Zhao, Chunyu; Burge, James H
2007-12-24
Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.
NASA Astrophysics Data System (ADS)
Zheng, Mingfang; He, Cunfu; Lu, Yan; Wu, Bin
2018-01-01
We presented a numerical method to solve phase dispersion curve in general anisotropic plates. This approach involves an exact solution to the problem in the form of the Legendre polynomial of multiple integrals, which we substituted into the state-vector formalism. In order to improve the efficiency of the proposed method, we made a special effort to demonstrate the analytical methodology. Furthermore, we analyzed the algebraic symmetries of the matrices in the state-vector formalism for anisotropic plates. The basic feature of the proposed method was the expansion of field quantities by Legendre polynomials. The Legendre polynomial method avoid to solve the transcendental dispersion equation, which can only be solved numerically. This state-vector formalism combined with Legendre polynomial expansion distinguished the adjacent dispersion mode clearly, even when the modes were very close. We then illustrated the theoretical solutions of the dispersion curves by this method for isotropic and anisotropic plates. Finally, we compared the proposed method with the global matrix method (GMM), which shows excellent agreement.
Effects of Air Drag and Lunar Third-Body Perturbations on Motion Near a Reference KAM Torus
2011-03-01
body m 1) mass of satellite; 2) order of associated Legendre polynomial n 1) mean motion; 2) degree of associated Legendre polynomial n3 mean motion...physical momentum pi ith physical momentum Pmn associated Legendre polynomial of order m and degree n q̇ physical coordinate derivatives vector, [q̇1...are constants specifying the shape of the gravitational field; and Pmn are associated Legendre polynomials . When m = n = 0, the geopotential function
Mafusire, Cosmas; Krüger, Tjaart P J
2018-06-01
The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decomposition, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon form using the Gauss-Jordan elimination method. We extend the model to derive orthonormal vector general polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient matrix to give its equivalent in the general pupil. The outer form of the Gram-Schmidt procedure and the Gauss-Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle.
Algebraic invariant curves of plane polynomial differential systems
NASA Astrophysics Data System (ADS)
Tsygvintsev, Alexei
2001-01-01
We consider a plane polynomial vector field P(x,y) dx + Q(x,y) dy of degree m>1. With each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω = dx/P = dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate has already been found by Cerveau and Lins Neto in a different way.
Automatic differentiation for Fourier series and the radii polynomial approach
NASA Astrophysics Data System (ADS)
Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian
2016-11-01
In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).
Conformal Galilei algebras, symmetric polynomials and singular vectors
NASA Astrophysics Data System (ADS)
Křižka, Libor; Somberg, Petr
2018-01-01
We classify and explicitly describe homomorphisms of Verma modules for conformal Galilei algebras cga_ℓ (d,C) with d=1 for any integer value ℓ \\in N. The homomorphisms are uniquely determined by singular vectors as solutions of certain differential operators of flag type and identified with specific polynomials arising as coefficients in the expansion of a parametric family of symmetric polynomials into power sum symmetric polynomials.
Differential Galois theory and non-integrability of planar polynomial vector fields
NASA Astrophysics Data System (ADS)
Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara
2018-06-01
We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the "Risch algorithm". In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.
Stability properties of a general class of nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
Gléria, I. M.; Figueiredo, A.; Rocha Filho, T. M.
2001-05-01
We establish sufficient conditions for the boundedness of the trajectories and the stability of the fixed points in a class of general nonlinear systems, the so-called quasi-polynomial vector fields, with the help of a natural embedding of such systems in a family of generalized Lotka-Volterra (LV) equations. A purely algebraic procedure is developed to determine such conditions. We apply our method to obtain new results for LV systems, by a reparametrization in time variable, and to study general nonlinear vector fields, originally far from the LV format.
Multi-indexed (q-)Racah polynomials
NASA Astrophysics Data System (ADS)
Odake, Satoru; Sasaki, Ryu
2012-09-01
As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of ‘discrete quantum mechanics’ with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by the multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of ‘virtual state’ vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the ‘solutions’ of the matrix Schrödinger equation with negative ‘eigenvalues’, except for one of the two boundary points.
Liorni, I; Parazzini, M; Fiocchi, S; Guadagnin, V; Ravazzani, P
2014-01-01
Polynomial Chaos (PC) is a decomposition method used to build a meta-model, which approximates the unknown response of a model. In this paper the PC method is applied to the stochastic dosimetry to assess the variability of human exposure due to the change of the orientation of the B-field vector respect to the human body. In detail, the analysis of the pregnant woman exposure at 7 months of gestational age is carried out, to build-up a statistical meta-model of the induced electric field for each fetal tissue and in the fetal whole-body by means of the PC expansion as a function of the B-field orientation, considering a uniform exposure at 50 Hz.
Multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials
NASA Astrophysics Data System (ADS)
Odake, Satoru; Sasaki, Ryu
2017-04-01
As the fourth stage of the project multi-indexed orthogonal polynomials, we present the multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials in the framework of ‘discrete quantum mechanics’ with real shifts defined on the semi-infinite lattice in one dimension. They are obtained, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier, from the quantum mechanical systems corresponding to the original orthogonal polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of virtual state vectors. The virtual state vectors are the solutions of the matrix Schrödinger equation on all the lattice points having negative energies and infinite norm. This is in good contrast to the (q-)Racah systems defined on a finite lattice, in which the ‘virtual state’ vectors satisfy the matrix Schrödinger equation except for one of the two boundary points.
Inertial modes in a rotating triaxial ellipsoid
Vantieghem, S.
2014-01-01
In this work, we present an algorithm that enables computation of inertial modes and their corresponding frequencies in a rotating triaxial ellipsoid. The method consists of projecting the inertial mode equation onto finite-dimensional bases of polynomial vector fields. It is shown that this leads to a well-posed eigenvalue problem, and hence, that eigenmodes are of polynomial form. Furthermore, these results shed new light onto the question whether the eigenmodes form a complete basis, i.e. whether any arbitrary velocity field can be expanded in a sum of inertial modes. Finally, we prove that two intriguing integral properties of inertial modes in rotating spheres and spheroids also extend to triaxial ellipsoids. PMID:25104908
Tensor calculus in polar coordinates using Jacobi polynomials
NASA Astrophysics Data System (ADS)
Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.
On diagrammatic technique for nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
Semenyakin, Mykola
2014-11-01
In this paper, we investigate phase flows over ℂn and ℝn generated by vector fields V = ∑ Pi∂i where Pi are finite degree polynomials. With the convenient diagrammatic technique, we get expressions for evolution operators ev{V|t} : x(0) ↦ x(t) through the series in powers of x(0) and t, represented as sum over all trees of a particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in the neighborhood of vector field fixed points are examined. Resonance cases are considered separately.
NASA Astrophysics Data System (ADS)
Marco, F. J.; Martínez, M. J.; López, J. A.
2015-04-01
The high quality of Hipparcos data in position, proper motion, and parallax has allowed for studies about stellar kinematics with the aim of achieving a better physical understanding of our galaxy, based on accurate calculus of the Ogorodnikov-Milne model (OMM) parameters. The use of discrete least squares is the most common adjustment method, but it may lead to errors mainly because of the inhomogeneous spatial distribution of the data. We present an example of the instability of this method using the case of a function given by a linear combination of Legendre polynomials. These polynomials are basic in the use of vector spherical harmonics, which have been used to compute the OMM parameters by several authors, such as Makarov & Murphy, Mignard & Klioner, and Vityazev & Tsvetkov. To overcome the former problem, we propose the use of a mixed method (see Marco et al.) that includes the extension of the functions of residuals to any point on the celestial sphere. The goal is to be able to work with continuous variables in the calculation of the coefficients of the vector spherical harmonic developments with stability and efficiency. We apply this mixed procedure to the study of the kinematics of the stars in our Galaxy, employing the Hipparcos velocity field data to obtain the OMM parameters. Previously, we tested the method by perturbing the Vectorial Spherical Harmonics model as well as the velocity vector field.
NASA Astrophysics Data System (ADS)
Choudhury, A. Ghose; Guha, Partha; Khanra, Barun
2009-10-01
The Darboux integrability method is particularly useful to determine first integrals of nonplanar autonomous systems of ordinary differential equations, whose associated vector fields are polynomials. In particular, we obtain first integrals for a variant of the generalized Raychaudhuri equation, which has appeared in string inspired modern cosmology.
2007-03-01
32 4.4 Algorithm Pseudo - Code ...................................................................................34 4.5 WIND Interface With a...difference estimates of xc temporal derivatives, or by using a polynomial fit to the previous values of xc. 34 4.4 ALGORITHM PSEUDO - CODE Pseudo ...Phase Shift Keying DQPSK Differential Quadrature Phase Shift Keying EVM Error Vector Magnitude FFT Fast Fourier Transform FPGA Field Programmable
Wavefront analysis from its slope data
NASA Astrophysics Data System (ADS)
Mahajan, Virendra N.; Acosta, Eva
2017-08-01
In the aberration analysis of a wavefront over a certain domain, the polynomials that are orthogonal over and represent balanced wave aberrations for this domain are used. For example, Zernike circle polynomials are used for the analysis of a circular wavefront. Similarly, the annular polynomials are used to analyze the annular wavefronts for systems with annular pupils, as in a rotationally symmetric two-mirror system, such as the Hubble space telescope. However, when the data available for analysis are the slopes of a wavefront, as, for example, in a Shack- Hartmann sensor, we can integrate the slope data to obtain the wavefront data, and then use the orthogonal polynomials to obtain the aberration coefficients. An alternative is to find vector functions that are orthogonal to the gradients of the wavefront polynomials, and obtain the aberration coefficients directly as the inner products of these functions with the slope data. In this paper, we show that an infinite number of vector functions can be obtained in this manner. We show further that the vector functions that are irrotational are unique and propagate minimum uncorrelated additive random noise from the slope data to the aberration coefficients.
NASA Astrophysics Data System (ADS)
Beheshti, Alireza
2018-03-01
The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.
Logarithmic violation of scaling in anisotropic kinematic dynamo model
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2016-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t')/k⊥d-1 +ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L.
Positivity-preserving High Order Finite Difference WENO Schemes for Compressible Euler Equations
2011-07-15
the WENO reconstruction. We assume that there is a polynomial vector qi(x) = (ρi(x), mi(x), Ei(x)) T with degree k which are (k + 1)-th order accurate...i+ 1 2 = qi(xi+ 1 2 ). The existence of such polynomials can be established by interpolation for WENO schemes. For example, for the fifth or- der...WENO scheme, there is a unique vector of polynomials of degree four qi(x) satisfying qi(xi− 1 2 ) = w+ i− 1 2 , qi(xi+ 1 2 ) = w− i+ 1 2 and 1 ∆x ∫ Ij qi
Algebraic and radical potential fields. Stability domains in coordinate and parametric space
NASA Astrophysics Data System (ADS)
Uteshev, Alexei Yu.
2018-05-01
A dynamical system d X/d t = F(X; A) is treated where F(X; A) is a polynomial (or some general type of radical contained) function in the vectors of state variables X ∈ ℝn and parameters A ∈ ℝm. We are looking for stability domains in both spaces, i.e. (a) domain ℙ ⊂ ℝm such that for any parameter vector specialization A ∈ ℙ, there exists a stable equilibrium for the dynamical system, and (b) domain 𝕊 ⊂ ℝn such that any point X* ∈ 𝕊 could be made a stable equilibrium by a suitable specialization of the parameter vector A.
Estimation of 3-D conduction velocity vector fields from cardiac mapping data.
Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M
2000-08-01
A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.
NASA Astrophysics Data System (ADS)
Kit Luk, Chuen; Chesi, Graziano
2015-11-01
This paper addresses the estimation of the domain of attraction for discrete-time nonlinear systems where the vector field is subject to changes. First, the paper considers the case of switched systems, where the vector field is allowed to arbitrarily switch among the elements of a finite family. Second, the paper considers the case of hybrid systems, where the state space is partitioned into several regions described by polynomial inequalities, and the vector field is defined on each region independently from the other ones. In both cases, the problem consists of computing the largest sublevel set of a Lyapunov function included in the domain of attraction. An approach is proposed for solving this problem based on convex programming, which provides a guaranteed inner estimate of the sought sublevel set. The conservatism of the provided estimate can be decreased by increasing the size of the optimisation problem. Some numerical examples illustrate the proposed approach.
Polynomial chaos representation of databases on manifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu
2017-04-15
Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. Themore » method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.« less
Study on the mapping of dark matter clustering from real space to redshift space
NASA Astrophysics Data System (ADS)
Zheng, Yi; Song, Yong-Seon
2016-08-01
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.
Poisson traces, D-modules, and symplectic resolutions
NASA Astrophysics Data System (ADS)
Etingof, Pavel; Schedler, Travis
2018-03-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
Poisson traces, D-modules, and symplectic resolutions.
Etingof, Pavel; Schedler, Travis
2018-01-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
Verifiable Secret Redistribution for Threshold Sharing Schemes
2002-02-01
complete verification in our protocol, old shareholders broadcast a commitment to the secret to the new shareholders. We prove that the new...of an m − 1 degree polynomial from m of n points yields a constant term in 1 the polynomial that corresponds to the secret . In Blakley’s scheme [Bla79...the intersection of m of n vector spaces yields a one-dimensional vector that corresponds to the secret . Desmedt surveys other sharing schemes
New syndrome decoder for (n, 1) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
The letter presents a new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck. The new technique uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). A recursive, Viterbi-like, algorithm is developed to find the minimum weight error vector E(D). An example is given for the binary nonsystematic (2, 1) CC.
Study on the mapping of dark matter clustering from real space to redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less
A two-step, fourth-order method with energy preserving properties
NASA Astrophysics Data System (ADS)
Brugnano, Luigi; Iavernaro, Felice; Trigiante, Donato
2012-09-01
We introduce a family of fourth-order two-step methods that preserve the energy function of canonical polynomial Hamiltonian systems. As is the case with linear mutistep and one-leg methods, a prerogative of the new formulae is that the associated nonlinear systems to be solved at each step of the integration procedure have the very same dimension of the underlying continuous problem. The key tools in the new methods are the line integral associated with a conservative vector field (such as the one defined by a Hamiltonian dynamical system) and its discretization obtained by the aid of a quadrature formula. Energy conservation is equivalent to the requirement that the quadrature is exact, which turns out to be always the case in the event that the Hamiltonian function is a polynomial and the degree of precision of the quadrature formula is high enough. The non-polynomial case is also discussed and a number of test problems are finally presented in order to compare the behavior of the new methods to the theoretical results.
Polynomial interpretation of multipole vectors
NASA Astrophysics Data System (ADS)
Katz, Gabriel; Weeks, Jeff
2004-09-01
Copi, Huterer, Starkman, and Schwarz introduced multipole vectors in a tensor context and used them to demonstrate that the first-year Wilkinson microwave anisotropy probe (WMAP) quadrupole and octopole planes align at roughly the 99.9% confidence level. In the present article, the language of polynomials provides a new and independent derivation of the multipole vector concept. Bézout’s theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling). The constructive nature of the proof leads to a fast, practical algorithm for computing multipole vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples and numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to Monte Carlo skies to independently reconfirm the estimate that the WMAP quadrupole and octopole planes align at the 99.9% level.
Mutually orthogonal Latin squares from the inner products of vectors in mutually unbiased bases
NASA Astrophysics Data System (ADS)
Hall, Joanne L.; Rao, Asha
2010-04-01
Mutually unbiased bases (MUBs) are important in quantum information theory. While constructions of complete sets of d + 1 MUBs in {\\bb C}^d are known when d is a prime power, it is unknown if such complete sets exist in non-prime power dimensions. It has been conjectured that complete sets of MUBs only exist in {\\bb C}^d if a maximal set of mutually orthogonal Latin squares (MOLS) of side length d also exists. There are several constructions (Roy and Scott 2007 J. Math. Phys. 48 072110; Paterek, Dakić and Brukner 2009 Phys. Rev. A 79 012109) of complete sets of MUBs from specific types of MOLS, which use Galois fields to construct the vectors of the MUBs. In this paper, two known constructions of MUBs (Alltop 1980 IEEE Trans. Inf. Theory 26 350-354 Wootters and Fields 1989 Ann. Phys. 191 363-381), both of which use polynomials over a Galois field, are used to construct complete sets of MOLS in the odd prime case. The MOLS come from the inner products of pairs of vectors in the MUBs.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2015-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t') /k⊥d -1 +ξ , where k⊥=|k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")—the d -dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990), 10.1007/BF02161420]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L . The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order.
On scalar and vector fields coupled to the energy-momentum tensor
NASA Astrophysics Data System (ADS)
Jiménez, Jose Beltrán; Cembranos, Jose A. R.; Sánchez Velázquez, Jose M.
2018-05-01
We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.
Geometrical Theory of Spherical Harmonics for Geosciences
NASA Astrophysics Data System (ADS)
Svehla, Drazen
2010-05-01
Spherical harmonics play a central role in the modelling of spatial and temporal processes in the system Earth. The gravity field of the Earth and its temporal variations, sea surface topography, geomagnetic field, ionosphere etc., are just a few examples where spherical harmonics are used to represent processes in the system Earth. We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, e.g. up to degree and order 106 and beyond. The algorithm is based on the trigonometric reduction of Legendre polynomials and the geometric rotation in hyperspace. It is shown that Legendre polynomials can be computed using trigonometric series by pre-computing amplitudes and translation terms for all angular arguments. It is shown that they can be treated as vectors in the Hilbert hyperspace leading to unitary hermitian rotation matrices with geometric properties. Thus, rotation of spherical harmonics about e.g. a polar or an equatorial axis can be represented in the similar way. This novel method allows stable calculation of spherical harmonics up to an arbitrary degree and order, i.e. up to degree and order 106 and beyond.
Higher derivative extensions of 3 d Chern-Simons models: conservation laws and stability
NASA Astrophysics Data System (ADS)
Kaparulin, D. S.; Karataeva, I. Yu.; Lyakhovich, S. L.
2015-11-01
We consider the class of higher derivative 3 d vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For the nth-order theory of this type, we provide a general recipe for constructing n-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability.
Algorithms in Discrepancy Theory and Lattices
NASA Astrophysics Data System (ADS)
Ramadas, Harishchandra
This thesis deals with algorithmic problems in discrepancy theory and lattices, and is based on two projects I worked on while at the University of Washington in Seattle. A brief overview is provided in Chapter 1 (Introduction). Chapter 2 covers joint work with Avi Levy and Thomas Rothvoss in the field of discrepancy minimization. A well-known theorem of Spencer shows that any set system with n sets over n elements admits a coloring of discrepancy O(√n). While the original proof was non-constructive, recent progress brought polynomial time algorithms by Bansal, Lovett and Meka, and Rothvoss. All those algorithms are randomized, even though Bansal's algorithm admitted a complicated derandomization. We propose an elegant deterministic polynomial time algorithm that is inspired by Lovett-Meka as well as the Multiplicative Weight Update method. The algorithm iteratively updates a fractional coloring while controlling the exponential weights that are assigned to the set constraints. A conjecture by Meka suggests that Spencer's bound can be generalized to symmetric matrices. We prove that n x n matrices that are block diagonal with block size q admit a coloring of discrepancy O(√n . √log(q)). Bansal, Dadush and Garg recently gave a randomized algorithm to find a vector x with entries in {-1,1} with ∥Ax∥infinity ≤ O(√log n) in polynomial time, where A is any matrix whose columns have length at most 1. We show that our method can be used to deterministically obtain such a vector. In Chapter 3, we discuss a result in the broad area of lattices and integer optimization, in joint work with Rebecca Hoberg, Thomas Rothvoss and Xin Yang. The number balancing (NBP) problem is the following: given real numbers a1,...,an in [0,1], find two disjoint subsets I1,I2 of [ n] so that the difference |sumi∈I1a i - sumi∈I2ai| of their sums is minimized. An application of the pigeonhole principle shows that there is always a solution where the difference is at most O √n/2n). Finding the minimum, however, is NP-hard. In polynomial time, the differencing algorithm by Karmarkar and Karp from 1982 can produce a solution with difference at most n-theta(log n), but no further improvement has been made since then. We show a relationship between NBP and Minkowski's Theorem. First we show that an approximate oracle for Minkowski's Theorem gives an approximate NBP oracle. Perhaps more surprisingly, we show that an approximate NBP oracle gives an approximate Minkowski oracle. In particular, we prove that any polynomial time algorithm that guarantees a solution of difference at most 2√n/2 n would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.
Segmented Polynomial Models in Quasi-Experimental Research.
ERIC Educational Resources Information Center
Wasik, John L.
1981-01-01
The use of segmented polynomial models is explained. Examples of design matrices of dummy variables are given for the least squares analyses of time series and discontinuity quasi-experimental research designs. Linear combinations of dummy variable vectors appear to provide tests of effects in the two quasi-experimental designs. (Author/BW)
NASA Astrophysics Data System (ADS)
Suresh, A.; Dikpati, M.; Burkepile, J.; de Toma, G.
2013-12-01
The structure of the Sun's corona varies with solar cycle, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. Why does this pattern occur? It is widely accepted that large-scale coronal structure is governed by magnetic fields, which are most likely generated by the dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential field source surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation and above the photosphere these dynamo-generated fields are extended from the photosphere to the corona by using a potential field source surface model. Under the assumption of axisymmetry, the large-scale poloidal fields can be written in terms of the curl of a vector potential. Since from the photosphere and above the magnetic diffusivity is essentially infinite, the evolution of the vector potential is given by Laplace's Equation, the solution of which is obtained in the form of a first order Associated Legendre Polynomial. By taking linear combinations of these polynomial terms, we find solutions that match more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986-1991), we compute the coefficients of the Associated Legendre Polynomials up to degree eight and compare with observation. We reproduce some previous results that at minimum the dipole term dominates, but that this term fades with the progress of the cycle and higher order multipole terms begin to dominate. We find that the amplitudes of these terms are not exactly the same in the two limbs, indicating that there is some phi dependence. Furthermore, by comparing the solar minimum corona during the past three minima (1986, 1996, and 2008), we find that, while both the 1986 and 1996 minima were dipolar, the minimum in 2008 was unusual, as there was departure from a dipole. In order to investigate the physical cause of this departure from dipole, we implement north-south asymmetry in the surface source of the magnetic fields in our model, and find that such n/s asymmetry in solar cycle could be one of the reasons for this departure. This work is partially supported by NASA's LWS grant with award number NNX08AQ34G. NCAR is sponsored by the NSF.
Simplified Syndrome Decoding of (n, 1) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.
Computing Galois Groups of Eisenstein Polynomials Over P-adic Fields
NASA Astrophysics Data System (ADS)
Milstead, Jonathan
The most efficient algorithms for computing Galois groups of polynomials over global fields are based on Stauduhar's relative resolvent method. These methods are not directly generalizable to the local field case, since they require a field that contains the global field in which all roots of the polynomial can be approximated. We present splitting field-independent methods for computing the Galois group of an Eisenstein polynomial over a p-adic field. Our approach is to combine information from different disciplines. We primarily, make use of the ramification polygon of the polynomial, which is the Newton polygon of a related polynomial. This allows us to quickly calculate several invariants that serve to reduce the number of possible Galois groups. Algorithms by Greve and Pauli very efficiently return the Galois group of polynomials where the ramification polygon consists of one segment as well as information about the subfields of the stem field. Second, we look at the factorization of linear absolute resolvents to further narrow the pool of possible groups.
NASA Astrophysics Data System (ADS)
Tshipa, M.; Winkoun, D. P.; Nijegorodov, N.; Masale, M.
2018-04-01
Theoretical investigations are carried out of binding energies of a donor charge assumed to be located exactly at the center of symmetry of two concentric cylindrical quantum wires. The intrinsic confinement potential in the region of the inner cylinder is modeled in any one of the three profiles: simple parabolic, shifted parabolic or the polynomial potential. The potential inside the shell is taken to be a potential step or potential barrier of a finite height. Additional confinement of the charge carriers is due to the vector potential of the axial applied magnetic field. It is found that the binding energies attain maxima in their variations with the radius of the inner cylinder irrespective of the particular intrinsic confinement of the inner cylinder. As the radius of the inner cylinder is increased further, the binding energies corresponding to either the parabolic or the polynomial potentials attain minima at some critical core-radius. Finally, as anticipated, the binding energies increase with the increase of the parallel applied magnetic field. This behaviour of the binding energies is irrespective of the particular electric potential of the nanostructure or its specific dimensions.
NASA Astrophysics Data System (ADS)
Varró, Sándor
2014-03-01
Exact solutions are presented of the Dirac and Klein-Gordon equations of a charged particle propagating in a classical monochromatic electromagnetic plane wave in a medium of index of refraction nm<1. In the Dirac case the solutions are expressed in terms of new complex polynomials, and in the Klein-Gordon case the found solutions are expressed in terms of Ince polynomials. In each case they form a doubly infinite set, labeled by two integer quantum numbers. These integer numbers represent quantized momentum components of the charged particle along the polarization vector and along the propagation direction of the electromagnetic radiation. Since this radiation may represent a plasmon wave of arbitrary high amplitude, propagating in an underdense plasma, the solutions obtained may have relevance in describing possible quantum features of novel acceleration mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakhmanov, E A; Suetin, S P
2013-09-30
The distribution of the zeros of the Hermite-Padé polynomials of the first kind for a pair of functions with an arbitrary even number of common branch points lying on the real axis is investigated under the assumption that this pair of functions forms a generalized complex Nikishin system. It is proved (Theorem 1) that the zeros have a limiting distribution, which coincides with the equilibrium measure of a certain compact set having the S-property in a harmonic external field. The existence problem for S-compact sets is solved in Theorem 2. The main idea of the proof of Theorem 1 consists in replacing a vector equilibrium problem in potentialmore » theory by a scalar problem with an external field and then using the general Gonchar-Rakhmanov method, which was worked out in the solution of the '1/9'-conjecture. The relation of the result obtained here to some results and conjectures due to Nuttall is discussed. Bibliography: 51 titles.« less
Vector-valued Jack polynomials and wavefunctions on the torus
NASA Astrophysics Data System (ADS)
Dunkl, Charles F.
2017-06-01
The Hamiltonian of the quantum Calogero-Sutherland model of N identical particles on the circle with 1/r 2 interactions has eigenfunctions consisting of Jack polynomials times the base state. By use of the generalized Jack polynomials taking values in modules of the symmetric group and the matrix solution of a system of linear differential equations one constructs novel eigenfunctions of the Hamiltonian. Like the usual wavefunctions each eigenfunction determines a symmetric probability density on the N-torus. The construction applies to any irreducible representation of the symmetric group. The methods depend on the theory of generalized Jack polynomials due to Griffeth, and the Yang-Baxter graph approach of Luque and the author.
Attitude estimation from magnetometer and earth-albedo-corrected coarse sun sensor measurements
NASA Astrophysics Data System (ADS)
Appel, Pontus
2005-01-01
For full 3-axes attitude determination the magnetic field vector and the Sun vector can be used. A Coarse Sun Sensor consisting of six solar cells placed on each of the six outer surfaces of the satellite is used for Sun vector determination. This robust and low cost setup is sensitive to surrounding light sources as it sees the whole sky. To compensate for the largest error source, the Earth, an albedo model is developed. The total albedo light vector has contributions from the Earth surface which is illuminated by the Sun and visible from the satellite. Depending on the reflectivity of the Earth surface, the satellite's position and the Sun's position the albedo light changes. This cannot be calculated analytically and hence a numerical model is developed. For on-board computer use the Earth albedo model consisting of data tables is transferred into polynomial functions in order to save memory space. For an absolute worst case the attitude determination error can be held below 2∘. In a nominal case it is better than 1∘.
The Coulomb problem on a 3-sphere and Heun polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellucci, Stefano; Yeghikyan, Vahagn; Yerevan State University, Alex-Manoogian st. 1, 00025 Yerevan
2013-08-15
The paper studies the quantum mechanical Coulomb problem on a 3-sphere. We present a special parametrization of the ellipto-spheroidal coordinate system suitable for the separation of variables. After quantization we get the explicit form of the spectrum and present an algebraic equation for the eigenvalues of the Runge-Lentz vector. We also present the wave functions expressed via Heun polynomials.
NASA Astrophysics Data System (ADS)
Burtyka, Filipp
2018-01-01
The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.
Explicit analytical expression for the condition number of polynomials in power form
NASA Astrophysics Data System (ADS)
Rack, Heinz-Joachim
2017-07-01
In his influential papers [1-3] W. Gautschi has defined and reshaped the condition number κ∞ of polynomials Pn of degree ≤ n which are represented in power form on a zero-symmetric interval [-ω, ω]. Basically, κ∞ is expressed as the product of two operator norms: an explicit factor times an implicit one (the l∞-norm of the coefficient vector of the n-th Chebyshev polynomial of the first kind relative to [-ω, ω]). We provide a new proof, economize the second factor and express it by an explicit analytical formula.
An atlas of Rapp's 180-th order geopotential.
NASA Astrophysics Data System (ADS)
Melvin, P. J.
1986-08-01
Deprit's 1979 approach to the summation of the spherical harmonic expansion of the geopotential has been modified to spherical components and normalized Legendre polynomials. An algorithm has been developed which produces ten fields at the users option: the undulations of the geoid, three anomalous components of the gravity vector, or six components of the Hessian of the geopotential (gravity gradient). The algorithm is stable to high orders in single precision and does not treat the polar regions as a special case. Eleven contour maps of components of the anomalous geopotential on the surface of the ellipsoid are presented to validate the algorithm.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2015-10-01
In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015), 10.1103/PhysRevE.91.013002] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n , all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E ∝k⊥1 -ξ and the dispersion law ω ∝k⊥2 -η . In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L .
Diffraction Theory for Polygonal Apertures
1988-07-01
and utilized oblate spheroidal vector wave functions, and Nomura and Katsura (1955), who employed an expansion of the hypergeometric polynomial ...21 2 - 1 4, 2 - 1 3 4k3 - 3k 8 3 - 4 factor relates directly to the orthogonality relations for the Chebyshev polynomials given below. I T(Q TieQdk...convergence. 3.1.2.2 Gaussian Illuminated Corner In the sample calculation just discussed we discovered some of the basic characteristics of the GBE
Direct discriminant locality preserving projection with Hammerstein polynomial expansion.
Chen, Xi; Zhang, Jiashu; Li, Defang
2012-12-01
Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.
Mixed kernel function support vector regression for global sensitivity analysis
NASA Astrophysics Data System (ADS)
Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng
2017-11-01
Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.
The determination of the elastodynamic fields of an ellipsoidal inhomogeneity
NASA Technical Reports Server (NTRS)
Fu, L. S.; Mura, T.
1983-01-01
The determination of the elastodynamic fields of an ellipsoidal inhomogeneity is studied in detail via the eigenstrain approach. A complete formulation and a treatment of both types of eigenstrains for equivalence between the inhomogeneity problem and the inclusion problem are given. This approach is shown to be mathematically identical to other approaches such as the direct volume integral formulation. Expanding the eigenstrains and applied strains in the polynomial form in the position vector and satisfying the equivalence conditions at every point, the governing simultaneous algebraic equations for the unknown coefficients in the eigenstrain expansion are derived. The elastodynamic field outside an ellipsoidal inhomogeneity in a linear elastic isotropic medium is given as an example. The angular and frequency dependence of the induced displacement field, as well as the differential and total cross sections are formally given in series expansion form for the case of uniformly distributed eigenstrains.
NASA Astrophysics Data System (ADS)
Burtyka, Filipp
2018-03-01
The paper firstly considers the problem of finding solvents for arbitrary unilateral polynomial matrix equations with second-order matrices over prime finite fields from the practical point of view: we implement the solver for this problem. The solver’s algorithm has two step: the first is finding solvents, having Jordan Normal Form (JNF), the second is finding solvents among the rest matrices. The first step reduces to the finding roots of usual polynomials over finite fields, the second is essentially exhaustive search. The first step’s algorithms essentially use the polynomial matrices theory. We estimate the practical duration of computations using our software implementation (for example that one can’t construct unilateral matrix polynomial over finite field, having any predefined number of solvents) and answer some theoretically-valued questions.
Alternatives to the stochastic "noise vector" approach
NASA Astrophysics Data System (ADS)
de Forcrand, Philippe; Jäger, Benjamin
2018-03-01
Several important observables, like the quark condensate and the Taylor coefficients of the expansion of the QCD pressure with respect to the chemical potential, are based on the trace of the inverse Dirac operator and of its powers. Such traces are traditionally estimated with "noise vectors" sandwiching the operator. We explore alternative approaches based on polynomial approximations of the inverse Dirac operator.
Representing Lumped Markov Chains by Minimal Polynomials over Field GF(q)
NASA Astrophysics Data System (ADS)
Zakharov, V. M.; Shalagin, S. V.; Eminov, B. F.
2018-05-01
A method has been proposed to represent lumped Markov chains by minimal polynomials over a finite field. The accuracy of representing lumped stochastic matrices, the law of lumped Markov chains depends linearly on the minimum degree of polynomials over field GF(q). The method allows constructing the realizations of lumped Markov chains on linear shift registers with a pre-defined “linear complexity”.
On polynomial selection for the general number field sieve
NASA Astrophysics Data System (ADS)
Kleinjung, Thorsten
2006-12-01
The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records.
Coherent states for the relativistic harmonic oscillator
NASA Technical Reports Server (NTRS)
Aldaya, Victor; Guerrero, J.
1995-01-01
Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.
Coherent orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less
High-Order Polynomial Expansions (HOPE) for flux-vector splitting
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Chris J., Jr.
1991-01-01
The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M = 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions.
Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Choon-Lin, E-mail: hcl@mail.tku.edu.tw
2011-04-15
Research Highlights: > Physical examples involving exceptional orthogonal polynomials. > Exceptional polynomials as deformations of classical orthogonal polynomials. > Exceptional polynomials from Darboux-Crum transformation. - Abstract: An interesting discovery in the last two years in the field of mathematical physics has been the exceptional X{sub l} Laguerre and Jacobi polynomials. Unlike the well-known classical orthogonal polynomials which start with constant terms, these new polynomials have lowest degree l = 1, 2, and ..., and yet they form complete set with respect to some positive-definite measure. While the mathematical properties of these new X{sub l} polynomials deserve further analysis, it ismore » also of interest to see if they play any role in physical systems. In this paper we indicate some physical models in which these new polynomials appear as the main part of the eigenfunctions. The systems we consider include the Dirac equations coupled minimally and non-minimally with some external fields, and the Fokker-Planck equations. The systems presented here have enlarged the number of exactly solvable physical systems known so far.« less
Polynomial time blackbox identity testers for depth-3 circuits : the field doesn't matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Saxena, Nitin
Let C be a depth-3 circuit with n variables, degree d and top fanin k (called {Sigma}{Pi}{Sigma}(k, d, n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runsmore » in time poly(n)d{sup k}, regardless of the base field. The only field for which polynomial time algorithms were previously known is F = Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a {Sigma}{Pi}{Sigma}(k, d, n) circuit to k variables, but preserves the identity structure. Polynomial identity testing (PIT) is a major open problem in theoretical computer science. The input is an arithmetic circuit that computes a polynomial p(x{sub 1}, x{sub 2},..., x{sub n}) over a base field F. We wish to check if p is the zero polynomial, or in other words, is identically zero. We may be provided with an explicit circuit, or may only have blackbox access. In the latter case, we can only evaluate the polynomial p at various domain points. The main goal is to devise a deterministic blackbox polynomial time algorithm for PIT.« less
Chaotic Behavior of a Generalized Sprott E Differential System
NASA Astrophysics Data System (ADS)
Oliveira, Regilene; Valls, Claudia
A chaotic system with only one equilibrium, a stable node-focus, was introduced by Wang and Chen [2012]. This system was found by adding a nonzero constant b to the Sprott E system [Sprott, 1994]. The coexistence of three types of attractors in this autonomous system was also considered by Braga and Mello [2013]. Adding a second parameter to the Sprott E differential system, we get the autonomous system ẋ = ayz + b,ẏ = x2 - y,ż = 1 - 4x, where a,b ∈ ℝ are parameters and a≠0. In this paper, we consider theoretically some global dynamical aspects of this system called here the generalized Sprott E differential system. This polynomial differential system is relevant because it is the first polynomial differential system in ℝ3 with two parameters exhibiting, besides the point attractor and chaotic attractor, coexisting stable limit cycles, demonstrating that this system is truly complicated and interesting. More precisely, we show that for b sufficiently small this system can exhibit two limit cycles emerging from the classical Hopf bifurcation at the equilibrium point p = (1/4, 1/16, 0). We also give a complete description of its dynamics on the Poincaré sphere at infinity by using the Poincaré compactification of a polynomial vector field in ℝ3, and we show that it has no first integrals in the class of Darboux functions.
Method of orbit sums in the theory of modular vector invariants
NASA Astrophysics Data System (ADS)
Stepanov, S. A.
2006-12-01
Let F be a field, V a finite-dimensional F-vector space, G\\leqslant \\operatorname{GL}_F(V) a finite group, and V^m=V\\oplus\\dots\\oplus V the m-fold direct sum with the diagonal action of G. The group G acts naturally on the symmetric graded algebra A_m=F \\lbrack V^m \\rbrack as a group of non-degenerate linear transformations of the variables. Let A_m^G be the subalgebra of invariants of the polynomial algebra A_m with respect to G. A classical result of Noether [1] says that if \\operatorname{char}F=0, then A_m^G is generated as an F-algebra by homogeneous polynomials of degree at most \\vert G\\vert, no matter how large m can be. On the other hand, it was proved by Richman [2], [3] that this result does not hold when the characteristic of F is positive and divides the order \\vert G\\vert of G. Let p, p>2, be a prime number, F=F_p a finite field of p elements, V a linear F_p-vector space of dimension n, and H\\leqslant \\operatorname{GL}_{F_p}(V) a cyclic group of order p generated by a matrix \\gamma of a certain special form. In this paper we describe explicitly (Theorem 1) one complete set of generators of A_m^H. After that, for an arbitrary complete set of generators of this algebra we find a lower bound for the highest degree of the generating elements of this algebra. This is a significant extension of the corresponding result of Campbell and Hughes [4] for the particular case of n=2. As a consequence we show (Theorem 3) that if m>n and G\\ge H is an arbitrary finite group, then each complete set of generators of A_m^G contains an element of degree at least 2(m-n+2r)(p-1)/r, where r=r(H) is a positive integer dependent on the structure of the generating matrix \\gamma of the group H. This result refines considerably the earlier lower bound obtained by Richman [3].
NASA Astrophysics Data System (ADS)
Kaporin, I. E.
2012-02-01
In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.
Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method.
Acevedo, Ramiro; Lombardini, Richard; Turner, Matthew A; Kinsey, James L; Johnson, Bruce R
2008-02-14
The conjugate symmetric Lanczos (CSL) method is introduced for the solution of the time-dependent Schrodinger equation. This remarkably simple and efficient time-domain algorithm is a low-order polynomial expansion of the quantum propagator for time-independent Hamiltonians and derives from the time-reversal symmetry of the Schrodinger equation. The CSL algorithm gives forward solutions by simply complex conjugating backward polynomial expansion coefficients. Interestingly, the expansion coefficients are the same for each uniform time step, a fact that is only spoiled by basis incompleteness and finite precision. This is true for the Krylov basis and, with further investigation, is also found to be true for the Lanczos basis, important for efficient orthogonal projection-based algorithms. The CSL method errors roughly track those of the short iterative Lanczos method while requiring fewer matrix-vector products than the Chebyshev method. With the CSL method, only a few vectors need to be stored at a time, there is no need to estimate the Hamiltonian spectral range, and only matrix-vector and vector-vector products are required. Applications using localized wavelet bases are made to harmonic oscillator and anharmonic Morse oscillator systems as well as electrodynamic pulse propagation using the Hamiltonian form of Maxwell's equations. For gold with a Drude dielectric function, the latter is non-Hermitian, requiring consideration of corrections to the CSL algorithm.
Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.
Kulkarni, Rishikesh; Rastogi, Pramod
2018-02-01
A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.
NASA Astrophysics Data System (ADS)
Van de Moortel, Maxime
2018-05-01
We show non-linear stability and instability results in spherical symmetry for the interior of a charged black hole—approaching a sub-extremal Reissner-Nordström background fast enough—in presence of a massive and charged scalar field, motivated by the strong cosmic censorship conjecture in that setting: 1. Stability We prove that spherically symmetric characteristic initial data to the Einstein-Maxwell-Klein-Gordon equations approaching a Reissner-Nordström background with a sufficiently decaying polynomial decay rate on the event horizon gives rise to a space-time possessing a Cauchy horizon in a neighbourhood of time-like infinity. Moreover, if the decay is even stronger, we prove that the space-time metric admits a continuous extension to the Cauchy horizon. This generalizes the celebrated stability result of Dafermos for Einstein-Maxwell-real-scalar-field in spherical symmetry. 2. Instability We prove that for the class of space-times considered in the stability part, whose scalar field in addition obeys a polynomial averaged- L 2 (consistent) lower bound on the event horizon, the scalar field obeys an integrated lower bound transversally to the Cauchy horizon. As a consequence we prove that the non-degenerate energy is infinite on any null surface crossing the Cauchy horizon and the curvature of a geodesic vector field blows up at the Cauchy horizon near time-like infinity. This generalizes an instability result due to Luk and Oh for Einstein-Maxwell-real-scalar-field in spherical symmetry. This instability of the black hole interior can also be viewed as a step towards the resolution of the C 2 strong cosmic censorship conjecture for one-ended asymptotically flat initial data.
Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkó, Zoltán, E-mail: Z.Perko@tudelft.nl; Gilli, Luca, E-mail: Gilli@nrg.eu; Lathouwers, Danny, E-mail: D.Lathouwers@tudelft.nl
2014-03-01
The demand for accurate and computationally affordable sensitivity and uncertainty techniques is constantly on the rise and has become especially pressing in the nuclear field with the shift to Best Estimate Plus Uncertainty methodologies in the licensing of nuclear installations. Besides traditional, already well developed methods – such as first order perturbation theory or Monte Carlo sampling – Polynomial Chaos Expansion (PCE) has been given a growing emphasis in recent years due to its simple application and good performance. This paper presents new developments of the research done at TU Delft on such Polynomial Chaos (PC) techniques. Our work ismore » focused on the Non-Intrusive Spectral Projection (NISP) approach and adaptive methods for building the PCE of responses of interest. Recent efforts resulted in a new adaptive sparse grid algorithm designed for estimating the PC coefficients. The algorithm is based on Gerstner's procedure for calculating multi-dimensional integrals but proves to be computationally significantly cheaper, while at the same it retains a similar accuracy as the original method. More importantly the issue of basis adaptivity has been investigated and two techniques have been implemented for constructing the sparse PCE of quantities of interest. Not using the traditional full PC basis set leads to further reduction in computational time since the high order grids necessary for accurately estimating the near zero expansion coefficients of polynomial basis vectors not needed in the PCE can be excluded from the calculation. Moreover the sparse PC representation of the response is easier to handle when used for sensitivity analysis or uncertainty propagation due to the smaller number of basis vectors. The developed grid and basis adaptive methods have been implemented in Matlab as the Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm and were tested on four analytical problems. These show consistent good performance both in terms of the accuracy of the resulting PC representation of quantities and the computational costs associated with constructing the sparse PCE. Basis adaptivity also seems to make the employment of PC techniques possible for problems with a higher number of input parameters (15–20), alleviating a well known limitation of the traditional approach. The prospect of larger scale applicability and the simplicity of implementation makes such adaptive PC algorithms particularly appealing for the sensitivity and uncertainty analysis of complex systems and legacy codes.« less
Quantum Support Vector Machine for Big Data Classification
NASA Astrophysics Data System (ADS)
Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth
2014-09-01
Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.
Muslimov, Eduard; Hugot, Emmanuel; Jahn, Wilfried; Vives, Sebastien; Ferrari, Marc; Chambion, Bertrand; Henry, David; Gaschet, Christophe
2017-06-26
In the recent years a significant progress was achieved in the field of design and fabrication of optical systems based on freeform optical surfaces. They provide a possibility to build fast, wide-angle and high-resolution systems, which are very compact and free of obscuration. However, the field of freeform surfaces design techniques still remains underexplored. In the present paper we use the mathematical apparatus of orthogonal polynomials defined over a square aperture, which was developed before for the tasks of wavefront reconstruction, to describe shape of a mirror surface. Two cases, namely Legendre polynomials and generalization of the Zernike polynomials on a square, are considered. The potential advantages of these polynomials sets are demonstrated on example of a three-mirror unobscured telescope with F/# = 2.5 and FoV = 7.2x7.2°. In addition, we discuss possibility of use of curved detectors in such a design.
Quantization of gauge fields, graph polynomials and graph homology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van
2013-09-15
We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less
Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.
Alzahrani, Mohammed A; Gauthier, Robert C
2015-10-05
Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques.
Splittability of p-ary functions
NASA Astrophysics Data System (ADS)
Anokhin, M. I.
2007-08-01
A function \\varphi from an n-dimensional vector space V over a field F of p elements (where p is a prime) into F is called splittable if \\varphi(u+w)=\\psi(u)+\\chi(w), u\\in U, w\\in W, for some non-trivial subspaces U and W such that U\\oplus W=V and for some functions \\psi\\colon U\\to F and \\chi\\colon W\\to F. It is explained how one can verify in time polynomial in \\log p^{p^n} whether a function is splittable and, if it is, find a representation of it in the above-described form. Other questions relating to the splittability of functions are considered. Bibliography: 3 titles.
On the concept of a filtered bundle
NASA Astrophysics Data System (ADS)
Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz
We present the notion of a filtered bundle as a generalization of a graded bundle. In particular, we weaken the necessity of the transformation laws for local coordinates to exactly respect the weight of the coordinates by allowing more general polynomial transformation laws. The key examples of such bundles include affine bundles and various jet bundles, both of which play fundamental roles in geometric mechanics and classical field theory. We also present the notion of double filtered bundles which provide natural generalizations of double vector bundles and double affine bundles. Furthermore, we show that the linearization of a filtered bundle — which can be seen as a partial polarization of the admissible changes of local coordinates — is well defined.
Umbral Calculus and Holonomic Modules in Positive Characteristic
NASA Astrophysics Data System (ADS)
Kochubei, Anatoly N.
2006-03-01
In the framework of analysis over local fields of positive characteristic, we develop algebraic tools for introducing and investigating various polynomial systems. In this survey paper we describe a function field version of umbral calculus developed on the basis of a relation of binomial type satisfied by the Carlitz polynomials. We consider modules over the Weyl-Carlitz ring, a function field counterpart of the Weyl algebra. It is shown that some basic objects of function field arithmetic, like the Carlitz module, Thakur's hypergeometric polynomials, and analogs of binomial coefficients arising in the positive characteristic version of umbral calculus, generate holonomic modules.
Explaining Support Vector Machines: A Color Based Nomogram
Van Belle, Vanya; Van Calster, Ben; Van Huffel, Sabine; Suykens, Johan A. K.; Lisboa, Paulo
2016-01-01
Problem setting Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models. Objective In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables. Results Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable. Conclusions This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method. PMID:27723811
Design and Use of a Learning Object for Finding Complex Polynomial Roots
ERIC Educational Resources Information Center
Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime
2013-01-01
Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…
2012-03-01
observation re = the radius of the Earth at the equator Pn = the Legendre polynomial 26 L = the geocentric latitude, sin The acceleration can then...atmospheric density at an altitude above an %% oblate earth given the position vector in the Geocentric Equatorial %% frame. The position vector is in...Diff between Delta and Geocentric lat rad %% GeoDtLat - Geodetic Latitude -Pi/2 to Pi/2 rad %% GeoCnLat
High-Order Polynomial Expansions (HOPE) for flux-vector splitting
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Chris J., Jr.
1991-01-01
The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M equals 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions. Also, the authors give the weakness of the scheme and suggest areas for further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu
2013-11-28
A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less
Explicit 2-D Hydrodynamic FEM Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Supersymmetric Dirac Born Infeld action with self-dual mass term
NASA Astrophysics Data System (ADS)
Nishino, Hitoshi; Rajpoot, Subhash; Reed, Kevin
2005-05-01
We introduce a Dirac Born Infeld action to a self-dual N = 1 supersymmetric vector multiplet in three dimensions. This action is based on the supersymmetric generalized self-duality in odd dimensions developed originally by Townsend, Pilch and van Nieuwenhuizen. Even though such a self-duality had been supposed to be very difficult to generalize to a supersymmetrically interacting system, we show that the Dirac Born Infeld action is actually compatible with supersymmetry and self-duality in three dimensions, even though the original self-duality receives corrections by the Dirac Born Infeld action. The interactions can be further generalized to arbitrary (non)polynomial interactions. As a by-product, we also show that a third-rank field strength leads to a more natural formulation of self-duality in 3D. We also show an interesting role played by the third-rank field strength leading to supersymmetry breaking, in addition to accommodating a Chern Simons form.
Sector magnets or transverse electromagnetic fields in cylindrical coordinates
Zolkin, T.
2017-04-10
Laplace’s equation is considered for scalar and vector potentials describing electric or magnetic fields in cylindrical coordinates, with invariance along the azimuthal coordinate. In a series, we found special functions which, when expanded to lowest order in power series in radial and vertical coordinates, replicate harmonic polynomials in two variables. These functions are based on radial harmonics found by Edwin M. McMillan forty years ago. In addition to McMillan’s harmonics, a second family of radial harmonics is introduced to provide a symmetric description between electric and magnetic fields and to describe fields and potentials in terms of the same functions.more » Formulas are provided which relate any transverse fields specified by the coefficients in the power series expansion in radial or vertical planes in cylindrical coordinates with the set of new functions. Our result is important for potential theory and for theoretical study, design and proper modeling of sector dipoles, combined function dipoles and any general sector element for accelerator physics. All results are presented in connection with these problems.« less
Sector magnets or transverse electromagnetic fields in cylindrical coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolkin, T.
Laplace’s equation is considered for scalar and vector potentials describing electric or magnetic fields in cylindrical coordinates, with invariance along the azimuthal coordinate. In a series, we found special functions which, when expanded to lowest order in power series in radial and vertical coordinates, replicate harmonic polynomials in two variables. These functions are based on radial harmonics found by Edwin M. McMillan forty years ago. In addition to McMillan’s harmonics, a second family of radial harmonics is introduced to provide a symmetric description between electric and magnetic fields and to describe fields and potentials in terms of the same functions.more » Formulas are provided which relate any transverse fields specified by the coefficients in the power series expansion in radial or vertical planes in cylindrical coordinates with the set of new functions. Our result is important for potential theory and for theoretical study, design and proper modeling of sector dipoles, combined function dipoles and any general sector element for accelerator physics. All results are presented in connection with these problems.« less
Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Smelyanskiy, Vadim N.; Isakov, Sergei V.; Boixo, Sergio; Mazzola, Guglielmo; Troyer, Matthias; Neven, Hartmut
2017-01-01
We develop an instantonic calculus to derive an analytical expression for the thermally assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynamical field is simulated efficiently by path-integral quantum Monte Carlo (QMC). We show analytically that the exponential scaling with the number of spins of the thermally assisted quantum tunneling rate and the escape rate of the QMC process are identical. We relate this effect to the existence of a dominant instantonic tunneling path. The instanton trajectory is described by nonlinear dynamical mean-field theory equations for a single-site magnetization vector, which we solve exactly. Finally, we derive scaling relations for the "spiky" barrier shape when the spin tunneling and QMC rates scale polynomially with the number of spins N while a purely classical over-the-barrier activation rate scales exponentially with N .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jian Hua; Gooding, R.J.
1994-06-01
We propose an algorithm to solve a system of partial differential equations of the type u[sub t](x,t) = F(x, t, u, u[sub x], u[sub xx], u[sub xxx], u[sub xxxx]) in 1 + 1 dimensions using the method of lines with piecewise ninth-order Hermite polynomials, where u and F and N-dimensional vectors. Nonlinear boundary conditions are easily incorporated with this method. We demonstrate the accuracy of this method through comparisons of numerically determine solutions to the analytical ones. Then, we apply this algorithm to a complicated physical system involving nonlinear and nonlocal strain forces coupled to a thermal field. 4 refs.,more » 5 figs., 1 tab.« less
A note on powers in finite fields
NASA Astrophysics Data System (ADS)
Aabrandt, Andreas; Lundsgaard Hansen, Vagn
2016-08-01
The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In this connection, it is of interest to know criteria for the existence of squares and other powers in arbitrary finite fields. Making good use of polynomial division in polynomial rings over finite fields, we have examined a classical criterion of Euler for squares in odd prime fields, giving it a formulation that is apt for generalization to arbitrary finite fields and powers. Our proof uses algebra rather than classical number theory, which makes it convenient when presenting basic methods of applied algebra in the classroom.
Paganin, David M; Beltran, Mario A; Petersen, Timothy C
2018-03-01
We obtain exact polynomial solutions for two-dimensional coherent complex scalar fields propagating through arbitrary aberrated shift-invariant linear imaging systems. These solutions are used to model nodal-line dynamics of coherent fields output by such systems.
Vector quantizer based on brightness maps for image compression with the polynomial transform
NASA Astrophysics Data System (ADS)
Escalante-Ramirez, Boris; Moreno-Gutierrez, Mauricio; Silvan-Cardenas, Jose L.
2002-11-01
We present a vector quantization scheme acting on brightness fields based on distance/distortion criteria correspondent with psycho-visual aspects. These criteria quantify sensorial distortion between vectors that represent either portions of a digital image or alternatively, coefficients of a transform-based coding system. In the latter case, we use an image representation model, namely the Hermite transform, that is based on some of the main perceptual characteristics of the human vision system (HVS) and in their response to light stimulus. Energy coding in the brightness domain, determination of local structure, code-book training and local orientation analysis are all obtained by means of the Hermite transform. This paper, for thematic reasons, is divided in four sections. The first one will shortly highlight the importance of having newer and better compression algorithms. This section will also serve to explain briefly the most relevant characteristics of the HVS, advantages and disadvantages related with the behavior of our vision in front of ocular stimulus. The second section shall go through a quick review of vector quantization techniques, focusing their performance on image treatment, as a preview for the image vector quantizer compressor actually constructed in section 5. Third chapter was chosen to concentrate the most important data gathered on brightness models. The building of this so-called brightness maps (quantification of the human perception on the visible objects reflectance), in a bi-dimensional model, will be addressed here. The Hermite transform, a special case of polynomial transforms, and its usefulness, will be treated, in an applicable discrete form, in the fourth chapter. As we have learned from previous works 1, Hermite transform has showed to be a useful and practical solution to efficiently code the energy within an image block, deciding which kind of quantization is to be used upon them (whether scalar or vector). It will also be a unique tool to structurally classify the image block within a given lattice. This particular operation intends to be one of the main contributions of this work. The fifth section will fuse the proposals derived from the study of the three main topics- addressed in the last sections- in order to propose an image compression model that takes advantage of vector quantizers inside the brightness transformed domain to determine the most important structures, finding the energy distribution inside the Hermite domain. Sixth and last section will show some results obtained while testing the coding-decoding model. The guidelines to evaluate the image compressing performance were the compression ratio, SNR and psycho-visual quality. Some conclusions derived from the research and possible unexplored paths will be shown on this section as well.
Optimal control and Galois theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelikin, M I; Kiselev, D D; Lokutsievskiy, L V
2013-11-30
An important role is played in the solution of a class of optimal control problems by a certain special polynomial of degree 2(n−1) with integer coefficients. The linear independence of a family of k roots of this polynomial over the field Q implies the existence of a solution of the original problem with optimal control in the form of an irrational winding of a k-dimensional Clifford torus, which is passed in finite time. In the paper, we prove that for n≤15 one can take an arbitrary positive integer not exceeding [n/2] for k. The apparatus developed in the paper is applied to the systems ofmore » Chebyshev-Hermite polynomials and generalized Chebyshev-Laguerre polynomials. It is proved that for such polynomials of degree 2m every subsystem of [(m+1)/2] roots with pairwise distinct squares is linearly independent over the field Q. Bibliography: 11 titles.« less
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
Wavefront reconstruction using computer-generated holograms
NASA Astrophysics Data System (ADS)
Schulze, Christian; Flamm, Daniel; Schmidt, Oliver A.; Duparré, Michael
2012-02-01
We propose a new method to determine the wavefront of a laser beam, based on modal decomposition using computer-generated holograms (CGHs). Thereby the beam under test illuminates the CGH with a specific, inscribed transmission function that enables the measurement of modal amplitudes and phases by evaluating the first diffraction order of the hologram. Since we use an angular multiplexing technique, our method is innately capable of real-time measurements of amplitude and phase, yielding the complete information about the optical field. A measurement of the Stokes parameters, respectively of the polarization state, provides the possibility to calculate the Poynting vector. Two wavefront reconstruction possibilities are outlined: reconstruction from the phase for scalar beams and reconstruction from the Poynting vector for inhomogeneously polarized beams. To quantify single aberrations, the reconstructed wavefront is decomposed into Zernike polynomials. Our technique is applied to beams emerging from different kinds of multimode optical fibers, such as step-index, photonic crystal and multicore fibers, whereas in this work results are exemplarily shown for a step-index fiber and compared to a Shack-Hartmann measurement that serves as a reference.
Extrapolation methods for vector sequences
NASA Technical Reports Server (NTRS)
Smith, David A.; Ford, William F.; Sidi, Avram
1987-01-01
This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.
Emergent gauge theories and supersymmetry: A QED primer
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.
2013-04-01
We argue that a generic trigger for photon and other gauge fields to emerge as massless Nambu-Goldstone modes could be spontaneously broken supersymmetry rather than physically manifested Lorentz violation. We consider supersymmetric QED model extended by an arbitrary polynomial potential of vector superfield that induces the spontaneous SUSY violation in the visible sector. As a consequence, massless photon appears as a companion of massless photino being Goldstone fermion state in tree approximation. Remarkably, the photon masslessness appearing at tree level is further protected against radiative corrections due to the simultaneously generated special gauge invariance in the broken SUSY phase. Meanwhile, photino being mixed with another goldstino appearing from a spontaneous SUSY violation in the hidden sector largely turns into light pseudo-goldstino whose physics seems to be of special interest.
Research on the application of a decoupling algorithm for structure analysis
NASA Technical Reports Server (NTRS)
Denman, E. D.
1980-01-01
The mathematical theory for decoupling mth-order matrix differential equations is presented. It is shown that the decoupling precedure can be developed from the algebraic theory of matrix polynomials. The role of eigenprojectors and latent projectors in the decoupling process is discussed and the mathematical relationships between eigenvalues, eigenvectors, latent roots, and latent vectors are developed. It is shown that the eigenvectors of the companion form of a matrix contains the latent vectors as a subset. The spectral decomposition of a matrix and the application to differential equations is given.
Contribution of zonal harmonics to gravitational moment
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.
1991-01-01
It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.
Contribution of zonal harmonics to gravitational moment
NASA Astrophysics Data System (ADS)
Roithmayr, Carlos M.
1991-02-01
It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.
On computation of Gröbner bases for linear difference systems
NASA Astrophysics Data System (ADS)
Gerdt, Vladimir P.
2006-04-01
In this paper, we present an algorithm for computing Gröbner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions.
Robust Vision-Based Pose Estimation Algorithm for AN Uav with Known Gravity Vector
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2016-06-01
Accurate estimation of camera external orientation with respect to a known object is one of the central problems in photogrammetry and computer vision. In recent years this problem is gaining an increasing attention in the field of UAV autonomous flight. Such application requires a real-time performance and robustness of the external orientation estimation algorithm. The accuracy of the solution is strongly dependent on the number of reference points visible on the given image. The problem only has an analytical solution if 3 or more reference points are visible. However, in limited visibility conditions it is often needed to perform external orientation with only 2 visible reference points. In such case the solution could be found if the gravity vector direction in the camera coordinate system is known. A number of algorithms for external orientation estimation for the case of 2 known reference points and a gravity vector were developed to date. Most of these algorithms provide analytical solution in the form of polynomial equation that is subject to large errors in the case of complex reference points configurations. This paper is focused on the development of a new computationally effective and robust algorithm for external orientation based on positions of 2 known reference points and a gravity vector. The algorithm implementation for guidance of a Parrot AR.Drone 2.0 micro-UAV is discussed. The experimental evaluation of the algorithm proved its computational efficiency and robustness against errors in reference points positions and complex configurations.
Calculation of Thermal Conductivity Coefficients of Electrons in Magnetized Dense Matter
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Glushikhina, M. V.
2018-04-01
The solution of Boltzmann equation for plasma in magnetic field with arbitrarily degenerate electrons and nondegenerate nuclei is obtained by Chapman-Enskog method. Functions generalizing Sonine polynomials are used for obtaining an approximate solution. Fully ionized plasma is considered. The tensor of the heat conductivity coefficients in nonquantized magnetic field is calculated. For nondegenerate and strongly degenerate plasma the asymptotic analytic formulas are obtained and compared with results of previous authors. The Lorentz approximation with neglecting of electron-electron encounters is asymptotically exact for strongly degenerate plasma. For the first time, analytical expressions for the heat conductivity tensor for nondegenerate electrons in the presence of a magnetic field are obtained in the three-polynomial approximation with account of electron-electron collisions. Account of the third polynomial improved substantially the precision of results. In the two-polynomial approximation, the obtained solution coincides with the published results. For strongly degenerate electrons, an asymptotically exact analytical solution for the heat conductivity tensor in the presence of a magnetic field is obtained for the first time. This solution has a considerably more complicated dependence on the magnetic field than those in previous publications and gives a several times smaller relative value of the thermal conductivity across the magnetic field at ωτ * 0.8.
Primary decomposition of zero-dimensional ideals over finite fields
NASA Astrophysics Data System (ADS)
Gao, Shuhong; Wan, Daqing; Wang, Mingsheng
2009-03-01
A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.
NASA Astrophysics Data System (ADS)
Kargin, Vladislav
2018-06-01
We introduce a family of three-dimensional random point fields using the concept of the quaternion determinant. The kernel of each field is an n-dimensional orthogonal projection on a linear space of quaternionic polynomials. We find explicit formulas for the basis of the orthogonal quaternion polynomials and for the kernel of the projection. For number of particles n → ∞, we calculate the scaling limits of the point field in the bulk and at the center of coordinates. We compare our construction with the previously introduced Fermi-sphere point field process.
Selection of optimal complexity for ENSO-EMR model by minimum description length principle
NASA Astrophysics Data System (ADS)
Loskutov, E. M.; Mukhin, D.; Mukhina, A.; Gavrilov, A.; Kondrashov, D. A.; Feigin, A. M.
2012-12-01
One of the main problems arising in modeling of data taken from natural system is finding a phase space suitable for construction of the evolution operator model. Since we usually deal with strongly high-dimensional behavior, we are forced to construct a model working in some projection of system phase space corresponding to time scales of interest. Selection of optimal projection is non-trivial problem since there are many ways to reconstruct phase variables from given time series, especially in the case of a spatio-temporal data field. Actually, finding optimal projection is significant part of model selection, because, on the one hand, the transformation of data to some phase variables vector can be considered as a required component of the model. On the other hand, such an optimization of a phase space makes sense only in relation to the parametrization of the model we use, i.e. representation of evolution operator, so we should find an optimal structure of the model together with phase variables vector. In this paper we propose to use principle of minimal description length (Molkov et al., 2009) for selection models of optimal complexity. The proposed method is applied to optimization of Empirical Model Reduction (EMR) of ENSO phenomenon (Kravtsov et al. 2005, Kondrashov et. al., 2005). This model operates within a subset of leading EOFs constructed from spatio-temporal field of SST in Equatorial Pacific, and has a form of multi-level stochastic differential equations (SDE) with polynomial parameterization of the right-hand side. Optimal values for both the number of EOF, the order of polynomial and number of levels are estimated from the Equatorial Pacific SST dataset. References: Ya. Molkov, D. Mukhin, E. Loskutov, G. Fidelin and A. Feigin, Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series, Phys. Rev. E, Vol. 80, P 046207, 2009 Kravtsov S, Kondrashov D, Ghil M, 2005: Multilevel regression modeling of nonlinear processes: Derivation and applications to climatic variability. J. Climate, 18 (21): 4404-4424. D. Kondrashov, S. Kravtsov, A. W. Robertson and M. Ghil, 2005. A hierarchy of data-based ENSO models. J. Climate, 18, 4425-4444.
NASA Astrophysics Data System (ADS)
Ghale, Purnima; Johnson, Harley T.
2018-06-01
We present an efficient sparse matrix-vector (SpMV) based method to compute the density matrix P from a given Hamiltonian in electronic structure computations. Our method is a hybrid approach based on Chebyshev-Jackson approximation theory and matrix purification methods like the second order spectral projection purification (SP2). Recent methods to compute the density matrix scale as O(N) in the number of floating point operations but are accompanied by large memory and communication overhead, and they are based on iterative use of the sparse matrix-matrix multiplication kernel (SpGEMM), which is known to be computationally irregular. In addition to irregularity in the sparse Hamiltonian H, the nonzero structure of intermediate estimates of P depends on products of H and evolves over the course of computation. On the other hand, an expansion of the density matrix P in terms of Chebyshev polynomials is straightforward and SpMV based; however, the resulting density matrix may not satisfy the required constraints exactly. In this paper, we analyze the strengths and weaknesses of the Chebyshev-Jackson polynomials and the second order spectral projection purification (SP2) method, and propose to combine them so that the accurate density matrix can be computed using the SpMV computational kernel only, and without having to store the density matrix P. Our method accomplishes these objectives by using the Chebyshev polynomial estimate as the initial guess for SP2, which is followed by using sparse matrix-vector multiplications (SpMVs) to replicate the behavior of the SP2 algorithm for purification. We demonstrate the method on a tight-binding model system of an oxide material containing more than 3 million atoms. In addition, we also present the predicted behavior of our method when applied to near-metallic Hamiltonians with a wide energy spectrum.
Betti numbers of graded modules and cohomology of vector bundles
NASA Astrophysics Data System (ADS)
Eisenbud, David; Schreyer, Frank-Olaf
2009-07-01
In the remarkable paper Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, Mats Boij and Jonas Soederberg conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fan naturally associated to the Young lattice. With the same tools we show that the cohomology table of any vector bundle on projective space is a positive rational linear combination of the cohomology tables of what we call supernatural vector bundles. Using this result we give new bounds on the slope of a vector bundle in terms of its cohomology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lue Xing; Sun Kun; Wang Pan
In the framework of Bell-polynomial manipulations, under investigation hereby are three single-field bilinearizable equations: the (1+1)-dimensional shallow water wave model, Boiti-Leon-Manna-Pempinelli model, and (2+1)-dimensional Sawada-Kotera model. Based on the concept of scale invariance, a direct and unifying Bell-polynomial scheme is employed to achieve the Baecklund transformations and Lax pairs associated with those three soliton equations. Note that the Bell-polynomial expressions and Bell-polynomial-typed Baecklund transformations for those three soliton equations can be, respectively, cast into the bilinear equations and bilinear Baecklund transformations with symbolic computation. Consequently, it is also shown that the Bell-polynomial-typed Baecklund transformations can be linearized into the correspondingmore » Lax pairs.« less
Acceleration of convergence of vector sequences
NASA Technical Reports Server (NTRS)
Sidi, A.; Ford, W. F.; Smith, D. A.
1983-01-01
A general approach to the construction of convergence acceleration methods for vector sequence is proposed. Using this approach, one can generate some known methods, such as the minimal polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also some new ones. Some of the new methods are easier to implement than the known methods and are observed to have similar numerical properties. The convergence analysis of these new methods is carried out, and it is shown that they are especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iteratively. A stability analysis is also given, and numerical examples are provided. The convergence and stability properties of the topological epsilon algorithm are likewise given.
1985-10-01
written 3 as follows: m 4 cg ° + C + + - c =0n-1u-1 n C + c 2 g 1 +. . c 0 clg o Cngn-1 cn+ 1 (10a) cng° + Cn+11 + + C 2n-lgn_1 + C 2 n 0 or in...matrix form, C " I = 0 (10b) A non-zero solution is possible if the determinant of C is zero. From the theory of Prony’s method [133 g (k1 = % n + kn... g , ki + go = 0 II) hence the polynomial coefficient vector g is also orthogonal to the vector (1 X i ki 2 .Xik)T where %i’s are the
Efficient modeling of photonic crystals with local Hermite polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, C. R.; Li, Zehao; Albrecht, J. D.
2014-04-21
Developing compact algorithms for accurate electrodynamic calculations with minimal computational cost is an active area of research given the increasing complexity in the design of electromagnetic composite structures such as photonic crystals, metamaterials, optical interconnects, and on-chip routing. We show that electric and magnetic (EM) fields can be calculated using scalar Hermite interpolation polynomials as the numerical basis functions without having to invoke edge-based vector finite elements to suppress spurious solutions or to satisfy boundary conditions. This approach offers several fundamental advantages as evidenced through band structure solutions for periodic systems and through waveguide analysis. Compared with reciprocal space (planemore » wave expansion) methods for periodic systems, advantages are shown in computational costs, the ability to capture spatial complexity in the dielectric distributions, the demonstration of numerical convergence with scaling, and variational eigenfunctions free of numerical artifacts that arise from mixed-order real space basis sets or the inherent aberrations from transforming reciprocal space solutions of finite expansions. The photonic band structure of a simple crystal is used as a benchmark comparison and the ability to capture the effects of spatially complex dielectric distributions is treated using a complex pattern with highly irregular features that would stress spatial transform limits. This general method is applicable to a broad class of physical systems, e.g., to semiconducting lasers which require simultaneous modeling of transitions in quantum wells or dots together with EM cavity calculations, to modeling plasmonic structures in the presence of EM field emissions, and to on-chip propagation within monolithic integrated circuits.« less
NASA Astrophysics Data System (ADS)
Mišković, Olivera; Olea, Rodrigo
2011-01-01
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso
2011-01-15
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, itmore » extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.« less
Two-dimensional orthonormal trend surfaces for prospecting
NASA Astrophysics Data System (ADS)
Sarma, D. D.; Selvaraj, J. B.
Orthonormal polynomials have distinct advantages over conventional polynomials: the equations for evaluating trend coefficients are not ill-conditioned and the convergence power of this method is greater compared to the least-squares approximation and therefore the approach by orthonormal functions provides a powerful alternative to the least-squares method. In this paper, orthonormal polynomials in two dimensions are obtained using the Gram-Schmidt method for a polynomial series of the type: Z = 1 + x + y + x2 + xy + y2 + … + yn, where x and y are the locational coordinates and Z is the value of the variable under consideration. Trend-surface analysis, which has wide applications in prospecting, has been carried out using the orthonormal polynomial approach for two sample sets of data from India concerned with gold accumulation from the Kolar Gold Field, and gravity data. A comparison of the orthonormal polynomial trend surfaces with those obtained by the classical least-squares method has been made for the two data sets. In both the situations, the orthonormal polynomial surfaces gave an improved fit to the data. A flowchart and a FORTRAN-IV computer program for deriving orthonormal polynomials of any order and for using them to fit trend surfaces is included. The program has provision for logarithmic transformation of the Z variable. If log-transformation is performed the predicted Z values are reconverted to the original units and the trend-surface map generated for use. The illustration of gold assay data related to the Champion lode system of Kolar Gold Fields, for which a 9th-degree orthonormal trend surface was fit, could be used for further prospecting the area.
New Syndrome Decoding Techniques for the (n, K) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
This paper presents a new syndrome decoding algorithm for the (n,k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3,1)CC.
Zernike analysis of all-sky night brightness maps.
Bará, Salvador; Nievas, Miguel; Sánchez de Miguel, Alejandro; Zamorano, Jaime
2014-04-20
All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.
NASA Technical Reports Server (NTRS)
Tal-Ezer, Hillel
1987-01-01
During the process of solving a mathematical model numerically, there is often a need to operate on a vector v by an operator which can be expressed as f(A) while A is NxN matrix (ex: exp(A), sin(A), A sup -1). Except for very simple matrices, it is impractical to construct the matrix f(A) explicitly. Usually an approximation to it is used. In the present research, an algorithm is developed which uses a polynomial approximation to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while z belongs to the domain D in the complex plane which includes all the eigenvalues of A. This problem of approximation is approached by interpolating the function f(z) in a certain set of points which is known to have some maximal properties. The approximation thus achieved is almost best. Implementing the algorithm to some practical problem is described. Since a solution to a linear system Ax = b is x= A sup -1 b, an iterative solution to it can be regarded as a polynomial approximation to f(A) = A sup -1. Implementing the algorithm in this case is also described.
Application of overlay modeling and control with Zernike polynomials in an HVM environment
NASA Astrophysics Data System (ADS)
Ju, JaeWuk; Kim, MinGyu; Lee, JuHan; Nabeth, Jeremy; Jeon, Sanghuck; Heo, Hoyoung; Robinson, John C.; Pierson, Bill
2016-03-01
Shrinking technology nodes and smaller process margins require improved photolithography overlay control. Generally, overlay measurement results are modeled with Cartesian polynomial functions for both intra-field and inter-field models and the model coefficients are sent to an advanced process control (APC) system operating in an XY Cartesian basis. Dampened overlay corrections, typically via exponentially or linearly weighted moving average in time, are then retrieved from the APC system to apply on the scanner in XY Cartesian form for subsequent lot exposure. The goal of the above method is to process lots with corrections that target the least possible overlay misregistration in steady state as well as in change point situations. In this study, we model overlay errors on product using Zernike polynomials with same fitting capability as the process of reference (POR) to represent the wafer-level terms, and use the standard Cartesian polynomials to represent the field-level terms. APC calculations for wafer-level correction are performed in Zernike basis while field-level calculations use standard XY Cartesian basis. Finally, weighted wafer-level correction terms are converted to XY Cartesian space in order to be applied on the scanner, along with field-level corrections, for future wafer exposures. Since Zernike polynomials have the property of being orthogonal in the unit disk we are able to reduce the amount of collinearity between terms and improve overlay stability. Our real time Zernike modeling and feedback evaluation was performed on a 20-lot dataset in a high volume manufacturing (HVM) environment. The measured on-product results were compared to POR and showed a 7% reduction in overlay variation including a 22% terms variation. This led to an on-product raw overlay Mean + 3Sigma X&Y improvement of 5% and resulted in 0.1% yield improvement.
NASA Astrophysics Data System (ADS)
Myrheim, J.
Contents 1 Introduction 1.1 The concept of particle statistics 1.2 Statistical mechanics and the many-body problem 1.3 Experimental physics in two dimensions 1.4 The algebraic approach: Heisenberg quantization 1.5 More general quantizations 2 The configuration space 2.1 The Euclidean relative space for two particles 2.2 Dimensions d=1,2,3 2.3 Homotopy 2.4 The braid group 3 Schroedinger quantization in one dimension 4 Heisenberg quantization in one dimension 4.1 The coordinate representation 5 Schroedinger quantization in dimension d ≥ 2 5.1 Scalar wave functions 5.2 Homotopy 5.3 Interchange phases 5.4 The statistics vector potential 5.5 The N-particle case 5.6 Chern-Simons theory 6 The Feynman path integral for anyons 6.1 Eigenstates for position and momentum 6.2 The path integral 6.3 Conjugation classes in SN 6.4 The non-interacting case 6.5 Duality of Feynman and Schroedinger quantization 7 The harmonic oscillator 7.1 The two-dimensional harmonic oscillator 7.2 Two anyons in a harmonic oscillator potential 7.3 More than two anyons 7.4 The three-anyon problem 8 The anyon gas 8.1 The cluster and virial expansions 8.2 First and second order perturbative results 8.3 Regularization by periodic boundary conditions 8.4 Regularization by a harmonic oscillator potential 8.5 Bosons and fermions 8.6 Two anyons 8.7 Three anyons 8.8 The Monte Carlo method 8.9 The path integral representation of the coefficients GP 8.10 Exact and approximate polynomials 8.11 The fourth virial coefficient of anyons 8.12 Two polynomial theorems 9 Charged particles in a constant magnetic field 9.1 One particle in a magnetic field 9.2 Two anyons in a magnetic field 9.3 The anyon gas in a magnetic field 10 Interchange phases and geometric phases 10.1 Introduction to geometric phases 10.2 One particle in a magnetic field 10.3 Two particles in a magnetic field 10.4 Interchange of two anyons in potential wells 10.5 Laughlin's theory of the fractional quantum Hall effect
Porto, William F.; Pires, Állan S.; Franco, Octavio L.
2012-01-01
The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification, except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) α-helix and (ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310 cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at
Decision support system for diabetic retinopathy using discrete wavelet transform.
Noronha, K; Acharya, U R; Nayak, K P; Kamath, S; Bhandary, S V
2013-03-01
Prolonged duration of the diabetes may affect the tiny blood vessels of the retina causing diabetic retinopathy. Routine eye screening of patients with diabetes helps to detect diabetic retinopathy at the early stage. It is very laborious and time-consuming for the doctors to go through many fundus images continuously. Therefore, decision support system for diabetic retinopathy detection can reduce the burden of the ophthalmologists. In this work, we have used discrete wavelet transform and support vector machine classifier for automated detection of normal and diabetic retinopathy classes. The wavelet-based decomposition was performed up to the second level, and eight energy features were extracted. Two energy features from the approximation coefficients of two levels and six energy values from the details in three orientations (horizontal, vertical and diagonal) were evaluated. These features were fed to the support vector machine classifier with various kernel functions (linear, radial basis function, polynomial of orders 2 and 3) to evaluate the highest classification accuracy. We obtained the highest average classification accuracy, sensitivity and specificity of more than 99% with support vector machine classifier (polynomial kernel of order 3) using three discrete wavelet transform features. We have also proposed an integrated index called Diabetic Retinopathy Risk Index using clinically significant wavelet energy features to identify normal and diabetic retinopathy classes using just one number. We believe that this (Diabetic Retinopathy Risk Index) can be used as an adjunct tool by the doctors during the eye screening to cross-check their diagnosis.
Volumetric calibration of a plenoptic camera.
Hall, Elise Munz; Fahringer, Timothy W; Guildenbecher, Daniel R; Thurow, Brian S
2018-02-01
The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.
Quantized vortices in the ideal bose gas: a physical realization of random polynomials.
Castin, Yvan; Hadzibabic, Zoran; Stock, Sabine; Dalibard, Jean; Stringari, Sandro
2006-02-03
We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed in the density profile of the gas.
Computing border bases using mutant strategies
NASA Astrophysics Data System (ADS)
Ullah, E.; Abbas Khan, S.
2014-01-01
Border bases, a generalization of Gröbner bases, have actively been addressed during recent years due to their applicability to industrial problems. In cryptography and coding theory a useful application of border based is to solve zero-dimensional systems of polynomial equations over finite fields, which motivates us for developing optimizations of the algorithms that compute border bases. In 2006, Kehrein and Kreuzer formulated the Border Basis Algorithm (BBA), an algorithm which allows the computation of border bases that relate to a degree compatible term ordering. In 2007, J. Ding et al. introduced mutant strategies bases on finding special lower degree polynomials in the ideal. The mutant strategies aim to distinguish special lower degree polynomials (mutants) from the other polynomials and give them priority in the process of generating new polynomials in the ideal. In this paper we develop hybrid algorithms that use the ideas of J. Ding et al. involving the concept of mutants to optimize the Border Basis Algorithm for solving systems of polynomial equations over finite fields. In particular, we recall a version of the Border Basis Algorithm which is actually called the Improved Border Basis Algorithm and propose two hybrid algorithms, called MBBA and IMBBA. The new mutants variants provide us space efficiency as well as time efficiency. The efficiency of these newly developed hybrid algorithms is discussed using standard cryptographic examples.
Pedestrian detection in crowded scenes with the histogram of gradients principle
NASA Astrophysics Data System (ADS)
Sidla, O.; Rosner, M.; Lypetskyy, Y.
2006-10-01
This paper describes a close to real-time scale invariant implementation of a pedestrian detector system which is based on the Histogram of Oriented Gradients (HOG) principle. Salient HOG features are first selected from a manually created very large database of samples with an evolutionary optimization procedure that directly trains a polynomial Support Vector Machine (SVM). Real-time operation is achieved by a cascaded 2-step classifier which uses first a very fast linear SVM (with the same features as the polynomial SVM) to reject most of the irrelevant detections and then computes the decision function with a polynomial SVM on the remaining set of candidate detections. Scale invariance is achieved by running the detector of constant size on scaled versions of the original input images and by clustering the results over all resolutions. The pedestrian detection system has been implemented in two versions: i) fully body detection, and ii) upper body only detection. The latter is especially suited for very busy and crowded scenarios. On a state-of-the-art PC it is able to run at a frequency of 8 - 20 frames/sec.
Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality
NASA Astrophysics Data System (ADS)
Ayala, Mario; Carinci, Gioia; Redig, Frank
2018-06-01
We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.
New syndrome decoding techniques for the (n, k) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
This paper presents a new syndrome decoding algorithm for the (n, k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3, 1)CC. Previously announced in STAR as N83-34964
Isogeometric Analysis of Boundary Integral Equations
2015-04-21
methods, IgA relies on Non-Uniform Rational B- splines (NURBS) [43, 46], T- splines [55, 53] or subdivision surfaces [21, 48, 51] rather than piece- wise...structural dynamics [25, 26], plates and shells [15, 16, 27, 28, 37, 22, 23], phase-field models [17, 32, 33], and shape optimization [40, 41, 45, 59...polynomials for approximating the geometry and field variables. Thus, by replacing piecewise polynomials with NURBS or T- splines , one can develop
Pyo, Sujin; Lee, Jaewook; Cha, Mincheol; Jang, Huisu
2017-01-01
The prediction of the trends of stocks and index prices is one of the important issues to market participants. Investors have set trading or fiscal strategies based on the trends, and considerable research in various academic fields has been studied to forecast financial markets. This study predicts the trends of the Korea Composite Stock Price Index 200 (KOSPI 200) prices using nonparametric machine learning models: artificial neural network, support vector machines with polynomial and radial basis function kernels. In addition, this study states controversial issues and tests hypotheses about the issues. Accordingly, our results are inconsistent with those of the precedent research, which are generally considered to have high prediction performance. Moreover, Google Trends proved that they are not effective factors in predicting the KOSPI 200 index prices in our frameworks. Furthermore, the ensemble methods did not improve the accuracy of the prediction.
Pyo, Sujin; Lee, Jaewook; Cha, Mincheol
2017-01-01
The prediction of the trends of stocks and index prices is one of the important issues to market participants. Investors have set trading or fiscal strategies based on the trends, and considerable research in various academic fields has been studied to forecast financial markets. This study predicts the trends of the Korea Composite Stock Price Index 200 (KOSPI 200) prices using nonparametric machine learning models: artificial neural network, support vector machines with polynomial and radial basis function kernels. In addition, this study states controversial issues and tests hypotheses about the issues. Accordingly, our results are inconsistent with those of the precedent research, which are generally considered to have high prediction performance. Moreover, Google Trends proved that they are not effective factors in predicting the KOSPI 200 index prices in our frameworks. Furthermore, the ensemble methods did not improve the accuracy of the prediction. PMID:29136004
Conformal killing tensors and covariant Hamiltonian dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cariglia, M., E-mail: marco@iceb.ufop.br; Gibbons, G. W., E-mail: G.W.Gibbons@damtp.cam.ac.uk; LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans
2014-12-15
A covariant algorithm for deriving the conserved quantities for natural Hamiltonian systems is combined with the non-relativistic framework of Eisenhart, and of Duval, in which the classical trajectories arise as geodesics in a higher dimensional space-time, realized by Brinkmann manifolds. Conserved quantities which are polynomial in the momenta can be built using time-dependent conformal Killing tensors with flux. The latter are associated with terms proportional to the Hamiltonian in the lower dimensional theory and with spectrum generating algebras for higher dimensional quantities of order 1 and 2 in the momenta. Illustrations of the general theory include the Runge-Lenz vector formore » planetary motion with a time-dependent gravitational constant G(t), motion in a time-dependent electromagnetic field of a certain form, quantum dots, the Hénon-Heiles and Holt systems, respectively, providing us with Killing tensors of rank that ranges from one to six.« less
NASA Astrophysics Data System (ADS)
Imani Masouleh, Mehdi; Limebeer, David J. N.
2018-07-01
In this study we will estimate the region of attraction (RoA) of the lateral dynamics of a nonlinear single-track vehicle model. The tyre forces are approximated using rational functions that are shown to capture the nonlinearities of tyre curves significantly better than polynomial functions. An existing sum-of-squares (SOS) programming algorithm for estimating regions of attraction is extended to accommodate the use of rational vector fields. This algorithm is then used to find an estimate of the RoA of the vehicle lateral dynamics. The influence of vehicle parameters and driving conditions on the stability region are studied. It is shown that SOS programming techniques can be used to approximate the stability region without resorting to numerical integration. The RoA estimate from the SOS algorithm is compared to the existing results in the literature. The proposed method is shown to obtain significantly better RoA estimates.
Optical computation using residue arithmetic.
Huang, A; Tsunoda, Y; Goodman, J W; Ishihara, S
1979-01-15
Using residue arithmetic it is possible to perform additions, subtractions, multiplications, and polynomial evaluation without the necessity for carry operations. Calculations can, therefore, be performed in a fully parallel manner. Several different optical methods for performing residue arithmetic operations are described. A possible combination of such methods to form a matrix vector multiplier is considered. The potential advantages of optics in performing these kinds of operations are discussed.
ERIC Educational Resources Information Center
Kontorovich, Igor'
2018-01-01
This article is concerned with cognitive aspects of students' struggles in situations in which familiar concepts are reconsidered in a new mathematical domain. Examples of such cross-curricular concepts are divisibility in the domain of integers and in the domain of polynomials, multiplication in the domain of numbers and in the domain of vectors,…
Characteristic classes of Q-manifolds: Classification and applications
NASA Astrophysics Data System (ADS)
Lyakhovich, S. L.; Mosman, E. A.; Sharapov, A. A.
2010-05-01
A Q-manifold M is a supermanifold endowed with an odd vector field Q squaring to zero. The Lie derivative LQ along Q makes the algebra of smooth tensor fields on M into a differential algebra. In this paper, we define and study the invariants of Q-manifolds called characteristic classes. These take values in the cohomology of the operator LQ and, given an affine symmetric connection with curvature R, can be represented by universal tensor polynomials in the repeated covariant derivatives of Q and R up to some finite order. As usual, the characteristic classes are proved to be independent of the choice of the affine connection used to define them. The main result of the paper is a complete classification of the intrinsic characteristic classes, which, by definition, do not vanish identically on flat Q-manifolds. As an illustration of the general theory we interpret some of the intrinsic characteristic classes as anomalies in the BV and BFV-BRST quantization methods of gauge theories. An application to the theory of (singular) foliations is also discussed.
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Ali, Halima; Boozer, Allen; Evans, Todd
2007-11-01
The EFIT data for the DIII-D shot 115467 3000 ms is used to calculate the generating function for an area-preserving map for trajectories of magnetic field lines in the DIII-D. We call this map the DIII-D map. The generating function is a bivariate polynomial in base vectors &1/2circ;cos(θ) and &1/2circ;sin(θ). ψ is toroidal flux and θ is poloidal angle. The generating function is calculated using a canonical transformation from (ψ,θ) to physical coordinates (R,Z) in the DIII-D [1] and nonlinear regression. The equilibrium generating function gives an excellent representation of the equilibrium flux surfaces in the DIII-D. The DIII-D map is then used to calculate effects of the magnetic perturbations in the DIII-D. Preliminary results of the DIII-D map will be presented. This work is supported by US DOE OFES DE-FG02-01ER54624 and DE-FG02-04ER54793. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A 364 140--145 (2007).
Correlation between external and internal respiratory motion: a validation study.
Ernst, Floris; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim
2012-05-01
In motion-compensated image-guided radiotherapy, accurate tracking of the target region is required. This tracking process includes building a correlation model between external surrogate motion and the motion of the target region. A novel correlation method is presented and compared with the commonly used polynomial model. The CyberKnife system (Accuray, Inc., Sunnyvale/CA) uses a polynomial correlation model to relate externally measured surrogate data (optical fibres on the patient's chest emitting red light) to infrequently acquired internal measurements (X-ray data). A new correlation algorithm based on ɛ -Support Vector Regression (SVR) was developed. Validation and comparison testing were done with human volunteers using live 3D ultrasound and externally measured infrared light-emitting diodes (IR LEDs). Seven data sets (5:03-6:27 min long) were recorded from six volunteers. Polynomial correlation algorithms were compared to the SVR-based algorithm demonstrating an average increase in root mean square (RMS) accuracy of 21.3% (0.4 mm). For three signals, the increase was more than 29% and for one signal as much as 45.6% (corresponding to more than 1.5 mm RMS). Further analysis showed the improvement to be statistically significant. The new SVR-based correlation method outperforms traditional polynomial correlation methods for motion tracking. This method is suitable for clinical implementation and may improve the overall accuracy of targeted radiotherapy.
Matrix of moments of the Legendre polynomials and its application to problems of electrostatics
NASA Astrophysics Data System (ADS)
Savchenko, A. O.
2017-01-01
In this work, properties of the matrix of moments of the Legendre polynomials are presented and proven. In particular, the explicit form of the elements of the matrix inverse to the matrix of moments is found and theorems of the linear combination and orthogonality are proven. On the basis of these properties, the total charge and the dipole moment of a conducting ball in a nonuniform electric field, the charge distribution over the surface of the conducting ball, its multipole moments, and the force acting on a conducting ball situated on the axis of a nonuniform axisymmetric electric field are determined. All assertions are formulated in theorems, the proofs of which are based on the properties of the matrix of moments of the Legendre polynomials.
The Ponzano-Regge Model and Parametric Representation
NASA Astrophysics Data System (ADS)
Li, Dan
2014-04-01
We give a parametric representation of the effective noncommutative field theory derived from a -deformation of the Ponzano-Regge model and define a generalized Kirchhoff polynomial with -correction terms, obtained in a -linear approximation. We then consider the corresponding graph hypersurfaces and the question of how the presence of the correction term affects their motivic nature. We look in particular at the tetrahedron graph, which is the basic case of relevance to quantum gravity. With the help of computer calculations, we verify that the number of points over finite fields of the corresponding hypersurface does not fit polynomials with integer coefficients, hence the hypersurface of the tetrahedron is not polynomially countable. This shows that the correction term can change significantly the motivic properties of the hypersurfaces, with respect to the classical case.
Volumetric calibration of a plenoptic camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert
Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less
Volumetric calibration of a plenoptic camera
Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert; ...
2018-02-01
Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less
Protein Kinase Classification with 2866 Hidden Markov Models and One Support Vector Machine
NASA Technical Reports Server (NTRS)
Weber, Ryan; New, Michael H.; Fonda, Mark (Technical Monitor)
2002-01-01
The main application considered in this paper is predicting true kinases from randomly permuted kinases that share the same length and amino acid distributions as the true kinases. Numerous methods already exist for this classification task, such as HMMs, motif-matchers, and sequence comparison algorithms. We build on some of these efforts by creating a vector from the output of thousands of structurally based HMMs, created offline with Pfam-A seed alignments using SAM-T99, which then must be combined into an overall classification for the protein. Then we use a Support Vector Machine for classifying this large ensemble Pfam-Vector, with a polynomial and chisquared kernel. In particular, the chi-squared kernel SVM performs better than the HMMs and better than the BLAST pairwise comparisons, when predicting true from false kinases in some respects, but no one algorithm is best for all purposes or in all instances so we consider the particular strengths and weaknesses of each.
Supersymmetric Casimir energy and the anomaly polynomial
NASA Astrophysics Data System (ADS)
Bobev, Nikolay; Bullimore, Mathew; Kim, Hee-Cheol
2015-09-01
We conjecture that for superconformal field theories in even dimensions, the supersymmetric Casimir energy on a space with topology S 1 × S D-1 is equal to an equivariant integral of the anomaly polynomial. The equivariant integration is defined with respect to the Cartan subalgebra of the global symmetry algebra that commutes with a given supercharge. We test our proposal extensively by computing the supersymmetric Casimir energy for large classes of superconformal field theories, with and without known Lagrangian descriptions, in two, four and six dimensions.
Teichert, Gregory H.; Gunda, N. S. Harsha; Rudraraju, Shiva; ...
2016-12-18
Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energymore » data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.« less
Jespersen, Sune Nørhøj; Lundell, Henrik; Sønderby, Casper Kaae; Dyrby, Tim B
2013-12-01
Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional signal dependence on diffusion gradients in standard diffusion experiments. However, current acquisition schemes are not rotationally invariant in the sense that the derived metrics depend on the orientation of the sample, and are affected by the interplay of sampling directions and compartment orientation dispersion when applied to macroscopically anisotropic systems. Here we propose a new framework, the d-PFG 5-design, to enable rotationally invariant estimation of double wave vector diffusion metrics (d-PFG). The method is based on the idea that an appropriate orientational average of the signal emulates the signal from a powder preparation of the same sample, where macroscopic anisotropy is absent by construction. Our approach exploits the theory of exact numerical integration (quadrature) of polynomials on the rotation group, and we exemplify the general procedure with a set consisting of 60 pairs of diffusion wave vectors (the d-PFG 5-design) facilitating a theoretically exact determination of the fourth order Taylor or cumulant expansion of the orientationally averaged signal. The d-PFG 5-design is evaluated with numerical simulations and ex vivo high field diffusion MRI experiments in a nonhuman primate brain. Specifically, we demonstrate rotational invariance when estimating compartment eccentricity, which we show offers new microstructural information, complementary to that of fractional anisotropy (FA) from diffusion tensor imaging (DTI). The imaging observations are supported by a new theoretical result, directly relating compartment eccentricity to FA of individual pores. Copyright © 2013 John Wiley & Sons, Ltd.
An algorithmic approach to solving polynomial equations associated with quantum circuits
NASA Astrophysics Data System (ADS)
Gerdt, V. P.; Zinin, M. V.
2009-12-01
In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.
Communication: Fitting potential energy surfaces with fundamental invariant neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Kejie; Chen, Jun; Zhao, Zhiqiang
A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energymore » surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.« less
A technique for accelerating the convergence of restarted GMRES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, A H; Jessup, E R; Manteuffel, T
2004-03-09
We have observed that the residual vectors at the end of each restart cycle of restarted GMRES often alternate direction in a cyclic fashion, thereby slowing convergence. We present a new technique for accelerating the convergence of restarted GMRES by disrupting this alternating pattern. The new algorithm resembles a full conjugate gradient method with polynomial preconditioning, and its implementation requires minimal changes to the standard restarted GMRES algorithm.
Numerically stable formulas for a particle-based explicit exponential integrator
NASA Astrophysics Data System (ADS)
Nadukandi, Prashanth
2015-05-01
Numerically stable formulas are presented for the closed-form analytical solution of the X-IVAS scheme in 3D. This scheme is a state-of-the-art particle-based explicit exponential integrator developed for the particle finite element method. Algebraically, this scheme involves two steps: (1) the solution of tangent curves for piecewise linear vector fields defined on simplicial meshes and (2) the solution of line integrals of piecewise linear vector-valued functions along these tangent curves. Hence, the stable formulas presented here have general applicability, e.g. exact integration of trajectories in particle-based (Lagrangian-type) methods, flow visualization and computer graphics. The Newton form of the polynomial interpolation definition is used to express exponential functions of matrices which appear in the analytical solution of the X-IVAS scheme. The divided difference coefficients in these expressions are defined in a piecewise manner, i.e. in a prescribed neighbourhood of removable singularities their series approximations are computed. An optimal series approximation of divided differences is presented which plays a critical role in this methodology. At least ten significant decimal digits in the formula computations are guaranteed to be exact using double-precision floating-point arithmetic. The worst case scenarios occur in the neighbourhood of removable singularities found in fourth-order divided differences of the exponential function.
Polynomial asymptotes of the second kind
NASA Astrophysics Data System (ADS)
Dobbs, David E.
2011-03-01
This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and conics. Prerequisites include the division algorithm for polynomials with coefficients in the field of real numbers and elementary facts about limits from calculus. This note could be used as enrichment material in courses ranging from Calculus to Real Analysis to Abstract Algebra.
Kent, Stephen M.
2018-02-15
If the optical system of a telescope is perturbed from rotational symmetry, the Zernike wavefront aberration coefficients describing that system can be expressed as a function of position in the focal plane using spin-weighted Zernike polynomials. Methodologies are presented to derive these polynomials to arbitrary order. This methodology is applied to aberration patterns produced by a misaligned Ritchey Chretian telescope and to distortion patterns at the focal plane of the DESI optical corrector, where it is shown to provide a more efficient description of distortion than conventional expansions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao, E-mail: zhouhm@cjlu.edu.cn
2015-10-15
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions.more » The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.« less
Improving multivariate Horner schemes with Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.
2013-11-01
Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.
Michael, Dada O; Bamidele, Awojoyogbe O; Adewale, Adesola O; Karem, Boubaker
2013-01-01
Nuclear magnetic resonance (NMR) allows for fast, accurate and noninvasive measurement of fluid flow in restricted and non-restricted media. The results of such measurements may be possible for a very small B 0 field and can be enhanced through detailed examination of generating functions that may arise from polynomial solutions of NMR flow equations in terms of Legendre polynomials and Boubaker polynomials. The generating functions of these polynomials can present an array of interesting possibilities that may be useful for understanding the basic physics of extracting relevant NMR flow information from which various hemodynamic problems can be carefully studied. Specifically, these results may be used to develop effective drugs for cardiovascular-related diseases.
Michael, Dada O.; Bamidele, Awojoyogbe O.; Adewale, Adesola O.; Karem, Boubaker
2013-01-01
Nuclear magnetic resonance (NMR) allows for fast, accurate and noninvasive measurement of fluid flow in restricted and non-restricted media. The results of such measurements may be possible for a very small B0 field and can be enhanced through detailed examination of generating functions that may arise from polynomial solutions of NMR flow equations in terms of Legendre polynomials and Boubaker polynomials. The generating functions of these polynomials can present an array of interesting possibilities that may be useful for understanding the basic physics of extracting relevant NMR flow information from which various hemodynamic problems can be carefully studied. Specifically, these results may be used to develop effective drugs for cardiovascular-related diseases. PMID:25114546
Developing the Polynomial Expressions for Fields in the ITER Tokamak
NASA Astrophysics Data System (ADS)
Sharma, Stephen
2017-10-01
The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomena are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.
Einstein’s gravity from a polynomial affine model
NASA Astrophysics Data System (ADS)
Castillo-Felisola, Oscar; Skirzewski, Aureliano
2018-03-01
We show that the effective field equations for a recently formulated polynomial affine model of gravity, in the sector of a torsion-free connection, accept general Einstein manifolds—with or without cosmological constant—as solutions. Moreover, the effective field equations are partially those obtained from a gravitational Yang–Mills theory known as Stephenson–Kilmister–Yang theory. Additionally, we find a generalization of a minimally coupled massless scalar field in General Relativity within a ‘minimally’ coupled scalar field in this affine model. Finally, we present a brief (perturbative) analysis of the propagators of the gravitational theory, and count the degrees of freedom. For completeness, we prove that a Birkhoff-like theorem is valid for the analyzed sector.
Consensus seeking in a network of discrete-time linear agents with communication noises
NASA Astrophysics Data System (ADS)
Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhou, Chao; Wang, Ming
2015-07-01
This paper studies the mean square consensus of discrete-time linear time-invariant multi-agent systems with communication noises. A distributed consensus protocol, which is composed of the agent's own state feedback and the relative states between the agent and its neighbours, is proposed. A time-varying consensus gain a[k] is applied to attenuate the effect of noises which inherits in the inaccurate measurement of relative states with neighbours. A polynomial, namely 'parameter polynomial', is constructed. And its coefficients are the parameters in the feedback gain vector of the proposed protocol. It turns out that the parameter polynomial plays an important role in guaranteeing the consensus of linear multi-agent systems. By the proposed protocol, necessary and sufficient conditions for mean square consensus are presented under different topology conditions: (1) if the communication topology graph has a spanning tree and every node in the graph has at least one parent node, then the mean square consensus can be achieved if and only if ∑∞k = 0a[k] = ∞, ∑∞k = 0a2[k] < ∞ and all roots of the parameter polynomial are in the unit circle; (2) if the communication topology graph has a spanning tree and there exits one node without any parent node (the leader-follower case), then the mean square consensus can be achieved if and only if ∑∞k = 0a[k] = ∞, limk → ∞a[k] = 0 and all roots of the parameter polynomial are in the unit circle; (3) if the communication topology graph does not have a spanning tree, then the mean square consensus can never be achieved. Finally, one simulation example on the multiple aircrafts system is provided to validate the theoretical analysis.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro; Abgrall, Remi
2014-11-01
Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
NASA Astrophysics Data System (ADS)
Xu, Lili; Luo, Shuqian
2010-11-01
Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.
Xu, Lili; Luo, Shuqian
2010-01-01
Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.
Krylov subspace methods on supercomputers
NASA Technical Reports Server (NTRS)
Saad, Youcef
1988-01-01
A short survey of recent research on Krylov subspace methods with emphasis on implementation on vector and parallel computers is presented. Conjugate gradient methods have proven very useful on traditional scalar computers, and their popularity is likely to increase as three-dimensional models gain importance. A conservative approach to derive effective iterative techniques for supercomputers has been to find efficient parallel/vector implementations of the standard algorithms. The main source of difficulty in the incomplete factorization preconditionings is in the solution of the triangular systems at each step. A few approaches consisting of implementing efficient forward and backward triangular solutions are described in detail. Polynomial preconditioning as an alternative to standard incomplete factorization techniques is also discussed. Another efficient approach is to reorder the equations so as to improve the structure of the matrix to achieve better parallelism or vectorization. An overview of these and other ideas and their effectiveness or potential for different types of architectures is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidhar, K Raja; Komanduri, K
2014-06-01
Purpose: The objective of this work is to present a mechanism for calculating inflection points on profiles at various depths and field sizes and also a significant study on the percentage of doses at the inflection points for various field sizes and depths for 6XFFF and 10XFFF energy profiles. Methods: Graphical representation was done on Percentage of dose versus Inflection points. Also using the polynomial function, the authors formulated equations for calculating spot-on inflection point on the profiles for 6X FFF and 10X FFF energies for all field sizes and at various depths. Results: In a flattening filter free radiationmore » beam which is not like in Flattened beams, the dose at inflection point of the profile decreases as field size increases for 10XFFF. Whereas in 6XFFF, the dose at the inflection point initially increases up to 10x10cm2 and then decreases. The polynomial function was fitted for both FFF beams for all field sizes and depths. For small fields less than 5x5 cm2 the inflection point and FWHM are almost same and hence analysis can be done just like in FF beams. A change in 10% of dose can change the field width by 1mm. Conclusion: The present study, Derivative of equations based on the polynomial equation to define inflection point concept is precise and accurate way to derive the inflection point dose on any FFF beam profile at any depth with less than 1% accuracy. Corrections can be done in future studies based on the multiple number of machine data. Also a brief study was done to evaluate the inflection point positions with respect to dose in FFF energies for various field sizes and depths for 6XFFF and 10XFFF energy profiles.« less
Non-polynomial closed string field theory: loops and conformal maps
NASA Astrophysics Data System (ADS)
Hua, Long; Kaku, Michio
1990-11-01
Recently, we proposed the complete classical action for the non-polynomial closed string field theory, which succesfully reproduced all closed string tree amplitudes. (The action was simultaneously proposed by the Kyoto group). In this paper, we analyze the structure of the theory. We (a) compute the explicit conformal map for all g-loop, p-puncture diagrams, (b) compute all one-loop, two-puncture maps in terms of hyper-elliptic functions, and (c) analyze their modular structure. We analyze, but do not resolve, the question of modular invariance.
Term Cancellations in Computing Floating-Point Gröbner Bases
NASA Astrophysics Data System (ADS)
Sasaki, Tateaki; Kako, Fujio
We discuss the term cancellation which makes the floating-point Gröbner basis computation unstable, and show that error accumulation is never negligible in our previous method. Then, we present a new method, which removes accumulated errors as far as possible by reducing matrices constructed from coefficient vectors by the Gaussian elimination. The method manifests amounts of term cancellations caused by the existence of approximate linearly dependent relations among input polynomials.
Zhuang, Zhenfeng; Chen, Yanting; Yu, Feihong; Sun, Xiaowei
2014-08-01
This paper presents a field curvature correction method of designing an ultrashort throw ratio (TR) projection lens for an imaging system. The projection lens is composed of several refractive optical elements and an odd polynomial mirror surface. A curved image is formed in a direction away from the odd polynomial mirror surface by the refractive optical elements from the image formed on the digital micromirror device (DMD) panel, and the curved image formed is its virtual image. Then the odd polynomial mirror surface enlarges the curved image and a plane image is formed on the screen. Based on the relationship between the chief ray from the exit pupil of each field of view (FOV) and the corresponding predescribed position on the screen, the initial profile of the freeform mirror surface is calculated by using segments of the hyperbolic according to the laws of reflection. For further optimization, the value of the high-order odd polynomial surface is used to express the freeform mirror surface through a least-squares fitting method. As an example, an ultrashort TR projection lens that realizes projection onto a large 50 in. screen at a distance of only 510 mm is presented. The optical performance for the designed projection lens is analyzed by ray tracing method. Results show that an ultrashort TR projection lens modulation transfer function of over 60% at 0.5 cycles/mm for all optimization fields is achievable with f-number of 2.0, 126° full FOV, <1% distortion, and 0.46 TR. Moreover, in comparing the proposed projection lens' optical specifications to that of traditional projection lenses, aspheric mirror projection lenses, and conventional short TR projection lenses, results indicate that this projection lens has the advantages of ultrashort TR, low f-number, wide full FOV, and small distortion.
NASA Astrophysics Data System (ADS)
Kent, Stephen M.
2018-04-01
If the optical system of a telescope is perturbed from rotational symmetry, the Zernike wavefront aberration coefficients describing that system can be expressed as a function of position in the focal plane using spin-weighted Zernike polynomials. Methodologies are presented to derive these polynomials to arbitrary order. This methodology is applied to aberration patterns produced by a misaligned Ritchey–Chrétien telescope and to distortion patterns at the focal plane of the DESI optical corrector, where it is shown to provide a more efficient description of distortion than conventional expansions.
A Small and Slim Coaxial Probe for Single Rice Grain Moisture Sensing
You, Kok Yeow; Mun, Hou Kit; You, Li Ling; Salleh, Jamaliah; Abbas, Zulkifly
2013-01-01
A moisture detection of single rice grains using a slim and small open-ended coaxial probe is presented. The coaxial probe is suitable for the nondestructive measurement of moisture values in the rice grains ranging from from 9.5% to 26%. Empirical polynomial models are developed to predict the gravimetric moisture content of rice based on measured reflection coefficients using a vector network analyzer. The relationship between the reflection coefficient and relative permittivity were also created using a regression method and expressed in a polynomial model, whose model coefficients were obtained by fitting the data from Finite Element-based simulation. Besides, the designed single rice grain sample holder and experimental set-up were shown. The measurement of single rice grains in this study is more precise compared to the measurement in conventional bulk rice grains, as the random air gap present in the bulk rice grains is excluded. PMID:23493127
Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.
Oettinger, D; Mendoza, M; Herrmann, H J
2013-07-01
We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.
Partial regularity of weak solutions to a PDE system with cubic nonlinearity
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Xu, Xiangsheng
2018-04-01
In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.
Democratic superstring field theory: gauge fixing
NASA Astrophysics Data System (ADS)
Kroyter, Michael
2011-03-01
We show that a partial gauge fixing of the NS sector of the democratic-picture superstring field theory leads to the non-polynomial theory. Moreover, by partially gauge fixing the Ramond sector we obtain a non-polynomial fully RNS theory at pictures 0 and 1/2 . Within the democratic theory and in the partially gauge fixed theory the equations of motion of both sectors are derived from an action. We also discuss a representation of the non-polynomial theory analogous to a manifestly two-dimensional representation of WZW theory and the action of bosonic pure-gauge solutions. We further demonstrate that one can consistently gauge fix the NS sector of the democratic theory at picture number -1. The resulting theory is new. It is a {mathbb{Z}_2} dual of the modified cubic theory. We construct analytical solutions of this theory and show that they possess the desired properties.
Blending Velocities In Task Space In Computing Robot Motions
NASA Technical Reports Server (NTRS)
Volpe, Richard A.
1995-01-01
Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.
Polynomial modal analysis of lamellar diffraction gratings in conical mounting.
Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl
2016-09-01
An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.
NASA Astrophysics Data System (ADS)
Batrudinov, Timur M.; Ambarov, Alexander V.; Elfimova, Ekaterina A.; Zverev, Vladimir S.; Ivanov, Alexey O.
2017-06-01
The dynamic magnetic response of ferrofluid in a static uniform external magnetic field to a weak, linear polarized, alternating magnetic field is investigated theoretically. The ferrofluid is modeled as a system of dipolar hard spheres, suspended in a long cylindrical tube whose long axis is parallel to the direction of the static and alternating magnetic fields. The theory is based on the Fokker-Planck-Brown equation formulated for the case when the both static and alternating magnetic fields are applied. The solution of the Fokker-Planck-Brown equation describing the orientational probability density of a randomly chosen dipolar particle is expressed as a series in terms of the spherical Legendre polynomials. The obtained analytical expression connecting three neighboring coefficients of the series makes possible to determine the probability density with any order of accuracy in terms of Legendre polynomials. The analytical formula for the probability density truncated at the first Legendre polynomial is evaluated and used for the calculation of the magnetization and dynamic susceptibility spectra. In the absence of the static magnetic field the presented theory gives the correct single-particle Debye-theory result, which is the exact solution of the Fokker-Planck-Brown equation for the case of applied weak alternating magnetic field. The influence of the static magnetic field on the dynamic susceptibility is analyzed in terms of the low-frequency behavior of the real part and the position of the peak in the imaginary part.
Prediction of Spirometric Forced Expiratory Volume (FEV1) Data Using Support Vector Regression
NASA Astrophysics Data System (ADS)
Kavitha, A.; Sujatha, C. M.; Ramakrishnan, S.
2010-01-01
In this work, prediction of forced expiratory volume in 1 second (FEV1) in pulmonary function test is carried out using the spirometer and support vector regression analysis. Pulmonary function data are measured with flow volume spirometer from volunteers (N=175) using a standard data acquisition protocol. The acquired data are then used to predict FEV1. Support vector machines with polynomial kernel function with four different orders were employed to predict the values of FEV1. The performance is evaluated by computing the average prediction accuracy for normal and abnormal cases. Results show that support vector machines are capable of predicting FEV1 in both normal and abnormal cases and the average prediction accuracy for normal subjects was higher than that of abnormal subjects. Accuracy in prediction was found to be high for a regularization constant of C=10. Since FEV1 is the most significant parameter in the analysis of spirometric data, it appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.
Torsion of a Cosserat elastic bar with square cross section: theory and experiment
NASA Astrophysics Data System (ADS)
Drugan, W. J.; Lakes, R. S.
2018-04-01
An approximate analytical solution for the displacement and microrotation vector fields is derived for pure torsion of a prismatic bar with square cross section comprised of homogeneous, isotropic linear Cosserat elastic material. This is accomplished by analytical simplification coupled with use of the principle of minimum potential energy together with polynomial representations for the desired field components. Explicit approximate expressions are derived for cross section warp and for applied torque versus angle of twist of the bar. These show that torsional rigidity exceeds the classical elasticity value, the difference being larger for slender bars, and that cross section warp is less than the classical amount. Experimental measurements on two sets of 3D printed square cross section polymeric bars, each set having a different microstructure and four different cross section sizes, revealed size effects not captured by classical elasticity but consistent with the present analysis for physically sensible values of the Cosserat moduli. The warp can allow inference of Cosserat elastic constants independently of any sensitivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat constants that are difficult to obtain via size effects.
NASA Technical Reports Server (NTRS)
Allison, D. O.
1972-01-01
Computer programs for flow fields around planetary entry vehicles require real-gas equilibrium thermodynamic properties in a simple form which can be evaluated quickly. To fill this need, polynomial approximations were found for thermodynamic properties of air and model planetary atmospheres. A coefficient-averaging technique was used for curve fitting in lieu of the usual least-squares method. The polynomials consist of terms up to the ninth degree in each of two variables (essentially pressure and density) including all cross terms. Four of these polynomials can be joined to cover, for example, a range of about 1000 to 11000 K and 0.00001 to 1 atmosphere (1 atm = 1.0133 x 100,000 N/m sq) for a given thermodynamic property. Relative errors of less than 1 percent are found over most of the applicable range.
Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory
NASA Astrophysics Data System (ADS)
Holt, J. W.; Kaiser, N.; Whitehead, T. R.
2018-05-01
We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.
Zhai, Chun-Hui; Xuan, Jian-Bang; Fan, Hai-Liu; Zhao, Teng-Fei; Jiang, Jian-Lan
2018-05-03
In order to make a further optimization of process design via increasing the stability of design space, we brought in the model of Support Vector Regression (SVR). In this work, the extraction of podophyllotoxin was researched as a case study based on Quality by Design (QbD). We compared the fitting effect of SVR and the most used quadratic polynomial model (QPM) in QbD, and an analysis was made between the two design spaces obtained by SVR and QPM. As a result, the SVR stayed ahead of QPM in prediction accuracy, the stability of model and the generalization ability. The introduction of SVR into QbD made the extraction process of podophyllotoxin well designed and easier to control. The better fitting effect of SVR improved the application effect of QbD and the universal applicability of SVR, especially for non-linear, complicated and weak-regularity problems, widened the application field of QbD.
Analytical description of high-aperture STED resolution with 0–2π vortex phase modulation
Xie, Hao; Liu, Yujia; Jin, Dayong; Santangelo, Philip J.; Xi, Peng
2014-01-01
Stimulated emission depletion (STED) can achieve optical superresolution, with the optical diffraction limit broken by the suppression on the periphery of the fluorescent focal spot. Previously, it is generally experimentally accepted that there exists an inverse square root relationship with the STED power and the resolution, but with arbitrary coefficients in expression. In this paper, we have removed the arbitrary coefficients by exploring the relationship between the STED power and the achievable resolution from vector optical theory for the widely used 0–2π vortex phase modulation. Electromagnetic fields of the focal region of a high numerical aperture objective are calculated and approximated into polynomials of radius in the focal plane, and analytical expression of resolution as a function of the STED intensity has been derived. As a result, the resolution can be estimated directly from the measurement of the saturation power of the dye and the STED power applied in the region of high STED power. PMID:24323224
Use of Log-Linear Models in Classification Problems.
1981-12-01
polynomials. The second example involves infant hypoxic trauma, and many cells are empty. The existence conditions are used to find a model for which esti...mates of cell frequencies exist and are in good agreement with the ob- served data. Key Words: Classification problem, log-difference models, minimum 8...variates define k states, which are labeled consecutively. Thus, while MB define cells in their tables by an I-vector Z, we simply take Z to be a
Fast Eigensolver for Computing 3D Earth's Normal Modes
NASA Astrophysics Data System (ADS)
Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.
2017-12-01
We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.
Elliptic-symmetry vector optical fields.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian
2014-08-11
We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.
On the Design of Wide-Field X-ray Telescopes
NASA Technical Reports Server (NTRS)
Elsner, Ronald F.; O'Dell, Stephen L.; Ramsey, Brian D.; Weiskopf, Martin C.
2009-01-01
X-ray telescopes having a relatively wide field-of-view and spatial resolution vs. polar off-axis angle curves much flatter than the parabolic dependence characteristic of Wolter I designs are of great interest for surveys of the X-ray sky and potentially for study of the Sun s X-ray emission. We discuss the various considerations affecting the design of such telescopes, including the possible use of polynomial mirror surface prescriptions, a method of optimizing the polynomial coefficients, scaling laws for mirror segment length vs. intersection radius, the loss of on-axis spatial resolution, and the positioning of focal plane detectors.
Versatile generation of optical vector fields and vector beams using a non-interferometric approach.
Tripathi, Santosh; Toussaint, Kimani C
2012-05-07
We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.
Myocardial strains from 3D displacement encoded magnetic resonance imaging
2012-01-01
Background The ability to measure and quantify myocardial motion and deformation provides a useful tool to assist in the diagnosis, prognosis and management of heart disease. The recent development of magnetic resonance imaging methods, such as harmonic phase analysis of tagging and displacement encoding with stimulated echoes (DENSE), make detailed non-invasive 3D kinematic analyses of human myocardium possible in the clinic and for research purposes. A robust analysis method is required, however. Methods We propose to estimate strain using a polynomial function which produces local models of the displacement field obtained with DENSE. Given a specific polynomial order, the model is obtained as the least squares fit of the acquired displacement field. These local models are subsequently used to produce estimates of the full strain tensor. Results The proposed method is evaluated on a numerical phantom as well as in vivo on a healthy human heart. The evaluation showed that the proposed method produced accurate results and showed low sensitivity to noise in the numerical phantom. The method was also demonstrated in vivo by assessment of the full strain tensor and to resolve transmural strain variations. Conclusions Strain estimation within a 3D myocardial volume based on polynomial functions yields accurate and robust results when validated on an analytical model. The polynomial field is capable of resolving the measured material positions from the in vivo data, and the obtained in vivo strains values agree with previously reported myocardial strains in normal human hearts. PMID:22533791
Classes of exact Einstein Maxwell solutions
NASA Astrophysics Data System (ADS)
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
Influence of surface error on electromagnetic performance of reflectors based on Zernike polynomials
NASA Astrophysics Data System (ADS)
Li, Tuanjie; Shi, Jiachen; Tang, Yaqiong
2018-04-01
This paper investigates the influence of surface error distribution on the electromagnetic performance of antennas. The normalized Zernike polynomials are used to describe a smooth and continuous deformation surface. Based on the geometrical optics and piecewise linear fitting method, the electrical performance of reflector described by the Zernike polynomials is derived to reveal the relationship between surface error distribution and electromagnetic performance. Then the relation database between surface figure and electric performance is built for ideal and deformed surfaces to realize rapidly calculation of far-field electric performances. The simulation analysis of the influence of Zernike polynomials on the electrical properties for the axis-symmetrical reflector with the axial mode helical antenna as feed is further conducted to verify the correctness of the proposed method. Finally, the influence rules of surface error distribution on electromagnetic performance are summarized. The simulation results show that some terms of Zernike polynomials may decrease the amplitude of main lobe of antenna pattern, and some may reduce the pointing accuracy. This work extracts a new concept for reflector's shape adjustment in manufacturing process.
Sensitivity Analysis of the Static Aeroelastic Response of a Wing
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
1993-01-01
A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.
Quantum Linear System Algorithm for Dense Matrices.
Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam
2018-02-02
Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.
SEMIPARAMETRIC QUANTILE REGRESSION WITH HIGH-DIMENSIONAL COVARIATES
Zhu, Liping; Huang, Mian; Li, Runze
2012-01-01
This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility of nonparametric regression. Under mild conditions, we show that the simple linear quantile regression offers a consistent estimate of the index parameter vector. This is a surprising and interesting result because the single-index model is possibly misspecified under the linear quantile regression. With a root-n consistent estimate of the index vector, one may employ a local polynomial regression technique to estimate the conditional quantile function. This procedure is computationally efficient, which is very appealing in high-dimensional data analysis. We show that the resulting estimator of the quantile function performs asymptotically as efficiently as if the true value of the index vector were known. The methodologies are demonstrated through comprehensive simulation studies and an application to a real dataset. PMID:24501536
CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES
GILLETTE, ANDREW; RAND, ALEXANDER; BAJAJ, CHANDRAJIT
2016-01-01
We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. PMID:28077939
CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES.
Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit
2016-10-01
We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.
NASA Technical Reports Server (NTRS)
Haj-Ali, Rami; Aboudi, Jacob
2012-01-01
The recent two-dimensional (2-D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3-D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2-D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3-D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2-D parametric and orthogonal HFGMC are special cases of the present 3-D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3-D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3-D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields. These applications include triply periodic composites with inclusions in the form of a cavity, spherical inclusion, ellipsoidal inclusion, discontinuous aligned short fiber. A 3-D repeating unit-cell for foam material composite is simulated.
Some rules for polydimensional squeezing
NASA Technical Reports Server (NTRS)
Manko, Vladimir I.
1994-01-01
The review of the following results is presented: For mixed state light of N-mode electromagnetic field described by Wigner function which has generic Gaussian form, the photon distribution function is obtained and expressed explicitly in terms of Hermite polynomials of 2N-variables. The momenta of this distribution are calculated and expressed as functions of matrix invariants of the dispersion matrix. The role of new uncertainty relation depending on photon state mixing parameter is elucidated. New sum rules for Hermite polynomials of several variables are found. The photon statistics of polymode even and odd coherent light and squeezed polymode Schroedinger cat light is given explicitly. Photon distribution for polymode squeezed number states expressed in terms of multivariable Hermite polynomials is discussed.
Constraint analysis of two-dimensional quadratic gravity from { BF} theory
NASA Astrophysics Data System (ADS)
Valcárcel, C. E.
2017-01-01
Quadratic gravity in two dimensions can be formulated as a background field ( BF) theory plus an interaction term which is polynomial in both, the gauge and background fields. This formulation is similar to the one given by Freidel and Starodubtsev to obtain MacDowell-Mansouri gravity in four dimensions. In this article we use the Dirac's Hamiltonian formalism to analyze the constraint structure of the two-dimensional Polynomial BF action. After we obtain the constraints of the theory, we proceed with the Batalin-Fradkin-Vilkovisky procedure to obtain the transition amplitude. We also compare our results with the ones obtained from generalized dilaton gravity.
Active exterior cloaking for the 2D Laplace and Helmholtz equations.
Vasquez, Fernando Guevara; Milton, Graeme W; Onofrei, Daniel
2009-08-14
A new cloaking method is presented for 2D quasistatics and the 2D Helmholtz equation that we speculate extends to other linear wave equations. For 2D quasistatics it is proven how a single active exterior cloaking device can be used to shield an object from surrounding fields, yet produce very small scattered fields. The problem is reduced to finding a polynomial which is close to 1 in a disk and close to 0 in another disk, and such a polynomial is constructed. For the 2D Helmholtz equation it is numerically shown that three exterior cloaking devices placed around the object suffice to hide it.
Primordial black holes from polynomial potentials in single field inflation
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.; Yamada, Masaki
2018-04-01
Within canonical single field inflation models, we provide a method to reverse engineer and reconstruct the inflaton potential from a given power spectrum. This is not only a useful tool to find a potential from observational constraints, but also gives insight into how to generate a large amplitude spike in density perturbations, especially those that may lead to primordial black holes (PBHs). In accord with other works, we find that the usual slow-roll conditions need to be violated in order to generate a significant spike in the spectrum. We find that a way to achieve a very large amplitude spike in single field models is for the classical roll of the inflaton to overshoot a local minimum during inflation. We provide an example of a quintic polynomial potential that implements this idea and leads to the observed spectral index, observed amplitude of fluctuations on large scales, significant PBH formation on small scales, and is compatible with other observational constraints. We quantify how much fine-tuning is required to achieve this in a family of random polynomial potentials, which may be useful to estimate the probability of PBH formation in the string landscape.
An extended UTD analysis for the scattering and diffraction from cubic polynomial strips
NASA Technical Reports Server (NTRS)
Constantinides, E. D.; Marhefka, R. J.
1993-01-01
Spline and polynomial type surfaces are commonly used in high frequency modeling of complex structures such as aircraft, ships, reflectors, etc. It is therefore of interest to develop an efficient and accurate solution to describe the scattered fields from such surfaces. An extended Uniform Geometrical Theory of Diffraction (UTD) solution for the scattering and diffraction from perfectly conducting cubic polynomial strips is derived and involves the incomplete Airy integrals as canonical functions. This new solution is universal in nature and can be used to effectively describe the scattered fields from flat, strictly concave or convex, and concave convex boundaries containing edges. The classic UTD solution fails to describe the more complicated field behavior associated with higher order phase catastrophes and therefore a new set of uniform reflection and first-order edge diffraction coefficients is derived. Also, an additional diffraction coefficient associated with a zero-curvature (inflection) point is presented. Higher order effects such as double edge diffraction, creeping waves, and whispering gallery modes are not examined. The extended UTD solution is independent of the scatterer size and also provides useful physical insight into the various scattering and diffraction processes. Its accuracy is confirmed via comparison with some reference moment method results.
Quantitative local analysis of nonlinear systems
NASA Astrophysics Data System (ADS)
Topcu, Ufuk
This thesis investigates quantitative methods for local robustness and performance analysis of nonlinear dynamical systems with polynomial vector fields. We propose measures to quantify systems' robustness against uncertainties in initial conditions (regions-of-attraction) and external disturbances (local reachability/gain analysis). S-procedure and sum-of-squares relaxations are used to translate Lyapunov-type characterizations to sum-of-squares optimization problems. These problems are typically bilinear/nonconvex (due to local analysis rather than global) and their size grows rapidly with state/uncertainty space dimension. Our approach is based on exploiting system theoretic interpretations of these optimization problems to reduce their complexity. We propose a methodology incorporating simulation data in formal proof construction enabling more reliable and efficient search for robustness and performance certificates compared to the direct use of general purpose solvers. This technique is adapted both to region-of-attraction and reachability analysis. We extend the analysis to uncertain systems by taking an intentionally simplistic and potentially conservative route, namely employing parameter-independent rather than parameter-dependent certificates. The conservatism is simply reduced by a branch-and-hound type refinement procedure. The main thrust of these methods is their suitability for parallel computing achieved by decomposing otherwise challenging problems into relatively tractable smaller ones. We demonstrate proposed methods on several small/medium size examples in each chapter and apply each method to a benchmark example with an uncertain short period pitch axis model of an aircraft. Additional practical issues leading to a more rigorous basis for the proposed methodology as well as promising further research topics are also addressed. We show that stability of linearized dynamics is not only necessary but also sufficient for the feasibility of the formulations in region-of-attraction analysis. Furthermore, we generalize an upper bound refinement procedure in local reachability/gain analysis which effectively generates non-polynomial certificates from polynomial ones. Finally, broader applicability of optimization-based tools stringently depends on the availability of scalable/hierarchial algorithms. As an initial step toward this direction, we propose a local small-gain theorem and apply to stability region analysis in the presence of unmodeled dynamics.
NASA Astrophysics Data System (ADS)
Kulkarni, Rishikesh; Rastogi, Pramod
2018-05-01
A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.
NASA Astrophysics Data System (ADS)
Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.
2014-10-01
In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.
3D airborne EM modeling based on the spectral-element time-domain (SETD) method
NASA Astrophysics Data System (ADS)
Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.
2017-12-01
In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays important roles. This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). Figure 1: (a) AEM system over a 3D earth model; (b) magnetic field Bz; (c) magnetic induction dBz/dt.
Predicting beta-turns in proteins using support vector machines with fractional polynomials
2013-01-01
Background β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design. Results We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features. Conclusions In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods. PMID:24565438
Predicting beta-turns in proteins using support vector machines with fractional polynomials.
Elbashir, Murtada; Wang, Jianxin; Wu, Fang-Xiang; Wang, Lusheng
2013-11-07
β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design. We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features. In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi
2016-06-01
The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.
NASA Astrophysics Data System (ADS)
Eckerle, Kate
This dissertation begins with a review of Calabi-Yau manifolds and their moduli spaces, flux compactification largely tailored to the case of type IIb supergravity, and Coleman-De Luccia vacuum decay. The three chapters that follow present the results of novel research conducted as a graduate student. Our first project is concerned with bubble collisions in single scalar field theories with multiple vacua. Lorentz boosted solitons traveling in one spatial dimension are used as a proxy to the colliding 3-dimensional spherical bubble walls. Recent work found that at sufficiently high impact velocities collisions between such bubble vacua are governed by "free passage" dynamics in which field interactions can be ignored during the collision, providing a systematic process for populating local minima without quantum nucleation. We focus on the time period that follows the bubble collision and provide evidence that, for certain potentials, interactions can drive significant deviations from the free passage bubble profile, thwarting the production of a new patch with different field value. However, for simple polynomial potentials a fine-tuning of vacuum locations is required to reverse the free passage kick enough that the field in the collision region returns to the original bubble vacuum. Hence we deem classical transitions mediated by free passage robust. Our second project continues with soliton collisions in the limit of relativistic impact velocity, but with the new feature of nontrivial field space curvature. We establish a simple geometrical interpretation of such collisions in terms of a double family of field profiles whose tangent vector fields stand in mutual parallel transport. This provides a generalization of the well-known limit in flat field space (free passage). We investigate the limits of this approximation and illustrate our analytical results with numerical simulations. In our third and final project we investigate the distribution of field theories that arise from the low energy limit of flux vacua built on type IIb string theory compactified on the mirror quintic. For a large collection of these models, we numerically determine the distribution of Taylor coefficients in a polynomial expansion of each model's scalar potential to fourth order. We provide an analytic explanation of the proncounced hierarchies exhibited by the random sample of masses and couplings generated numerically. The analytic argument is based on the structure of masses in no scale supergravity and the divergence of the Yukawa coupling at the conifold point in the moduli space of the mirror quintic. Our results cast the superpotential vev as a random element whose capacity to cloud structure vanishes as the conifold is approached.
Application of field dependent polynomial model
NASA Astrophysics Data System (ADS)
Janout, Petr; Páta, Petr; Skala, Petr; Fliegel, Karel; Vítek, Stanislav; Bednář, Jan
2016-09-01
Extremely wide-field imaging systems have many advantages regarding large display scenes whether for use in microscopy, all sky cameras, or in security technologies. The Large viewing angle is paid by the amount of aberrations, which are included with these imaging systems. Modeling wavefront aberrations using the Zernike polynomials is known a longer time and is widely used. Our method does not model system aberrations in a way of modeling wavefront, but directly modeling of aberration Point Spread Function of used imaging system. This is a very complicated task, and with conventional methods, it was difficult to achieve the desired accuracy. Our optimization techniques of searching coefficients space-variant Zernike polynomials can be described as a comprehensive model for ultra-wide-field imaging systems. The advantage of this model is that the model describes the whole space-variant system, unlike the majority models which are partly invariant systems. The issue that this model is the attempt to equalize the size of the modeled Point Spread Function, which is comparable to the pixel size. Issues associated with sampling, pixel size, pixel sensitivity profile must be taken into account in the design. The model was verified in a series of laboratory test patterns, test images of laboratory light sources and consequently on real images obtained by an extremely wide-field imaging system WILLIAM. Results of modeling of this system are listed in this article.
NASA Astrophysics Data System (ADS)
Shodja, H. M.; Khorshidi, A.
2013-04-01
Eshelby's theories on the nature of the disturbance strains due to polynomial eigenstrains inside an isotropic ellipsoidal inclusion, and the form of homogenizing eigenstrains corresponding to remote polynomial loadings in the equivalent inclusion method (EIM) are not valid for spherically anisotropic inclusions and inhomogeneities. Materials with spherically anisotropic behavior are frequently encountered in nature, for example, some graphite particles or polyethylene spherulites. Moreover, multi-inclusions/inhomogeneities/inhomogeneous inclusions have abundant engineering and scientific applications and their exact theoretical treatment would be of great value. The present work is devoted to the development of a mathematical framework for the exact treatment of a spherical multi-inhomogeneous inclusion with spherically anisotropic constituents embedded in an unbounded isotropic matrix. The formulations herein are based on tensor spherical harmonics having orthogonality and completeness properties. For polynomial eigenstrain field and remote applied loading, several theorems on the exact closed-form expressions of the elastic fields associated with the matrix and all the phases of the inhomogeneous inclusion are stated and proved. Several classes of impotent eigenstrain fields associated to a generally anisotropic inclusion as well as isotropic and spherically anisotropic multi-inclusions are also introduced. The presented theories are useful for obtaining highly accurate solutions of desired accuracy when the constituent phases of the multi-inhomogeneous inclusion are made of functionally graded materials (FGMs).
A link between torse-forming vector fields and rotational hypersurfaces
NASA Astrophysics Data System (ADS)
Chen, Bang-Yen; Verstraelen, Leopold
Torse-forming vector fields introduced by Yano [On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944) 340-346] are natural extension of concurrent and concircular vector fields. Such vector fields have many nice applications to geometry and mathematical physics. In this paper, we establish a link between rotational hypersurfaces and torse-forming vector fields. More precisely, our main result states that, for a hypersurface M of 𝔼n+1 with n ≥ 3, the tangential component xT of the position vector field of M is a proper torse-forming vector field on M if and only if M is contained in a rotational hypersurface whose axis of rotation contains the origin.
Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform.
Hausel, Tamás
2006-04-18
A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski-Dancer and Hausel-Sturmfels), Poincaré polynomials of Hilbert schemes of points and twisted Atiyah-Drinfeld-Hitchin-Manin (ADHM) spaces of instantons on C2 (recovering results of Nakajima-Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced.
Correlations of RMT characteristic polynomials and integrability: Hermitean matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, Vladimir Al., E-mail: Vladimir.Osipov@uni-due.d; Kanzieper, Eugene, E-mail: Eugene.Kanzieper@hit.ac.i; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100
Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of {tau} functions, we (i) identify a zoo of hierarchical relations satisfied by {tau} functions in an abstract infinite-dimensional space and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasismore » is placed on the phenomenon of fermionic-bosonic factorisation of random-matrix-theory correlation functions.« less
A diagram for evaluating multiple aspects of model performance in simulating vector fields
NASA Astrophysics Data System (ADS)
Xu, Zhongfeng; Hou, Zhaolu; Han, Ying; Guo, Weidong
2016-12-01
Vector quantities, e.g., vector winds, play an extremely important role in climate systems. The energy and water exchanges between different regions are strongly dominated by wind, which in turn shapes the regional climate. Thus, how well climate models can simulate vector fields directly affects model performance in reproducing the nature of a regional climate. This paper devises a new diagram, termed the vector field evaluation (VFE) diagram, which is a generalized Taylor diagram and able to provide a concise evaluation of model performance in simulating vector fields. The diagram can measure how well two vector fields match each other in terms of three statistical variables, i.e., the vector similarity coefficient, root mean square length (RMSL), and root mean square vector difference (RMSVD). Similar to the Taylor diagram, the VFE diagram is especially useful for evaluating climate models. The pattern similarity of two vector fields is measured by a vector similarity coefficient (VSC) that is defined by the arithmetic mean of the inner product of normalized vector pairs. Examples are provided, showing that VSC can identify how close one vector field resembles another. Note that VSC can only describe the pattern similarity, and it does not reflect the systematic difference in the mean vector length between two vector fields. To measure the vector length, RMSL is included in the diagram. The third variable, RMSVD, is used to identify the magnitude of the overall difference between two vector fields. Examples show that the VFE diagram can clearly illustrate the extent to which the overall RMSVD is attributed to the systematic difference in RMSL and how much is due to the poor pattern similarity.
Lee, Y.-G.; Zou, W.-N.; Pan, E.
2015-01-01
This paper presents a closed-form solution for the arbitrary polygonal inclusion problem with polynomial eigenstrains of arbitrary order in an anisotropic magneto-electro-elastic full plane. The additional displacements or eigendisplacements, instead of the eigenstrains, are assumed to be a polynomial with general terms of order M+N. By virtue of the extended Stroh formulism, the induced fields are expressed in terms of a group of basic functions which involve boundary integrals of the inclusion domain. For the special case of polygonal inclusions, the boundary integrals are carried out explicitly, and their averages over the inclusion are also obtained. The induced fields under quadratic eigenstrains are mostly analysed in terms of figures and tables, as well as those under the linear and cubic eigenstrains. The connection between the present solution and the solution via the Green's function method is established and numerically verified. The singularity at the vertices of the arbitrary polygon is further analysed via the basic functions. The general solution and the numerical results for the constant, linear, quadratic and cubic eigenstrains presented in this paper enable us to investigate the features of the inclusion and inhomogeneity problem concerning polynomial eigenstrains in semiconductors and advanced composites, while the results can further serve as benchmarks for future analyses of Eshelby's inclusion problem. PMID:26345141
Zhao, Ke; Ji, Yaoyao; Li, Yan; Li, Ting
2018-01-21
Near-infrared spectroscopy (NIRS) has become widely accepted as a valuable tool for noninvasively monitoring hemodynamics for clinical and diagnostic purposes. Baseline shift has attracted great attention in the field, but there has been little quantitative study on baseline removal. Here, we aimed to study the baseline characteristics of an in-house-built portable medical NIRS device over a long time (>3.5 h). We found that the measured baselines all formed perfect polynomial functions on phantom tests mimicking human bodies, which were identified by recent NIRS studies. More importantly, our study shows that the fourth-order polynomial function acted to distinguish performance with stable and low-computation-burden fitting calibration (R-square >0.99 for all probes) among second- to sixth-order polynomials, evaluated by the parameters R-square, sum of squares due to error, and residual. This study provides a straightforward, efficient, and quantitatively evaluated solution for online baseline removal for hemodynamic monitoring using NIRS devices.
Maximum likelihood decoding of Reed Solomon Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudan, M.
We present a randomized algorithm which takes as input n distinct points ((x{sub i}, y{sub i})){sup n}{sub i=1} from F x F (where F is a field) and integer parameters t and d and returns a list of all univariate polynomials f over F in the variable x of degree at most d which agree with the given set of points in at least t places (i.e., y{sub i} = f (x{sub i}) for at least t values of i), provided t = {Omega}({radical}nd). The running time is bounded by a polynomial in n. This immediately provides a maximum likelihoodmore » decoding algorithm for Reed Solomon Codes, which works in a setting with a larger number of errors than any previously known algorithm. To the best of our knowledge, this is the first efficient (i.e., polynomial time bounded) algorithm which provides some maximum likelihood decoding for any efficient (i.e., constant or even polynomial rate) code.« less
Are Khovanov-Rozansky polynomials consistent with evolution in the space of knots?
NASA Astrophysics Data System (ADS)
Anokhina, A.; Morozov, A.
2018-04-01
R-coloured knot polynomials for m-strand torus knots Torus [ m, n] are described by the Rosso-Jones formula, which is an example of evolution in n with Lyapunov exponents, labelled by Young diagrams from R ⊗ m . This means that they satisfy a finite-difference equation (recursion) of finite degree. For the gauge group SL( N ) only diagrams with no more than N lines can contribute and the recursion degree is reduced. We claim that these properties (evolution/recursion and reduction) persist for Khovanov-Rozansky (KR) polynomials, obtained by additional factorization modulo 1 + t, which is not yet adequately described in quantum field theory. Also preserved is some weakened version of differential expansion, which is responsible at least for a simple relation between reduced and unreduced Khovanov polynomials. However, in the KR case evolution is incompatible with the mirror symmetry under the change n -→ - n, what can signal about an ambiguity in the KR factorization even for torus knots.
Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping
2016-02-22
We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.
Design of 2D time-varying vector fields.
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.
Multi Objective Controller Design for Linear System via Optimal Interpolation
NASA Technical Reports Server (NTRS)
Ozbay, Hitay
1996-01-01
We propose a methodology for the design of a controller which satisfies a set of closed-loop objectives simultaneously. The set of objectives consists of: (1) pole placement, (2) decoupled command tracking of step inputs at steady-state, and (3) minimization of step response transients with respect to envelope specifications. We first obtain a characterization of all controllers placing the closed-loop poles in a prescribed region of the complex plane. In this characterization, the free parameter matrix Q(s) is to be determined to attain objectives (2) and (3). Objective (2) is expressed as determining a Pareto optimal solution to a vector valued optimization problem. The solution of this problem is obtained by transforming it to a scalar convex optimization problem. This solution determines Q(O) and the remaining freedom in choosing Q(s) is used to satisfy objective (3). We write Q(s) = (l/v(s))bar-Q(s) for a prescribed polynomial v(s). Bar-Q(s) is a polynomial matrix which is arbitrary except that Q(O) and the order of bar-Q(s) are fixed. Obeying these constraints bar-Q(s) is now to be 'shaped' to minimize the step response characteristics of specific input/output pairs according to the maximum envelope violations. This problem is expressed as a vector valued optimization problem using the concept of Pareto optimality. We then investigate a scalar optimization problem associated with this vector valued problem and show that it is convex. The organization of the report is as follows. The next section includes some definitions and preliminary lemmas. We then give the problem statement which is followed by a section including a detailed development of the design procedure. We then consider an aircraft control example. The last section gives some concluding remarks. The Appendix includes the proofs of technical lemmas, printouts of computer programs, and figures.
Geometrical Method for the Calculation of Spherical Harmonics up to an Arbitrary Degree and Order
NASA Astrophysics Data System (ADS)
Svehla, D.
2009-12-01
We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, i.e. up to a degree and order 1e6 and beyond. It is shown, that spherical harmonics can be treated as vectors in Hilbert hyperspace leading to the unitary hermitian rotation matrices with geometric properties.
Observability under recurrent loss of data
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok; Halevi, Yoram
1992-01-01
An account is given of the concept of extended observability in finite-dimensional linear time-invariant systems under recurrent loss of data, where the state vector has to be reconstructed from an ensemble of sensor data at nonconsecutive samples. An at once necessary and sufficient condition for extended observability that can be expressed via a recursive relation is presented, together with such conditions for this as may be related to the characteristic polynomial of the state transition matrix in a discrete-time setting, or of the system matrix in a continuous-time setting.
Anisotropy of susceptibility in rocks which are magnetically nonlinear even in low fields
NASA Astrophysics Data System (ADS)
Hrouda, František; Chadima, Martin; Ježek, Josef
2018-06-01
Theory of the low-field anisotropy of magnetic susceptibility (AMS) assumes a linear relationship between magnetization and magnetizing field, resulting in field-independent susceptibility. This is valid for diamagnetic and paramagnetic minerals by definition and also for pure magnetite, while in titanomagnetite, pyrrhotite and hematite the susceptibility may be clearly field-dependent even in low fields used in common AMS meter. Consequently, the use of the linear AMS theory is fully legitimate in the former minerals, but in principle incorrect in the latter ones. Automated measurement of susceptibility in 320 directions in variable low-fields ranging from 5 to 700 A m-1 was applied to more than 100 specimens of various pyrrhotite-bearing and titanomagnetite-bearing rocks. Data analysis showed that the anisotropic susceptibility remains well represented by an ellipsoid in the entire low-field span even though the ellipsoid increases its volume and eccentricity. The principal directions do not change their orientations with low-field in most specimens. Expressions for susceptibility as a function of field were found in the form of diagonal tensor whose elements are polynomials of low order. In a large proportion of samples, the susceptibility expressions can be further simplified to have one common skeleton polynomial.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Higher-order Fourier analysis over finite fields and applications
NASA Astrophysics Data System (ADS)
Hatami, Pooya
Higher-order Fourier analysis is a powerful tool in the study of problems in additive and extremal combinatorics, for instance the study of arithmetic progressions in primes, where the traditional Fourier analysis comes short. In recent years, higher-order Fourier analysis has found multiple applications in computer science in fields such as property testing and coding theory. In this thesis, we develop new tools within this theory with several new applications such as a characterization theorem in algebraic property testing. One of our main contributions is a strong near-equidistribution result for regular collections of polynomials. The densities of small linear structures in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate the average, it suffices to know the joint distribution of the polynomials applied to the linear forms. We prove a near-equidistribution theorem that describes these distributions for the group F(n/p) when p is a fixed prime. This fundamental fact was previously known only under various extra assumptions about the linear forms or the field size. We use this near-equidistribution theorem to settle a conjecture of Gowers and Wolf on the true complexity of systems of linear forms. Our next application is towards a characterization of testable algebraic properties. We prove that every locally characterized affine-invariant property of functions f : F(n/p) → R with n∈ N, is testable. In fact, we prove that any such property P is proximity-obliviously testable. More generally, we show that any affine-invariant property that is closed under subspace restrictions and has "bounded complexity" is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low-degree polynomials is locally characterized and is, hence, testable. We discuss several notions of regularity which allow us to deduce algorithmic versions of various regularity lemmas for polynomials by Green and Tao and by Kaufman and Lovett. We show that our algorithmic regularity lemmas for polynomials imply algorithmic versions of several results relying on regularity, such as decoding Reed-Muller codes beyond the list decoding radius (for certain structured errors), and prescribed polynomial decompositions. Finally, motivated by the definition of Gowers norms, we investigate norms defined by different systems of linear forms. We give necessary conditions on the structure of systems of linear forms that define norms. We prove that such norms can be one of only two types, and assuming that |F p| is sufficiently large, they essentially are equivalent to either a Gowers norm or Lp norms.
A dimension-wise analysis method for the structural-acoustic system with interval parameters
NASA Astrophysics Data System (ADS)
Xu, Menghui; Du, Jianke; Wang, Chong; Li, Yunlong
2017-04-01
The interval structural-acoustic analysis is mainly accomplished by interval and subinterval perturbation methods. Potential limitations for these intrusive methods include overestimation or interval translation effect for the former and prohibitive computational cost for the latter. In this paper, a dimension-wise analysis method is thus proposed to overcome these potential limitations. In this method, a sectional curve of the system response surface along each input dimensionality is firstly extracted, the minimal and maximal points of which are identified based on its Legendre polynomial approximation. And two input vectors, i.e. the minimal and maximal input vectors, are dimension-wisely assembled by the minimal and maximal points of all sectional curves. Finally, the lower and upper bounds of system response are computed by deterministic finite element analysis at the two input vectors. Two numerical examples are studied to demonstrate the effectiveness of the proposed method and show that, compared to the interval and subinterval perturbation method, a better accuracy is achieved without much compromise on efficiency by the proposed method, especially for nonlinear problems with large interval parameters.
Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density
Smallwood, David O.
1997-01-01
The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less
Quantum Linear System Algorithm for Dense Matrices
NASA Astrophysics Data System (ADS)
Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam
2018-02-01
Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .
Generalized vector calculus on convex domain
NASA Astrophysics Data System (ADS)
Agrawal, Om P.; Xu, Yufeng
2015-06-01
In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.
A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials.
Langley, Jason; Zhao, Qun
2009-09-07
The application of a two-dimensional (2D) phase unwrapping algorithm to a three-dimensional (3D) phase map may result in an unwrapped phase map that is discontinuous in the direction normal to the unwrapped plane. This work investigates the problem of phase unwrapping for 3D phase maps. The phase map is modeled as a product of three one-dimensional Gegenbauer polynomials. The orthogonality of Gegenbauer polynomials and their derivatives on the interval [-1, 1] are exploited to calculate the expansion coefficients. The algorithm was implemented using two well-known Gegenbauer polynomials: Chebyshev polynomials of the first kind and Legendre polynomials. Both implementations of the phase unwrapping algorithm were tested on 3D datasets acquired from a magnetic resonance imaging (MRI) scanner. The first dataset was acquired from a homogeneous spherical phantom. The second dataset was acquired using the same spherical phantom but magnetic field inhomogeneities were introduced by an external coil placed adjacent to the phantom, which provided an additional burden to the phase unwrapping algorithm. Then Gaussian noise was added to generate a low signal-to-noise ratio dataset. The third dataset was acquired from the brain of a human volunteer. The results showed that Chebyshev implementation and the Legendre implementation of the phase unwrapping algorithm give similar results on the 3D datasets. Both implementations of the phase unwrapping algorithm compare well to PRELUDE 3D, 3D phase unwrapping software well recognized for functional MRI.
Efficient computer algebra algorithms for polynomial matrices in control design
NASA Technical Reports Server (NTRS)
Baras, J. S.; Macenany, D. C.; Munach, R.
1989-01-01
The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.
A Note on Powers in Finite Fields
ERIC Educational Resources Information Center
Aabrandt, Andreas; Hansen, Vagn Lundsgaard
2016-01-01
The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In…
Wang, Chang; Qin, Xin; Liu, Yan; Zhang, Wenchao
2016-06-01
An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance(MR)image bias field.An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm.The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum.The Legendre polynomial was used to fit bias field,the polynomial parameters were optimized globally,and finally the bias field was estimated and corrected.Compared to those with the improved entropy minimum algorithm,the entropy of corrected image was smaller and the estimated bias field was more accurate in this study.Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm.This algorithm can be applied to the correction of MR image bias field.
Compatible-strain mixed finite element methods for incompressible nonlinear elasticity
NASA Astrophysics Data System (ADS)
Faghih Shojaei, Mostafa; Yavari, Arash
2018-05-01
We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.
On generalized Melvin solution for the Lie algebra E_6
NASA Astrophysics Data System (ADS)
Bolokhov, S. V.; Ivashchuk, V. D.
2017-10-01
A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H_s(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H_s(z), s = 1,\\ldots ,6, for the Lie algebra E_6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q_s, s = 1,\\ldots ,6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E_6-polynomials at large z are governed by the integer-valued matrix ν = A^{-1} (I + P), where A^{-1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z_2-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ ^s, s = 1,\\ldots ,6, are calculated.
NASA Astrophysics Data System (ADS)
Cao, Jin; Jiang, Zhibin; Wang, Kangzhou
2017-07-01
Many nonlinear customer satisfaction-related factors significantly influence the future customer demand for service-oriented manufacturing (SOM). To address this issue and enhance the prediction accuracy, this article develops a novel customer demand prediction approach for SOM. The approach combines the phase space reconstruction (PSR) technique with the optimized least square support vector machine (LSSVM). First, the prediction sample space is reconstructed by the PSR to enrich the time-series dynamics of the limited data sample. Then, the generalization and learning ability of the LSSVM are improved by the hybrid polynomial and radial basis function kernel. Finally, the key parameters of the LSSVM are optimized by the particle swarm optimization algorithm. In a real case study, the customer demand prediction of an air conditioner compressor is implemented. Furthermore, the effectiveness and validity of the proposed approach are demonstrated by comparison with other classical predication approaches.
Cartan gravity, matter fields, and the gauge principle
NASA Astrophysics Data System (ADS)
Westman, Hans F.; Zlosnik, Tom G.
2013-07-01
Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang-Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a 'contact vector' VA which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being 'rolled' on top of it, and (2) a gauge connection AμAB, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan's geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy-momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy-momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang-Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as open questions.
Rotation invariants of vector fields from orthogonal moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Kostková, Jitka; Flusser, Jan
Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less
Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.
Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho
2018-04-16
We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.
Rotation invariants of vector fields from orthogonal moments
Yang, Bo; Kostková, Jitka; Flusser, Jan; ...
2017-09-11
Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less
Approximate ground states of the random-field Potts model from graph cuts
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay
2018-05-01
While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.
A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models
NASA Technical Reports Server (NTRS)
Giunta, Anthony A.; Watson, Layne T.
1998-01-01
Two methods of creating approximation models are compared through the calculation of the modeling accuracy on test problems involving one, five, and ten independent variables. Here, the test problems are representative of the modeling challenges typically encountered in realistic engineering optimization problems. The first approximation model is a quadratic polynomial created using the method of least squares. This type of polynomial model has seen considerable use in recent engineering optimization studies due to its computational simplicity and ease of use. However, quadratic polynomial models may be of limited accuracy when the response data to be modeled have multiple local extrema. The second approximation model employs an interpolation scheme known as kriging developed in the fields of spatial statistics and geostatistics. This class of interpolating model has the flexibility to model response data with multiple local extrema. However, this flexibility is obtained at an increase in computational expense and a decrease in ease of use. The intent of this study is to provide an initial exploration of the accuracy and modeling capabilities of these two approximation methods.
On Convergence Aspects of Spheroidal Monogenics
NASA Astrophysics Data System (ADS)
Georgiev, S.; Morais, J.
2011-09-01
Orthogonal polynomials have found wide applications in mathematical physics, numerical analysis, and other fields. Accordingly there is an enormous amount of variety of such polynomials and relations that describe their properties. The paper's main results are the discussion of approximation properties for monogenic functions over prolate spheroids in R3 in terms of orthogonal monogenic polynomials and their interdependences. Certain results are stated without proof for now. The motivation for the present study stems from the fact that these polynomials play an important role in the calculation of the Bergman kernel and Green's monogenic functions in a spheroid. Once these functions are known, it is possible to solve both basic boundary value and conformal mapping problems. Interestingly, most of the used methods have a n-dimensional counterpart and can be extended to arbitrary ellipsoids. But such a procedure would make the further study of the underlying ellipsoidal monogenics somewhat laborious, and for this reason we shall not discuss these general cases here. To the best of our knowledge, this does not appear to have been done in literature before.
Fractal vector optical fields.
Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-07-15
We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.
Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen
2015-09-20
Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.
NASA Astrophysics Data System (ADS)
Xiao, Zi-Jian; Tian, Bo; Sun, Yan
2018-01-01
In this paper, we investigate a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili (mKP) equation in fluid dynamics. With the binary Bell-polynomial and an auxiliary function, bilinear forms for the equation are constructed. Based on the bilinear forms, multi-soliton solutions and Bell-polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton interactions are presented. Based on the graphic analysis, Parametric conditions for the existence of the shock waves, elevation solitons and depression solitons are given, and it is shown that under the condition of keeping the wave vectors invariable, the change of α(t) and β(t) can lead to the change of the solitonic velocities, but the shape of each soliton remains unchanged, where α(t) and β(t) are the variable coefficients in the equation. Oblique elastic interactions can exist between the (i) two shock waves, (ii) two elevation solitons, and (iii) elevation and depression solitons. However, oblique interactions between (i) shock waves and elevation solitons, (ii) shock waves and depression solitons are inelastic.
The Baker-Akhiezer Function and Factorization of the Chebotarev-Khrapkov Matrix
NASA Astrophysics Data System (ADS)
Antipov, Yuri A.
2014-10-01
A new technique is proposed for the solution of the Riemann-Hilbert problem with the Chebotarev-Khrapkov matrix coefficient {G(t) = α1(t)I + α2(t)Q(t)} , {α1(t), α2(t) in H(L)} , I = diag{1, 1}, Q(t) is a {2×2} zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann-Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker-Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann-Hilbert problem requires the finding of the {ρ} zeros of the Baker-Akhiezer function ({ρ} is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree-{ρ} polynomial and solution of a certain linear algebraic system of {ρ} equations.
Du, Yuncheng; Budman, Hector M; Duever, Thomas A
2016-06-01
Accurate automated quantitative analysis of living cells based on fluorescence microscopy images can be very useful for fast evaluation of experimental outcomes and cell culture protocols. In this work, an algorithm is developed for fast differentiation of normal and apoptotic viable Chinese hamster ovary (CHO) cells. For effective segmentation of cell images, a stochastic segmentation algorithm is developed by combining a generalized polynomial chaos expansion with a level set function-based segmentation algorithm. This approach provides a probabilistic description of the segmented cellular regions along the boundary, from which it is possible to calculate morphological changes related to apoptosis, i.e., the curvature and length of a cell's boundary. These features are then used as inputs to a support vector machine (SVM) classifier that is trained to distinguish between normal and apoptotic viable states of CHO cell images. The use of morphological features obtained from the stochastic level set segmentation of cell images in combination with the trained SVM classifier is more efficient in terms of differentiation accuracy as compared with the original deterministic level set method.
Siemens, Mark; Hancock, Jason; Siminovitch, David
2007-02-01
Euler angles (alpha,beta,gamma) are cumbersome from a computational point of view, and their link to experimental parameters is oblique. The angle-axis {Phi, n} parametrization, especially in the form of quaternions (or Euler-Rodrigues parameters), has served as the most promising alternative, and they have enjoyed considerable success in rf pulse design and optimization. We focus on the benefits of angle-axis parameters by considering a multipole operator expansion of the rotation operator D(Phi, n), and a Clebsch-Gordan expansion of the rotation matrices D(MM')(J)(Phi, n). Each of the coefficients in the Clebsch-Gordan expansion is proportional to the product of a spherical harmonic of the vector n specifying the axis of rotation, Y(lambdamu)(n), with a fixed function of the rotation angle Phi, a Gegenbauer polynomial C(2J-lambda)(lambda+1)(cosPhi/2). Several application examples demonstrate that this Clebsch-Gordan expansion gives easy and direct access to many of the parameters of experimental interest, including coherence order changes (isolated in the Clebsch-Gordan coefficients), and rotation angle (isolated in the Gegenbauer polynomials).
New graph polynomials in parametric QED Feynman integrals
NASA Astrophysics Data System (ADS)
Golz, Marcel
2017-10-01
In recent years enormous progress has been made in perturbative quantum field theory by applying methods of algebraic geometry to parametric Feynman integrals for scalar theories. The transition to gauge theories is complicated not only by the fact that their parametric integrand is much larger and more involved. It is, moreover, only implicitly given as the result of certain differential operators applied to the scalar integrand exp(-ΦΓ /ΨΓ) , where ΨΓ and ΦΓ are the Kirchhoff and Symanzik polynomials of the Feynman graph Γ. In the case of quantum electrodynamics we find that the full parametric integrand inherits a rich combinatorial structure from ΨΓ and ΦΓ. In the end, it can be expressed explicitly as a sum over products of new types of graph polynomials which have a combinatoric interpretation via simple cycle subgraphs of Γ.
A note on φ-analytic conformal vector fields
NASA Astrophysics Data System (ADS)
Deshmukh, Sharief; Bin Turki, Nasser
2017-09-01
Taking clue from the analytic vector fields on a complex manifold, φ-analytic conformal vector fields are defined on a Riemannian manifold (Deshmukh and Al-Solamy in Colloq. Math. 112(1):157-161, 2008). In this paper, we use φ-analytic conformal vector fields to find new characterizations of the n-sphere Sn(c) and the Euclidean space (Rn,<,> ).
Mapping the magnetic field vector in a fountain clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Application specific serial arithmetic arrays
NASA Technical Reports Server (NTRS)
Winters, K.; Mathews, D.; Thompson, T.
1990-01-01
High performance systolic arrays of serial-parallel multiplier elements may be rapidly constructed for specific applications by applying hardware description language techniques to a library of full-custom CMOS building blocks. Single clock pre-charged circuits have been implemented for these arrays at clock rates in excess of 100 Mhz using economical 2-micron (minimum feature size) CMOS processes, which may be quickly configured for a variety of applications. A number of application-specific arrays are presented, including a 2-D convolver for image processing, an integer polynomial solver, and a finite-field polynomial solver.
Reciprocity relationships in vector acoustics and their application to vector field calculations.
Deal, Thomas J; Smith, Kevin B
2017-08-01
The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.
Methods in Symbolic Computation and p-Adic Valuations of Polynomials
NASA Astrophysics Data System (ADS)
Guan, Xiao
Symbolic computation has widely appear in many mathematical fields such as combinatorics, number theory and stochastic processes. The techniques created in the area of experimental mathematics provide us efficient ways of symbolic computing and verification of complicated relations. Part I consists of three problems. The first one focuses on a unimodal sequence derived from a quartic integral. Many of its properties are explored with the help of hypergeometric representations and automatic proofs. The second problem tackles the generating function of the reciprocal of Catalan number. It springs from the closed form given by Mathematica. Furthermore, three methods in special functions are used to justify this result. The third issue addresses the closed form solutions for the moments of products of generalized elliptic integrals , which combines the experimental mathematics and classical analysis. Part II concentrates on the p-adic valuations of polynomials from the perspective of trees. For a given polynomial f( n) indexed in positive integers, the package developed in Mathematica will create certain tree structure following a couple of rules. The evolution of such trees are studied both rigorously and experimentally from the view of field extension, nonparametric statistics and random matrix.
NASA Astrophysics Data System (ADS)
Sheykina, Nadiia; Bogatina, Nina
The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.
Weaving Knotted Vector Fields with Tunable Helicity.
Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M
2016-12-30
We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.
On the parallel solution of parabolic equations
NASA Technical Reports Server (NTRS)
Gallopoulos, E.; Saad, Youcef
1989-01-01
Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented.
Universal portfolios generated by the Bregman divergence
NASA Astrophysics Data System (ADS)
Tan, Choon Peng; Kuang, Kee Seng
2017-04-01
The Bregman divergence of two probability vectors is a stronger form of the f-divergence introduced by Csiszar. Two versions of the Bregman universal portfolio are presented by exploiting the mean-value theorem. The explicit form of the Bregman universal portfolio generated by a function of a convex polynomial is derived and studied empirically. This portfolio can be regarded as another generalized of the well-known Helmbold portfolio. By running the portfolios on selected stock-price data sets from the local stock exchange, it is shown that it is possible to increase the wealth of the investor by using the portfolios in investment.
Comparison of three different detectors applied to synthetic aperture radar data
NASA Astrophysics Data System (ADS)
Ranney, Kenneth I.; Khatri, Hiralal; Nguyen, Lam H.
2002-08-01
The U.S. Army Research Laboratory has investigated the relative performance of three different target detection paradigms applied to foliage penetration (FOPEN) synthetic aperture radar (SAR) data. The three detectors - a quadratic polynomial discriminator (QPD), Bayesian neural network (BNN) and a support vector machine (SVM) - utilize a common collection of statistics (feature values) calculated from the fully polarimetric FOPEN data. We describe the parametric variations required as part of the algorithm optimizations, and we present the relative performance of the detectors in terms of probability of false alarm (Pfa) and probability of detection (Pd).
Parallel Optimization of Polynomials for Large-scale Problems in Stability and Control
NASA Astrophysics Data System (ADS)
Kamyar, Reza
In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems --- in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) --- whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers --- machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers. We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.
Student difficulties regarding symbolic and graphical representations of vector fields
NASA Astrophysics Data System (ADS)
Bollen, Laurens; van Kampen, Paul; Baily, Charles; Kelly, Mossy; De Cock, Mieke
2017-12-01
The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person's understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing, and switching between representations of vector fields, using both qualitative and quantitative methods. We first identified to what extent students are fluent with the use of field vector plots, field line diagrams, and symbolic expressions of vector fields by conducting individual student interviews and analyzing in-class student activities. Based on those findings, we designed the Vector Field Representations test, a free response assessment tool that has been given to 196 second- and third-year physics, mathematics, and engineering students from four different universities. From the obtained results we gained a comprehensive overview of typical errors that students make when switching between vector field representations. In addition, the study allowed us to determine the relative prevalence of the observed difficulties. Although the results varied greatly between institutions, a general trend revealed that many students struggle with vector addition, fail to recognize the field line density as an indication of the magnitude of the field, confuse characteristics of field lines and equipotential lines, and do not choose the appropriate coordinate system when writing out mathematical expressions of vector fields.
Discovering and understanding the vector field using simulation in android app
NASA Astrophysics Data System (ADS)
Budi, A.; Muliyati, D.
2018-05-01
An understanding of vector field’s concepts are fundamental parts of the electrodynamics course. In this paper, we use a simple simulation that can be used to show qualitative imaging results as a variation of the vector field. Android application packages the simulation with consideration of the efficiency of use during the lecture. In addition, this simulation also trying to cover the divergences and curl concepts from the same conditions that students have a complete understanding and can distinguish concepts that have been described only mathematically. This simulation is designed to show the relationship between the field magnitude and its potential. This application can show vector field simulations in various conditions that help to improve students’ understanding of vector field concepts and their relation to particle existence around the field vector.
Killing vector fields in three dimensions: a method to solve massive gravity field equations
NASA Astrophysics Data System (ADS)
Gürses, Metin
2010-10-01
Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.
Proper projective symmetry in LRS Bianchi type V spacetimes
NASA Astrophysics Data System (ADS)
Shabbir, Ghulam; Mahomed, K. S.; Mahomed, F. M.; Moitsheki, R. J.
2018-04-01
In this paper, we investigate proper projective vector fields of locally rotationally symmetric (LRS) Bianchi type V spacetimes using direct integration and algebraic techniques. Despite the non-degeneracy in the Riemann tensor eigenvalues, we classify proper Bianchi type V spacetimes and show that the above spacetimes do not admit proper projective vector fields. Here, in all the cases projective vector fields are Killing vector fields.
Video-rate terahertz electric-field vector imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less
Angular dependence of primordial trispectra and CMB spectral distortions
NASA Astrophysics Data System (ADS)
Shiraishi, Maresuke; Bartolo, Nicola; Liguori, Michele
2016-10-01
Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation has a very specific angular dependence between each wavevector that is distinguishable from the one encountered when only scalar fields are present, characterized by an angular dependence described by Legendre polynomials. We examine the imprints left by curvature trispectra on the TTμ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions (μ) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding TTμ bispectrum strongly differs in shape from TTμ sourced by the usual gNL or τNL local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of TTμ, a minimum detectable value of the quadrupolar Legendre coefficient is d2 ~ 0.01, which is 4 orders of magnitude better than the best value attainable from the TTTT CMB trispectrum. In the case of an anisotropic inflationary model with a f(phi)F2 interaction (coupling the inflaton field phi with a vector kinetic term F2), the size of the curvature trispectrum is related to that of quadrupolar power spectrum asymmetry, g*. In this case, a CVL measurement of TTμ makes it possible to measure g* down to 10-3.
Segmentation of discrete vector fields.
Li, Hongyu; Chen, Wenbin; Shen, I-Fan
2006-01-01
In this paper, we propose an approach for 2D discrete vector field segmentation based on the Green function and normalized cut. The method is inspired by discrete Hodge Decomposition such that a discrete vector field can be broken down into three simpler components, namely, curl-free, divergence-free, and harmonic components. We show that the Green Function Method (GFM) can be used to approximate the curl-free and the divergence-free components to achieve our goal of the vector field segmentation. The final segmentation curves that represent the boundaries of the influence region of singularities are obtained from the optimal vector field segmentations. These curves are composed of piecewise smooth contours or streamlines. Our method is applicable to both linear and nonlinear discrete vector fields. Experiments show that the segmentations obtained using our approach essentially agree with human perceptual judgement.
Rupert, C.P.; Miller, C.T.
2008-01-01
We examine a variety of polynomial-chaos-motivated approximations to a stochastic form of a steady state groundwater flow model. We consider approaches for truncating the infinite dimensional problem and producing decoupled systems. We discuss conditions under which such decoupling is possible and show that to generalize the known decoupling by numerical cubature, it would be necessary to find new multivariate cubature rules. Finally, we use the acceleration of Monte Carlo to compare the quality of polynomial models obtained for all approaches and find that in general the methods considered are more efficient than Monte Carlo for the relatively small domains considered in this work. A curse of dimensionality in the series expansion of the log-normal stochastic random field used to represent hydraulic conductivity provides a significant impediment to efficient approximations for large domains for all methods considered in this work, other than the Monte Carlo method. PMID:18836519
Constructing a polynomial whose nodal set is the three-twist knot 52
NASA Astrophysics Data System (ADS)
Dennis, Mark R.; Bode, Benjamin
2017-06-01
We describe a procedure that creates an explicit complex-valued polynomial function of three-dimensional space, whose nodal lines are the three-twist knot 52. The construction generalizes a similar approach for lemniscate knots: a braid representation is engineered from finite Fourier series and then considered as the nodal set of a certain complex polynomial which depends on an additional parameter. For sufficiently small values of this parameter, the nodal lines form the three-twist knot. Further mathematical properties of this map are explored, including the relationship of the phase critical points with the Morse-Novikov number, which is nonzero as this knot is not fibred. We also find analogous functions for other simple knots and links. The particular function we find, and the general procedure, should be useful for designing knotted fields of particular knot types in various physical systems.
Fast Legendre moment computation for template matching
NASA Astrophysics Data System (ADS)
Li, Bing C.
2017-05-01
Normalized cross correlation (NCC) based template matching is insensitive to intensity changes and it has many applications in image processing, object detection, video tracking and pattern recognition. However, normalized cross correlation implementation is computationally expensive since it involves both correlation computation and normalization implementation. In this paper, we propose Legendre moment approach for fast normalized cross correlation implementation and show that the computational cost of this proposed approach is independent of template mask sizes which is significantly faster than traditional mask size dependent approaches, especially for large mask templates. Legendre polynomials have been widely used in solving Laplace equation in electrodynamics in spherical coordinate systems, and solving Schrodinger equation in quantum mechanics. In this paper, we extend Legendre polynomials from physics to computer vision and pattern recognition fields, and demonstrate that Legendre polynomials can help to reduce the computational cost of NCC based template matching significantly.
Hyperspectral recognition of processing tomato early blight based on GA and SVM
NASA Astrophysics Data System (ADS)
Yin, Xiaojun; Zhao, SiFeng
2013-03-01
Processing tomato early blight seriously affect the yield and quality of its.Determine the leaves spectrum of different disease severity level of processing tomato early blight.We take the sensitive bands of processing tomato early blight as support vector machine input vector.Through the genetic algorithm(GA) to optimize the parameters of SVM, We could recognize different disease severity level of processing tomato early blight.The result show:the sensitive bands of different disease severity levels of processing tomato early blight is 628-643nm and 689-692nm.The sensitive bands are as the GA and SVM input vector.We get the best penalty parameters is 0.129 and kernel function parameters is 3.479.We make classification training and testing by polynomial nuclear,radial basis function nuclear,Sigmoid nuclear.The best classification model is the radial basis function nuclear of SVM. Training accuracy is 84.615%,Testing accuracy is 80.681%.It is combined GA and SVM to achieve multi-classification of processing tomato early blight.It is provided the technical support of prediction processing tomato early blight occurrence, development and diffusion rule in large areas.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2016-10-14
A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.
Structuring Stokes correlation functions using vector-vortex beam
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Anwar, Ali; Singh, R. P.
2018-01-01
Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.
Vector optical fields with bipolar symmetry of linear polarization.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian
2013-09-15
We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.
NASA Astrophysics Data System (ADS)
Benioff, Paul
2015-05-01
The purpose of this paper is to put the description of number scaling and its effects on physics and geometry on a firmer foundation, and to make it more understandable. A main point is that two different concepts, number and number value are combined in the usual representations of number structures. This is valid as long as just one structure of each number type is being considered. It is not valid when different structures of each number type are being considered. Elements of base sets of number structures, considered by themselves, have no meaning. They acquire meaning or value as elements of a number structure. Fiber bundles over a space or space time manifold, M, are described. The fiber consists of a collection of many real or complex number structures and vector space structures. The structures are parameterized by a real or complex scaling factor, s. A vector space at a fiber level, s, has, as scalars, real or complex number structures at the same level. Connections are described that relate scalar and vector space structures at both neighbor M locations and at neighbor scaling levels. Scalar and vector structure valued fields are described and covariant derivatives of these fields are obtained. Two complex vector fields, each with one real and one imaginary field, appear, with one complex field associated with positions in M and the other with position dependent scaling factors. A derivation of the covariant derivative for scalar and vector valued fields gives the same vector fields. The derivation shows that the complex vector field associated with scaling fiber levels is the gradient of a complex scalar field. Use of these results in gauge theory shows that the imaginary part of the vector field associated with M positions acts like the electromagnetic field. The physical relevance of the other three fields, if any, is not known.
Spectral-element Method for 3D Marine Controlled-source EM Modeling
NASA Astrophysics Data System (ADS)
Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.
2017-12-01
As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
NASA Astrophysics Data System (ADS)
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
NASA Astrophysics Data System (ADS)
Popławski, Nikodem
2014-01-01
We propose a theory of gravitation, in which the affine connection is the only dynamical variable describing the gravitational field. We construct a simple dynamical Lagrangian density that is entirely composed from the connection, via its curvature and torsion, and is a polynomial function of its derivatives. It is given by the contraction of the Ricci tensor with a tensor which is inverse to the symmetric, contracted square of the torsion tensor, . We vary the total action for the gravitational field and matter with respect to the affine connection, assuming that the matter fields couple to the connection only through . We derive the resulting field equations and show that they are identical with the Einstein equations of general relativity with a nonzero cosmological constant if the tensor is regarded as proportional to the metric tensor. The cosmological constant is simply a constant of proportionality between the two tensors, which together with and provides a natural system of units in gravitational physics. This theory therefore provides a physical construction of the metric as a polynomial function of the connection, and explains dark energy as an intrinsic property of spacetime.
NASA Astrophysics Data System (ADS)
Lee, Dukhyung; Kim, Dai-Sik
2016-01-01
We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.
1989-06-01
polynomials : Po(cos 8) = 1 , P1(cos 8) = cos 0 P 2(cos 8) = (3 cos 20 - 1)/2 P3 (cos 8) = [(5 cos28 - 3) cos 0]/2 8 and the general relations, p/(-cos...AP DD Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Foreword Thirty- some years ago Nick...1) and P. (cos 8) , (2) where n = 0, 1, 2, ..., and the Pn(cos 0) are the Legendre polynomials [13]. For convenience, we list the first few Legendre
A class of reduced-order models in the theory of waves and stability.
Chapman, C J; Sorokin, S V
2016-02-01
This paper presents a class of approximations to a type of wave field for which the dispersion relation is transcendental. The approximations have two defining characteristics: (i) they give the field shape exactly when the frequency and wavenumber lie on a grid of points in the (frequency, wavenumber) plane and (ii) the approximate dispersion relations are polynomials that pass exactly through points on this grid. Thus, the method is interpolatory in nature, but the interpolation takes place in (frequency, wavenumber) space, rather than in physical space. Full details are presented for a non-trivial example, that of antisymmetric elastic waves in a layer. The method is related to partial fraction expansions and barycentric representations of functions. An asymptotic analysis is presented, involving Stirling's approximation to the psi function, and a logarithmic correction to the polynomial dispersion relation.
Expressions for Fields in the ITER Tokamak
NASA Astrophysics Data System (ADS)
Sharma, Stephen
2017-10-01
The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomenon are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.
Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories
NASA Astrophysics Data System (ADS)
Antoniou, G.; Bakopoulos, A.; Kanti, P.
2018-04-01
In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.
NASA Astrophysics Data System (ADS)
Delfani, M. R.; Latifi Shahandashti, M.
2017-09-01
In this paper, within the complete form of Mindlin's second strain gradient theory, the elastic field of an isolated spherical inclusion embedded in an infinitely extended homogeneous isotropic medium due to a non-uniform distribution of eigenfields is determined. These eigenfields, in addition to eigenstrain, comprise eigen double and eigen triple strains. After the derivation of a closed-form expression for Green's function associated with the problem, two different cases of non-uniform distribution of the eigenfields are considered as follows: (i) radial distribution, i.e. the distributions of the eigenfields are functions of only the radial distance of points from the centre of inclusion, and (ii) polynomial distribution, i.e. the distributions of the eigenfields are polynomial functions in the Cartesian coordinates of points. While the obtained solution for the elastic field of the latter case takes the form of an infinite series, the solution to the former case is represented in a closed form. Moreover, Eshelby's tensors associated with the two mentioned cases are obtained.
NASA Astrophysics Data System (ADS)
Shoukat, Sobia; Naqvi, Qaisar A.
2016-12-01
In this manuscript, scattering from a perfect electric conducting strip located at planar interface of topological insulator (TI)-chiral medium is investigated using the Kobayashi Potential method. Longitudinal components of electric and magnetic vector potential in terms of unknown weighting function are considered. Use of related set of boundary conditions yields two algebraic equations and four dual integral equations (DIEs). Integrand of two DIEs are expanded in terms of the characteristic functions with expansion coefficients which must satisfy, simultaneously, the discontinuous property of the Weber-Schafheitlin integrals, required edge and boundary conditions. The resulting expressions are then combined with algebraic equations to express the weighting function in terms of expansion coefficients, these expansion coefficients are then substituted in remaining DIEs. The projection is applied using the Jacobi polynomials. This treatment yields matrix equation for expansion coefficients which is solved numerically. These unknown expansion coefficients are used to find the scattered field. The far zone scattering width is investigated with respect to different parameters of the geometry, i.e, chirality of chiral medium, angle of incidence, size of the strip. Significant effects of different parameters including TI parameter on the scattering width are noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Kunkun, E-mail: ktg@illinois.edu; Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence; Congedo, Pietro M.
The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable formore » real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.« less
Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel
1997-01-01
This paper is concerned with two important elements in the high-order accurate spatial discretization of finite volume equations over arbitrary grids. One element is the integration of basis functions over arbitrary domains, which is used in expressing various spatial integrals in terms of discrete unknowns. The other consists of quadrature approximations to those integrals. Only polynomial basis functions applied to polyhedral and polygonal grids are treated here. Non-triangular polygonal faces are subdivided into a union of planar triangular facets, and the resulting triangulated polyhedron is subdivided into a union of tetrahedra. The straight line segment, triangle, and tetrahedron are thus the fundamental shapes that are the building blocks for all integrations and quadrature approximations. Integrals of products up to the fifth order are derived in a unified manner for the three fundamental shapes in terms of the position vectors of vertices. Results are given both in terms of tensor products and products of Cartesian coordinates. The exact polynomial integrals are used to obtain symmetric quadrature approximations of any degree of precision up to five for arbitrary integrals over the three fundamental domains. Using a coordinate-free formulation, simple and rational procedures are developed to derive virtually all quadrature formulas, including some previously unpublished. Four symmetry groups of quadrature points are introduced to derive Gauss formulas, while their limiting forms are used to derive Lobatto formulas. Representative Gauss and Lobatto formulas are tabulated. The relative efficiency of their application to polyhedral and polygonal grids is detailed. The extension to higher degrees of precision is discussed.
Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach
NASA Astrophysics Data System (ADS)
Kotaru, Appala Raju; Joshi, Ramesh C.
Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.
Vector curvaton with varying kinetic function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Wagstaff, Jacques M.
2010-01-15
A new model realization of the vector curvaton paradigm is presented and analyzed. The model consists of a single massive Abelian vector field, with a Maxwell-type kinetic term. By assuming that the kinetic function and the mass of the vector field are appropriately varying during inflation, it is shown that a scale-invariant spectrum of superhorizon perturbations can be generated. These perturbations can contribute to the curvature perturbation of the Universe. If the vector field remains light at the end of inflation it is found that it can generate substantial statistical anisotropy in the spectrum and bispectrum of the curvature perturbation.more » In this case the non-Gaussianity in the curvature perturbation is predominantly anisotropic, which will be a testable prediction in the near future. If, on the other hand, the vector field is heavy at the end of inflation then it is demonstrated that particle production is approximately isotropic and the vector field alone can give rise to the curvature perturbation, without directly involving any fundamental scalar field. The parameter space for both possibilities is shown to be substantial. Finally, toy models are presented which show that the desired variation of the mass and kinetic function of the vector field can be realistically obtained, without unnatural tunings, in the context of supergravity or superstrings.« less
Killing spinors are Killing vector fields in Riemannian supergeometry
NASA Astrophysics Data System (ADS)
Alekseevsky, D. V.; Cortés, V.; Devchand, C.; Semmelmann, U.
1998-06-01
A supermanifold M is canonically associated to any pseudo-Riemannian spin manifold ( M0, g0). Extending the metric g0 to a field g of bilinear forms g( p) on TpM, pɛM0, the pseudo-Riemannian supergeometry of ( M, g) is formulated as G-structure on M, where G is a supergroup with even part G 0 ≊ Spin(k, l); (k, l) the signature of ( M0, go). Killing vector fields on ( M, g) are, by definition, infinitesimal automorphisms of this G-structure. For every spinor field s there exists a corresponding odd vector field Xs on M. Our main result is that Xs is a Killing vector field on ( M, g) if and only if s is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field Xs.
Experimental characterization of the AFIT neutron facility. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lessard, O.J.
1993-09-01
AFIT's Neutron Facility was characterized for room-return neutrons using a (252)Cf source and a Bonner sphere spectrometer with three experimental models, the shadow shield, the Eisenhauer, Schwartz, and Johnson (ESJ), and the polynomial models. The free-field fluences at one meter from the ESJ and polynomial models were compared to the equivalent value from the accepted experimental shadow shield model to determine the suitability of the models in the AFIT facility. The polynomial model behaved erratically, as expected, while the ESJ model compared to within 4.8% of the shadow shield model results for the four Bonner sphere calibration. The ratio ofmore » total fluence to free-field fluence at one meter for the ESJ model was then compared to the equivalent ratio obtained by a Monte Cario Neutron-Photon transport code (MCNP), an accepted computational model. The ESJ model compared to within 6.2% of the MCNP results. AFIT's fluence ratios were compared to equivalent ratios reported by three other neutron facilities which verified that AFIT's results fit previously published trends based on room volumes. The ESJ model appeared adequate for health physics applications and was chosen was chosen for calibration of the AFIT facility. Neutron Detector, Bonner Sphere, Neutron Dosimetry, Room Characterization.« less
Spectra of turbulently advected scalars that have small Schmidt number
NASA Astrophysics Data System (ADS)
Hill, Reginald J.
2017-09-01
Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.
Effective Perron-Frobenius eigenvalue for a correlated random map
NASA Astrophysics Data System (ADS)
Pool, Roman R.; Cáceres, Manuel O.
2010-09-01
We investigate the evolution of random positive linear maps with various type of disorder by analytic perturbation and direct simulation. Our theoretical result indicates that the statistics of a random linear map can be successfully described for long time by the mean-value vector state. The growth rate can be characterized by an effective Perron-Frobenius eigenvalue that strongly depends on the type of correlation between the elements of the projection matrix. We apply this approach to an age-structured population dynamics model. We show that the asymptotic mean-value vector state characterizes the population growth rate when the age-structured model has random vital parameters. In this case our approach reveals the nontrivial dependence of the effective growth rate with cross correlations. The problem was reduced to the calculation of the smallest positive root of a secular polynomial, which can be obtained by perturbations in terms of Green’s function diagrammatic technique built with noncommutative cumulants for arbitrary n -point correlations.
Quantum algorithm for linear systems of equations.
Harrow, Aram W; Hassidim, Avinatan; Lloyd, Seth
2009-10-09
Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.
1990-10-01
type of approach for finding a dense displacement vector field has a time complexity that allows a real - time implementation when an appropriate control...hardly vector fields as they appear in Stereo or motion. The reason for this is the fact that local displacement vector field ( DVF ) esti- mates bave...2 objects’ motion, but that the quantitative optical flow is not a reliable measure of the real motion [VP87, SU87]. This applies even more to the
Penilla, R P; Rodríguez, M H; López, A D; Viader-Salvadó, J M; Sánchez, C N
2002-09-01
Biopterin, isoxanthopterin and 6-pterincarboxylic acid were identified in the head of the malaria vector mosquito Anopheles albimanus Weidemann (Diptera: Culicidae) by HPLC. Total pteridine concentrations (TPC) were estimated in heads, body parts (BP: abdomen, legs and wings) and whole bodies of insectary-reared and field-collected females, by spectrofluorometry, to investigate whether they could be used for age determination. Pteridine concentrations diminished with age in both mosquito groups. TPC correlated with chronological age in insectary-reared sugar-fed females (heads: r2 = 0.35, BP: r2 = 0.34, P < 0.001), but lower correlation occurred in blood-fed females (heads: r2 = 0.22, BP: r2 = 0.27). TPC differed among females of the same age fed with blood at different times (P < 0.05), indicating that bloodmeals modify the diminution rate of pteridines with age. Nevertheless, a polynomial significant correlation was documented for TPC and the number of ovipositions (heads: r2 = 0.24, BP: r2 = 0.27, whole body: r2 = 0.52, P < 0.001) in insectary-reared mosquitoes. This correlation was lower in field-collected mosquitoes (heads: r2 = 0.14, BP: r2 = 0.10, P < 0.05), which showed a remarkable pteridine increase in one-parous females. The correlation of TPC in whole body with physiological age was much less (r2 = 0.03). These observations indicate that TPC determination by spectrofluorometry is not a reliable method to estimate the age of An. albimanus females from the feral population.
Vector optical fields with polarization distributions similar to electric and magnetic field lines.
Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian
2013-07-01
We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.
Electromagnetic potential vectors and the Lagrangian of a charged particle
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.
Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing
2014-10-01
Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.
2012-03-09
equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the...wave function arguments from complex scalars to complex vectors . This conversion allows us to separate the electric field vector and the imaginary...magnetic field vector , because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while ex- ponentials of imaginary
Moments of zeta functions associated to hyperelliptic curves over finite fields
Rubinstein, Michael O.; Wu, Kaiyu
2015-01-01
Let q be an odd prime power, and denote the set of square-free monic polynomials D(x)∈Fq[x] of degree d. Katz and Sarnak showed that the moments, over , of the zeta functions associated to the curves y2=D(x), evaluated at the central point, tend, as , to the moments of characteristic polynomials, evaluated at the central point, of matrices in USp(2⌊(d−1)/2⌋). Using techniques that were originally developed for studying moments of L-functions over number fields, Andrade and Keating conjectured an asymptotic formula for the moments for q fixed and . We provide theoretical and numerical evidence in favour of their conjecture. In some cases, we are able to work out exact formulae for the moments and use these to precisely determine the size of the remainder term in the predicted moments. PMID:25802418
A resilient domain decomposition polynomial chaos solver for uncertain elliptic PDEs
NASA Astrophysics Data System (ADS)
Mycek, Paul; Contreras, Andres; Le Maître, Olivier; Sargsyan, Khachik; Rizzi, Francesco; Morris, Karla; Safta, Cosmin; Debusschere, Bert; Knio, Omar
2017-07-01
A resilient method is developed for the solution of uncertain elliptic PDEs on extreme scale platforms. The method is based on a hybrid domain decomposition, polynomial chaos (PC) framework that is designed to address soft faults. Specifically, parallel and independent solves of multiple deterministic local problems are used to define PC representations of local Dirichlet boundary-to-boundary maps that are used to reconstruct the global solution. A LAD-lasso type regression is developed for this purpose. The performance of the resulting algorithm is tested on an elliptic equation with an uncertain diffusivity field. Different test cases are considered in order to analyze the impacts of correlation structure of the uncertain diffusivity field, the stochastic resolution, as well as the probability of soft faults. In particular, the computations demonstrate that, provided sufficiently many samples are generated, the method effectively overcomes the occurrence of soft faults.
Reconstruction of Vectorial Acoustic Sources in Time-Domain Tomography
Xia, Rongmin; Li, Xu; He, Bin
2009-01-01
A new theory is proposed for the reconstruction of curl-free vector field, whose divergence serves as acoustic source. The theory is applied to reconstruct vector acoustic sources from the scalar acoustic signals measured on a surface enclosing the source area. It is shown that, under certain conditions, the scalar acoustic measurements can be vectorized according to the known measurement geometry and subsequently be used to reconstruct the original vector field. Theoretically, this method extends the application domain of the existing acoustic reciprocity principle from a scalar field to a vector field, indicating that the stimulating vectorial source and the transmitted acoustic pressure vector (acoustic pressure vectorized according to certain measurement geometry) are interchangeable. Computer simulation studies were conducted to evaluate the proposed theory, and the numerical results suggest that reconstruction of a vector field using the proposed theory is not sensitive to variation in the detecting distance. The present theory may be applied to magnetoacoustic tomography with magnetic induction (MAT-MI) for reconstructing current distribution from acoustic measurements. A simulation on MAT-MI shows that, compared to existing methods, the present method can give an accurate estimation on the source current distribution and a better conductivity reconstruction. PMID:19211344
Measuring magnetic field vector by stimulated Raman transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenli; Wei, Rong, E-mail: weirong@siom.ac.cn; Lin, Jinda
2016-03-21
We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields,more » beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.« less
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Hagyard, M. J.
1990-01-01
Off-center vector magnetograms which use all three components of the measured field provide the maximum information content from the photospheric field and can provide the most consistent potential field independent of the viewing angle by defining the normal component of the field. The required transformations of the magnetic field vector and the geometric mapping of the observed field in the image plane into the heliographic plane have been described. Here we discuss the total transformation of specific vector magnetograms to detail the problems and procedures that one should be aware of in analyzing observational magnetograms. The effect of the 180-deg ambiguity of the observed transverse field is considered as well as the effect of curvature of the photosphere. Specific results for active regions AR 2684 (September 23, 1980) and AR 4474 (April 26, 1984) from the Marshall Space Flight Center Vector magnetograph are described which point to the need for the heliographic projection in determining the field structure of an active region.
Rogers-Schur-Ramanujan Type Identities for the M(p,p') Minimal Models of Conformal Field Theory
NASA Astrophysics Data System (ADS)
Berkovich, Alexander; McCoy, Barry M.; Schilling, Anne
We present and prove Rogers-Schur-Ramanujan (Bose/Fermi) type identities for the Virasoro characters of the minimal model M(p,p'). The proof uses the continued fraction decomposition of p'/p introduced by Takahashi and Suzuki for the study of the Bethe's Ansatz equations of the XXZ model and gives a general method to construct polynomial generalizations of the fermionic form of the characters which satisfy the same recursion relations as the bosonic polynomials of Forrester and Baxter. We use this method to get fermionic representations of the characters
Lefebvre, J E; Zhang, V; Gazalet, J; Gryba, T; Sadaune, V
2001-09-01
The propagation of guided waves in continuous functionally graded plates is studied by using Legendre polynomials. Dispersion curves, and power and field profiles are easily obtained. Our computer program is validated by comparing our results against other calculations from the literature. Numerical results are also given for a graded semiconductor plate. It is felt that the present method could be of quite practical interest in waveguiding engineering, non-destructive testing of functionally graded materials (FGMs) to identify the best inspection strategies, or by means of a numerical inversion algorithm to determine through-thickness gradients in material parameters.
Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.
Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu
2018-03-10
This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.
Vector-beam solutions of Maxwell's wave equation.
Hall, D G
1996-01-01
The Hermite-Gauss and Laguerre-Gauss modes are well-known beam solutions of the scalar Helmholtz equation in the paraxial limit. As such, they describe linearly polarized fields or single Cartesian components of vector fields. The vector wave equation admits, in the paraxial limit, of a family of localized Bessel-Gauss beam solutions that can describe the entire transverse electric field. Two recently reported solutions are members of this family of vector Bessel-Gauss beam modes.
Tachyon inflation in the large-N formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa-Cendejas, Nandinii; De-Santiago, Josue; German, Gabriel
2015-11-01
We study tachyon inflation within the large-N formalism, which takes a prescription for the small Hubble flow slow-roll parameter ε{sub 1} as a function of the large number of e-folds N. This leads to a classification of models through their behaviour at large N. In addition to the perturbative N class, we introduce the polynomial and exponential classes for the ε{sub 1} parameter. With this formalism we reconstruct a large number of potentials used previously in the literature for tachyon inflation. We also obtain new families of potentials from the polynomial class. We characterize the realizations of tachyon inflation bymore » computing the usual cosmological observables up to second order in the Hubble flow slow-roll parameters. This allows us to look at observable differences between tachyon and canonical single field inflation. The analysis of observables in light of the Planck 2015 data shows the viability of some of these models, mostly for certain realization of the polynomial and exponential classes.« less
NASA Astrophysics Data System (ADS)
Qin, Bo; Tian, Bo; Wang, Yu-Feng; Shen, Yu-Jia; Wang, Ming
2017-10-01
Under investigation in this paper are the Belov-Chaltikian (BC), Leznov and Blaszak-Marciniak (BM) lattice equations, which are associated with the conformal field theory, UToda(m_1,m_2) system and r-matrix, respectively. With symbolic computation, the Bell-polynomial approach is developed to directly bilinearize those three sets of differential-difference nonlinear evolution equations (NLEEs). This Bell-polynomial approach does not rely on any dependent variable transformation, which constitutes the key step and main difficulty of the Hirota bilinear method, and thus has the advantage in the bilinearization of the differential-difference NLEEs. Based on the bilinear forms obtained, the N-soliton solutions are constructed in terms of the N × N Wronskian determinant. Graphic illustrations demonstrate that those solutions, more general than the existing results, permit some new properties, such as the solitonic propagation and interactions for the BC lattice equations, and the nonnegative dark solitons for the BM lattice equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, M.; Al-Dayeh, L.; Patel, P.
It is well known that even small movements of the head can lead to artifacts in fMRI. Corrections for these movements are usually made by a registration algorithm which accounts for translational and rotational motion of the head under a rigid body assumption. The brain, however, is not entirely rigid and images are prone to local deformations due to CSF motion, susceptibility effects, local changes in blood flow and inhomogeneities in the magnetic and gradient fields. Since nonrigid body motion is not adequately corrected by approaches relying on simple rotational and translational corrections, we have investigated a general approach wheremore » an n{sup th} order polynomial is used to map all images onto a common reference image. The coefficients of the polynomial transformation were determined through minimization of the ratio of the variance to the mean of each pixel. Simulation studies were conducted to validate the technique. Results of experimental studies using polynomial transformation for 2D and 3D registration show lower variance to mean ratio compared to simple rotational and translational corrections.« less
Poly-Frobenius-Euler polynomials
NASA Astrophysics Data System (ADS)
Kurt, Burak
2017-07-01
Hamahata [3] defined poly-Euler polynomials and the generalized poly-Euler polynomials. He proved some relations and closed formulas for the poly-Euler polynomials. By this motivation, we define poly-Frobenius-Euler polynomials. We give some relations for this polynomials. Also, we prove the relationships between poly-Frobenius-Euler polynomials and Stirling numbers of the second kind.
Correlation between topological structure and its properties in dynamic singular vector fields.
Vasilev, Vasyl; Soskin, Marat
2016-04-20
A new technique for establishment of topology measurements for static and dynamic singular vector fields is elaborated. It is based on precise measurement of the 3D landscape of ellipticity distribution for a checked singular optical field with C points on the tops of ellipticity hills. Vector fields possess three-component topology: areas with right-hand (RH) and left-hand (LH) ellipses, and delimiting those L lines as the singularities of handedness. The azimuth map of polarization ellipses is common for both RH and LH ellipses of vector fields and do not feel L lines. The strict rules were confirmed experimentally, which define the connection between the sign of underlying optical vortices and morphological parameters of upper-lying C points. Percolation phenomena explain their realization in-between singular vector fields and long duration of their chains of 103 s order.
Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping
2014-07-01
Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.
Three-dimension reconstruction based on spatial light modulator
NASA Astrophysics Data System (ADS)
Deng, Xuejiao; Zhang, Nanyang; Zeng, Yanan; Yin, Shiliang; Wang, Weiyu
2011-02-01
Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .
NASA Astrophysics Data System (ADS)
de Guillebon, L.; Vittot, M.
2013-10-01
Guiding-center reduction is studied using gyro-gauge-independent coordinates. The Lagrangian 1-form of charged particle dynamics is Lie transformed without introducing a gyro-gauge, but using directly the unit vector of the component of the velocity perpendicular to the magnetic field as the coordinate corresponding to Larmor gyration. The reduction is shown to provide a maximal reduction for the Lagrangian and to work for all orders in the Larmor radius, following exactly the same procedure as when working with the standard gauge-dependent coordinate. The gauge-dependence is removed from the coordinate system by using a constrained variable for the gyro-angle. The closed 1-form dθ is replaced by a more general non-closed 1-form, which is equal to dθ in the gauge-dependent case. The gauge vector is replaced by a more general connection in the definition of the gradient, which behaves as a covariant derivative, in perfect agreement with the circle-bundle picture. This explains some results of previous works, whose gauge-independent expressions did not correspond to gauge fixing but did indeed correspond to connection fixing. In addition, some general results are obtained for the guiding-center reduction. The expansion is polynomial in the cotangent of the pitch-angle as an effect of the structure of the Lagrangian, preserved by Lie derivatives. The induction for the reduction is shown to rely on the inversion of a matrix, which is the same for all orders higher than three. It is inverted and explicit induction relations are obtained to go to an arbitrary order in the perturbation expansion. The Hamiltonian and symplectic representations of the guiding-center reduction are recovered, but conditions for the symplectic representation at each order are emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berres, Anne Sabine
This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.
Origin and structures of solar eruptions II: Magnetic modeling
NASA Astrophysics Data System (ADS)
Guo, Yang; Cheng, Xin; Ding, MingDe
2017-07-01
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.
Gaugeon formalism for the second-rank antisymmetric tensor gauge fields
NASA Astrophysics Data System (ADS)
Aochi, Masataka; Endo, Ryusuke; Miura, Hikaru
2018-02-01
We present a BRST symmetric gaugeon formalism for the second-rank antisymmetric tensor gauge fields. A set of vector gaugeon fields is introduced as a quantum gauge freedom. One of the gaugeon fields satisfies a higher-derivative field equation; this property is necessary to change the gauge-fixing parameter of the antisymmetric tensor gauge field. A naive Lagrangian for the vector gaugeon fields is itself invariant under a gauge transformation for the vector gaugeon field. The Lagrangian of our theory includes the gauge-fixing terms for the gaugeon fields and corresponding Faddeev-Popov ghost terms.
Anisotropic k-essence cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimento, Luis P.; Forte, Monica
We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies.more » The linear case is compatible with an asymptotic potential interpolating between V{sub l}{proportional_to}{phi}{sup -{gamma}{sub l}}, in the shear dominated regime, and V{sub l}{proportional_to}{phi}{sup -2} at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential.« less
NASA Astrophysics Data System (ADS)
Yao, X. F.; Xiong, T. C.; Xu, H. M.; Wan, J. P.; Long, G. R.
2008-11-01
The residual stresses of the PMMA (polymethyl methacrylate) specimens after being drilled, reamed and polished respectively are investigated using the digital speckle correlation experimental method,. According to the displacement fields around the correlated calculated region, the polynomial curve fitting method is used to obtain the continuous displacement fields, and the strain fields can be obtained from the derivative of the displacement fields. Considering the constitutive equation of the material, the expression of the residual stress can be presented. During the data processing, according to the fitting effect of the data, the calculation region of the correlated speckles and the degree of the polynomial fitting curve is decided. These results show that the maximum stress is at the hole-wall of the drilling hole specimen and with the increasing of the diameter of the drilled hole, the residual stress resulting from the hole drilling increases, whereas the process of reaming and polishing hole can reduce the residual stress. The relative large discrete degree of the residual stress is due to the chip removal ability of the drill bit, the cutting feed of the drill and other various reasons.
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
Inflation with a massive vector field nonminimally coupled to gravity
NASA Astrophysics Data System (ADS)
Páramos, J.
2018-01-01
The possibility that inflation is driven by a massive vector field with SO(3) global symmetry nonminimally coupled to gravity is presented. Through an appropriate Ansatz for the vector field, the behaviour of the equations of motion is studied through the ensuing dynamical system, focusing on the characterisation of the ensuing fixed points.
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations
Ando, Tadashi; Chow, Edmond; Saad, Yousef; Skolnick, Jeffrey
2012-01-01
Hydrodynamic interactions play an important role in the dynamics of macromolecules. The most common way to take into account hydrodynamic effects in molecular simulations is in the context of a Brownian dynamics simulation. However, the calculation of correlated Brownian noise vectors in these simulations is computationally very demanding and alternative methods are desirable. This paper studies methods based on Krylov subspaces for computing Brownian noise vectors. These methods are related to Chebyshev polynomial approximations, but do not require eigenvalue estimates. We show that only low accuracy is required in the Brownian noise vectors to accurately compute values of dynamic and static properties of polymer and monodisperse suspension models. With this level of accuracy, the computational time of Krylov subspace methods scales very nearly as O(N2) for the number of particles N up to 10 000, which was the limit tested. The performance of the Krylov subspace methods, especially the “block” version, is slightly better than that of the Chebyshev method, even without taking into account the additional cost of eigenvalue estimates required by the latter. Furthermore, at N = 10 000, the Krylov subspace method is 13 times faster than the exact Cholesky method. Thus, Krylov subspace methods are recommended for performing large-scale Brownian dynamics simulations with hydrodynamic interactions. PMID:22897254
Scalar/Vector potential formulation for compressible viscous unsteady flows
NASA Technical Reports Server (NTRS)
Morino, L.
1985-01-01
A scalar/vector potential formulation for unsteady viscous compressible flows is presented. The scalar/vector potential formulation is based on the classical Helmholtz decomposition of any vector field into the sum of an irrotational and a solenoidal field. The formulation is derived from fundamental principles of mechanics and thermodynamics. The governing equations for the scalar potential and vector potential are obtained, without restrictive assumptions on either the equation of state or the constitutive relations or the stress tensor and the heat flux vector.
Classification of digital affine noncommutative geometries
NASA Astrophysics Data System (ADS)
Majid, Shahn; Pachoł, Anna
2018-03-01
It is known that connected translation invariant n-dimensional noncommutative differentials dxi on the algebra k[x1, …, xn] of polynomials in n-variables over a field k are classified by commutative algebras V on the vector space spanned by the coordinates. These data also apply to construct differentials on the Heisenberg algebra "spacetime" with relations [xμ, xν] = λΘμν, where Θ is an antisymmetric matrix, as well as to Lie algebras with pre-Lie algebra structures. We specialise the general theory to the field k =F2 of two elements, in which case translation invariant metrics (i.e., with constant coefficients) are equivalent to making V a Frobenius algebra. We classify all of these and their quantum Levi-Civita bimodule connections for n = 2, 3, with partial results for n = 4. For n = 2, we find 3 inequivalent differential structures admitting 1, 2, and 3 invariant metrics, respectively. For n = 3, we find 6 differential structures admitting 0, 1, 2, 3, 4, 7 invariant metrics, respectively. We give some examples for n = 4 and general n. Surprisingly, not all our geometries for n ≥ 2 have zero quantum Riemann curvature. Quantum gravity is normally seen as a weighted "sum" over all possible metrics but our results are a step towards a deeper approach in which we must also "sum" over differential structures. Over F2 we construct some of our algebras and associated structures by digital gates, opening up the possibility of "digital geometry."
Angular dependence of primordial trispectra and CMB spectral distortions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Maresuke; Bartolo, Nicola; Liguori, Michele, E-mail: maresuke.shiraishi@ipmu.jp, E-mail: nicola.bartolo@pd.infn.it, E-mail: michele.liguori@pd.infn.it
2016-10-01
Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation has a very specific angular dependence between each wavevector that is distinguishable from the one encountered when only scalar fields are present, characterized by an angular dependence described by Legendre polynomials. We examine the imprints left by curvature trispectra on the TT μ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions (μ) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding TT μ bispectrum strongly differs in shape frommore » TT μ sourced by the usual g {sub NL} or τ{sub NL} local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of TT μ, a minimum detectable value of the quadrupolar Legendre coefficient is d {sub 2} ∼ 0.01, which is 4 orders of magnitude better than the best value attainable from the TTTT CMB trispectrum. In the case of an anisotropic inflationary model with a f (φ) F {sup 2} interaction (coupling the inflaton field φ with a vector kinetic term F {sup 2}), the size of the curvature trispectrum is related to that of quadrupolar power spectrum asymmetry, g {sub *}. In this case, a CVL measurement of TT μ makes it possible to measure g {sub *} down to 10{sup −3}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
2016-01-01
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
2016-11-21
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less
Haraldsdóttir, Hulda S; Fleming, Ronan M T
2016-11-01
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.
Magnetic vector field tag and seal
Johnston, Roger G.; Garcia, Anthony R.
2004-08-31
One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.
Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos
2001-09-11
Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc...scheme, which is represented as a tree structure in figure 1 (following [24]), classifies the hypergeometric orthogonal polynomials and indicates the...2F0(1) 2F0(0) Figure 1: The Askey scheme of orthogonal polynomials The orthogonal polynomials associated with the generalized polynomial chaos,
Accelerating 4D flow MRI by exploiting vector field divergence regularization.
Santelli, Claudio; Loecher, Michael; Busch, Julia; Wieben, Oliver; Schaeffter, Tobias; Kozerke, Sebastian
2016-01-01
To improve velocity vector field reconstruction from undersampled four-dimensional (4D) flow MRI by penalizing divergence of the measured flow field. Iterative image reconstruction in which magnitude and phase are regularized separately in alternating iterations was implemented. The approach allows incorporating prior knowledge of the flow field being imaged. In the present work, velocity data were regularized to reduce divergence, using either divergence-free wavelets (DFW) or a finite difference (FD) method using the ℓ1-norm of divergence and curl. The reconstruction methods were tested on a numerical phantom and in vivo data. Results of the DFW and FD approaches were compared with data obtained with standard compressed sensing (CS) reconstruction. Relative to standard CS, directional errors of vector fields and divergence were reduced by 55-60% and 38-48% for three- and six-fold undersampled data with the DFW and FD methods. Velocity vector displays of the numerical phantom and in vivo data were found to be improved upon DFW or FD reconstruction. Regularization of vector field divergence in image reconstruction from undersampled 4D flow data is a valuable approach to improve reconstruction accuracy of velocity vector fields. © 2014 Wiley Periodicals, Inc.
Direct localization of poles of a meromorphic function from measurements on an incomplete boundary
NASA Astrophysics Data System (ADS)
Nara, Takaaki; Ando, Shigeru
2010-01-01
This paper proposes an algebraic method to reconstruct the positions of multiple poles in a meromorphic function field from measurements on an arbitrary simple arc in it. A novel issue is the exactness of the algorithm depending on whether the arc is open or closed, and whether it encloses or does not enclose the poles. We first obtain a differential equation that can equivalently determine the meromorphic function field. From it, we derive linear equations that relate the elementary symmetric polynomials of the pole positions to weighted integrals of the field along the simple arc and end-point terms of the arc when it is an open one. Eliminating the end-point terms based on an appropriate choice of weighting functions and a combination of the linear equations, we obtain a simple system of linear equations for solving the elementary symmetric polynomials. We also show that our algorithm can be applied to a 2D electric impedance tomography problem. The effects of the proximity of the poles, the number of measurements and noise on the localization accuracy are numerically examined.
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu
1996-01-01
We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.
Polarization ellipse and Stokes parameters in geometric algebra.
Santos, Adler G; Sugon, Quirino M; McNamara, Daniel J
2012-01-01
In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.
Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing
2015-05-29
A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less
The Curl of a Vector Field: Beyond the Formula
ERIC Educational Resources Information Center
Burch, Kimberly Jordan; Choi, Youngna
2006-01-01
It has been widely acknowledged that there is some discrepancy in the teaching of vector calculus in mathematics courses and other applied fields. The curl of a vector field is one topic many students can calculate without understanding its significance. In this paper, we explain the origin of the curl after presenting the standard mathematical…
A comparison of in situ measurements of vector-E and - vector-V x vector-B from Dynamics Explorer 2
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Coley, W. R.; Heelis, R. A.; Maynard, N. C.; Aggson, T. L.
1993-01-01
Dynamics Explorer-2 provided the first opportunity to make a direct comparison of in situ measurements of the high-latitude convection electric field by two distinctly different techniques. The vector electric field instrument (VEFI) used antennae to measure the intrinsic electric fields and the ion drift meter (IDM) and retarding potential analyzer (RPA) measured the ion drift velocity vector, from which the convection electric field can be deduced. The data from three orbits having large electric fields at high latitude are presented, one at high, one at medium, and one at low altitudes. The general agreement between the two measurements of electric field is very good, with typical differences at high latitudes of the order of a few millivolts per meter, but there are some regions where the particle fluxes are extremely large (e.g., the cusp) and the disagreement is worse, probably because of IDM difficulties. The auroral zone potential patterns derived from the two devices are in excellent agreement for two of the cases, but not in the third, where bad attitude data may be the problem. At low latitudes there are persistent differences in the measurements of a few millivolts per meter, though these differences are quite constant from orbit to orbit. This problem seems to arise from some shortcoming in the VEFI measurments. Overall, however, these measurements confirm the concept of `frozen-in' plasma that drifts with velocity vector-E x vector-B/B(exp 2) within the measurement errors of the two techniques.
Wavefront sensing with a thin diffuser
NASA Astrophysics Data System (ADS)
Berto, Pascal; Rigneault, Hervé; Guillon, Marc
2017-12-01
We propose and implement a broadband, compact, and low-cost wavefront sensing scheme by simply placing a thin diffuser in the close vicinity of a camera. The local wavefront gradient is determined from the local translation of the speckle pattern. The translation vector map is computed thanks to a fast diffeomorphic image registration algorithm and integrated to reconstruct the wavefront profile. The simple translation of speckle grains under local wavefront tip/tilt is ensured by the so-called "memory effect" of the diffuser. Quantitative wavefront measurements are experimentally demonstrated both for the few first Zernike polynomials and for phase-imaging applications requiring high resolution. We finally provided a theoretical description of the resolution limit that is supported experimentally.
NASA Astrophysics Data System (ADS)
Varró, Sándor
2014-01-01
Exact solutions are presented of the Klein-Gordon equation of a charged particle moving in a transverse monochromatic plasmon wave of arbitrary high amplitude, which propagates in an underdense plasma. These solutions are expressed in terms of Ince polynomials, forming a doubly infinite set, parametrized by discrete momentum components of the charged particle’s de Broglie wave along the polarization vector and along the propagation direction of the plasmon radiation. The envelope of the exact wavefunctions describes a high-contrast periodic structure of the particle density on the plasma length scale, which may have relevance in novel particle acceleration mechanisms.
Epistemic uncertainty propagation in energy flows between structural vibrating systems
NASA Astrophysics Data System (ADS)
Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong
2016-03-01
A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.
Exact Solution of Klein-Gordon and Dirac Equations with Snyder-de Sitter Algebra
NASA Astrophysics Data System (ADS)
Merad, M.; Hadj Moussa, M.
2018-01-01
In this paper, we present the exact solution of the (1+1)-dimensional relativistic Klein-Gordon and Dirac equations with linear vector and scalar potentials in the framework of deformed Snyder-de Sitter model. We introduce some changes of variables, we show that a one-dimensional linear potential for the relativistic system in a space deformed can be equivalent to the trigonometric Rosen-Morse potential in a regular space. In both cases, we determine explicitly the energy eigenvalues and their corresponding eigenfunctions expressed in terms of Romonovski polynomials. The limiting cases are analyzed for α 1 and α 2 → 0 and are compared with those of literature.
Theory of aberration fields for general optical systems with freeform surfaces.
Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P
2014-11-03
This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.
Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G
2015-05-18
Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.
ERIC Educational Resources Information Center
Curjel, C. R.
1990-01-01
Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)
A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty
NASA Astrophysics Data System (ADS)
Kewlani, Gaurav; Crawford, Justin; Iagnemma, Karl
2012-05-01
The ability of ground vehicles to quickly and accurately analyse their dynamic response to a given input is critical to their safety and efficient autonomous operation. In field conditions, significant uncertainty is associated with terrain and/or vehicle parameter estimates, and this uncertainty must be considered in the analysis of vehicle motion dynamics. Here, polynomial chaos approaches that explicitly consider parametric uncertainty during modelling of vehicle dynamics are presented. They are shown to be computationally more efficient than the standard Monte Carlo scheme, and experimental results compared with the simulation results performed on ANVEL (a vehicle simulator) indicate that the method can be utilised for efficient and accurate prediction of vehicle motion in realistic scenarios.
Heat transfer of phase-change materials in two-dimensional cylindrical coordinates
NASA Technical Reports Server (NTRS)
Labdon, M. B.; Guceri, S. I.
1981-01-01
Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.
The hopf algebra of vector fields on complex quantum groups
NASA Astrophysics Data System (ADS)
Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno
1992-10-01
We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.
On Finsler spacetimes with a timelike Killing vector field
NASA Astrophysics Data System (ADS)
Caponio, Erasmo; Stancarone, Giuseppe
2018-04-01
We study Finsler spacetimes and Killing vector fields taking care of the fact that the generalised metric tensor associated to the Lorentz–Finsler function L is in general well defined only on a subset of the slit tangent bundle. We then introduce a new class of Finsler spacetimes endowed with a timelike Killing vector field that we call stationary splitting Finsler spacetimes. We characterize when a Finsler spacetime with a timelike Killing vector field is locally a stationary splitting. Finally, we show that the causal structure of a stationary splitting is the same of one of two Finslerian static spacetimes naturally associated to the stationary splitting.
Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skraba, Primoz; Rosen, Paul; Wang, Bei
Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with amore » guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. Here, we apply our method to synthetic and simulation datasets to demonstrate its effectiveness.« less
Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion.
Skraba, Primoz; Rosen, Paul; Wang, Bei; Chen, Guoning; Bhatia, Harsh; Pascucci, Valerio
2016-02-29
Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.
Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion
Skraba, Primoz; Rosen, Paul; Wang, Bei; ...
2016-02-29
Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with amore » guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. Here, we apply our method to synthetic and simulation datasets to demonstrate its effectiveness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, Rafael G.; Tututi, Eduardo S.
We study the Schwinger model on a lattice constructed from zeros of the Hermite polynomials that incorporates a lattice derivative and a discrete Fourier transform with many properties. Such a lattice produces a Klein-Gordon equation for the boson field and the correct value of the mass in the asymptotic limit.
Statistics of partially-polarized fields: beyond the Stokes vector and coherence matrix
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail
2017-08-01
Traditionally, the partially-polarized light is characterized by the four Stokes parameters. Equivalent description is also provided by correlation tensor of the optical field. These statistics specify only the second moments of the complex amplitudes of the narrow-band two-dimensional electric field of the optical wave. Electric field vector of the random quasi monochromatic wave is a nonstationary oscillating two-dimensional real random variable. We introduce a novel statistical description of these partially polarized waves: the Period-Averaged Probability Density Function (PA-PDF) of the field. PA-PDF contains more information on the polarization state of the field than the Stokes vector. In particular, in addition to the conventional distinction between the polarized and depolarized components of the field PA-PDF allows to separate the coherent and fluctuating components of the field. We present several model examples of the fields with identical Stokes vectors and very distinct shapes of PA-PDF. In the simplest case of the nonstationary, oscillating normal 2-D probability distribution of the real electrical field and stationary 4-D probability distribution of the complex amplitudes, the newly-introduced PA-PDF is determined by 13 parameters that include the first moments and covariance matrix of the quadrature components of the oscillating vector field.
NASA Astrophysics Data System (ADS)
Maruyama, Tomoyuki; Nakano, Eiji; Yanase, Kota; Yoshinaga, Naotaka
2018-06-01
The spontaneous spin polarization of strongly interacting matter due to axial-vector- and tensor-type interactions is studied at zero temperature and high baryon-number densities. We start with the mean-field Lagrangian for the axial-vector and tensor interaction channels and find in the chiral limit that the spin polarization due to the tensor mean field (U ) takes place first as the density increases for sufficiently strong coupling constants, and then the spin polarization due to the axial-vector mean field (A ) emerges in the region of the finite tensor mean field. This can be understood as making the axial-vector mean-field finite requires a broken chiral symmetry somehow, which is achieved by the finite tensor mean field in the present case. It is also found from the symmetry argument that there appear the type I (II) Nambu-Goldstone modes with a linear (quadratic) dispersion in the spin polarized phase with U ≠0 and A =0 (U ≠0 and A ≠0 ), although these two phases exhibit the same symmetry breaking pattern.
Lefschetz thimbles in fermionic effective models with repulsive vector-field
NASA Astrophysics Data System (ADS)
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2018-06-01
We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.
On the estimation of heating effects in the atmosphere because of seismic activities
NASA Astrophysics Data System (ADS)
Meister, Claudia-Veronika; Hoffmann, Dieter H. H.
2014-05-01
The dielectric model for waves in the Earth's ionosphere is further developed and applied to possible electro-magnetic phenomena in seismic regions. In doing so, in comparison to the well-known dielectric wave model by R.O. Dendy [Plasma dynamics, Oxford University Press, 1990] for homogeneous systems, the stratification of the atmosphere is taken into account. Moreover, within the frame of many-fluid magnetohydrodynamics also the momentum transfer between the charged and neutral particles is considered. Discussed are the excitation of Alfvén and magnetoacoustic waves, but also their variations by the neutral gas winds. Further, also other current driven waves like Farley-Buneman ones are studied. In the work, models of the altitudinal scales of the plasma parameters and the electromagnetic wave field are derived. In case of the electric wave field, a method is given to calculate the altitudinal scale based on the Poisson equation for the electric field and the magnetohydrodynamic description of the particles. Further, expressions are derived to estimate density, pressure, and temperatur changes in the E-layer because of the generation of the electromagnetic waves. Last not least, formulas are obtained to determine the dispersion and polarisation of the excited electromagnetic waves. These are applied to find quantitative results for the turbulent heating of the ionospheric E-layer. Concerning the calculation of the dispersion relation, in comparison to a former work by Meister et al. [Contr. Plasma Phys. 53 (4-5), 406-413, 2013], where a numerical double-iteration method was suggested to obtain results for the wave dispersion relations, now further analytical calculations are performed. In doing so, different polynomial dependencies of the wave frequencies from the wave vectors are treated. This helped to restrict the numerical calculations to only one iteration process.
Characteristic classes of gauge systems
NASA Astrophysics Data System (ADS)
Lyakhovich, S. L.; Sharapov, A. A.
2004-12-01
We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.
Micropolar curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models
NASA Astrophysics Data System (ADS)
Zozulya, V. V.
2017-01-01
New models for micropolar plane curved rods have been developed. 2-D theory is developed from general 2-D equations of linear micropolar elasticity using a special curvilinear system of coordinates related to the middle line of the rod and special hypothesis based on assumptions that take into account the fact that the rod is thin.High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First stress and strain tensors,vectors of displacements and rotation and body force shave been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then in the same way as in the theory of elasticity, system of differential equations in term of displacements and boundary conditions for Fourier coefficients have been obtained. The Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and 2-D equations of linear micropolar elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scale when taking in to account micropolar couple stress and rotation effects.
A Polynomial Time, Numerically Stable Integer Relation Algorithm
NASA Technical Reports Server (NTRS)
Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)
1998-01-01
Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.
Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos
2002-07-25
Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc., AMS... orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener (1938). A Galerkin projection...1) by generalized polynomial chaos expansion, where the uncertainties can be introduced through κ, f , or g, or some combinations. It is worth
Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields
NASA Technical Reports Server (NTRS)
Shihui, Y.; Jiehai, J.; Minhan, J.
1985-01-01
A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.
Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
Mahajan, Virendra N
2012-06-20
In a recent paper, we considered the classical aberrations of an anamorphic optical imaging system with a rectangular pupil, representing the terms of a power series expansion of its aberration function. These aberrations are inherently separable in the Cartesian coordinates (x,y) of a point on the pupil. Accordingly, there is x-defocus and x-coma, y-defocus and y-coma, and so on. We showed that the aberration polynomials orthonormal over the pupil and representing balanced aberrations for such a system are represented by the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point; for example, L(l)(x)L(m)(y), where l and m are positive integers (including zero) and L(l)(x), for example, represents an orthonormal Legendre polynomial of degree l in x. The compound two-dimensional (2D) Legendre polynomials, like the classical aberrations, are thus also inherently separable in the Cartesian coordinates of the pupil point. Moreover, for every orthonormal polynomial L(l)(x)L(m)(y), there is a corresponding orthonormal polynomial L(l)(y)L(m)(x) obtained by interchanging x and y. These polynomials are different from the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil. In this paper, we show that the orthonormal aberration polynomials for an anamorphic system with a circular pupil, obtained by the Gram-Schmidt orthogonalization of the 2D Legendre polynomials, are not separable in the two coordinates. Moreover, for a given polynomial in x and y, there is no corresponding polynomial obtained by interchanging x and y. For example, there are polynomials representing x-defocus, balanced x-coma, and balanced x-spherical aberration, but no corresponding y-aberration polynomials. The missing y-aberration terms are contained in other polynomials. We emphasize that the Zernike circle polynomials, although orthogonal over a circular pupil, are not suitable for an anamorphic system as they do not represent balanced aberrations for such a system.
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.; Stark, B. A.; Venkatakrishnan, P.
1998-01-01
A careful analysis of a 6-hour time sequence of vector magnetograms of AR 6659, observed on 1991 June 10 with the MSFC vector magnetograph, has revealed only minor changes in the vector magnetic field azimuths in the vicinity of two M-class flares, and the association of these changes with the flares is not unambiguous. In this paper we present our analysis of the data which includes comparison of vector magnetograms prior to and during the flares, calculation of distributions of the rms variation of the azimuth at each pixel in the field of view of the active region, and examination of the variation with time of the azimuths at every pixel covered by the main flare emissions as observed with the H-alpha telescope coaligned with the vector magnetograph. We also present results of an analysis of evolutionary changes in the azimuth over the field of view of the active region.
Simple and practical approach for computing the ray Hessian matrix in geometrical optics.
Lin, Psang Dain
2018-02-01
A method is proposed for simplifying the computation of the ray Hessian matrix in geometrical optics by replacing the angular variables in the system variable vector with their equivalent cosine and sine functions. The variable vector of a boundary surface is similarly defined in such a way as to exclude any angular variables. It is shown that the proposed formulations reduce the computation time of the Hessian matrix by around 10 times compared to the previous method reported by the current group in Advanced Geometrical Optics (2016). Notably, the method proposed in this study involves only polynomial differentiation, i.e., trigonometric function calls are not required. As a consequence, the computation complexity is significantly reduced. Five illustrative examples are given. The first three examples show that the proposed method is applicable to the determination of the Hessian matrix for any pose matrix, irrespective of the order in which the rotation and translation motions are specified. The last two examples demonstrate the use of the proposed Hessian matrix in determining the axial and lateral chromatic aberrations of a typical optical system.
NASA Astrophysics Data System (ADS)
Li, Shaoxin; Zhang, Yanjiao; Xu, Junfa; Li, Linfang; Zeng, Qiuyao; Lin, Lin; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Liu, Songhao
2014-09-01
This study aims to present a noninvasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) and support vector machine (SVM) techniques through peripheral blood sample. SERS measurements are performed using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) are employed to build SVM diagnostic models for classifying measured SERS spectra. For comparably evaluating the performance of SVM classification models, the standard multivariate statistic analysis method of principal component analysis (PCA) is also applied to classify the same datasets. The study results show that for the RBF kernel SVM diagnostic model, the diagnostic accuracy of 98.1% is acquired, which is superior to the results of 91.3% obtained from PCA methods. The receiver operating characteristic curve of diagnostic models further confirm above research results. This study demonstrates that label-free serum SERS analysis technique combined with SVM diagnostic algorithm has great potential for noninvasive prostate cancer screening.
Generalized continued fractions and ergodic theory
NASA Astrophysics Data System (ADS)
Pustyl'nikov, L. D.
2003-02-01
In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest.
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Saboohi, Hadi; Ang, Tan Fong; Anuar, Nor Badrul; Rahman, Zulkanain Abdul; Pavlović, Nenad T.
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of Support Vector Regression (SVR) to estimate and predict estimate MTF value of the actual optical system according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR_rbf approach in compare to SVR_poly soft computing methodology.
Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states
NASA Astrophysics Data System (ADS)
Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.
2018-04-01
We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.
Determination of the expansion of the potential of the earth's normal gravitational field
NASA Astrophysics Data System (ADS)
Kochiev, A. A.
The potential of the generalized problem of 2N fixed centers is expanded in a polynomial and Legendre function series. Formulas are derived for the expansion coefficients, and the disturbing function of the problem is constructed in an explicit form.
Bin Packing, Number Balancing, and Rescaling Linear Programs
NASA Astrophysics Data System (ADS)
Hoberg, Rebecca
This thesis deals with several important algorithmic questions using techniques from diverse areas including discrepancy theory, machine learning and lattice theory. In Chapter 2, we construct an improved approximation algorithm for a classical NP-complete problem, the bin packing problem. In this problem, the goal is to pack items of sizes si ∈ [0,1] into as few bins as possible, where a set of items fits into a bin provided the sum of the item sizes is at most one. We give a polynomial-time rounding scheme for a standard linear programming relaxation of the problem, yielding a packing that uses at most OPT + O(log OPT) bins. This makes progress towards one of the "10 open problems in approximation algorithms" stated in the book of Shmoys and Williamson. In fact, based on related combinatorial lower bounds, Rothvoss conjectures that theta(logOPT) may be a tight bound on the additive integrality gap of this LP relaxation. In Chapter 3, we give a new polynomial-time algorithm for linear programming. Our algorithm is based on the multiplicative weights update (MWU) method, which is a general framework that is currently of great interest in theoretical computer science. An algorithm for linear programming based on MWU was known previously, but was not polynomial time--we remedy this by alternating between a MWU phase and a rescaling phase. The rescaling methods we introduce improve upon previous methods by reducing the number of iterations needed until one can rescale, and they can be used for any algorithm with a similar rescaling structure. Finally, we note that the MWU phase of the algorithm has a simple interpretation as gradient descent of a particular potential function, and we show we can speed up this phase by walking in a direction that decreases both the potential function and its gradient. In Chapter 4, we show that an approximate oracle for Minkowski's Theorem gives an approximate oracle for the number balancing problem, and conversely. Number balancing is the problem of minimizing | 〈a,x〉 | over x ∈ {-1,0,1}n \\ { 0}, given a ∈ [0,1]n. While an application of the pigeonhole principle shows that there always exists x with | 〈a,x〉| ≤ O(√ n/2n), the best known algorithm only guarantees |〈a,x〉| ≤ 2-ntheta(log n). We show that an oracle for Minkowski's Theorem with approximation factor rho would give an algorithm for NBP that guarantees | 〈a,x〉 | ≤ 2-ntheta(1/rho). In particular, this would beat the bound of Karmarkar and Karp provided rho ≤ O(logn/loglogn). In the other direction, we prove that any polynomial time algorithm for NBP that guarantees a solution of difference at most 2√n/2 n would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.
Approximating exponential and logarithmic functions using polynomial interpolation
NASA Astrophysics Data System (ADS)
Gordon, Sheldon P.; Yang, Yajun
2017-04-01
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.
Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations
2016-01-01
Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT present new possibilities for human-expert diagnostics, and for automated ischaemia detection. PMID:26863140
The optical analogy for vector fields
NASA Technical Reports Server (NTRS)
Parker, E. N. (Editor)
1991-01-01
This paper develops the optical analogy for a general vector field. The optical analogy allows the examination of certain aspects of a vector field that are not otherwise readily accessible. In particular, in the cases of a stationary Eulerian flow v of an ideal fluid and a magnetostatic field B, the vectors v and B have surface loci in common with their curls. The intrinsic discontinuities around local maxima in absolute values of v and B take the form of vortex sheets and current sheets, respectively, the former playing a fundamental role in the development of hydrodyamic turbulence and the latter playing a major role in heating the X-ray coronas of stars and galaxies.
Parity-violating CMB correlators with non-decaying statistical anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartolo, Nicola; Matarrese, Sabino; Shiraishi, Maresuke
2015-07-01
We examine the effect induced on cosmological correlators by the simultaneous breaking of parity and of statistical isotropy. As an example of this, we compute the scalar-scalar, scalar-tensor, tensor-tensor and scalar-scalar-scalar cosmological correlators in presence of the coupling L = f(φ) ( − 1/4 F{sup 2} + γ/4 F ∼F ) between the inflaton φ and a vector field with vacuum expectation value A. For a suitably chosen function f, the energy in the vector field ρ{sub A} does not decay during inflation. This results in nearly scale-invariant signatures of broken statistical isotropy and parity. Specifically, we find that the scalar-scalar correlator of primordial curvature perturbations includes a quadrupolar anisotropy, P{submore » ζ}(k) = P(k)[1+g{sub *}( k-circumflex ⋅Â){sup 2}], and a (angle-averaged) scalar bispectrum that is a linear combination of the first 3 Legendre polynomials, B{sub ζ}(k{sub 1}, k{sub 2}, k{sub 3}) = ∑{sub L} c{sub L} P{sub L} ( k-circumflex {sub 1} ⋅ k-circumflex {sub 2}) P(k{sub 1}) P(k{sub 2}) + 2 perms , with c{sub 0}:c{sub 1}:c{sub 2}=2-3:1 (c{sub 1}≠0 is a consequence of parity violation, corresponding to the constant 0γ ≠ ). The latter is one of the main results of this paper, which provides for the first time a clear example of an inflationary model where a non-negligible c{sub 1} contribution to the bispectrum is generated. The scalar-tensor and tensor-tensor correlators induce characteristic signatures in the Cosmic Microwave Background temperature anisotropies (T) and polarization (E/B modes); namely, non-diagonal contributions to (a{sub ℓ1m1}a{sup *}{sub ℓ2m2}), with |ℓ{sub 1} − ℓ{sub 2}| = 1 in TT, TE, EE and BB, and |ℓ{sub 1} − ℓ{sub 2}| = 2 in TB and EB. The latest CMB bounds on the scalar observables (g{sub *}, c{sub 0}, c{sub 1} and c{sub 2}), translate into the upper limit ρ{sub A} / ρ{sub φ} ∼< 10{sup −9} at 0γ=. We find that the upper limit on the vector energy density becomes much more stringent as γ grows.« less
Anomalous negative magnetoresistance of two-dimensional electrons
NASA Astrophysics Data System (ADS)
Kanter, Jesse; Vitkalov, Sergey; Bykov, A. A.
2018-05-01
Effects of temperature T (6-18 K) and variable in situ static disorder on dissipative resistance of two-dimensional electrons are investigated in GaAs quantum wells placed in a perpendicular magnetic-field B⊥. Quantum contributions to the magnetoresistance, leading to quantum positive magnetoresistance (QPMR), are separated by application of an in-plane magnetic field. QPMR decreases considerably with both the temperature and the static disorder and is in good quantitative agreement with theory. The remaining resistance R decreases with the magnetic field exhibiting an anomalous polynomial dependence on B⊥:[R (B⊥) -R (0 ) ] =A (T ,τq) B⊥η where the power is η ≈1.5 ±0.1 in a broad range of temperatures and disorder. The disorder is characterized by electron quantum lifetime τq. The scaling factor A (T ,τq) ˜[κ(τq) +β (τq) T2] -1 depends significantly on both τq and T where the first term κ ˜τq-1/2 decreases with τq. The second term is proportional to the square of the temperature and diverges with increasing static disorder. Above a critical disorder the anomalous magnetoresistance is absent, and only a positive magnetoresistance, exhibiting no distinct polynomial behavior with the magnetic field, is observed. The presented model accounts memory effects and yields η = 3/2.
NASA Astrophysics Data System (ADS)
Wang, Hongmei; Zhang, Yafei; Xu, Huaizhe
2007-01-01
The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures, which is significant but has been frequently omitted in previous theoretical methods, has been reported in this paper. The analytical expressions of the longitudinal energies of quasibound levels (LEQBL) and the lifetimes of quasibound levels (LQBL) in symmetrical double-barrier (SDB) structures have been derived as a function of transverse wave vector and longitudinal magnetic fields perpendicular to interfaces. Based on our derived analytical expressions, the LEQBL and LQBL dependence upon transverse wave vector and longitudinal magnetic fields has been explored numerically for a SDB structure. Model calculations show that the LEQBL decrease monotonically and the LQBL shorten with increasing transverse wave vector, and each original LEQBL splits to a series of sub-LEQBL which shift nearly linearly toward the well bottom and the lifetimes of quasibound level series (LQBLS) shorten with increasing Landau-level indices and magnetic fields.
Azil, Aishah H; Ritchie, Scott A; Williams, Craig R
2015-10-01
This qualitative study aimed to describe field worker perceptions, evaluations of worth, and time costs of routine dengue vector surveillance methods in Cairns (Australia), Kuala Lumpur and Petaling District (Malaysia). In Cairns, the BG-Sentinel trap is a favored method for field workers because of its user-friendliness, but is not as cost-efficient as the sticky ovitrap. In Kuala Lumpur, the Mosquito Larvae Trapping Device is perceived as a solution for the inaccessibility of premises to larval surveys. Nonetheless, the larval survey method is retained in Malaysia for prompt detection of dengue vectors. For dengue vector surveillance to be successful, there needs to be not only technical, quantitative evaluations of method performance but also an appreciation of how amenable field workers are to using particular methods. Here, we report novel field worker perceptions of dengue vector surveillance methods in addition to time analysis for each method. © 2014 APJPH.
Wang, Wei; Takeda, Mitsuo
2006-09-01
A new concept of vector and tensor densities is introduced into the general coherence theory of vector electromagnetic fields that is based on energy and energy-flow coherence tensors. Related coherence conservation laws are presented in the form of continuity equations that provide new insights into the propagation of second-order correlation tensors associated with stationary random classical electromagnetic fields.
Visualization of Morse connection graphs for topologically rich 2D vector fields.
Szymczak, Andrzej; Sipeki, Levente
2013-12-01
Recent advances in vector field topologymake it possible to compute its multi-scale graph representations for autonomous 2D vector fields in a robust and efficient manner. One of these representations is a Morse Connection Graph (MCG), a directed graph whose nodes correspond to Morse sets, generalizing stationary points and periodic trajectories, and arcs - to trajectories connecting them. While being useful for simple vector fields, the MCG can be hard to comprehend for topologically rich vector fields, containing a large number of features. This paper describes a visual representation of the MCG, inspired by previous work on graph visualization. Our approach aims to preserve the spatial relationships between the MCG arcs and nodes and highlight the coherent behavior of connecting trajectories. Using simulations of ocean flow, we show that it can provide useful information on the flow structure. This paper focuses specifically on MCGs computed for piecewise constant (PC) vector fields. In particular, we describe extensions of the PC framework that make it more flexible and better suited for analysis of data on complex shaped domains with a boundary. We also describe a topology simplification scheme that makes our MCG visualizations less ambiguous. Despite the focus on the PC framework, our approach could also be applied to graph representations or topological skeletons computed using different methods.
Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.
Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad
2017-11-30
In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.
Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients
Solano-Altamirano, Juan Manuel; Khikhlukha, Danila
2017-01-01
In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features. PMID:29189722
Parallel/Vector Integration Methods for Dynamical Astronomy
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
1999-01-01
This paper reviews three recent works on the numerical methods to integrate ordinary differential equations (ODE), which are specially designed for parallel, vector, and/or multi-processor-unit(PU) computers. The first is the Picard-Chebyshev method (Fukushima, 1997a). It obtains a global solution of ODE in the form of Chebyshev polynomial of large (> 1000) degree by applying the Picard iteration repeatedly. The iteration converges for smooth problems and/or perturbed dynamics. The method runs around 100-1000 times faster in the vector mode than in the scalar mode of a certain computer with vector processors (Fukushima, 1997b). The second is a parallelization of a symplectic integrator (Saha et al., 1997). It regards the implicit midpoint rules covering thousands of timesteps as large-scale nonlinear equations and solves them by the fixed-point iteration. The method is applicable to Hamiltonian systems and is expected to lead an acceleration factor of around 50 in parallel computers with more than 1000 PUs. The last is a parallelization of the extrapolation method (Ito and Fukushima, 1997). It performs trial integrations in parallel. Also the trial integrations are further accelerated by balancing computational load among PUs by the technique of folding. The method is all-purpose and achieves an acceleration factor of around 3.5 by using several PUs. Finally, we give a perspective on the parallelization of some implicit integrators which require multiple corrections in solving implicit formulas like the implicit Hermitian integrators (Makino and Aarseth, 1992), (Hut et al., 1995) or the implicit symmetric multistep methods (Fukushima, 1998), (Fukushima, 1999).
Arbitrary norm support vector machines.
Huang, Kaizhu; Zheng, Danian; King, Irwin; Lyu, Michael R
2009-02-01
Support vector machines (SVM) are state-of-the-art classifiers. Typically L2-norm or L1-norm is adopted as a regularization term in SVMs, while other norm-based SVMs, for example, the L0-norm SVM or even the L(infinity)-norm SVM, are rarely seen in the literature. The major reason is that L0-norm describes a discontinuous and nonconvex term, leading to a combinatorially NP-hard optimization problem. In this letter, motivated by Bayesian learning, we propose a novel framework that can implement arbitrary norm-based SVMs in polynomial time. One significant feature of this framework is that only a sequence of sequential minimal optimization problems needs to be solved, thus making it practical in many real applications. The proposed framework is important in the sense that Bayesian priors can be efficiently plugged into most learning methods without knowing the explicit form. Hence, this builds a connection between Bayesian learning and the kernel machines. We derive the theoretical framework, demonstrate how our approach works on the L0-norm SVM as a typical example, and perform a series of experiments to validate its advantages. Experimental results on nine benchmark data sets are very encouraging. The implemented L0-norm is competitive with or even better than the standard L2-norm SVM in terms of accuracy but with a reduced number of support vectors, -9.46% of the number on average. When compared with another sparse model, the relevance vector machine, our proposed algorithm also demonstrates better sparse properties with a training speed over seven times faster.
Vector boson star solutions with a quartic order self-interaction
NASA Astrophysics Data System (ADS)
Minamitsuji, Masato
2018-05-01
We investigate boson star (BS) solutions in the Einstein-Proca theory with the quartic order self-interaction of the vector field λ (AμA¯ μ)2/4 and the mass term μ A¯ μAμ/2 , where Aμ is the complex vector field and A¯μ is the complex conjugate of Aμ, and λ and μ are the coupling constant and the mass of the vector field, respectively. The vector BSs are characterized by the two conserved quantities, the Arnowitt-Deser-Misner (ADM) mass and the Noether charge associated with the global U (1 ) symmetry. We show that in comparison with the case without the self-interaction λ =0 , the maximal ADM mass and Noether charge increase for λ >0 and decrease for λ <0 . We also show that there exists the critical central amplitude of the temporal component of the vector field above which there is no vector BS solution, and for λ >0 it can be expressed by the simple analytic expression. For a sufficiently large positive coupling Λ ≔Mpl2λ /(8 π μ2)≫1 , the maximal ADM mass and Noether charge of the vector BSs are obtained from the critical central amplitude and of O [√{λ }Mpl3/μ2ln (λ Mpl2/μ2)] , which is different from that of the scalar BSs, O (√{λϕ }Mpl3/μϕ2) , where λϕ and μϕ are the coupling constant and the mass of the complex scalar field.
Representation and display of vector field topology in fluid flow data sets
NASA Technical Reports Server (NTRS)
Helman, James; Hesselink, Lambertus
1989-01-01
The visualization of physical processes in general and of vector fields in particular is discussed. An approach to visualizing flow topology that is based on the physics and mathematics underlying the physical phenomenon is presented. It involves determining critical points in the flow where the velocity vector vanishes. The critical points, connected by principal lines or planes, determine the topology of the flow. The complexity of the data is reduced without sacrificing the quantitative nature of the data set. By reducing the original vector field to a set of critical points and their connections, a representation of the topology of a two-dimensional vector field that is much smaller than the original data set but retains with full precision the information pertinent to the flow topology is obtained. This representation can be displayed as a set of points and tangent curves or as a graph. Analysis (including algorithms), display, interaction, and implementation aspects are discussed.
Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons
NASA Astrophysics Data System (ADS)
Chanyal, B. C.
2017-12-01
In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.
NASA Technical Reports Server (NTRS)
Bommier, V.; Leroy, J. L.; Sahal-Brechot, S.
1985-01-01
The Hanle effect method for magnetic field vector diagnostics has now provided results on the magnetic field strength and direction in quiescent prominences, from linear polarization measurements in the He I E sub 3 line, performed at the Pic-du-Midi and at Sacramento Peak. However, there is an inescapable ambiguity in the field vector determination: each polarization measurement provides two field vector solutions symmetrical with respect to the line-of-sight. A statistical analysis capable of solving this ambiguity was applied to the large sample of prominences observed at the Pic-du-Midi (Leroy, et al., 1984); the same method of analysis applied to the prominences observed at Sacramento Peak (Athay, et al., 1983) provides results in agreement on the most probable magnetic structure of prominences; these results are detailed. The statistical results were confirmed on favorable individual cases: for 15 prominences observed at Pic-du-Midi, the two-field vectors are pointing on the same side of the prominence, and the alpha angles are large enough with respect to the measurements and interpretation inaccuracies, so that the field polarity is derived without any ambiguity.
Equivalences of the multi-indexed orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odake, Satoru
2014-01-15
Multi-indexed orthogonal polynomials describe eigenfunctions of exactly solvable shape-invariant quantum mechanical systems in one dimension obtained by the method of virtual states deletion. Multi-indexed orthogonal polynomials are labeled by a set of degrees of polynomial parts of virtual state wavefunctions. For multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson, and Askey-Wilson types, two different index sets may give equivalent multi-indexed orthogonal polynomials. We clarify these equivalences. Multi-indexed orthogonal polynomials with both type I and II indices are proportional to those of type I indices only (or type II indices only) with shifted parameters.
Reviving the shear-free perfect fluid conjecture in general relativity
NASA Astrophysics Data System (ADS)
Sikhonde, Muzikayise E.; Dunsby, Peter K. S.
2017-12-01
Employing a Mathematica symbolic computer algebra package called xTensor, we present (1+3) -covariant special case proofs of the shear-free perfect fluid conjecture in general relativity. We first present the case where the pressure is constant, and where the acceleration is parallel to the vorticity vector. These cases were first presented in their covariant form by Senovilla et al. We then provide a covariant proof for the case where the acceleration and vorticity vectors are orthogonal, which leads to the existence of a Killing vector along the vorticity. This Killing vector satisfies the new constraint equations resulting from the vanishing of the shear. Furthermore, it is shown that in order for the conjecture to be true, this Killing vector must have a vanishing spatially projected directional covariant derivative along the velocity vector field. This in turn implies the existence of another basic vector field along the direction of the vorticity for the conjecture to hold. Finally, we show that in general, there exists a basic vector field parallel to the acceleration for which the conjecture is true.
Periodic binary sequence generators: VLSI circuits considerations
NASA Technical Reports Server (NTRS)
Perlman, M.
1984-01-01
Feedback shift registers are efficient periodic binary sequence generators. Polynomials of degree r over a Galois field characteristic 2(GF(2)) characterize the behavior of shift registers with linear logic feedback. The algorithmic determination of the trinomial of lowest degree, when it exists, that contains a given irreducible polynomial over GF(2) as a factor is presented. This corresponds to embedding the behavior of an r-stage shift register with linear logic feedback into that of an n-stage shift register with a single two-input modulo 2 summer (i.e., Exclusive-OR gate) in its feedback. This leads to Very Large Scale Integrated (VLSI) circuit architecture of maximal regularity (i.e., identical cells) with intercell communications serialized to a maximal degree.
Symbolic discrete event system specification
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.; Chi, Sungdo
1992-01-01
Extending discrete event modeling formalisms to facilitate greater symbol manipulation capabilities is important to further their use in intelligent control and design of high autonomy systems. An extension to the DEVS formalism that facilitates symbolic expression of event times by extending the time base from the real numbers to the field of linear polynomials over the reals is defined. A simulation algorithm is developed to generate the branching trajectories resulting from the underlying nondeterminism. To efficiently manage symbolic constraints, a consistency checking algorithm for linear polynomial constraints based on feasibility checking algorithms borrowed from linear programming has been developed. The extended formalism offers a convenient means to conduct multiple, simultaneous explorations of model behaviors. Examples of application are given with concentration on fault model analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.
1995-10-01
Aztec is an iterative library that greatly simplifies the parallelization process when solving the linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. Aztec is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparsemore » unstructured matrices for parallel solution. Once the distributed matrix is created, computation can be performed on any of the parallel machines running Aztec: nCUBE 2, IBM SP2 and Intel Paragon, MPI platforms as well as standard serial and vector platforms. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized biconjugate gradient (BICGSTAB) to solve systems of equations. These Krylov methods are used in conjunction with various preconditioners such as polynomial or domain decomposition methods using LU or incomplete LU factorizations within subdomains. Although the matrix A can be general, the package has been designed for matrices arising from the approximation of partial differential equations (PDEs). In particular, the Aztec package is oriented toward systems arising from PDE applications.« less
Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns.
Iakovidis, Dimitris K; Keramidas, Eystratios G; Maroulis, Dimitris
2010-09-01
This paper proposes a novel approach for thyroid ultrasound pattern representation. Considering that texture and echogenicity are correlated with thyroid malignancy, the proposed approach encodes these sonographic features via a noise-resistant representation. This representation is suitable for the discrimination of nodules of high malignancy risk from normal thyroid parenchyma. The material used in this study includes a total of 250 thyroid ultrasound patterns obtained from 75 patients in Greece. The patterns are represented by fused vectors of fuzzy features. Ultrasound texture is represented by fuzzy local binary patterns, whereas echogenicity is represented by fuzzy intensity histograms. The encoded thyroid ultrasound patterns are discriminated by support vector classifiers. The proposed approach was comprehensively evaluated using receiver operating characteristics (ROCs). The results show that the proposed fusion scheme outperforms previous thyroid ultrasound pattern representation methods proposed in the literature. The best classification accuracy was obtained with a polynomial kernel support vector machine, and reached 97.5% as estimated by the area under the ROC curve. The fusion of fuzzy local binary patterns and fuzzy grey-level histogram features is more effective than the state of the art approaches for the representation of thyroid ultrasound patterns and can be effectively utilized for the detection of nodules of high malignancy risk in the context of an intelligent medical system. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Chong; Dai, Fuchu; Xu, Xiwei; Lee, Yuan Hsi
2012-04-01
Support vector machine (SVM) modeling is based on statistical learning theory. It involves a training phase with associated input and target output values. In recent years, the method has become increasingly popular. The main purpose of this study is to evaluate the mapping power of SVM modeling in earthquake triggered landslide-susceptibility mapping for a section of the Jianjiang River watershed using a Geographic Information System (GIS) software. The river was affected by the Wenchuan earthquake of May 12, 2008. Visual interpretation of colored aerial photographs of 1-m resolution and extensive field surveys provided a detailed landslide inventory map containing 3147 landslides related to the 2008 Wenchuan earthquake. Elevation, slope angle, slope aspect, distance from seismogenic faults, distance from drainages, and lithology were used as the controlling parameters. For modeling, three groups of positive and negative training samples were used in concert with four different kernel functions. Positive training samples include the centroids of 500 large landslides, those of all 3147 landslides, and 5000 randomly selected points in landslide polygons. Negative training samples include 500, 3147, and 5000 randomly selected points on slopes that remained stable during the Wenchuan earthquake. The four kernel functions are linear, polynomial, radial basis, and sigmoid. In total, 12 cases of landslide susceptibility were mapped. Comparative analyses of landslide-susceptibility probability and area relation curves show that both the polynomial and radial basis functions suitably classified the input data as either landslide positive or negative though the radial basis function was more successful. The 12 generated landslide-susceptibility maps were compared with known landslide centroid locations and landslide polygons to verify the success rate and predictive accuracy of each model. The 12 results were further validated using area-under-curve analysis. Group 3 with 5000 randomly selected points on the landslide polygons, and 5000 randomly selected points along stable slopes gave the best results with a success rate of 79.20% and predictive accuracy of 79.13% under the radial basis function. Of all the results, the sigmoid kernel function was the least skillful when used in concert with the centroid data of all 3147 landslides as positive training samples, and the negative training samples of 3147 randomly selected points in regions of stable slope (success rate = 54.95%; predictive accuracy = 61.85%). This paper also provides suggestions and reference data for selecting appropriate training samples and kernel function types for earthquake triggered landslide-susceptibility mapping using SVM modeling. Predictive landslide-susceptibility maps could be useful in hazard mitigation by helping planners understand the probability of landslides in different regions.
[Hyperspectral Remote Sensing Estimation Models for Pasture Quality].
Ma, Wei-wei; Gong, Cai-lan; Hu, Yong; Wei, Yong-lin; Li, Long; Liu, Feng-yi; Meng, Peng
2015-10-01
Crude protein (CP), crude fat (CFA) and crude fiber (CFI) are key indicators for evaluation of the quality and feeding value of pasture. Hence, identification of these biological contents is an essential practice for animal husbandry. As current approaches to pasture quality estimation are time-consuming and costly, and even generate hazardous waste, a real-time and non-destructive method is therefore developed in this study using pasture canopy hyperspectral data. A field campaign was carried out in August 2013 around Qinghai Lake in order to obtain field spectral properties of 19 types of natural pasture using the ASD Field Spec 3, a field spectrometer that works in the optical region (350-2 500 nm) of the electromagnetic spectrum. In additional to the spectral data, pasture samples were also collected from the field and examined in laboratory to measure the relative concentration of CP (%), CFA (%) and CFI (%). After spectral denoising and smoothing, the relationship of pasture quality parameters with the reflectance spectrum, the first derivatives of reflectance (FDR), band ratio and the wavelet coefficients (WCs) was analyzed respectively. The concentration of CP, CFA and CFI of pasture was found closely correlated with FDR with wavebands centered at 424, 1 668, and 918 nm as well as with the low-scale (scale = 2, 4) Morlet, Coiflets and Gassian WCs. Accordingly, the linear, exponential, and polynomial equations between each pasture variable and FDR or WCs were developed. Validation of the developed equations indicated that the polynomial model with an independent variable of Coiflets WCs (scale = 4, wavelength =1 209 nm), the polynomial model with an independent variable of FDR, and the exponential model with an independent variable of FDR were the optimal model for prediction of concentration of CP, CFA and CFI of pasture, respectively. The R2 of the pasture quality estimation models was between 0.646 and 0.762 at the 0.01 significance level. Results suggest that the first derivatives or the wavelet coefficients of hyperspectral reflectance in visible and near-infrared regions can be used for pasture quality estimation, and that it will provide a basis for real-time prediction of pasture quality using remote sensing techniques.
Managing focal fields of vector beams with multiple polarization singularities.
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin
2016-11-10
We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.
Measurements of Solar Vector Magnetic Fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J. (Editor)
1985-01-01
Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.
Solutions of interval type-2 fuzzy polynomials using a new ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani
2015-10-01
A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.
Representation of magnetic fields in space
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.
Quantum corrections to the generalized Proca theory via a matter field
NASA Astrophysics Data System (ADS)
Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab
2017-09-01
We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.
Recognition and Quantification of Area Damaged by Oligonychus Perseae in Avocado Leaves
NASA Astrophysics Data System (ADS)
Díaz, Gloria; Romero, Eduardo; Boyero, Juan R.; Malpica, Norberto
The measure of leaf damage is a basic tool in plant epidemiology research. Measuring the area of a great number of leaves is subjective and time consuming. We investigate the use of machine learning approaches for the objective segmentation and quantification of leaf area damaged by mites in avocado leaves. After extraction of the leaf veins, pixels are labeled with a look-up table generated using a Support Vector Machine with a polynomial kernel of degree 3, on the chrominance components of YCrCb color space. Spatial information is included in the segmentation process by rating the degree of membership to a certain class and the homogeneity of the classified region. Results are presented on real images with different degrees of damage.
The synoptic maps of Br from HMI observations
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Hoeksema, J. Todd; Liu, Sun; Yang, Xudong; Centeno, Rebecca; Leka, K. D.; Barnes, Graham
2012-03-01
The vector magnetic field measurement can, in principal, give the "true" radial component of the magnetic field. We prepare 4 types of synoptic maps of the radial photospheric magnetic field, from the vector magnetic field data disambiguated by means of the minimum energy method developed at NWRA/CoRA, the vector data determined under the potential-field acute assumption, and the vector data determined under the radial-acute assumption, and the standard line-of-sight magnetogram. The models of the global corona, the MHD and the PFSS, are applied to different types of maps. Although the three-dimensional structures of the global coronal magnetic field with different maps are similar and overall agreeing well the AIA full-disk images, noticeable differences among the model outputs are found especially in the high latitude regions. We will show details of these test maps and discuss the issues in determining the radial component of the photospheric magnetic field near the poles and limb.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
NASA Astrophysics Data System (ADS)
Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville
2017-01-01
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.
Accelerated gradient-based free form deformable registration for online adaptive radiotherapy
NASA Astrophysics Data System (ADS)
Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang
2015-04-01
The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.
NASA Astrophysics Data System (ADS)
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.
NASA Astrophysics Data System (ADS)
Krishnan, Chethan; Maheshwari, Shubham; Bala Subramanian, P. N.
2017-08-01
We write down a Robin boundary term for general relativity. The construction relies on the Neumann result of arXiv:1605.01603 in an essential way. This is unlike in mechanics and (polynomial) field theory, where two formulations of the Robin problem exist: one with Dirichlet as the natural limiting case, and another with Neumann.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods,more » e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.« less
Stable solutions of inflation driven by vector fields
NASA Astrophysics Data System (ADS)
Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li
2017-03-01
Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.
Simple Proof of Jury Test for Complex Polynomials
NASA Astrophysics Data System (ADS)
Choo, Younseok; Kim, Dongmin
Recently some attempts have been made in the literature to give simple proofs of Jury test for real polynomials. This letter presents a similar result for complex polynomials. A simple proof of Jury test for complex polynomials is provided based on the Rouché's Theorem and a single-parameter characterization of Schur stability property for complex polynomials.
Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field
Fishman, Randy S.
2018-01-03
Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less
Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field
NASA Astrophysics Data System (ADS)
Fishman, Randy S.
2018-01-01
Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.
Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishman, Randy S.
Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less
NASA Astrophysics Data System (ADS)
Doha, E. H.
2003-05-01
A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.
USSR and Eastern Europe Scientific Abstracts- Physics - Number 45
1978-10-02
compound, a function of the angle between the electrical vector of the ’ light wave and the optical c-axis of the crystal. Heterodiodes have first...of naturally radioactive U, Th and K in a 1-liter sample. USSR A VECTOR MESON IN A QUANTUM ELECTROMAGNETIC FIELD Moscow TEORETICHESKAYA I...arbitrary spin in a classical plane electromagnetic field are used to find the exact wave function of a vector meson in the quantum field of a linearly
The magnetic field investigation on Cluster
NASA Technical Reports Server (NTRS)
Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.
1988-01-01
The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.
Improvement of cardiac CT reconstruction using local motion vector fields.
Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael
2009-03-01
The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.
Detection of a sudden change of the field time series based on the Lorenz system.
Da, ChaoJiu; Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan
2017-01-01
We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series.
The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance
NASA Astrophysics Data System (ADS)
Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Sun, Xudong; Schou, Jesper; Couvidat, Sebastien; Norton, Aimee; Bobra, Monica; Centeno, Rebecca; Leka, K. D.; Barnes, Graham; Turmon, Michael
2014-09-01
The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180∘ azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.
NASA Astrophysics Data System (ADS)
Chen, Zhixiang; Fu, Bin
This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ polynomial. We first prove that the first problem is #P-hard and then devise a O *(3 n s(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n). Later, this upper bound is improved to O *(2 n ) for ΠΣΠ polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ polynomials. On the negative side, we prove that, even for ΠΣΠ polynomials with terms of degree ≤ 2, the first problem cannot be approximated at all for any approximation factor ≥ 1, nor "weakly approximated" in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ-approximation algorithm for ΠΣΠ polynomials with terms of degrees no more a constant λ ≥ 2. On the inapproximability side, we give a n (1 - ɛ)/2 lower bound, for any ɛ> 0, on the approximation factor for ΠΣΠ polynomials. When the degrees of the terms in these polynomials are constrained as ≤ 2, we prove a 1.0476 lower bound, assuming Pnot=NP; and a higher 1.0604 lower bound, assuming the Unique Games Conjecture.
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment
NASA Astrophysics Data System (ADS)
Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.
2017-10-01
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
Circular Conditional Autoregressive Modeling of Vector Fields.
Modlin, Danny; Fuentes, Montse; Reich, Brian
2012-02-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.
NASA Astrophysics Data System (ADS)
Park, Kyoung-Duck; Raschke, Markus B.
2018-05-01
Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.
Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M
2017-09-21
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
Circular Conditional Autoregressive Modeling of Vector Fields*
Modlin, Danny; Fuentes, Montse; Reich, Brian
2013-01-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452
Spatial Distribution of Phase Singularities in Optical Random Vector Waves.
De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L
2016-08-26
Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zúñiga-Segundo, Arturo; Juárez-Amaro, Raúl; Aguilar-Loreto, Omar
We study the atom–field interaction when the field is in a mixture of coherent states. We show that in this case it is possible to calculate analytically the field entropy for times of the order of twice the collapse time. Such analytical results are done with the help of numerical analysis. We also give an expression in terms of Chebyshev polynomials for power of density matrices. - Highlights: • We calculate the field entropy for times of the order of twice the collapse time. • We give a relation between powers of the density matrices of the subsystems. • Entropymore » operators for both subsystems are obtained.« less
Discrete-time state estimation for stochastic polynomial systems over polynomial observations
NASA Astrophysics Data System (ADS)
Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.
2018-07-01
This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.
Quantization of Electromagnetic Fields in Cavities
NASA Technical Reports Server (NTRS)
Kakazu, Kiyotaka; Oshiro, Kazunori
1996-01-01
A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.
Analyzing neural responses with vector fields.
Buneo, Christopher A
2011-04-15
Analyzing changes in the shape and scale of single cell response fields is a key component of many neurophysiological studies. Typical analyses of shape change involve correlating firing rates between experimental conditions or "cross-correlating" single cell tuning curves by shifting them with respect to one another and correlating the overlapping data. Such shifting results in a loss of data, making interpretation of the resulting correlation coefficients problematic. The problem is particularly acute for two dimensional response fields, which require shifting along two axes. Here, an alternative method for quantifying response field shape and scale based on correlation of vector field representations is introduced. The merits and limitations of the methods are illustrated using both simulated and experimental data. It is shown that vector correlation provides more information on response field changes than scalar correlation without requiring field shifting and concomitant data loss. An extension of this vector field approach is also demonstrated which can be used to identify the manner in which experimental variables are encoded in studies of neural reference frames. Copyright © 2011 Elsevier B.V. All rights reserved.
Nodal Statistics for the Van Vleck Polynomials
NASA Astrophysics Data System (ADS)
Bourget, Alain
The Van Vleck polynomials naturally arise from the generalized Lamé equation
IIB supergravity and the E 6(6) covariant vector-tensor hierarchy
Ciceri, Franz; de Wit, Bernard; Varela, Oscar
2015-04-20
IIB supergravity is reformulated with a manifest local USp(8) invariance that makes the embedding of five-dimensional maximal supergravities transparent. In this formulation the ten-dimensional theory exhibits all the 27 one-form fields and 22 of the 27 two-form fields that are required by the vector-tensor hierarchy of the five-dimensional theory. The missing 5 two-form fields must transform in the same representation as a descendant of the ten-dimensional ‘dual graviton’. The invariant E 6(6) symmetric tensor that appears in the vector-tensor hierarchy is reproduced. Generalized vielbeine are derived from the supersymmetry transformations of the vector fields, as well as consistent expressions formore » the USp(8) covariant fermion fields. Implications are further discussed for the consistency of the truncation of IIB supergravity compactified on the five-sphere to maximal gauged supergravity in five space-time dimensions with an SO(6) gauge group.« less
Attitude Estimation for Large Field-of-View Sensors
NASA Technical Reports Server (NTRS)
Cheng, Yang; Crassidis, John L.; Markley, F. Landis
2005-01-01
The QUEST measurement noise model for unit vector observations has been widely used in spacecraft attitude estimation for more than twenty years. It was derived under the approximation that the noise lies in the tangent plane of the respective unit vector and is axially symmetrically distributed about the vector. For large field-of-view sensors, however, this approximation may be poor, especially when the measurement falls near the edge of the field of view. In this paper a new measurement noise model is derived based on a realistic noise distribution in the focal-plane of a large field-of-view sensor, which shows significant differences from the QUEST model for unit vector observations far away from the sensor boresight. An extended Kalman filter for attitude estimation is then designed with the new measurement noise model. Simulation results show that with the new measurement model the extended Kalman filter achieves better estimation performance using large field-of-view sensor observations.
Diffeomorphism invariance and black hole entropy
NASA Astrophysics Data System (ADS)
Huang, Chao-Guang; Guo, Han-Ying; Wu, Xiaoning
2003-11-01
The Noether-charge and the Hamiltonian realizations for the diff(M) algebra in diffeomorphism-invariant gravitational theories without a cosmological constant in any dimension are studied in a covariant formalism. We analyze how the Hamiltonian functionals form the diff(M) algebra under the Poisson brackets and show how the Noether charges with respect to the diffeomorphism generated by the vector fields and their variations in n-dimensional general relativity form this algebra. The asymptotic behaviors of vector fields generating diffeomorphism of the manifold with boundaries are discussed. It is shown that the “central extension” for a large class of vector fields is always zero on the Killing horizon. We also check whether choosing the vector fields near the horizon may pick up the Virasoro algebra. The conclusion is unfortunately negative in any dimension.
An improved exact inversion formula for solenoidal fields in cone beam vector tomography
NASA Astrophysics Data System (ADS)
Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas
2017-06-01
In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.
Black holes in vector-tensor theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic andmore » quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.« less
Legendre modified moments for Euler's constant
NASA Astrophysics Data System (ADS)
Prévost, Marc
2008-10-01
Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4
Constraints on primordial magnetic fields from inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it
2016-03-01
We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
Type II superstring field theory: geometric approach and operadic description
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Münster, Korbinian
2013-04-01
We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a {N} = 1 generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.
Madsen, Kristoffer H; Ewald, Lars; Siebner, Hartwig R; Thielscher, Axel
2015-01-01
Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector potential of the TMS coils. To develop an approach to reconstruct the magnetic vector potential based on automated measurements. We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel approach to determine the magnetic vector potential via volume integration of the measured field. The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well with that calculated using a model reconstructed from x-ray images. The setup can supply validated models for existing and newly appearing TMS coils. Copyright © 2015 Elsevier Inc. All rights reserved.
Scalable analysis of nonlinear systems using convex optimization
NASA Astrophysics Data System (ADS)
Papachristodoulou, Antonis
In this thesis, we investigate how convex optimization can be used to analyze different classes of nonlinear systems at various scales algorithmically. The methodology is based on the construction of appropriate Lyapunov-type certificates using sum of squares techniques. After a brief introduction on the mathematical tools that we will be using, we turn our attention to robust stability and performance analysis of systems described by Ordinary Differential Equations. A general framework for constrained systems analysis is developed, under which stability of systems with polynomial, non-polynomial vector fields and switching systems, as well estimating the region of attraction and the L2 gain can be treated in a unified manner. We apply our results to examples from biology and aerospace. We then consider systems described by Functional Differential Equations (FDEs), i.e., time-delay systems. Their main characteristic is that they are infinite dimensional, which complicates their analysis. We first show how the complete Lyapunov-Krasovskii functional can be constructed algorithmically for linear time-delay systems. Then, we concentrate on delay-independent and delay-dependent stability analysis of nonlinear FDEs using sum of squares techniques. An example from ecology is given. The scalable stability analysis of congestion control algorithms for the Internet is investigated next. The models we use result in an arbitrary interconnection of FDE subsystems, for which we require that stability holds for arbitrary delays, network topologies and link capacities. Through a constructive proof, we develop a Lyapunov functional for FAST---a recently developed network congestion control scheme---so that the Lyapunov stability properties scale with the system size. We also show how other network congestion control schemes can be analyzed in the same way. Finally, we concentrate on systems described by Partial Differential Equations. We show that axially constant perturbations of the Navier-Stokes equations for Hagen-Poiseuille flow are globally stable, even though the background noise is amplified as R3 where R is the Reynolds number, giving a 'robust yet fragile' interpretation. We also propose a sum of squares methodology for the analysis of systems described by parabolic PDEs. We conclude this work with an account for future research.
Multi-scale dynamical behavior of spatially distributed systems: a deterministic point of view
NASA Astrophysics Data System (ADS)
Mangiarotti, S.; Le Jean, F.; Drapeau, L.; Huc, M.
2015-12-01
Physical and biophysical systems are spatially distributed systems. Their behavior can be observed or modelled spatially at various resolutions. In this work, a deterministic point of view is adopted to analyze multi-scale behavior taking a set of ordinary differential equation (ODE) as elementary part of the system.To perform analyses, scenes of study are thus generated based on ensembles of identical elementary ODE systems. Without any loss of generality, their dynamics is chosen chaotic in order to ensure sensitivity to initial conditions, that is, one fundamental property of atmosphere under instable conditions [1]. The Rössler system [2] is used for this purpose for both its topological and algebraic simplicity [3,4].Two cases are thus considered: the chaotic oscillators composing the scene of study are taken either independent, or in phase synchronization. Scale behaviors are analyzed considering the scene of study as aggregations (basically obtained by spatially averaging the signal) or as associations (obtained by concatenating the time series). The global modeling technique is used to perform the numerical analyses [5].One important result of this work is that, under phase synchronization, a scene of aggregated dynamics can be approximated by the elementary system composing the scene, but modifying its parameterization [6]. This is shown based on numerical analyses. It is then demonstrated analytically and generalized to a larger class of ODE systems. Preliminary applications to cereal crops observed from satellite are also presented.[1] Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141 (1963).[2] Rössler, An equation for continuous chaos, Phys. Lett. A, 57, 397-398 (1976).[3] Gouesbet & Letellier, Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets, Phys. Rev. E 49, 4955-4972 (1994).[4] Letellier, Roulin & Rössler, Inequivalent topologies of chaos in simple equations, Chaos, Solitons & Fractals, 28, 337-360 (2006).[5] Mangiarotti, Coudret, Drapeau, & Jarlan, Polynomial search and global modeling, Phys. Rev. E 86(4), 046205 (2012).[6] Mangiarotti, Modélisation globale et Caractérisation Topologique de dynamiques environnementales. Habilitation à Diriger des Recherches, Univ. Toulouse 3 (2014).
2006-08-23
polarization the electric field vector is parallel to the substrate, for TM polarization the magnetic field vector is parallel to the substrate. Figure...section can be obtained for the case of the two electromagnetic field polarization vectors λ and µ describing the two photons being absorbed (of the same or... polarization effects on two-photon absorption as investigated by the technique of thermal lensing detected absorption of a mode- locked laser beam. This
1991-09-01
12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Vector spherical harmonic expansions are...electric and magnetic field vectors from E rand B - r alone. Genural expressions are given relating the scattered field expansion coefficients to the source...Prescnbed by ANSI Std. Z39-18 29W-102 NCSC TR 426-90 CONTENTS Pag o INTRODUCTION 1 BACKGROUND 1 ANGULAR MOMENTUM OPERATOR AND VECTOR SPHERICAL
NASA Technical Reports Server (NTRS)
Bommier, V.
1986-01-01
The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.
On multiple orthogonal polynomials for discrete Meixner measures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, Vladimir N
2010-12-07
The paper examines two examples of multiple orthogonal polynomials generalizing orthogonal polynomials of a discrete variable, meaning thereby the Meixner polynomials. One example is bound up with a discrete Nikishin system, and the other leads to essentially new effects. The limit distribution of the zeros of polynomials is obtained in terms of logarithmic equilibrium potentials and in terms of algebraic curves. Bibliography: 9 titles.
Direct calculation of modal parameters from matrix orthogonal polynomials
NASA Astrophysics Data System (ADS)
El-Kafafy, Mahmoud; Guillaume, Patrick
2011-10-01
The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.
NASA Astrophysics Data System (ADS)
Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik
2018-03-01
A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.
Spatiotemporal accessible solitons in fractional dimensions.
Zhong, Wei-Ping; Belić, Milivoj R; Malomed, Boris A; Zhang, Yiqi; Huang, Tingwen
2016-07-01
We report solutions for solitons of the "accessible" type in globally nonlocal nonlinear media of fractional dimension (FD), viz., for self-trapped modes in the space of effective dimension 2
NASA Astrophysics Data System (ADS)
Othmani, Cherif; Takali, Farid; Njeh, Anouar
2017-11-01
Modeling of guided Lamb waves propagation in piezoelectric-semiconductor multilayered structures made of AlAs and GaAs is evaluated in this paper. Here, the Legendre polynomial method is used to calculate dispersion curves, frequency spectrum and field distributions of guided Lamb waves propagation modes in AlAs, GaAs, AlAs/GaAs and AlAs/GaAs/AlAs-1/2/1 structures. In fact, formulations are given for open-circuit surface. Consequently, the polynomial method is numerically stable according to the total number of layers and the frequency range. This analysis is meaningful for the applications of the piezoelectric-semiconductor multilayered structures made of AlAs and GaAs such as in novel acoustic devices.
Formal methods for modeling and analysis of hybrid systems
NASA Technical Reports Server (NTRS)
Tiwari, Ashish (Inventor); Lincoln, Patrick D. (Inventor)
2009-01-01
A technique based on the use of a quantifier elimination decision procedure for real closed fields and simple theorem proving to construct a series of successively finer qualitative abstractions of hybrid automata is taught. The resulting abstractions are always discrete transition systems which can then be used by any traditional analysis tool. The constructed abstractions are conservative and can be used to establish safety properties of the original system. The technique works on linear and non-linear polynomial hybrid systems: the guards on discrete transitions and the continuous flows in all modes can be specified using arbitrary polynomial expressions over the continuous variables. An exemplar tool in the SAL environment built over the theorem prover PVS is detailed. The technique scales well to large and complex hybrid systems.
Electric control of wave vector filtering in a hybrid magnetic-electric-barrier nanostructure
NASA Astrophysics Data System (ADS)
Kong, Yong-Hong; Lu, Ke-Yu; He, Ya-Ping; Liu, Xu-Hui; Fu, Xi; Li, Ai-Hua
2018-06-01
We theoretically investigate how to manipulate the wave vector filtering effect by a traverse electric field for electrons across a hybrid magnetic-electric-barrier nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe and a Schottky-metal stripe on top and bottom of a GaAs/Al x Ga1- x As heterostructure, respectively. The wave vector filtering effect is found to be related closely to the applied electric field. Moreover, the wave vector filtering efficiency can be manipulated by changing direction or adjusting strength of the traverse electric field. Therefore, such a nanostructure can be employed as an electrically controllable electron-momentum filter for nanoelectronics applications.
On Nonlinear Functionals of Random Spherical Eigenfunctions
NASA Astrophysics Data System (ADS)
Marinucci, Domenico; Wigman, Igor
2014-05-01
We prove central limit theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combines asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and total variation bounds for Gaussian subordinated fields. We discuss applications to geometric functionals like the defect and invariant statistics, e.g., polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.
Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun
2014-10-20
In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.
Liorni, Ilaria; Parazzini, Marta; Fiocchi, Serena; Ravazzani, Paolo
2015-01-01
Human exposure modelling is a complex topic, because in a realistic exposure scenario, several parameters (e.g., the source, the orientation of incident fields, the morphology of subjects) vary and influence the dose. Deterministic dosimetry, so far used to analyze human exposure to electromagnetic fields (EMF), is highly time consuming if the previously-mentioned variations are considered. Stochastic dosimetry is an alternative method to build analytical approximations of exposure at a lower computational cost. In this study, it was used to assess the influence of magnetic flux density (B) orientation on fetal exposure at 50 Hz by polynomial chaos (PC). A PC expansion of induced electric field (E) in each fetal tissue at different gestational ages (GA) was built as a function of B orientation. Maximum E in each fetal tissue and at each GA was estimated for different exposure configurations and compared with the limits of the International Commission of Non-Ionising Radiation Protection (ICNIRP) Guidelines 2010. PC theory resulted in an efficient tool to build accurate approximations of E in each fetal tissue. B orientation strongly influenced E, with a variability across tissues from 10% to 43% with respect to the mean value. However, varying B orientation, maximum E in each fetal tissue was below the limits of ICNIRP 2010 at all GAs. PMID:26024363
Liorni, Ilaria; Parazzini, Marta; Fiocchi, Serena; Ravazzani, Paolo
2015-05-27
Human exposure modelling is a complex topic, because in a realistic exposure scenario, several parameters (e.g., the source, the orientation of incident fields, the morphology of subjects) vary and influence the dose. Deterministic dosimetry, so far used to analyze human exposure to electromagnetic fields (EMF), is highly time consuming if the previously-mentioned variations are considered. Stochastic dosimetry is an alternative method to build analytical approximations of exposure at a lower computational cost. In this study, it was used to assess the influence of magnetic flux density (B) orientation on fetal exposure at 50 Hz by polynomial chaos (PC). A PC expansion of induced electric field (E) in each fetal tissue at different gestational ages (GA) was built as a function of B orientation. Maximum E in each fetal tissue and at each GA was estimated for different exposure configurations and compared with the limits of the International Commission of Non-Ionising Radiation Protection (ICNIRP) Guidelines 2010. PC theory resulted in an efficient tool to build accurate approximations of E in each fetal tissue. B orientation strongly influenced E, with a variability across tissues from 10% to 43% with respect to the mean value. However, varying B orientation, maximum E in each fetal tissue was below the limits of ICNIRP 2010 at all GAs.
Numerical solution of 2D-vector tomography problem using the method of approximate inverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna
2016-08-10
We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.
Vector fields in a tight laser focus: comparison of models.
Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael
2017-06-26
We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.
Independence polynomial and matching polynomial of the Koch network
NASA Astrophysics Data System (ADS)
Liao, Yunhua; Xie, Xiaoliang
2015-11-01
The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.
On a sparse pressure-flow rate condensation of rigid circulation models
Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.
2015-01-01
Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219
Couple stress theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models
NASA Astrophysics Data System (ADS)
Zozulya, V. V.
2017-01-01
New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.
Analytic Theory for the Yarkovsky-O Effect on Obliquity
NASA Astrophysics Data System (ADS)
Nesvorný, David; Vokrouhlický, David
2008-07-01
The Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) effect is a thermal radiation torque that causes small objects to speed up or slow down their rotation and modify their spin vector orientation. This effect has important implications for spin dynamics of diameter D lsim 50 km asteroids. In our previous work we developed an analytic theory for the component of the YORP torque that affects the spin rate. Here we extend these calculations to determine the effect of the YORP torque on obliquity. Our theory is limited to objects with near-spherical shapes. Two limiting cases are studied: (1) immediate emission of the thermal energy that occurs for surface thermal conductivity K = 0; (2) the effects of K ≠ 0 in the limit of small temporal variations of the surface temperature. We use the linearized heat transport equation to model (2). The results include explicit scaling of the YORP torque on obliquity with physical and dynamical parameters such as the thermal conductivity and spin rate. The dependence of torques on the obliquity is given as series of the Legendre polynomials. Comparisons show excellent agreement of the analytic results with the numerically calculated YORP torques for objects such as asteroids 1998 KY26 and (66391) 1999 KW4. We suggest that an important fraction of main belt asteroids may have specific obliquity values (generalized Slivan states) arising from the roots of the Legendre polynomials.
Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model.
Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan
The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.
Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S
2018-02-01
Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to detect the dynamic muscle fatigue conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
The significance of vector magnetic field measurements
NASA Technical Reports Server (NTRS)
Hagyard, M. J.
1990-01-01
Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.
NASA Astrophysics Data System (ADS)
Gorkunov, E. S.; Yakushenko, E. I.; Zadvorkin, S. M.; Mushnikov, A. N.
2017-12-01
Dependences of magnetization and magnetic permeability of the 15KhN4D structural steel on the value of uniaxial stresses and magnetic field strength are obtained. A polynomial approximation fairly accurately describing the observed changes is proposed on the basis of experimental data.
2007-08-01
with a Design Specification de- scribed by Scilab [26], a MATLAB-like software applica- tion, and ends up with HDL code. The Design Specifica- tion...Conf. on Field Programmable Logic and Applications (FPL’05), Tampere, Finland, pp. 118–123, Aug. 2005. [26] Scilab 3.0, INRIA-ENPC, France, http
Combinatorial vector fields and the valley structure of fitness landscapes.
Stadler, Bärbel M R; Stadler, Peter F
2010-12-01
Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.
Detection of a sudden change of the field time series based on the Lorenz system
Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan
2017-01-01
We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series. PMID:28141832
Critical frontier of the triangular Ising antiferromagnet in a field
NASA Astrophysics Data System (ADS)
Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.
2004-03-01
We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.
Georeferencing CAMS data: Polynomial rectification and beyond
NASA Astrophysics Data System (ADS)
Yang, Xinghe
The Calibrated Airborne Multispectral Scanner (CAMS) is a sensor used in the commercial remote sensing program at NASA Stennis Space Center. In geographic applications of the CAMS data, accurate geometric rectification is essential for the analysis of the remotely sensed data and for the integration of the data into Geographic Information Systems (GIS). The commonly used rectification techniques such as the polynomial transformation and ortho rectification have been very successful in the field of remote sensing and GIS for most remote sensing data such as Landsat imagery, SPOT imagery and aerial photos. However, due to the geometric nature of the airborne line scanner which has high spatial frequency distortions, the polynomial model and the ortho rectification technique in current commercial software packages such as Erdas Imagine are not adequate for obtaining sufficient geometric accuracy. In this research, the geometric nature, especially the major distortions, of the CAMS data has been described. An analytical step-by-step geometric preprocessing has been utilized to deal with the potential high frequency distortions of the CAMS data. A generic sensor-independent photogrammetric model has been developed for the ortho-rectification of the CAMS data. Three generalized kernel classes and directional elliptical basis have been formulated into a rectification model of summation of multisurface functions, which is a significant extension to the traditional radial basis functions. The preprocessing mechanism has been fully incorporated into the polynomial, the triangle-based finite element analysis as well as the summation of multisurface functions. While the multisurface functions and the finite element analysis have the characteristics of localization, piecewise logic has been applied to the polynomial and photogrammetric methods, which can produce significant accuracy improvement over the global approach. A software module has been implemented with full integration of data preprocessing and rectification techniques under Erdas Imagine development environment. The final root mean square (RMS) errors for the test CAMS data are about two pixels which are compatible with the random RMS errors existed in the reference map coordinates.
Apaydin, Mehmet Serkan; Çatay, Bülent; Patrick, Nicholas; Donald, Bruce R
2011-05-01
Nuclear magnetic resonance (NMR) spectroscopy is an important experimental technique that allows one to study protein structure and dynamics in solution. An important bottleneck in NMR protein structure determination is the assignment of NMR peaks to the corresponding nuclei. Structure-based assignment (SBA) aims to solve this problem with the help of a template protein which is homologous to the target and has applications in the study of structure-activity relationship, protein-protein and protein-ligand interactions. We formulate SBA as a linear assignment problem with additional nuclear overhauser effect constraints, which can be solved within nuclear vector replacement's (NVR) framework (Langmead, C., Yan, A., Lilien, R., Wang, L. and Donald, B. (2003) A Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments. Proc. the 7th Annual Int. Conf. Research in Computational Molecular Biology (RECOMB) , Berlin, Germany, April 10-13, pp. 176-187. ACM Press, New York, NY. J. Comp. Bio. , (2004), 11, pp. 277-298; Langmead, C. and Donald, B. (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J. Biomol. NMR , 29, 111-138). Our approach uses NVR's scoring function and data types and also gives the option of using CH and NH residual dipolar coupling (RDCs), instead of NH RDCs which NVR requires. We test our technique on NVR's data set as well as on four new proteins. Our results are comparable to NVR's assignment accuracy on NVR's test set, but higher on novel proteins. Our approach allows partial assignments. It is also complete and can return the optimum as well as near-optimum assignments. Furthermore, it allows us to analyze the information content of each data type and is easily extendable to accept new forms of input data, such as additional RDCs.
Balabin, Roman M; Lomakina, Ekaterina I
2011-04-21
In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.
A multi-label learning based kernel automatic recommendation method for support vector machine.
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.
A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896
NASA Astrophysics Data System (ADS)
Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.
2008-10-01
We study the asymptotic behavior of the zeros of a sequence of polynomials whose weighted norms, with respect to a sequence of weight functions, have the same nth root asymptotic behavior as the weighted norms of certain extremal polynomials. This result is applied to obtain the (contracted) weak zero distribution for orthogonal polynomials with respect to a Sobolev inner product with exponential weights of the form e-[phi](x), giving a unified treatment for the so-called Freud (i.e., when [phi] has polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) cases. In addition, we provide a new proof for the bound of the distance of the zeros to the convex hull of the support for these Sobolev orthogonal polynomials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vignat, C.; Lamberti, P. W.
2009-10-15
Recently, Carinena, et al. [Ann. Phys. 322, 434 (2007)] introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya et al. [Phys. Lett. A 156, 381 (1991)], and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positivemore » curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.« less
Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach
NASA Astrophysics Data System (ADS)
Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer
2018-02-01
This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.
Introduction to Electrodynamics
NASA Astrophysics Data System (ADS)
Griffiths, David J.
2017-06-01
1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.
Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates
NASA Astrophysics Data System (ADS)
den Otter, W. K.
2000-05-01
A generalized formulation of the thermodynamic integration (TI) method for calculating the free energy along a reaction coordinate is derived. Molecular dynamics simulations with a constrained reaction coordinate are used to sample conformations. These are then projected onto conformations with a higher value of the reaction coordinate by means of a vector field. The accompanying change in potential energy plus the divergence of the vector field constitute the derivative of the free energy. Any vector field meeting some simple requirements can be used as the basis of this TI expression. Two classes of vector fields are of particular interest here. The first recovers the conventional TI expression, with its cumbersome dependence on a full set of generalized coordinates. As the free energy is a function of the reaction coordinate only, it should in principle be possible to derive an expression depending exclusively on the definition of the reaction coordinate. This objective is met by the second class of vector fields to be discussed. The potential of mean constraint force (PMCF) method, after averaging over the unconstrained momenta, falls in this second class. The new method is illustrated by calculations on the isomerization of n-butane, and is compared with existing methods.
[Factors for Degaussing of a Cochlear Implant Magnet in the MR Scanner].
Koganezawa, Takumi; Uchiyama, Naoko; Teshigawara, Mai; Ogura, Akio
This study examined the conditions influencing degauss of the magnet using magnetic resonance imaging (MRI). Poly methyl methacrylate (PMMA) was used to fix the measurement magnets to the MRI bed at angles from 0° to 180° for the magnetic flux vector of static magnetic field. The PMMA was moved in the MRI magnetic field. Magnetic flux density was measured before and after bed movement, and the rate of degauss was calculated. The contents examined are as follows: (1) the angle of the magnetic flux vector of the measurement magnets for the magnetic flux vector of the static magnetic field, (2) the number of movements, (3) moving velocity, and (4) the movement on the spatial gradient of magnetic field. Mann-Whitney U test was used for statistical analysis of the data. In conclusion, the effect of the angle of the magnetic flux vector of the implant magnet was high under the conditions of degauss in this study. Therefore, during the MRI examination of a patient with a cochlear implant magnet, the operators identified the directions of the magnetic flux vector and static magnetic field of the implant magnet.
Hadamard Factorization of Stable Polynomials
NASA Astrophysics Data System (ADS)
Loredo-Villalobos, Carlos Arturo; Aguirre-Hernández, Baltazar
2011-11-01
The stable (Hurwitz) polynomials are important in the study of differential equations systems and control theory (see [7] and [19]). A property of these polynomials is related to Hadamard product. Consider two polynomials p,q ∈ R[x]:p(x) = anxn+an-1xn-1+...+a1x+a0q(x) = bmx m+bm-1xm-1+...+b1x+b0the Hadamard product (p × q) is defined as (p×q)(x) = akbkxk+ak-1bk-1xk-1+...+a1b1x+a0b0where k = min(m,n). Some results (see [16]) shows that if p,q ∈R[x] are stable polynomials then (p×q) is stable, also, i.e. the Hadamard product is closed; however, the reciprocal is not always true, that is, not all stable polynomial has a factorization into two stable polynomials the same degree n, if n> 4 (see [15]).In this work we will give some conditions to Hadamard factorization existence for stable polynomials.
NASA Astrophysics Data System (ADS)
Doha, E. H.
2004-01-01
Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.
High aperture efficiency symmetric reflector antennas with up to 60 deg field of view
NASA Astrophysics Data System (ADS)
Rappaport, Carey M.; Craig, William P.
1991-03-01
A microwave single-reflector scanning antenna derived from an ellipse (rather than the usual parabola) which gives a much greater field of view is presented. This reflector combines reasonable scanning in one plane with good focusing in the other, and its scanning ability is superior to the torus and other single reflectors because it has much greater aperture efficiency and is thus smaller while having the same performance. The reflector surface is derived in two steps: a fourth-order even polynomial profile curve in the scan plane is found using least squares to minimize the scanned ray errors; then even polynomial terms in x and y that minimize astigmatism for both the unscanned and maximally scanned beams are added to form the three-dimensional surface. Numerical simulations of radiation patterns for a variety of antenna diameter and field-of-view cases give excellent results. The 60 deg scan case with 30-lambda-diameter aperture has only 0.2-dB peak gain deviation from ideal and first sidelobe levels below 14 dB down from peak gain. The 17 deg, 500-lambda case has only 0.8-dB gain variation and -14 to -11 dB sidelobe levels for approximately +/-68 beamwidths of scan, with focal length to aperture diameter ratio equal to about one.