar-based obstacle avoidance system. AVWS activates...
NASA Astrophysics Data System (ADS)
Mahata, Avik; Mukhopadhyay, Tanmoy; Adhikari, Sondipon
2016-03-01
Nano-twinned structures are mechanically stronger, ductile and stable than its non-twinned form. We have investigated the effect of varying twin spacing and twin boundary width (TBW) on the yield strength of the nano-twinned copper in a probabilistic framework. An efficient surrogate modelling approach based on polynomial chaos expansion has been proposed for the analysis. Effectively utilising 15 sets of expensive molecular dynamics simulations, thousands of outputs have been obtained corresponding to different sets of twin spacing and twin width using virtual experiments based on the surrogates. One of the major outcomes of this work is that there exists an optimal combination of twin boundary spacing and twin width until which the strength can be increased and after that critical point the nanowires weaken. This study also reveals that the yield strength of nano-twinned copper is more sensitive to TBW than twin spacing. Such robust inferences have been possible to be drawn only because of applying the surrogate modelling approach, which makes it feasible to obtain results corresponding to 40 000 combinations of different twin boundary spacing and twin width in a computationally efficient framework.
NASA Astrophysics Data System (ADS)
Hoteit, I.; Sraj, I.; Zedler, S. E.; Jackson, C. S.; Knio, O. M.
2016-02-01
We present a Polynomial Chaos (PC)-based Bayesian inference method for quantifying the uncertainties of K-Profile Parametrization (KPP) model in MIT General Circulation Model (MITgcm). The inference of the uncertain parameters is based on a Markov Chain Monte Carlo (MCMC) scheme that utilizes a newly formulated test statistic taking into account the different components representing the structures of turbulent mixing on both daily and seasonal timescales in addition to the data quality, and filters for the effects of parameter perturbations over those due to changes in the wind. To avoid the prohibitive computational cost of integrating the MITgcm model at each MCMC iteration, we build a surrogate model for the test statistic using the PC method. The traditional spectral projection method for finding the PC coefficients suffered from convergence issues due to the internal noise in the model predictions. Instead, a Basis-Pursuit-DeNoising (BPDN) compressed sensing approach was employed that filtered out the noise and determined the PC coefficients of a representative surrogate model. The PC surrogate is then used to evaluate the test statistic in the MCMC step for sampling the posterior of the uncertain parameters. We present results of the posteriors that indicate a good agreement with the default values for two parameters of the KPP model namely the critical bulk and gradient Richardson; while the posteriors of the remaining parameters were hardly informative.
NASA Astrophysics Data System (ADS)
Sraj, Ihab; Zedler, Sarah E.; Knio, Omar M.; Jackson, Charles S.; Hoteit, Ibrahim
2016-12-01
The authors present a Polynomial Chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-Profile Parametrization (KPP) within the MIT General Circulation Model (MITgcm) of the tropical pacific. The inference of the uncertain parameters is based on a Markov Chain Monte Carlo (MCMC) scheme that utilizes a newly formulated test statistic taking into account the different components representing the structures of turbulent mixing on both daily and seasonal timescales in addition to the data quality, and filters for the effects of parameter perturbations over those due to changes in the wind. To avoid the prohibitive computational cost of integrating the MITgcm model at each MCMC iteration, we build a surrogate model for the test statistic using the PC method. To filter out the noise in the model predictions and avoid related convergence issues, we resort to a Basis-Pursuit-DeNoising (BPDN) compressed sensing approach to determine the PC coefficients of a representative surrogate model. The PC surrogate is then used to evaluate the test statistic in the MCMC step for sampling the posterior of the uncertain parameters. Results of the posteriors indicate good agreement with the default values for two parameters of the KPP model namely the critical bulk and gradient Richardson numbers; while the posteriors of the remaining parameters were barely informative.
On Polynomial Solutions of Linear Differential Equations with Polynomial Coefficients
ERIC Educational Resources Information Center
Si, Do Tan
1977-01-01
Demonstrates a method for solving linear differential equations with polynomial coefficients based on the fact that the operators z and D + d/dz are known to be Hermitian conjugates with respect to the Bargman and Louck-Galbraith scalar products. (MLH)
NASA Technical Reports Server (NTRS)
Wood, C. A.
1974-01-01
For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.
Notes on Schubert, Grothendieck and Key Polynomials
NASA Astrophysics Data System (ADS)
Kirillov, Anatol N.
2016-03-01
We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco-Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.
Ubiquity of Kostka Polynomials
NASA Astrophysics Data System (ADS)
Kirillov, Anatol N.
2001-04-01
We report about results revolving around Kostka-Foulkes and parabolic Kostka polynomials and their connections with Representation Theory and Combinatorics. It appears that the set of all parabolic Kostka polynomials forms a semigroup, which we call Liskova semigroup. We show that polynomials frequently appearing in Representation Theory and Combinatorics belong to the Liskova semigroup. Among such polynomials we study rectangular q-Catalan numbers; generalized exponents polynomials; principal specializations of the internal product of Schur functions; generalized q-Gaussian polynomials; parabolic Kostant partition function and its q-analog certain generating functions on the set of transportation matrices. In each case we apply rigged configurations technique to obtain some interesting and new information about Kostka-Foulkes and parabolic Kostka polynomials, Kostant partition function, MacMahon, Gelfand-Tsetlin and Chan-Robbins polytopes. We describe certain connections between generalized saturation and Fulton's conjectures and parabolic Kostka polynomials; domino tableaux and rigged configurations. We study also some properties of l-restricted generalized exponents and the stable behaviour of certain Kostka-Foulkes polynomials.
Polynomial Supertree Methods Revisited
Brinkmeyer, Malte; Griebel, Thasso; Böcker, Sebastian
2011-01-01
Supertree methods allow to reconstruct large phylogenetic trees by combining smaller trees with overlapping leaf sets into one, more comprehensive supertree. The most commonly used supertree method, matrix representation with parsimony (MRP), produces accurate supertrees but is rather slow due to the underlying hard optimization problem. In this paper, we present an extensive simulation study comparing the performance of MRP and the polynomial supertree methods MinCut Supertree, Modified MinCut Supertree, Build-with-distances, PhySIC, PhySIC_IST, and super distance matrix. We consider both quality and resolution of the reconstructed supertrees. Our findings illustrate the tradeoff between accuracy and running time in supertree construction, as well as the pros and cons of voting- and veto-based supertree approaches. Based on our results, we make some general suggestions for supertree methods yet to come. PMID:22229028
Entanglement conditions and polynomial identities
Shchukin, E.
2011-11-15
We develop a rather general approach to entanglement characterization based on convexity properties and polynomial identities. This approach is applied to obtain simple and efficient entanglement conditions that work equally well in both discrete as well as continuous-variable environments. Examples of violations of our conditions are presented.
Audio-based detection and evaluation of eating behavior using the smartwatch platform.
Kalantarian, Haik; Sarrafzadeh, Majid
2015-10-01
In recent years, smartwatches have emerged as a viable platform for a variety of medical and health-related applications. In addition to the benefits of a stable hardware platform, these devices have a significant advantage over other wrist-worn devices, in that user acceptance of watches is higher than other custom hardware solutions. In this paper, we describe signal-processing techniques for identification of chews and swallows using a smartwatch device׳s built-in microphone. Moreover, we conduct a survey to evaluate the potential of the smartwatch as a platform for monitoring nutrition. The focus of this paper is to analyze the overall applicability of a smartwatch-based system for food-intake monitoring. Evaluation results confirm the efficacy of our technique; classification was performed between apple and potato chip bites, water swallows, talking, and ambient noise, with an F-measure of 94.5% based on 250 collected samples.
Lam, H K
2012-02-01
This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.
Implementing Audio-CASI on Windows’ Platforms
Cooley, Philip C.; Turner, Charles F.
2011-01-01
Audio computer-assisted self interviewing (Audio-CASI) technologies have recently been shown to provide important and sometimes dramatic improvements in the quality of survey measurements. This is particularly true for measurements requiring respondents to divulge highly sensitive information such as their sexual, drug use, or other sensitive behaviors. However, DOS-based Audio-CASI systems that were designed and adopted in the early 1990s have important limitations. Most salient is the poor control they provide for manipulating the video presentation of survey questions. This article reports our experiences adapting Audio-CASI to Microsoft Windows 3.1 and Windows 95 platforms. Overall, our Windows-based system provided the desired control over video presentation and afforded other advantages including compatibility with a much wider array of audio devices than our DOS-based Audio-CASI technologies. These advantages came at the cost of increased system requirements --including the need for both more RAM and larger hard disks. While these costs will be an issue for organizations converting large inventories of PCS to Windows Audio-CASI today, this will not be a serious constraint for organizations and individuals with small inventories of machines to upgrade or those purchasing new machines today. PMID:22081743
Implementing Audio-CASI on Windows' Platforms.
Cooley, Philip C; Turner, Charles F
1998-01-01
Audio computer-assisted self interviewing (Audio-CASI) technologies have recently been shown to provide important and sometimes dramatic improvements in the quality of survey measurements. This is particularly true for measurements requiring respondents to divulge highly sensitive information such as their sexual, drug use, or other sensitive behaviors. However, DOS-based Audio-CASI systems that were designed and adopted in the early 1990s have important limitations. Most salient is the poor control they provide for manipulating the video presentation of survey questions. This article reports our experiences adapting Audio-CASI to Microsoft Windows 3.1 and Windows 95 platforms. Overall, our Windows-based system provided the desired control over video presentation and afforded other advantages including compatibility with a much wider array of audio devices than our DOS-based Audio-CASI technologies. These advantages came at the cost of increased system requirements --including the need for both more RAM and larger hard disks. While these costs will be an issue for organizations converting large inventories of PCS to Windows Audio-CASI today, this will not be a serious constraint for organizations and individuals with small inventories of machines to upgrade or those purchasing new machines today.
POLYNOMIAL-BASED DISAGGREGATION OF HOURLY RAINFALL FOR CONTINUOUS HYDROLOGIC SIMULATION
Hydrologic modeling of urban watersheds for designs and analyses of stormwater conveyance facilities can be performed in either an event-based or continuous fashion. Continuous simulation requires, among other things, the use of a time series of rainfall amounts. However, for urb...
POLYNOMIAL-BASED DISAGGREGATION OF HOURLY RAINFALL FOR CONTINUOUS HYDROLOGIC SIMULATION
Hydrologic modeling of urban watersheds for designs and analyses of stormwater conveyance facilities can be performed in either an event-based or continuous fashion. Continuous simulation requires, among other things, the use of a time series of rainfall amounts. However, for urb...
ERIC Educational Resources Information Center
Bogale, Gebeyehu W.; Boer, Henk; Seydel, Erwin R.
2011-01-01
In Ethiopia the level of illiteracy in rural areas is very high. In this study, we investigated the effects of an audio HIV/AIDS prevention intervention targeted at rural illiterate females. In the intervention we used social-oriented presentation formats, such as discussion between similar females and role-play. In a pretest and posttest…
ERIC Educational Resources Information Center
Bogale, Gebeyehu W.; Boer, Henk; Seydel, Erwin R.
2011-01-01
In Ethiopia the level of illiteracy in rural areas is very high. In this study, we investigated the effects of an audio HIV/AIDS prevention intervention targeted at rural illiterate females. In the intervention we used social-oriented presentation formats, such as discussion between similar females and role-play. In a pretest and posttest…
Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng
2017-09-01
This paper investigates the problem of robust fault estimation (FE) observer design for discrete-time Takagi-Sugeno fuzzy systems via homogenous polynomially parameter-dependent Lyapunov functions. First, a novel framework of the fuzzy FE observer is established with the help of a maximum-minimum-priority-based switching mechanism. Then, for every activated switching case, a targeted result is achieved by the aid of exploring an important property of improved homogenous polynomials. Since the helpful information of the underlying system can be duly updated and effectively utilized at every sampled point, the conservatism of previous results is availably reduced. Furthermore, the proposed result is further improved by eliminating those redundant terms of the introduced matrix-valued variables. Simulation results based on a discrete-time nonlinear truck-trailer model are provided to show the advantages of the theoretic result that is developed in this paper.
Polynomial Graphs and Symmetry
ERIC Educational Resources Information Center
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Polynomial Graphs and Symmetry
ERIC Educational Resources Information Center
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Polynomial Eigenvalue Solutions to Minimal Problems in Computer Vision.
Kukelova, Zuzana; Bujnak, Martin; Pajdla, Tomas
2012-07-01
We present a method for solving systems of polynomial equations appearing in computer vision. This method is based on polynomial eigenvalue solvers and is more straightforward and easier to implement than the state-of-the-art Gröbner basis method since eigenvalue problems are well studied, easy to understand, and efficient and robust algorithms for solving these problems are available. We provide a characterization of problems that can be efficiently solved as polynomial eigenvalue problems (PEPs) and present a resultant-based method for transforming a system of polynomial equations to a polynomial eigenvalue problem. We propose techniques that can be used to reduce the size of the computed polynomial eigenvalue problems. To show the applicability of the proposed polynomial eigenvalue method, we present the polynomial eigenvalue solutions to several important minimal relative pose problems.
McGlashan, Julian; Thuesen, Mathias Aaen; Sadolin, Cathrine
2017-05-01
We aimed to study the categorizations "Overdrive" and "Edge" from the pedagogical method Complete Vocal Technique as refiners of the often ill-defined concept of "belting" by means of audio perception, laryngostroboscopic imaging, acoustics, long-term average spectrum (LTAS), and electroglottography (EGG). This is a case-control study. Twenty singers were recorded singing sustained vowels in a "belting" quality refined by audio perception as "Overdrive" and "Edge." Two studies were performed: (1) a laryngostroboscopic examination using a videonasoendoscopic camera system (Olympus) and the Laryngostrobe program (Laryngograph); (2) a simultaneous recording of the EGG and acoustic signals using Speech Studio (Laryngograph). The images were analyzed based on consensus agreement. Statistical analysis of the acoustic, LTAS, and EGG parameters was undertaken using the Student paired t test. The two modes of singing determined by audio perception have visibly different laryngeal gestures: Edge has a more constricted setting than that of Overdrive, where the ventricular folds seem to cover more of the vocal folds, the aryepiglottic folds show a sharper edge in Edge, and the cuneiform cartilages are rolled in anteromedially. LTAS analysis shows a statistical difference, particularly after the ninth harmonic, with a coinciding first formant. The combined group showed statistical differences in shimmer, harmonics-to-noise ratio, normalized noise energy, and mean sound pressure level (P ≤ 0.05). "Belting" sounds can be categorized using audio perception into two modes of singing: "Overdrive" and "Edge." This study demonstrates consistent visibly different laryngeal gestures between these modes and with some correspondingly significant differences in LTAS, EGG, and acoustic measures. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Yan, Xuedong; Liu, Yang; Xu, Yongcun
2015-01-01
Drivers' incorrect decisions of crossing signalized intersections at the onset of the yellow change may lead to red light running (RLR), and RLR crashes result in substantial numbers of severe injuries and property damage. In recent years, some Intelligent Transport System (ITS) concepts have focused on reducing RLR by alerting drivers that they are about to violate the signal. The objective of this study is to conduct an experimental investigation on the effectiveness of the red light violation warning system using a voice message. In this study, the prototype concept of the RLR audio warning system was modeled and tested in a high-fidelity driving simulator. According to the concept, when a vehicle is approaching an intersection at the onset of yellow and the time to the intersection is longer than the yellow interval, the in-vehicle warning system can activate the following audio message "The red light is impending. Please decelerate!" The intent of the warning design is to encourage drivers who cannot clear an intersection during the yellow change interval to stop at the intersection. The experimental results showed that the warning message could decrease red light running violations by 84.3 percent. Based on the logistic regression analyses, drivers without a warning were about 86 times more likely to make go decisions at the onset of yellow and about 15 times more likely to run red lights than those with a warning. Additionally, it was found that the audio warning message could significantly reduce RLR severity because the RLR drivers' red-entry times without a warning were longer than those with a warning. This driving simulator study showed a promising effect of the audio in-vehicle warning message on reducing RLR violations and crashes. It is worthwhile to further develop the proposed technology in field applications.
An Analytic Formula for the A_2 Jack Polynomials
NASA Astrophysics Data System (ADS)
Mangazeev, Vladimir V.
2007-01-01
In this letter I shall review my joint results with Vadim Kuznetsov and Evgeny Sklyanin [Indag. Math. 14 (2003), 451-482] on separation of variables (SoV) for the An Jack polynomials. This approach originated from the work [RIMS Kokyuroku 919 (1995), 27-34] where the integral representations for the A2 Jack polynomials was derived. Using special polynomial bases I shall obtain a more explicit expression for the A2 Jack polynomials in terms of generalised hypergeometric functions.
Fink, Wolfgang; Micol, Daniel
2006-01-01
We describe a computer eye model that allows for aspheric surfaces and a three-dimensional computer-based ray-tracing technique to simulate optical properties of the human eye and visual perception under various eye defects. Eye surfaces, such as the cornea, eye lens, and retina, are modeled or approximated by a set of Zernike polynomials that are fitted to input data for the respective surfaces. A ray-tracing procedure propagates light rays using Snell's law of refraction from an input object (e.g., digital image) through the eye under investigation (i.e., eye with defects to be modeled) to form a retinal image that is upside down and left-right inverted. To obtain a first-order realistic visual perception without having to model or simulate the retina and the visual cortex, this retinal image is then back-propagated through an emmetropic eye (e.g., Gullstrand exact schematic eye model with no additional eye defects) to an output screen of the same dimensions and at the same distance from the eye as the input object. Visual perception under instances of emmetropia, regular astigmatism, irregular astigmatism, and (central symmetric) keratoconus is simulated and depicted. In addition to still images, the computer ray-tracing tool presented here (simEye) permits the production of animated movies. These developments may have scientific and educational value. This tool may facilitate the education and training of both the public, for example, patients before undergoing eye surgery, and those in the medical field, such as students and professionals. Moreover, simEye may be used as a scientific research tool to investigate optical lens systems in general and the visual perception under a variety of eye conditions and surgical procedures such as cataract surgery and laser assisted in situ keratomileusis (LASIK) in particular.
NASA Technical Reports Server (NTRS)
Hymer, R. L.
1970-01-01
System provides automatic volume control for an audio amplifier or a voice communication system without introducing noise surges during pauses in the input, and without losing the initial signal when the input resumes.
2006-03-31
evaluation system which provides the user the functionality of different watermarking algorithms (embedding and detecting) with a large database of audio...with a large database of audio signals (test material). The system also provides both single and profile attacks which can be used to evaluate the...in this case, music/ hiphop and sounds/computergen) the attack suite used performs very well compared to the overall set. In these cases the
1969-11-17
Apollo 12 Public Affairs Officer (PAO) Mission Commentary, November 17, 1969. This is an hour of audio covering communications occurring between 64 hours, 38 minutes into the mission, through 79 hours, 2 minutes which was on November 17, 1969, from 0300-17:09 CST. Transcript of attached audio is available at http://www.jsc.nasa.gov/history/mission_trans/AS12_PAO.PDF, on pages 207-224 of the 979-page document.
Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}
Talamini, Vittorino
2010-02-15
Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it is not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.
Aeronautical audio broadcasting via satellite
NASA Technical Reports Server (NTRS)
Tzeng, Forrest F.
1993-01-01
A system design for aeronautical audio broadcasting, with C-band uplink and L-band downlink, via Inmarsat space segments is presented. Near-transparent-quality compression of 5-kHz bandwidth audio at 20.5 kbit/s is achieved based on a hybrid technique employing linear predictive modeling and transform-domain residual quantization. Concatenated Reed-Solomon/convolutional codes with quadrature phase shift keying are selected for bandwidth and power efficiency. RF bandwidth at 25 kHz per channel, and a decoded bit error rate at 10(exp -6) with E(sub b)/N(sub o) at 3.75 dB are obtained. An interleaver, scrambler, modem synchronization, and frame format were designed, and frequency-division multiple access was selected over code-division multiple access. A link budget computation based on a worst-case scenario indicates sufficient system power margins. Transponder occupancy analysis for 72 audio channels demonstrates ample remaining capacity to accommodate emerging aeronautical services.
Audio-visual affective expression recognition
NASA Astrophysics Data System (ADS)
Huang, Thomas S.; Zeng, Zhihong
2007-11-01
Automatic affective expression recognition has attracted more and more attention of researchers from different disciplines, which will significantly contribute to a new paradigm for human computer interaction (affect-sensitive interfaces, socially intelligent environments) and advance the research in the affect-related fields including psychology, psychiatry, and education. Multimodal information integration is a process that enables human to assess affective states robustly and flexibly. In order to understand the richness and subtleness of human emotion behavior, the computer should be able to integrate information from multiple sensors. We introduce in this paper our efforts toward machine understanding of audio-visual affective behavior, based on both deliberate and spontaneous displays. Some promising methods are presented to integrate information from both audio and visual modalities. Our experiments show the advantage of audio-visual fusion in affective expression recognition over audio-only or visual-only approaches.
Web Audio/Video Streaming Tool
NASA Technical Reports Server (NTRS)
Guruvadoo, Eranna K.
2003-01-01
In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.
NASA Astrophysics Data System (ADS)
Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei
2017-08-01
Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.
NASA Astrophysics Data System (ADS)
Karlita, Tita; Yuniarno, Eko Mulyanto; Purnama, I. Ketut Eddy; Purnomo, Mauridhi Hery
2017-06-01
Analyzing ultrasound (US) images to get the shapes and structures of particular anatomical regions is an interesting field of study since US imaging is a non-invasive method to capture internal structures of a human body. However, bone segmentation of US images is still challenging because it is strongly influenced by speckle noises and it has poor image quality. This paper proposes a combination of local phase symmetry and quadratic polynomial fitting methods to extract bone outer contour (BOC) from two dimensional (2D) B-modes US image as initial steps of three-dimensional (3D) bone surface reconstruction. By using local phase symmetry, the bone is initially extracted from US images. BOC is then extracted by scanning one pixel on the bone boundary in each column of the US images using first phase features searching method. Quadratic polynomial fitting is utilized to refine and estimate the pixel location that fails to be detected during the extraction process. Hole filling method is then applied by utilize the polynomial coefficients to fill the gaps with new pixel. The proposed method is able to estimate the new pixel position and ensures smoothness and continuity of the contour path. Evaluations are done using cow and goat bones by comparing the resulted BOCs with the contours produced by manual segmentation and contours produced by canny edge detection. The evaluation shows that our proposed methods produces an excellent result with average MSE before and after hole filling at the value of 0.65.
ECG data compression using Jacobi polynomials.
Tchiotsop, Daniel; Wolf, Didier; Louis-Dorr, Valérie; Husson, René
2007-01-01
Data compression is a frequent signal processing operation applied to ECG. We present here a method of ECG data compression utilizing Jacobi polynomials. ECG signals are first divided into blocks that match with cardiac cycles before being decomposed in Jacobi polynomials bases. Gauss quadratures mechanism for numerical integration is used to compute Jacobi transforms coefficients. Coefficients of small values are discarded in the reconstruction stage. For experimental purposes, we chose height families of Jacobi polynomials. Various segmentation approaches were considered. We elaborated an efficient strategy to cancel boundary effects. We obtained interesting results compared with ECG compression by wavelet decomposition methods. Some propositions are suggested to improve the results.
Modelling Trends in Ordered Correspondence Analysis Using Orthogonal Polynomials.
Lombardo, Rosaria; Beh, Eric J; Kroonenberg, Pieter M
2016-06-01
The core of the paper consists of the treatment of two special decompositions for correspondence analysis of two-way ordered contingency tables: the bivariate moment decomposition and the hybrid decomposition, both using orthogonal polynomials rather than the commonly used singular vectors. To this end, we will detail and explain the basic characteristics of a particular set of orthogonal polynomials, called Emerson polynomials. It is shown that such polynomials, when used as bases for the row and/or column spaces, can enhance the interpretations via linear, quadratic and higher-order moments of the ordered categories. To aid such interpretations, we propose a new type of graphical display-the polynomial biplot.
Uniform Asymptotics of Orthogonal Polynomials Arising from Coherent States
NASA Astrophysics Data System (ADS)
Dai, Dan; Hu, Weiying; Wang, Xiang-Sheng
2015-08-01
In this paper, we study a family of orthogonal polynomials {φ_n(z)} arising from nonlinear coherent states in quantum optics. Based on the three-term recurrence relation only, we obtain a uniform asymptotic expansion of φ_n(z) as the polynomial degree n tends to infinity. Our asymptotic results suggest that the weight function associated with the polynomials has an unusual singularity, which has never appeared for orthogonal polynomials in the Askey scheme. Our main technique is the Wang and Wong's difference equation method. In addition, the limiting zero distribution of the polynomials φ_n(z) is provided.
Bezanilla, F
1985-01-01
A modified digital audio processor, a video cassette recorder, and some simple added circuitry are assembled into a recording device of high capacity. The unit converts two analog channels into digital form at 44-kHz sampling rate and stores the information in digital form in a common video cassette. Bandwidth of each channel is from direct current to approximately 20 kHz and the dynamic range is close to 90 dB. The total storage capacity in a 3-h video cassette is 2 Gbytes. The information can be retrieved in analog or digital form. PMID:3978213
NASA Technical Reports Server (NTRS)
1992-01-01
Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.
NASA Technical Reports Server (NTRS)
1998-01-01
Crystal River Engineering was originally featured in Spinoff 1992 with the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. The Convolvotron was developed for Ames' research on virtual acoustic displays. Crystal River is a now a subsidiary of Aureal Semiconductor, Inc. and they together develop and market the technology, which is a 3-D (three dimensional) audio technology known commercially today as Aureal 3D (A-3D). The technology has been incorporated into video games, surround sound systems, and sound cards.
Distortion theorems for polynomials on a circle
Dubinin, V N
2000-12-31
Inequalities for the derivatives with respect to {phi}=arg z the functions ReP(z), |P(z)|{sup 2} and arg P(z) are established for an algebraic polynomial P(z) at points on the circle |z|=1. These estimates depend, in particular, on the constant term and the leading coefficient of the polynomial P(z) and improve the classical Bernstein and Turan inequalities. The method of proof is based on the techniques of generalized reduced moduli.
Shan, Peng; Peng, Silong; Zhao, Yuhui; Tang, Liang
2016-03-01
An analysis of binary mixtures of hydroxyl compound by Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR FT-IR) and classical least squares (CLS) yield large model error due to the presence of unmodeled components such as H-bonded components. To accommodate these spectral variations, polynomial-based least squares (LSP) and polynomial-based total least squares (TLSP) are proposed to capture the nonlinear absorbance-concentration relationship. LSP is based on assuming that only absorbance noise exists; while TLSP takes both absorbance noise and concentration noise into consideration. In addition, based on different solving strategy, two optimization algorithms (limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm and Levenberg-Marquardt (LM) algorithm) are combined with TLSP and then two different TLSP versions (termed as TLSP-LBFGS and TLSP-LM) are formed. The optimum order of each nonlinear model is determined by cross-validation. Comparison and analyses of the four models are made from two aspects: absorbance prediction and concentration prediction. The results for water-ethanol solution and ethanol-ethyl lactate solution show that LSP, TLSP-LBFGS, and TLSP-LM can, for both absorbance prediction and concentration prediction, obtain smaller root mean square error of prediction than CLS. Additionally, they can also greatly enhance the accuracy of estimated pure component spectra. However, from the view of concentration prediction, the Wilcoxon signed rank test shows that there is no statistically significant difference between each nonlinear model and CLS.
Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold
2017-08-11
This paper presents a hybrid fuzzy wavelet neural network (HFWNN) realized with the aid of polynomial neural networks (PNNs) and fuzzy inference-based wavelet neurons (FIWNs). Two types of FIWNs including fuzzy set inference-based wavelet neurons (FSIWNs) and fuzzy relation inference-based wavelet neurons (FRIWNs) are proposed. In particular, a FIWN without any fuzzy set component (viz., a premise part of fuzzy rule) becomes a wavelet neuron (WN). To alleviate the limitations of the conventional wavelet neural networks or fuzzy wavelet neural networks whose parameters are determined based on a purely random basis, the parameters of wavelet functions standing in FIWNs or WNs are initialized by using the C-Means clustering method. The overall architecture of the HFWNN is similar to the one of the typical PNNs. The main strategies in the design of HFWNN are developed as follows. First, the first layer of the network consists of FIWNs (e.g., FSIWN or FRIWN) that are used to reflect the uncertainty of data, while the second and higher layers consist of WNs, which exhibit a high level of flexibility and realize a linear combination of wavelet functions. Second, the parameters used in the design of the HFWNN are adjusted through genetic optimization. To evaluate the performance of the proposed HFWNN, several publicly available data are considered. Furthermore a thorough comparative analysis is covered.
Efficient isolation of polynomial's real roots
NASA Astrophysics Data System (ADS)
Rouillier, Fabrice; Zimmermann, Paul
2004-01-01
This paper revisits an algorithm isolating the real roots of a univariate polynomial using Descartes' rule of signs. It follows work of Vincent, Uspensky, Collins and Akritas, Johnson, Krandick. Our first contribution is a generic algorithm which enables one to describe all the known algorithms based on Descartes' rule of sign and the bisection strategy in a unified framework. Using that framework, a new algorithm is presented, which is optimal in terms of memory usage and as fast as both Collins and Akritas' algorithm and Krandick's variant, independently of the input polynomial. From this new algorithm, we derive an adaptive semi-numerical version, using multi-precision interval arithmetic. We finally show that these critical optimizations have important consequences since our new algorithm still works with huge polynomials, including orthogonal polynomials of degree 1000 and more, which were out of reach of previous methods.
Tutte Polynomial of Scale-Free Networks
NASA Astrophysics Data System (ADS)
Chen, Hanlin; Deng, Hanyuan
2016-05-01
The Tutte polynomial of a graph, or equivalently the q-state Potts model partition function, is a two-variable polynomial graph invariant of considerable importance in both statistical physics and combinatorics. The computation of this invariant for a graph is NP-hard in general. In this paper, we focus on two iteratively growing scale-free networks, which are ubiquitous in real-life systems. Based on their self-similar structures, we mainly obtain recursive formulas for the Tutte polynomials of two scale-free networks (lattices), one is fractal and "large world", while the other is non-fractal but possess the small-world property. Furthermore, we give some exact analytical expressions of the Tutte polynomial for several special points at ( x, y)-plane, such as, the number of spanning trees, the number of acyclic orientations, etc.
Audio Feedback -- Better Feedback?
ERIC Educational Resources Information Center
Voelkel, Susanne; Mello, Luciane V.
2014-01-01
National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…
1999-07-01
application in the military linguist’s work environment . Demonstrations conducted under this effort concluded that 3D audio localization techniques on their...own have not been developed to the point where they achieve the fidelity necessary for the military work environment . Recommended areas for additional
Audio Feedback -- Better Feedback?
ERIC Educational Resources Information Center
Voelkel, Susanne; Mello, Luciane V.
2014-01-01
National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…
NASA Astrophysics Data System (ADS)
Belavin, A. A.; Bershtein, M. A.; Tarnopolsky, G. M.
2013-03-01
We continue our study of the AGT correspondence between instanton counting on {{{{{{C}}^2}}} / {{{{{Z}}_p}}} .} and Conformal field theories with the symmetry algebra {A}( {r,p} ) . In the cases r = 1, p = 2 and r = 2, p = 2 this algebra specialized to: {A}( {1,2} )={H}oplus widehat{{sl}}{(2)_1} and {A}( {2,2} )={H}oplus widehat{{sl}}{(2)_2}oplus NSR . As the main tool we use a new construction of the algebra A( r, 2) as the limit of the toroidal {g}{l}(1) algebra for q, t tend to -1. We claim that the basis of the representation of the algebra {A}( {r,2} ) (or equivalently, of the space of the local fields of the corresponding CFT) can be expressed through Macdonald polynomials with the parameters q, t go to -1. The vertex operator which naturally arises in this construction has factorized matrix elements in this basis. We also argue that the singular vectors of the {N}=1 Super Virasoro algebra can be realized in terms of Macdonald polynomials for a rectangular Young diagram and parameters q, t tend to -1.
Audio scene segmentation for video with generic content
NASA Astrophysics Data System (ADS)
Niu, Feng; Goela, Naveen; Divakaran, Ajay; Abdel-Mottaleb, Mohamed
2008-01-01
In this paper, we present a content-adaptive audio texture based method to segment video into audio scenes. The audio scene is modeled as a semantically consistent chunk of audio data. Our algorithm is based on "semantic audio texture analysis." At first, we train GMM models for basic audio classes such as speech, music, etc. Then we define the semantic audio texture based on those classes. We study and present two types of scene changes, those corresponding to an overall audio texture change and those corresponding to a special "transition marker" used by the content creator, such as a short stretch of music in a sitcom or silence in dramatic content. Unlike prior work using genre specific heuristics, such as some methods presented for detecting commercials, we adaptively find out if such special transition markers are being used and if so, which of the base classes are being used as markers without any prior knowledge about the content. Our experimental results show that our proposed audio scene segmentation works well across a wide variety of broadcast content genres.
NASA Astrophysics Data System (ADS)
Novak, Antonin; Simon, Laurent; Lotton, Pierrick
2010-12-01
A new method of identification, based on an input synchronized exponential swept-sine signal, is used to analyze and synthesize nonlinear audio systems like overdrive pedals for guitar. Two different pedals are studied; the first one exhibiting a strong influence of the input signal level on its input/output law and the second one exhibiting a weak influence of this input signal level. The Synchronized Swept Sine method leads to a Generalized Polynomial Hammerstein model equivalent to the pedals under test. The behaviors of both pedals are illustrated through model-based resynthesized signals. Moreover, it is also shown that this method leads to a criterion allowing the classification of the nonlinear systems under test, according to the influence of the input signal levels on their input/output law.
Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano
2013-01-01
The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli.
ENERGY STAR Certified Audio Video
Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Audio Video Equipment that are effective as of May 1, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=audio_dvd.pr_crit_audio_dvd
Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano
2013-01-01
The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard “condition-based” designs, as well as “computational” methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli
Technical Evaluation Report. 65. Video-Conferencing with Audio Software
ERIC Educational Resources Information Center
Baggaley, Jon; Klaas, Jim
2006-01-01
An online conference is illustrated using the format of a TV talk show. The conference combined live audio discussion with visual images spontaneously selected by the moderator in the manner of a TV control-room director. A combination of inexpensive online collaborative tools was used for the event, based on the browser-based audio-conferencing…
On polynomial preconditioning for indefinite Hermitian matrices
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1989-01-01
The minimal residual method is studied combined with polynomial preconditioning for solving large linear systems (Ax = b) with indefinite Hermitian coefficient matrices (A). The standard approach for choosing the polynomial preconditioners leads to preconditioned systems which are positive definite. Here, a different strategy is studied which leaves the preconditioned coefficient matrix indefinite. More precisely, the polynomial preconditioner is designed to cluster the positive, resp. negative eigenvalues of A around 1, resp. around some negative constant. In particular, it is shown that such indefinite polynomial preconditioners can be obtained as the optimal solutions of a certain two parameter family of Chebyshev approximation problems. Some basic results are established for these approximation problems and a Remez type algorithm is sketched for their numerical solution. The problem of selecting the parameters such that the resulting indefinite polynomial preconditioners speeds up the convergence of minimal residual method optimally is also addressed. An approach is proposed based on the concept of asymptotic convergence factors. Finally, some numerical examples of indefinite polynomial preconditioners are given.
Audio stream classification for multimedia database search
NASA Astrophysics Data System (ADS)
Artese, M.; Bianco, S.; Gagliardi, I.; Gasparini, F.
2013-03-01
Search and retrieval of huge archives of Multimedia data is a challenging task. A classification step is often used to reduce the number of entries on which to perform the subsequent search. In particular, when new entries of the database are continuously added, a fast classification based on simple threshold evaluation is desirable. In this work we present a CART-based (Classification And Regression Tree [1]) classification framework for audio streams belonging to multimedia databases. The database considered is the Archive of Ethnography and Social History (AESS) [2], which is mainly composed of popular songs and other audio records describing the popular traditions handed down generation by generation, such as traditional fairs, and customs. The peculiarities of this database are that it is continuously updated; the audio recordings are acquired in unconstrained environment; and for the non-expert human user is difficult to create the ground truth labels. In our experiments, half of all the available audio files have been randomly extracted and used as training set. The remaining ones have been used as test set. The classifier has been trained to distinguish among three different classes: speech, music, and song. All the audio files in the dataset have been previously manually labeled into the three classes above defined by domain experts.
Chen, Huifang; Xie, Lei
2014-01-01
Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked. PMID:25529204
NASA Astrophysics Data System (ADS)
Liu, Yang; Chen, Zhenyu; Yang, Zhile; Li, Kang; Tan, Jiubin
2016-12-01
The accuracy of surface measurement determines the manufacturing quality of membrane mirrors. Thus, an efficient and accurate measuring method is critical in membrane mirror fabrication. This paper formulates this measurement issue as a surface reconstruction problem and employs two-stage trained Zernike polynomials as an inline measuring tool to solve the optical surface measurement problem in the membrane mirror manufacturing process. First, all terms of the Zernike polynomial are generated and projected to a non-circular region as the candidate model pool. The training data are calculated according to the measured values of distance sensors and the geometrical relationship between the ideal surface and the installed sensors. Then the terms are selected by minimizing the cost function each time successively. To avoid the problem of ill-conditioned matrix inversion by the least squares method, the coefficient of each model term is achieved by modified elitist teaching-learning-based optimization. Subsequently, the measurement precision is further improved by a second stage of model refinement. Finally, every point on the membrane surface can be measured according to this model, providing more the subtle feedback information needed for the precise control of membrane mirror fabrication. Experimental results confirm that the proposed method is effective in a membrane mirror manufacturing system driven by negative pressure, and the measurement accuracy can achieve 15 µm.
Chen, Huifang; Xie, Lei
2014-12-18
Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked.
Enhancing Navigation Skills through Audio Gaming.
Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi
2010-01-01
We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.
Enhancing Navigation Skills through Audio Gaming
Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi
2014-01-01
We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks. PMID:25505796
2010-05-01
briefing on the center system and the Northeast Center was included. 15 Received a request from Shawn McCormick, NYS Attorney General’s Office Sex ...clarify a recorded conversation, stored in MP3 format, contained on a compact disc. The NLECTC-NE/LEAF utilized FBI supplied equipment to collect and...conversation, stored in MP3 format, contained on a compact disc. The test audio data to be enhanced was a two-party conversation between a male
Interpolation and Polynomial Curve Fitting
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2014-01-01
Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…
Interpolation and Polynomial Curve Fitting
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2014-01-01
Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…
Computing the roots of complex orthogonal and kernel polynomials
Saylor, P.E.; Smolarski, D.C.
1988-01-01
A method is presented to compute the roots of complex orthogonal and kernel polynomials. An important application of complex kernel polynomials is the acceleration of iterative methods for the solution of nonsymmetric linear equations. In the real case, the roots of orthogonal polynomials coincide with the eigenvalues of the Jacobi matrix, a symmetric tridiagonal matrix obtained from the defining three-term recurrence relationship for the orthogonal polynomials. In the real case kernel polynomials are orthogonal. The Stieltjes procedure is an algorithm to compute the roots of orthogonal and kernel polynomials bases on these facts. In the complex case, the Jacobi matrix generalizes to a Hessenberg matrix, the eigenvalues of which are roots of either orthogonal or kernel polynomials. The resulting algorithm generalizes the Stieljes procedure. It may not be defined in the case of kernel polynomials, a consequence of the fact that they are orthogonal with respect to a nonpositive bilinear form. (Another consequence is that kernel polynomials need not be of exact degree.) A second algorithm that is always defined is presented for kernel polynomials. Numerical examples are described.
ERIC Educational Resources Information Center
Tough, David T.
2009-01-01
The purpose of this online study was to create a ranking of essential core competencies and technologies required by AET (audio engineering technology) programs 10 years in the future. The study was designed to facilitate curriculum development and improvement in the rapidly expanding number of small to medium sized audio engineering technology…
ERIC Educational Resources Information Center
Tough, David T.
2009-01-01
The purpose of this online study was to create a ranking of essential core competencies and technologies required by AET (audio engineering technology) programs 10 years in the future. The study was designed to facilitate curriculum development and improvement in the rapidly expanding number of small to medium sized audio engineering technology…
Use of Audio Modification in Science Vocabulary Assessment
ERIC Educational Resources Information Center
Adiguzel, Tufan
2011-01-01
The purposes of this study were to examine the utilization of audio modification in vocabulary assessment in school subject areas, specifically in elementary science, and to present a web-based key vocabulary assessment tool for the elementary school level. Audio-recorded readings were used to replace independent student readings as the task…
Rotating restricted Schur polynomials
NASA Astrophysics Data System (ADS)
Bornman, Nicholas; de Mello Koch, Robert; Tribelhorn, Laila
2017-09-01
Large N but nonplanar limits of 𝒩 = 4 super-Yang-Mills theory can be described using restricted Schur polynomials. Previous investigations demonstrate that the action of the one loop dilatation operator on restricted Schur operators, with classical dimension of order N and belonging to the su(2) sector, is largely determined by the su(2) ℛ symmetry algebra as well as structural features of perturbative field theory. Studies presented so far have used the form of ℛ symmetry generators when acting on small perturbations of half-BPS operators. In this paper as a first step towards going beyond small perturbations of the half-BPS operators, we explain how the exact action of symmetry generators on restricted Schur polynomials can be determined.
Audio distribution and Monitoring Circuit
NASA Technical Reports Server (NTRS)
Kirkland, J. M.
1983-01-01
Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.
NASA Astrophysics Data System (ADS)
Umapathy, K.; Ghoraani, B.; Krishnan, S.
2010-12-01
Audio signals are information rich nonstationary signals that play an important role in our day-to-day communication, perception of environment, and entertainment. Due to its non-stationary nature, time- or frequency-only approaches are inadequate in analyzing these signals. A joint time-frequency (TF) approach would be a better choice to efficiently process these signals. In this digital era, compression, intelligent indexing for content-based retrieval, classification, and protection of digital audio content are few of the areas that encapsulate a majority of the audio signal processing applications. In this paper, we present a comprehensive array of TF methodologies that successfully address applications in all of the above mentioned areas. A TF-based audio coding scheme with novel psychoacoustics model, music classification, audio classification of environmental sounds, audio fingerprinting, and audio watermarking will be presented to demonstrate the advantages of using time-frequency approaches in analyzing and extracting information from audio signals.
Audio-Vision: Audio-Visual Interaction in Desktop Multimedia.
ERIC Educational Resources Information Center
Daniels, Lee
Although sophisticated multimedia authoring applications are now available to amateur programmers, the use of audio in of these programs has been inadequate. Due to the lack of research in the use of audio in instruction, there are few resources to assist the multimedia producer in using sound effectively and efficiently. This paper addresses the…
Independence polynomial and matching polynomial of the Koch network
NASA Astrophysics Data System (ADS)
Liao, Yunhua; Xie, Xiaoliang
2015-11-01
The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.
Smooth polynomial approximation of spiral arcs
NASA Astrophysics Data System (ADS)
Cripps, R. J.; Hussain, M. Z.; Zhu, S.
2010-03-01
Constructing fair curve segments using parametric polynomials is difficult due to the oscillatory nature of polynomials. Even NURBS curves can exhibit unsatisfactory curvature profiles. Curve segments with monotonic curvature profiles, for example spiral arcs, exist but are intrinsically non-polynomial in nature and thus difficult to integrate into existing CAD systems. A method of constructing an approximation to a generalised Cornu spiral (GCS) arc using non-rational quintic Bézier curves matching end points, end slopes and end curvatures is presented. By defining an objective function based on the relative error between the curvature profiles of the GCS and its Bézier approximation, a curve segment is constructed that has a monotonic curvature profile within a specified tolerance.
Factoring Polynomials Modulo Composites,
2007-11-02
xA. This is an appropriate time to introduce the Sylvester Matrix . Definition 3.9 Given polynomials f,g as above, the Sylvester matrix off and g is...the coefficient matrix of the above system of equations. We denote this Sylvester matrix as S(f, g) by the following (1 + m) x (1 + m) matrix a, bm a11...bin-i bm S(f,g) = ao at : b- C R(l+m)x(l+m) aq-1 bo ao b0 the empty spaces are filled by zeros. The Sylvester matrix is the coefficient matrix of
Transparency benchmarking on audio watermarks and steganography
NASA Astrophysics Data System (ADS)
Kraetzer, Christian; Dittmann, Jana; Lang, Andreas
2006-02-01
The evaluation of transparency plays an important role in the context of watermarking and steganography algorithms. This paper introduces a general definition of the term transparency in the context of steganography, digital watermarking and attack based evaluation of digital watermarking algorithms. For this purpose the term transparency is first considered individually for each of the three application fields (steganography, digital watermarking and watermarking algorithm evaluation). From the three results a general definition for the overall context is derived in a second step. The relevance and applicability of the definition given is evaluated in practise using existing audio watermarking and steganography algorithms (which work in time, frequency and wavelet domain) as well as an attack based evaluation suite for audio watermarking benchmarking - StirMark for Audio (SMBA). For this purpose selected attacks from the SMBA suite are modified by adding transparency enhancing measures using a psychoacoustic model. The transparency and robustness of the evaluated audio watermarking algorithms by using the original and modifid attacks are compared. The results of this paper show hat transparency benchmarking will lead to new information regarding the algorithms under observation and their usage. This information can result in concrete recommendations for modification, like the ones resulting from the tests performed here.
Decidability of classes of algebraic systems in polynomial time
Anokhin, M I
2002-02-28
For some classes of algebraic systems several kinds of polynomial-time decidability are considered, which use an oracle performing signature operations and computing predicates. Relationships between various kinds of decidability are studied. Several results on decidability and undecidability in polynomial time are proved for some finitely based varieties of universal algebras.
The Lowdown on Audio Downloads
ERIC Educational Resources Information Center
Farrell, Beth
2010-01-01
First offered to public libraries in 2004, downloadable audiobooks have grown by leaps and bounds. According to the Audio Publishers Association, their sales today account for 21% of the spoken-word audio market. It hasn't been easy, however. WMA. DRM. MP3. AAC. File extensions small on letters but very big on consequences for librarians,…
The Lowdown on Audio Downloads
ERIC Educational Resources Information Center
Farrell, Beth
2010-01-01
First offered to public libraries in 2004, downloadable audiobooks have grown by leaps and bounds. According to the Audio Publishers Association, their sales today account for 21% of the spoken-word audio market. It hasn't been easy, however. WMA. DRM. MP3. AAC. File extensions small on letters but very big on consequences for librarians,…
Superoscillations with arbitrary polynomial shape
NASA Astrophysics Data System (ADS)
Chremmos, Ioannis; Fikioris, George
2015-07-01
We present a method for constructing superoscillatory functions the superoscillatory part of which approximates a given polynomial with arbitrarily small error in a fixed interval. These functions are obtained as the product of the polynomial with a sufficiently flat, bandlimited envelope function whose Fourier transform has at least N-1 continuous derivatives and an Nth derivative of bounded variation, N being the order of the polynomial. Polynomials of arbitrarily high order can be approximated if the Fourier transform of the envelope is smooth, i.e. a bump function.
Chaves, Rafael
2016-01-08
It is a recent realization that many of the concepts and tools of causal discovery in machine learning are highly relevant to problems in quantum information, in particular quantum nonlocality. The crucial ingredient in the connection between both fields is the mathematical theory of causality, allowing for the representation of arbitrary causal structures and providing a rigorous tool to reason about probabilistic causation. Indeed, Bell's theorem concerns a very particular kind of causal structure and Bell inequalities are a special case of linear constraints following from such models. It is thus natural to look for generalizations involving more complex Bell scenarios. The problem, however, relies on the fact that such generalized scenarios are characterized by polynomial Bell inequalities and no current method is available to derive them beyond very simple cases. In this work, we make a significant step in that direction, providing a new, general, and conceptually clear method for the derivation of polynomial Bell inequalities in a wide class of scenarios. We also show how our construction can be used to allow for relaxations of causal constraints and naturally gives rise to a notion of nonsignaling in generalized Bell networks.
NASA Astrophysics Data System (ADS)
Chaves, Rafael
2016-01-01
It is a recent realization that many of the concepts and tools of causal discovery in machine learning are highly relevant to problems in quantum information, in particular quantum nonlocality. The crucial ingredient in the connection between both fields is the mathematical theory of causality, allowing for the representation of arbitrary causal structures and providing a rigorous tool to reason about probabilistic causation. Indeed, Bell's theorem concerns a very particular kind of causal structure and Bell inequalities are a special case of linear constraints following from such models. It is thus natural to look for generalizations involving more complex Bell scenarios. The problem, however, relies on the fact that such generalized scenarios are characterized by polynomial Bell inequalities and no current method is available to derive them beyond very simple cases. In this work, we make a significant step in that direction, providing a new, general, and conceptually clear method for the derivation of polynomial Bell inequalities in a wide class of scenarios. We also show how our construction can be used to allow for relaxations of causal constraints and naturally gives rise to a notion of nonsignaling in generalized Bell networks.
NASA Astrophysics Data System (ADS)
Weiss, M. R.; Aschkenasy, E.
1983-05-01
The Computerized Audio Processor (CAP) is a computer synthesized electronic filter that removes interference from received or recorded speech signals. The CAP automatically detects and attenuates impulse sounds and tones (e.g., ignition noise, switching transients, whistles, chirps, hum, buzzes, FSK telegraphy, etc). It also attenuates wideband random noise. All operations of the CAP are fully automatic. Input signals are processed in real time, with a maximum lag of 340 msec. The CAP implements three proven signal processing techniques. One of these (IMP) virtually eliminates most loud impulse noises. A second technique (DSS) automatically detects tones and attenuates them by up to 46 dB. The third technique (INTEL) provides up to 18 dB attenuation of wideband random noise.
Metrological digital audio reconstruction
Fadeyev; Vitaliy , Haber; Carl
2004-02-19
Audio information stored in the undulations of grooves in a medium such as a phonograph record may be reconstructed, with little or no contact, by measuring the groove shape using precision metrology methods coupled with digital image processing and numerical analysis. The effects of damage, wear, and contamination may be compensated, in many cases, through image processing and analysis methods. The speed and data handling capacity of available computing hardware make this approach practical. Two examples used a general purpose optical metrology system to study a 50 year old 78 r.p.m. phonograph record and a commercial confocal scanning probe to study a 1920's celluloid Edison cylinder. Comparisons are presented with stylus playback of the samples and with a digitally re-mastered version of an original magnetic recording. There is also a more extensive implementation of this approach, with dedicated hardware and software.
Efficient audio signal processing for embedded systems
NASA Astrophysics Data System (ADS)
Chiu, Leung Kin
As mobile platforms continue to pack on more computational power, electronics manufacturers start to differentiate their products by enhancing the audio features. However, consumers also demand smaller devices that could operate for longer time, hence imposing design constraints. In this research, we investigate two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound ”richer" and "fuller." Piezoelectric speakers have a small form factor but exhibit poor response in the low-frequency region. In the algorithm, we combine psychoacoustic bass extension and dynamic range compression to improve the perceived bass coming out from the tiny speakers. We also developed an audio energy reduction algorithm for loudspeaker power management. The perceptually transparent algorithm extends the battery life of mobile devices and prevents thermal damage in speakers. This method is similar to audio compression algorithms, which encode audio signals in such a ways that the compression artifacts are not easily perceivable. Instead of reducing the storage space, however, we suppress the audio contents that are below the hearing threshold, therefore reducing the signal energy. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The system is an example of an analog-to-information converter. The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine
Quantization and psychoacoustic model in audio coding in advanced audio coding
NASA Astrophysics Data System (ADS)
Brzuchalski, Grzegorz
2011-10-01
This paper presents complete optimized architecture of Advanced Audio Coder quantization with Huffman coding. After that psychoacoustic model theory is presented and few algorithms described: standard Two Loop Search, its modifications, Genetic, Just Noticeable Level Difference, Trellis-Based and its modification: Cascaded Trellis-Based Algorithm.
Graphical Solution of Polynomial Equations
ERIC Educational Resources Information Center
Grishin, Anatole
2009-01-01
Graphing utilities, such as the ubiquitous graphing calculator, are often used in finding the approximate real roots of polynomial equations. In this paper the author offers a simple graphing technique that allows one to find all solutions of a polynomial equation (1) of arbitrary degree; (2) with real or complex coefficients; and (3) possessing…
Estrada index and Chebyshev polynomials
NASA Astrophysics Data System (ADS)
Ginosar, Yuval; Gutman, Ivan; Mansour, Toufik; Schork, Matthias
2008-03-01
Let G be a graph whose eigenvalues are λ1, λ2,…, λn. The Estrada index of G is equal to ∑i=1ne. We point out certain classes of graphs whose characteristic polynomials are closely connected to the Chebyshev polynomials of the second kind. Various relations, in particular approximations, for the Estrada index of these graphs are obtained.
On a Perplexing Polynomial Puzzle
ERIC Educational Resources Information Center
Richmond, Bettina
2010-01-01
It seems rather surprising that any given polynomial p(x) with nonnegative integer coefficients can be determined by just the two values p(1) and p(a), where a is any integer greater than p(1). This result has become known as the "perplexing polynomial puzzle." Here, we address the natural question of what might be required to determine a…
Controlling General Polynomial Networks
NASA Astrophysics Data System (ADS)
Cuneo, N.; Eckmann, J.-P.
2014-06-01
We consider networks of massive particles connected by non-linear springs. Some particles interact with heat baths at different temperatures, which are modeled as stochastic driving forces. The structure of the network is arbitrary, but the motion of each particle is 1D. For polynomial interactions, we give sufficient conditions for Hörmander's "bracket condition" to hold, which implies the uniqueness of the steady state (if it exists), as well as the controllability of the associated system in control theory. These conditions are constructive; they are formulated in terms of inequivalence of the forces (modulo translations) and/or conditions on the topology of the connections. We illustrate our results with examples, including "conducting chains" of variable cross-section. This then extends the results for a simple chain obtained in Eckmann et al. in (Commun Math Phys 201:657-697, 1999).
George, Rohini; Chung, Theodore D.; Vedam, Sastry S.; Ramakrishnan, Viswanathan; Mohan, Radhe; Weiss, Elisabeth; Keall, Paul J. . E-mail: pjkeall@vcu.edu
2006-07-01
Purpose: Respiratory gating is a commercially available technology for reducing the deleterious effects of motion during imaging and treatment. The efficacy of gating is dependent on the reproducibility within and between respiratory cycles during imaging and treatment. The aim of this study was to determine whether audio-visual biofeedback can improve respiratory reproducibility by decreasing residual motion and therefore increasing the accuracy of gated radiotherapy. Methods and Materials: A total of 331 respiratory traces were collected from 24 lung cancer patients. The protocol consisted of five breathing training sessions spaced about a week apart. Within each session the patients initially breathed without any instruction (free breathing), with audio instructions and with audio-visual biofeedback. Residual motion was quantified by the standard deviation of the respiratory signal within the gating window. Results: Audio-visual biofeedback significantly reduced residual motion compared with free breathing and audio instruction. Displacement-based gating has lower residual motion than phase-based gating. Little reduction in residual motion was found for duty cycles less than 30%; for duty cycles above 50% there was a sharp increase in residual motion. Conclusions: The efficiency and reproducibility of gating can be improved by: incorporating audio-visual biofeedback, using a 30-50% duty cycle, gating during exhalation, and using displacement-based gating.
Inverse polynomial reconstruction method in DCT domain
NASA Astrophysics Data System (ADS)
Dadkhahi, Hamid; Gotchev, Atanas; Egiazarian, Karen
2012-12-01
The discrete cosine transform (DCT) offers superior energy compaction properties for a large class of functions and has been employed as a standard tool in many signal and image processing applications. However, it suffers from spurious behavior in the vicinity of edge discontinuities in piecewise smooth signals. To leverage the sparse representation provided by the DCT, in this article, we derive a framework for the inverse polynomial reconstruction in the DCT expansion. It yields the expansion of a piecewise smooth signal in terms of polynomial coefficients, obtained from the DCT representation of the same signal. Taking advantage of this framework, we show that it is feasible to recover piecewise smooth signals from a relatively small number of DCT coefficients with high accuracy. Furthermore, automatic methods based on minimum description length principle and cross-validation are devised to select the polynomial orders, as a requirement of the inverse polynomial reconstruction method in practical applications. The developed framework can considerably enhance the performance of the DCT in sparse representation of piecewise smooth signals. Numerical results show that denoising and image approximation algorithms based on the proposed framework indicate significant improvements over wavelet counterparts for this class of signals.
The number of polynomial solutions of polynomial Riccati equations
NASA Astrophysics Data System (ADS)
Gasull, Armengol; Torregrosa, Joan; Zhang, Xiang
2016-11-01
Consider real or complex polynomial Riccati differential equations a (x) y ˙ =b0 (x) +b1 (x) y +b2 (x)y2 with all the involved functions being polynomials of degree at most η. We prove that the maximum number of polynomial solutions is η + 1 (resp. 2) when η ≥ 1 (resp. η = 0) and that these bounds are sharp. For real trigonometric polynomial Riccati differential equations with all the functions being trigonometric polynomials of degree at most η ≥ 1 we prove a similar result. In this case, the maximum number of trigonometric polynomial solutions is 2η (resp. 3) when η ≥ 2 (resp. η = 1) and, again, these bounds are sharp. Although the proof of both results has the same starting point, the classical result that asserts that the cross ratio of four different solutions of a Riccati differential equation is constant, the trigonometric case is much more involved. The main reason is that the ring of trigonometric polynomials is not a unique factorization domain.
An inconclusive digital audio authenticity examination: a unique case.
Koenig, Bruce E; Lacey, Douglas S
2012-01-01
This case report sets forth an authenticity examination of 35 encrypted, proprietary-format digital audio files containing recorded telephone conversations between two codefendants in a criminal matter. The codefendant who recorded the conversations did so on a recording system he developed; additionally, he was both a forensic audio authenticity examiner, who had published and presented in the field, and was the head of a professional audio society's writing group for authenticity standards. The authors conducted the examination of the recordings following nine laboratory steps of the peer-reviewed and published 11-step digital audio authenticity protocol. Based considerably on the codefendant's direct involvement with the development of the encrypted audio format, his experience in the field of forensic audio authenticity analysis, and the ease with which the audio files could be accessed, converted, edited in the gap areas, and reconstructed in such a way that the processes were undetected, the authors concluded that the recordings could not be scientifically authenticated through accepted forensic practices.
Euler’s Theorem for Polynomials
1990-02-09
especially wants to find polynomials over the two element field, GF(2), which are irre- ducible of prime degree p such that L = 2p - 1 is a Mersenne ...relatively prime polynomial, and of the exponent of a polynomial, are investigated. Finally, examples are given which show how to apply these ideas to the...relatively prime polynomial m, and the exponent exp(m) of the polynomial m. We end with some applications of these ideas to the factorization of polynomials
Thermodynamic characterization of networks using graph polynomials
NASA Astrophysics Data System (ADS)
Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.
2015-09-01
In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.
A centralized audio presentation manager
Papp, A.L. III; Blattner, M.M.
1994-05-16
The centralized audio presentation manager addresses the problems which occur when multiple programs running simultaneously attempt to use the audio output of a computer system. Time dependence of sound means that certain auditory messages must be scheduled simultaneously, which can lead to perceptual problems due to psychoacoustic phenomena. Furthermore, the combination of speech and nonspeech audio is examined; each presents its own problems of perceptibility in an acoustic environment composed of multiple auditory streams. The centralized audio presentation manager receives abstract parameterized message requests from the currently running programs, and attempts to create and present a sonic representation in the most perceptible manner through the use of a theoretically and empirically designed rule set.
ERIC Educational Resources Information Center
Postlethwait, S. N.
1970-01-01
Describes the audio-tutorial program in Botany at Purdue University. Advantages include adaptability to individual stduent needs, integration of laboratory activities and information giving, aid flexibility in use of media and means of presentation. (EB)
NASA Astrophysics Data System (ADS)
Wong-Loya, J. A.; Santoyo, E.; Andaverde, J. A.; Quiroz-Ruiz, A.
2015-12-01
A Web-Based Computer System (RPM-WEBBSYS) has been developed for the application of the Rational Polynomial Method (RPM) to estimate static formation temperatures (SFT) of geothermal and petroleum wells. The system is also capable to reproduce the full thermal recovery processes occurred during the well completion. RPM-WEBBSYS has been programmed using advances of the information technology to perform more efficiently computations of SFT. RPM-WEBBSYS may be friendly and rapidly executed by using any computing device (e.g., personal computers and portable computing devices such as tablets or smartphones) with Internet access and a web browser. The computer system was validated using bottomhole temperature (BHT) measurements logged in a synthetic heat transfer experiment, where a good matching between predicted and true SFT was achieved. RPM-WEBBSYS was finally applied to BHT logs collected from well drilling and shut-in operations, where the typical problems of the under- and over-estimation of the SFT (exhibited by most of the existing analytical methods) were effectively corrected.
NASA Astrophysics Data System (ADS)
He, Pengbo; Li, Qiang; Zhao, Ting; Liu, Xinguo; Dai, Zhongying; Ma, Yuanyuan
2016-12-01
A synchrotron-based heavy-ion accelerator operates in pulse mode at a low repetition rate that is comparable to a patient’s breathing rate. To overcome inefficiencies and interplay effects between the residual motion of the target and the scanned heavy-ion beam delivery process for conventional free breathing (FB)-based gating therapy, a novel respiratory guidance method was developed to help patients synchronize their breathing patterns with the synchrotron excitation patterns by performing short breath holds with the aid of personalized audio-visual biofeedback (BFB) system. The purpose of this study was to evaluate the treatment precision, efficiency and reproducibility of the respiratory guidance method in scanned heavy-ion beam delivery mode. Using 96 breathing traces from eight healthy volunteers who were asked to breathe freely and guided to perform short breath holds with the aid of BFB, a series of dedicated four-dimensional dose calculations (4DDC) were performed on a geometric model which was developed assuming a linear relationship between external surrogate and internal tumor motions. The outcome of the 4DDCs was quantified in terms of the treatment time, dose-volume histograms (DVH) and dose homogeneity index. Our results show that with the respiratory guidance method the treatment efficiency increased by a factor of 2.23-3.94 compared with FB gating, depending on the duty cycle settings. The magnitude of dose inhomogeneity for the respiratory guidance methods was 7.5 times less than that of the non-gated irradiation, and good reproducibility of breathing guidance among different fractions was achieved. Thus, our study indicates that the respiratory guidance method not only improved the overall treatment efficiency of respiratory-gated scanned heavy-ion beam delivery, but also had the advantages of lower dose uncertainty and better reproducibility among fractions.
NASA Astrophysics Data System (ADS)
Siripatana, Adil; Mayo, Talea; Sraj, Ihab; Knio, Omar; Dawson, Clint; Le Maitre, Olivier; Hoteit, Ibrahim
2017-08-01
Bayesian estimation/inversion is commonly used to quantify and reduce modeling uncertainties in coastal ocean model, especially in the framework of parameter estimation. Based on Bayes rule, the posterior probability distribution function (pdf) of the estimated quantities is obtained conditioned on available data. It can be computed either directly, using a Markov chain Monte Carlo (MCMC) approach, or by sequentially processing the data following a data assimilation approach, which is heavily exploited in large dimensional state estimation problems. The advantage of data assimilation schemes over MCMC-type methods arises from the ability to algorithmically accommodate a large number of uncertain quantities without significant increase in the computational requirements. However, only approximate estimates are generally obtained by this approach due to the restricted Gaussian prior and noise assumptions that are generally imposed in these methods. This contribution aims at evaluating the effectiveness of utilizing an ensemble Kalman-based data assimilation method for parameter estimation of a coastal ocean model against an MCMC polynomial chaos (PC)-based scheme. We focus on quantifying the uncertainties of a coastal ocean ADvanced CIRCulation (ADCIRC) model with respect to the Manning's n coefficients. Based on a realistic framework of observation system simulation experiments (OSSEs), we apply an ensemble Kalman filter and the MCMC method employing a surrogate of ADCIRC constructed by a non-intrusive PC expansion for evaluating the likelihood, and test both approaches under identical scenarios. We study the sensitivity of the estimated posteriors with respect to the parameters of the inference methods, including ensemble size, inflation factor, and PC order. A full analysis of both methods, in the context of coastal ocean model, suggests that an ensemble Kalman filter with appropriate ensemble size and well-tuned inflation provides reliable mean estimates and
Audio Steganography with Embedded Text
NASA Astrophysics Data System (ADS)
Teck Jian, Chua; Chai Wen, Chuah; Rahman, Nurul Hidayah Binti Ab.; Hamid, Isredza Rahmi Binti A.
2017-08-01
Audio steganography is about hiding the secret message into the audio. It is a technique uses to secure the transmission of secret information or hide their existence. It also may provide confidentiality to secret message if the message is encrypted. To date most of the steganography software such as Mp3Stego and DeepSound use block cipher such as Advanced Encryption Standard or Data Encryption Standard to encrypt the secret message. It is a good practice for security. However, the encrypted message may become too long to embed in audio and cause distortion of cover audio if the secret message is too long. Hence, there is a need to encrypt the message with stream cipher before embedding the message into the audio. This is because stream cipher provides bit by bit encryption meanwhile block cipher provide a fixed length of bits encryption which result a longer output compare to stream cipher. Hence, an audio steganography with embedding text with Rivest Cipher 4 encryption cipher is design, develop and test in this project.
Tiinanen, Suvi; Määttä, Antti; Silfverhuth, Minna; Suominen, Kalervo; Jansson-Verkasalo, Eira; Seppänen, Tapio
2011-01-01
Asperger syndrome (AS) is a neurobiological condition which is characterized by poor skills in social communication, and restricted and repetitive patterns of behavior and interests. We studied whether stress-related indices of heart rate variability (HRV) and electroencephalography (EEG) are different in children with AS than normal controls. We analyzed retrospectively the data of the test where audiovisual stimuli were used. We hypothesized that this test is a stressful situation for individuals with AS and they would have a greater reaction than control subjects. EEG and one-channel electrocardiography (ECG) were collected for children with diagnosis of AS (N = 20) and their age-matched controls (N = 21). HRV indices, frontal EEG asymmetry index and brain load index were calculated. HRV based indices revealed increased sympathetic activity during the test in children with AS. EEG based indices increased more in children with AS during the test compared to baseline. Thus, the children with AS seems to have a greater reaction to stressful situation.
Musical examination to bridge audio data and sheet music
NASA Astrophysics Data System (ADS)
Pan, Xunyu; Cross, Timothy J.; Xiao, Liangliang; Hei, Xiali
2015-03-01
The digitalization of audio is commonly implemented for the purpose of convenient storage and transmission of music and songs in today's digital age. Analyzing digital audio for an insightful look at a specific musical characteristic, however, can be quite challenging for various types of applications. Many existing musical analysis techniques can examine a particular piece of audio data. For example, the frequency of digital sound can be easily read and identified at a specific section in an audio file. Based on this information, we could determine the musical note being played at that instant, but what if you want to see a list of all the notes played in a song? While most existing methods help to provide information about a single piece of the audio data at a time, few of them can analyze the available audio file on a larger scale. The research conducted in this work considers how to further utilize the examination of audio data by storing more information from the original audio file. In practice, we develop a novel musical analysis system Musicians Aid to process musical representation and examination of audio data. Musicians Aid solves the previous problem by storing and analyzing the audio information as it reads it rather than tossing it aside. The system can provide professional musicians with an insightful look at the music they created and advance their understanding of their work. Amateur musicians could also benefit from using it solely for the purpose of obtaining feedback about a song they were attempting to play. By comparing our system's interpretation of traditional sheet music with their own playing, a musician could ensure what they played was correct. More specifically, the system could show them exactly where they went wrong and how to adjust their mistakes. In addition, the application could be extended over the Internet to allow users to play music with one another and then review the audio data they produced. This would be particularly
Three-dimensional audio using loudspeakers
NASA Astrophysics Data System (ADS)
Gardner, William G.
1997-12-01
3-D audio systems, which can surround a listener with sounds at arbitrary locations, are an important part of immersive interfaces. A new approach is presented for implementing 3-D audio using a pair of conventional loudspeakers. The new idea is to use the tracked position of the listener's head to optimize the acoustical presentation, and thus produce a much more realistic illusion over a larger listening area than existing loudspeaker 3-D audio systems. By using a remote head tracker, for instance based on computer vision, an immersive audio environment can be created without donning headphones or other equipment. The general approach to a 3-D audio system is to reconstruct the acoustic pressures at the listener's ears that would result from the natural listening situation to be simulated. To accomplish this using loudspeakers requires that first, the ear signals corresponding to the target scene are synthesized by appropriately encoding directional cues, a process known as 'binaural synthesis,' and second, these signals are delivered to the listener by inverting the transmission paths that exist from the speakers to the listener, a process known as 'crosstalk cancellation.' Existing crosstalk cancellation systems only function at a fixed listening location; when the listener moves away from the equalization zone, the 3-D illusion is lost. Steering the equalization zone to the tracked listener preserves the 3-D illusion over a large listening volume, thus simulating a reconstructed soundfield, and also provides dynamic localization cues by maintaining stationary external sound sources during head motion. This dissertation will discuss the theory, implementation, and testing of a head-tracked loudspeaker 3-D audio system. Crosstalk cancellers that can be steered to the location of a tracked listener will be described. The objective performance of these systems has been evaluated using simulations and acoustical measurements made at the ears of human subjects. Many
Orthogonal polynomials and deformed oscillators
NASA Astrophysics Data System (ADS)
Borzov, V. V.; Damaskinsky, E. V.
2015-10-01
In the example of the Fibonacci oscillator, we discuss the construction of oscillator-like systems associated with orthogonal polynomials. We also consider the question of the dimensions of the corresponding Lie algebras.
Lund, Adam; Wong, Daniel; Lewis, Kerrie; Turris, Sheila A; Vaisler, Sean; Gutman, Samuel
2013-02-01
The provision of medical care in environments with high levels of ambient noise (HLAN), such as concerts or sporting events, presents unique communication challenges. Audio transmissions can be incomprehensible to the receivers. Text-based communications may be a valuable primary and/or secondary means of communication in this type of setting. To evaluate the usability of text-based communications in parallel with standard two-way radio communications during mass-gathering (MG) events in the context of HLAN. This Canadian study used outcome survey methods to evaluate the performance of communication devices during MG events. Ten standard commercially available handheld smart phones loaded with basic voice and data plans were assigned to health care providers (HCPs) for use as an adjunct to the medical team's typical radio-based communication. Common text messaging and chat platforms were trialed. Both efficacy and provider satisfaction were evaluated. During a 23-month period, the smart phones were deployed at 17 events with HLAN for a total of 40 event days or approximately 460 hours of active use. Survey responses from health care providers (177) and dispatchers (26) were analyzed. The response rate was unknown due to the method of recruitment. Of the 155 HCP responses to the question measuring difficulty of communication in environments with HLAN, 68.4% agreed that they "occasionally" or "frequently" found it difficult to clearly understand voice communications via two-way radio. Similarly, of the 23 dispatcher responses to the same item, 65.2% of the responses indicated that "occasionally" or "frequently" HLAN negatively affected the ability to communicate clearly with team members. Of the 168 HCP responses to the item assessing whether text-based communication improved the ability to understand and respond to calls when compared to radio alone, 86.3% "agreed" or "strongly agreed" that this was the case. The dispatcher responses (n = 21) to the same item also
He, Pengbo; Ma, Yuanyuan; Huang, Qiyan; Yan, Yuanlin; Li, Qiang Liu, Xinguo; Dai, Zhongying; Zhao, Ting; Fu, Tingyan; Shen, Guosheng
2014-11-01
Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standard BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose
Direct broadcast satellite-audio, portable and mobile reception tradeoffs
NASA Technical Reports Server (NTRS)
Golshan, Nasser
1992-01-01
This paper reports on the findings of a systems tradeoffs study on direct broadcast satellite-radio (DBS-R). Based on emerging advanced subband and transform audio coding systems, four ranges of bit rates: 16-32 kbps, 48-64 kbps, 96-128 kbps and 196-256 kbps are identified for DBS-R. The corresponding grades of audio quality will be subjectively comparable to AM broadcasting, monophonic FM, stereophonic FM, and CD quality audio, respectively. The satellite EIRP's needed for mobile DBS-R reception in suburban areas are sufficient for portable reception in most single family houses when allowance is made for the higher G/T of portable table-top receivers. As an example, the variation of the space segment cost as a function of frequency, audio quality, coverage capacity, and beam size is explored for a typical DBS-R system.
Numerical constructions involving Chebyshev polynomials
NASA Astrophysics Data System (ADS)
Lyakhovsky, V. D.
2017-02-01
We propose a new algorithm for the character expansion of tensor products of finite-dimensional irreducible representations of simple Lie algebras. The algorithm produces valid results for the algebras B 3, C 3, and D 3. We use the direct correspondence between Weyl anti-invariant functions and multivariate second-kind Chebyshev polynomials. We construct the triangular trigonometric polynomials for the algebra D 3.
Bernstein polynomials for evolutionary algebraic prediction of short time series
NASA Astrophysics Data System (ADS)
Lukoseviciute, Kristina; Howard, Daniel; Ragulskis, Minvydas
2017-07-01
Short time series prediction technique based on Bernstein polynomials is presented in this paper. Firstly, the straightforward Bernstein polynomial extrapolation scheme is improved by extending the interval of approximation. Secondly, the forecasting scheme is designed in the evolutionary computational setup which is based on the conciliation between the coarseness of the algebraic prediction and the smoothness of the time average prediction. Computational experiments with the test time series suggest that this time series prediction technique could be applicable for various forecasting applications.
NASA Astrophysics Data System (ADS)
George, Rohini
Lung cancer accounts for 13% of all cancers in the Unites States and is the leading cause of deaths among both men and women. The five-year survival for lung cancer patients is approximately 15%.(ACS facts & figures) Respiratory motion decreases accuracy of thoracic radiotherapy during imaging and delivery. To account for respiration, generally margins are added during radiation treatment planning, which may cause a substantial dose delivery to normal tissues and increase the normal tissue toxicity. To alleviate the above-mentioned effects of respiratory motion, several motion management techniques are available which can reduce the doses to normal tissues, thereby reducing treatment toxicity and allowing dose escalation to the tumor. This may increase the survival probability of patients who have lung cancer and are receiving radiation therapy. However the accuracy of these motion management techniques are inhibited by respiration irregularity. The rationale of this thesis was to study the improvement in regularity of respiratory motion by breathing coaching for lung cancer patients using audio instructions and audio-visual biofeedback. A total of 331 patient respiratory motion traces, each four minutes in length, were collected from 24 lung cancer patients enrolled in an IRB-approved breathing-training protocol. It was determined that audio-visual biofeedback significantly improved the regularity of respiratory motion compared to free breathing and audio instruction, thus improving the accuracy of respiratory gated radiotherapy. It was also observed that duty cycles below 30% showed insignificant reduction in residual motion while above 50% there was a sharp increase in residual motion. The reproducibility of exhale based gating was higher than that of inhale base gating. Modeling the respiratory cycles it was found that cosine and cosine 4 models had the best correlation with individual respiratory cycles. The overall respiratory motion probability distribution
Polynomial force approximations and multifrequency atomic force microscopy.
Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B
2013-01-01
We present polynomial force reconstruction from experimental intermodulation atomic force microscopy (ImAFM) data. We study the tip-surface force during a slow surface approach and compare the results with amplitude-dependence force spectroscopy (ADFS). Based on polynomial force reconstruction we generate high-resolution surface-property maps of polymer blend samples. The polynomial method is described as a special example of a more general approximative force reconstruction, where the aim is to determine model parameters that best approximate the measured force spectrum. This approximative approach is not limited to spectral data, and we demonstrate how it can be adapted to a force quadrature picture.
Properties of Leach-Flessas-Gorringe polynomials
NASA Astrophysics Data System (ADS)
Pursey, D. L.
1990-09-01
A generating function is obtained for the polynomials recently introduced by Leach, Flessas, and Gorringe [J. Math. Phys. 30, 406 (1989)], and is then used to relate the Leach-Flessas-Gorringe (or LFG) polynomials to Hermite polynomials. The generating function is also used to express a number of integrals involving the LFG polynomials as finite sums of parabolic cylinder functions.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems.
Capacity-optimized mp2 audio watermarking
NASA Astrophysics Data System (ADS)
Steinebach, Martin; Dittmann, Jana
2003-06-01
Today a number of audio watermarking algorithms have been proposed, some of them at a quality making them suitable for commercial applications. The focus of most of these algorithms is copyright protection. Therefore, transparency and robustness are the most discussed and optimised parameters. But other applications for audio watermarking can also be identified stressing other parameters like complexity or payload. In our paper, we introduce a new mp2 audio watermarking algorithm optimised for high payload. Our algorithm uses the scale factors of an mp2 file for watermark embedding. They are grouped and masked based on a pseudo-random pattern generated from a secret key. In each group, we embed one bit. Depending on the bit to embed, we change the scale factors by adding 1 where necessary until it includes either more even or uneven scale factors. An uneven group has a 1 embedded, an even group a 0. The same rule is later applied to detect the watermark. The group size can be increased or decreased for transparency/payload trade-off. We embed 160 bits or more in an mp2 file per second without reducing perceived quality. As an application example, we introduce a prototypic Karaoke system displaying song lyrics embedded as a watermark.
ERIC Educational Resources Information Center
Bergman, Daniel
2015-01-01
This study examined the effects of audio and video self-recording on preservice teachers' written reflections. Participants (n = 201) came from a secondary teaching methods course and its school-based (clinical) fieldwork. The audio group (n[subscript A] = 106) used audio recorders to monitor their teaching in fieldwork placements; the video group…
ERIC Educational Resources Information Center
Bergman, Daniel
2015-01-01
This study examined the effects of audio and video self-recording on preservice teachers' written reflections. Participants (n = 201) came from a secondary teaching methods course and its school-based (clinical) fieldwork. The audio group (n[subscript A] = 106) used audio recorders to monitor their teaching in fieldwork placements; the video group…
Experiences with audio feedback in a veterinary curriculum.
Rhind, Susan M; Pettigrew, Graham W; Spiller, Jo; Pearson, Geoff T
2013-01-01
On a national scale in the United Kingdom, student surveys have served to highlight areas within higher education that are not achieving high student satisfaction. Of particular concern to the veterinary and medical disciplines are the persistently poor levels of student satisfaction with academic feedback compared to students in other subjects. In this study we describe experiences with audio feedback trials in a veterinary curriculum. Students received audio feedback on either an in-course laboratory practical report or on an in-course multiple-choice test. Shortly after receiving their feedback, students were surveyed using an electronic questionnaire. In both courses, more students strongly agreed that audio feedback was helpful compared to either text-based (course A) or whole-class (course B) feedback. When asked to reflect on the helpfulness of various types of feedback they had received, audio feedback was rated less helpful than individual discussion with a member of staff (course A and course B), more helpful than peer discussion or automated feedback (course A and course B), and more helpful than written comments or whole-class review sessions (course B). From a faculty perspective, in course A, use of audio feedback was more efficient than handwritten feedback. In course B, the additional time commitment required was approximately 5 hours. Major themes in the qualitative data included the personal and individual nature of the feedback, quantity of feedback, improvement in students' insight into the process of marking, and the capacity of audio feedback to encourage and motivate.
Quantum Hurwitz numbers and Macdonald polynomials
NASA Astrophysics Data System (ADS)
Harnad, J.
2016-11-01
Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.
Advances in audio source seperation and multisource audio content retrieval
NASA Astrophysics Data System (ADS)
Vincent, Emmanuel
2012-06-01
Audio source separation aims to extract the signals of individual sound sources from a given recording. In this paper, we review three recent advances which improve the robustness of source separation in real-world challenging scenarios and enable its use for multisource content retrieval tasks, such as automatic speech recognition (ASR) or acoustic event detection (AED) in noisy environments. We present a Flexible Audio Source Separation Toolkit (FASST) and discuss its advantages compared to earlier approaches such as independent component analysis (ICA) and sparse component analysis (SCA). We explain how cues as diverse as harmonicity, spectral envelope, temporal fine structure or spatial location can be jointly exploited by this toolkit. We subsequently present the uncertainty decoding (UD) framework for the integration of audio source separation and audio content retrieval. We show how the uncertainty about the separated source signals can be accurately estimated and propagated to the features. Finally, we explain how this uncertainty can be efficiently exploited by a classifier, both at the training and the decoding stage. We illustrate the resulting performance improvements in terms of speech separation quality and speaker recognition accuracy.
The bivariate Rogers Szegö polynomials
NASA Astrophysics Data System (ADS)
Chen, William Y. C.; Saad, Husam L.; Sun, Lisa H.
2007-06-01
We present an operator approach to deriving Mehler's formula and the Rogers formula for the bivariate Rogers-Szegö polynomials hn(x, y|q). The proof of Mehler's formula can be considered as a new approach to the nonsymmetric Poisson kernel formula for the continuous big q-Hermite polynomials Hn(x; a|q) due to Askey, Rahman and Suslov. Mehler's formula for hn(x, y|q) involves a 3phi2 sum and the Rogers formula involves a 2phi1 sum. The proofs of these results are based on parameter augmentation with respect to the q-exponential operator and the homogeneous q-shift operator in two variables. By extending recent results on the Rogers-Szegö polynomials hn(x|q) due to Hou, Lascoux and Mu, we obtain another Rogers-type formula for hn(x, y|q). Finally, we give a change of base formula for Hn(x; a|q) which can be used to evaluate some integrals by using the Askey-Wilson integral.
Chromatic polynomials of random graphs
NASA Astrophysics Data System (ADS)
Van Bussel, Frank; Ehrlich, Christoph; Fliegner, Denny; Stolzenberg, Sebastian; Timme, Marc
2010-04-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
Polynomial fuzzy observer designs: a sum-of-squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O
2012-10-01
This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.
Digital Audio Application to Short Wave Broadcasting
NASA Technical Reports Server (NTRS)
Chen, Edward Y.
1997-01-01
Digital audio is becoming prevalent not only in consumer electornics, but also in different broadcasting media. Terrestrial analog audio broadcasting in the AM and FM bands will be eventually be replaced by digital systems.
Digital Audio Application to Short Wave Broadcasting
NASA Technical Reports Server (NTRS)
Chen, Edward Y.
1997-01-01
Digital audio is becoming prevalent not only in consumer electornics, but also in different broadcasting media. Terrestrial analog audio broadcasting in the AM and FM bands will be eventually be replaced by digital systems.
Using Tutte polynomials to analyze the structure of the benzodiazepines
NASA Astrophysics Data System (ADS)
Cadavid Muñoz, Juan José
2014-05-01
Graph theory in general and Tutte polynomials in particular, are implemented for analyzing the chemical structure of the benzodiazepines. Similarity analysis are used with the Tutte polynomials for finding other molecules that are similar to the benzodiazepines and therefore that might show similar psycho-active actions for medical purpose, in order to evade the drawbacks associated to the benzodiazepines based medicine. For each type of benzodiazepines, Tutte polynomials are computed and some numeric characteristics are obtained, such as the number of spanning trees and the number of spanning forests. Computations are done using the computer algebra Maple's GraphTheory package. The obtained analytical results are of great importance in pharmaceutical engineering. As a future research line, the usage of the chemistry computational program named Spartan, will be used to extent and compare it with the obtained results from the Tutte polynomials of benzodiazepines.
The multivariate Hahn polynomials and the singular oscillator
NASA Astrophysics Data System (ADS)
Genest, Vincent X.; Vinet, Luc
2014-11-01
Karlin and McGregor's d-variable Hahn polynomials are shown to arise in the (d+1)-dimensional singular oscillator model as the overlap coefficients between bases associated with the separation of variables in Cartesian and hyperspherical coordinates. These polynomials in d discrete variables depend on d+1 real parameters and are orthogonal with respect to the multidimensional hypergeometric distribution. The focus is put on the d = 2 case for which the connection with the three-dimensional singular oscillator is used to derive the main properties of the polynomials: forward/backward shift operators, orthogonality relation, generating function, recurrence relations, bispectrality (difference equations) and explicit expression in terms of the univariate Hahn polynomials. The extension of these results to an arbitrary number of variables is presented at the end of the paper.
Radioactive Decay: Audio Data Collection
ERIC Educational Resources Information Center
Struthers, Allan
2009-01-01
Many phenomena generate interesting audible time series. This data can be collected and processed using audio software. The free software package "Audacity" is used to demonstrate the process by recording, processing, and extracting click times from an inexpensive radiation detector. The high quality of the data is demonstrated with a simple…
ERIC Educational Resources Information Center
Babin, Pierre, Ed.
A series of twelve essays discuss the use of audiovisuals in religious education. The essays are divided into three sections: one which draws on the ideas of Marshall McLuhan and other educators to explore the newest ideas about audiovisual language and faith, one that describes how to learn and use the new language of audio and visual images, and…
Radioactive Decay: Audio Data Collection
ERIC Educational Resources Information Center
Struthers, Allan
2009-01-01
Many phenomena generate interesting audible time series. This data can be collected and processed using audio software. The free software package "Audacity" is used to demonstrate the process by recording, processing, and extracting click times from an inexpensive radiation detector. The high quality of the data is demonstrated with a simple…
Engaging Students with Audio Feedback
ERIC Educational Resources Information Center
Cann, Alan
2014-01-01
Students express widespread dissatisfaction with academic feedback. Teaching staff perceive a frequent lack of student engagement with written feedback, much of which goes uncollected or unread. Published evidence shows that audio feedback is highly acceptable to students but is underused. This paper explores methods to produce and deliver audio…
Audio-Visual Teaching Machines.
ERIC Educational Resources Information Center
Dorsett, Loyd G.
An audiovisual teaching machine (AVTM) presents programed audio and visual material simultaneously to a student and accepts his response. If his response is correct, the machine proceeds with the lesson; if it is incorrect, the machine so indicates and permits another choice (linear) or automatically presents supplementary material (branching).…
Audio-Visual Materials Catalog.
ERIC Educational Resources Information Center
Anderson (M.D.) Hospital and Tumor Inst., Houston, TX.
This catalog lists 27 audiovisual programs produced by the Department of Medical Communications of the University of Texas M. D. Anderson Hospital and Tumor Institute for public distribution. Video tapes, 16 mm. motion pictures and slide/audio series are presented dealing mostly with cancer and related subjects. The programs are intended for…
Audio/ Videoconferencing Packages: Low Cost
ERIC Educational Resources Information Center
Treblay, Remy; Fyvie, Barb; Koritko, Brenda
2005-01-01
A comparison was conducted of "Voxwire MeetingRoom" and "iVocalize" v4.1.0.3, both Web-conferencing products using voice-over-Internet protocol (VoIP) to provide unlimited, inexpensive, international audio communication, and high-quality Web-conferencing fostering collaborative learning. The study used the evaluation criteria used in earlier…
Spatial Audio on the Web: Or Why Can't I hear Anything Over There?
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Schlickenmaier, Herbert (Technical Monitor); Johnson, Gerald (Technical Monitor); Frey, Mary Anne (Technical Monitor); Schneider, Victor S. (Technical Monitor); Ahunada, Albert J. (Technical Monitor)
1997-01-01
Auditory complexity, freedom of movement and interactivity is not always possible in a "true" virtual environment, much less in web-based audio. However, a lot of the perceptual and engineering constraints (and frustrations) that researchers, engineers and listeners have experienced in virtual audio are relevant to spatial audio on the web. My talk will discuss some of these engineering constraints and their perceptual consequences, and attempt to relate these issues to implementation on the web.
Abelian avalanches and Tutte polynomials
NASA Astrophysics Data System (ADS)
Gabrielov, Andrei
1993-04-01
We introduce a class of deterministic lattice models of failure, Abelian avalanche (AA) models, with continuous phase variables, similar to discrete Abelian sandpile (ASP) models. We investigate analytically the structure of the phase space and statistical properties of avalanches in these models. We show that the distributions of avalanches in AA and ASP models with the same redistribution matrix and loading rate are identical. For an AA model on a graph, statistics of avalanches is linked to Tutte polynomials associated with this graph and its subgraphs. In the general case, statistics of avalanches is linked to an analog of a Tutte polynomial defined for any symmetric matrix.
Audio-Tutorial in Art History.
ERIC Educational Resources Information Center
Cohen, Kathleen
An audio-tutorial approach for an art history course taught at San Jose State College in the fall semester 1973 is evaluated by the Project Director and by an Evaluation Consultant. The teaching method combines several techniques: a weekly film presentation, filmstrips and audio tapes to be used in individual audio-tutorial sessions, a study guide…
Audio Frequency Analysis in Mobile Phones
ERIC Educational Resources Information Center
Aguilar, Horacio Munguía
2016-01-01
A new experiment using mobile phones is proposed in which its audio frequency response is analyzed using the audio port for inputting external signal and getting a measurable output. This experiment shows how the limited audio bandwidth used in mobile telephony is the main cause of the poor speech quality in this service. A brief discussion is…
36 CFR 1002.12 - Audio disturbances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Audio disturbances. 1002.12... RECREATION § 1002.12 Audio disturbances. (a) The following are prohibited: (1) Operating motorized equipment or machinery such as an electric generating plant, motor vehicle, motorized toy, or an audio device...
36 CFR 1002.12 - Audio disturbances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Audio disturbances. 1002.12... RECREATION § 1002.12 Audio disturbances. (a) The following are prohibited: (1) Operating motorized equipment or machinery such as an electric generating plant, motor vehicle, motorized toy, or an audio device...
36 CFR 2.12 - Audio disturbances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Audio disturbances. 2.12... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.12 Audio disturbances. (a) The following are prohibited..., motorized toy, or an audio device, such as a radio, television set, tape deck or musical instrument, in a...
36 CFR 1002.12 - Audio disturbances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Audio disturbances. 1002.12... RECREATION § 1002.12 Audio disturbances. (a) The following are prohibited: (1) Operating motorized equipment or machinery such as an electric generating plant, motor vehicle, motorized toy, or an audio device...
36 CFR 1002.12 - Audio disturbances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Audio disturbances. 1002.12... RECREATION § 1002.12 Audio disturbances. (a) The following are prohibited: (1) Operating motorized equipment or machinery such as an electric generating plant, motor vehicle, motorized toy, or an audio device...
36 CFR 2.12 - Audio disturbances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Audio disturbances. 2.12... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.12 Audio disturbances. (a) The following are prohibited..., motorized toy, or an audio device, such as a radio, television set, tape deck or musical instrument, in a...
36 CFR 2.12 - Audio disturbances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Audio disturbances. 2.12... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.12 Audio disturbances. (a) The following are prohibited..., motorized toy, or an audio device, such as a radio, television set, tape deck or musical instrument, in a...
Audio Frequency Analysis in Mobile Phones
ERIC Educational Resources Information Center
Aguilar, Horacio Munguía
2016-01-01
A new experiment using mobile phones is proposed in which its audio frequency response is analyzed using the audio port for inputting external signal and getting a measurable output. This experiment shows how the limited audio bandwidth used in mobile telephony is the main cause of the poor speech quality in this service. A brief discussion is…
36 CFR 2.12 - Audio disturbances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Audio disturbances. 2.12... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.12 Audio disturbances. (a) The following are prohibited..., motorized toy, or an audio device, such as a radio, television set, tape deck or musical instrument, in a...
36 CFR 2.12 - Audio disturbances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Audio disturbances. 2.12... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.12 Audio disturbances. (a) The following are prohibited..., motorized toy, or an audio device, such as a radio, television set, tape deck or musical instrument, in a...
50 CFR 27.72 - Audio equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Audio equipment. 27.72 Section 27.72 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE... Audio equipment. The operation or use of audio devices including radios, recording and playback devices...
50 CFR 27.72 - Audio equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Audio equipment. 27.72 Section 27.72 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE... Audio equipment. The operation or use of audio devices including radios, recording and playback devices...
High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.
Wang, Fei; Xie, Zhaoxin; Chen, Zuo
2014-01-01
Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.
High Capacity Reversible Watermarking for Audio by Histogram Shifting and Predicted Error Expansion
Wang, Fei; Chen, Zuo
2014-01-01
Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability. PMID:25097883
Macdonald Polynomials in Superspace: Conjectural Definition and Positivity Conjectures
NASA Astrophysics Data System (ADS)
Blondeau-Fournier, Olivier; Desrosiers, Patrick; Lapointe, Luc; Mathieu, Pierre
2012-07-01
We introduce a conjectural construction for an extension to superspace of the Macdonald polynomials. The construction, which depends on certain orthogonality and triangularity relations, is tested for high degrees. We conjecture a simple form for the norm of the Macdonald polynomials in superspace and a rather non-trivial expression for their evaluation. We study the limiting cases q = 0 and q = ∞, which lead to two families of Hall-Littlewood polynomials in superspace. We also find that the Macdonald polynomials in superspace evaluated at q = t = 0 or q = t = ∞ seem to generalize naturally the Schur functions. In particular, their expansion coefficients in the corresponding Hall-Littlewood bases appear to be polynomials in t with nonnegative integer coefficients. More strikingly, we formulate a generalization of the Macdonald positivity conjecture to superspace: the expansion coefficients of the Macdonald superpolynomials expanded into a modified version of the Schur superpolynomial basis (the q = t = 0 family) are polynomials in q and t with nonnegative integer coefficients.
Realization of guitar audio effects using methods of digital signal processing
NASA Astrophysics Data System (ADS)
Buś, Szymon; Jedrzejewski, Konrad
2015-09-01
The paper is devoted to studies on possibilities of realization of guitar audio effects by means of methods of digital signal processing. As a result of research, some selected audio effects corresponding to the specifics of guitar sound were realized as the real-time system called Digital Guitar Multi-effect. Before implementation in the system, the selected effects were investigated using the dedicated application with a graphical user interface created in Matlab environment. In the second stage, the real-time system based on a microcontroller and an audio codec was designed and realized. The system is designed to perform audio effects on the output signal of an electric guitar.
Polynomial Beam Element Analysis Module
Ning, S. Andrew
2013-05-01
pBEAM (Polynomial Beam Element Analysis Module) is a finite element code for beam-like structures. The methodology uses Euler? Bernoulli beam elements with 12 degrees of freedom (3 translation and 3 rotational at each end of the element).
Optical homodyne tomography with polynomial series expansion
Benichi, Hugo; Furusawa, Akira
2011-09-15
We present and demonstrate a method for optical homodyne tomography based on the inverse Radon transform. Different from the usual filtered back-projection algorithm, this method uses an appropriate polynomial series to expand the Wigner function and the marginal distribution, and discretize Fourier space. We show that this technique solves most technical difficulties encountered with kernel deconvolution-based methods and reconstructs overall better and smoother Wigner functions. We also give estimators of the reconstruction errors for both methods and show improvement in noise handling properties and resilience to statistical errors.
Two-dimensional audio watermark for MPEG AAC audio
NASA Astrophysics Data System (ADS)
Tachibana, Ryuki
2004-06-01
Since digital music is often stored in a compressed file, it is desirable that an audio watermarking method in a content management system handles compressed files. Using an audio watermarking method that directly manipulates compressed files makes it unnecessary to decompress the files before embedding or detection, so more files can be processed per unit time. However, it is difficult to detect a watermark in a compressed file that has been compressed after the file was watermarked. This paper proposes an MPEG Advanced Audio Coding (AAC) bitstream watermarking method using a two-dimensional pseudo-random array. Detection is done by correlating the absolute values of the recovered MDCT coefficients and the pseudo-random array. Since the embedding algorithm uses the same pseudo-random values for two adjacent overlapping frames and the detection algorithm selects the better frame in the two by comparing detected watermark strengths, it is possible to detect a watermark from a compressed file that was compressed after the watermark was embedded in the original uncompressed file. Though the watermark is not detected as clearly in this case, the watermark can still be detected even when the watermark was embedded in a compressed file and the file was then decompressed, trimmed, and compressed again.
Tables of properties of airfoil polynomials
NASA Technical Reports Server (NTRS)
Desmarais, Robert N.; Bland, Samuel R.
1995-01-01
This monograph provides an extensive list of formulas for airfoil polynomials. These polynomials provide convenient expansion functions for the description of the downwash and pressure distributions of linear theory for airfoils in both steady and unsteady subsonic flow.
The Chebyshev Polynomials: Patterns and Derivation
ERIC Educational Resources Information Center
Sinwell, Benjamin
2004-01-01
The Chebyshev polynomials named after a Russian mathematician, Pafnuty Lvovich Chebyshev, have various mathematical applications. A process for obtaining Chebyshev polynomials, and a mathematical inquiry into the patterns they generate, is presented.
Korobov polynomials of the first kind
NASA Astrophysics Data System (ADS)
Dolgy, D. V.; Kim, D. S.; Kim, T.
2017-01-01
In this paper, we study Korobov polynomials of the first kind from the viewpoint of umbral calculus and give new identities for them, associated with special polynomials which are derived from umbral calculus. Bibliography: 12 titles.
Synthetic Division, Taylor Polynomials, Partial Fractions.
ERIC Educational Resources Information Center
Lambert, Howard B.
1989-01-01
Reviews the underpinnings of synthetic division. Shows how to quickly obtain the coefficients of the Taylor expansion of a polynomial about a point, and a partial fraction decomposition of a polynomial. (MVL)
A New Generalisation of Macdonald Polynomials
NASA Astrophysics Data System (ADS)
Garbali, Alexandr; de Gier, Jan; Wheeler, Michael
2017-01-01
We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters (q, t) and polynomial in a further two parameters (u, v). We evaluate these polynomials explicitly as a matrix product. At u = v = 0 they reduce to Macdonald polynomials, while at q = 0, u = v = s they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.
A New Generalisation of Macdonald Polynomials
NASA Astrophysics Data System (ADS)
Garbali, Alexandr; de Gier, Jan; Wheeler, Michael
2017-06-01
We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters ( q, t) and polynomial in a further two parameters ( u, v). We evaluate these polynomials explicitly as a matrix product. At u = v = 0 they reduce to Macdonald polynomials, while at q = 0, u = v = s they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.
Nodal Statistics for the Van Vleck Polynomials
NASA Astrophysics Data System (ADS)
Bourget, Alain
The Van Vleck polynomials naturally arise from the generalized Lamé equation
A Summation Formula for Macdonald Polynomials
NASA Astrophysics Data System (ADS)
de Gier, Jan; Wheeler, Michael
2016-03-01
We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases {t = 1} and {q = 0}, we recover known expressions for the monomial symmetric and Hall-Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q-Whittaker polynomials.
Highlight summarization in golf videos using audio signals
NASA Astrophysics Data System (ADS)
Kim, Hyoung-Gook; Kim, Jin Young
2008-01-01
In this paper, we present an automatic summarization of highlights in golf videos based on audio information alone without video information. The proposed highlight summarization system is carried out based on semantic audio segmentation and detection on action units from audio signals. Studio speech, field speech, music, and applause are segmented by means of sound classification. Swing is detected by the methods of impulse onset detection. Sounds like swing and applause form a complete action unit, while studio speech and music parts are used to anchor the program structure. With the advantage of highly precise detection of applause, highlights are extracted effectively. Our experimental results obtain high classification precision on 18 golf games. It proves that the proposed system is very effective and computationally efficient to apply the technology to embedded consumer electronic devices.
Modular polynomial arithmetic in partial fraction decomposition
NASA Technical Reports Server (NTRS)
Abdali, S. K.; Caviness, B. F.; Pridor, A.
1977-01-01
Algorithms for general partial fraction decomposition are obtained by using modular polynomial arithmetic. An algorithm is presented to compute inverses modulo a power of a polynomial in terms of inverses modulo that polynomial. This algorithm is used to make an improvement in the Kung-Tong partial fraction decomposition algorithm.
Restricted Schur polynomials and finite N counting
Collins, Storm
2009-01-15
Restricted Schur polynomials have been posited as orthonormal operators for the change of basis from N=4 SYM to type IIB string theory. In this paper we briefly expound the relationship between the restricted Schur polynomials and the operators forwarded by Brown, Heslop, and Ramgoolam. We then briefly examine the finite N counting of the restricted Schur polynomials.
Modal wavefront reconstruction over general shaped aperture by numerical orthogonal polynomials
NASA Astrophysics Data System (ADS)
Ye, Jingfei; Li, Xinhua; Gao, Zhishan; Wang, Shuai; Sun, Wenqing; Wang, Wei; Yuan, Qun
2015-03-01
In practical optical measurements, the wavefront data are recorded by pixelated imaging sensors. The closed-form analytical base polynomial will lose its orthogonality in the discrete wavefront database. For a wavefront with an irregularly shaped aperture, the corresponding analytical base polynomials are laboriously derived. The use of numerical orthogonal polynomials for reconstructing a wavefront with a general shaped aperture over the discrete data points is presented. Numerical polynomials are orthogonal over the discrete data points regardless of the boundary shape of the aperture. The performance of numerical orthogonal polynomials is confirmed by theoretical analysis and experiments. The results demonstrate the adaptability, validity, and accuracy of numerical orthogonal polynomials for estimating the wavefront over a general shaped aperture from regular boundary to an irregular boundary.
A general polynomial solution to convection-dispersion equation using boundary layer theory
NASA Astrophysics Data System (ADS)
Wang, Jiao; Shao, Ming'an; Huang, Laiming; Jia, Xiaoxu
2017-04-01
A number of models have been established to simulate the behaviour of solute transport due to chemical pollution, both in croplands and groundwater systems. An approximate polynomial solution to convection-dispersion equation (CDE) based on boundary layer theory has been verified for the use to describe solute transport in semi-infinite systems such as soil column. However, previous studies have only proposed low order polynomial solutions such as parabolic and cubic polynomials. This paper presents a general polynomial boundary layer solution to CDE. Comparison with exact solution suggests the prediction accuracy of the boundary layer solution varies with the order of polynomial expression and soil transport parameters. The results show that prediction accuracy increases with increasing order up to parabolic or cubic polynomial function and with no distinct relationship between accuracy and order for higher order polynomials (n≥slant 3). Comparison of two critical solute transport parameters (i.e., dispersion coefficient and retardation factor), estimated by the boundary layer solution and obtained by CXTFIT curve-fitting, shows a good agreement. The study shows that the general solution can determine the appropriate orders of polynomials for approximate CDE solutions that best describe solute concentration profiles and optimal solute transport parameters. Furthermore, the general polynomial solution to CDE provides a simple approach to solute transport problems, a criterion for choosing the right orders of polynomials for soils with different transport parameters. It is also a potential approach for estimating solute transport parameters of soils in the field.
Design and implementation of a two-way real-time communication system for audio over CATV networks
NASA Astrophysics Data System (ADS)
Cho, Choong Sang; Oh, Yoo Rhee; Lee, Young Han; Kim, Hong Kook
2007-09-01
In this paper, we design and implement a two-way real-time communication system for audio over cable television (CATV) networks to provide an audio-based interaction between the CATV broadcasting station and CATV subscribers. The two-way real-time communication system consists of a real-time audio encoding/decoding module, a payload formatter based on a transmission control protocol/Internet protocol (TCP/IP), and a cable network. At the broadcasting station, audio signals from a microphone are encoded by an audio codec that is implemented using a digital signal processor (DSP), where the MPEG-2 Layer II audio codec is used for the audio codec and TMS320C6416 is used for a DSP. Next, a payload formatter constructs a TCP/IP packet from an audio bitstream for transmission to a cable modem. Another payload formatter at the subscriber unpacks the TCP/IP packet decoded from the cable modem into audio bitstream. This bitstream is decoded by the MPEG-2 Layer II audio decoder. Finally the decoded audio signals are played out to the speaker. We confirmed that the system worked in real-time, with a measured delay of around 150 ms including the algorithmic and processing time delays.
NASA Astrophysics Data System (ADS)
Nikabadze, M. U.
2007-06-01
We consider various forms of equations of motion and heat influx for deformable solids as well as various forms of Hooke's law and Fourier's heat conduction law under the nonclassical parametrization [1-5] of the domain occupied by a thin solid, where the transverse coordinate ranges in the interval [0, 1]. We write out several characteristics inherent in this parametrization. We use the above-mentioned equations and laws to derive the corresponding equations and laws, as well as statements of problems, for thin bodies in moments with respect to Chebyshev polynomials of the second kind. Here the interval [0, 1] is used as the orthogonality interval for the systems of Chebyshev polynomials. For this interval, we write out the basic recursion relations and, in turn, use them to obtain several additional recursion relations, which play an important role in constructing other versions of the theory of thin solids. In particular, we use the recursion relations to obtain the moments of the first and second derivatives of a scalar function, of rank one and two tensors and their components, and of some differential operators of these variables. Moreover, we give the statements of coupled and uncoupled dynamic problems in moments of the ( r, N)th approximation in moment thermomechanics of thin deformable solids. We also state the nonstable temperature problem in moments of the ( r, N)th approximation.
Avila-Curiel, A; Shamah, T; Barragán, L; Chávez, A; Avila, Maria; Juárez, L
2004-03-01
A nutritional status index was built by modeling the mathematical function of the mean Z scores of weight for age, from 60,079 children under five years of age, selected in a probabilistic fashion from the Mexican population. The most precise mathematical model was a fifth degree polynomial. The correlation coefficient was between .937
Using TTS Voices to Develop Audio Materials for Listening Comprehension: A Digital Approach
ERIC Educational Resources Information Center
Sha, Guoquan
2010-01-01
This paper reports a series of experiments with text-to-speech (TTS) voices. These experiments have been conducted to develop audio materials for listening comprehension as an alternative technology to traditionally used audio equipment like the compact cassette. The new generation of TTS voices based on unit selection synthesis provides…
Designing optical disk systems into audio/video products
NASA Astrophysics Data System (ADS)
Yang, Jiandong
2008-12-01
Optical disk systems are still widely used in players in consumer electronics and automotive applications, although more and more audio and video contents are played from other medias such as flash memory and hard disk drive based devices. There are various architectures with the integrations of audio and video (A/V) decoders and optical disk servo components to reduced product BOM cost. Some issues are addressed for designing optical disk playing modules into an audio or video products. Servo implementation including tracking, seeking and rotating control needs to consider the characteristics of low cost mechanisms and non-ideal disks. When optical disk systems are used in portable or moving environments, the approaches from servo control side and electronic can be helpful for anti-shock. Special handlings to defect disks are important to playability.
Music Identification System Using MPEG-7 Audio Signature Descriptors
You, Shingchern D.; Chen, Wei-Hwa; Chen, Woei-Kae
2013-01-01
This paper describes a multiresolution system based on MPEG-7 audio signature descriptors for music identification. Such an identification system may be used to detect illegally copied music circulated over the Internet. In the proposed system, low-resolution descriptors are used to search likely candidates, and then full-resolution descriptors are used to identify the unknown (query) audio. With this arrangement, the proposed system achieves both high speed and high accuracy. To deal with the problem that a piece of query audio may not be inside the system's database, we suggest two different methods to find the decision threshold. Simulation results show that the proposed method II can achieve an accuracy of 99.4% for query inputs both inside and outside the database. Overall, it is highly possible to use the proposed system for copyright control. PMID:23533359
Discriminative genre-independent audio-visual scene change detection
NASA Astrophysics Data System (ADS)
Wilson, Kevin W.; Divakaran, Ajay
2009-01-01
We present a technique for genre-independent scene-change detection using audio and video features in a discriminative support vector machine (SVM) framework. This work builds on our previous work by adding a video feature based on the MPEG-7 "scalable color" descriptor. Adding this feature improves our detection rate over all genres by 5% to 15% for a fixed false positive rate of 10%. We also find that the genres that benefit the most are those with which the previous audio-only was least effective.
NASA Astrophysics Data System (ADS)
Leont'ev, V. K.
2015-11-01
A pseudo-Boolean function is an arbitrary mapping of the set of binary n-tuples to the real line. Such functions are a natural generalization of classical Boolean functions and find numerous applications in various applied studies. Specifically, the Fourier transform of a Boolean function is a pseudo-Boolean function. A number of facts associated with pseudo-Boolean polynomials are presented, and their applications to well-known discrete optimization problems are described.
Diagnostic accuracy of sleep bruxism scoring in absence of audio-video recording: a pilot study.
Carra, Maria Clotilde; Huynh, Nelly; Lavigne, Gilles J
2015-03-01
Based on the most recent polysomnographic (PSG) research diagnostic criteria, sleep bruxism is diagnosed when >2 rhythmic masticatory muscle activity (RMMA)/h of sleep are scored on the masseter and/or temporalis muscles. These criteria have not yet been validated for portable PSG systems. This pilot study aimed to assess the diagnostic accuracy of scoring sleep bruxism in absence of audio-video recordings. Ten subjects (mean age 24.7 ± 2.2) with a clinical diagnosis of sleep bruxism spent one night in the sleep laboratory. PSG were performed with a portable system (type 2) while audio-video was recorded. Sleep studies were scored by the same examiner three times: (1) without, (2) with, and (3) without audio-video in order to test the intra-scoring and intra-examiner reliability for RMMA scoring. The RMMA event-by-event concordance rate between scoring without audio-video and with audio-video was 68.3 %. Overall, the RMMA index was overestimated by 23.8 % without audio-video. However, the intra-class correlation coefficient (ICC) between scorings with and without audio-video was good (ICC = 0.91; p < 0.001); the intra-examiner reliability was high (ICC = 0.97; p < 0.001). The clinical diagnosis of sleep bruxism was confirmed in 8/10 subjects based on scoring without audio-video and in 6/10 subjects with audio-video. Although the absence of audio-video recording, the diagnostic accuracy of assessing RMMA with portable PSG systems appeared to remain good, supporting their use for both research and clinical purposes. However, the risk of moderate overestimation in absence of audio-video must be taken into account.
Weak lensing tomography with orthogonal polynomials
NASA Astrophysics Data System (ADS)
Schäfer, Björn Malte; Heisenberg, Lavinia
2012-07-01
The topic of this paper is weak cosmic shear tomography where the line-of-sight weighting is carried out with a set of specifically constructed orthogonal polynomials, dubbed Tomography with Orthogonal Radial Distance Polynomial Systems (TaRDiS). We investigate the properties of these polynomials and employ weak convergence spectra, which have been obtained by weighting with these polynomials, for the estimation of cosmological parameters. We quantify their power in constraining parameters in a Fisher matrix technique and demonstrate how each polynomial projects out statistically independent information, and how the combination of multiple polynomials lifts degeneracies. The assumption of a reference cosmology is needed for the construction of the polynomials, and as a last point we investigate how errors in the construction with a wrong cosmological model propagate to misestimates in cosmological parameters. TaRDiS performs on a similar level as traditional tomographic methods and some key features of tomography are made easier to understand.
Using Touch Screen Audio-CASI to Obtain Data on Sensitive Topics
Cooley, Philip C.; Rogers, Susan M.; Turner, Charles F.; Al-Tayyib, Alia A.; Willis, Gordon; Ganapathi, Laxminarayana
2011-01-01
This paper describes a new interview data collection system that uses a laptop personal computer equipped with a touch-sensitive video monitor. The touch-screen-based audio computer-assisted self-interviewing system, or touch screen audio-CASI, enhances the ease of use of conventional audio CASI systems while simultaneously providing the privacy of self-administered questionnaires. We describe touch screen audio-CASI design features and operational characteristics. In addition, we present data from a recent clinic-based experiment indicating that the touch audio-CASI system is stable, robust, and suitable for administering relatively long and complex questionnaires on sensitive topics, including drug use and sexual behaviors associated with HIV and other sexually transmitted diseases. PMID:22081744
Using Touch Screen Audio-CASI to Obtain Data on Sensitive Topics.
Cooley, Philip C; Rogers, Susan M; Turner, Charles F; Al-Tayyib, Alia A; Willis, Gordon; Ganapathi, Laxminarayana
2001-05-01
This paper describes a new interview data collection system that uses a laptop personal computer equipped with a touch-sensitive video monitor. The touch-screen-based audio computer-assisted self-interviewing system, or touch screen audio-CASI, enhances the ease of use of conventional audio CASI systems while simultaneously providing the privacy of self-administered questionnaires. We describe touch screen audio-CASI design features and operational characteristics. In addition, we present data from a recent clinic-based experiment indicating that the touch audio-CASI system is stable, robust, and suitable for administering relatively long and complex questionnaires on sensitive topics, including drug use and sexual behaviors associated with HIV and other sexually transmitted diseases.
On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices
NASA Technical Reports Server (NTRS)
Fischer, Bernd; Freund, Roland W.
1992-01-01
The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.
Babjack, Destiny L; Cernicky, Brandon; Sobotka, Andrew J; Basler, Lee; Struthers, Devon; Kisic, Richard; Barone, Kimberly; Zuccolotto, Anthony P
2015-09-01
Using differing computer platforms and audio output devices to deliver audio stimuli often introduces (1) substantial variability across labs and (2) variable time between the intended and actual sound delivery (the sound onset latency). Fast, accurate audio onset latencies are particularly important when audio stimuli need to be delivered precisely as part of studies that depend on accurate timing (e.g., electroencephalographic, event-related potential, or multimodal studies), or in multisite studies in which standardization and strict control over the computer platforms used is not feasible. This research describes the variability introduced by using differing configurations and introduces a novel approach to minimizing audio sound latency and variability. A stimulus presentation and latency assessment approach is presented using E-Prime and Chronos (a new multifunction, USB-based data presentation and collection device). The present approach reliably delivers audio stimuli with low latencies that vary by ≤1 ms, independent of hardware and Windows operating system (OS)/driver combinations. The Chronos audio subsystem adopts a buffering, aborting, querying, and remixing approach to the delivery of audio, to achieve a consistent 1-ms sound onset latency for single-sound delivery, and precise delivery of multiple sounds that achieves standard deviations of 1/10th of a millisecond without the use of advanced scripting. Chronos's sound onset latencies are small, reliable, and consistent across systems. Testing of standard audio delivery devices and configurations highlights the need for careful attention to consistency between labs, experiments, and multiple study sites in their hardware choices, OS selections, and adoption of audio delivery systems designed to sidestep the audio latency variability issue.
Audio-visual gender recognition
NASA Astrophysics Data System (ADS)
Liu, Ming; Xu, Xun; Huang, Thomas S.
2007-11-01
Combining different modalities for pattern recognition task is a very promising field. Basically, human always fuse information from different modalities to recognize object and perform inference, etc. Audio-Visual gender recognition is one of the most common task in human social communication. Human can identify the gender by facial appearance, by speech and also by body gait. Indeed, human gender recognition is a multi-modal data acquisition and processing procedure. However, computational multimodal gender recognition has not been extensively investigated in the literature. In this paper, speech and facial image are fused to perform a mutli-modal gender recognition for exploring the improvement of combining different modalities.
Design and Development of a Computerized Audio-Video Laboratory.
ERIC Educational Resources Information Center
Behnke, Ralph R.; Derry, James O.
1984-01-01
Describes the components, functions, and applications of a computer-based audio/video learning laboratory at Texas Christian University that permits on-line communication between student learners and instructional staff. The laboratory gives instructors feedback from student learners during and after instruction and enables students to evaluate…
Developing a Framework for Effective Audio Feedback: A Case Study
ERIC Educational Resources Information Center
Hennessy, Claire; Forrester, Gillian
2014-01-01
The increase in the use of technology-enhanced learning in higher education has included a growing interest in new approaches to enhance the quality of feedback given to students. Audio feedback is one method that has become more popular, yet evaluating its role in feedback delivery is still an emerging area for research. This paper is based on a…
Audio-Described Educational Materials: Ugandan Teachers' Experiences
ERIC Educational Resources Information Center
Wormnaes, Siri; Sellaeg, Nina
2013-01-01
This article describes and discusses a qualitative, descriptive, and exploratory study of how 12 visually impaired teachers in Uganda experienced audio-described educational video material for teachers and student teachers. The study is based upon interviews with these teachers and observations while they were using the material either…
Audio and Video Reflections to Promote Social Justice
ERIC Educational Resources Information Center
Boske, Christa
2011-01-01
Purpose: The purpose of this paper is to examine how 15 graduate students enrolled in a US school leadership preparation program understand issues of social justice and equity through a reflective process utilizing audio and/or video software. Design/methodology/approach: The study is based on the tradition of grounded theory. The researcher…
NASA Astrophysics Data System (ADS)
Notaris, Sotirios
1995-03-01
Given a fixed n≥1, and a (monic) orthogonal polynomial πn(·)Dπn(·;dσ) relative to a positive measuredσ on the interval [a, b], one can define the nonnegative measure , to which correspond the (monic) orthogonal polynomials . The coefficients in the three-term recurrence relation for , whendσ is a Chebyshev measure of any of the four kinds, were obtained analytically in closed form by Gautschi and Li. Here, we give explicit formulae for the Stieltjes polynomials whendσ is any of the four Chebyshev measures. In addition, we show that the corresponding Gauss-Kronrod quadrature formulae for each of these , based on the zeros of and , have all the desirable properties of the interlacing of nodes, their inclusion in [-1, 1], and the positivity of all quadrature weights. Exceptions occur only for the Chebyshev measuredσ of the third or fourth kind andn even, in which case the inclusion property fails. The precise degree of exactness for each of these formulae is also determined.
Digital Audio Radio Field Tests
NASA Technical Reports Server (NTRS)
Hollansworth, James E.
1997-01-01
Radio history continues to be made at the NASA Lewis Research Center with the beginning of phase two of Digital Audio Radio testing conducted by the Consumer Electronic Manufacturers Association (a sector of the Electronic Industries Association and the National Radio Systems Committee) and cosponsored by the Electronic Industries Association and the National Association of Broadcasters. The bulk of the field testing of the four systems should be complete by the end of October 1996, with results available soon thereafter. Lewis hosted phase one of the testing process, which included laboratory testing of seven proposed digital audio radio systems and modes (see the following table). Two of the proposed systems operate in two modes, thus making a total of nine systems for testing. These nine systems are divided into the following types of transmission: in-band on channel (IBOC), in-band adjacent channel (IBAC), and new bands - the L-band (1452 to 1492 MHz) and the S-band (2310 to 2360 MHz).
Digital Audio Radio Field Tests
NASA Technical Reports Server (NTRS)
Hollansworth, James E.
1997-01-01
Radio history continues to be made at the NASA Lewis Research Center with the beginning of phase two of Digital Audio Radio testing conducted by the Consumer Electronic Manufacturers Association (a sector of the Electronic Industries Association and the National Radio Systems Committee) and cosponsored by the Electronic Industries Association and the National Association of Broadcasters. The bulk of the field testing of the four systems should be complete by the end of October 1996, with results available soon thereafter. Lewis hosted phase one of the testing process, which included laboratory testing of seven proposed digital audio radio systems and modes (see the following table). Two of the proposed systems operate in two modes, thus making a total of nine systems for testing. These nine systems are divided into the following types of transmission: in-band on channel (IBOC), in-band adjacent channel (IBAC), and new bands - the L-band (1452 to 1492 MHz) and the S-band (2310 to 2360 MHz).
Cuisinier, Adrien; Schilte, Clotilde; Declety, Philippe; Picard, Julien; Berger, Karine; Bouzat, Pierre; Falcon, Dominique; Bosson, Jean Luc; Payen, Jean-François; Albaladejo, Pierre
2015-12-01
Medical competence requires the acquisition of theoretical knowledge and technical skills. Severe trauma management teaching is poorly developed during internship. Nevertheless, the basics of major trauma management should be acquired by every future physician. For this reason, the major trauma course (MTC), an educational course in major traumatology, has been developed for medical students. Our objective was to evaluate, via a high fidelity medical simulator, the impact of the MTC on medical student skills concerning major trauma management. The MTC contains 3 teaching modalities: posters with associated audio-guides, a procedural workshop on airway management and a teaching session using a medical simulator. Skills evaluation was performed 1 month before (step 1) and 1 month after (step 3) the MTC (step 2). Nineteen students were individually evaluated on 2 different major trauma scenarios. The primary endpoint was the difference between steps 1 and 3, in a combined score evaluating: admission, equipment, monitoring and safety (skill set 1) and systematic clinical examinations (skill set 2). After the course, the combined primary outcome score improved by 47% (P<0.01). Scenario choice or the order of use had no significant influence on the skill set evaluations. This study shows improvement in student skills for major trauma management, which we attribute mainly to the major trauma course developed in our institution. Copyright © 2015 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
Freeform surface of progressive addition lens represented by Zernike polynomials
NASA Astrophysics Data System (ADS)
Li, Yiyu; Xia, Risheng; Chen, Jiaojie; Feng, Haihua; Yuan, Yimin; Zhu, Dexi; Li, Chaohong
2016-10-01
We used the explicit expression of Zernike polynomials in Cartesian coordinates to fit and describe the freeform surface of progressive addition lens (PAL). The derivatives of Zernike polynomials can easily be calculated from the explicit expression and used to calculate the principal curvatures of freeform surface based on differential geometry. The surface spherical power and surface astigmatism of the freeform surface were successfully derived from the principal curvatures. By comparing with the traditional analytical method, Zernike polynomials with order of 20 is sufficient to represent the freeform surface with nanometer accuracy if dense sampling of the original surface is achieved. Therefore, the data files which contain the massive sampling points of the freeform surface for the generation of the trajectory of diamond tool tip required by diamond machine for PAL manufacture can be simplified by using a few Zernike coefficients.
A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony; Munoz, Cesar
2015-01-01
In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.
The stable computation of formal orthogonal polynomials
NASA Astrophysics Data System (ADS)
Beckermann, Bernhard
1996-12-01
For many applications - such as the look-ahead variants of the Lanczos algorithm - a sequence of formal (block-)orthogonal polynomials is required. Usually, one generates such a sequence by taking suitable polynomial combinations of a pair of basis polynomials. These basis polynomials are determined by a look-ahead generalization of the classical three term recurrence, where the polynomial coefficients are obtained by solving a small system of linear equations. In finite precision arithmetic, the numerical orthogonality of the polynomials depends on a good choice of the size of the small systems; this size is usually controlled by a heuristic argument such as the condition number of the small matrix of coefficients. However, quite often it happens that orthogonality gets lost.
Thuesen, Mathias Aaen; McGlashan, Julian; Sadolin, Cathrine
2017-09-01
This study aims to study the categorization Curbing from the pedagogical method Complete Vocal Technique as a reduced metallic mode compared with the full metallic modes Overdrive and Edge by means of audio perception, laryngostroboscopic imaging, acoustics, long-term average spectrum (LTAS), and electroglottography (EGG). Twenty singers were recorded singing sustained vowels in a restrained character known as Curbing. Two studies were performed: (1) laryngostroboscopic examination using a videonasoendoscopic camera system and the Laryngostrobe program; and (2) simultaneous recording of EGG and acoustic signals using Speech Studio. Images were analyzed based on consensus agreement. Statistical analysis of acoustic, LTAS, and EGG parameters was undertaken using Student paired t tests. The reduced metallic singing mode Curbing has an identifiable laryngeal gesture. Curbing has a more open setting than Overdrive and Edge, with high visibility of the vocal folds, and the false folds giving a rectangular appearance. LTAS showed statistically significant differences between Curbing and the full metallic modes, with less energy across all spectra, yielding a high second and a low third harmonic. Statistically significant differences were identified on Max Qx, Average Qx, Shimmer+, Shimmer-, Shimmer dB, normalized noise energy, cepstral peak prominence, harmonics-to-noise ratio, and mean sound pressure level (P ≤ 0.05). Curbing as a voice production strategy is statistically significantly different from Overdrive and Edge, and can be categorized based on audio perception. This study demonstrates consistently different laryngeal gestures between Curbing and Overdrive and Edge, with high corresponding differences in LTAS, EGG and acoustic measures. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Audio-visual enhancement of speech in noise.
Girin, L; Schwartz, J L; Feng, G
2001-06-01
A key problem for telecommunication or human-machine communication systems concerns speech enhancement in noise. In this domain, a certain number of techniques exist, all of them based on an acoustic-only approach--that is, the processing of the audio corrupted signal using audio information (from the corrupted signal only or additive audio information). In this paper, an audio-visual approach to the problem is considered, since it has been demonstrated in several studies that viewing the speaker's face improves message intelligibility, especially in noisy environments. A speech enhancement prototype system that takes advantage of visual inputs is developed. A filtering process approach is proposed that uses enhancement filters estimated with the help of lip shape information. The estimation process is based on linear regression or simple neural networks using a training corpus. A set of experiments assessed by Gaussian classification and perceptual tests demonstrates that it is indeed possible to enhance simple stimuli (vowel-plosive-vowel sequences) embedded in white Gaussian noise.
The Timbre Toolbox: extracting audio descriptors from musical signals.
Peeters, Geoffroy; Giordano, Bruno L; Susini, Patrick; Misdariis, Nicolas; McAdams, Stephen
2011-11-01
The analysis of musical signals to extract audio descriptors that can potentially characterize their timbre has been disparate and often too focused on a particular small set of sounds. The Timbre Toolbox provides a comprehensive set of descriptors that can be useful in perceptual research, as well as in music information retrieval and machine-learning approaches to content-based retrieval in large sound databases. Sound events are first analyzed in terms of various input representations (short-term Fourier transform, harmonic sinusoidal components, an auditory model based on the equivalent rectangular bandwidth concept, the energy envelope). A large number of audio descriptors are then derived from each of these representations to capture temporal, spectral, spectrotemporal, and energetic properties of the sound events. Some descriptors are global, providing a single value for the whole sound event, whereas others are time-varying. Robust descriptive statistics are used to characterize the time-varying descriptors. To examine the information redundancy across audio descriptors, correlational analysis followed by hierarchical clustering is performed. This analysis suggests ten classes of relatively independent audio descriptors, showing that the Timbre Toolbox is a multidimensional instrument for the measurement of the acoustical structure of complex sound signals.
Can we discriminate between apnea and hypopnea using audio signals?
Halevi, M; Dafna, E; Tarasiuk, A; Zigel, Y
2016-08-01
Obstructive sleep apnea (OSA) affects up to 14% of the population. OSA is characterized by recurrent apneas and hypopneas during sleep. The apnea-hypopnea index (AHI) is frequently used as a measure of OSA severity. In the current study, we explored the acoustic characteristics of hypopnea in order to distinguish it from apnea. We hypothesize that we can find audio-based features that can discriminate between apnea, hypopnea and normal breathing events. Whole night audio recordings were performed using a non-contact microphone on 44 subjects, simultaneously with the polysomnography study (PSG). Recordings were segmented into 2015 apnea, hypopnea, and normal breath events and were divided to design and validation groups. A classification system was built using a 3-class cubic-kernelled support vector machine (SVM) classifier. Its input is a 36-dimensional audio-based feature vector that was extracted from each event. Three-class accuracy rate using the hold-out method was 84.7%. A two-class model to separate apneic events (apneas and hypopneas) from normal breath exhibited accuracy rate of 94.7%. Here we show that it is possible to detect apneas or hypopneas from whole night audio signals. This might provide more insight about a patient's level of upper airway obstruction during sleep. This approach may be used for OSA severity screening and AHI estimation.
Estimation of macro sleep stages from whole night audio analysis.
Dafna, E; Halevi, M; Ben Or, D; Tarasiuk, A; Zigel, Y
2016-08-01
During routine sleep diagnostic procedure, sleep is broadly divided into three states: rapid eye movement (REM), non-REM (NREM) states, and wake, frequently named macro-sleep stages (MSS). In this study, we present a pioneering attempt for MSS detection using full night audio analysis. Our working hypothesis is that there might be differences in sound properties within each MSS due to breathing efforts (or snores) and body movements in bed. In this study, audio signals of 35 patients referred to a sleep laboratory were recorded and analyzed. An additional 178 subjects were used to train a probabilistic time-series model for MSS staging across the night. The audio-based system was validated on 20 out of the 35 subjects. System accuracy for estimating (detecting) epoch-by-epoch wake/REM/NREM states for a given subject is 74% (69% for wake, 54% for REM, and 79% NREM). Mean error (absolute difference) was 36±34 min for detecting total sleep time, 17±21 min for sleep latency, 5±5% for sleep efficiency, and 7±5% for REM percentage. These encouraging results indicate that audio-based analysis can provide a simple and comfortable alternative method for ambulatory evaluation of sleep and its disorders.
A new Arnoldi approach for polynomial eigenproblems
Raeven, F.A.
1996-12-31
In this paper we introduce a new generalization of the method of Arnoldi for matrix polynomials. The new approach is compared with the approach of rewriting the polynomial problem into a linear eigenproblem and applying the standard method of Arnoldi to the linearised problem. The algorithm that can be applied directly to the polynomial eigenproblem turns out to be more efficient, both in storage and in computation.
The Concept of Audio-Tutorial Teaching.
ERIC Educational Resources Information Center
Husband, D. D.; Postlethwait, S. N.
Audio-tutorial teaching, originated at Purdue University, employs an audio tape as a vehicle for guiding the student through a series of learning experiences. The student may be directed to use his textbook for an explanation of a diagram, to refer to his laboratory manual, or to observe the specimens and experimental materials prepared for his…
Digital Audio Sampling for Film and Video.
ERIC Educational Resources Information Center
Stanton, Michael J.
Digital audio sampling is explained, and some of its implications in digital sound applications are discussed. Digital sound equipment is rapidly replacing analog recording devices as the state-of-the-art in audio technology. The philosophy of digital recording involves doing away with the continuously variable analog waveforms and turning the…
Enhancing Manual Scan Registration Using Audio Cues
NASA Astrophysics Data System (ADS)
Ntsoko, T.; Sithole, G.
2014-04-01
Indoor mapping and modelling requires that acquired data be processed by editing, fusing, formatting the data, amongst other operations. Currently the manual interaction the user has with the point cloud (data) while processing it is visual. Visual interaction does have limitations, however. One way of dealing with these limitations is to augment audio in point cloud processing. Audio augmentation entails associating points of interest in the point cloud with audio objects. In coarse scan registration, reverberation, intensity and frequency audio cues were exploited to help the user estimate depth and occupancy of space of points of interest. Depth estimations were made reliably well when intensity and frequency were both used as depth cues. Coarse changes of depth could be estimated in this manner. The depth between surfaces can therefore be estimated with the aid of the audio objects. Sound reflections of an audio object provided reliable information of the object surroundings in some instances. For a point/area of interest in the point cloud, these reflections can be used to determine the unseen events around that point/area of interest. Other processing techniques could benefit from this while other information is estimated using other audio cues like binaural cues and Head Related Transfer Functions. These other cues could be used in position estimations of audio objects to aid in problems such as indoor navigation problems.
Dual Audio Television: The First Public Broadcast.
ERIC Educational Resources Information Center
Borton, Terry; And Others
A study was conducted in conjunction with the first public announced broadcast of dual audio television--a new method of combining simultaneous radio instruction and commercial entertainment TV. The study was designed to determine the audience which would be attracted to dual audio, the practicality of such instruction, and the correlation between…
Dual Audio TV Instruction: A Broadcast Experiment.
ERIC Educational Resources Information Center
Borton, Terry; And Others
An experiment assessed the potential effectiveness of "dual audio television instruction" (DATI) as a mass education medium. The DATI consisted of a radio program heard by children while they watched television shows. The audio instructor did not talk when the television characters spoke, but used the "quiet" times to help with…
Digital Audio: A Sound Design Element.
ERIC Educational Resources Information Center
Barron, Ann; Varnadoe, Susan
1992-01-01
Discussion of incorporating audio into videodiscs for multimedia educational applications highlights a project developed for the Navy that used digital audio in an interactive video delivery system (IVDS) for training sonar operators. Storage constraints with videodiscs are explained, design requirements for the IVDS are described, and production…
Digital Audio: A Sound Design Element.
ERIC Educational Resources Information Center
Barron, Ann; Varnadoe, Susan
1992-01-01
Discussion of incorporating audio into videodiscs for multimedia educational applications highlights a project developed for the Navy that used digital audio in an interactive video delivery system (IVDS) for training sonar operators. Storage constraints with videodiscs are explained, design requirements for the IVDS are described, and production…
Relative risk regression models with inverse polynomials.
Ning, Yang; Woodward, Mark
2013-08-30
The proportional hazards model assumes that the log hazard ratio is a linear function of parameters. In the current paper, we model the log relative risk as an inverse polynomial, which is particularly suitable for modeling bounded and asymmetric functions. The parameters estimated by maximizing the partial likelihood are consistent and asymptotically normal. The advantages of the inverse polynomial model over the ordinary polynomial model and the fractional polynomial model for fitting various asymmetric log relative risk functions are shown by simulation. The utility of the method is further supported by analyzing two real data sets, addressing the specific question of the location of the minimum risk threshold.
The q-Laguerre matrix polynomials.
Salem, Ahmed
2016-01-01
The Laguerre polynomials have been extended to Laguerre matrix polynomials by means of studying certain second-order matrix differential equation. In this paper, certain second-order matrix q-difference equation is investigated and solved. Its solution gives a generalized of the q-Laguerre polynomials in matrix variable. Four generating functions of this matrix polynomials are investigated. Two slightly different explicit forms are introduced. Three-term recurrence relation, Rodrigues-type formula and the q-orthogonality property are given.
Detecting double compression of audio signal
NASA Astrophysics Data System (ADS)
Yang, Rui; Shi, Yun Q.; Huang, Jiwu
2010-01-01
MP3 is the most popular audio format nowadays in our daily life, for example music downloaded from the Internet and file saved in the digital recorder are often in MP3 format. However, low bitrate MP3s are often transcoded to high bitrate since high bitrate ones are of high commercial value. Also audio recording in digital recorder can be doctored easily by pervasive audio editing software. This paper presents two methods for the detection of double MP3 compression. The methods are essential for finding out fake-quality MP3 and audio forensics. The proposed methods use support vector machine classifiers with feature vectors formed by the distributions of the first digits of the quantized MDCT (modified discrete cosine transform) coefficients. Extensive experiments demonstrate the effectiveness of the proposed methods. To the best of our knowledge, this piece of work is the first one to detect double compression of audio signal.
Tsallis p, q-deformed Touchard polynomials and Stirling numbers
NASA Astrophysics Data System (ADS)
Herscovici, O.; Mansour, T.
2017-01-01
In this paper, we develop and investigate a new two-parametrized deformation of the Touchard polynomials, based on the definition of the NEXT q-exponential function of Tsallis. We obtain new generalizations of the Stirling numbers of the second kind and of the binomial coefficients and represent two new statistics for the set partitions.
Audio-visual simultaneity judgments.
Zampini, Massimiliano; Guest, Steve; Shore, David I; Spence, Charles
2005-04-01
The relative spatiotemporal correspondence between sensory events affects multisensory integration across a variety of species; integration is maximal when stimuli in different sensory modalities are presented from approximately the same position at about the same time. In the present study, we investigated the influence of spatial and temporal factors on audio-visual simultaneity perception in humans. Participants made unspeeded simultaneous versus successive discrimination responses to pairs of auditory and visual stimuli presented at varying stimulus onset asynchronies from either the same or different spatial positions using either the method of constant stimuli (Experiments 1 and 2) or psychophysical staircases (Experiment 3). The participants in all three experiments were more likely to report the stimuli as being simultaneous when they originated from the same spatial position than when they came from different positions, demonstrating that the apparent perception of multisensory simultaneity is dependent on the relative spatial position from which stimuli are presented.
Video genre categorization and representation using audio-visual information
NASA Astrophysics Data System (ADS)
Ionescu, Bogdan; Seyerlehner, Klaus; Rasche, Christoph; Vertan, Constantin; Lambert, Patrick
2012-04-01
We propose an audio-visual approach to video genre classification using content descriptors that exploit audio, color, temporal, and contour information. Audio information is extracted at block-level, which has the advantage of capturing local temporal information. At the temporal structure level, we consider action content in relation to human perception. Color perception is quantified using statistics of color distribution, elementary hues, color properties, and relationships between colors. Further, we compute statistics of contour geometry and relationships. The main contribution of our work lies in harnessing the descriptive power of the combination of these descriptors in genre classification. Validation was carried out on over 91 h of video footage encompassing 7 common video genres, yielding average precision and recall ratios of 87% to 100% and 77% to 100%, respectively, and an overall average correct classification of up to 97%. Also, experimental comparison as part of the MediaEval 2011 benchmarking campaign demonstrated the efficiency of the proposed audio-visual descriptors over other existing approaches. Finally, we discuss a 3-D video browsing platform that displays movies using feature-based coordinates and thus regroups them according to genre.
SNR-adaptive stream weighting for audio-MES ASR.
Lee, Ki-Seung
2008-08-01
Myoelectric signals (MESs) from the speaker's mouth region have been successfully shown to improve the noise robustness of automatic speech recognizers (ASRs), thus promising to extend their usability in implementing noise-robust ASR. In the recognition system presented herein, extracted audio and facial MES features were integrated by a decision fusion method, where the likelihood score of the audio-MES observation vector was given by a linear combination of class-conditional observation log-likelihoods of two classifiers, using appropriate weights. We developed a weighting process adaptive to SNRs. The main objective of the paper involves determining the optimal SNR classification boundaries and constructing a set of optimum stream weights for each SNR class. These two parameters were determined by a method based on a maximum mutual information criterion. Acoustic and facial MES data were collected from five subjects, using a 60-word vocabulary. Four types of acoustic noise including babble, car, aircraft, and white noise were acoustically added to clean speech signals with SNR ranging from -14 to 31 dB. The classification accuracy of the audio ASR was as low as 25.5%. Whereas, the classification accuracy of the MES ASR was 85.2%. The classification accuracy could be further improved by employing the proposed audio-MES weighting method, which was as high as 89.4% in the case of babble noise. A similar result was also found for the other types of noise.
Method for Reading Sensors and Controlling Actuators Using Audio Interfaces of Mobile Devices
Aroca, Rafael V.; Burlamaqui, Aquiles F.; Gonçalves, Luiz M. G.
2012-01-01
This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks. PMID:22438726
Method for reading sensors and controlling actuators using audio interfaces of mobile devices.
Aroca, Rafael V; Burlamaqui, Aquiles F; Gonçalves, Luiz M G
2012-01-01
This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks.
Audio-Visual Speech Cue Combination
Arnold, Derek H.; Tear, Morgan; Schindel, Ryan; Roseboom, Warrick
2010-01-01
Background Different sources of sensory information can interact, often shaping what we think we have seen or heard. This can enhance the precision of perceptual decisions relative to those made on the basis of a single source of information. From a computational perspective, there are multiple reasons why this might happen, and each predicts a different degree of enhanced precision. Relatively slight improvements can arise when perceptual decisions are made on the basis of multiple independent sensory estimates, as opposed to just one. These improvements can arise as a consequence of probability summation. Greater improvements can occur if two initially independent estimates are summated to form a single integrated code, especially if the summation is weighted in accordance with the variance associated with each independent estimate. This form of combination is often described as a Bayesian maximum likelihood estimate. Still greater improvements are possible if the two sources of information are encoded via a common physiological process. Principal Findings Here we show that the provision of simultaneous audio and visual speech cues can result in substantial sensitivity improvements, relative to single sensory modality based decisions. The magnitude of the improvements is greater than can be predicted on the basis of either a Bayesian maximum likelihood estimate or a probability summation. Conclusion Our data suggest that primary estimates of speech content are determined by a physiological process that takes input from both visual and auditory processing, resulting in greater sensitivity than would be possible if initially independent audio and visual estimates were formed and then subsequently combined. PMID:20419130
Sauerbrei, Willi; Royston, Patrick; Look, Maxime
2007-06-01
The Cox proportional hazards model has become the standard for the analysis of survival time data in cancer and other chronic diseases. In most studies, proportional hazards (PH) are assumed for covariate effects. With long-term follow-up, the PH assumption may be violated, leading to poor model fit. To accommodate non-PH effects, we introduce a new procedure, MFPT, an extension of the multivariable fractional polynomial (MFP) approach, to do the following: (1) select influential variables; (2) determine a sensible dose-response function for continuous variables; (3) investigate time-varying effects; (4) model such time-varying effects on a continuous scale. Assuming PH initially, we start with a detailed model-building step, including a search for possible non-linear functions for continuous covariates. Sometimes a variable with a strong short-term effect may appear weak or non-influential if 'averaged' over time under the PH assumption. To protect against omitting such variables, we repeat the analysis over a restricted time-interval. Any additional prognostic variables identified by this second analysis are added to create our final time-fixed multivariable model. Using a forward-selection algorithm we search for possible improvements in fit by adding time-varying covariates. The first part to create a final time-fixed model does not require the use of MFP. A model may be given from 'outside' or a different strategy may be preferred for this part. This broadens the scope of the time-varying part. To motivate and illustrate the methodology, we create prognostic models from a large database of patients with primary breast cancer. Non-linear time-fixed effects are found for progesterone receptor status and number of positive lymph nodes. Highly statistically significant time-varying effects are present for progesterone receptor status and tumour size.
Continuous delay estimation with polynomial splines.
Pinton, Gianmarco F; Trahey, Gregg E
2006-11-01
Delay estimation is used in ultrasonic imaging to estimate blood flow, determine phase aberration corrections, and to calculate elastographic images. Several algorithms have been developed to determine these delays. The accuracy of these methods depends in differing ways on noise, bandwidth, and delay range. In most cases relevant to delay estimation in ultrasonics, a subsample estimate of the delay is required. We introduce two new delay algorithms that use cubic polynomial splines to continuously represent the delay. These algorithms are compared to conventional delay estimators, such as normalized cross correlation and autocorrelation, and to another spline-based method. We present simulations that compare the algorithms' performance for varying amounts of noise, delay, and bandwidth. The proposed algorithms have better performance, in terms of bias and jitter, in a realistic ultrasonic imaging environment. The computational requirements of the new algorithms also are considered.
High-Fidelity Piezoelectric Audio Device
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.
2003-01-01
ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.
New pole placement algorithm - Polynomial matrix approach
NASA Technical Reports Server (NTRS)
Shafai, B.; Keel, L. H.
1990-01-01
A simple and direct pole-placement algorithm is introduced for dynamical systems having a block companion matrix A. The algorithm utilizes well-established properties of matrix polynomials. Pole placement is achieved by appropriately assigning coefficient matrices of the corresponding matrix polynomial. This involves only matrix additions and multiplications without requiring matrix inversion. A numerical example is given for the purpose of illustration.
Fractal Trigonometric Polynomials for Restricted Range Approximation
NASA Astrophysics Data System (ADS)
Chand, A. K. B.; Navascués, M. A.; Viswanathan, P.; Katiyar, S. K.
2016-05-01
One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.
On the Waring problem for polynomial rings
Fröberg, Ralf; Ottaviani, Giorgio; Shapiro, Boris
2012-01-01
In this note we discuss an analog of the classical Waring problem for . Namely, we show that a general homogeneous polynomial of degree divisible by k≥2 can be represented as a sum of at most kn k-th powers of homogeneous polynomials in . Noticeably, kn coincides with the number obtained by naive dimension count. PMID:22460787
Percolation critical polynomial as a graph invariant.
Scullard, Christian R
2012-10-01
Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0,1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer with increasing subgraph size. In this paper, I show how this generalized critical polynomial can be viewed as a graph invariant, similar to the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the recursive deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction p(c)=0.52440572..., which differs from the numerical value, p(c)=0.52440503(5), by only 6.9×10(-7).
Percolation critical polynomial as a graph invariant
NASA Astrophysics Data System (ADS)
Scullard, Christian R.
2012-10-01
Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0,1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer with increasing subgraph size. In this paper, I show how this generalized critical polynomial can be viewed as a graph invariant, similar to the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the recursive deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction pc=0.52440572⋯, which differs from the numerical value, pc=0.52440503(5), by only 6.9×10-7.
Polynomial solutions of nonlinear integral equations
NASA Astrophysics Data System (ADS)
Dominici, Diego
2009-05-01
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.
Some Recent Advances in Multivariate Polynomial Interpolation
NASA Astrophysics Data System (ADS)
Carnicer, J. M.; Gasca, M.
2007-09-01
Multivariate polynomial interpolation has received much attention in the last part of the 20th century. In this talk we comment on some recent advances in the last decade, with special emphasis in distributions of points which give rise to unisolvent (or poised) problems in the space of polynomials of a given total degree and simple interpolation formulae.
Interactive MPEG-4 low-bit-rate speech/audio transmission over the Internet
NASA Astrophysics Data System (ADS)
Liu, Fang; Kim, JongWon; Kuo, C.-C. Jay
1999-11-01
The recently developed MPEG-4 technology enables the coding and transmission of natural and synthetic audio-visual data in the form of objects. In an effort to extend the object-based functionality of MPEG-4 to real-time Internet applications, architectural prototypes of multiplex layer and transport layer tailored for transmission of MPEG-4 data over IP are under debate among Internet Engineering Task Force (IETF), and MPEG-4 systems Ad Hoc group. In this paper, we present an architecture for interactive MPEG-4 speech/audio transmission system over the Internet. It utilities a framework of Real Time Streaming Protocol (RTSP) over Real-time Transport Protocol (RTP) to provide controlled, on-demand delivery of real time speech/audio data. Based on a client-server model, a couple of low bit-rate bit streams (real-time speech/audio, pre- encoded speech/audio) are multiplexed and transmitted via a single RTP channel to the receiver. The MPEG-4 Scene Description (SD) and Object Descriptor (OD) bit streams are securely sent through the RTSP control channel. Upon receiving, an initial MPEG-4 audio- visual scene is constructed after de-multiplexing, decoding of bit streams, and scene composition. A receiver is allowed to manipulate the initial audio-visual scene presentation locally, or interactively arrange scene changes by sending requests to the server. A server may also choose to update the client with new streams and list of contents for user selection.
Polynomial probability distribution estimation using the method of moments
Mattsson, Lars; Rydén, Jesper
2017-01-01
We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram–Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation. PMID:28394949
Tutte polynomial in functional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
García-Castillón, Marlly V.
2015-09-01
Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.
DIFFERENTIAL CROSS SECTION ANALYSIS IN KAON PHOTOPRODUCTION USING ASSOCIATED LEGENDRE POLYNOMIALS
P. T. P. HUTAURUK, D. G. IRELAND, G. ROSNER
2009-04-01
Angular distributions of differential cross sections from the latest CLAS data sets,6 for the reaction γ + p→K+ + Λ have been analyzed using associated Legendre polynomials. This analysis is based upon theoretical calculations in Ref. 1 where all sixteen observables in kaon photoproduction can be classified into four Legendre classes. Each observable can be described by an expansion of associated Legendre polynomial functions. One of the questions to be addressed is how many associated Legendre polynomials are required to describe the data. In this preliminary analysis, we used data models with different numbers of associated Legendre polynomials. We then compared these models by calculating posterior probabilities of the models. We found that the CLAS data set needs no more than four associated Legendre polynomials to describe the differential cross section data. In addition, we also show the extracted coefficients of the best model.
Determination of sheep learning responses to a directional audio cue.
Morris, Jessica E; Fisher, Andrew D; Doyle, Rebecca E; Bush, Russell D
2010-01-01
There are scientific opinions that a nonhuman animal cannot feel emotions, and, hence, positive experiences, without being cognitive. Therefore, determining an animal's cognitive capacity can be useful in supporting the existence of emotions. Research shows that sheep can perform tasks based on olfactory and visual stimuli; however, little research exists on determining the ability of sheep to perform such tasks based on auditory cues. This study demonstrates that sheep can perform a discriminant, operant task based on a visual cue (p < .001); however, sheep could not exhibit the desired response to a directional audio cue in 2 subsequent studies (p = .346; p = .031). Nonetheless, the study provides further evidence on the complex cognitive abilities of sheep and indicates the potential for sheep to use audio cues in their learning.
On properties of bi-periodic Fibonacci and Lucas polynomials
NASA Astrophysics Data System (ADS)
Yilmaz, Nazmiye; Coskun, Arzu; Taskara, Necati
2017-07-01
In this paper, we define bi-periodic Fibonacci and Lucas polynomials and investigate properties of these polynomials which generalized of bi-periodic Fibonacci and Lucas numbers. We also obtain some new algebraic properties on these numbers and polynomials.
M-Interval Orthogonal Polynomial Estimators with Applications
NASA Astrophysics Data System (ADS)
Jaroszewicz, Boguslaw Emanuel
In this dissertation, adaptive estimators of various statistical nonlinearities are constructed and evaluated. The estimators are based on classical orthogonal polynomials which allows an exact computation of convergence rates. The first part of the dissertation is devoted to the estimation of one- and multi-dimensional probability density functions. The most attractive computationally is the Legendre estimator, which corresponds to the mean square segmented polynomial approximation of a pdf. Exact bounds for two components of the estimation error--deterministic bias and random error--are derived for all the polynomial estimators. The bounds on the bias are functions of the "smoothness" of the estimated pdf as measured by the number of continuous derivatives the pdf possesses. Adaptively estimated the optimum number of orthonormal polynomials minimizes the total error. In the second part, the theory of polynomial estimators is applied to the estimation of derivatives of pdf and regression functions. The optimum detectors for small signals in nongaussian noise, as well as any kind of statistical filtering involving likelihood function, are based on the nonlinearity which is a ratio of the derivative of the pdf and the pdf itself. Several different polynomial estimators of this nonlinearity are developed and compared. The theory of estimation is then extended to the multivariable case. The partial derivative nonlinearity is used for detection of signals in dependent noise. When the dimensionality of the nonlinearity is very large, the transformed Hermite estimators are particularly useful. The estimators can be viewed as two-stage filters: the first stage is a pre -whitening filter optimum in gaussian noise and the second stage is a nonlinear filter, which improves performance in nongaussian noise. Filtering of this type can be applied to predictive coding, nonlinear identification and other estimation problems involving a conditional expected value. In the third
Laboratory and in-flight experiments to evaluate 3-D audio display technology
NASA Technical Reports Server (NTRS)
Ericson, Mark; Mckinley, Richard; Kibbe, Marion; Francis, Daniel
1994-01-01
Laboratory and in-flight experiments were conducted to evaluate 3-D audio display technology for cockpit applications. A 3-D audio display generator was developed which digitally encodes naturally occurring direction information onto any audio signal and presents the binaural sound over headphones. The acoustic image is stabilized for head movement by use of an electromagnetic head-tracking device. In the laboratory, a 3-D audio display generator was used to spatially separate competing speech messages to improve the intelligibility of each message. Up to a 25 percent improvement in intelligibility was measured for spatially separated speech at high ambient noise levels (115 dB SPL). During the in-flight experiments, pilots reported that spatial separation of speech communications provided a noticeable improvement in intelligibility. The use of 3-D audio for target acquisition was also investigated. In the laboratory, 3-D audio enabled the acquisition of visual targets in about two seconds average response time at 17 degrees accuracy. During the in-flight experiments, pilots correctly identified ground targets 50, 75, and 100 percent of the time at separation angles of 12, 20, and 35 degrees, respectively. In general, pilot performance in the field with the 3-D audio display generator was as expected, based on data from laboratory experiments.
Central suboptimal H ∞ control design for nonlinear polynomial systems
NASA Astrophysics Data System (ADS)
Basin, Michael V.; Shi, Peng; Calderon-Alvarez, Dario
2011-05-01
This article presents the central finite-dimensional H ∞ regulator for nonlinear polynomial systems, which is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the article reduces the original H ∞ control problem to the corresponding optimal H 2 control problem, using this technique proposed in Doyle et al. [Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), 'State-space Solutions to Standard H 2 and H ∞ Control Problems', IEEE Transactions on Automatic Control, 34, 831-847]. This article yields the central suboptimal H ∞ regulator for nonlinear polynomial systems in a closed finite-dimensional form, based on the optimal H 2 regulator obtained in Basin and Calderon-Alvarez [Basin, M.V., and Calderon-Alvarez, D. (2008b), 'Optimal Controller for Uncertain Stochastic Polynomial Systems', Journal of the Franklin Institute, 345, 293-302]. Numerical simulations are conducted to verify performance of the designed central suboptimal regulator for nonlinear polynomial systems against the central suboptimal H ∞ regulator available for the corresponding linearised system.
A Study of Audio Tape: Part II
ERIC Educational Resources Information Center
Reen, Noel K.
1975-01-01
To evaluate reel audio tape, tests were performed to identify: signal-to-noise ratio, total harmonic distortion, dynamic response, frequency response, biased and virgin tape noise, dropout susceptibility and oxide coating uniformity. (SCC)
Audio fingerprint extraction for content identification
NASA Astrophysics Data System (ADS)
Shiu, Yu; Yeh, Chia-Hung; Kuo, C. C. J.
2003-11-01
In this work, we present an audio content identification system that identifies some unknown audio material by comparing its fingerprint with those extracted off-line and saved in the music database. We will describe in detail the procedure to extract audio fingerprints and demonstrate that they are robust to noise and content-preserving manipulations. The main feature in the proposed system is the zero-crossing rate extracted with the octave-band filter bank. The zero-crossing rate can be used to describe the dominant frequency in each subband with a very low computational cost. The size of audio fingerprint is small and can be efficiently stored along with the compressed files in the database. It is also robust to many modifications such as tempo change and time-alignment distortion. Besides, the octave-band filter bank is used to enhance the robustness to distortion, especially those localized on some frequency regions.
The Audio Description as a Physics Teaching Tool
ERIC Educational Resources Information Center
Cozendey, Sabrina; Costa, Maria da Piedade
2016-01-01
This study analyses the use of audio description in teaching physics concepts, aiming to determine the variables that influence the understanding of the concept. One education resource was audio described. For make the audio description the screen was freezing. The video with and without audio description should be presented to students, so that…
The Audio Description as a Physics Teaching Tool
ERIC Educational Resources Information Center
Cozendey, Sabrina; Costa, Maria da Piedade
2016-01-01
This study analyses the use of audio description in teaching physics concepts, aiming to determine the variables that influence the understanding of the concept. One education resource was audio described. For make the audio description the screen was freezing. The video with and without audio description should be presented to students, so that…
Transfer matrix computation of generalized critical polynomials in percolation
NASA Astrophysics Data System (ADS)
Scullard, Christian R.; Lykke Jacobsen, Jesper
2012-12-01
Percolation thresholds have recently been studied by means of a graph polynomial PB(p), henceforth referred to as the critical polynomial, that may be defined on any periodic lattice. The polynomial depends on a finite subgraph B, called the basis, and the way in which the basis is tiled to form the lattice. The unique root of PB(p) in [0, 1] either gives the exact percolation threshold for the lattice, or provides an approximation that becomes more accurate with appropriately increasing size of B. Initially PB(p) was defined by a contraction-deletion identity, similar to that satisfied by the Tutte polynomial. Here, we give an alternative probabilistic definition of PB(p), which allows for much more efficient computations, by using the transfer matrix, than was previously possible with contraction-deletion. We present bond percolation polynomials for the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162 and 243 edges, much larger than the previous limit of 36 edges using contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. For the largest bases, we obtain the thresholds pc(4, 82) = 0.676 803 329…, pc(kagome) = 0.524 404 998…, pc(3, 122) = 0.740 420 798…, comparable to the best simulation results. We also show that the alternative definition of PB(p) can be applied to study site percolation problems. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.
The Effect Of 3D Audio And Other Audio Techniques On Virtual Reality Experience.
Brinkman, Willem-Paul; Hoekstra, Allart R D; van Egmond, René
2015-01-01
Three studies were conducted to examine the effect of audio on people's experience in a virtual world. The first study showed that people could distinguish between mono, stereo, Dolby surround and 3D audio of a wasp. The second study found significant effects for audio techniques on people's self-reported anxiety, presence, and spatial perception. The third study found that adding sound to a visual virtual world had a significant effect on people's experience (including heart rate), while it found no difference in experience between stereo and 3D audio.
Multilingual Video and Audio News Alerting
2004-01-01
Multilingual Video and Audio News Alerting David D. Palmer, Patrick Bray, Marc Reichman, Katherine Rhodes, Noah White Virage Advanced...enable searching of multilingual video news sources by a monolingual speaker. In addition to full search capabilities, the system also enables real...DATE 2004 2. REPORT TYPE 3. DATES COVERED 00-00-2004 to 00-00-2004 4. TITLE AND SUBTITLE Multilingual Video and Audio News Alerting 5a
Design and implementation of an audio indicator
NASA Astrophysics Data System (ADS)
Zheng, Shiyong; Li, Zhao; Li, Biqing
2017-04-01
This page proposed an audio indicator which designed by using C9014, LED by operational amplifier level indicator, the decimal count/distributor of CD4017. The experimental can control audibly neon and holiday lights through the signal. Input audio signal after C9014 composed of operational amplifier for power amplifier, the adjust potentiometer extraction amplification signal input voltage CD4017 distributors make its drive to count, then connect the LED display running situation of the circuit. This simple audio indicator just use only U1 and can produce two colors LED with the audio signal tandem come pursuit of the running effect, from LED display the running of the situation takes can understand the general audio signal. The variation in the audio and the frequency of the signal and the corresponding level size. In this light can achieve jump to change, slowly, atlas, lighting four forms, used in home, hotel, discos, theater, advertising and other fields, and a wide range of USES, rU1h life in a modern society.
NASA Astrophysics Data System (ADS)
Konakli, Katerina; Sudret, Bruno
2016-09-01
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the "curse of dimensionality", namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor-product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input dimension, a
Konakli, Katerina Sudret, Bruno
2016-09-15
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
More on rotations as spin matrix polynomials
Curtright, Thomas L.
2015-09-15
Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.
The Translated Dowling Polynomials and Numbers
Mangontarum, Mahid M.; Macodi-Ringia, Amila P.; Abdulcarim, Normalah S.
2014-01-01
More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula, and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities are also investigated and presented. We show that the properties obtained are generalizations of some of the known results involving the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers. PMID:27433494
The Translated Dowling Polynomials and Numbers.
Mangontarum, Mahid M; Macodi-Ringia, Amila P; Abdulcarim, Normalah S
2014-01-01
More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula, and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities are also investigated and presented. We show that the properties obtained are generalizations of some of the known results involving the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers.
ERIC Educational Resources Information Center
Olesova, Larisa A.
2011-01-01
This study examined the effect of asynchronous embedded audio feedback on English as a Foreign Language (EFL) students' higher-order learning and perception of the audio feedback versus text-based feedback when the students participated in asynchronous online discussions. In addition, this study examined how the impact and perceptions differed…
ERIC Educational Resources Information Center
Olesova, Larisa A.
2011-01-01
This study examined the effect of asynchronous embedded audio feedback on English as a Foreign Language (EFL) students' higher-order learning and perception of the audio feedback versus text-based feedback when the students participated in asynchronous online discussions. In addition, this study examined how the impact and perceptions differed…
Polynomial time blackbox identity testers for depth-3 circuits : the field doesn't matter.
Seshadhri, Comandur; Saxena, Nitin
2010-11-01
Let C be a depth-3 circuit with n variables, degree d and top fanin k (called {Sigma}{Pi}{Sigma}(k, d, n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runs in time poly(n)d{sup k}, regardless of the base field. The only field for which polynomial time algorithms were previously known is F = Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a {Sigma}{Pi}{Sigma}(k, d, n) circuit to k variables, but preserves the identity structure. Polynomial identity testing (PIT) is a major open problem in theoretical computer science. The input is an arithmetic circuit that computes a polynomial p(x{sub 1}, x{sub 2},..., x{sub n}) over a base field F. We wish to check if p is the zero polynomial, or in other words, is identically zero. We may be provided with an explicit circuit, or may only have blackbox access. In the latter case, we can only evaluate the polynomial p at various domain points. The main goal is to devise a deterministic blackbox polynomial time algorithm for PIT.
2010-07-01
Station SAM Sub-Audio Magnetics SAM UXO UXO detection method based on the SAM principles, providing both TMI and TFEMI SERDP Strategic Environmental...Newer technologies such as the robotic total station (RTS) have also been successfully trialed at the APG wooded area. Sub-Audio Magnetics...system, lead acid gel cells (also known as sealed lead acid or SLA) and lithium ion. The lead acid battery pack consists of 5 x 6 V 4.5 amp-hr batteries
Using the ENF Criterion for Determining the Time of Recording of Short Digital Audio Recordings
NASA Astrophysics Data System (ADS)
Huijbregtse, Maarten; Geradts, Zeno
The Electric Network Frequency (ENF) Criterion is a recently developed forensic technique for determining the time of recording of digital audio recordings, by matching the ENF pattern from a questioned recording with an ENF pattern database. In this paper we discuss its inherent limitations in the case of short - i.e., less than 10 minutes in duration - digital audio recordings. We also present a matching procedure based on the correlation coefficient, as a more robust alternative to squared error matching.
Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos
Santonja, F.; Chen-Charpentier, B.
2012-01-01
Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model. PMID:22927889
NASA Astrophysics Data System (ADS)
Ben Mahmoud, B. Karem
2009-05-01
In this paper, a temperature dynamical profiling inside vacuum-insulated Hydrogen cryogenic vessels is yielded. The theoretical investigations are based on the similarity between the convective heat equation and the characteristic differential equation of the Boubaker polynomials.
A Least Squares Approximate Solution To Polynomial Equations Over the Real Numbers
ERIC Educational Resources Information Center
Poole, George
1977-01-01
A geometric approach to the solution of quadratic equations and more general polynomials is based on finding points with minimum distance from the x-axis. The approach is useful in motivating the definition of complex numbers. (SD)
Noise Adaptive Stream Weighting in Audio-Visual Speech Recognition
NASA Astrophysics Data System (ADS)
Heckmann, Martin; Berthommier, Frédéric; Kroschel, Kristian
2002-12-01
It has been shown that integration of acoustic and visual information especially in noisy conditions yields improved speech recognition results. This raises the question of how to weight the two modalities in different noise conditions. Throughout this paper we develop a weighting process adaptive to various background noise situations. In the presented recognition system, audio and video data are combined following a Separate Integration (SI) architecture. A hybrid Artificial Neural Network/Hidden Markov Model (ANN/HMM) system is used for the experiments. The neural networks were in all cases trained on clean data. Firstly, we evaluate the performance of different weighting schemes in a manually controlled recognition task with different types of noise. Next, we compare different criteria to estimate the reliability of the audio stream. Based on this, a mapping between the measurements and the free parameter of the fusion process is derived and its applicability is demonstrated. Finally, the possibilities and limitations of adaptive weighting are compared and discussed.
Digital Multicasting of Multiple Audio Streams
NASA Technical Reports Server (NTRS)
Macha, Mitchell; Bullock, John
2007-01-01
The Mission Control Center Voice Over Internet Protocol (MCC VOIP) system (see figure) comprises hardware and software that effect simultaneous, nearly real-time transmission of as many as 14 different audio streams to authorized listeners via the MCC intranet and/or the Internet. The original version of the MCC VOIP system was conceived to enable flight-support personnel located in offices outside a spacecraft mission control center to monitor audio loops within the mission control center. Different versions of the MCC VOIP system could be used for a variety of public and commercial purposes - for example, to enable members of the general public to monitor one or more NASA audio streams through their home computers, to enable air-traffic supervisors to monitor communication between airline pilots and air-traffic controllers in training, and to monitor conferences among brokers in a stock exchange. At the transmitting end, the audio-distribution process begins with feeding the audio signals to analog-to-digital converters. The resulting digital streams are sent through the MCC intranet, using a user datagram protocol (UDP), to a server that converts them to encrypted data packets. The encrypted data packets are then routed to the personal computers of authorized users by use of multicasting techniques. The total data-processing load on the portion of the system upstream of and including the encryption server is the total load imposed by all of the audio streams being encoded, regardless of the number of the listeners or the number of streams being monitored concurrently by the listeners. The personal computer of a user authorized to listen is equipped with special- purpose MCC audio-player software. When the user launches the program, the user is prompted to provide identification and a password. In one of two access- control provisions, the program is hard-coded to validate the user s identity and password against a list maintained on a domain-controller computer
Schur Stability Regions for Complex Quadratic Polynomials
ERIC Educational Resources Information Center
Cheng, Sui Sun; Huang, Shao Yuan
2010-01-01
Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)
Gaussian quadrature for multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Coussement, Jonathan; van Assche, Walter
2005-06-01
We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.
Chromatic polynomials, Potts models and all that
NASA Astrophysics Data System (ADS)
Sokal, Alan D.
2000-04-01
The q-state Potts model can be defined on an arbitrary finite graph, and its partition function encodes much important information about that graph, including its chromatic polynomial, flow polynomial and reliability polynomial. The complex zeros of the Potts partition function are of interest both to statistical mechanicians and to combinatorists. I give a pedagogical introduction to all these problems, and then sketch two recent results: (a) Construction of a countable family of planar graphs whose chromatic zeros are dense in the whole complex q-plane except possibly for the disc | q-1|<1. (b) Proof of a universal upper bound on the q-plane zeros of the chromatic polynomial (or antiferromagnetic Potts-model partition function) in terms of the graph's maximum degree.
Quantum Communication and Quantum Multivariate Polynomial Interpolation
NASA Astrophysics Data System (ADS)
Diep, Do Ngoc; Giang, Do Hoang
2017-09-01
The paper is devoted to the problem of multivariate polynomial interpolation and its application to quantum secret sharing. We show that using quantum Fourier transform one can produce the protocol for quantum secret sharing distribution.
Schur Stability Regions for Complex Quadratic Polynomials
ERIC Educational Resources Information Center
Cheng, Sui Sun; Huang, Shao Yuan
2010-01-01
Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)
On the linearization problem for ultraspherical polynomials
NASA Astrophysics Data System (ADS)
Bassetti, B.; Montaldi, E.; Raciti, M.
1986-03-01
A direct proof of a formula established by Bressoud in 1981 [D. M. Bressoud, SIAM J. Math. Anal. 12, 161 (1981)], equivalent to the linearization formula for the ultraspherical polynomials, is given. Some related results are briefly discussed.
Adapted polynomial chaos expansion for failure detection
Paffrath, M. Wever, U.
2007-09-10
In this paper, we consider two methods of computation of failure probabilities by adapted polynomial chaos expansions. The performance of the two methods is demonstrated by a predator-prey model and a chemical reaction problem.
Adapted polynomial chaos expansion for failure detection
NASA Astrophysics Data System (ADS)
Paffrath, M.; Wever, U.
2007-09-01
In this paper, we consider two methods of computation of failure probabilities by adapted polynomial chaos expansions. The performance of the two methods is demonstrated by a predator-prey model and a chemical reaction problem.
Williamson, I; Sheridan, C; Galker, E; Lous, J
1999-08-05
impaired ability to detect target sounds in noisy surroundings is a particular feature of children with a history of otitis media with effusion (OME). Children with current OME are also likely to experience difficulty in speech reception in classrooms where a high level of background noise has been recorded. No tests are currently available which are feasible in primary care and which objectively measure school-related disabilities. The effects of speech in noise and the extent to which this is offset by speech reading contribute important dimensions to disability. a video-based speech reception test has been developed using the same principles in 227 English and 182 Danish 4-8 year-old children. Distribution data was collected for both language versions of the test. The test has been compared with audiometry and teacher and parents assessments to establish its validity. there are no gold standards for audio-visual disability in current clinical use. The poor positive predictive value of audiometry for likely classroom functioning is a cause for concern, particularly in relation to inappropriate referral of children by primary care physicians.
Audio recording and reproduction in CARROUSO: Getting closer to perfection?
NASA Astrophysics Data System (ADS)
Teutsch, Heinz; Spors, Sascha; Buchner, Herbert; Rabenstein, Rudolf; Kellermann, Walter
2002-05-01
State-of-the-art systems for spatial audio reproduction utilize two to six discrete playback channels. A problem inherent to these systems is the relatively small area where the listener is able to experience a true 3-D sound sensation. This so-called ``sweet spot'' can be significantly enlarged by using loudspeaker arrays in combination with wave field synthesis (WFS) technology, initially developed at Delft University. By following this approach, actual sonic spaces can be reproduced in their entirety and not only discrete multichannel representations thereof. While loudspeaker arrays can be used to reproduce sound fields, microphone arrays can be used for sound field capture and analysis. Having high-quality audio reproduction in mind, microphone array designs are presented that need to fulfill stricter requirements than what has been traditionally considered for microphone array applications. Information on acoustic source position is essential for WFS-based rendering techniques. As will be shown, joint audio-video object tracking proves to be efficient for this task. Moreover, full-duplex applications based on WFS technology, like high-quality teleconferencing or remote music teaching, call for sophisticated multichannel acoustic echo cancellation algorithms. The European project ``CARROUSO'' aims at developing, integrating, and building a real-time system that embraces all previously described technologies in an MPEG-4 context.
Spatial domain entertainment audio decompression/compression
NASA Astrophysics Data System (ADS)
Chan, Y. K.; Tam, Ka Him K.
2014-02-01
The ARM7 NEON processor with 128bit SIMD hardware accelerator requires a peak performance of 13.99 Mega Cycles per Second for MP3 stereo entertainment quality decoding. For similar compression bit rate, OGG and AAC is preferred over MP3. The Patent Cooperation Treaty Application dated 28/August/2012 describes an audio decompression scheme producing a sequence of interleaving "min to Max" and "Max to min" rising and falling segments. The number of interior audio samples bound by "min to Max" or "Max to min" can be {0|1|…|N} audio samples. The magnitudes of samples, including the bounding min and Max, are distributed as normalized constants within the 0 and 1 of the bounding magnitudes. The decompressed audio is then a "sequence of static segments" on a frame by frame basis. Some of these frames needed to be post processed to elevate high frequency. The post processing is compression efficiency neutral and the additional decoding complexity is only a small fraction of the overall decoding complexity without the need of extra hardware. Compression efficiency can be speculated as very high as source audio had been decimated and converted to a set of data with only "segment length and corresponding segment magnitude" attributes. The PCT describes how these two attributes are efficiently coded by the PCT innovative coding scheme. The PCT decoding efficiency is obviously very high and decoding latency is basically zero. Both hardware requirement and run time is at least an order of magnitude better than MP3 variants. The side benefit is ultra low power consumption on mobile device. The acid test on how such a simplistic waveform representation can indeed reproduce authentic decompressed quality is benchmarked versus OGG(aoTuv Beta 6.03) by three pair of stereo audio frames and one broadcast like voice audio frame with each frame consisting 2,028 samples at 44,100KHz sampling frequency.
ERIC Educational Resources Information Center
Schweizer, Karl
2006-01-01
A model with fixed relations between manifest and latent variables is presented for investigating choice reaction time data. The numbers for fixation originate from the polynomial function. Two options are considered: the component-based (1 latent variable for each component of the polynomial function) and composite-based options (1 latent…
Could Audio-Described Films Benefit from Audio Introductions? An Audience Response Study
ERIC Educational Resources Information Center
Romero-Fresco, Pablo; Fryer, Louise
2013-01-01
Introduction: Time constraints limit the quantity and type of information conveyed in audio description (AD) for films, in particular the cinematic aspects. Inspired by introductory notes for theatre AD, this study developed audio introductions (AIs) for "Slumdog Millionaire" and "Man on Wire." Each AI comprised 10 minutes of…
Could Audio-Described Films Benefit from Audio Introductions? An Audience Response Study
ERIC Educational Resources Information Center
Romero-Fresco, Pablo; Fryer, Louise
2013-01-01
Introduction: Time constraints limit the quantity and type of information conveyed in audio description (AD) for films, in particular the cinematic aspects. Inspired by introductory notes for theatre AD, this study developed audio introductions (AIs) for "Slumdog Millionaire" and "Man on Wire." Each AI comprised 10 minutes of…
The Chinese Remainder Problem and Polynomial Interpolation.
1986-08-01
27709 86a 10 7 16 UNIVERSITY OF WISCONSIN-MADISON MATEMATICS RESEARCH CENTER THE CHINESE REMAINDER PROBLEM AND POLYNOMIAL INTERPOLATION Isaac J...Classifications: lOA10, 41A10 Key Words: Chinese Remainder Theorem, Polynomial Interpolation Work Unit Number 3 (Numerical Analysis and Scientific...Street Wisconsin Numerical Analysis and Madison, Wisconsin 53705 Scientific Computing " 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE U. S
Gauss-Lobatto to Bernstein polynomials transformation
NASA Astrophysics Data System (ADS)
Coluccio, Loredana; Eisinberg, Alfredo; Fedele, Giuseppe
2008-12-01
The aim of this paper is to transform a polynomial expressed as a weighted sum of discrete orthogonal polynomials on Gauss-Lobatto nodes into Bernstein form and vice versa. Explicit formulas and recursion expressions are derived. Moreover, an efficient algorithm for the transformation from Gauss-Lobatto to Bernstein is proposed. Finally, in order to show the robustness of the proposed algorithm, experimental results are reported.
Extending Romanovski polynomials in quantum mechanics
NASA Astrophysics Data System (ADS)
Quesne, C.
2013-12-01
Some extensions of the (third-class) Romanovski polynomials (also called Romanovski/pseudo-Jacobi polynomials), which appear in bound-state wavefunctions of rationally extended Scarf II and Rosen-Morse I potentials, are considered. For the former potentials, the generalized polynomials satisfy a finite orthogonality relation, while for the latter an infinite set of relations among polynomials with degree-dependent parameters is obtained. Both types of relations are counterparts of those known for conventional polynomials. In the absence of any direct information on the zeros of the Romanovski polynomials present in denominators, the regularity of the constructed potentials is checked by taking advantage of the disconjugacy properties of second-order differential equations of Schrödinger type. It is also shown that on going from Scarf I to Scarf II or from Rosen-Morse II to Rosen-Morse I potentials, the variety of rational extensions is narrowed down from types I, II, and III to type III only.
Baxter Operator Formalism for Macdonald Polynomials
NASA Astrophysics Data System (ADS)
Gerasimov, Anton; Lebedev, Dimitri; Oblezin, Sergey
2013-11-01
We develop basic constructions of the Baxter operator formalism for the Macdonald polynomials associated with root systems of type A. Precisely, we construct a bispectral pair of mutually commuting Baxter operators such that the Macdonald polynomials are their common eigenfunctions. The bispectral pair of Baxter operators is closely related to the bispectral pair of recursive operators for Macdonald polynomials leading to various families of their integral representations. We also construct the Baxter operator formalism for the q-deformed {{gl}_{ell+1}} -Whittaker functions and the Jack polynomials obtained by degenerations of the Macdonald polynomials associated with the type A ℓ root system. This note provides a generalization of our previous results on the Baxter operator formalism for the Whittaker functions. It was demonstrated previously that Baxter operator formalism for the Whittaker functions has deep connections with representation theory. In particular, the Baxter operators should be considered as elements of appropriate spherical Hecke algebras and their eigenvalues are identified with local Archimedean L-factors associated with admissible representations of reductive groups over {{R}}. We expect that the Baxter operator formalism for the Macdonald polynomials has an interpretation in representation theory over higher-dimensional local/global fields.
Tensor calculus in polar coordinates using Jacobi polynomials
NASA Astrophysics Data System (ADS)
Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.
On λ-Bell polynomials associated with umbral calculus
NASA Astrophysics Data System (ADS)
Kim, T.; Kim, D. S.
2017-01-01
In this paper, we introduce some new λ-Bell polynomials and Bell polynomials of the second kind and investigate properties of these polynomials. Using our investigation, we derive some new identities for the two kinds of λ-Bell polynomials arising from umbral calculus.
Korycki, Rafal
2014-05-01
Since the appearance of digital audio recordings, audio authentication has been becoming increasingly difficult. The currently available technologies and free editing software allow a forger to cut or paste any single word without audible artifacts. Nowadays, the only method referring to digital audio files commonly approved by forensic experts is the ENF criterion. It consists in fluctuation analysis of the mains frequency induced in electronic circuits of recording devices. Therefore, its effectiveness is strictly dependent on the presence of mains signal in the recording, which is a rare occurrence. Recently, much attention has been paid to authenticity analysis of compressed multimedia files and several solutions were proposed for detection of double compression in both digital video and digital audio. This paper addresses the problem of tampering detection in compressed audio files and discusses new methods that can be used for authenticity analysis of digital recordings. Presented approaches consist in evaluation of statistical features extracted from the MDCT coefficients as well as other parameters that may be obtained from compressed audio files. Calculated feature vectors are used for training selected machine learning algorithms. The detection of multiple compression covers up tampering activities as well as identification of traces of montage in digital audio recordings. To enhance the methods' robustness an encoder identification algorithm was developed and applied based on analysis of inherent parameters of compression. The effectiveness of tampering detection algorithms is tested on a predefined large music database consisting of nearly one million of compressed audio files. The influence of compression algorithms' parameters on the classification performance is discussed, based on the results of the current study.
Using a parity-sensitive sieve to count prime values of a polynomial.
Friedlander, J; Iwaniec, H
1997-02-18
It is expected that any irreducible polynomial with integer coefficients assumes infinitely many prime values provided that it satisfies some obvious local conditions. Moreover, it is expected that the frequency of these primes obeys a simple asymptotic law. This has however been proven for only a few special classes of polynomials. In the most famous unsolved cases the sequence of values is "thin" in the sense that it contains fewer than N(theta) integers up to N for some constant theta < 1. Quite generally it seems to be difficult to show the infinitude of primes in a given thin integer sequence and there is no polynomial for which this has hitherto been done. The polynomial x(2) + y(4) is an example of such a thin sequence; here, specifically, theta = 3/4. We report here the development of new methods that rigorously demonstrate the asymptotic formula in the case of this polynomial and that are applicable to an infinite class of polynomials to which this one belongs. The proof is based partly on a new sieve method that breaks the well-known parity problem of sieve theory and partly on a careful harmonic analysis of the special properties of biquadratic polynomial sequences.
Modeling a Temporally Evolving Atmosphere with Zernike Polynomials
2012-09-01
Systems, SPIE Press, 2010 5. J.W. Goodman , Statistical Optics , John Wiley & Sons, Inc., New York, NY, 1985 6. R. J. Noll, "Zernike Polynomials and...temporal model of phase screen generation. The long standing Fourier transform (FT) based method assumes the frozen flow hypothesis holds, where... optical tilt. 1. INTRODUCTION For conventional imaging systems, Geosynchronous Earth Orbit (GEO) space objects cannot be resolved due to
Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection
Denison, Rachel N.; Driver, Jon; Ruff, Christian C.
2013-01-01
Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067
Zeros of Jones polynomials for families of knots and links
NASA Astrophysics Data System (ADS)
Chang, S.-C.; Shrock, R.
2001-12-01
We calculate Jones polynomials VL( t) for several families of alternating knots and links by computing the Tutte polynomials T( G, x, y) for the associated graphs G and then obtaining VL( t) as a special case of the Tutte polynomial. For each of these families we determine the zeros of the Jones polynomial, including the accumulation set in the limit of infinitely many crossings. A discussion is also given of the calculation of Jones polynomials for non-alternating links.
MRI with synchronized audio to evaluate velopharyngeal insufficiency.
Maturo, Stephen; Silver, Amanda; Nimkin, Katherine; Sagar, Pallavi; Ashland, Jean; van der Kouwe, Andre J W; Hartnick, Christopher
2012-11-01
To demonstrate the feasibility of simultaneous-acquired magnetic resonance imaging (MRI) and high-quality synchronized audio recording for evaluating velopharyngeal closure. Institutional Review Board-approved case series. Tertiary care hospital. Three healthy adult volunteers with a normal speech pattern. MRI with simultaneous recorded audio files evaluating velopharyngeal closure. Precise imaging and audio coordination of specific phonatory tasks. Synchronization of MRI and audio in all three adults. Our novel imaging and audio protocol provides simultaneous acquired MRI with synchronized high quality audio for evaluating velopharyngeal closure. This technique may provide the opportunity to improve diagnosis and surgical planning in patients with velopharyngeal insufficiency.
Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1992-01-01
Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.
Quantum circuits and low-degree polynomials over {{{F}}_\\mathsf{2}}
NASA Astrophysics Data System (ADS)
Montanaro, Ashley
2017-02-01
In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field {{{F}}2} . Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over {{{F}}2} such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.
Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.
Hage, Steffen R; Nieder, Andreas
2015-05-06
Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech.
Kiranyaz, Serkan; Mäkinen, Toni; Gabbouj, Moncef
2012-10-01
In this paper, we propose a novel framework based on a collective network of evolutionary binary classifiers (CNBC) to address the problems of feature and class scalability. The main goal of the proposed framework is to achieve a high classification performance over dynamic audio and video repositories. The proposed framework adopts a "Divide and Conquer" approach in which an individual network of binary classifiers (NBC) is allocated to discriminate each audio class. An evolutionary search is applied to find the best binary classifier in each NBC with respect to a given criterion. Through the incremental evolution sessions, the CNBC framework can dynamically adapt to each new incoming class or feature set without resorting to a full-scale re-training or re-configuration. Therefore, the CNBC framework is particularly designed for dynamically varying databases where no conventional static classifiers can adapt to such changes. In short, it is entirely a novel topology, an unprecedented approach for dynamic, content/data adaptive and scalable audio classification. A large set of audio features can be effectively used in the framework, where the CNBCs make appropriate selections and combinations so as to achieve the highest discrimination among individual audio classes. Experiments demonstrate a high classification accuracy (above 90%) and efficiency of the proposed framework over large and dynamic audio databases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Knot polynomials in the first non-symmetric representation
NASA Astrophysics Data System (ADS)
Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, And.
2014-05-01
We describe the explicit form and the hidden structure of the answer for the HOMFLY polynomial for the figure-8 and some other 3-strand knots in representation [21]. This is the first result for non-torus knots beyond (anti)symmetric representations, and its evaluation is far more complicated. We provide a whole variety of different arguments, allowing one to guess the answer for the figure-8 knot, which can be also partly used in more complicated situations. Finally we report the result of exact calculation for figure-8 and some other 3-strand knots based on the previously developed sophisticated technique of multi-strand calculations. We also discuss a formula for the superpolynomial in representation [21] for the figure-8 knot, which heavily relies on the conjectural form of superpolynomial expansion nearby the special polynomial point. Generalizations and details will be presented elsewhere.
Extending a Property of Cubic Polynomials to Higher-Degree Polynomials
ERIC Educational Resources Information Center
Miller, David A.; Moseley, James
2012-01-01
In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…
Extending a Property of Cubic Polynomials to Higher-Degree Polynomials
ERIC Educational Resources Information Center
Miller, David A.; Moseley, James
2012-01-01
In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…
High performance MPEG-audio decoder IC
NASA Technical Reports Server (NTRS)
Thorn, M.; Benbassat, G.; Cyr, K.; Li, S.; Gill, M.; Kam, D.; Walker, K.; Look, P.; Eldridge, C.; Ng, P.
1993-01-01
The emerging digital audio and video compression technology brings both an opportunity and a new challenge to IC design. The pervasive application of compression technology to consumer electronics will require high volume, low cost IC's and fast time to market of the prototypes and production units. At the same time, the algorithms used in the compression technology result in complex VLSI IC's. The conflicting challenges of algorithm complexity, low cost, and fast time to market have an impact on device architecture and design methodology. The work presented in this paper is about the design of a dedicated, high precision, Motion Picture Expert Group (MPEG) audio decoder.
High performance MPEG-audio decoder IC
NASA Technical Reports Server (NTRS)
Thorn, M.; Benbassat, G.; Cyr, K.; Li, S.; Gill, M.; Kam, D.; Walker, K.; Look, P.; Eldridge, C.; Ng, P.
1993-01-01
The emerging digital audio and video compression technology brings both an opportunity and a new challenge to IC design. The pervasive application of compression technology to consumer electronics will require high volume, low cost IC's and fast time to market of the prototypes and production units. At the same time, the algorithms used in the compression technology result in complex VLSI IC's. The conflicting challenges of algorithm complexity, low cost, and fast time to market have an impact on device architecture and design methodology. The work presented in this paper is about the design of a dedicated, high precision, Motion Picture Expert Group (MPEG) audio decoder.
NASA Astrophysics Data System (ADS)
Schulze-Halberg, Axel; Roy, Pinaki
2017-03-01
We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.
New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion
NASA Astrophysics Data System (ADS)
Pogosyan, George S.; Wolf, Kurt Bernardo; Yakhno, Alexander
2017-10-01
The differential equation proposed by Frits Zernike to obtain a basis of polynomial orthogonal solutions on the the unit disk to classify wavefront aberrations in circular pupils, is shown to have a set of new orthonormal solution bases, involving Legendre and Gegenbauer polynomials, in non-orthogonal coordinates close to Cartesian ones. We find the overlaps between the original Zernike basis and a representative of the new set, which turn out to be Clebsch-Gordan coefficients.
Recognition of Arabic Sign Language Alphabet Using Polynomial Classifiers
NASA Astrophysics Data System (ADS)
Assaleh, Khaled; Al-Rousan, M.
2005-12-01
Building an accurate automatic sign language recognition system is of great importance in facilitating efficient communication with deaf people. In this paper, we propose the use of polynomial classifiers as a classification engine for the recognition of Arabic sign language (ArSL) alphabet. Polynomial classifiers have several advantages over other classifiers in that they do not require iterative training, and that they are highly computationally scalable with the number of classes. Based on polynomial classifiers, we have built an ArSL system and measured its performance using real ArSL data collected from deaf people. We show that the proposed system provides superior recognition results when compared with previously published results using ANFIS-based classification on the same dataset and feature extraction methodology. The comparison is shown in terms of the number of misclassified test patterns. The reduction in the rate of misclassified patterns was very significant. In particular, we have achieved a 36% reduction of misclassifications on the training data and 57% on the test data.
Cusp Catastrophe Polynomial Model: Power and Sample Size Estimation
Chen, Ding-Geng(Din); Chen, Xinguang(Jim); Lin, Feng; Tang, Wan; Lio, Y. L.; Guo, (Tammy) Yuanyuan
2016-01-01
Guastello’s polynomial regression method for solving cusp catastrophe model has been widely applied to analyze nonlinear behavior outcomes. However, no statistical power analysis for this modeling approach has been reported probably due to the complex nature of the cusp catastrophe model. Since statistical power analysis is essential for research design, we propose a novel method in this paper to fill in the gap. The method is simulation-based and can be used to calculate statistical power and sample size when Guastello’s polynomial regression method is used to cusp catastrophe modeling analysis. With this novel approach, a power curve is produced first to depict the relationship between statistical power and samples size under different model specifications. This power curve is then used to determine sample size required for specified statistical power. We verify the method first through four scenarios generated through Monte Carlo simulations, and followed by an application of the method with real published data in modeling early sexual initiation among young adolescents. Findings of our study suggest that this simulation-based power analysis method can be used to estimate sample size and statistical power for Guastello’s polynomial regression method in cusp catastrophe modeling. PMID:27158562
Cusp Catastrophe Polynomial Model: Power and Sample Size Estimation.
Chen, Ding-Geng Din; Chen, Xinguang Jim; Lin, Feng; Tang, Wan; Lio, Y L; Guo, Tammy Yuanyuan
2014-12-01
Guastello's polynomial regression method for solving cusp catastrophe model has been widely applied to analyze nonlinear behavior outcomes. However, no statistical power analysis for this modeling approach has been reported probably due to the complex nature of the cusp catastrophe model. Since statistical power analysis is essential for research design, we propose a novel method in this paper to fill in the gap. The method is simulation-based and can be used to calculate statistical power and sample size when Guastello's polynomial regression method is used to cusp catastrophe modeling analysis. With this novel approach, a power curve is produced first to depict the relationship between statistical power and samples size under different model specifications. This power curve is then used to determine sample size required for specified statistical power. We verify the method first through four scenarios generated through Monte Carlo simulations, and followed by an application of the method with real published data in modeling early sexual initiation among young adolescents. Findings of our study suggest that this simulation-based power analysis method can be used to estimate sample size and statistical power for Guastello's polynomial regression method in cusp catastrophe modeling.
Littrell, Robert; Hall, Neal A; Okandan, Murat; Olsson, Roy; Serkland, Darwin
2007-10-01
The relative intensity noise of vertical-cavity surface-emitting lasers (VCSELs) in the 100 mHz to 50 kHz frequency range is experimentally investigated using two representative single-mode VCSELs. Measurements in this frequency range are relevant to recently developed optical-based micromachined acoustic and accelerometer sensing structures that utilize VCSELs as the light source to form nearly monolithic 1 mm3 packages. Although this frequency regime is far lower than the gigahertz range relevant to optical communication applications for which VCSELs are primarily designed, the intensity noise is found to be low and well within the range of cancellation using basic reference detection principles.
Chemical Reaction Networks for Computing Polynomials.
Salehi, Sayed Ahmad; Parhi, Keshab K; Riedel, Marc D
2017-01-20
Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to the fractional representation as well as decoders for converting the computed output from the fractional to a standard representation are presented. The method is illustrated first for generic CRNs; then chemical reactions designed for an example are mapped to DNA strand-displacement reactions.
Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan
2012-01-01
Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.
Muslimov, Eduard; Hugot, Emmanuel; Jahn, Wilfried; Vives, Sebastien; Ferrari, Marc; Chambion, Bertrand; Henry, David; Gaschet, Christophe
2017-06-26
In the recent years a significant progress was achieved in the field of design and fabrication of optical systems based on freeform optical surfaces. They provide a possibility to build fast, wide-angle and high-resolution systems, which are very compact and free of obscuration. However, the field of freeform surfaces design techniques still remains underexplored. In the present paper we use the mathematical apparatus of orthogonal polynomials defined over a square aperture, which was developed before for the tasks of wavefront reconstruction, to describe shape of a mirror surface. Two cases, namely Legendre polynomials and generalization of the Zernike polynomials on a square, are considered. The potential advantages of these polynomials sets are demonstrated on example of a three-mirror unobscured telescope with F/# = 2.5 and FoV = 7.2x7.2°. In addition, we discuss possibility of use of curved detectors in such a design.
Minimal residual method stronger than polynomial preconditioning
Faber, V.; Joubert, W.; Knill, E.
1994-12-31
Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.
Fitting parametrized polynomials with scattered surface data.
van Ruijven, L J; Beek, M; van Eijden, T M
1999-07-01
Currently used joint-surface models require the measurements to be structured according to a grid. With the currently available tracking devices a large quantity of unstructured surface points can be measured in a relatively short time. In this paper a method is presented to fit polynomial functions to three-dimensional unstructured data points. To test the method spherical, cylindrical, parabolic, hyperbolic, exponential, logarithmic, and sellar surfaces with different undulations were used. The resulting polynomials were compared with the original shapes. The results show that even complex joint surfaces can be modelled with polynomial functions. In addition, the influence of noise and the number of data points was also analyzed. From a surface (diam: 20 mm) which is measured with a precision of 0.2 mm a model can be constructed with a precision of 0.02 mm.
Supersymmetric pairing of kinks for polynomial nonlinearities
Rosu, H.C.; Cornejo-Perez, O.
2005-04-01
We show how one can obtain kink solutions of ordinary differential equations with polynomial nonlinearities by an efficient factorization procedure directly related to the factorization of their nonlinear polynomial part. We focus on reaction-diffusion equations in the traveling frame and damped-anharmonic-oscillator equations. We also report an interesting pairing of the kink solutions, a result obtained by reversing the factorization brackets in the supersymmetric quantum-mechanical style. In this way, one gets ordinary differential equations with a different polynomial nonlinearity possessing kink solutions of different width but propagating at the same velocity as the kinks of the original equation. This pairing of kinks could have many applications. We illustrate the mathematical procedure with several important cases, among which are the generalized Fisher equation, the FitzHugh-Nagumo equation, and the polymerization fronts of microtubules.
Polynomial solution of quantum Grassmann matrices
NASA Astrophysics Data System (ADS)
Tierz, Miguel
2017-05-01
We study a model of quantum mechanical fermions with matrix-like index structure (with indices N and L) and quartic interactions, recently introduced by Anninos and Silva. We compute the partition function exactly with q-deformed orthogonal polynomials (Stieltjes-Wigert polynomials), for different values of L and arbitrary N. From the explicit evaluation of the thermal partition function, the energy levels and degeneracies are determined. For a given L, the number of states of different energy is quadratic in N, which implies an exponential degeneracy of the energy levels. We also show that at high-temperature we have a Gaussian matrix model, which implies a symmetry that swaps N and L, together with a Wick rotation of the spectral parameter. In this limit, we also write the partition function, for generic L and N, in terms of a single generalized Hermite polynomial.
A robust polynomial principal component analysis for seismic noise attenuation
NASA Astrophysics Data System (ADS)
Wang, Yuchen; Lu, Wenkai; Wang, Benfeng; Liu, Lei
2016-12-01
Random and coherent noise attenuation is a significant aspect of seismic data processing, especially for pre-stack seismic data flattened by normal moveout correction or migration. Signal extraction is widely used for pre-stack seismic noise attenuation. Principle component analysis (PCA), one of the multi-channel filters, is a common tool to extract seismic signals, which can be realized by singular value decomposition (SVD). However, when applying the traditional PCA filter to seismic signal extraction, the result is unsatisfactory with some artifacts when the seismic data is contaminated by random and coherent noise. In order to directly extract the desired signal and fix those artifacts at the same time, we take into consideration the amplitude variation with offset (AVO) property and thus propose a robust polynomial PCA algorithm. In this algorithm, a polynomial constraint is used to optimize the coefficient matrix. In order to simplify this complicated problem, a series of sub-optimal problems are designed and solved iteratively. After that, the random and coherent noise can be effectively attenuated simultaneously. Applications on synthetic and real data sets note that our proposed algorithm can better suppress random and coherent noise and have a better performance on protecting the desired signals, compared with the local polynomial fitting, conventional PCA and a L1-norm based PCA method.
Performance enhancement for audio-visual speaker identification using dynamic facial muscle model.
Asadpour, Vahid; Towhidkhah, Farzad; Homayounpour, Mohammad Mehdi
2006-10-01
Science of human identification using physiological characteristics or biometry has been of great concern in security systems. However, robust multimodal identification systems based on audio-visual information has not been thoroughly investigated yet. Therefore, the aim of this work to propose a model-based feature extraction method which employs physiological characteristics of facial muscles producing lip movements. This approach adopts the intrinsic properties of muscles such as viscosity, elasticity, and mass which are extracted from the dynamic lip model. These parameters are exclusively dependent on the neuro-muscular properties of speaker; consequently, imitation of valid speakers could be reduced to a large extent. These parameters are applied to a hidden Markov model (HMM) audio-visual identification system. In this work, a combination of audio and video features has been employed by adopting a multistream pseudo-synchronized HMM training method. Noise robust audio features such as Mel-frequency cepstral coefficients (MFCC), spectral subtraction (SS), and relative spectra perceptual linear prediction (J-RASTA-PLP) have been used to evaluate the performance of the multimodal system once efficient audio feature extraction methods have been utilized. The superior performance of the proposed system is demonstrated on a large multispeaker database of continuously spoken digits, along with a sentence that is phonetically rich. To evaluate the robustness of algorithms, some experiments were performed on genetically identical twins. Furthermore, changes in speaker voice were simulated with drug inhalation tests. In 3 dB signal to noise ratio (SNR), the dynamic muscle model improved the identification rate of the audio-visual system from 91 to 98%. Results on identical twins revealed that there was an apparent improvement on the performance for the dynamic muscle model-based system, in which the identification rate of the audio-visual system was enhanced from 87
Building Digital Audio Preservation Infrastructure and Workflows
ERIC Educational Resources Information Center
Young, Anjanette; Olivieri, Blynne; Eckler, Karl; Gerontakos, Theodore
2010-01-01
In 2009 the University of Washington (UW) Libraries special collections received funding for the digital preservation of its audio indigenous language holdings. The university libraries, where the authors work in various capacities, had begun digitizing image and text collections in 1997. Because of this, at the onset of the project, workflows (a…
Improving Audio Quality in Distance Learning Applications.
ERIC Educational Resources Information Center
Richardson, Craig H.
This paper discusses common causes of problems encountered with audio systems in distance learning networks and offers practical suggestions for correcting the problems. Problems and discussions are divided into nine categories: (1) acoustics, including reverberant classrooms leading to distorted or garbled voices, as well as one-dimensional audio…
Structuring Broadcast Audio for Information Access
NASA Astrophysics Data System (ADS)
Gauvain, Jean-Luc; Lamel, Lori
2003-12-01
One rapidly expanding application area for state-of-the-art speech recognition technology is the automatic processing of broadcast audiovisual data for information access. Since much of the linguistic information is found in the audio channel, speech recognition is a key enabling technology which, when combined with information retrieval techniques, can be used for searching large audiovisual document collections. Audio indexing must take into account the specificities of audio data such as needing to deal with the continuous data stream and an imperfect word transcription. Other important considerations are dealing with language specificities and facilitating language portability. At Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), broadcast news transcription systems have been developed for seven languages: English, French, German, Mandarin, Portuguese, Spanish, and Arabic. The transcription systems have been integrated into prototype demonstrators for several application areas such as audio data mining, structuring audiovisual archives, selective dissemination of information, and topic tracking for media monitoring. As examples, this paper addresses the spoken document retrieval and topic tracking tasks.
50 CFR 27.72 - Audio equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Audio equipment. 27.72 Section 27.72 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: Filming, Photography, and Light...
50 CFR 27.72 - Audio equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Audio equipment. 27.72 Section 27.72 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: Filming, Photography, and Light...
Some Final Reflections on Dual Audio Television.
ERIC Educational Resources Information Center
Borton, Terry; And Others
The Philadelphia City Schools engaged in a four-year program to develop and test dual audio television, a way to help children learn more from the massive amount of time they spend watching commercial television. The format consisted of an instructional radio broadcast that accompanied popular television shows and attempted to clarify and amplify…
Audio-Tutorial Instruction; An Expanded Approach.
ERIC Educational Resources Information Center
Herrick, Merlyn C.
The University of Missouri-Columbia School of Medicine is developing an audio-tutorial system with several unique features. A Didactor, a device which provides most of the capabilities of computer-assisted instruction but at a fraction of the cost, is the center of the system. The Didactor is combined with tape recordings and slides to present a…
Solar Energy Audio-Visual Materials.
ERIC Educational Resources Information Center
Department of Housing and Urban Development, Washington, DC. Office of Policy Development and Research.
This directory presents an annotated bibliography of non-print information resources dealing with solar energy. The document is divided by type of audio-visual medium, including: (1) Films, (2) Slides and Filmstrips, and (3) Videotapes. A fourth section provides addresses and telephone numbers of audiovisual aids sources, and lists the page…
Audio-Visual Speech Perception Is Special
ERIC Educational Resources Information Center
Tuomainen, J.; Andersen, T.S.; Tiippana, K.; Sams, M.
2005-01-01
In face-to-face conversation speech is perceived by ear and eye. We studied the prerequisites of audio-visual speech perception by using perceptually ambiguous sine wave replicas of natural speech as auditory stimuli. When the subjects were not aware that the auditory stimuli were speech, they showed only negligible integration of auditory and…
Study of audio speakers containing ferrofluid.
Rosensweig, R E; Hirota, Y; Tsuda, S; Raj, K
2008-05-21
This work validates a method for increasing the radial restoring force on the voice coil in audio speakers containing ferrofluid. In addition, a study is made of factors influencing splash loss of the ferrofluid due to shock. Ferrohydrodynamic analysis is employed throughout to model behavior, and predictions are compared to experimental data.
An ESL Audio-Script Writing Workshop
ERIC Educational Resources Information Center
Miller, Carla
2012-01-01
The roles of dialogue, collaborative writing, and authentic communication have been explored as effective strategies in second language writing classrooms. In this article, the stages of an innovative, multi-skill writing method, which embeds students' personal voices into the writing process, are explored. A 10-step ESL Audio Script Writing Model…
Providing Students with Formative Audio Feedback
ERIC Educational Resources Information Center
Brearley, Francis Q.; Cullen, W. Rod
2012-01-01
The provision of timely and constructive feedback is increasingly challenging for busy academics. Ensuring effective student engagement with feedback is equally difficult. Increasingly, studies have explored provision of audio recorded feedback to enhance effectiveness and engagement with feedback. Few, if any, of these focus on purely formative…
Apollo 11 Mission Audio - Day 1
1969-07-16
Audio from mission control during the launch of Apollo 11, which was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.
Spanish for Agricultural Purposes: The Audio Program.
ERIC Educational Resources Information Center
Mainous, Bruce H.; And Others
The manual is meant to accompany and supplement the basic manual and to serve as support to the audio component of "Spanish for Agricultural Purposes," a one-semester course for North American agriculture specialists preparing to work in Latin America, consists of exercises to supplement readings presented in the course's basic manual and to…
Audio/Visual Ratios in Commercial Filmstrips.
ERIC Educational Resources Information Center
Gulliford, Nancy L.
Developed by the Westinghouse Electric Corporation, Video Audio Compressed (VIDAC) is a compressed time, variable rate, still picture television system. This technology made it possible for a centralized library of audiovisual materials to be transmitted over a television channel in very short periods of time. In order to establish specifications…
Agency Video, Audio and Imagery Library
NASA Technical Reports Server (NTRS)
Grubbs, Rodney
2015-01-01
The purpose of this presentation was to inform the ISS International Partners of the new NASA Agency Video, Audio and Imagery Library (AVAIL) website. AVAIL is a new resource for the public to search for and download NASA-related imagery, and is not intended to replace the current process by which the International Partners receive their Space Station imagery products.
Building Digital Audio Preservation Infrastructure and Workflows
ERIC Educational Resources Information Center
Young, Anjanette; Olivieri, Blynne; Eckler, Karl; Gerontakos, Theodore
2010-01-01
In 2009 the University of Washington (UW) Libraries special collections received funding for the digital preservation of its audio indigenous language holdings. The university libraries, where the authors work in various capacities, had begun digitizing image and text collections in 1997. Because of this, at the onset of the project, workflows (a…
Enhancing sparsity of Hermite polynomial expansions by iterative rotations
Yang, Xiu; Lei, Huan; Baker, Nathan A.; Lin, Guang
2016-02-01
Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.
Source emission-pattern polynomial representation
NASA Astrophysics Data System (ADS)
Flores-Hernandez, Ricardo; De Villa, Francisco
1990-12-01
A method to obtain accurate thickness data to characterize the emission patterns of evaporation sources is described. Thickness data is obtained through digital image processing algorithms applied to the monochromatic transmission bands digitized from a set of multilayer Fabry-Perot filters deposited on large flat circular substrates. These computer image-processed taper-thickness patterns are reduced to orthonormal polynomial series expansions in two steps, using Tschebyshev and associated Legendre polynomials. The circular glass substrates employed to characterize each type of evaporation source are kept stationary during the evaporation process of evaporation of each layer to obtain the specific thickness distribution for each type of source.
Parabolic Refined Invariants and Macdonald Polynomials
NASA Astrophysics Data System (ADS)
Chuang, Wu-yen; Diaconescu, Duiliu-Emanuel; Donagi, Ron; Pantev, Tony
2015-05-01
A string theoretic derivation is given for the conjecture of Hausel, Letellier and Rodriguez-Villegas on the cohomology of character varieties with marked points. Their formula is identified with a refined BPS expansion in the stable pair theory of a local root stack, generalizing previous work of the first two authors in collaboration with Pan. Haiman's geometric construction for Macdonald polynomials is shown to emerge naturally in this context via geometric engineering. In particular this yields a new conjectural relation between Macdonald polynomials and refined local orbifold curve counting invariants. The string theoretic approach also leads to a new spectral cover construction for parabolic Higgs bundles in terms of holomorphic symplectic orbifolds.
The Potts model and the Tutte polynomial
NASA Astrophysics Data System (ADS)
Welsh, D. J. A.; Merino, C.
2000-03-01
This is an invited survey on the relation between the partition function of the Potts model and the Tutte polynomial. On the assumption that the Potts model is more familiar we have concentrated on the latter and its interpretations. In particular we highlight the connections with Abelian sandpiles, counting problems on random graphs, error correcting codes, and the Ehrhart polynomial of a zonotope. Where possible we use the mean field and square lattice as illustrations. We also discuss in some detail the complexity issues involved.
High degree interpolation polynomial in Newton form
NASA Technical Reports Server (NTRS)
Tal-Ezer, Hillel
1988-01-01
Polynomial interpolation is an essential subject in numerical analysis. Dealing with a real interval, it is well known that even if f(x) is an analytic function, interpolating at equally spaced points can diverge. On the other hand, interpolating at the zeroes of the corresponding Chebyshev polynomial will converge. Using the Newton formula, this result of convergence is true only on the theoretical level. It is shown that the algorithm which computes the divided differences is numerically stable only if: (1) the interpolating points are arranged in a different order, and (2) the size of the interval is 4.
47 CFR 73.403 - Digital audio broadcasting service requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... programming stream at no direct charge to listeners. In addition, a broadcast radio station must simulcast its analog audio programming on one of its digital audio programming streams. The DAB audio programming... analog programming service currently provided to listeners. (b) Emergency information. The emergency...
A Study of Alternative Delivery Systems for Audio Instruction.
ERIC Educational Resources Information Center
Conner, Pat A.
The Newark Audio Instruction Project determined and evaluated the cost benefits and efficiency factors in using FM main channel and subchannel, the school intercom system, and audio cassettes for delivery of instructional programming for grades K-9, and developed a master plan for integrating radio/audio instruction into the curriculum. A…
To Make a Long Story Short: Abridged Audio at 10.
ERIC Educational Resources Information Center
Annichiarico, Mark
1996-01-01
Examines the history of abridged audio publishing 10 years after the formation of the Audio Publishers Association. Topics include abridged versus unabridged versions for bookstores and libraries; vendors and publishers; future possibilities for CDs and DVD (Digital Versatile Disc); and audio leasing for libraries. (LRW)
36 CFR § 1002.12 - Audio disturbances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Audio disturbances. Â§ 1002.12... RECREATION § 1002.12 Audio disturbances. (a) The following are prohibited: (1) Operating motorized equipment or machinery such as an electric generating plant, motor vehicle, motorized toy, or an audio device...
47 CFR 10.520 - Common audio attention signal.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Common audio attention signal. 10.520 Section... Equipment Requirements § 10.520 Common audio attention signal. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include an audio attention signal that...
43 CFR 8365.2-2 - Audio devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Audio devices. 8365.2-2 Section 8365.2-2..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-2 Audio devices. On... audio device such as a radio, television, musical instrument, or other noise producing device or...
47 CFR 10.520 - Common audio attention signal.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Common audio attention signal. 10.520 Section... Equipment Requirements § 10.520 Common audio attention signal. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include an audio attention signal that...
43 CFR 8365.2-2 - Audio devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Audio devices. 8365.2-2 Section 8365.2-2..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-2 Audio devices. On... audio device such as a radio, television, musical instrument, or other noise producing device or...
43 CFR 8365.2-2 - Audio devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Audio devices. 8365.2-2 Section 8365.2-2..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-2 Audio devices. On... audio device such as a radio, television, musical instrument, or other noise producing device or...
43 CFR 8365.2-2 - Audio devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Audio devices. 8365.2-2 Section 8365.2-2..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-2 Audio devices. On... audio device such as a radio, television, musical instrument, or other noise producing device or...
47 CFR 10.520 - Common audio attention signal.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Common audio attention signal. 10.520 Section... Equipment Requirements § 10.520 Common audio attention signal. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include an audio attention signal that...
Guidelines for Audio-Visual Services in Academic Libraries.
ERIC Educational Resources Information Center
Association of Coll. and Research Libraries, Chicago, IL.
The purpose of these guidelines, prepared by the Audio-Visual Committee of the Association of College and Research Libraries, is to supply basic assistance to those academic libraries that will assume all or a major portion of an audio-visual program. They attempt to assist librarians to recognize and develop their audio-visual responsibilities…