Science.gov

Sample records for polynucleotide phosphorylase function

  1. Polynucleotide Phosphorylase Protects Escherichia coli against Oxidative Stress†

    PubMed Central

    Wu, Jinhua; Jiang, Zhe; Liu, Min; Gong, Xin; Wu, Shaohui; Burns, Christopher M.; Li, Zhongwei

    2009-01-01

    Escherichia coli polynucleotide phosphorylase (PNPase) primarily functions in RNA degradation. It is an exoribonuclease and integral component of the multienzyme RNA degradosome complex [Carpousis et al. (1994) Cell 76, 889]. PNPase was previously shown to specifically bind a synthetic RNA containing the oxidative lesion 8-hydroxyguanine (8-oxoG) [Hayakawa et al. (2001) Biochemistry 40, 9977], suggesting a possible role in removing oxidatively damaged RNA. Here we show that PNPase binds to RNA molecules of natural sequence that were oxidatively damaged by treatment with hydrogen peroxide (H2O2) postsynthetically. PNPase bound oxidized RNA with higher affinity than untreated RNA of the same sequence, raising the possibility that it may act against a wide variety of lesions. The importance of such a protective role is illustrated by the observation that, under conditions known to cause oxidative damage to cytoplasmic components, PNPase-deficient cells are less viable than wild-type cells. Further, when challenged with H2O2, PNPase-deficient cells accumulate 8-oxoG in cellular RNA to a greater extent than wild-type cells, suggesting that this RNase functions in minimizing oxidized RNA in vivo. Introducing the pnp gene encoding PNPase rescues defects in growth and RNA quality of the pnp mutant cells. Our results also suggest that protection against oxidative stress is an intrinsic function of PNPase because association with the RNA degradosome or with RNA helicase B (RhlB) is not required. PMID:19219992

  2. Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum polynucleotide phosphorylase

    PubMed Central

    Peterkin, Pearl I.; Fitt, P. S.

    1971-01-01

    1. Polynucleotide phosphorylase was purified 200-fold from Halobacterium cutirubrum. 2. It is membrane-associated and can be solubilized by sonication. 3. The purified enzyme requires a high ionic strength for both stability and activity. 4. It is Mn2+-dependent, has all three typical polynucleotide phosphorylase activities and is specific for nucleoside diphosphates. 5. The enzyme is of low molecular weight. PMID:5114973

  3. A deoxyadenylate kinase activity associated with polynucleotide phosphorylase from Micrococcus luteus

    PubMed Central

    Craine, Jonathan E.; Klee, Claude B.

    1976-01-01

    We report here the presence of two enzymatic activities associated with highly purified preparations of polynucleotide phosphorylase from Micrococcus luteus. The first, a nuclease activity, which is not separated from the phosphorylase on hydroxylapatite, may be due to substitution of H2O for phosphate in the phosphorolysis reaction. The second ac tivity, a deoxyadenylate kinase, the bulk of which is not resolved from the phosphorylase using gel filtration, sucrose density gradient centrifugation, DEAE-Sephadex, or hydroxylapatite chromatography, may represent a new activity of polynucleotide phosphorylase or be due to an enzyme which is tightly bound to the phosphorylase. Several properties of the kinase are described and its possible significance with respect to the overall enzyme mechanism is discussed. PMID:188014

  4. Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase Expression Revisited▿ †

    PubMed Central

    Carzaniga, Thomas; Briani, Federica; Zangrossi, Sandro; Merlino, Giuseppe; Marchi, Paolo; Dehò, Gianni

    2009-01-01

    The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5′-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5′ end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5′ double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5′ end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5′ fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript. PMID:19136586

  5. Autogenous regulation of Escherichia coli polynucleotide phosphorylase expression revisited.

    PubMed

    Carzaniga, Thomas; Briani, Federica; Zangrossi, Sandro; Merlino, Giuseppe; Marchi, Paolo; Dehò, Gianni

    2009-03-01

    The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5'-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5' end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5' double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5' end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5' fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript.

  6. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding.

    PubMed

    Carzaniga, Thomas; Mazzantini, Elisa; Nardini, Marco; Regonesi, Maria Elena; Greco, Claudio; Briani, Federica; De Gioia, Luca; Dehò, Gianni; Tortora, Paolo

    2014-02-01

    Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.

  7. Polynucleotide phosphorylase plays an important role in the generation of spontaneous mutations in Escherichia coli.

    PubMed

    Becket, Elinne; Tse, Lawrence; Yung, Madeline; Cosico, Alexander; Miller, Jeffrey H

    2012-10-01

    Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rif(r) and the gyrB gene leading to Nal(r) and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation.

  8. Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    PubMed Central

    Haddad, Nabila; Tresse, Odile; Rivoal, Katell; Chevret, Didier; Nonglaton, Quentin; Burns, Christopher M.; Prévost, Hervé; Cappelier, Jean M.

    2012-01-01

    Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability. PMID:22919622

  9. RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression.

    PubMed

    Carzaniga, Thomas; Dehò, Gianni; Briani, Federica

    2015-06-01

    The complex posttranscriptional regulation mechanism of the Escherichia coli pnp gene, which encodes the phosphorolytic exoribonuclease polynucleotide phosphorylase (PNPase), involves two endoribonucleases, namely, RNase III and RNase E, and PNPase itself, which thus autoregulates its own expression. The models proposed for pnp autoregulation posit that the target of PNPase is a mature pnp mRNA previously processed at its 5' end by RNase III, rather than the primary pnp transcript (RNase III-dependent models), and that PNPase activity eventually leads to pnp mRNA degradation by RNase E. However, some published data suggest that pnp expression may also be regulated through a PNPase-dependent, RNase III-independent mechanism. To address this issue, we constructed isogenic Δpnp rnc(+) and Δpnp Δrnc strains with a chromosomal pnp-lacZ translational fusion and measured β-galactosidase activity in the absence and presence of PNPase expressed by a plasmid. Our results show that PNPase also regulates its own expression via a reversible RNase III-independent pathway acting upstream from the RNase III-dependent branch. This pathway requires the PNPase RNA binding domains KH and S1 but not its phosphorolytic activity. We suggest that the RNase III-independent autoregulation of PNPase occurs at the level of translational repression, possibly by competition for pnp primary transcript between PNPase and the ribosomal protein S1. In Escherichia coli, polynucleotide phosphorylase (PNPase, encoded by pnp) posttranscriptionally regulates its own expression. The two models proposed so far posit a two-step mechanism in which RNase III, by cutting the leader region of the pnp primary transcript, creates the substrate for PNPase regulatory activity, eventually leading to pnp mRNA degradation by RNase E. In this work, we provide evidence supporting an additional pathway for PNPase autogenous regulation in which PNPase acts as a translational repressor independently of RNase III

  10. RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression

    PubMed Central

    Carzaniga, Thomas; Dehò, Gianni

    2015-01-01

    ABSTRACT The complex posttranscriptional regulation mechanism of the Escherichia coli pnp gene, which encodes the phosphorolytic exoribonuclease polynucleotide phosphorylase (PNPase), involves two endoribonucleases, namely, RNase III and RNase E, and PNPase itself, which thus autoregulates its own expression. The models proposed for pnp autoregulation posit that the target of PNPase is a mature pnp mRNA previously processed at its 5′ end by RNase III, rather than the primary pnp transcript (RNase III-dependent models), and that PNPase activity eventually leads to pnp mRNA degradation by RNase E. However, some published data suggest that pnp expression may also be regulated through a PNPase-dependent, RNase III-independent mechanism. To address this issue, we constructed isogenic Δpnp rnc+ and Δpnp Δrnc strains with a chromosomal pnp-lacZ translational fusion and measured β-galactosidase activity in the absence and presence of PNPase expressed by a plasmid. Our results show that PNPase also regulates its own expression via a reversible RNase III-independent pathway acting upstream from the RNase III-dependent branch. This pathway requires the PNPase RNA binding domains KH and S1 but not its phosphorolytic activity. We suggest that the RNase III-independent autoregulation of PNPase occurs at the level of translational repression, possibly by competition for pnp primary transcript between PNPase and the ribosomal protein S1. IMPORTANCE In Escherichia coli, polynucleotide phosphorylase (PNPase, encoded by pnp) posttranscriptionally regulates its own expression. The two models proposed so far posit a two-step mechanism in which RNase III, by cutting the leader region of the pnp primary transcript, creates the substrate for PNPase regulatory activity, eventually leading to pnp mRNA degradation by RNase E. In this work, we provide evidence supporting an additional pathway for PNPase autogenous regulation in which PNPase acts as a translational repressor

  11. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes

    PubMed Central

    Bandyra, Katarzyna J.; Sinha, Dhriti; Syrjanen, Johanna; Luisi, Ben F.; De Lay, Nicholas R.

    2016-01-01

    In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3′-to-5′ exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3′ ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action. PMID:26759452

  12. Analysis of global changes in gene expression induced by human polynucleotide phosphorylase (hPNPaseold-35)

    PubMed Central

    Sokhi, Upneet K.; Bacolod, Manny D.; Emdad, Luni; Das, Swadesh K.; Dumur, Catherine I.; Miles, Michael F.; Sarkar, Devanand; Fisher, Paul B.

    2014-01-01

    As a strategy to identify gene expression changes affected by human polynucleotide phosphorylase (hPNPaseold-35), we performed gene expression analysis of HeLa cells in which hPNPaseold-35 was overexpressed. The observed changes were then compared to those of HO-1 melanoma cells in which hPNPaseold-35 was stably knocked down. Through this analysis, 90 transcripts, which positively or negatively correlated with hPNPaseold-35 expression, were identified. The majority of these genes were associated with cell communication, cell cycle and chromosomal organization gene ontology categories. For a number of these genes, the positive or negative correlations with hPNPaseold-35 expression were consistent with transcriptional data extracted from the TCGA (The Cancer Genome Atlas) expression datasets for colon adenocarcinoma (COAD), skin cutaneous melanoma (SKCM), ovarian serous cyst adenocarcinoma (OV), and prostate adenocarcinoma (PRAD). Further analysis comparing the gene expression changes between Ad.hPNPaseold-35 infected HO-1 melanoma cells and HeLa cells overexpressing hPNPaseold-35 under the control of a doxycycline-inducible promoter, revealed global changes in genes involved in cell cycle and mitosis. Overall, this study provides further evidence that hPNPaseold-35 is associated with global changes in cell cycle-associated genes and identifies potential gene targets for future investigation. PMID:24729470

  13. RNase E forms a complex with polynucleotide phosphorylase in cyanobacteria via a cyanobacterial-specific nonapeptide in the noncatalytic region

    PubMed Central

    Zhang, Ju-Yuan; Deng, Xue-Mei; Li, Feng-Pu; Wang, Li; Huang, Qiao-Yun; Zhang, Cheng-Cai; Chen, Wen-Li

    2014-01-01

    RNase E, a central component involved in bacterial RNA metabolism, usually has a highly conserved N-terminal catalytic domain but an extremely divergent C-terminal domain. While the C-terminal domain of RNase E in Escherichia coli recruits other components to form an RNA degradation complex, it is unknown if a similar function can be found for RNase E in other organisms due to the divergent feature of this domain. Here, we provide evidence showing that RNase E forms a complex with another essential ribonuclease—the polynucleotide phosphorylase (PNPase)—in cyanobacteria, a group of ecologically important and phylogenetically ancient organisms. Sequence alignment for all cyanobacterial RNase E proteins revealed several conserved and variable subregions in their noncatalytic domains. One such subregion, an extremely conserved nonapeptide (RRRRRRSSA) located near the very end of RNase E, serves as the PNPase recognition site in both the filamentous cyanobacterium Anabaena PCC7120 and the unicellular cyanobacterium Synechocystis PCC6803. These results indicate that RNase E and PNPase form a ribonuclease complex via a common mechanism in cyanobacteria. The PNPase-recognition motif in cyanobacterial RNase E is distinct from those previously identified in Proteobacteria, implying a mechanism of coevolution for PNPase and RNase E in different organisms. PMID:24563514

  14. RNase E forms a complex with polynucleotide phosphorylase in cyanobacteria via a cyanobacterial-specific nonapeptide in the noncatalytic region.

    PubMed

    Zhang, Ju-Yuan; Deng, Xue-Mei; Li, Feng-Pu; Wang, Li; Huang, Qiao-Yun; Zhang, Cheng-Cai; Chen, Wen-Li

    2014-04-01

    RNase E, a central component involved in bacterial RNA metabolism, usually has a highly conserved N-terminal catalytic domain but an extremely divergent C-terminal domain. While the C-terminal domain of RNase E in Escherichia coli recruits other components to form an RNA degradation complex, it is unknown if a similar function can be found for RNase E in other organisms due to the divergent feature of this domain. Here, we provide evidence showing that RNase E forms a complex with another essential ribonuclease-the polynucleotide phosphorylase (PNPase)-in cyanobacteria, a group of ecologically important and phylogenetically ancient organisms. Sequence alignment for all cyanobacterial RNase E proteins revealed several conserved and variable subregions in their noncatalytic domains. One such subregion, an extremely conserved nonapeptide (RRRRRRSSA) located near the very end of RNase E, serves as the PNPase recognition site in both the filamentous cyanobacterium Anabaena PCC7120 and the unicellular cyanobacterium Synechocystis PCC6803. These results indicate that RNase E and PNPase form a ribonuclease complex via a common mechanism in cyanobacteria. The PNPase-recognition motif in cyanobacterial RNase E is distinct from those previously identified in Proteobacteria, implying a mechanism of coevolution for PNPase and RNase E in different organisms.

  15. The gene coding for polynucleotide phosphorylase in Photorhabdus sp. strain K122 is induced at low temperatures.

    PubMed Central

    Clarke, D J; Dowds, B C

    1994-01-01

    Photorhabdus sp. strain K122 was found to produce higher levels of the protein CAP87K when cultured at 9 degrees C than when cultured at 28 degrees C. NH2-terminal sequencing of this protein revealed homology with the NH2 terminus of Escherichia coli polynucleotide phosphorylase. A 4.5-kb DNA fragment from strain K122 was cloned and sequenced and found to have 75% identity to the E. coli rpsO-pnp operon coding for ribosomal protein S15 and polynucleotide phosphorylase, respectively. Predicted proteins encoded by this sequence were found to have 86% identity with ribosomal protein S15 and polynucleotide phosphorylase from E. coli, and the genes were called rpsO and pnp, respectively. Quantitation of rpsO and pnp mRNA transcripts from K122 revealed that there was a 2.4-fold increase in the level of pnp mRNA and a 1.9-fold decrease in the level of rpsO mRNA at 9 degrees C relative to 28 degrees C. Primer extension analysis revealed the positions of possible promoters controlling the expression of rpsO and pnp in K122, suggesting that the genes are expressed independently. The increase in the level of pnp mRNA at 9 degrees C was not due to any relative increase in its stability compared with that of the rpsO transcript. However, there was evidence to suggest that it may be a result of a cold-inducible promoter, P2, in the intergenic region between rpsO and pnp. Several features of P2 support the suggestion that it may be cold inducible. Images PMID:8206856

  16. Polynucleotide phosphorylase hinders mRNA degradation upon ribosomal protein S1 overexpression in Escherichia coli

    PubMed Central

    Briani, Federica; Curti, Serena; Rossi, Francesca; Carzaniga, Thomas; Mauri, Pierluigi; Dehò, Gianni

    2008-01-01

    The exoribonuclease polynucleotide phosphorylase (PNPase, encoded by pnp) is a major player in bacterial RNA decay. In Escherichia coli, PNPase expression is post-transcriptionally regulated at the level of mRNA stability. The primary transcript is very efficiently processed by the endonuclease RNase III at a specific site and the processed pnp mRNA is rapidly degraded in a PNPase-dependent manner. While investigating the PNPase autoregulation mechanism we found, by UV-cross-linking experiments, that the ribosomal protein S1 in crude extracts binds to the pnp-mRNA leader region. We assayed the potential role of S1 protein in pnp gene regulation by modulating S1 expression from depletion to overexpression. We found that S1 depletion led to a sharp decrease of the amount of pnp and other tested mRNAs, as detected by Northern blotting, whereas S1 overexpression caused a strong stabilization of pnp and the other transcripts. Surprisingly, mRNA stabilization depended on PNPase, as it was not observed in a pnp deletion strain. PNPase-dependent stabilization, however, was not detected by chemical decay assay of bulk mRNA. Overall, our data suggest that PNPase exonucleolytic activity may be modulated by the translation potential of the target mRNAs and that, upon ribosomal protein S1 overexpression, PNPase protects from degradation a set of full-length mRNAs. It thus appears that a single mRNA species may be differentially targeted to either decay or PNPase-dependent stabilization, thus preventing its depletion in conditions of fast turnover. PMID:18824515

  17. Polynucleotide phosphorylase hinders mRNA degradation upon ribosomal protein S1 overexpression in Escherichia coli.

    PubMed

    Briani, Federica; Curti, Serena; Rossi, Francesca; Carzaniga, Thomas; Mauri, Pierluigi; Dehò, Gianni

    2008-11-01

    The exoribonuclease polynucleotide phosphorylase (PNPase, encoded by pnp) is a major player in bacterial RNA decay. In Escherichia coli, PNPase expression is post-transcriptionally regulated at the level of mRNA stability. The primary transcript is very efficiently processed by the endonuclease RNase III at a specific site and the processed pnp mRNA is rapidly degraded in a PNPase-dependent manner. While investigating the PNPase autoregulation mechanism we found, by UV-cross-linking experiments, that the ribosomal protein S1 in crude extracts binds to the pnp-mRNA leader region. We assayed the potential role of S1 protein in pnp gene regulation by modulating S1 expression from depletion to overexpression. We found that S1 depletion led to a sharp decrease of the amount of pnp and other tested mRNAs, as detected by Northern blotting, whereas S1 overexpression caused a strong stabilization of pnp and the other transcripts. Surprisingly, mRNA stabilization depended on PNPase, as it was not observed in a pnp deletion strain. PNPase-dependent stabilization, however, was not detected by chemical decay assay of bulk mRNA. Overall, our data suggest that PNPase exonucleolytic activity may be modulated by the translation potential of the target mRNAs and that, upon ribosomal protein S1 overexpression, PNPase protects from degradation a set of full-length mRNAs. It thus appears that a single mRNA species may be differentially targeted to either decay or PNPase-dependent stabilization, thus preventing its depletion in conditions of fast turnover.

  18. Polynucleotide phosphorylase is implicated in homologous recombination and DNA repair in Escherichia coli.

    PubMed

    Carzaniga, Thomas; Sbarufatti, Giulia; Briani, Federica; Dehò, Gianni

    2017-04-04

    Polynucleotide phosphorylase (PNPase, encoded by pnp) is generally thought of as an enzyme dedicated to RNA metabolism. The pleiotropic effects of PNPase deficiency is imputed to altered processing and turnover of mRNAs and small RNAs, which in turn leads to aberrant gene expression. However, it has long since been known that this enzyme may also catalyze template-independent polymerization of dNDPs into ssDNA and the reverse phosphorolytic reaction. Recently, PNPase has been implicated in DNA recombination, repair, mutagenesis and resistance to genotoxic agents in diverse bacterial species, raising the possibility that PNPase may directly, rather than through control of gene expression, participate in these processes. In this work we present evidence that in Escherichia coli PNPase enhances both homologous recombination upon P1 transduction and error prone DNA repair of double strand breaks induced by zeocin, a radiomimetic agent. Homologous recombination does not require PNPase phosphorolytic activity and is modulated by its RNA binding domains whereas error prone DNA repair of zeocin-induced DNA damage is dependent on PNPase catalytic activity and cannot be suppressed by overexpression of RNase II, the other major enzyme (encoded by rnb) implicated in exonucleolytic RNA degradation. Moreover, E. coli pnp mutants are more sensitive than the wild type to zeocin. This phenotype depends on PNPase phosphorolytic activity and is suppressed by rnb, thus suggesting that zeocin detoxification may largely depend on RNA turnover. Our data suggest that PNPase may participate both directly and indirectly through regulation of gene expression to several aspects of DNA metabolism such as recombination, DNA repair and resistance to genotoxic agents.

  19. Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells

    PubMed Central

    Das, Swadesh K.; Sokhi, Upneet K.; Bhutia, Sujit K.; Azab, Belal; Su, Zhao-zhong; Sarkar, Devanand; Fisher, Paul B.

    2010-01-01

    MicroRNAs (miRNA), small noncoding RNAs, affect a broad range of biological processes, including tumorigenesis, by targeting gene products that directly regulate cell growth. Human polynucleotide phosphorylase (hPNPaseold-35), a type I IFN-inducible 3′-5′ exoribonuclease, degrades specific mRNAs and small noncoding RNAs. The present study examined the effect of this enzyme on miRNA expression in human melanoma cells. miRNA microarray analysis of human melanoma cells infected with empty adenovirus or with an adenovirus expressing hPNPaseold-35 identified miRNAs differentially and specifically regulated by hPNPaseold-35. One of these, miR-221, a regulator of the cyclin-dependent kinase inhibitor p27kip1, displayed robust down-regulation with ensuing up-regulation of p27kip1 by expression of hPNPaseold-35, which also occurred in multiple human melanoma cells upon IFN-β treatment. Using both in vivo immunoprecipitation followed by Northern blotting and RNA degradation assays, we confirm that mature miR-221 is the target of hPNPaseold-35. Inhibition of hPNPaseold-35 by shRNA or stable overexpression of miR-221 protected melanoma cells from IFN-β–mediated growth inhibition, accentuating the importance of hPNPaseold-35 induction and miR-221 down-regulation in mediating IFN-β action. Moreover, we now uncover a mechanism of miRNA regulation involving selective enzymatic degradation. Targeted overexpression of hPNPaseold-35 might provide an effective therapeutic strategy for miR-221–overexpressing and IFN-resistant tumors, such as melanoma. PMID:20547861

  20. The exoribonuclease Polynucleotide Phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens.

    PubMed

    Rosenzweig, Jason A; Chopra, Ashok K

    2013-01-01

    Microbes are incessantly challenged by both biotic and abiotic stressors threatening their existence. Therefore, bacterial pathogens must possess mechanisms to successfully subvert host immune defenses as well as overcome the stress associated with host-cell encounters. To achieve this, bacterial pathogens typically experience a genetic re-programming whereby anti-host/stress factors become expressed and eventually translated into effector proteins. In that vein, the bacterial host-cell induced stress-response is similar to any other abiotic stress to which bacteria respond by up-regulating specific stress-responsive genes. Following the stress encounter, bacteria must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. The three pathogenic yersiniae (Yersinia pestis, Y. pseudo-tuberculosis, and Y. enterocolitica) are all psychrotropic bacteria capable of growth at 4°C; however, cold growth is dependent on the presence of an exoribonuclease, polynucleotide phosphorylase (PNPase). PNPase has also been implicated as a virulence factor in several notable pathogens including the salmonellae, Helicobacter pylori, and the yersiniae [where it typically influences the type three secretion system (TTSS)]. Further, PNPase has been shown to associate with ribonuclease E (endoribonuclease), RhlB (RNA helicase), and enolase (glycolytic enzyme) in several Gram-negative bacteria forming a large, multi-protein complex known as the RNA degradosome. This review will highlight studies demonstrating the influence of PNPase on the virulence potentials and stress responses of various bacterial pathogens as well as focusing on the degradosome-dependent and -independent roles played by PNPase in yersiniae stress responses.

  1. Interaction of Bacillus subtilis Polynucleotide Phosphorylase and RNase Y: STRUCTURAL MAPPING AND EFFECT ON mRNA TURNOVER.

    PubMed

    Salvo, Elizabeth; Alabi, Shanique; Liu, Bo; Schlessinger, Avner; Bechhofer, David H

    2016-03-25

    Polynucleotide phosphorylase (PNPase), a 3'-to-5' phosphorolytic exoribonuclease, is thought to be the primary enzyme responsible for turnover ofBacillus subtilismRNA. The role of PNPase inB. subtilismRNA decay has been analyzed previously by comparison of mRNA profiles in a wild-type strainversusa strain that is deleted forpnpA, the gene encoding PNPase. Recent studies have provided evidence for a degradosome-like complex inB. subtilisthat is built around the major decay-initiating endonuclease, RNase Y, and there is ample evidence for a strong interaction between PNPase and RNase Y. The role of the PNPase-RNase Y interaction in the exonucleolytic function of PNPase needs to be clarified. We sought to construct aB. subtilisstrain containing a catalytically active PNPase that could not interact with RNase Y. Mapping studies of the PNPase-RNase Y interaction were guided by a homology model ofB. subtilisPNPase based on the known structure of theEscherichia coliPNPase in complex with an RNase E peptide. Mutations inB. subtilisresidues predicted to be involved in RNase Y binding showed a loss of PNPase-RNase Y interaction. Two mRNAs whose decay is dependent on RNase Y and PNPase were examined in strains containing full-length PNPase that was either catalytically active but unable to interact with RNase Y, or catalytically inactive but able to interact with RNase Y. At least for these two mRNAs, disruption of the PNPase-RNase Y interaction did not appear to affect mRNA turnover. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly.

    PubMed

    Hardwick, Steven W; Gubbey, Tobias; Hug, Isabelle; Jenal, Urs; Luisi, Ben F

    2012-04-01

    Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3'-5' directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3' end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a 'splayed' conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3' end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.

  3. Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins.

    PubMed

    Cardenas, Paula P; Carzaniga, Thomas; Zangrossi, Sandro; Briani, Federica; Garcia-Tirado, Esther; Dehò, Gianni; Alonso, Juan C

    2011-11-01

    Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3' → 5' polarity in the presence of Mn(2+) and low inorganic phosphate (Pi) concentration, or to extend a 3'-OH end in the presence dNDP · Mn(2+). Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3'-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ.

  4. RNA Processing Factor 7 and Polynucleotide Phosphorylase Are Necessary for Processing and Stability of nad2 mRNA in Arabidopsis Mitochondria

    PubMed Central

    Stoll, Birgit; Zendler, Daniel; Binder, Stefan

    2014-01-01

    Post-transcriptional maturation of plant mitochondrial transcripts requires several steps. Among these, the generation of mature 5′ ends is still one of the most enigmatic processes. Toward a characterization of proteins involved in 5′ processing of mitochondrial transcripts in Arabidopsis (Arabidopsis thaliana), we now analyzed 5′ maturation of nad2 transcripts. Based on natural genetic variation affecting 5′ ends of nad2 transcripts in ecotype Can-0 and complementation studies we now identified RNA processing factor 7, which takes part in the generation of the 5′ terminus of the mature nad2 mRNA. RPF7 is a relatively short regular P-class pentatricopeptide repeat protein comprising seven canonical P repeats and a single short S repeat. The corresponding allele in Can-0 encodes a truncated version of this protein lacking two C-terminal repeats, which are essential for the function of RPF7. Furthermore we established transgenic plants expressing artifical microRNAs targeting the mitochondrial polynucleotide phosphorylase (PNPase), which results in substantial reduction of the PNPase mRNA levels and strong knockdown of this gene. Detailed quantitative studies of 5′ and 3′ extended nad2 precursor RNAs in these knockdown plants as well as in the rpf7–1 knockout mutant suggest that 5′ processing contributes to the stability of mitochondrial transcripts in plants. PMID:25181358

  5. The RNA processing enzyme polynucleotide phosphorylase negatively controls biofilm formation by repressing poly-N-acetylglucosamine (PNAG) production in Escherichia coli C

    PubMed Central

    2012-01-01

    Background Transition from planktonic cells to biofilm is mediated by production of adhesion factors, such as extracellular polysaccharides (EPS), and modulated by complex regulatory networks that, in addition to controlling production of adhesion factors, redirect bacterial cell metabolism to the biofilm mode. Results Deletion of the pnp gene, encoding polynucleotide phosphorylase, an RNA processing enzyme and a component of the RNA degradosome, results in increased biofilm formation in Escherichia coli. This effect is particularly pronounced in the E. coli strain C-1a, in which deletion of the pnp gene leads to strong cell aggregation in liquid medium. Cell aggregation is dependent on the EPS poly-N-acetylglucosamine (PNAG), thus suggesting negative regulation of the PNAG biosynthetic operon pgaABCD by PNPase. Indeed, pgaABCD transcript levels are higher in the pnp mutant. Negative control of pgaABCD expression by PNPase takes place at mRNA stability level and involves the 5’-untranslated region of the pgaABCD transcript, which serves as a cis-element regulating pgaABCD transcript stability and translatability. Conclusions Our results demonstrate that PNPase is necessary to maintain bacterial cells in the planktonic mode through down-regulation of pgaABCD expression and PNAG production. PMID:23171129

  6. The RNA processing enzyme polynucleotide phosphorylase negatively controls biofilm formation by repressing poly-N-acetylglucosamine (PNAG) production in Escherichia coli C.

    PubMed

    Carzaniga, Thomas; Antoniani, Davide; Dehò, Gianni; Briani, Federica; Landini, Paolo

    2012-11-21

    Transition from planktonic cells to biofilm is mediated by production of adhesion factors, such as extracellular polysaccharides (EPS), and modulated by complex regulatory networks that, in addition to controlling production of adhesion factors, redirect bacterial cell metabolism to the biofilm mode. Deletion of the pnp gene, encoding polynucleotide phosphorylase, an RNA processing enzyme and a component of the RNA degradosome, results in increased biofilm formation in Escherichia coli. This effect is particularly pronounced in the E. coli strain C-1a, in which deletion of the pnp gene leads to strong cell aggregation in liquid medium. Cell aggregation is dependent on the EPS poly-N-acetylglucosamine (PNAG), thus suggesting negative regulation of the PNAG biosynthetic operon pgaABCD by PNPase. Indeed, pgaABCD transcript levels are higher in the pnp mutant. Negative control of pgaABCD expression by PNPase takes place at mRNA stability level and involves the 5'-untranslated region of the pgaABCD transcript, which serves as a cis-element regulating pgaABCD transcript stability and translatability. Our results demonstrate that PNPase is necessary to maintain bacterial cells in the planktonic mode through down-regulation of pgaABCD expression and PNAG production.

  7. Crystal structure of Escherichia coli polynucleotide phosphorylase core bound to RNase E, RNA and manganese: implications for catalytic mechanism and RNA degradosome assembly.

    PubMed

    Nurmohamed, Salima; Vaidialingam, Bhamini; Callaghan, Anastasia J; Luisi, Ben F

    2009-05-29

    Polynucleotide phosphorylase (PNPase) is a processive exoribonuclease that contributes to messenger RNA turnover and quality control of ribosomal RNA precursors in many bacterial species. In Escherichia coli, a proportion of the PNPase is recruited into a multi-enzyme assembly, known as the RNA degradosome, through an interaction with the scaffolding domain of the endoribonuclease RNase E. Here, we report crystal structures of E. coli PNPase complexed with the recognition site from RNase E and with manganese in the presence or in the absence of modified RNA. The homotrimeric PNPase engages RNase E on the periphery of its ring-like architecture through a pseudo-continuous anti-parallel beta-sheet. A similar interaction pattern occurs in the structurally homologous human exosome between the Rrp45 and Rrp46 subunits. At the centre of the PNPase ring is a tapered channel with an adjustable aperture where RNA bases stack on phenylalanine side chains and trigger structural changes that propagate to the active sites. Manganese can substitute for magnesium as an essential co-factor for PNPase catalysis, and our crystal structure of the enzyme in complex with manganese suggests how the metal is positioned to stabilise the transition state. We discuss the implications of these structural observations for the catalytic mechanism of PNPase, its processive mode of action, and its assembly into the RNA degradosome.

  8. Uridine phosphorylase in biomedical, structural, and functional aspects: A review

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Zhukhlistova, N. E.; Seregina, T. A.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2011-07-01

    The activation of xenobiotics often causes malignant tumor cells to resist chemotherapeutic treatment. Uridine phosphorylase is the key enzyme of pyrimidine metabolism and catalyzes the reversible phosphorylation of uridine with the formation of uracil and ribose-1-phosphate. High-selectivity anticancer agents based on uridine phosphorylase inhibitors are promising for treating both oncological and infection diseases. New medicinal preparations can be predicted and rationally developed only on the basis of detailed biomedical, structural, and functional knowledge about the biomacromolecular target enzyme-drug complex.

  9. Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum.

    PubMed

    Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki; Inui, Masayuki

    2017-03-01

    Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum, SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3'-to-5' exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3' maturation of 4.5S RNA in C. glutamicum The mature form of 4.5S RNA was inefficiently formed in ΔrneG Δpnp mutant cells, suggesting the existence of an alternative pathway for the 3' maturation of 4.5S RNA. Primer extension analysis also revealed that the 5' mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δpnp, ΔrneG, and ΔybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex.IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum, which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3' maturation of the SRP RNA (4.5S RNA) in this

  10. Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum

    PubMed Central

    Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki

    2016-01-01

    ABSTRACT Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum, SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3′-to-5′ exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3′ maturation of 4.5S RNA in C. glutamicum. The mature form of 4.5S RNA was inefficiently formed in ΔrneG Δpnp mutant cells, suggesting the existence of an alternative pathway for the 3′ maturation of 4.5S RNA. Primer extension analysis also revealed that the 5′ mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δpnp, ΔrneG, and ΔybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum, which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3′ maturation of the SRP RNA (4

  11. Analysis of the human polynucleotide phosphorylase (PNPase) reveals differences in RNA binding and response to phosphate compared to its bacterial and chloroplast counterparts

    PubMed Central

    Portnoy, Victoria; Palnizky, Gili; Yehudai-Resheff, Shlomit; Glaser, Fabian; Schuster, Gadi

    2008-01-01

    PNPase is a major exoribonuclease that plays an important role in the degradation, processing, and polyadenylation of RNA in prokaryotes and organelles. This phosphorolytic processive enzyme uses inorganic phosphate and nucleotide diphosphate for degradation and polymerization activities, respectively. Its structure and activities are similar to the archaeal exosome complex. The human PNPase was recently localized to the intermembrane space (IMS) of the mitochondria, and is, therefore, most likely not directly involved in RNA metabolism, unlike in bacteria and other organelles. In this work, the degradation, polymerization, and RNA-binding properties of the human PNPase were analyzed and compared to its bacterial and organellar counterparts. Phosphorolytic activity was displayed at lower optimum concentrations of inorganic phosphate. Also, the RNA-binding properties to ribohomopolymers varied significantly from those of its bacterial and organellar enzymes. The purified enzyme did not preferentially bind RNA harboring a poly(A) tail at the 3′ end, compared to a molecule lacking this tail. Several site-directed mutations at conserved amino acid positions either eliminated or modified degradation/polymerization activity in different manners than observed for the Escherichia coli PNPase and the archaeal and human exosomes. In light of these results, a possible function of the human PNPase in the mitochondrial IMS is discussed. PMID:18083836

  12. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes.

    PubMed

    Kawakami, Shuji; Hasegawa, Takuya; Imachi, Hiroyuki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi; Kubota, Kengo

    2012-02-01

    In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences.

  13. Structure-function analysis of the 3' phosphatase component of T4 polynucleotide kinase/phosphatase.

    PubMed

    Zhu, Hui; Smith, Paul; Wang, Li Kai; Shuman, Stewart

    2007-09-15

    T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5'-kinase and 3' phosphatase activities that function in nucleic acid repair. T4 Pnkp is a homotetramer of a 301-aa polypeptide, which consists of an N-terminal kinase domain of the P-loop phosphotransferase superfamily and a C-terminal phosphatase domain of the DxD acylphosphatase superfamily. The homotetramer is formed via pairs of phosphatase-phosphatase and kinase-kinase homodimer interfaces. Here we identify four side chains-Asp187, Ser211, Lys258, and Asp277-that are required for 3' phosphatase activity. Alanine mutations at these positions abolished phosphatase activity without affecting kinase function or tetramerization. Conservative substitutions of asparagine or glutamate for Asp187 did not revive the 3' phosphatase, nor did arginine or glutamine substitutions for Lys258. Threonine in lieu of Ser211 and glutamate in lieu of Asp277 restored full activity, whereas asparagine at position 277 had no salutary effect. We report a 3.0 A crystal structure of the Pnkp tetramer, in which a sulfate ion is coordinated between Arg246 and Arg279 in a position that we propose mimics one of the penultimate phosphodiesters (5'NpNpNp-3') of the polynucleotide 3'-PO(4) substrate. The amalgam of mutational and structural data engenders a plausible catalytic mechanism for the phosphatase that includes covalent catalysis (via Asp165), general acid-base catalysis (via Asp167), metal coordination (by Asp165, Asp277 and Asp278), and transition state stabilization (via Lys258, Ser211, backbone amides, and the divalent cation). Other critical side chains play architectural roles (Arg176, Asp187, Arg213, Asp254). To probe the role of oligomerization in phosphatase function, we introduced six double-alanine cluster mutations at the phosphatase-phosphatase domain interface, two of which (R297A-Q295A and E292A-D300A) converted Pnkp from a tetramer to a dimer and ablated phosphatase activity.

  14. Structure-Function Analysis of the 3' Phosphatase Component of T4 Polynucleotide Kinase/phosphatase

    SciTech Connect

    Zhu,H.; Smith, P.; Wang, L.; Shuman, S.

    2007-01-01

    T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5'-kinase and 3' phosphatase activities that function in nucleic acid repair. T4 Pnkp is a homotetramer of a 301-aa polypeptide, which consists of an N-terminal kinase domain of the P-loop phosphotransferase superfamily and a C-terminal phosphatase domain of the DxD acylphosphatase superfamily. The homotetramer is formed via pairs of phosphatase-phosphatase and kinase-kinase homodimer interfaces. Here we identify four side chains-Asp187, Ser211, Lys258, and Asp277-that are required for 3' phosphatase activity. Alanine mutations at these positions abolished phosphatase activity without affecting kinase function or tetramerization. Conservative substitutions of asparagine or glutamate for Asp187 did not revive the 3' phosphatase, nor did arginine or glutamine substitutions for Lys258. Threonine in lieu of Ser211 and glutamate in lieu of Asp277 restored full activity, whereas asparagine at position 277 had no salutary effect. We report a 3.0 A crystal structure of the Pnkp tetramer, in which a sulfate ion is coordinated between Arg246 and Arg279 in a position that we propose mimics one of the penultimate phosphodiesters (5'NpNpNp-3') of the polynucleotide 3'-PO(4) substrate. The amalgam of mutational and structural data engenders a plausible catalytic mechanism for the phosphatase that includes covalent catalysis (via Asp165), general acid-base catalysis (via Asp167), metal coordination (by Asp165, Asp277 and Asp278), and transition state stabilization (via Lys258, Ser211, backbone amides, and the divalent cation). Other critical side chains play architectural roles (Arg176, Asp187, Arg213, Asp254). To probe the role of oligomerization in phosphatase function, we introduced six double-alanine cluster mutations at the phosphatase-phosphatase domain interface, two of which (R297A-Q295A and E292A-D300A) converted Pnkp from a tetramer to a dimer and ablated phosphatase activity.

  15. The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction.

    PubMed

    Baker, David J; Greenhaff, Paul L; MacInnes, Alan; Timmons, James A

    2006-06-01

    Glycogen phosphorylase inhibition represents a promising strategy to suppress inappropriate hepatic glucose output, while muscle glycogen is a major source of fuel during contraction. Glycogen phosphorylase inhibitors (GPi) currently being investigated for the treatment of type 2 diabetes do not demonstrate hepatic versus muscle glycogen phosphorylase isoform selectivity and may therefore impair patient aerobic exercise capabilities. Skeletal muscle energy metabolism and function are not impaired by GPi during high-intensity contraction in rat skeletal muscle; however, it is unknown whether glycogen phosphorylase inhibitors would impair function during prolonged lower-intensity contraction. Utilizing a novel red cell-perfused rodent gastrocnemius-plantaris-soleus system, muscle was pretreated for 60 min with either 3 micromol/l free drug GPi (n=8) or vehicle control (n=7). During 60 min of aerobic contraction, GPi treatment resulted in approximately 35% greater fatigue. Muscle glycogen phosphorylase a form (P<0.01) and maximal activity (P<0.01) were reduced in the GPi group, and postcontraction glycogen (121.8 +/- 16.1 vs. 168.3 +/- 8.5 mmol/kg dry muscle, P<0.05) was greater. Furthermore, lower muscle lactate efflux and glucose uptake (P<0.01), yet higher muscle Vo(2), support the conclusion that carbohydrate utilization was impaired during contraction. Our data provide new confirmation that muscle glycogen plays an essential role during submaximal contraction. Given the critical role of exercise prescription in the treatment of type 2 diabetes, it will be important to monitor endurance capacity during the clinical evaluation of nonselective GPi. Alternatively, greater effort should be devoted toward the discovery of hepatic-selective GPi, hepatic-specific drug delivery strategies, and/or alternative strategies for controlling excess hepatic glucose production in type 2 diabetes.

  16. Polymer phosphorylases: clues to the emergence of non-replicative and replicative polymers.

    PubMed

    Freire, Miguel Angel

    2011-12-01

    Polymer formation is arguably one of the essential factors that allowed the emergence, stabilisation and spread of life on Earth. Consequently, studies concerning biopolymers could shed light on the origins of life itself. Of particular interest are RNA and polysaccharide polymers, the archetypes of the contrasting proposed evolutionary scenarios and their respective polymerases. Nucleic acid polymerases were hypothesised, before their discovery, to have a functional similarity with glycogen phosphorylase. Further identification and characterisation of nucleic acid polymerases; particularly of polynucleotide phosphorylase (PNPase), provided experimental evidence for the initial premise. Once discovered, frequent similarities were found between PNPase and glycogen phosphorylase, in terms of catalytic features and biochemical properties. As a result, PNPase was seen as a model of primitive polymerase and used in laboratory precellular systems. Paradoxically, however, these similarities were not sufficient as an argument in favour of an ancestral common polymerisation mechanism prior to polysaccharides and polyribonucleotides. Here we present an overview of the common features shared by polymer phosphorylases, with new proposals for the emergence of polysaccharide and RNA polymers.

  17. Coupled isothermal polynucleotide amplification and translation system

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1998-01-01

    A cell-free system for polynucleotide amplification and translation is disclosed. Also disclosed are methods for using the system and a composition which allows the various components of the system to function under a common set of reaction conditions.

  18. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    PubMed Central

    Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M.

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley. PMID:28407006

  19. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development.

    PubMed

    Cuesta-Seijo, Jose A; Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley.

  20. Polynucleotide phosphorlyase (PNPase) is required for Salmonella enterica serovar Typhimurium colonization in swine

    USDA-ARS?s Scientific Manuscript database

    The pnp gene encodes polynucleotide phosphorylase, an exoribonuclease involved in RNA degradation. A mutation in the pnp gene was previously identified by our group in a signature-tagged mutagenesis screen designed to search for Salmonella enterica serovar Typhimurium genes required for survival in...

  1. Method for creating polynucleotide and polypeptide sequences

    NASA Technical Reports Server (NTRS)

    Arnold, Frances (Inventor); Shao, Zhixin (Inventor); Volkov, Alexander (Inventor)

    2003-01-01

    The invention provides methods for evolving a polynucleotide toward acquisition of a desired property. Such methods entail incubating a population of parental polynucleotide variants under conditions to generate annealed polynucleotides comprising heteroduplexes. The heteroduplexes are then exposed to a cellular DNA repair system to convert the heteroduplexes to parental polynucleotide variants or recombined polynucleotide variants. The resulting polynucleotides are then screened or selected for the desired property.

  2. Fuzzy polynucleotide spaces and metrics.

    PubMed

    Nieto, Juan J; Torres, A; Georgiou, D N; Karakasidis, T E

    2006-04-01

    The study of genetic sequences is of great importance in biology and medicine. Mathematics is playing an important role in the study of genetic sequences and, generally, in bioinformatics. In this paper, we extend the work concerning the Fuzzy Polynucleotide Space (FPS) introduced in Torres, A., Nieto, J.J., 2003. The fuzzy polynucleotide Space: Basic properties. Bioinformatics 19(5); 587-592 and Nieto, J.J., Torres, A., Vazquez-Trasande, M.M. 2003. A metric space to study differences between polynucleotides. Appl. Math. Lett. 27:1289-1294: by studying distances between nucleotides and some complete genomes using several metrics. We also present new results concerning the notions of similarity, difference and equality between polynucleotides. The results are encouraging since they demonstrate how the notions of distance and similarity between polynucleotides in the FPS can be employed in the analysis of genetic material.

  3. Distinct enzymic functional groups are required for the phosphomonoesterase and phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase/phosphatase.

    PubMed

    Keppetipola, Niroshika; Shuman, Stewart

    2006-07-14

    The central phosphatase domain of Clostridium thermocellum polynucleotide kinase/phosphatase (CthPnkp) belongs to the dinuclear metallophosphoesterase superfamily. Prior mutational studies of CthPnkp identified 7 individual active site side chains (Asp-187, His-189, Asp-233, Asn-263, His-323, His-376, and Asp-392) required for Ni2+-dependent hydrolysis of p-nitrophenyl phosphate. Here we find that Mn2+-dependent phosphomonoesterase activity requires two additional residues, Arg-237 and His-264. We report that CthPnkp also converts bis-p-nitrophenyl phosphate to p-nitrophenol and inorganic phosphate via a processive two-step mechanism. The Ni2+-dependent phosphodiesterase activity of CthPnkp requires the same seven side chains as the Ni2+-dependent phosphomonoesterase. However, the Mn2+-dependent phosphodiesterase activity does not require His-189, Arg-237, or His-264, each of which is critical for the Mn2+-dependent phosphomonoesterase. Mutations H189A, H189D, and D392N transform the metal and substrate specificity of CthPnkp such that it becomes a Mn2+-dependent phosphodiesterase. The H189E change results in a Mn2+/Ni2+-dependent phosphodiesterase. Mutations H376N, H376D, and D392E convert the enzyme into a Mn2+-dependent phosphodiesterase-monoesterase. The phosphodiesterase activity is strongly stimulated compared with wild-type CthPnkp when His-189 is changed to Asp, Arg-237 is replaced by Ala or Gln, and His-264 is replaced by Ala, Asn, or Gln. Steady-state kinetic analysis of wild-type and mutated enzymes illuminates the structural features that affect substrate affinity and kcat. Our results highlight CthPnkp as an "undifferentiated" diesterase-monoesterase that can evolve toward narrower metal and substrate specificities via alterations of the active site milieu.

  4. Spinach Leaf Intra and Extra Chloroplast Phosphorylase Activities during Growth 1

    PubMed Central

    Hammond, John B. W.; Preiss, Jack

    1983-01-01

    The amino terminal sequence of the spinach (Spinacia oleracea L. cv Bloomsdale Long Standing) leaf cytoplasmic phosphorylase was determined and shown to have little similarity to the known sequence of the potato tuber phosphorylase. The antigenic reaction of spinach chloroplast phosphorylase and rabbit muscle phosphorylase a to antiserum prepared against spinach leaf cytoplasmic phosphorylase was tested. Neither phosphorylase gave a positive reaction when tested by immunodiffusion or neutralization of enzyme activity. The two spinach phosphorylases were assayed throughout the growth of the plant. Activity of cytoplasmic phosphorylase increased 4- to 8-fold at 30 to 35 days from sowing. Enzyme protein levels, as measured by antibody neutralization, increased by a similar amount. There was no corresponding increase in chloroplast phosphorylase activity. The chloroplast phosphorylase varied in parallel with the chloroplast enzyme ADPglucose pyrophosphorylase. Starch levels were high during the earlier stages of growth and then fell to a constant low level just before the increase in cytoplasmic phosphorylase. The results are discussed with respect to the relationship and functions of the two phosphorylases. PMID:16663287

  5. Cellobiohydrolase variants and polynucleotides encoding same

    DOEpatents

    Wogulis, Mark

    2013-09-24

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  6. Cellobiohydrolase variants and polynucleotides encoding same

    DOEpatents

    Wogulis, Mark

    2014-10-14

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  7. Cellobiohydrolase variants and polynucleotides encoding the same

    DOEpatents

    Wogulis, Mark

    2014-09-09

    The present invention relates to variants of a parent cellobiohydrolase. The present invention also relates to polynucleotides encoding the cellobiohydrolase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the cellobiohydrolase variants.

  8. Chemical modification of a functional arginine residue in diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) phosphorylase I from Saccharomyces cerevisiae.

    PubMed Central

    Robinson, A K; Barnes, L D

    1991-01-01

    Phenylglyoxal, a reagent with high specificity for arginine residues, inactivated Ap4A phosphorylase I from Saccharomyces cerevisiae in a pseudo-first-order manner. The second-order rate constant was 11.5 +/- 2.5 M-1 min-1. The loss of activity was a linear function of the incorporation of [7-14C]phenylglyoxal. The incorporation of 1.9 +/- 0.4 mol of phenylglyoxal/mol of enzyme accounted for complete loss of activity. The specificity of inactivation by phenylglyoxal was tested in the presence of ApnA (n = 2-6), ADP, ATP and Pi. The substrates, Ap4A, Ap5A and Pi protected the enzyme against inactivation, but Ap2A, Ap3A and Ap6A did not. Ap4A, Ap5A and Pi reduced the rate of inactivation by about 70%, 60% and 37% respectively. The Ap4A phosphorolysis products, ADP and ATP, also partially protected the enzyme against inactivation by phenylglyoxal. Thus Ap4A phosphorylase I probably contains an arginine residue in the binding site for Ap4A. Images Fig. 4. PMID:1656937

  9. B cell hyperactivity and abnormalities in T cell markers and immunoregulatory function in a patient with nucleoside phosphorylase deficiency.

    PubMed Central

    Zabay, J M; De La Concha, E G; Ludeña, C; Lozano, C; Pascual-Salcedo, D; Bootello, A; Gonzalezporqué, P

    1982-01-01

    We describe a 2 year old girl with nucleoside phosphorylase (PNP) deficiency, who had low blood T cell numbers and T lymphocyte blastogenic response to mitogens, hypergammaglobulinaemia, high titres of antibodies to many common antigens, various autoantibodies, a monoclonal IgM-kappa protein, an increased frequency of mature Ig containing blood B cells and a high production of Ig in vitro in unstimulated cultures. E rosetting cells showed faint or no immunofluorescence staining with monoclonal antibodies directed against T cell membrane antigens. In vitro Ig production in response to pokeweed mitogen was defective, and no T cell helper or suppressor activity was observed. It is suggested that the immunoregulatory deficiency might have caused the B cell hyperactivity. PMID:6819909

  10. Molecular modeling of polynucleotide complexes.

    PubMed

    Meneksedag-Erol, Deniz; Tang, Tian; Uludağ, Hasan

    2014-08-01

    Delivery of polynucleotides into patient cells is a promising strategy for treatment of genetic disorders. Gene therapy aims to either synthesize desired proteins (DNA delivery) or suppress expression of endogenous genes (siRNA delivery). Carriers constitute an important part of gene therapeutics due to limitations arising from the pharmacokinetics of polynucleotides. Non-viral carriers such as polymers and lipids protect polynucleotides from intra and extracellular threats and facilitate formation of cell-permeable nanoparticles through shielding and/or bridging multiple polynucleotide molecules. Formation of nanoparticulate systems with optimal features, their cellular uptake and intracellular trafficking are crucial steps for an effective gene therapy. Despite the great amount of experimental work pursued, critical features of the nanoparticles as well as their processing mechanisms are still under debate due to the lack of instrumentation at atomic resolution. Molecular modeling based computational approaches can shed light onto the atomic level details of gene delivery systems, thus provide valuable input that cannot be readily obtained with experimental techniques. Here, we review the molecular modeling research pursued on critical gene therapy steps, highlight the knowledge gaps in the field and providing future perspectives. Existing modeling studies revealed several important aspects of gene delivery, such as nanoparticle formation dynamics with various carriers, effect of carrier properties on complexation, carrier conformations in endosomal stages, and release of polynucleotides from carriers. Rate-limiting steps related to cellular events (i.e. internalization, endosomal escape, and nuclear uptake) are now beginning to be addressed by computational approaches. Limitations arising from current computational power and accuracy of modeling have been hindering the development of more realistic models. With the help of rapidly-growing computational power

  11. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    PubMed

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-02

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification.

  12. Functional and Structural Characterization of Purine Nucleoside Phosphorylase from Kluyveromyces lactis and Its Potential Applications in Reducing Purine Content in Food.

    PubMed

    Mahor, Durga; Priyanka, Anu; Prasad, Gandham S; Thakur, Krishan Gopal

    2016-01-01

    Consumption of foods and beverages with high purine content increases the risk of hyperuricemia, which causes gout and can lead to cardiovascular, renal, and other metabolic disorders. As patients often find dietary restrictions challenging, enzymatically lowering purine content in popular foods and beverages offers a safe and attractive strategy to control hyperuricemia. Here, we report structurally and functionally characterized purine nucleoside phosphorylase (PNP) from Kluyveromyces lactis (KlacPNP), a key enzyme involved in the purine degradation pathway. We report a 1.97 Å resolution crystal structure of homotrimeric KlacPNP with an intrinsically bound hypoxanthine in the active site. KlacPNP belongs to the nucleoside phosphorylase-I (NP-I) family, and it specifically utilizes 6-oxopurine substrates in the following order: inosine > guanosine > xanthosine, but is inactive towards adenosine. To engineer enzymes with broad substrate specificity, we created two point variants, KlacPNPN256D and KlacPNPN256E, by replacing the catalytically active Asn256 with Asp and Glu, respectively, based on structural and comparative sequence analysis. KlacPNPN256D not only displayed broad substrate specificity by utilizing both 6-oxopurines and 6-aminopurines in the order adenosine > inosine > xanthosine > guanosine, but also displayed reversal of substrate specificity. In contrast, KlacPNPN256E was highly specific to inosine and could not utilize other tested substrates. Beer consumption is associated with increased risk of developing gout, owing to its high purine content. Here, we demonstrate that KlacPNP and KlacPNPN256D could be used to catalyze a key reaction involved in lowering beer purine content. Biochemical properties of these enzymes such as activity across a wide pH range, optimum activity at about 25°C, and stability for months at about 8°C, make them suitable candidates for food and beverage industries. Since KlacPNPN256D has broad substrate specificity, a

  13. Functional and Structural Characterization of Purine Nucleoside Phosphorylase from Kluyveromyces lactis and Its Potential Applications in Reducing Purine Content in Food

    PubMed Central

    Mahor, Durga; Priyanka, Anu; Prasad, Gandham S; Thakur, Krishan Gopal

    2016-01-01

    Consumption of foods and beverages with high purine content increases the risk of hyperuricemia, which causes gout and can lead to cardiovascular, renal, and other metabolic disorders. As patients often find dietary restrictions challenging, enzymatically lowering purine content in popular foods and beverages offers a safe and attractive strategy to control hyperuricemia. Here, we report structurally and functionally characterized purine nucleoside phosphorylase (PNP) from Kluyveromyces lactis (KlacPNP), a key enzyme involved in the purine degradation pathway. We report a 1.97 Å resolution crystal structure of homotrimeric KlacPNP with an intrinsically bound hypoxanthine in the active site. KlacPNP belongs to the nucleoside phosphorylase-I (NP-I) family, and it specifically utilizes 6-oxopurine substrates in the following order: inosine > guanosine > xanthosine, but is inactive towards adenosine. To engineer enzymes with broad substrate specificity, we created two point variants, KlacPNPN256D and KlacPNPN256E, by replacing the catalytically active Asn256 with Asp and Glu, respectively, based on structural and comparative sequence analysis. KlacPNPN256D not only displayed broad substrate specificity by utilizing both 6-oxopurines and 6-aminopurines in the order adenosine > inosine > xanthosine > guanosine, but also displayed reversal of substrate specificity. In contrast, KlacPNPN256E was highly specific to inosine and could not utilize other tested substrates. Beer consumption is associated with increased risk of developing gout, owing to its high purine content. Here, we demonstrate that KlacPNP and KlacPNPN256D could be used to catalyze a key reaction involved in lowering beer purine content. Biochemical properties of these enzymes such as activity across a wide pH range, optimum activity at about 25°C, and stability for months at about 8°C, make them suitable candidates for food and beverage industries. Since KlacPNPN256D has broad substrate specificity, a

  14. Enzymatic synthesis using glycoside phosphorylases

    PubMed Central

    O’Neill, Ellis C.; Field, Robert A.

    2015-01-01

    Carbohydrate phosphorylases are readily accessible but under-explored catalysts for glycoside synthesis. Their use of accessible and relatively stable sugar phosphates as donor substrates underlies their potential. A wide range of these enzymes has been reported of late, displaying a range of preferences for sugar donors, acceptors and glycosidic linkages. This has allowed this class of enzymes to be used in the synthesis of diverse carbohydrate structures, including at the industrial scale. As more phosphorylase enzymes are discovered, access to further difficult to synthesise glycosides will be enabled. Herein we review reported phosphorylase enzymes and the glycoside products that they have been used to synthesise. PMID:25060838

  15. Functional reassignment of Cellvibrio vulgaris EpiA to cellobiose 2-epimerase and an evaluation of the biochemical functions of the 4-O-β-D-mannosyl-D-glucose phosphorylase-like protein, UnkA.

    PubMed

    Saburi, Wataru; Tanaka, Yuka; Muto, Hirohiko; Inoue, Sota; Odaka, Rei; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide

    2015-01-01

    The aerobic soil bacterium Cellvibrio vulgaris has a β-mannan-degradation gene cluster, including unkA, epiA, man5A, and aga27A. Among these genes, epiA has been assigned to encode an epimerase for converting D-mannose to D-glucose, even though the amino acid sequence of EpiA is similar to that of cellobiose 2-epimerases (CEs). UnkA, whose function currently remains unknown, shows a high sequence identity to 4-O-β-D-mannosyl-D-glucose phosphorylase. In this study, we have investigated CE activity of EpiA and the general characteristics of UnkA using recombinant proteins from Escherichia coli. Recombinant EpiA catalyzed the epimerization of the 2-OH group of sugar residue at the reducing end of cellobiose, lactose, and β-(1→4)-mannobiose in a similar manner to other CEs. Furthermore, the reaction efficiency of EpiA for β-(1→4)-mannobiose was 5.5 × 10(4)-fold higher than it was for D-mannose. Recombinant UnkA phosphorolyzed β-D-mannosyl-(1→4)-D-glucose and specifically utilized D-glucose as an acceptor in the reverse reaction, which indicated that UnkA is a typical 4-O-β-D-mannosyl-D-glucose phosphorylase.

  16. Theoretical studies in polynucleotide biophysics

    NASA Astrophysics Data System (ADS)

    Lubensky, David Koslan

    This thesis investigates the physics of the polynucleotides DNA and RNA, with an emphasis on theory relevant to single molecule experiments. An introductory chapter reviews some facts about these polymers and gives an overview of important experimental techniques. Motivated by attempts to develop new technologies for DNA sequencing and related assays, we turn in the second chapter to the dynamics of polynucleotides threaded through narrow pores. We show that there is a range of polymer lengths in which the system is approximately translationally invariant, and we develop a coarse-grained description of this regime. We also introduce a more microscopic model that provides a physically reasonable scenario in which, as in experiments, the polymer's speed depends sensitively on its chemical composition. Finally, we point out that the experimental distribution of polymer transit times is much broader than expected from simple estimates, and speculate on why this might be. The third chapter gives a brief account, focusing on behavior averaged over many random sequences, of work on the mechanical pulling apart of the two strands of double-stranded DNA (dsDNA). When the pulling force is increased to a critical value (typically of order 10 pN), an "unzipping" transition occurs. For random DNA sequences with short-ranged correlations, we obtain exact results for the number of monomers liberated, including the critical behavior at the transition. The final chapter expands upon these results on the unzipping transition, providing more details of our disorder-averaged calculations and tackling the more experimentally accessible problem of the unzipping of a single dsDNA molecule. As the applied force approaches the critical value, a given dsDNA unravels in a series of discrete, sequence dependent steps that allow it to reach successively deeper energy minima. Plots of extension versus force thus take the striking form of a series of plateaus separated by sharp jumps. Similar

  17. Polynucleotides. XLVI. 1 Synthesis and properties of poly (2'-amino-2'-deoxyadenylic acid).

    PubMed

    Ikehara, M; Fukui, T; Kakiuchi, N

    1977-04-01

    Poly (2'-amino-2'-deoxyadenylic acid) [poly (Aa)] was prepared from chemically synthesized 2'-amino-2'-deoxy-ADP by the catalysis of polynucleotide phosphorylase. Poly (Aa) showed a similar UV absorption spectra to poly (A), but quite different CD spectra at pH 7.0 and 5.7. At the former pH it showed a single negative Cotton band and at the latter a curve with a large splitting of bands. Acid titration of poly (Aa) suggested protonated form below pH 7.0. Temperature absorption profiles and their dependency on sodium ion concentration suggested an ordered structure for poly (Aa) which is stabilized by stacking of bases and intrastrand interaction between 2'-amino and internucleotidic phosphate groups. Poly (Aa) forms a 1:2 complex with poly (U) at neutrality and its Tm was 45 degrees in the presence of 0.15M sodium ion.

  18. Polypeptides having cellobiohydrolase activitiy and polynucleotides encoding same

    SciTech Connect

    Liu, Ye; Tang, Lan; Duan, Junxin

    2015-12-15

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-06-28

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-11-17

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-10-27

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having catalase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Duan, Junxin; Zhang, Yu; Tang, Lan

    2017-05-02

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    SciTech Connect

    Liu, Ye; Shaghasi, Tarana

    2016-11-01

    The present invention provides hybrid polypeptides having cellobiohydrolase activity. The present invention also provides polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  4. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    SciTech Connect

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2015-06-09

    Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-03-31

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-07-15

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-11-17

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-02-10

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-07-14

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-08-18

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Duan, Junxin; Tang, Lan

    2015-09-22

    The present invention provides isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cell comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-07-15

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having endoglucanse activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-07-08

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-06-24

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-07-15

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-06-24

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-07-08

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-14

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    SciTech Connect

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    SciTech Connect

    Spodsberg, Nikolaj

    2016-12-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having laccase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Duan, Junxin; Zhang, Yu

    2017-08-22

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polynucleotides XLVII. Synthesis and properties of poly(2-methylthio- and 2-ethylthioadenylic acid). Formation of non-Watson-Crick type complexes.

    PubMed

    Fukui, T; Ikehara, M

    1979-05-24

    Poly(2-methyl- and 2-ethylthioadenylic acid) were prepared by polymerization of corresponding diphosphates with Escherichia coli polynucleotide phosphorylase. These polynucleotides have relatively large hypochromicity of 30-35%. Acid titration of these polymers showed abrupt transition at pH 5.34-5.4, which may indicate that the introduction of alkylthio group at 2-position of adenine bases reduced their basicity. Thermal melting of these polymers showed no clear transition points at neutral pH, but in acidic media they have Tm values of 57 and 56 degrees C, somewhat lower than that of poly(A). Upon complex formation with poly(U), these poly(A) analogs showed only one poly(rs2A) . poly(U) type double-strand complexes, similar to that found in the case of poly(m2A) . poly(U).

  3. Cyclin Polynucleotides, Polypeptides And Uses Thereof.

    DOEpatents

    Lowe, Keith S.; Tao, Yumin; Gordon-Kamm, William J.; Gregory, Carolyn A.; Hoerster, George J.; McElver, John A.

    2003-02-11

    The invention provides isolated polynucleotides and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content and/or composition of plants.

  4. Restriction/modification polypeptides, polynucleotides, and methods

    DOEpatents

    Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A

    2015-02-24

    The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.

  5. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Harris, Paul; Tang, Lan; Wu, Wenping

    2013-11-19

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2007-07-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  8. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Harris, Paul; Wu, Wenping

    2012-10-02

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2014-10-21

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc

    2014-01-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase, or beta-glucosidase activity and isolated polynucleotides encoding polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    SciTech Connect

    Lopez de Leon, Alfredo; Ding, Hanshu; Brown, Kimberly

    2012-06-26

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having endoglucanase activity and polynucleotides encoding same

    SciTech Connect

    Lopez de Leon, Alfredo; Rey, Michael

    2015-03-10

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2010-06-22

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-01-27

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2012-09-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    SciTech Connect

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Lopez De Leon, Alfredo; Merino, Sandra

    2007-05-22

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2017-08-08

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-02-23

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Stringer, Mary Ann; McBrayer, Brett

    2016-11-29

    The present invention relates to isolated polypeptides having cellobiohydrolase activity, catalytic domains, and cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains, and cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, or cellulose binding domains.

  3. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj; Shagasi, Tarana

    2015-06-30

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  4. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-04-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin; Tang, Lan; Liu, Ye; Wu, Wenping; Quinlan, Jason; Kramer, Randall

    2013-06-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2013-06-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having xylanase activity and polynucleotides encoding same

    SciTech Connect

    Tang, Lan; Liu, Ye; Duan, Junxin; Hanshu, Ding

    2012-10-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    SciTech Connect

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having xylanase activity and polynucleotides encoding same

    SciTech Connect

    Lopez de Leon, Alfredo; Rey, Michael

    2016-05-31

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-11-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    2017-06-14

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  12. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj; Shagasi, Tarana

    2017-05-30

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  13. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Liu, Ye; Duan, Junxin; Tang, Lan; McBrayer, Brett

    2017-07-04

    The present invention relates to isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    SciTech Connect

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2016-11-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having xylanase activity and polynucleotides encoding the same

    DOEpatents

    Spodsberg, Nikolaj [Bagsvaed, DK

    2014-01-07

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The inventino also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-12-24

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Ding, Hanshu

    2013-04-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul; Lopez de Leon, Alfredo; Rey, Michael; Ding, Hanshu; Vlasenko, Elena

    2010-11-02

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Polynucleotides encoding polypeptides having beta-glucosidase activity

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  20. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2011-06-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  1. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-21

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Duan, Junxin; Schnorr, Kirk Matthew; Wu, Wenping

    2013-11-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    SciTech Connect

    Duan, Junxin; Liu, Ye; Tang, Lan; Wu, Wenping; Quinlan, Jason; Kramer, Randall

    2012-03-27

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    SciTech Connect

    Morant, Marc D; Patkar, Shamkant; Ding, Hanshu

    2013-11-12

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    SciTech Connect

    Morant, Marc Dominique

    2014-10-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    SciTech Connect

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  7. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2010-12-14

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Ding, Hanshu; Brown, Kimberly

    2011-10-25

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Lopez de Leon, Alfredo [Davis, CA; Rey, Micheal [Davis, CA; Ding, Hanshu [Davis, CA; Vlasenko, Elena [Davis, CA

    2012-02-21

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  10. Genetics Home Reference: purine nucleoside phosphorylase deficiency

    MedlinePlus

    ... patients with purine nucleoside phosphorylase deficiency. Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1411-5. Erratum in: Nucleosides Nucleotides Nucleic Acids. 2005;24(4):303. Citation on PubMed Nyhan ...

  11. Polynucleotide Kinase-Phosphatase (PNKP) Mutations and Neurologic Disease

    PubMed Central

    Dumitrache, Lavinia C.; McKinnon, Peter J.

    2016-01-01

    A variety of human neurologic diseases are caused by inherited defects in DNA repair. In many cases, these syndromes almost exclusively impact the nervous system, underscoring the critical requirement for genome stability in this tissue. A striking example of this is defective enzymatic activity of polynucleotide kinase-phosphatase (PNKP), leading to microcephaly or neurodegeneration. Notably, the broad neural impact of mutations in PNKP can result in markedly different disease entities, even when the inherited mutation is the same. For example microcephaly with seizures (MCSZ) results from various hypomorphic PNKP mutations, as does ataxia with oculomotor apraxia 4 (AOA4). Thus, other contributing factors influence the neural phenotype when PNKP is disabled. Here we consider the role for PNKP in maintaining brain function and how perturbation in its activity can account for the varied pathology of neurodegeneration or microcephaly present in MCSZ and AOA4 respectively. PMID:27125728

  12. Structure of the homodimer of uridine phosphorylase from Salmonella typhimurium in the native state at 1.9 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Pavlyuk, B. F.; Lashkov, A. A.; Seregina, T. A.; Gabdulkhakov, A. G.; Vaĭnshteĭn, B. K.; Mikhaĭlov, A. M.

    2007-11-01

    Uridine phosphorylase ( UPh) belongs to pyrimidine nucleoside phosphorylases. This enzyme catalyzes cleavage of the C-N glycoside bond in uridine to form uracil and ribose-1’-phosphate. Uridine phosphorylase supplies cells with nucleotide precursors by catalyzing the phosphorolysis of purine and pyrimidine nucleosides. This is an alternative to de novo nucleotide synthesis. The three-dimensional structure of native uridine phosphorylase from Salmonella typhimurium ( StUPh) in a new crystal form was solved and refined at 1.90 Å resolution ( R st = 20.37%; R free = 24.69%; the rmsd of bond lengths and bond angles are 0.009 Å and 1.223°, respectively). A homodimer containing two asynchronously functioning active sites was demonstrated to be the minimum structural unit necessary for function of the hexameric StUPh molecule ( L 33 L 2). Each active site is formed by amino acid residues of both subunits.

  13. Glycal Formation in Crystals of Uridine Phosphorylase

    SciTech Connect

    Paul, Debamita; O’Leary, Sen E.; Rajashankar, Kanagalaghatta; Bu, Weiming; Toms, Angela; Settembre, Ethan C.; Sanders, Jennie M.; Begley, Tadhg P.; Ealick, Steven E.

    2010-06-22

    Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2{prime}-deoxyuridine to 2{prime}-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2{prime}-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate, and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to act as the base required for glycal formation via deprotonation at C2{prime}. Crystals of bovine uridine phosphorylase treated with 2{prime}-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously unencountered mechanistic motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds.

  14. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    DOEpatents

    Oda, Michael N.; Forte, Trudy M.

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  15. Nucleic acid-like structures. II - Polynucleotide analogues as possible primitive precursors of nucleic acids

    NASA Technical Reports Server (NTRS)

    Schwartz, Alan W.; Visscher, J.; Bakker, C. G.; Niessen, J.

    1987-01-01

    Activated derivatives of purine-containing deoxynucleoside- diphosphates spontaneously oligomerize to produce pyrophosphate- linked oligodeoxynucleotide analogs. These analogs are of potential interest as models of primitive, polynucleotide precursors. The efficiency of oligomerization (ImpdGpIm and ImpdApIm much greater than ImpdIpIm) appears to reflect a combination of stacking forces and the specific geometric orientations of the stacked units. Under favorable conditions, chain lengths greater than 20 have been obtained for oligomers containing pdGp in the absence of a template. In the presence of a complementary template, the activated derivatives of pdGp and pdAp oligomerize much more extensively. An acyclo-analog of G has also been shown to undergo template-directed oligomerization on poly(C). These observations suggest the possibility that primitive information transfer might have evolved in much simpler systems and that this function was taken over by polynucleotides at a later stage in evolution.

  16. Synthetic nanocarriers for the delivery of polynucleotides to the eye.

    PubMed

    Saraiva, Sofia M; Castro-López, Vanessa; Pañeda, Covadonga; Alonso, María José

    2017-03-02

    This review is a comprehensive analysis of the progress made so far on the delivery of polynucleotide-based therapeutics to the eye, using synthetic nanocarriers. Attention has been addressed to the capacity of different nanocarriers for the specific delivery of polynucleotides to both, the anterior and posterior segments of the eye, with emphasis on their ability to (i) improve the transport of polynucleotides across the different eye barriers; (ii) promote their intracellular penetration into the target cells; (iii) protect them against degradation and, (iv) deliver them in a long-term fashion way. Overall, the conclusion is that despite the advantages that nanotechnology may offer to the area of ocular polynucleotide-based therapies (especially AS-ODN and siRNA delivery), the knowledge disclosed so far is still limited. This fact underlines the necessity of more fundamental and product-oriented research for making the way of the said nanotherapies towards clinical translation.

  17. Recombination of polynucleotide sequences using random or defined primers

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin; Giver, Lorraine J.

    2001-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  18. Recombination of polynucleotide sequences using random or defined primers

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin H; Giver, Lorraine J.

    2000-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  19. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential.

    PubMed

    Sargent, R Geoffrey; Kim, Soya; Gruenert, Dieter C

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.

  20. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  1. Effect of polynucleotides on the dimerization of glycine. [abiological protein synthesis in primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1981-01-01

    Results from experiments to determine the effect of polynucleotides on abiological formation of peptide bonds are reported. The reaction between glycine molecules in an aqueous phase in the presence of a condensing agent was chosen as a model, with polyphosphates being selected as the condensing agent for biologically relevant peptide formation. Four types of polynucleotides were used: polygluanic acid (G), polyuridic acid (U), polyadenylic acid (A), and polycytidylic acid (C); the effects of small anions, acetate, chloride, and phosphate, were also studied. Procedures are given, including concentrations, pH, and incubation time, and the type of amino acid analyzer. The diglycine yields were, in order of most to least: G, C, A, U, and are diagrammed as a function of time; rate of formation followed the same order of magnitude as the final yields. Anion presence displayed no discernible effect. The results are taken to indicate that polynucleotides do have an effect on the formation of peptide bonds, an effect significant in the understanding of chemical evolution.

  2. Effect of polynucleotides on the dimerization of glycine. [abiological protein synthesis in primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1981-01-01

    Results from experiments to determine the effect of polynucleotides on abiological formation of peptide bonds are reported. The reaction between glycine molecules in an aqueous phase in the presence of a condensing agent was chosen as a model, with polyphosphates being selected as the condensing agent for biologically relevant peptide formation. Four types of polynucleotides were used: polygluanic acid (G), polyuridic acid (U), polyadenylic acid (A), and polycytidylic acid (C); the effects of small anions, acetate, chloride, and phosphate, were also studied. Procedures are given, including concentrations, pH, and incubation time, and the type of amino acid analyzer. The diglycine yields were, in order of most to least: G, C, A, U, and are diagrammed as a function of time; rate of formation followed the same order of magnitude as the final yields. Anion presence displayed no discernible effect. The results are taken to indicate that polynucleotides do have an effect on the formation of peptide bonds, an effect significant in the understanding of chemical evolution.

  3. Activation of Phosphorylase Kinase by Physiological Temperature.

    PubMed

    Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M

    2015-12-29

    In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.

  4. The relation of starch phosphorylases to starch metabolism in wheat.

    PubMed

    Schupp, Nicole; Ziegler, Paul

    2004-10-01

    Tissues of wheat (Triticum aestivum L., var. Star) exhibit three starch phosphorylase activity forms resolved by non-denaturing polyacrylamide gel affinity electrophoresis (P1, P2 and P3). Compartmentation analysis of young leaf tissues showed that P3 is plastidic, whereas P1 and P2 are cytosolic. P1 exhibits a strong binding affinity to immobilized glycogen upon electrophoresis, whereas P2 and the chloroplastic P3 do not. Cytosolic leaf phosphorylase was purified to homogeneity by affinity chromatography. The single polypeptide product constituted both the P1 and P2 activity forms. Probes for the detection of phosphorylase transcripts were derived from cDNA sequences of cytosolic and plastidic phosphorylases, and these-together with activity assays and a cytosolic phosphorylase-specific antiserum-were used to monitor phosphorylase expression in leaves and seeds. Mature leaves contained only plastidic phosphorylase, which was also strongly evident in the endosperm of developing seeds at the onset of reserve starch accumulation. Germinating seeds contained only cytosolic phosphorylase, which was restricted to the embryo. Plastidic phosphorylase thus appears to be associated with transitory leaf starch metabolism and with the initiation of seed endosperm reserve starch accumulation, but it plays no role in the degradation of the reserve starch. Cytosolic phosphorylase may be involved in the processing of incoming carbohydrate during rapid tissue growth.

  5. Zero-order ultrasensitivity in the regulation of glycogen phosphorylase.

    PubMed Central

    Meinke, M H; Bishop, J S; Edstrom, R D

    1986-01-01

    The activity of glycogen phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) is controlled by a cyclic phosphorylation-dephosphorylation process through the action of the interconverting enzymes, phosphorylase b kinase (ATP:phosphorylase-b phosphotransferase, EC 2.7.1.38) and phosphorylase a phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17). In muscle tissue, the combined concentration of the activated (phospho-) form, phosphorylase a, and the nonactivated (dephospho-) form, phosphorylase b, is substantially greater than the Km of either of the interconverting enzymes for its phosphorylase substrate. It has been predicted that, under such a set of conditions, a sensitivity amplification will occur for phosphorylase regulation due to the zero-order ultrasensitivity effect [LaPorte, D. C. & Koshland, D. E., Jr. (1983) Nature (London) 305, 286-290]. The sensitivity amplification will enhance the responsiveness of the phosphorylase interconversion cycle to changes in the ratio of activities of the kinase to phosphatase. We have studied the cyclic interconversion process using purified muscle enzymes in steady-state reactions and found that there is an enhancement in the control sensitivity of the process due to the zero-order ultrasensitivity effect. The potential for the in vivo enhancement of sensitivity in glycogen degradation by this effect is discussed. PMID:3458247

  6. Synthetic polynucleotides as endosomolytic agents and bioenergy sources.

    PubMed

    Cho, Hana; Lee, Young Ju; Bae, You Han; Kang, Han Chang

    2015-10-28

    Nucleotides (NTs), such as adenosine triphosphate (ATP) and guanosine triphosphate (GTP), are signaling and bioenergy molecules to mediate a range of cellular pathways. We recently reported their significant endosomolytic activity. To evaluate whether polymeric NTs keep endosomolytic and bioenergetic functions of NTs in drug delivery and cell survival, NTs were polymerized by a coupling reaction to form polynucleotides (pNTs: pATP and pGTP) with their molecular weights around 500kDa. The cellular toxicity, indicated by IC50, of pNT was as low as that of corresponding monomeric NT. pNTs were degraded by an intracellular enzyme, alkaline phosphatase. Introduction of pNTs in a polycation-gene complex (polyplex) enhanced the extent of gene expression in cancerous, non-cancerous, and stem cells, up to 1500-fold higher than that of pNT-free polyplex. In addition, cells stored in a pATP solution resulted in a significantly higher survival rate (e.g., up to 20% increase) when exposed to low temperatures than pATP-free solution. The presence of pNT in polyplexes prevented the reduction of transfection efficiency induced by a low temperature. The findings in this study suggest that endosomolytic and bioenergetic pNTs serve as a non-toxic gene carrier component and protect cells from a cold shock or energy depletion.

  7. The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity.

    PubMed

    Verhaeghe, Tom; Aerts, Dirk; Diricks, Margo; Soetaert, Wim; Desmet, Tom

    2014-08-01

    Sucrose phosphorylase is a promising biocatalyst for the glycosylation of a wide range of compounds, but its industrial application has been hampered by the low thermostability of known representatives. Hence, in this study, the putative sucrose phosphorylase from the thermophile Thermoanaerobacterium thermosaccharolyticum was recombinantly expressed and fully characterised. The enzyme showed significant activity on sucrose (optimum at 55 °C), and with a melting temperature of 79 °C and a half-life of 60 h at the industrially relevant temperature of 60 °C, it is far more stable than known sucrose phosphorylases. Substrate screening and detailed kinetic characterisation revealed however a preference for sucrose 6'-phosphate over sucrose. The enzyme can thus be considered as a sucrose 6'-phosphate phosphorylase, a specificity not yet reported to date. Homology modelling and mutagenesis pointed out particular residues (Arg134 and His344) accounting for the difference in specificity. Moreover, phylogenetic and sequence analysis suggest that glycoside hydrolase 13 subfamily 18 might harbour even more specificities. In addition, the second gene residing in the same operon as sucrose 6'-phosphate phosphorylase was identified as well, and found to be a phosphofructokinase. The concerted action of both these enzymes implies a new pathway for the breakdown of sucrose, in which the reaction products end up at different stages of the glycolysis.

  8. Polynucleotide sequence relationships among members of Enterobacteriaceae.

    PubMed

    Brenner, D J; Fanning, G R; Johnson, K E; Citarella, R V; Falkow, S

    1969-05-01

    Polynucleotide relationships were examined among many representatives of the Enterobacteriaceae by means of agar, membrane filter, and hydroxyapatite procedures. The amount of deoxyribonucleic acid (DNA) that reassociated was dependent, especially in interspecific reactions, on the annealing temperature. In only three cases: Escherichia coli-Shigella flexneri, Salmonella typhimurium-S. typhi, and Proteus mirabilis-P. vulgaris, was relative interspecific duplex formation 80% or higher. In most cases interspecies DNA duplex formation was 40% or less of that obtained from intraspecies DNA reassociation reactions. The stability of E. coli-S. flexneri DNA duplexes formed at either 60 or 75 C was virtually identical to that of homologous E. coli DNA duplexes, and the degree of interspecies duplex formation was minimally affected by the temperature increase (86% at 60 C; 77% at 75 C). The thermal stability of DNA duplexes formed at 60 C between DNA from E. coli and DNA from strains of Aerobacter aerogenes, S. typhimurium, S. typhi, and P. mirabilis was about 12 to 14 C below that of reassociated E. coli DNA. At 75 C, the formation of the interspecific DNA duplexes was markedly decreased, but the stability of the DNA able to reassociate at this temperature approximated that of reassociated E. coli DNA. The degree of reassociation and the thermal stability of E. coli-S. flexneri DNA duplexes suggests relatively little evolutionary divergence in these organisms. The other enterobacteria tested, however, have diverged to a point where less than one-half of their DNA can reanneal with E. coli DNA at 60 C and less than 10% reacts at 75 C. The degree of divergence between various enterobacteria does not appear to be uniform along the DNA molecule. Ribosomal ribonucleic acid (RNA)-specific sequences are conserved among most enterobacteria. An examination of messenger RNA relatively specific for the lactose operon suggests that specific chromosomal genes may diverge more or less

  9. Isolated Polynucleotides and Methods of Promoting a Morphology in a Fungus

    DOEpatents

    Lasure, Linda L [Fall City, WA; Dai, Ziyu [Richland, WA

    2008-10-21

    The invention includes isolated polynucleotide molecules that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention includes a method of enhancing a bioprocess utilizing a fungus. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to a promoter. The polynucleotide sequence is expressed to promote a first morphology. The first morphology of the transformed fungus enhances a bioprocess relative to the bioprocess utilizing a second morphology.

  10. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.

    PubMed

    Bruder, Lena M; Dörkes, Marcel; Fuchs, Bernhard M; Ludwig, Wolfgang; Liebl, Wolfgang

    2016-10-01

    The gut microbiome represents a key contributor to human physiology, metabolism, immune function, and nutrition. Elucidating the composition and genetics of the gut microbiota under various conditions is essential to understand how microbes function individually and as a community. Metagenomic analyses are increasingly used to study intestinal microbiota. However, for certain scientific questions it is sufficient to examine taxon-specific submetagenomes, covering selected bacterial genera in a targeted manner. Here we established a new variant of fluorescence in situ hybridization (FISH) combined with fluorescence-activated cell sorting (FACS), providing access to the genomes of specific taxa belonging to the complex community of the intestinal microbiota. In contrast to standard oligonucleotide probes, the RNA polynucleotide probe used here, which targets domain III of the 23S rRNA gene, extends the resolution power in environmental samples by increasing signal intensity. Furthermore, cells hybridized with the polynucleotide probe are not subjected to harsh pretreatments, and their genetic information remains intact. The protocol described here was tested on genus-specifically labeled cells in various samples, including complex fecal samples from different laboratory mouse types that harbor diverse intestinal microbiota. Specifically, as an example for the protocol described here, RNA polynucleotide probes could be used to label Enterococcus cells for subsequent sorting by flow cytometry. To detect and quantify enterococci in fecal samples prior to enrichment, taxon-specific PCR and qPCR detection systems have been developed. The accessibility of the genomes from taxon-specifically sorted cells for subsequent molecular analyses was demonstrated by amplification of functional genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Methods of using viral replicase polynucleotides and polypeptides

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Bailey, Matthew A.; Gregory, Carolyn A.; Hoerster, George J.; Larkins, Brian A.; Dilkes, Brian R.; Burnett, Ronald; Woo, Young Min

    2007-12-18

    The invention provides novel methods of using viral replicase polypeptides and polynucleotides. Included are methods for increasing transformation frequencies, increasing crop yield, providing a positive growth advantage, modulating cell division, transiently modulating cell division, and for providing a means of positive selection.

  12. Template-directed polynucleotide synthesis on mineral surfaces

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W.; Orgel, L. E.

    1985-01-01

    Ferric hydroxide, a plausible prebiotic material, strongly adsorbs polynucleotides. It is shown that adsorption on ferric hydroxide and on several other minerals has no effect, under the conditions studied, on the template-directed oligomerization of guanylic acid on polycytidylic acid.

  13. Glycogen phosphorylase and its converter enzymes in haemolysates of normal human subjects and of patients with type VI glycogen-storage disease. A study of phosphorylase kinase deficiency.

    PubMed Central

    Lederer, B; Van Hoof, F; Van den Berghe, G; Hers, H

    1975-01-01

    1. The properties of phosphorylase a, phosphorylase b, phosphorylase kinase and phosphorylase phosphatase present in a human haemolysate were investigated. The two forms of phosphorylase have the same affinity for glucose 1-phosphate but greatly differ in Vmax. Phosphorylase b is only partially stimulated by AMP, since, in the presence of the nucleotide, it is about tenfold less active than phosphorylase a. In a fresh human haemolysate phosphorylase is mostly in the b form; it is converted into phosphorylase a by incubation at 20degreesC, and this reaction is stimulated by glycogen and cyclic AMP. Once activated, the enzyme can be inactivated after filtration of the haemolysate on Sephadex G-25. This inactivation is stimulated by caffeine and glucose and inhibited by AMP and fluoride. The phosphorylase kinase present in the haemolysate can also be measured by the rate of activation of added muscle phosphorylase b, on addition of ATP and Mg2+. 2. The activity of phosphorylase kinase was measured in haemolysates obtained from a series of patients who had been classified as suffering from type VI glycogenosis. In nine patients, all boys, an almost complete deficiency of phosphorylase kinase was observed in the haemolysate and, when it could be assayed, in the liver. A residual activity, about 20% of normal, was found in the leucocyte fraction, whereas the enzyme activity was normal in the muscle. These patients suffer from the sex-linked phosphorylase kinase deficiency previously described by others. Two pairs of siblings, each time brother and sister, displayed a partial deficiency of phosphorylase kinase in the haemolysate and leucocytes and an almost complete deficiency in the liver. This is considered as being the autosomal form of phosphorylase kinase deficiency. Other patients were characterized by a low activity of total (a+b) phosphorylase and a normal or high activity of phosphorylase kinase in their haemolysate. PMID:168880

  14. Thymidine Phosphorylase Gene Expression in Stage III Colorectal Cancer

    PubMed Central

    Lindskog, Elinor B.; Wettergren, Yvonne; Odin, Elisabeth; Gustavsson, Bengt; Derwinger, Kristoffer

    2012-01-01

    Background The thymidine phosphorylase (TP) enzyme has several tumor-promoting functions. The aim of this study was to explore TP gene expression in relation to clinical and histopathological data obtained from patients with stage III colorectal cancer. Methods and results TP gene expression was analyzed by real-time quantitative PCR in tumor and mucosa samples from 254 patients. TP gene expression in tumors correlated with lymph node staging, with higher expression relating to a higher number of positive nodes and a worse N-stage. Higher TP expression was also associated with a worse histological tumor grade. Patients with rectal cancer had significantly higher TP expression in mucosa and tumors compared with patients having colon cancer. Conclusion Higher intratumoral TP expression appears to be related to a worse N stage, and thus, with a worse prognosis. TP gene expression measured in a preoperative biopsy could be of interest in preoperative staging. PMID:23115484

  15. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity.

    PubMed

    Wu, Yuanyuan; Mao, Guotao; Fan, Haiyan; Song, Andong; Zhang, Yi-Heng Percival; Chen, Hongge

    2017-07-07

    A hypothetic gene (THA_1941) encoding a putative cellobiose phosphorylase (CBP) from Thermosipho africanus TCF52B has very low amino acid identities (less than 12%) to all known GH94 enzymes. This gene was cloned and over-expressed in Escherichia coli BL21(DE3). The recombinant protein was hypothesized to be a CBP enzyme and it showed an optimum temperature of 75 °C and an optimum pH of 7.5. Beyond its CBP activity, this enzyme can use cellobiose and long-chain cellodextrins with a degree of polymerization of greater than two as a glucose acceptor, releasing phosphate from glucose 1-phosphate. The catalytic efficiencies (k cat/K m) indicated that cellotetraose and cellopentaose were the best substrates for the phosphorolytic and reverse synthetic reactions, respectively. These results suggested that this enzyme was the first enzyme having both cellodextrin and cellobiose phosphorylases activities. Because it preferred cellobiose and cellodextrins to glucose in the synthetic direction, it was categorized as a cellodextrin phosphorylase (CDP). Due to its unique ability of the reverse synthetic reaction, this enzyme could be a potential catalyst for the synthesis of various oligosaccharides. The speculative function of this CDP in the carbohydrate metabolism of T. africanus TCF52B was also discussed.

  16. Modified 5-fluorouracil: Uridine phosphorylase inhibitor

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Shchekotikhin, A. A.; Shtil, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2016-09-01

    5-Fluorouracil (5-FU) is a medication widely used in chemotherapy to treat various types of cancer. Being a substrate for the reverse reaction catalyzed by uridine phosphorylase (UPase), 5-FU serves as a promising prototype molecule (molecular scaffold) for the design of a selective UPase inhibitor that enhances the antitumor activity of 5-FU and exhibits intrinsic cytostatic effects on cancer cells. The chemical formula of the new compound, which binds to the uracil-binding site and, in the presence of a phosphate anion, to the phosphate-binding site of UPase, is proposed and investigated by molecular simulation methods.

  17. Application of OmpF nanochannel forming protein in polynucleotide sequence recognition.

    PubMed

    Hadi-Alijanvand, Saeid; Mobasheri, Hamid; Hadi-Alijanvand, Hamid

    2014-10-01

    Recognition of the sequence of human genome sequence is vital to address malfunctions occurring at molecular, cellular and tissue levels and requires a great deal of time, cost and efforts. Thus, various synthetic and natural pores were considered to fabricate high-throughput systems capable to fulfill the task in an efficient manner. Here, voltage gating OmpF nanochannel, whose structure is known at an atomic level, was used to recognize and differentiate between polynucleotide primers through voltage clamp technique. Our results showed that poly(T) occasionally blocked the channel at both polarities, while poly(C) and poly(G) obstructed it only at positive polarity. The channel was blocked at potential differences of as low as 80 mV in the presence of poly(T). The conductance of channel decreased in the presence of poly(C) and poly(G) by 61 and 5% respectively. Analysis of the number of events showed that poly(T) caused more closing events at higher voltages, while poly(G) and poly(C) induced it at lower voltages. Application of the hazard function as a statistical parameter and analysis of event closing times in various voltages demonstrated the most efficient differentiation at 60 mV. The results of practical and theoretical approaches presented here show that OmpF porin channel possesses the structural and dynamic characteristics required to be considered as a biosensor capable for continuous polynucleotide sequencing.

  18. Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-03-01

    Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment of the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB_ID: 4RJ2).

  19. The Crystal Structure of Streptococcus pyogenes Uridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases

    SciTech Connect

    Tran, Timothy H.; Christoffersen, S.; Allan, Paula W.; Parker, William B.; Piskur, Jure; Serra, I.; Terreni, M.; Ealick, Steven E.

    2011-09-20

    Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 {angstrom} resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an ?/? monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is {approx}7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.

  20. Theoretic Study on Dispersion Mechanism of Boron Nitride Nanotubes by Polynucleotides

    PubMed Central

    Liang, Lijun; Hu, Wei; Zhang, Zhisen; Shen, Jia-Wei

    2016-01-01

    Due to the unique electrical and mechanical properties of boron nitride nanotubes (BNNT), BNNT has been a promising material for many potential applications, especially in biomedical field. Understanding the dispersion of BNNT in aqueous solution by biomolecules is essential for its use in biomedical applications. In this study, BNNT wrapped by polynucleotides in aqueous solution was investigated by molecular dynamics (MD) simulations. Our results demonstrated that the BNNT wrapped by polynucleotides could greatly hinder the aggregation of BNNTs and improve the dispersion of BNNTs in aqueous solution. Dispersion of BNNTs with the assistance of polynucleotides is greatly affected by the wrapping manner of polynucleotides on BNNT, which mainly depends on two factors: the type of polynucleotides and the radius of BNNT. The interaction between polynucleotides and BNNT(9, 9) is larger than that between polynucleotides and BNNT(5, 5), which leads to the fact that dispersion of BNNT(9, 9) is better than that of BNNT(5, 5) with the assistance of polynucleotides in aqueous solution. Our study revealed the molecular-level dispersion mechanism of BNNT with the assistance of polynucleotides in aqueous solution. It shades a light on the understanding of dispersion of single wall nanotubes by biomolecules. PMID:28004832

  1. Theoretic Study on Dispersion Mechanism of Boron Nitride Nanotubes by Polynucleotides

    NASA Astrophysics Data System (ADS)

    Liang, Lijun; Hu, Wei; Zhang, Zhisen; Shen, Jia-Wei

    2016-12-01

    Due to the unique electrical and mechanical properties of boron nitride nanotubes (BNNT), BNNT has been a promising material for many potential applications, especially in biomedical field. Understanding the dispersion of BNNT in aqueous solution by biomolecules is essential for its use in biomedical applications. In this study, BNNT wrapped by polynucleotides in aqueous solution was investigated by molecular dynamics (MD) simulations. Our results demonstrated that the BNNT wrapped by polynucleotides could greatly hinder the aggregation of BNNTs and improve the dispersion of BNNTs in aqueous solution. Dispersion of BNNTs with the assistance of polynucleotides is greatly affected by the wrapping manner of polynucleotides on BNNT, which mainly depends on two factors: the type of polynucleotides and the radius of BNNT. The interaction between polynucleotides and BNNT(9, 9) is larger than that between polynucleotides and BNNT(5, 5), which leads to the fact that dispersion of BNNT(9, 9) is better than that of BNNT(5, 5) with the assistance of polynucleotides in aqueous solution. Our study revealed the molecular-level dispersion mechanism of BNNT with the assistance of polynucleotides in aqueous solution. It shades a light on the understanding of dispersion of single wall nanotubes by biomolecules.

  2. Theoretic Study on Dispersion Mechanism of Boron Nitride Nanotubes by Polynucleotides.

    PubMed

    Liang, Lijun; Hu, Wei; Zhang, Zhisen; Shen, Jia-Wei

    2016-12-22

    Due to the unique electrical and mechanical properties of boron nitride nanotubes (BNNT), BNNT has been a promising material for many potential applications, especially in biomedical field. Understanding the dispersion of BNNT in aqueous solution by biomolecules is essential for its use in biomedical applications. In this study, BNNT wrapped by polynucleotides in aqueous solution was investigated by molecular dynamics (MD) simulations. Our results demonstrated that the BNNT wrapped by polynucleotides could greatly hinder the aggregation of BNNTs and improve the dispersion of BNNTs in aqueous solution. Dispersion of BNNTs with the assistance of polynucleotides is greatly affected by the wrapping manner of polynucleotides on BNNT, which mainly depends on two factors: the type of polynucleotides and the radius of BNNT. The interaction between polynucleotides and BNNT(9, 9) is larger than that between polynucleotides and BNNT(5, 5), which leads to the fact that dispersion of BNNT(9, 9) is better than that of BNNT(5, 5) with the assistance of polynucleotides in aqueous solution. Our study revealed the molecular-level dispersion mechanism of BNNT with the assistance of polynucleotides in aqueous solution. It shades a light on the understanding of dispersion of single wall nanotubes by biomolecules.

  3. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  4. Structure of grouper iridovirus purine nucleoside phosphorylase

    SciTech Connect

    Kang, You-Na; Zhang, Yang; Allan, Paula W.; Parker, William B.; Ting, Jing-Wen; Chang, Chi-Yao; Ealick, Steven E.

    2010-02-01

    The crystal structure of purine nucleoside phosphorylase from grouper iridovirus was solved at 2.38 Å resolution. Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides to the corresponding free bases and ribose 1-phosphate. The crystal structure of grouper iridovirus PNP (givPNP), corresponding to the first PNP gene to be found in a virus, was determined at 2.4 Å resolution. The crystals belonged to space group R3, with unit-cell parameters a = 193.0, c = 105.6 Å, and contained four protomers per asymmetric unit. The overall structure of givPNP shows high similarity to mammalian PNPs, having an α/β structure with a nine-stranded mixed β-barrel flanked by a total of nine α-helices. The predicted phosphate-binding and ribose-binding sites are occupied by a phosphate ion and a Tris molecule, respectively. The geometrical arrangement and hydrogen-bonding patterns of the phosphate-binding site are similar to those found in the human and bovine PNP structures. The enzymatic activity assay of givPNP on various substrates revealed that givPNP can only accept 6-oxopurine nucleosides as substrates, which is also suggested by its amino-acid composition and active-site architecture. All these results suggest that givPNP is a homologue of mammalian PNPs in terms of amino-acid sequence, molecular mass, substrate specificity and overall structure, as well as in the composition of the active site.

  5. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    DOEpatents

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Glutathione plus cytosol- and microsome-mediated binding of 1,2-dichloroethane to polynucleotides

    SciTech Connect

    Lin, E.L.; Mattox, J.K.; Pereira, M.A.

    1985-05-01

    1,2-(1,2- UC)Dichloroethane was metabolized by rat hepatic microsomes to products that irreversibly bound polynucleotides. The polynucleotides were then enzymatically hydrolyzed and the products separated by a high-performance liquid chromatograph (HPLC) equipped with an ODS or a SCX column. The products of microsome-mediated binding were identified in the HPLC eluate as 1,N6-ethenoadenosine to polyadenylic acid, 3,N4-ethenocytidine to polycytidylic acid, and two cyclic derivatives to polyguanylic acid. 1,2-(1,2- UC)Dichloroethane was also metabolized in the presence of a glutathione (GSH)-cytosolic fraction and a polynucleotide. After enzymatic hydrolysis of the polynucleotide, the major peak of radioactivity was eluted from a Sephadex G-25 column in the salt volume which would exclude the presence of a product containing both GSH and a nucleoside. Chromatography by ODS-HPLC of the major peak from Sephadex G-25 indicated the presence of a GSH metabolite of 1,2-dichloroethane that did not contain a nucleoside. A similar hydrophilic peak was obtained for the hydrolysis products of polynucleotides from a glutathione plus cytosol incubation in which the polynucleotide instead of being added prior to the incubation was added after the incubation. In conclusion, covalently bound adducts were identified for microsome-mediated binding of 1,2-dichlorethane to polynucleotides, while no evidence was obtained for glutathione plus cytosol-mediated covalent binding to polynucleotides.

  7. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    SciTech Connect

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    SciTech Connect

    Morant, Marc Dominique

    2014-04-29

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    SciTech Connect

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Ribosome-inactivating lectins with polynucleotide:adenosine glycosidase activity.

    PubMed

    Battelli, M G; Barbieri, L; Bolognesi, A; Buonamici, L; Valbonesi, P; Polito, L; Van Damme, E J; Peumans, W J; Stirpe, F

    1997-05-26

    Lectins from Aegopodium podagraria (APA), Bryonia dioica (BDA), Galanthus nivalis (GNA), Iris hybrid (IRA) and Sambucus nigra (SNAI), and a new lectin-related protein from Sambucus nigra (SNLRP) were studied to ascertain whether they had the properties of ribosome-inactivating proteins (RIP). IRA and SNLRP inhibited protein synthesis by a cell-free system and, at much higher concentrations, by cells and had polynucleotide:adenosine glycosidase activity, thus behaving like non-toxic type 2 (two chain) RIP. APA and SNAI had much less activity, and BDA and GNA did not inhibit protein synthesis.

  11. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    SciTech Connect

    Balaev, V. V.; Lashkov, A. A. Gabdoulkhakov, A. G.; Seregina, T. A.; Dontsova, M. V.; Mikhailov, A. M.

    2015-03-15

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis (YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability (R{sub work} = 16.2, R{sub free} = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.

  12. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Gabdoulkhakov, A. G.; Seregina, T. A.; Dontsova, M. V.; Mikhailov, A. M.

    2015-03-01

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis ( YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability ( R work = 16.2, R free = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.

  13. Oligonucleotide N-alkylphosphoramidates: Synthesis and binding to polynucleotides

    SciTech Connect

    Jaeger, A.; Levy, M.J.; Hecht, S.M. )

    1988-09-20

    A few different methods for the preparation of oligonucleotide N-alkylphosphoramidates were compared directly. One of these, involving the use of protected nucleoside phosphites as building blocks, provided the requisite N-alkylphosphoramidates via oxidation of the intermediate dinucleoside methyl phosphites with iodine in the presence of the appropriate alkylamine. This method was found to have several attractive features, including the use of building blocks identical with those employed for the synthesis of DNA and compatibility with procedures and instruments employed for the stepwise synthesis of oligonucleotides by solution and solid-phase methods. This procedure was used to make several di-, tri-, and tetranucleotide N-alkylphosphoramidates derived from deoxyadenosine and thymidine; alkyl substituents included N,N-dimethyl, N-butyl, N-octyl, N-dodecyl, and N-(5-aminopentyl). The oligonucleotide N-alkylphosphoramidates were separated into their component diastereomers and characterized structurally by a number of techniques including circular dichroism, high-field {sup 1}H NMR spectroscopy, FAB mass spectrometry, and enzymatic digestion to authentic nucleosides and nucleotides. Physicochemical characterization of several di- and trinucleotide alkylphosphoramidates revealed that the adenine nucleotide analogues formed stable complexes with poly(thymidylic acid). The stabilities of these complexes were found to increase with increasing chain length of the N-alkylphosphoramidate substituents. The finding that N-alkylphosphoramidate substituents can enhance the binding of certain oligonucleotides to their complementary polynucleotides suggests the existence of a novel source of polynucleotide affinity.

  14. Ultrafast transient absorption studies of ruthenium and rhenium dipyridophenazine complexes bound to DNA and polynucleotides

    NASA Astrophysics Data System (ADS)

    Creely, Caitriona M.; Kelly, John M.; Feeney, M. M.; Hudson, S.; Penedo, J. C.; Blau, Werner J.; Elias, B.; Kirsch-De Mesmaeker, Andree; Matousek, P.; Towrie, M.; Parker, A. W.; Dyer, J. S.; George, Mikhael W.; Coates, C. G.; McGarvey, John J.

    2003-03-01

    We report on ultrafast pump and probe studies of biological systems, in the form of polynucleotide and calf thymus DNA complexes. Molecules for study are bound to the polynucleotides and probed in the visible region to observe changes in the absorption over time. Various dipyridophenazine metal complexes are studied alone and complexed with DNA or synthetic polynucleotides to investigate changes occurring in their excited states upon interacting with nucleobases. Transient absorption measurements are performed pumping at 400nm and probing from 450-700nm with pulse duration of 400fs.

  15. Mechanism of activation of glycogen phosphorylase by fructose in the liver. Stimulation of phosphorylase kinase related to the consumption of adenosine triphosphate.

    PubMed Central

    Van de Werve, G; Hers, H G

    1979-01-01

    1. A dose-dependent activation of phosphorylase and consumption of ATP was observed in isolated hepatocytes incubated in the presence of fructose; histone kinase and phosphorylase kinase activities were unchanged at doses of this sugar that were fully effective on phosphorylase. The activation of phosphorylase by fructose was also observed in cells incubated in a Ca2+-free medium as well as in the livers of rats in vivo. 2. In a liver high-speed supernatant, fructose, tagatose and sorbose stimulated the activity of phosphorylase kinase; this effect was dependent on the presence of K+ ions, which are required for the activity of fructokinase; it was accompanied by the transformation of ATP into ADP. In the presence of hexokinase, glucose also stimulated phosphorylase kinase, both in an Na+ or a K+ medium. 3. The activities of partially purified muscle or liver phosphorylase kinase were unchanged in the presence of fructose. 4. Some properties of liver phosphorylase kinase are described, including a high molecular weight and an inhibition at ATP/Mg ratios above 0.5, as well as an effect of ATP concentration on the hysteretic behaviour of this enzyme. 5. The effect of fructose on the activation of phosphorylase is discussed in relation to the comsumption of ATP. PMID:435271

  16. Characterization of individual polynucleotide molecules using a membrane channel

    NASA Technical Reports Server (NTRS)

    Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W.

    1996-01-01

    We show that an electric field can drive single-stranded RNA and DNA molecules through a 2.6-nm diameter ion channel in a lipid bilayer membrane. Because the channel diameter can accommodate only a single strand of RNA or DNA, each polymer traverses the membrane as an extended chain that partially blocks the channel. The passage of each molecule is detected as a transient decrease of ionic current whose duration is proportional to polymer length. Channel blockades can therefore be used to measure polynucleotide length. With further improvements, the method could in principle provide direct, high-speed detection of the sequence of bases in single molecules of DNA or RNA.

  17. Characterization of individual polynucleotide molecules using a membrane channel

    NASA Technical Reports Server (NTRS)

    Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W.

    1996-01-01

    We show that an electric field can drive single-stranded RNA and DNA molecules through a 2.6-nm diameter ion channel in a lipid bilayer membrane. Because the channel diameter can accommodate only a single strand of RNA or DNA, each polymer traverses the membrane as an extended chain that partially blocks the channel. The passage of each molecule is detected as a transient decrease of ionic current whose duration is proportional to polymer length. Channel blockades can therefore be used to measure polynucleotide length. With further improvements, the method could in principle provide direct, high-speed detection of the sequence of bases in single molecules of DNA or RNA.

  18. A Novel GDP-d-glucose Phosphorylase Involved in Quality Control of the Nucleoside Diphosphate Sugar Pool in Caenorhabditis elegans and Mammals*

    PubMed Central

    Adler, Lital N.; Gomez, Tara A.; Clarke, Steven G.; Linster, Carole L.

    2011-01-01

    The plant VTC2 gene encodes GDP-l-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-d-glucose to GDP and d-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-d-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-d-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-d-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-d-glucose in the C10F3.4 mutant worms, suggesting that the GDP-d-glucose phosphorylase may function to remove GDP-d-glucose formed by GDP-d-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological d-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals. PMID:21507950

  19. A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals.

    PubMed

    Adler, Lital N; Gomez, Tara A; Clarke, Steven G; Linster, Carole L

    2011-06-17

    The plant VTC2 gene encodes GDP-L-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-D-glucose to GDP and D-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-D-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-D-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-D-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-D-glucose in the C10F3.4 mutant worms, suggesting that the GDP-D-glucose phosphorylase may function to remove GDP-D-glucose formed by GDP-D-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological D-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals.

  20. Thymidine esters as substrate analogue inhibitors of angiogenic enzyme thymidine phosphorylase in vitro.

    PubMed

    Javaid, Sumaira; Ishtiaq, Marium; Shaikh, Muniza; Hameed, Abdul; Choudhary, M Iqbal

    2017-02-01

    Thymidine phosphorylase (TP) catalyzes the cleavage of thymidine into thymine and 2-deoxy-α-d-ribose-1-phosphate. Elevated activity of TP prevents apoptosis, and induces angiogenesis which ultimately leads to tumor growth and metastasis. Critical role of TP in cancer progression makes it a valid target in anti-cancer research. Discovery of small molecules as TP inhibitors is vigorously pursued in cancer therapy. In the present study, we functionalized thymidine as benzoyl ester to synthesize compounds 3-16. In vitro evaluation of thymidine esters for their thymidine phosphorylase inhibition activity was subsequently carried out. Compounds 4, 10, 14, and 15 showed good activities with lower IC50 values than the standard, 7-deazaxanthine (IC50=41.0±1.63μM). Among them, compound 14 showed five folds higher activity (IC50=7.5±0.8μM), while 4 (IC50=18.5±1.0μM) and 10 (IC50=18.8±1.2μM) showed two folds higher activity than the standard. Compound 15 showed slightly better activity (IC50=33.3±1.5μM) to the standard. Potent compounds were further subjected to kinetic and molecular docking studies to identify their mode of inhibition, and to study their interactions with the protein at atomic level, respectively. All active compounds were non-cytotoxic to mouse fibroblast 3T3 cell line. These results identify thymidine esters as substrate analogue (substrate-like) inhibitors of angiogenic enzyme thymidine phosphorylase for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Nicotinamide riboside phosphorylase from beef liver: purification and characterization.

    PubMed

    Imai, T; Anderson, B M

    1987-04-01

    Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.

  2. An Isozyme-specific Redox Switch in Human Brain Glycogen Phosphorylase Modulates Its Allosteric Activation by AMP.

    PubMed

    Mathieu, Cécile; Duval, Romain; Cocaign, Angélique; Petit, Emile; Bui, Linh-Chi; Haddad, Iman; Vinh, Joelle; Etchebest, Catherine; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-11-11

    Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Mechanism of RNA 2',3'-cyclic phosphate end healing by T4 polynucleotide kinase-phosphatase.

    PubMed

    Das, Ushati; Shuman, Stewart

    2013-01-07

    T4 polynucleotide kinase-phosphatase (Pnkp) exemplifies a family of enzymes with 5'-kinase and 3'-phosphatase activities that function in nucleic acid repair. The polynucleotide 3'-phosphatase reaction is executed by the Pnkp C-terminal domain, which belongs to the DxDxT acylphosphatase superfamily. The 3'-phosphatase reaction entails formation and hydrolysis of a covalent enzyme-(Asp165)-phosphate intermediate, driven by general acid-base catalyst Asp167. We report that Pnkp also has RNA 2'-phosphatase activity that requires Asp165 and Asp167. The physiological substrate for Pnkp phosphatase is an RNA 2',3'-cyclic phosphate end (RNA > p), but the pathway of cyclic phosphate removal and its enzymic requirements are undefined. Here we find that Pnkp reactivity with RNA > p requires Asp165, but not Asp167. Whereas wild-type Pnkp transforms RNA > p to RNA(OH), mutant D167N converts RNA > p to RNA 3'-phosphate, which it sequesters in the phosphatase active site. In support of the intermediacy of an RNA phosphomonoester, the reaction of mutant S211A with RNA > p results in transient accumulation of RNAp en route to RNA(OH). Our results suggest that healing of 2',3'-cyclic phosphate ends is a four-step processive reaction: RNA > p + Pnkp → RNA-(3'-phosphoaspartyl)-Pnkp → RNA(3')p + Pnkp → RNA(OH) + phosphoaspartyl-Pnkp → P(i) + Pnkp.

  4. The Mycoplasma gallisepticum Virulence Factor Lipoprotein MslA Is a Novel Polynucleotide Binding Protein

    PubMed Central

    Masukagami, Yumiko; Tivendale, Kelly A.; Mardani, Karim; Ben-Barak, Idan; Markham, Philip F.

    2013-01-01

    Although lipoproteins of mycoplasmas are thought to play a crucial role in interactions with their hosts, very few have had their biochemical function defined. The gene encoding the lipoprotein MslA in Mycoplasma gallisepticum has recently been shown to be required for virulence, but the biochemical function of this gene is not known. Although this gene has no significant sequence similarity to any gene of known function, it is located within an operon in M. gallisepticum that contains a homolog of a gene previously shown to be a nonspecific exonuclease. We mutagenized both genes to facilitate expression in Escherichia coli and then examined the functions of the recombinant proteins. The capacity of MslA to bind polynucleotides was examined, and we found that the protein bound single- and double-stranded DNA, as well as single-stranded RNA, with a predicted binding site of greater than 1 nucleotide but less than or equal to 5 nucleotides in length. Recombinant MslA cleaved into two fragments in vitro, both of which were able to bind oligonucleotides. These findings suggest that the role of MslA may be to act in concert with the lipoprotein nuclease to generate nucleotides for transport into the mycoplasma cell, as the remaining genes in the operon are predicted to encode an ABC transporter. PMID:23798535

  5. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.

    PubMed

    Dowdle, John; Ishikawa, Takahiro; Gatzek, Stephan; Rolinski, Susanne; Smirnoff, Nicholas

    2007-11-01

    Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.

  6. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2010-01-01

    The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO4, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO4 (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 Å resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-binding site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.

  7. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium

    SciTech Connect

    Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2010-01-15

    The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO{sub 4}, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO{sub 4} (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 A resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-binding site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.

  8. Purification and characterization of purine nucleoside phosphorylase from Proteus vulgaris.

    PubMed Central

    Surette, M; Gill, T; MacLean, S

    1990-01-01

    Purine nucleoside phosphorylase was isolated and purified from cell extracts of Proteus vulgaris recovered from spoiling cod fish (Gadus morhua). The molecular weight and isoelectric point of the enzyme were 120,000 +/- 2,000 and pH 6.8. The Michaelis constant for inosine as substrate was 3.9 x 10(-5). Guanosine also served as a substrate (Km = 2.9 x 10(-5). However, the enzyme was incapable of phosphorylizing adenosine. Adenosine proved to be useful as a competitive inhibitor and was used as a ligand for affinity chromatography of purine nucleoside phosphorylase following initial purification steps of gel filtration and ion-exchange chromatography. PMID:2111121

  9. Stimulating effect of phosphatidic acid on autophosphorylation of phosphorylase kinase.

    PubMed

    Negami, A I; Sasaki, H; Yamamura, H

    1985-09-16

    Autophosphorylation of phosphorylase kinase from rabbit skeletal muscle was stimulated by acidic phospholipids such as phosphatidic acid (PA), phosphatidylinositol, and phosphatidyl-serine. PA stimulated an initial velocity of autophosphorylation 3.8-fold. When fully autophosphorylated, about 11 mol of phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of PA and about 6.5 mol in the absence of PA. In the presence of PA (100 micrograms/ml), there was a concomitant enhancement of its kinase activity about 25-fold at pH 6.8. PA (100 micrograms/ml) sharply decreased an apparent Ka for Ca2+ on autophosphorylation from 4.0 X 10(-5) M to 1.0 X 10(-6) M. Available evidence indicates that the Ca2+-activated, PA-dependent autophosphorylation of phosphorylase kinase shows an ability to stimulate glycogen breakdown.

  10. Virus replication as a phenotypic version of polynucleotide evolution.

    PubMed

    Antoneli, Fernando; Bosco, Francisco; Castro, Diogo; Janini, Luiz Mario

    2013-04-01

    In this paper, we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius et al. (Bull. Math. Biol. 46:239-262, 1985), in their study of polynucleotide evolution. By taking into account beneficial effects, we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model, which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull et al. (J. Virol. 18:2930-2939, 2007), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium", and transient. Finally, based on these quantitative results, we are able to draw some qualitative conclusions.

  11. Journey of poly-nucleotides through OmpF porin.

    PubMed

    Hadi-Alijanvand, Hamid; Rouhani, Maryam

    2015-05-21

    OmpF is an abundant porin in many bacteria which attracts attention as a promising biological nanopore for DNA sequencing. We study the interactions of OmpF with pentameric poly-nucleotides (poly-Ns) in silico. The poly-N molecule is forced to translocate through the lumen of OmpF. Subsequently, the structural and dynamical effects of translocation steps on protein and poly-N molecules are explored in detail. The external loops of OmpF are introduced as the main region for discrimination of poly-Ns based on their organic bases. Structural network analyses of OmpF in the presence or absence of poly-Ns characterize special residues in the structural network of porin. These residues pave the way for engineering OmpF protein. The poly-N-specific pattern of OmpF's local conductance is detected in the current study. Computing the potential of mean force for translocation steps, we define the energetic barrier ahead of poly-N to move through OmpF's lumen. We suggest that fast translocation of the examined poly-N molecules through OmpF seems unattainable by small external driving forces. Our computational results suggest some abilities for OmpF porin like OmpF's potential for being used in poly-N sequencing.

  12. Phosphorylase kinase isoenzymes in deficient ICR/IAn mice.

    PubMed

    Daegelen-Proux, D; Alexandre, Y; Dreyfus, J C

    1978-10-01

    ICR/IAn mice present a deficiency in phosphorylase kinase activity; the extent of this deficiency is less in some tissues [Lyon, S.B. Biochem. Genet. 4, 169--185 (1970)] than in skeletal muscle, where enzyme activity is 0.3% of normal [Cohen, P.T. W & Cohen, P. FEBS Lett. 29, 113--115 (1973)]. New-born mice of this strain were also reported (Lyon, 1970) to reveal a small amount of skeletal muscle enzyme activity. The properties of these residual phosphorylase kinases were compared to those of control C57 BL mice, with reference to control muscle and liver enzymes which were shown to be of different molecular species [Daegelen-Proux et al. Biochim. Biophys Acta, 452, 398--405 (1976)]. The properties investigated were the immunological reactivity against an antiserum raised against muscle phosphorylase kinase, the thermal stability and the Ca2+ dependency. The results suggest that the muscle enzyme from the new-born ICR/IAn mice and the heart enzyme from adult deficient mice are different to the muscle enzyme from adult normal mice, but they have properties in common with normal adult liver enzyme. These results lead to the conclusion that there exists in the muscle of I strain a "foetal form" of phosphorylase kinase, the activity of which decreases progressively after birth. Out work also confirmed the observations made by Cohen et al. [Eur. J. Biochem. 66, 347--356 (1976)] which showed that there is no evidence for the existence of a cross-reacting material in the muscle of adult deficient mice.

  13. Glycoside phosphorylases: structure, catalytic properties and biotechnological potential.

    PubMed

    Puchart, Vladimír

    2015-01-01

    Glycoside phosphorylases (GPs) are the enzymes that reversibly phosphorolytically process glycosidic bond in sucrose (6'-phosphate), α-1,4-glucan and maltodextrins, α-glucobioses, α-1,3-oligoglucan, β-glucobioses and β-glucodextrins, chitobiose, β-galactosides and β-mannosides, and transfer non-reducing end terminal glycosyl residue to inorganic phosphate. They are modular enzymes that form biologically active homooligomers. From a mechanistic as well as structural point of view, they are similar to glycoside hydrolases or glycosyltransferases. Regardless the stereochemical outcome of the phosphorylase-catalyzed reaction (inversion or retention) the phosphorolytic cleavage of glycosidic bond is reversible, therefore glycosyl phosphates may efficiently be used for oligosaccharide synthesis. Although majority of GPs show very high substrate and positional selectivity, they might be employed for a green, inexpensive and often one-pot conversion of one sugar (cheap) to another one (expensive). This fascinating capability is due to the fact that pathways of several GPs share the same glycosyl phosphate, i.e. a product of one phosphorylase is simultaneously consumed as a substrate by another one, or even the same enzyme in a second step if the phosphorylase possesses a relaxed acceptor specificity. In some cases glycosyl phosphates may be interconverted using other auxiliary carbohydrate-active enzymes, achieving for example galactoside synthesis from gluco-configured sugar donors, thus widening synthetic potential of these biocatalysts. In comparison with common hydrolysis, the energy of glycosidic bond is not annihilated during phosphorolysis. This energetic aspect of the reactions catalyzed by GPs and their physiological role is discussed in relation to often concurrently occurring glycoside hydrolases. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  15. The Protein Interaction of RNA Helicase B (RhlB) and Polynucleotide Phosphorylase (PNPase) Contributes to the Homeostatic Control of Cysteine in Escherichia coli*

    PubMed Central

    Tseng, Yi-Ting; Chiou, Ni-Ting; Gogiraju, Rajinikanth; Lin-Chao, Sue

    2015-01-01

    PNPase, one of the major enzymes with 3′ to 5′ single-stranded RNA degradation and processing activities, can interact with the RNA helicase RhlB independently of RNA degradosome formation in Escherichia coli. Here, we report that loss of interaction between RhlB and PNPase impacts cysteine homeostasis in E. coli. By random mutagenesis, we identified a mutant RhlBP238L that loses 75% of its ability to interact with PNPase but retains normal interaction with RNase E and RNA, in addition to exhibiting normal helicase activity. Applying microarray analyses to an E. coli strain with impaired RNA degradosome formation, we investigated the biological consequences of a weakened interaction between RhlB and PNPase. We found significant increases in 11 of 14 genes involved in cysteine biosynthesis. Subsequent Northern blot analyses showed that the up-regulated transcripts were the result of stabilization of the cysB transcript encoding a transcriptional activator for the cys operons. Furthermore, Northern blots of PNPase or RhlB mutants showed that RhlB-PNPase plays both a catalytic and structural role in regulating cysB degradation. Cells expressing the RhlBP238L mutant exhibited an increase in intracellular cysteine and an enhanced anti-oxidative response. Collectively, this study suggests a mechanism by which bacteria use the PNPase-RhlB exosome-like complex to combat oxidative stress by modulating cysB mRNA degradation. PMID:26494621

  16. Polynucleotide sequence relationships among Ent plasmids and the relationship between Ent and other plasmids.

    PubMed Central

    So, M; Crosa, J H; Falkow, S

    1975-01-01

    Deoxyribonucleic acid-deoxyribonucleic acid hybridization studies reveal that the plasmids coding for the production of heat stable and heat labile enteroxtoxins of Escherichia coli, regardless of their origin, have a majority of their polynucleotide sequences in common, but are not related in any significant way to those plasmids coding for the synthesis of only ST toxin. The heat stable and heat labile plasmids also share a significant degree of their polynucleotide sequences with plasmids of the FI and FII incompatibility groups, but not with R factors belonging to the I, N, W, P, or X incompatibility groups. PMID:1090570

  17. Biochemical properties of potato phosphorylase change with its intracellular localization as revealed by immunological methods.

    PubMed

    Schneider, E M; Becker, J U; Volkmann, D

    1981-02-01

    Phosphorylase was purified from young and senescent potato tubers. Antibodies raised against the enzyme from young tubers crossreacted with phosphorylase from old tissue, although the latter exhibited different physico-chemical properties. In polyacrylamide gel electrophoresis it migrated with higher mobility, its subunit molecular weight was determined in the range of 40,000 in contrast to 100,000 of the phosphorylase in young tubers. The enzyme of senescent tubers displayed an isoelectric point of 5.4 different from the one of young tubers with 5.0, and the diffusion coefficients of the two enzymes varied. The appearance of the phosphorylase form typical for senescent tissue is connected with changes in the intracellular localization as revealed by immunofluorescence. Before massive starch accumulation is initiated, non-vacuolated subepidermal cells contain antigenically active material in their cytoplasm. During starch accumulation in fully differentiated storage parenchyma, only amyloplasts fluoresce, indicating the presence of adsorbed phosphorylase protein. Cytoplasmic phosphorylase can be detected in the continuance of senescence and, finally, after 16 months of tuber storage, the particle-bound enzyme had mostly disappeared. Simultaneously, we observed membrane destruction and decomposition on the ultrastructural level. The phosphorylase from senescent potatoes is a converted molecule and seems to be formed by proteolytic cleavage. The location of phosphorylase in the amyloplasts during starch synthesis indicates that it also plays a role in starch synthesis and not only in its degradation.

  18. Interpretation of DNA vibration modes. II--The adenosine and thymidine residues involved in oligonucleotides and polynucleotides.

    PubMed

    Letellier, R; Ghomi, M; Taillandier, E

    1987-02-01

    Normal coordinate analysis of the adenosine and thymidine residues involved in the right- and left-handed conformations of oligonucleotides and polynucleotides has been performed. The valence force field, employed in this work, allowed recently to reproduce the vibrational spectra of 2'-deoxythymidine and 2'-deoxyadenosine. The calculated wavenumbers based on a non-redundant set of internal coordinates have been compared to the Raman and infrared peak positions arising from A, B, C, D and Z conformations, in the 1550-1250 cm-1 and 800-600 cm-1 spectral regions: i.e. characteristic of adenosine and thymidine residues. Moreover, a systematic study has been performed on the evolution of the vibrational wavenumbers as a function of the glycosidic angle (chi) and the sugar pucker conformation.

  19. Role of Glycoside Phosphorylases in Mannose Foraging by Human Gut Bacteria*

    PubMed Central

    Ladevèze, Simon; Tarquis, Laurence; Cecchini, Davide A.; Bercovici, Juliette; André, Isabelle; Topham, Christopher M.; Morel, Sandrine; Laville, Elisabeth; Monsan, Pierre; Lombard, Vincent; Henrissat, Bernard; Potocki-Véronèse, Gabrielle

    2013-01-01

    To metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze β-d-Manp-1,4-β-d-GlcpNAc-1,4-d-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis. Analysis of sequence conservation within family GH130, mapped on a three-dimensional model of UhgbMP and supported by site-directed mutagenesis results, revealed two GH130 subfamilies and allowed the identification of key residues responsible for catalysis and substrate specificity. The analysis of the genomic context of 65 known GH130 sequences belonging to human gut bacteria indicates that the enzymes of the GH130_1 subfamily would be involved in mannan catabolism, whereas the enzymes belonging to the GH130_2 subfamily would rather work in synergy with glycoside hydrolases of the GH92 and GH18 families in the breakdown of N-glycans. The use of GH130 inhibitors as therapeutic agents or functional foods could thus be considered as an innovative strategy to inhibit N-glycan degradation, with the ultimate goal of protecting, or restoring, the epithelial barrier. PMID:24043624

  20. Computer-generated Model of Purine Nucleoside Phosphorylase (PNP)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Purine Nucleoside Phosphorylase (PNP) is an important target enzyme for the design of anti-cancer and immunosuppressive drugs. Bacterial PNP, which is slightly different from the human enzyme, is used to synthesize chemotherapuautic agents. Knowledge of the three-dimensional structure of the bacterial PNP molecule is useful in efforts to engineer different types of PNP enzymes, that can be used to produce new chemotherapeutic agents. This picture shows a computer model of bacterial PNP, which looks a lot like a display of colorful ribbons. Principal Investigator was Charles Bugg.

  1. Computer-generated Model of Purine Nucleoside Phosphorylase (PNP)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Purine Nucleoside Phosphorylase (PNP) is an important target enzyme for the design of anti-cancer and immunosuppressive drugs. Bacterial PNP, which is slightly different from the human enzyme, is used to synthesize chemotherapuautic agents. Knowledge of the three-dimensional structure of the bacterial PNP molecule is useful in efforts to engineer different types of PNP enzymes, that can be used to produce new chemotherapeutic agents. This picture shows a computer model of bacterial PNP, which looks a lot like a display of colorful ribbons. Principal Investigator was Charles Bugg.

  2. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-09-01

    Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

  3. Electrostatic changes in phosphorylase kinase induced by its obligatory allosteric activator Ca2+

    PubMed Central

    Priddy, Timothy S.; Middaugh, C. Russell; Carlson, Gerald M.

    2007-01-01

    Skeletal muscle phosphorylase kinase (PhK) is a 1.3-MDa hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase b. PhK has an absolute requirement for Ca2+ ions, which couples the cascade activation of glycogenolysis with muscle contraction. Ca2+ activates PhK by binding to its nondissociable calmodulin subunits; however, specific changes in the structure of the PhK complex associated with its activation by Ca2+ have been poorly understood. We present herein the first comparative investigation of the physical characteristics of highly purified hexadecameric PhK in the absence and presence of Ca2+ ions using a battery of biophysical probes as a function of temperature. Ca2+-induced differences in the tertiary and secondary structure of PhK measured by fluorescence, UV absorption, FTIR, and CD spectroscopies as low resolution probes of PhK's structure were subtle. In contrast, the surface electrostatic properties of solvent accessible charged and polar groups were altered upon the binding of Ca2+ ions to PhK, which substantially affected both its diffusion rate and electrophoretic mobility, as measured by dynamic light scattering and zeta potential analyses, respectively. Overall, the observed physicochemical effects of Ca2+ binding to PhK were numerous, including a decrease in its electrostatic surface charge that reduced particle mobility without inducing a large alteration in secondary structure content or hydrophobic tertiary interactions. Without exception, for all analyses in which the temperature was varied, the presence of Ca2+ rendered the enzyme increasingly labile to thermal perturbation. PMID:17322534

  4. Membrane Association via an Amino-terminal Amphipathic Helix Is Required for the Cellular Organization and Function of RNase II*

    PubMed Central

    Lu, Feng; Taghbalout, Aziz

    2013-01-01

    The subcellular localization of the exoribonuclease RNase II is not known despite the advanced biochemical characterization of the enzyme. Here we report that RNase II is organized into cellular structures that appear to coil around the Escherichia coli cell periphery and that RNase II is associated with the cytoplasmic membrane by its amino-terminal amphipathic helix. The helix also acts as an autonomous transplantable membrane binding domain capable of directing normally cytoplasmic proteins to the membrane. Assembly of the organized cellular structures of RNase II required the RNase II amphipathic membrane binding domain. Co-immunoprecipitation of the protein from cell extracts indicated that RNase II interacts with itself. The RNase II self-interaction and the ability of the protein to assemble into organized cellular structures required the membrane binding domain. The ability of RNase II to maintain cell viability in the absence of the exoribonuclease polynucleotide phosphorylase was markedly diminished when the RNase II cellular structures were lost due to changes in the amphipathicity of the amino-terminal helix, suggesting that membrane association and assembly of RNase II into organized cellular structures play an important role in the normal function of the protein within the bacterial cell. PMID:23344958

  5. Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II.

    PubMed

    Lu, Feng; Taghbalout, Aziz

    2013-03-08

    The subcellular localization of the exoribonuclease RNase II is not known despite the advanced biochemical characterization of the enzyme. Here we report that RNase II is organized into cellular structures that appear to coil around the Escherichia coli cell periphery and that RNase II is associated with the cytoplasmic membrane by its amino-terminal amphipathic helix. The helix also acts as an autonomous transplantable membrane binding domain capable of directing normally cytoplasmic proteins to the membrane. Assembly of the organized cellular structures of RNase II required the RNase II amphipathic membrane binding domain. Co-immunoprecipitation of the protein from cell extracts indicated that RNase II interacts with itself. The RNase II self-interaction and the ability of the protein to assemble into organized cellular structures required the membrane binding domain. The ability of RNase II to maintain cell viability in the absence of the exoribonuclease polynucleotide phosphorylase was markedly diminished when the RNase II cellular structures were lost due to changes in the amphipathicity of the amino-terminal helix, suggesting that membrane association and assembly of RNase II into organized cellular structures play an important role in the normal function of the protein within the bacterial cell.

  6. THE ACTION OF DRUGS ON FUNCTION AND PHOSPHORYLASE ACTIVITY.

    DTIC Science & Technology

    ACETYLCHOLINE, *METABOLISM, AMINES, AUTONOMIC NERVOUS SYSTEM, CARBOHYDRATES, DRUGS, EPINEPHRINE, ERGOT ALKALOIDS, GLUCOSE, GLYCOGEN, HEART, INHIBITION, LIVER, MUSCLES, RATS, RESERPINE, STIMULATION(PHYSIOLOGY)

  7. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside.

    PubMed

    Wei, Xiao-Kun; Ding, Qing-Bao; Zhang, Lu; Guo, Yong-Li; Ou, Lin; Wang, Chang-Lu

    2008-07-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells of Enterobacter aerogenes DGO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  8. Activation of glycogen phosphorylase in rat pheochromocytoma PC12 cells and isolated hepatocytes by organophosphates.

    PubMed

    Kauffman, F C; Davis, L H; Whittaker, M

    1990-01-15

    Several organophosphates including diisopropylfluorophosphonate (DPF) and a variety of compounds used as chemical warfare agents produced dose- and time-dependent increases in phosphorylase-a, the phosphorylated form of glycogen phosphorylase in rat pheochromocytoma cells, PC12, and isolated hepatocytes. Increases in phosphorylase-a did not occur in cells exposed to the carbamates, physostigmine or pyridostigmine, or to O-ethyl S-2-diisopropylaminoethylmethyl-phosphonathiolate (VX), an organophosphate which is protonated at physiological pH. When extracellular pH was increased to pH 8, VX acted like the other organophosphates and increased phosphorylase-a activity. The possibility that organophosphates increase phosphorylase-a in intact cells by releasing Ca2+ from intracellular binding sites is supported by the following findings: organophosphate-induced increases in phosphorylase-a did not correlate with changes in cyclic AMP in the two cell types studied; in PC12 cells, increases in this activity occurred in the absence of extracellular calcium and were not inhibited by the calcium channel blocker, verapamil; fluorescence of the calcium sensitive dye, Quin-2, in PC12 cells preloaded with the acetoxymethyl ester of the dye was increased by soman; finally, addition of the calcium ionophore, A23187, to PC12 cells maintained in calcium-free medium caused sarin-stimulated phosphorylase-a activity to return rapidly to basal levels. Collectively, these data argue strongly that organophosphates increase phosphorylase-a activity in intact cells via a novel mechanism involving release of calcium from intracellular binding sites.

  9. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes.

    PubMed Central

    Kirk, C J; Rodrigues, L M; Hems, D A

    1979-01-01

    The relative abilities of seven vasopressin-like peptides to activate hepatic glycogen phosphorylase and stimulate phosphate incorporation into phosphatidylinositol were compared. Although the individual peptides differed in their potencies, the concentrations required to stimulate phosphatidylinositol metabolism were always greater (about 10 times) than those needed to activate phosphorylase. The molecular specificity of the hepatic vasopressin receptor and the role of vasopressin-stimulated phosphatidylinositol turnover are discussed. PMID:444224

  10. C-Glucopyranosyl-1,2,4-triazoles As New Potent Inhibitors of Glycogen Phosphorylase

    PubMed Central

    2013-01-01

    Glycogen phosphorylase inhibitors are considered as potential antidiabetic agents. 3-(β-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles were prepared by acylation of O-perbenzoylated N1-tosyl-C-β-d-glucopyranosyl formamidrazone and subsequent removal of the protecting groups. The best inhibitor was 3-(β-d-glucopyranosyl)-5-(2-naphthyl)-1,2,4-triazole (Ki = 0.41 μM against rabbit muscle glycogen phosphorylase b). PMID:24900719

  11. Thymidine phosphorylase expression in normal and hyperplastic endometrium

    PubMed Central

    Sivridis, E.; Giatromanolaki, A.; Koukourakis, M.; Bicknell, R.; Harris, A.; Gatter, K.

    2000-01-01

    Aims—To investigate the expression of thymidine phosphorylase (TP), a known angiogenic factor for endothelial cells, in normally cycling endometrium and various forms of endometrial hyperplasia. Methods—TP expression was assessed with the P-GF.44C monoclonal antibody, using the alkaline phosphatase anti-alkaline phosphatase method. Ninety two normal and hyperplastic endometria were studied. Results—In normal proliferative endometrium, TP is found exclusively in the basal layer and the inner third of the functionalis; expression is cytoplasmic in glandular epithelium and nuclear in stromal cells. It is invariably patchy. This immunohistochemical picture remains almost unaltered during the early and mid secretory phase of the normal menstrual cycle but, most impressively, TP is expressed uniformly in the epithelium of all endometrial glands towards the end of the cycle. At this stage, expression is mixed nuclear/cytoplasmic and there is very little stromal nuclear staining. In simple endometrial hyperplasia, the staining pattern for TP is identical to normal proliferative endometrium, with a distribution that is usually limited to a few rather weakly proliferating glands and to the adjacent periglandular stroma of the deep endometrium. The distribution is more extensive in complex and atypical endometrial hyperplasias, where a mixed nuclear/cytoplasmic pattern usually prevails over the pure cytoplasmic reaction. Conclusions—TP is expressed consistently in normal and hyperplastic endometrium, suggesting a role in physiological and pathological angiogenesis. In normal endometrium, TP has a definite pattern of distribution, which is dependent on the phase of the menstrual cycle, whereas in all forms of endometrial hyperplasia the enzyme is randomly distributed and lacks an orderly pattern. Key Words: thymidine phosphorylase • normal endometrium • hyperplastic endometrium PMID:11041061

  12. Electrophoretic analysis of liver glycogen phosphorylase activation in the freeze-tolerant wood frog.

    PubMed

    Crerar, M M; David, E S; Storey, K B

    1988-08-19

    As an adaptation for overwinter survival, the wood frog, Rana sylvatica is able to tolerate the freezing of extracellular body fluids. Tolerance is made possible by the production of very high amounts of glucose in liver which is then sent to other organs where it acts as a cryoprotectant. Cryoprotectant synthesis is under the control of glycogen phosphorylase which in turn is activated in response to ice formation. To determine the mechanism of phosphorylase activation, a quantitative analysis of phosphorylase protein concentration and enzymatic activity in liver was carried out following separation of the phosphorylated a and nonphosphorylated b forms of the enzyme on native polyacrylamide gels. The results suggest that in gels, the b form is completely inactive, even in the presence of AMP and sodium sulfate, whereas the a form is active and stimulated 3-fold by these substances. Further, phosphorylase activation appears to arise solely from conversion of the b to a form of the enzyme without an increase in phosphorylase concentration or activation of a second isozyme. The quantitative analysis presented here should prove generally useful as a simple and rapid method for examining the physiological and genetic regulation of phosphorylase in animal cells.

  13. X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases

    NASA Astrophysics Data System (ADS)

    Prokofev, I. I.; Lashkov, A. A.; Gabdulkhakov, A. G.; Balaev, V. V.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-11-01

    In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data, supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2'-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation

  14. The phosphatase activity of mammalian polynucleotide kinase takes precedence over its kinase activity in repair of single strand breaks.

    PubMed

    Dobson, Caroline J; Allinson, Sarah L

    2006-01-01

    The dual function mammalian DNA repair enzyme, polynucleotide kinase (PNK), facilitates strand break repair through catalysis of 5'-hydroxyl phosphorylation and 3'-phosphate dephosphorylation. We have examined the relative activities of the kinase and phosphatase functions of PNK using a novel assay, which allows the simultaneous characterization of both activities in processing nicks and gaps containing both 3'-phosphate and 5'-hydroxyl. Under multiple turnover conditions the phosphatase activity of the purified enzyme is significantly more active than its kinase activity. Consistent with this result, phosphorylation of the 5'-hydroxyl is rate limiting in cell extract mediated-repair of a nicked substrate. On characterizing the effects of individually mutating the two active sites of PNK we find that while site-directed mutagenesis of the kinase domain of PNK does not affect its phosphatase activity, disruption of the phosphatase domain also abrogates kinase function. This loss of kinase function requires the presence of a 3'-phosphate, but it need not be present in the same strand break as the 5'-hydroxyl. PNK preferentially binds 3'-phosphorylated substrates and DNA binding to the phosphatase domain blocks further DNA binding by the kinase domain.

  15. Interaction of muscle glycogen phosphorylase b reconstituted from apoenzyme and analogs of pyridoxal-5'-phosphate with specific ligands.

    PubMed

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaya, A A; Kurganov, B I; Gunar, V I

    1996-04-01

    Phosphorylase b from rabbit skeletal muscles was reconstituted with analogs of PLP containing residues -CH(2)-CH(2)-COOH, trans-CH=CH-COOH or -C=-COOH at position 5. Replacing native coenzyme in the phosphorylase molecule with any PLP analog tested leads to the decrease in the enzyme affinity for the allosteric inhibitor, FMN. Phosphorylase b reconstituted with analogs of PLP shows the greater ability for association in tetramers in the presence of 1 mM AMP than native enzyme.

  16. Quantitative Analysis of the Nanopore Translocation Dynamics of Simple Structured Polynucleotides

    PubMed Central

    Schink, Severin; Renner, Stephan; Alim, Karen; Arnaut, Vera; Simmel, Friedrich C.; Gerland, Ulrich

    2012-01-01

    Nanopore translocation experiments are increasingly applied to probe the secondary structures of RNA and DNA molecules. Here, we report two vital steps toward establishing nanopore translocation as a tool for the systematic and quantitative analysis of polynucleotide folding: 1), Using α-hemolysin pores and a diverse set of different DNA hairpins, we demonstrate that backward nanopore force spectroscopy is particularly well suited for quantitative analysis. In contrast to forward translocation from the vestibule side of the pore, backward translocation times do not appear to be significantly affected by pore-DNA interactions. 2), We develop and verify experimentally a versatile mesoscopic theoretical framework for the quantitative analysis of translocation experiments with structured polynucleotides. The underlying model is based on sequence-dependent free energy landscapes constructed using the known thermodynamic parameters for polynucleotide basepairing. This approach limits the adjustable parameters to a small set of sequence-independent parameters. After parameter calibration, the theoretical model predicts the translocation dynamics of new sequences. These predictions can be leveraged to generate a baseline expectation even for more complicated structures where the assumptions underlying the one-dimensional free energy landscape may no longer be satisfied. Taken together, backward translocation through α-hemolysin pores combined with mesoscopic theoretical modeling is a promising approach for label-free single-molecule analysis of DNA and RNA folding. PMID:22225801

  17. Studies on responsiveness of hepatoma cells to catecholamines. IV. Lack of adrenergic activation of phosphorylase in rat ascites hepatoma cells.

    PubMed

    Miyamoto, K; Yanaoka, T; Sanae, F; Wakusawa, S; Koshiura, R

    1986-10-01

    Glycogen phosphorylase a activity in 7 rat ascites hepatoma cell lines treated with adrenergic agents, phenylephrine, epinephrine and isoproterenol, was investigated as compared with that in freshly isolated rat hepatocytes. Basal phosphorylase activities in hepatoma cells except AH7974 cells were lower than that in hepatocytes. Phosphorylase in hepatoma cells was not activated by any of the agents, while the enzyme activity in hepatocytes was clearly increased in a dose- and time-dependent manner. Phosphorylase in hepatocytes was sensitive to glucagon, but it was found to be insensitive to glucagon in all hepatoma cells. The present results suggest that rat ascites hepatoma cells may escape the glycogenolytic regulation by catecholamines and glucagon.

  18. Structure and function of the archaeal exosome.

    PubMed

    Evguenieva-Hackenberg, Elena; Hou, Linlin; Glaeser, Stefanie; Klug, Gabriele

    2014-01-01

    The RNA-degrading exosome in archaea is structurally very similar to the nine-subunit core of the essential eukaryotic exosome and to bacterial polynucleotide phosphorylase (PNPase). In contrast to the eukaryotic exosome, PNPase and the archaeal exosome exhibit metal ion-dependent, phosphorolytic activities and synthesize heteropolymeric RNA tails in addition to the exoribonucleolytic RNA degradation in 3' → 5' direction. The archaeal nine-subunit exosome consists of four orthologs of eukaryotic exosomal subunits: the RNase PH-domain-containing subunits Rrp41 and Rrp42 form a hexameric ring with three active sites, whereas the S1-domain-containing subunits Rrp4 and Csl4 form an RNA-binding trimeric cap on the top of the ring. In vivo, this cap contains Rrp4 and Csl4 in variable amounts. Rrp4 confers poly(A) specificity to the exosome, whereas Csl4 is involved in the interaction with the archaea-specific subunit of the complex, the homolog of the bacterial primase DnaG. The archaeal DnaG is a highly conserved protein and its gene is present in all sequenced archaeal genomes, although the exosome was lost in halophilic archaea and some methanogens. In exosome-containing archaea, DnaG is tightly associated with the exosome. It functions as an additional RNA-binding subunit with poly(A) specificity in the reconstituted exosome of Sulfolobus solfataricus and enhances the degradation of adenine-rich transcripts in vitro. Not only the RNA-binding cap but also the hexameric Rrp41-Rrp42 ring alone shows substrate selectivity and prefers purines over pyrimidines. This implies a coevolution of the exosome and its RNA substrates resulting in 3'-ends with different affinities to the exosome.

  19. Efficacy of intra-articular polynucleotides in the treatment of knee osteoarthritis: a randomized, double-blind clinical trial.

    PubMed

    Vanelli, Roberto; Costa, Pietro; Rossi, Stefano Marco Paolo; Benazzo, Francesco

    2010-07-01

    This randomized, double-blind clinical trial was conducted over 16 weeks to assess the efficacy and safety profile of intra-articular polynucleotides gel injections in the treatment of knee osteoarthritis associated with persistent knee pain. 60 patients were enrolled and randomized to receive intra-articular polynucleotides (n = 30) or hyaluronan (n = 30); patients received five weekly intra-articular knee injections and the follow-up period was 3 months after the end of treatment. Primary endpoint was to determine polynucleotides (PN) efficacy in reducing knee pain at the end of the study, over baseline value and over standard hyaluronan viscosupplementation (HA). Pain levels were measured using a 0-10 cm Visual Analogue Scale (VAS). Secondary endpoints included Knee Osteoarthritis Outcome Score (KOOS), NSAIDs consumption, crackling during movement and articular mobility limitation. The mean global VAS pain decreased from 5.7 + or - 1.9 cm (T0) to 1.9 + or - 1.5 cm (T16) in polynucleotide group and from 4.9 + or - 2.0 cm (T0) to 2.1 + or - 1.4 cm (T16) in hyaluronan group. The reduction in pain was statistically significant for both groups. KOOS increases from baseline values were statistically significant in both groups. No significant adverse events were reported. These findings suggest that intra-articular polynucleotides can be a valid alternative to traditional hyaluronan supplementation for the treatment of knee osteoarthritis.

  20. Glycal Formation in Crystals of Uridine Phosphorylase †‖‡

    PubMed Central

    Paul, Debamita; O'Leary, Seán E.; Rajashankar, Kanagalaghatta; Bu, Weiming; Toms, Angela; Settembre, Ethan C.; Sanders, Jennie M.; Begley, Tadhg P.; Ealick, Steven E.

    2010-01-01

    Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2′-deoxyuridine to 2′-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2′-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to act as the base required for glycal formation via deprotonation at C2′. Crystals of bovine uridine phosphorylase treated with 2′-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously-unencountered motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds. PMID:20364833

  1. [Purine and pyrimidine nucleoside phosphorylases - remarkable enzymes still not fully understood].

    PubMed

    Bzowska, Agnieszka

    2015-01-01

    Purine and pyrimidine nucleoside phosphorylases catalyze the reversible phosphorolytic cleavage of the glycosidic bond of purine and pyrimidine nucleosides, and are key enzymes of the nucleoside salvage pathway. This metabolic route is the less costly alternative to the de novo synthesis of nucleosides and nucleotides, supplying cells with these important building blocks. Interest in nucleoside phosphorylases is not only due to their important role in metabolism of nucleosides and nucleotides, but also due to the potential medical use of the enzymes (all phosphorylases in activating prodrugs - nucleoside and nucleic base analogs, high-molecular mass purine nucleoside phosphorylases in gene therapy of some solid tumors) and their inhibitors (as selective immunosuppressive, anticancer and antiparasitic agents, and preventing inactivation of other nucleoside drugs). Phosphorylases are also convenient tools for efficient enzymatic synthesis of otherwise inaccessible nucleoside analogues. In this paper the contribution of Professor David Shugar and some of his colleagues and coworkers in studies of these remarkable enzymes carried out over nearly 40 years is discussed on the background of global research in this field.

  2. Maltose phosphorylase from Lactobacillus brevis: purification, characterization, and application in a biosensor for ortho-phosphate.

    PubMed

    Hüwel, S; Haalck, L; Conrath, N; Spener, F

    1997-11-01

    With the goal to obtain maltose phosphorylase as a tool to determine ortho-phosphate, the enzyme from Lactobacillus brevis was purified to 98% by an expeditious FPLC-aided procedure which included anion exchange chromatography, gel filtration, and hydroxyapatite chromatography. The native maltose phosphorylase had a molecular mass of 196 kDa and consisted of two 88 kDa subunits. In isoelectric focusing two isoforms with pI values of 4.2 and 4.6 were observed. Maximum enzyme activity was obtained at 36 degrees C and pH 6.5 and was independent of pyridoxal 5'-phosphate. The apparent K(m) values with maltose and phosphate as substrates were 0.9 mmol l-1 and 1.8 mmol l-1, respectively. Maltose phosphorylase could be stored in 10 mM phosphate buffer pH 6.5 at 4 degrees C with a loss of activity of only 7% up to 6 months. The stability of the enzyme at high temperatures was enhanced significantly using additives like phosphate, citrate, and imidazole. The purified maltose phosphorylase was used as key enzyme in a phosphate sensor consisting of maltose phosphorylase and glucose oxidase. A detection limit of 0.1 microM phosphate was observed and the sensor response was linear in the range between 0.5 and 10 microM.

  3. Purine nucleoside phosphorylase deficiency in a patient with spastic paraplegia and recurrent infections.

    PubMed

    Ozkinay, Ferda; Pehlivan, Sacide; Onay, Huseyin; van den Berg, Paul; Vardar, Fadil; Koturoglu, Guldane; Aksu, Guzide; Unal, Durisehvar; Tekgul, Hasan; Can, Sema; Ozkinay, Cihangir

    2007-06-01

    Purine nucleoside phosphorylase deficiency is a rare autosomal recessive immunodeficiency disease. The characteristic features of the disease include severe T cell immune defects with recurrent infections, a failure to thrive, and progressive neurological findings. To date, 35 cases of purine nucleosidase phosphorylase deficiency have been reported worldwide. A 2-year-old female patient was hospitalized due to recurrent infections starting from 6 months and a fever that had continued for a month. The parents were first cousins. Physical examination showed a failure to thrive, herpetic lesions around the lips, painful lesions on the tongue and the buccal mucosa, lung infection, and spastic paraparesis in the lower extremities. She had motor and mental retardation. Laboratory tests revealed lymphopenia; low CD3, CD4, and CD8 counts; normal immunoglobulin levels; low uric acid; and very low purine nucleoside phosphorylase enzyme activity (1.4 nmol/h/mg; normal range, 490-1530). DNA sequencing of the purine nucleosidase phosphorylase gene revealed a missense homozygous mutation, a G to A transition at exon 4 position 64 (349G>A transition), which led to a substitution of alanine by threonine at codon 117 (Ala117Thr). Both parents were heterozygous for the mutation. This is the second purine nucleosidase phosphorylase deficient case to have been presented and carrying this mutation worldwide. Various antibiotics, antifungal drugs, and intravenous immunoglobulin were used to treat the infections during her 3 months. This form of treatment proved to be unresponsive, resulting in her subsequent death at 26 months of age.

  4. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc

    2017-02-07

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Inhibition and Structure of Toxoplasma gondii Purine Nucleoside Phosphorylase

    PubMed Central

    Donaldson, Teraya M.; Cassera, María B.; Ho, Meng-Chiao; Zhan, Chenyang; Merino, Emilio F.; Evans, Gary B.; Tyler, Peter C.; Almo, Steven C.; Schramm, Vern L.

    2014-01-01

    The intracellular pathogen Toxoplasma gondii is a purine auxotroph that relies on purine salvage for proliferation. We have optimized T. gondii purine nucleoside phosphorylase (TgPNP) stability and crystallized TgPNP with phosphate and immucillin-H, a transition-state analogue that has high affinity for the enzyme. Immucillin-H bound to TgPNP with a dissociation constant of 370 pM, the highest affinity of 11 immucillins selected to probe the catalytic site. The specificity for transition-state analogues indicated an early dissociative transition state for TgPNP. Compared to Plasmodium falciparum PNP, large substituents surrounding the 5′-hydroxyl group of inhibitors demonstrate reduced capacity for TgPNP inhibition. Catalytic discrimination against large 5′ groups is consistent with the inability of TgPNP to catalyze the phosphorolysis of 5′-methylthioinosine to hypoxanthine. In contrast to mammalian PNP, the 2′-hydroxyl group is crucial for inhibitor binding in the catalytic site of TgPNP. This first crystal structure of TgPNP describes the basis for discrimination against 5′-methylthioinosine and similarly 5′-hydroxy-substituted immucillins; structural differences reflect the unique adaptations of purine salvage pathways of Apicomplexa. PMID:24585883

  6. Characterization of plastidial starch phosphorylase in Triticum aestivum L. endosperm.

    PubMed

    Tickle, Paul; Burrell, Michael M; Coates, Stephen A; Emes, Michael J; Tetlow, Ian J; Bowsher, Caroline G

    2009-09-15

    Starch phosphorylase (Pho) catalyses the reversible transfer of glucosyl units from glucose1-phosphate to the non-reducing end of an alpha-1,4-linked glucan chain. Two major isoforms of Pho exist in the plastid (Pho1) and cytosol (Pho2). In this paper it is proposed that Pho1 may play an important role in recycling glucosyl units from malto-oligosaccharides back into starch synthesis in the developing wheat endosperm. Pho activity was observed in highly purified amyloplast extracts prepared from developing wheat endosperms, representing the first direct evidence of plastidial Pho activity in this tissue. A full-length cDNA clone encoding a plastidial Pho isoform, designated TaPho1, was also isolated from a wheat endosperm cDNA library. The TaPho1 protein and Pho1 enzyme activity levels were shown to increase throughout the period of starch synthesis. These observations add to the growing body of evidence which indicates that this enzyme class has a role in starch synthesis in wheat endosperm and indeed all starch storing tissues.

  7. The essential role of methylthioadenosine phosphorylase in prostate cancer

    PubMed Central

    Foster, Barbara A.; Karasik, Ellen; Gillard, Bryan; Morrison, Carl; Mohler, James; Phillips, James G.; Smiraglia, Dominic J.

    2016-01-01

    Prostatic epithelial cells secrete high levels of acetylated polyamines into the prostatic lumen. This distinctive characteristic places added strain on the connected pathways, which are forced to increase metabolite production to maintain pools. The methionine salvage pathway recycles the one-carbon unit lost to polyamine biosynthesis back to the methionine cycle, allowing for replenishment of SAM pools providing a mechanism to help mitigate metabolic stress associated with high flux through these pathways. The rate-limiting enzyme involved in this process is methylthioadenosine phosphorylase (MTAP), which, although commonly deleted in many cancers, is protected in prostate cancer. We report near universal retention of MTAP expression in a panel of human prostate cancer cell lines as well as patient samples. Upon metabolic perturbation, prostate cancer cell lines upregulate MTAP and this correlates with recovery of SAM levels. Furthermore, in a mouse model of prostate cancer we find that both normal prostate and diseased prostate maintain higher SAM levels than other tissues, even under increased metabolic stress. Finally, we show that knockdown of MTAP, both genetically and pharmacologically, blocks androgen sensitive prostate cancer growth in vivo. Our findings strongly suggest that the methionine salvage pathway is a major player in homeostatic regulation of metabolite pools in prostate cancer due to their high level of flux through the polyamine biosynthetic pathway. Therefore, this pathway, and specifically the MTAP enzyme, is an attractive therapeutic target for prostate cancer. PMID:26910893

  8. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis.

    PubMed Central

    Brown, N S; Bicknell, R

    1998-01-01

    Angiogenesis is the term used to describe the formation of new blood vessels from the existing vasculature. In order to attract new vessels, a tissue must release an endothelial-cell chemoattractant. 2-Deoxy-D-ribose is produced in vivo by the catalytic action of thymidine phosphorylase (TP) on thymidine and has recently been identified as an endothelial-cell chemoattractant and angiogenesis-inducing factor. TP, previously known only for its role in nucleotide salvage, is now known to be angiogenic. TP expression is elevated in many solid tumours and in chronically inflamed tissues, both known areas of active angiogenesis. There is evidence that TP is also involved in physiological angiogenesis such as endometrial angiogenesis during the menstrual cycle. The majority of known endothelial-cell chemoattractants are polypeptides that bind to endothelial-cell-surface receptors. In contrast, 2-deoxy-D-ribose appears to lack a cell-surface receptor. Glucose is another sugar that acts as an endothelial-cell chemoattractant. The migratory activity of glucose is blocked by ouabain. It is possible that 2-deoxy-D-ribose and glucose stimulate endothelial-cell migration via a similar mechanistic pathway. PMID:9693094

  9. Localization of thymidine phosphorylase in advanced gastric and colorectal cancer.

    PubMed

    Kobayashi, Michiya; Okamoto, Ken; Akimori, Toyokazu; Tochika, Naoshige; Yoshimoto, Tadashi; Okabayashi, Takehiro; Sugimoto, Takeki; Araki, Keijiro

    2004-01-01

    Thymidine phosphorylase (TP) is known to be more concentrated in human cancer tissues than in adjacent normal tissue based on findings using enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. However, the ultrastructural localization of TP in cancer tissues has not previously been demonstrated. We investigated the localization of TP in gastric cancer and colorectal cancer tissue by ELISA, immunohistochemistry, and immunoelectron microscopy. Between April 1997 and May 2000, we obtained surgically resected specimens from 42, 46, and 36 cases of advanced gastric, colon, and rectal cancer, respectively. ELISA demonstrated that the TP level was higher in cancer tissues than in adjacent normal tissue. Immunohistochemically, cancer cells were positive for the enzyme in some cases. However, in a number of cases immunopositive inflammatory cells were also present in cancerous tissues. At the electron microscope level, TP was diffusely distributed in the cytoplasm of cancer cells and in the mitochondria of the neutrophil in gastric cancer tissue. In rectal cancer tissues, cytoplasmic granules in macrophages in cancer tissues were immunoreactive for the TP. These findings suggest that TP is produced by macrophages and exists in neutrophils and cancer cells.

  10. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    PubMed Central

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-01-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose. PMID:27748409

  11. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    NASA Astrophysics Data System (ADS)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-10-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  12. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.

    PubMed

    Devendran, Saravanan; Abdel-Hamid, Ahmed M; Evans, Anton F; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I; Cann, Isaac

    2016-10-17

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  13. Transition state analysis of the arsenolytic depyrimidination of thymidine by human thymidine phosphorylase.

    PubMed

    Schwartz, Phillip A; Vetticatt, Mathew J; Schramm, Vern L

    2011-03-01

    Human thymidine phosphorylase (hTP) is responsible for thymidine (dT) homeostasis, promotes angiogenesis, and is involved in metabolic inactivation of antiproliferative agents that inhibit thymidylate synthase. Understanding its transition state structure is on the path to design transition state analogues. Arsenolysis of dT by hTP permits kinetic isotope effect (KIE) analysis of the reaction by forming thymine and the chemically unstable 2-deoxyribose 1-arsenate. The transition state for the arsenolytic reaction was characterized using multiple KIEs and computational analysis. Transition state analysis revealed a concerted bimolecular (A(N)D(N)) mechanism. A transition state constrained to match the intrinsic KIE values was found using density functional theory (B3LYP/6-31G*). An active site histidine is implicated as the catalytic base responsible for activation of the arsenate nucleophile and stabilization of the thymine leaving group during the isotopically sensitive step. At the transition state, the deoxyribose ring exhibits significant oxocarbenium ion character with bond breaking (r(C-N) = 2.45 Å) nearly complete and minimal bond making to the attacking nucleophile (r(C-O) = 2.95 Å). The transition state model predicts a deoxyribose conformation with a 2'-endo ring geometry. Transition state structure for the slow hydrolytic reaction of hTP involves a stepwise mechanism [Schwartz, P. A., Vetticatt, M. J., and Schramm, V. L. (2010) J. Am. Chem. Soc. 132, 13425-13433], in contrast to the concerted mechanism described here for arsenolysis.

  14. The kinetic mechanism of Human Thymidine Phosphorylase - a molecular target for cancer drug development.

    PubMed

    Deves, Candida; Rostirolla, Diana Carolina; Martinelli, Leonardo Kras Borges; Bizarro, Cristiano Valim; Santos, Diogenes Santiago; Basso, Luiz Augusto

    2014-03-04

    Human Thymidine Phosphorylase (HTP), also known as the platelet-derived endothelial cell growth factor (PD-ECGF) or gliostatin, catalyzes the reversible phosphorolysis of thymidine (dThd) to thymine and 2-deoxy-α-d-ribose-1-phosphate (2dR1P). HTP is a key enzyme in the pyrimidine salvage pathway involved in dThd homeostasis in cells. HTP is a target for anticancer drug development as its enzymatic activity promotes angiogenesis. Here, we describe cloning, expression, and purification to homogeneity of recombinant TYMP-encoded HTP. Peptide fingerprinting and the molecular mass value of the homogenous protein confirmed its identity as HTP assessed by mass spectrometry. Size exclusion chromatography showed that HTP is a dimer in solution. Kinetic studies revealed that HTP displayed substrate inhibition for dThd. Initial velocity and isothermal titration calorimetry (ITC) studies suggest that HTP catalysis follows a rapid-equilibrium random bi-bi kinetic mechanism. ITC measurements also showed that dThd and Pi binding are favorable processes. The pH-rate profiles indicated that maximal enzyme activity was achieved at low pH values. Functional groups with apparent pK values of 5.2 and 9.0 are involved in dThd binding and groups with pK values of 6.1 and 7.8 are involved in phosphate binding.

  15. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer.

    PubMed

    Bera, Hriday; Chigurupati, Sridevi

    2016-11-29

    Thymidine phosphorylase (TP, EC 2.4.2.4), an enzyme involved in pyrimidine salvage pathway, is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is extremely upregulated in a variety of solid tumours. The TP amplification is associated with concomitant overexpression of many angiogenic factors such as matrix metalloproteases (MMPs), interleukins (ILs), vascular endothelial growth factor (VEGF) etc., resulting in promotion of angiogenesis and cancer metastasis. In addition, overshooting TP level protects tumour cells from apoptosis and helps cell survival. Thus, TP is identified as a prime target for developing novel anticancer therapies. Pioneering research activities investigated a large number of TP inhibitors, most of which are pyrimidine or purine analogues. Recently, an array of structurally diverse non-nucleobase derivatives was designed, synthesized and established as promising TP inhibitors. This review, following an outline on the TP structure and functions, gives an overview of the recent advancement of various non-nucleobase TP inhibitors as novel anti-cancer agents.

  16. Trapping of DNA-reactive metabolites of therapeutic or carcinogenic agents by /sup 14/C-labeled synthetic polynucleotides

    SciTech Connect

    Mehta, J.R.; Ludlum, D.B.

    1982-08-01

    Many substances which do not react with DNA directly are metabolized into important DNA-modifying intermediates. We have devised a method for trapping these intermediates with /sup 14/C-labeled nucleosides contained in a synthetic polynucleotide. The polynucleotide structure protects the labeled nucleoside from metabolism; thus, it is unaltered when the polymer is incubated with a drug-metabolizing system. However, when the polymer is incubated with this system and a compound which can be metabolized into a reactive species, these intermediates are trapped by the /sup 14/C-labeled nucleoside and subsequently are detected as new peaks of radioactivity in a digest of the labeled polynucleotide. This system has been used to detect reactive intermediates of cyclophosphamide generated by a liver homogenate.

  17. Mechanism of the phosphatase component of Clostridium thermocellum polynucleotide kinase-phosphatase.

    PubMed

    Keppetipola, Niroshika; Shuman, Stewart

    2006-01-01

    Polynucleotide kinase-phosphatase (Pnkp) from Clostridium thermocellum catalyzes ATP-dependent phosphorylation of 5'-OH termini of DNA or RNA polynucleotides and Ni(2+)/Mn(2+)-dependent dephosphorylation of 2',3' cyclic phosphate, 2'-phosphate, and 3'-phosphate ribonucleotides. CthPnkp is an 870-amino-acid polypeptide composed of three domains: an N-terminal module similar to bacteriophage T4 polynucleotide kinase, a central module that resembles the dinuclear metallo-phosphoesterase superfamily, and a C-terminal ligase-like adenylyltransferase domain. Here we conducted a mutational analysis of CthPnkp that identified 11 residues required for Ni(2+)-dependent phosphatase activity with 2'-AMP and 3'-AMP. Eight of the 11 CthPnkp side chains were also required for Ni(2+)-dependent hydrolysis of p-nitrophenyl phosphate. The ensemble of essential side chains includes the conserved counterparts (Asp187, His189, Asp233, Arg237, Asn263, His264, His323, His376, and Asp392 in CthPnkp) of all of the amino acids that form the dinuclear metal-binding site and the phosphate-binding site of bacteriophage lambda phosphatase. Three residues (Asp236, His264, and Arg237) required for activity with 2'-AMP or 3'-AMP were dispensable for Ni(2+)-dependent hydrolysis of p-nitrophenyl phosphate. Our findings, together with available structural information, provide fresh insights to the metallophosphoesterase mechanism, including the roles of His264 and Asp236 in proton donation to the leaving group. Deletion analysis defined an autonomous phosphatase domain, CthPnkp-(171-424).

  18. Synthesis, screening and docking of small heterocycles as glycogen phosphorylase inhibitors.

    PubMed

    Schweiker, Stephanie S; Loughlin, Wendy A; Lohning, Anna S; Petersson, Maria J; Jenkins, Ian D

    2014-09-12

    A series of morpholine substituted amino acids (phenylalanine, leucine, lysine and glutamic acid) was synthesized. A fragment-based screening approach was then used to evaluate a series of small heterocycles, including morpholine, oxazoline, dihydro-1,3-oxazine, tetrahydro-1,3-oxazepine, thiazoline, tetrahydro-1,3-pyrimidine, tetrahydro-1,3-diazepine and hexahydro-1H-benzimidazole, as potential inhibitors of Glycogen Phosphorylase a. Thiazoline 7 displayed an improved potency (IC50 of 25 μM) and had good LE and LELP values, as compared to heterocycles 1, 5, 9-13 and 19 (IC50 values of 1.1 mM-23.9 mM). A docking study using the crystal structure of human liver Glycogen Phosphorylase, provided insight into the interactions of heterocycles 5, 7, 9-13 and 19 with Glycogen Phosphorylase.

  19. Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation.

    PubMed

    Chomvong, Kulika; Lin, Eric; Blaisse, Michael; Gillespie, Abigail E; Cate, Jamie H D

    2017-02-17

    Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks only a single hydroxymethyl group relative to glucose, from binding to the CBP active site poses a spatial challenge for protein engineering, since simple steric occlusion cannot be used to block xylose binding without also preventing glucose binding. Using CRISPR-based chromosomal library selection, we identified a distal mutation in CBP, Y47H, responsible for improved cellobiose consumption in the presence of xylose. In silico analysis suggests this mutation may alter the conformation of the cellobiose phosphorylase dimer complex to reduce xylose binding to the active site. These results may aid in engineering carbohydrate phosphorylases for improved specificity in biofuel production, and also in the production of industrially important oligosaccharides.

  20. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    SciTech Connect

    Grenha, Rosa; Levdikov, Vladimir M.; Fogg, Mark J.; Blagova, Elena V.; Brannigan, James A. Wilkinson, Anthony J.; Wilson, Keith S.

    2005-05-01

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium.

  1. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    PubMed Central

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  2. Stretch-Induced Hairpin-Coil Transitions in Designed Polynucleotide Chains

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun; Zhang, Yang; Ou-Yang, Zhong-Can

    2001-01-01

    The structural property of a poly( dG-dC) or poly( dA-dT) nucleotide is investigated. At low force and room temperatures, the polymer takes on compact hairpin structures. An abrupt transition from hairpin to random coil occurs at certain critical forces, its high cooperativity is related to the unfavorable formation of hairpin and other kinds of looped structures. It is hence necessary to consider the enthalpic effects of single-stranded loops in realistic models of RNA folding. A possible new way to obtain the statistical weights of elementary nucleotide arrangements is by single-macromolecular mechanical measurements on specifically designed polynucleotides.

  3. Theoretical calculations of base-base interactions in nucleic acids: II. Stacking interactions in polynucleotides.

    PubMed Central

    Gupta, G; Sasisekharan, V

    1978-01-01

    Base-base interactions were computed for single- and double stranded poly,ucleotides, for all possible base sequences. In each case, both right and left stacking arrangements are energetically possible. The preference of one over the other depends upon the base-sequence and the orientation of the bases with respect to helix-axis. Inverted stacking arrangement is also energetically possible for both single- and double-stranded polynucleotides. Finally, interacting energies of a regular duplex and the alternative structures were compared. It was found that the type II model is energetically more favourable than the rest. PMID:662698

  4. [Amino acid composition of polynucleotide-peptide complexes isolated from algae].

    PubMed

    Pusheva, M A; Khoreva, M A

    1977-01-01

    The amino acid composition of the peptide moiety of sulphur containing polynucleotide-peptide complexes (S-PNPC) was studied with four species of green algae and two species of blue-green algae. S-PNPC contained almost all amino acids which were usually encountered in acid hydrolysates of proteins, and also unidentified ninhydrin-positive compounds. The amino acid composition of the peptide moiety of S-PNPC was rather similar in the case of different algae, and was characterized by the prevailence of acid amino acids.

  5. X-linked dominant inheritance of partial phosphorylase kinase deficiency in mice.

    PubMed

    Varsányi, M; Vrbica, A; Heilmeyer, L M

    1980-04-01

    A new mouse strain, the V strain, with a partial deficiency of phosphorylase kinase has been established. The deficiency is caused by an X-linked dominant gene (PhKc). Muscle extracts of homozygous and heterozygous females and hemizygous males have about 25% of the activity found in extracts of normal (C3H/HeHan) mice. This dominant phosphorylase kinase deficiency of the new V strain is different from that of the I-strain mice with the X-linked recessive deficiency of skeletal muscle phosphorylase kinase. The muscle extracts of V-strain and normal mice contain the same phosphorylase phosphatase activity of about 1 U/mg. Heart and liver extracts from V mice contained about 50% and 66%, respectively, of the phosphorylase kinase activity compared to that found in the same organs from the normal mice. The glycogen content of the skeletal muscle of the V strain was normal, i.e., 0.9 mg/g. Phosphorylase kinase was purified from the skeletal muscle of the V strain by (a) hydrophobic chromatography on methylamine Sepharose, (b) ammonium sulfate precipitation, and (c) gel filtration of Sepharose 4B. The enzyme has a similar structure to the normal murine and rabbit skeletal muscle enzyme, except that the proportion of the subunits differs. The molar ratio of the subunits of the V strain mice is (alpha + alpha'):beta:gamma=0.54:1:1.169, in comparison with that of the rabbit (alpha + alpha'):beta:gamma=1.1:1.0:1.0 and that of normal murine enzyme 0.9:1.0:0.7.

  6. In situ enzymatic removal of orthophosphate by the nucleoside phosphorylase catalyzed phosphorolysis of nicotinamide riboside.

    PubMed

    Shriver, J W; Sykes, B D

    1982-09-01

    An enzymatic orthophosphate removal system is described which can be effectively used to continuously remove orthophosphate from biochemical samples. The phosphorolysis of nicotinamide riboside is catalyzed by calf spleen nucleoside phosphorylase to give ribose-1-PO4 and nicotinamide along with a proton. At pH 8 the production of ribose-1-PO4 from orthophosphate is essentially quantitative. This reaction can be monitored optically or by 31P nuclear magnetic resonance (NMR). Equations are given for determining the time required to remove a given amount of phosphate from a typical NMR sample with a known amount of nucleoside phosphorylase. The effects of a competing orthophosphate-producing reaction are considered.

  7. Dihedral-based segment identification and classification of biopolymers II: polynucleotides.

    PubMed

    Nagy, Gabor; Oostenbrink, Chris

    2014-01-27

    In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400541d), we introduce a new algorithm for structure classification of biopolymeric structures based on main-chain dihedral angles. The DISICL algorithm (short for DIhedral-based Segment Identification and CLassification) classifies segments of structures containing two central residues. Here, we introduce the DISICL library for polynucleotides, which is based on the dihedral angles ε, ζ, and χ for the two central residues of a three-nucleotide segment of a single strand. Seventeen distinct structural classes are defined for nucleotide structures, some of which--to our knowledge--were not described previously in other structure classification algorithms. In particular, DISICL also classifies noncanonical single-stranded structural elements. DISICL is applied to databases of DNA and RNA structures containing 80,000 and 180,000 segments, respectively. The classifications according to DISICL are compared to those of another popular classification scheme in terms of the amount of classified nucleotides, average occurrence and length of structural elements, and pairwise matches of the classifications. While the detailed classification of DISICL adds sensitivity to a structure analysis, it can be readily reduced to eight simplified classes providing a more general overview of the secondary structure in polynucleotides.

  8. Dihedral-Based Segment Identification and Classification of Biopolymers II: Polynucleotides

    PubMed Central

    2013-01-01

    In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400541d), we introduce a new algorithm for structure classification of biopolymeric structures based on main-chain dihedral angles. The DISICL algorithm (short for DIhedral-based Segment Identification and CLassification) classifies segments of structures containing two central residues. Here, we introduce the DISICL library for polynucleotides, which is based on the dihedral angles ε, ζ, and χ for the two central residues of a three-nucleotide segment of a single strand. Seventeen distinct structural classes are defined for nucleotide structures, some of which—to our knowledge—were not described previously in other structure classification algorithms. In particular, DISICL also classifies noncanonical single-stranded structural elements. DISICL is applied to databases of DNA and RNA structures containing 80,000 and 180,000 segments, respectively. The classifications according to DISICL are compared to those of another popular classification scheme in terms of the amount of classified nucleotides, average occurrence and length of structural elements, and pairwise matches of the classifications. While the detailed classification of DISICL adds sensitivity to a structure analysis, it can be readily reduced to eight simplified classes providing a more general overview of the secondary structure in polynucleotides. PMID:24364355

  9. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase.

    PubMed

    Kawahara, Ryosuke; Saburi, Wataru; Odaka, Rei; Taguchi, Hidenori; Ito, Shigeaki; Mori, Haruhide; Matsui, Hirokazu

    2012-12-07

    Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-D-glucosyl-D-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-D-mannosyl-D-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-D-mannosyl 1-phosphate (Man1P) and D-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward D-glucose and 6-deoxy-D-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on D-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N'-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than D-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.

  10. Double knockout mutants of Arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism.

    PubMed

    Malinova, Irina; Mahlow, Sebastian; Alseekh, Saleh; Orawetz, Tom; Fernie, Alisdair R; Baumann, Otto; Steup, Martin; Fettke, Joerg

    2014-02-01

    In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1×phs1a and mex1×phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1×phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants.

  11. X-linked liver phosphorylase kinase deficiency is associated with mutations in the human liver phosphorylase kinase alpha subunit.

    PubMed Central

    van den Berg, I E; van Beurden, E A; Malingré, H E; van Amstel, H K; Poll-The, B T; Smeitink, J A; Lamers, W H; Berger, R

    1995-01-01

    Two Dutch patients with liver phosphorylase kinase (PhK) deficiency were studied for abnormalities in the PhK liver alpha (alpha L) subunit mRNA by reversed-transcribed-PCR (RT-PCR) and RNase protection assays. One patient, belonging to a large Dutch family that expresses X-linked liver PhK deficiency, had a C3614T mutation in the PhK alpha L coding sequence. The C3614T mutation leads to replacement of proline 1205 with leucine, which changes the composition of an amino acid region, containing amino acids 1195-1214 of the PhK alpha L subunit, that is highly conserved in different species. The patient showed normal levels of PhK alpha L mRNA. The second patient, from an unrelated family, was found to have a TCT (bp 419-421) deletion in the PhK alpha L coding sequence, resulting in a phenylalanine 141 deletion. The same deletion was found in the PhK alpha L coding sequence from lymphocytes of the patient's mother, together with a normal PhK alpha L coding sequence. The phenylalanine that is absent in the PhK alpha L coding sequence of the second patient is a highly conserved amino acid between species. Both the C3614T mutation and the TCT (bp 419-421) deletion were not found in a panel of 80 control X chromosomes. On the basis of these results, it is postulated that the mutations found are responsible for liver PhK deficiency in the two patients investigated. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7847371

  12. Cloned polynucleotide and synthetic oligonucleotide probes used in colony hybridization are equally efficient in the identification of enterotoxigenic Escherichia coli

    SciTech Connect

    Sommerfelt, H.; Kalland, K.H.; Raj, P.; Moseley, S.L.; Bhan, M.K.; Bjorvatn, B.

    1988-11-01

    Restriction endonuclease-generated polynucleotide and synthetically produced oligonucleotide gene probes used in colony hybridization assays proved to be efficient for the detection and differentiation of enterotoxigenic Escherichia coli. To compare their relative efficiencies, these two sets of probes were radiolabeled with /sup 32/P and were applied to 74 strains of E. coli with known enterotoxin profiles and to 156 previously unexamined E. coli isolates. The enterotoxigenic bacteria Vibrio cholerae O1, Vibrio cholerae non-O1 (NAG), Yersinia enterocolitica, and E. coli harboring the plasmid vectors of the polynucleotide gene probes were examined for further evaluation of probe specificity. The two classes of probes showed a perfect concordance in their specific detection and differentiation of enterotoxigenic E. coli. In the analysis of six strains, the signal strength on autoradiography after hybridization with oligonucleotides was weaker than that obtained after hybridization with polynucleotide probes. The probes did not hybridize with DNA from V. cholerae O1, V. cholerae non-O1 (NAG), or Y. enterocolitica. The strains of E. coli harboring the plasmid vectors of the polynucleotide gene probes were, likewise, negative in the hybridization assays.

  13. Metabolism of the reserve polysaccharide of Streptococcus mitior (mitis): is there a second alpha-1,4-glucan phosphorylase?

    PubMed Central

    Pulkownik, A; Walker, G J

    1976-01-01

    The alpha-1,4-glucan phosphorylase (alpha-1,4-glucan: orthophosphate glucosyltransferase; EC 2.4.1.1) associated with the particulate cell fraction of Streptococcus mitior strain S3 was compared with the soluble maltodextrin phosphorylase that had been previously isolated from the same organism (Walker et al., 1969). The particulate enzyme was more sensitive to the glycogen content of the cell than the soluble euzyme; its activity was highest when the cells were grown under conditions favoring high glycogen storage. Substrate specificities of the two high activity towards endogenous glycogen, whereas low-molecular-weight maltodextrins were the preferred substrates for the soluble phosphorylase. The purification of the particulate phosphorylase included incubation of the particulate fraction in 160 mM sodium phosphate-10 mM sodium citrate-0.1% (wt/vol) Triton X-100 buffer (pH 6.7) and ion-exchange chromatography on diethylamino-ethyl- Sephadex A-50. The purified enzyme was fully soluble. The value for the purification factor was variable and depended on (i) the substrate used and (ii) whether the synthetic or the degradative reaction was being measured. The solubilization resulted in considerable changes in the properties of the phosphorylase: the pH optimum for activity was raised from 6.0 to 7.0-7.5 and the substrate specificity was altered. Consequently, the purified enzyme bore greater similarity to the soluble maltodextrin phosphorylase. The reported results are best explained in terms of a single phosphorylase, the specificity which is determind by its binding state in the cell. The enzyme acts as a glycogen phosphorylase in the particulate state and as a maltodextrin phosphorylase when soluble. The equilibrium between the two forms is related to the glycogen content of the cells. PMID:6434

  14. Hormonal stimulation of cyclic AMP accumulation and glycogen phosphorylase activity in calcium-depleted hepatocytes from euthyroid and hypothyroid rats.

    PubMed Central

    Malbon, C C; Gilman, H R; Fain, J N

    1980-01-01

    Activation of glycogen phosphorylase by hormones was examined in hepatocytes isolated from euthyroid and hypothyroid female rats and incubated by Ca2+-free buffer containing 1 mM-EGTA. Basal glycogen phosphorylase activity was decreased in Ca2+-free buffer. However, the activation of hepatocyte glycogen phosphorylase, in the absence of extracellular Ca2+, in response to adrenaline, glucagon or phenylephrine was slightly lower, whereas that by vasopressin was abolished. The activation of glycogen phosphorylase by phenylephrine, adrenaline or isoproterenol (isoprenaline) in hepatocytes from euthyroid rats incubated in the absence of Ca2+ was not accompanied by any detectable increase in total cyclic AMP. The log-dose/response curves for activation of phosphorylase by phenylephrine or low concentrations of adrenaline were the same in hepatocytes from hypothyroid as compared wit euthyroid rats, whereas the response to isoproterenol was greater in hepatocytes from hypothyroid rats. However, the increases in total cyclic AMP accumulation caused by adrenaline or isoproterenol were greater in hepatocytes from hypothyroid rats than in hepatocytes from euthyroid rats. The increases in cyclic AMP accumulation caused by adrenaline or isoproterenol in Ca2+-depleted hepatocytes from hypothyroid rats were blocked by propranolol, a beta-adrenergic antagonist. In contrast, propranolol was only partially effective asan inhibitor of the activation of glycogen phosphorylase by phenylephrine or adrenaline in hepatocytes from hypothyroid rats and ineffective on phosphorylase activation in cells from euthyroid rats. These data indicate that the alpha-adrenergic activation of glycogen phosphorylase is not affected by the absence of extracellular Ca2+, and the extent to which total cyclic AMP was increased by adrenergic amines did not correlate with glycogen phosphorylase activation. PMID:6258557

  15. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. 13C and 31P NMR for the diagnosis of muscular phosphorylase-kinase deficiency

    NASA Astrophysics Data System (ADS)

    Jehenson, P.; Duboc, D.; Laforet, P.; Eymard, B.; Lombès, A.; Fardeau, M.; Brunet, P.; Syrota, A.

    1998-02-01

    To further develop and specify the range of medical applications of in vivo NMR spectroscopy for the study of myopathies, it is ncessary to study the largest number of well characterized cases. We here report on the 31P and 13C NMR study of a purely muscular form of phosphorylase-kinase (PK) deficiency. Abnormalities were observed that agree with and increase our pathophysiological knowledge, in particular on the activation of phosphorylase and PK. Also, the abnormalities are different from those found in other clinically similar metabolic myopathies and could be used for the differential diagnosis. Afin de continuer à développer et préciser les applications médicales de la spectroscopie RMN in vivo, il faut étudier le plus grand nombre possible de cas bien caractérisés. Nous avons étudié ici une forme purement musculaire de déficit en phosphorylase-kinase (PK) par RMN du phosphore 31 et du carbone 13. Les altérations observées sont en accord avec et augmentent nos connaissances physiopathologiques, par exemple concernant l'activation de la phosphorylase et PK. Par ailleurs, la combinaison d'altérations observées en 31P et 13C est différente de celle retrouvée dans d'autres myopathies métaboliques cliniquement semblables et pourrait être utilisée pour le diagnostic différentiel.

  17. Role of phosphorylase in the mechanism of potato minituber storage cell changes during clinorotation

    NASA Astrophysics Data System (ADS)

    Nedukha, O.; Shnyukova, E.

    The differences between the cytochemical reaction intensity and activity of phosphorylase (EC 2.4.1.1) and carbohydrate content in storage parenchyma cells of Solanum tuberosum L. (cv Adreta) minitubers grown for 30 days in the horizontal clinostate (2 rev/min) and in the control have been studied by electroncytochemical and biochemical methods. It is established an acceleration of minitubers formation and storage parenchyma cell differentiation at clinorotation. Electroncytochemical investigation of phosphorylase activity localization in the storage parenchyma cells of minitubers grown in control and at clinorotation showed the product of the reaction as electron-dense precipitate was marked plastids. Intensity and density of precipitate was increase in stroma of plastids and on starch grain surface during of intensive growth of starch in amyloplast (on 10- and 20-days of the minituber formation) of clinorotated minitubers in comparison with that in the control. The precipitate amount was decreased in the plastids on 30 day of growth in both variants. Using biochemical methods it is found that activity of phosphorylase and content of mono- and disaccharide and also starch content changed in minitubers formed during clinorotation and in the control. Data obtained are discussed regarding the possible mechanism of phosphorylase activity change and the role of mono- and disaccharide in acceleration of storage organ formation during clinorotation.

  18. Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure.

    PubMed Central

    Tsitsanou, K. E.; Oikonomakos, N. G.; Zographos, S. E.; Skamnaki, V. T.; Gregoriou, M.; Watson, K. A.; Johnson, L. N.; Fleet, G. W.

    1999-01-01

    The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase. PMID:10211820

  19. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    SciTech Connect

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  20. Evidence for purine nucleoside phosphorylase (PNP) release from rat C6 glioma cells.

    PubMed

    Giuliani, Patricia; Zuccarini, Mariachiara; Buccella, Silvana; Peña-Altamira, Luis Emiliano; Polazzi, Elisabetta; Virgili, Marco; Monti, Barbara; Poli, Alessandro; Rathbone, Michel P; Di Iorio, Patrizia; Ciccarelli, Renata; Caciagli, Francesco

    2017-04-01

    Intracellular purine turnover is mainly oriented to preserving the level of triphosphate nucleotides, fundamental molecules in vital cell functions that, when released outside cells, act as receptor signals. Conversely, high levels of purine bases and uric acid are found in the extracellular milieu, even in resting conditions. These compounds could derive from nucleosides/bases that, having escaped to cell reuptake, are metabolized by extracellular enzymes similar to the cytosolic ones. Focusing on purine nucleoside phosphorylase (PNP) that catalyzes the reversible phosphorolysis of purine (deoxy)-nucleosides/bases, we found that it is constitutively released from cultured rat C6 glioma cells into the medium, and has a molecular weight and enzyme activity similar to the cytosolic enzyme. Cell exposure to 10 μM ATP or guanosine triphosphate (GTP) increased the extracellular amount of all corresponding purines without modifying the levels/activity of released PNP, whereas selective activation of ATP P2Y1 or adenosine A2A metabotropic receptors increased PNP release and purine base formation. The reduction to 1% in oxygen supply (2 h) to cells decreased the levels of released PNP, leading to an increased presence of extracellular nucleosides and to a reduced formation of xanthine and uric acid. Conversely, 2 h cell re-oxygenation enhanced the extracellular amounts of both PNP and purine bases. Thus, hypoxia and re-oxygenation modulated in opposite manner the PNP release/activity and, thereby, the extracellular formation of purine metabolism end-products. In conclusion, extracellular PNP and likely other enzymes deputed to purine base metabolism are released from cells, contributing to the purinergic system homeostasis and exhibiting an important pathophysiological role. © 2017 International Society for Neurochemistry.

  1. Thermodynamics of the Purine Nucleoside Phosphorylase Reaction Revealed by Computer Simulations.

    PubMed

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2017-01-10

    Enzymes are able to catalyze chemical reactions by reducing the activation free energy, yielding significant increases in the reaction rates. This can thermodynamically be accomplished by either reducing the activation enthalpy or increasing the activation entropy. The effect of remote mutations on the thermodynamic activation parameters of human purine nucleoside phosphorylase is examined using extensive molecular dynamics and free energy simulations. More than 2700 independent reaction free energy profiles for six different temperatures have been calculated to obtain high-precision computational Arrhenius plots. On the basis of these, the activation enthalpies and entropies were computed from linear regression of the plots with ΔG(⧧) as a function of 1/T, and the obtained thermodynamic activation parameters are in very good agreement with those from experiments. The Arrhenius plots immediately show that the 6-oxopurines (INO and GUO) have identical slopes, whereas the 6-aminopurine (ADO) has a significantly different slope, indicating that the substrate specificity is related to the difference in thermodynamic activation parameters. Furthermore, the calculations show that the human PNP specificity for 6-oxopurines over 6-aminopurines originates from significant differences in electrostatic preorganization. The effect of the remote double mutation, K22E and H104R (E:R), has also been examined, as it alters human PNP toward the bovine PNP. These residues are situated on the protein surface, 28-35 Å from the active site, and the mutation alters the enthalpy-entropy balance with little effect on the catalytic rates. It is thus quite remarkable that the empirical valence bond method can reproduce the enthalpies and entropies induced by these long-range mutations.

  2. Molecular Mechanisms of Allosteric Inhibition of Brain Glycogen Phosphorylase by Neurotoxic Dithiocarbamate Chemicals.

    PubMed

    Mathieu, Cécile; Bui, Linh-Chi; Petit, Emile; Haddad, Iman; Agbulut, Onnik; Vinh, Joelle; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2017-02-03

    Dithiocarbamates (DTCs) are important industrial chemicals used extensively as pesticides and in a variety of therapeutic applications. However, they have also been associated with neurotoxic effects and in particular with the development of Parkinson-like neuropathy. Although different pathways and enzymes (such as ubiquitin ligases or the proteasome) have been identified as potential targets of DTCs in the brain, the molecular mechanisms underlying their neurotoxicity remain poorly understood. There is increasing evidence that alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. Interestingly, recent studies with N,N-diethyldithiocarbamate suggest that brain glycogen phosphorylase (bGP) and glycogen metabolism could be altered by DTCs. Here, we provide molecular and mechanistic evidence that bGP is a target of DTCs. To examine this system, we first tested thiram, a DTC pesticide known to display neurotoxic effects, observing that it can react rapidly with bGP and readily inhibits its glycogenolytic activity (kinact = 1.4 × 10(5) m(-1) s(-1)). Using cysteine chemical labeling, mass spectrometry, and site-directed mutagenesis approaches, we show that thiram (and certain of its metabolites) alters the activity of bGP through the formation of an intramolecular disulfide bond (Cys(318)-Cys(326)), known to act as a redox switch that precludes the allosteric activation of bGP by AMP. Given the key role of glycogen metabolism in brain functions and neurodegeneration, impairment of the glycogenolytic activity of bGP by DTCs such as thiram may be a new mechanism by which certain DTCs exert their neurotoxic effects.

  3. Characterization of the 2',3' cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage lambda phosphatase.

    PubMed

    Keppetipola, Niroshika; Shuman, Stewart

    2007-01-01

    Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5' and 3' end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage lambda phosphatase (lambda-Pase). CthPnkp is a Ni(2+)/Mn(2+)-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn(2+)-dependent 2',3' cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2',3' cyclic phosphate to a 3',5' cyclic phosphate. A single H189D mutation imposes strict specificity for a 2',3' cyclic phosphate, which is cleaved to form a single 2'-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and k(cat). We also characterize a previously unrecognized phosphodiesterase activity of lambda-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. lambda-Pase also has cyclic phosphodiesterase activity with nucleoside 2',3' cyclic phosphates, which it hydrolyzes to yield a mixture of 2'-NMP and 3'-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.

  4. Formation of the triple-stranded polynucleotide helix, poly(A.A.U).

    PubMed

    Broitman, S L; Im, D D; Fresco, J R

    1987-08-01

    A polynucleotide helical structure containing two strands of poly(A) and one of poly(U) is reported. As shown by spectroscopic observations, the complex only forms when the poly(A) strands are of Mr between 9000 and 50,000 (degree of polymerization congruent to 28-150), whereas the size of the poly(U) strand has no effect. This limitation may explain why poly(A.A.U) was not seen in previous investigations. The potential of the poly(A) tails of mRNA for formation of this triple helix and of A.A.U or/and A.A.T triplet formation to contribute to the binding of specific RNA strands to gene-encoding nucleic acid double helices are noted.

  5. Formation of the triple-stranded polynucleotide helix, poly(A.A.U).

    PubMed Central

    Broitman, S L; Im, D D; Fresco, J R

    1987-01-01

    A polynucleotide helical structure containing two strands of poly(A) and one of poly(U) is reported. As shown by spectroscopic observations, the complex only forms when the poly(A) strands are of Mr between 9000 and 50,000 (degree of polymerization congruent to 28-150), whereas the size of the poly(U) strand has no effect. This limitation may explain why poly(A.A.U) was not seen in previous investigations. The potential of the poly(A) tails of mRNA for formation of this triple helix and of A.A.U or/and A.A.T triplet formation to contribute to the binding of specific RNA strands to gene-encoding nucleic acid double helices are noted. Images PMID:3474644

  6. Long-chain polynucleotide filler for skin rejuvenation: efficacy and complications in five patients.

    PubMed

    Park, Kui Young; Seok, Joon; Rho, Nark Kyoung; Kim, Beom Joon; Kim, Myeung Nam

    2016-01-01

    Aging well has become the new target of preventative medicine, and aesthetic dermatology can contribute to this request. The polynucleotide (PN) containing products not only fill the space, but improve tissue regeneration, resulting in more natural tissue regeneration. Five Korean women received four times injections of long-chain PN filler in two-week intervals for skin rejuvenation. About 0.05 mL of material was injected in 40 points of one-side cheek. The pore and skin thickness were markedly improved in the patients in their 30s, whereas skin tone, melanin, wrinkles, and sagging were noticeably improved for patients in their 40s. There are no serious side effects. In conclusion, intradermal long-chain PN filler injection seems to be an effective and safe treatment for skin rejuvenation.

  7. Osmium-labeled polynucleotides: reaction of osmium tetraoxide, with poly-1,N6-ethenoadenylic acid.

    PubMed

    Marzilli, L G; Hanson, B E; Kapili, L; Rose, S D; Beer, M

    1978-06-01

    Osmium tetraoxide, in the presence of ligands such as pyridine and bipyridine, adds across the etheno bridge of 1,N6-etheno-9-methyladenine and poly-1,N6-ethenoadenylic acid. The Os:P ratio in the labeled polynucleotide was approximately equal to 1 when bipyridine was used as the stabilizing ligand. A similar study with polycytidylic acid, which had been partially modified with chloroacetaldehyde so that some bases were converted to 3,N4-ethenocytosine, gave an OS:P ratio of approximately equal to 1.3. Calf-thymus DNA, in which the adenine and cytosine bases were modified by chloroacetaldehyde, gave an Os:P ratio of approximately equal to 1 after 24 h. These results suggest that 3,N4-ethenocytosine will add two Os labels.

  8. Electronic structure of DNA polynucleotides under the chemical-doping condition investigated by PES and NEXAFS

    NASA Astrophysics Data System (ADS)

    Furukawa, Masashi; Kato, H. S.; Taniguchi, M.; Hatsui, T.; Kosugi, N.; Komeda, T.; Kawai, Maki; Kawai, T.

    2003-03-01

    During the last several years, the carrier transport through DNA between nm- spaced electrodes has been discussed without the understanding of their intrinsic electronic structures. As a result, its 'scattered' results in the controversial magnitude of conductivity, from a good conductor to an insulator, which is also assumed to be dependent on the chemical species surrounding DNA (H^+, counterion, etc.)@[ref.]. In this talk, we show electronic structures of the occupied- and unoccupied-states near the Fermi level. Systems exhibited here are well-defined sequence of DNA polynucleotides, Poly(dG)-poly(dC) and Poly(dA)-poly(dT), with- and without- chemical-doping (carrier-doping), in order to evaluate such an effect into DNA and also to propose the carrier conduction mechanism through DNA. [ref.] M. Taniguchi et al., submitted to JACS.

  9. Effects of proteins and polynucleotides on the activity of various hydrolases

    PubMed Central

    Palmieri, M. J.; Koldovský, O.

    1972-01-01

    The effect of various macromolecules on the activity of several hydrolases was studied. Dilution of partially purified acid β-galactosidase from ileal mucosa of suckling rats resulted in a decrease of specific activity. The relationship between specific activity and dilution of the enzyme suggests a dissociation of the enzyme. This could be prevented by addition of several proteins tested. However, addition of DNA to the assay mixture for acid β-galactosidase caused an inhibition. This inhibition could be prevented by addition of proteins. Other polynucleotides and tRNA also exert an inhibitory effect that is prevented by albumin, but nucleotides have no effect. This inhibition occurs maximally at a low pH (3.0–4.0); no inhibition is observed at pH5.5. A similar pH-dependent inhibition by DNA was also found with various other acid hydrolases. PMID:5076227

  10. Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery

    PubMed Central

    Alameh, Mohamad; DeJesus, Diogo; Jean, Myriam; Darras, Vincent; Thibault, Marc; Lavertu, Marc; Buschmann, Michael D; Merzouki, Abderrazzak

    2012-01-01

    Chitosan, a natural polymer, is a promising system for the therapeutic delivery of both plasmid DNA and synthetic small interfering RNA. Reports attempting to identify the optimal parameters of chitosan for synthetic small interfering RNA delivery were inconclusive with high molecular weight at high amine-to-phosphate (N:P) ratios apparently required for efficient transfection. Here we show, for the first time, that low molecular weight chitosan (LMW-CS) formulations at low N:P ratios are suitable for the in vitro delivery of small interfering RNA. LMW-CS nanoparticles at low N:P ratios were positively charged (ζ-potential ~20 mV) with an average size below 100 nm as demonstrated by dynamic light scattering and environmental scanning electron microscopy, respectively. Nanoparticles were spherical, a shape promoting decreased cytotoxicity and enhanced cellular uptake. Nanoparticle stability was effective for at least 20 hours at N:P ratios above two in a slightly acidic pH of 6.5. At a higher basic pH of 8, these nanoparticles were unravelled due to chitosan neutralization, exposing their polynucleotide cargo. Cellular uptake ranged from 50% to 95% in six different cell lines as measured by cytometry. Increasing chitosan molecular weight improved nanoparticle stability as well as the ability of nanoparticles to protect the oligonucleotide cargo from nucleases at supraphysiological concentrations. The highest knockdown efficiency was obtained with the specific formulation 92-10-5 that combines sufficient nuclease protection with effective intracellular release. This system attained >70% knockdown of the messenger RNA, similar to commercially available lipoplexes, without apparent cytotoxicity. Contrary to previous reports, our data demonstrate that LMW-CS at low N:P ratios are efficient and nontoxic polynucleotide delivery systems capable of transfecting a plethora of cell lines. PMID:22457597

  11. Sensitivity of glycogen phosphorylase isoforms to indole site inhibitors is markedly dependent on the activation state of the enzyme

    PubMed Central

    Freeman, S; Bartlett, J B; Convey, G; Hardern, I; Teague, J L; Loxham, S J G; Allen, J M; Poucher, S M; Charles, A D

    2006-01-01

    Background and purpose: Inhibition of hepatic glycogen phosphorylase is a potential treatment for glycaemic control in type 2 diabetes. Selective inhibition of the liver phosphorylase isoform could minimize adverse effects in other tissues. We investigated the potential selectivity of two indole site phosphorylase inhibitors, GPi688 and GPi819. Experimental approach: The activity of glycogen phosphorylase was modulated using the allosteric effectors glucose or caffeine to promote the less active T state, and AMP to promote the more active R state. In vitro potency of indole site inhibitors against liver and muscle glycogen phosphorylase a was examined at different effector concentrations using purified recombinant enzymes. The potency of GPi819 was compared with its in vivo efficacy at raising glycogen concentrations in liver and muscle of Zucker (fa/fa) rats. Key results: In vitro potency of indole site inhibitors depended upon the activity state of phosphorylase a. Both inhibitors showed selectivity for liver phosphorylase a when the isoform specific activities were equal. After 5 days dosing of GPi819 (37.5 μmol kg−1), where free compound levels in plasma and tissue were at steady state, glycogen elevation was 1.5-fold greater in soleus muscle than in liver (P<0.05). Conclusions and implications: The in vivo selectivity of GPi819 did not match that seen in vitro when the specific activities of phosphorylase a isoforms are equal. This suggests T state promoters may be important physiological regulators in skeletal muscle. The greater efficacy of indole site inhibitors in skeletal muscle has implications for the overall safety profile of such drugs. PMID:17016495

  12. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    PubMed Central

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  13. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    SciTech Connect

    Abramchik, Yu. A. Timofeev, V. I. Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  14. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    NASA Astrophysics Data System (ADS)

    Abramchik, Yu. A.; Timofeev, V. I.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-01

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P21 and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  15. Kinetic properties of tetrameric glycogen phosphorylase b in solution and in the crystalline state.

    PubMed Central

    Leonidas, D. D.; Oikonomakos, N. G.; Papageorgiou, A. C.; Sotiroudis, T. G.

    1992-01-01

    R-state monoclinic P2(1) crystals of phosphorylase have been shown to be catalytically active in the presence of an oligosaccharide primer and glucose-1-phosphate in 0.9 M ammonium sulfate, 10 mM beta-glycerophosphate, 0.5 mM EDTA, and 1 mM dithiothreitol, the medium in which the crystals are grown or equilibrated for crystallographic studies (Barford, D. & Johnson, L.N., 1989, Nature 360, 609-616; Barford, D., Hu, S.-H., & Johnson, L.N., 1991, J. Mol. Biol. 218, 233-260). Kinetic data suggest that the activity of crystalline tetrameric phosphorylase is similar to that determined in solution for the enzyme tetramer. However, large differences were found in the maximal velocities for both oligosaccharide or glucose-1-phosphate substrates between the soluble dimeric and crystalline tetrameric enzyme. PMID:1304391

  16. Engineering the specificity of trehalose phosphorylase as a general strategy for the production of glycosyl phosphates.

    PubMed

    Chen, Chao; Van der Borght, Jef; De Vreese, Rob; D'hooghe, Matthias; Soetaert, Wim; Desmet, Tom

    2014-07-25

    A two-step process is reported for the anomeric phosphorylation of galactose, using trehalose phosphorylase as biocatalyst. The monosaccharide enters this process as acceptor but can subsequently be released from the donor side, thanks to the non-reducing nature of the disaccharide intermediate. A key development was the creation of an optimized enzyme variant that displays a strict specificity (99%) for β-galactose 1-phosphate as product.

  17. L-Enantiomers of Transition State Analogue Inhibitors Bound to Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Rinaldo-Matthis,A.; Murkin, A.; Ramagopal, U.; Clinch, K.; Mee, S.; Evans, G.; Tyler, P.; Furneaux, R.; Almo, S.; Schramm, v.

    2008-01-01

    Human purine nucleoside phosphorylase (PNP) was crystallized with transition-state analogue inhibitors Immucillin-H and DADMe-Immucillin-H synthesized with ribosyl mimics of l-stereochemistry. The inhibitors demonstrate that major driving forces for tight binding of these analogues are the leaving group interaction and the cationic mimicry of the transition state, even though large geometric changes occur with d-Immucillins and l-Immucillins bound to human PNP.

  18. Effect of 5-Fluorouracil on Thymidine Phosphorylase Activity in Model Experiment.

    PubMed

    Stashkevich, M A; Khomutov, E V; Dumanskii, Yu V; Matvienko, A G; Zinkovich, I I

    2016-03-01

    Variations in thymidine phosphorylase activity in rat liver were studied in 1, 3, 6, 12, and 24 h after intraperitoneal bolus injection of 5-fluorouracil. Enzyme activity was measured by HPLC. A 2-fold decrease in enzyme activity was observed 3 h after 5-fluorouracil administration and persisted for 12 h. This additional effect of the cytostatic should be taken into account in choosing chemotherapy protocol.

  19. [Properties of sucrose phosphorylase from recombinant Escherichia coli and enzymatic synthesis of alpha-arbutin].

    PubMed

    Wan, Yuejia; Ma, Jiangfeng; Xu, Rong; He, Aiyong; Jiang, Min; Chen, Kequan; Jiang, Yin

    2012-12-01

    Sucrose phosphorylase (EC 2.4.1.7, Sucrose phosphorylase, SPase) can be produced by recombinant strain Escherichia coli Rosetta(DE3)/Pet-SPase. Crude enzyme was obtained from the cells by the high pressure disruption and centrifugation. Sucrose phosphorylase was purified by Ni-NTA affinity column chromatography and desalted by ultrafiltration. The specific enzyme activity was 1.1-fold higher than that of the crude enzyme, and recovery rate was 82.7%. The purified recombinant SPase had a band of 59 kDa on SDS-PAGE. Thermostability of the enzyme was shown at temperatures up to 37 degrees C, and pH stability between pH 6.0 and 6.7. The optimum temperature and pH were 37 degrees C and 6.7, respectively. The K(m) of SPase for sucrose was 7.3 mmol/L, and Vmax was 0.2 micromol/(min x mg). Besides, alpha-arbutin was synthesized from sucrose and hydroquinone by transglucosylation with recombinant SPase. The optimal conditions for synthesis of alpha-arbutin were 200 U/mL of recombinant SPase, 20% of sucrose, and 1.6% hydroquinone at pH 6-6.5 and 25 degrees C for 21 h. Under these conditions, alpha-arbutin was obtained with a 78.3% molar yield with respect to hydroquinone, and the concentration of alpha-arbutin was about 31 g/L.

  20. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    PubMed Central

    Kadokawa, Jun-ichi

    2013-01-01

    This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether), and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran) (PTHF) in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactide)s, also appeared in the vine-twining polymerization. PMID:24970172

  1. Single tryptophan of disordered loop from Plasmodium falciparum purine nucleoside phosphorylase: involvement in catalysis and microenvironment.

    PubMed

    Suthar, Manish Kumar; Verma, Anita; Doharey, Pawan Kumar; Singh, Shiv Vardan; Saxena, Jitendra Kumar

    2013-06-01

    Among various tropical diseases, malaria is a major life-threatening disease caused by Plasmodium parasite. Plasmodium falciparum is responsible for the deadliest form of malaria, so-called cerebral malaria. Purine nucleoside phosphorylase from P. falciparum is a homohexamer containing single tryptophan residue per subunit that accepts inosine and guanosine but not adenosine for its activity. This enzyme has been exploited as drug target against malaria disease. It is important to draw together significant knowledge about inherent properties of this enzyme which will be helpful in better understanding of this drug target. The enzyme shows disorder to order transition during catalysis. The single tryptophan residue residing in conserved region of transition loop is present in purine nucleoside phosphorylases throughout the Plasmodium genus. This active site loop motif is conserved among nucleoside phosphorylases from apicomplexan parasites. Modification of tryptophan residue by N-bromosuccinamide resulted in complete loss of activity showing its importance in catalysis. Inosine was not able to protect enzyme against N-bromosuccinamide modification. Extrinsic fluorescence studies revealed that tryptophan might not be involved in substrate binding. The tryptophan residue localised in electronegative environment showed collisional and static quenching in the presence of quenchers of different polarities.

  2. 1, 4-alpha-Glucan phosphorylase from Klebsiella pneumoniae purification, subunit structure and amino acid composition.

    PubMed

    Linder, D; Kurz, G; Bender, H; Wallenfels, K

    1976-11-01

    1. A 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae has been purified about 80-fold with an over-all yield greater than 35%. The purified enzyme has been shown to be homogeneous by gel electrophoresis at different pH-values, by isoelectric focusing, by dodecylsulfate electrophoresis and by ultracentrifugation. 2. The molecular weight of the native enzyme has been determined to be 180 000 by ultra-centrifugation studies, in good agreement with the value of 189 000 estimated by gel permeation chromatography. 3. The enzyme dissociates in the presence of 0.1% dodecylsulfate or 5 M guanidine hydrochloride into polypeptide chains. The molecular weight of these polypeptide chains has been found to be 88 000 by dodecylsulfate polyacrylamide gel electrophoresis and 99 000 by sedimentation equilibrium studies, indicating that the native enzyme is composed of two polypeptide chains. 4. The enzyme contains pyridoxalphosphate with a stoichiometry of two moles per 180 000 g protein, confirming that the 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is a dimeric enzyme. 5. The amino acid composition of the enzyme has been determined, and its correspondence to that of 1,4-alpha-glucan phosphorylases from other sources is discussed. 6. The pI of the enzyme has been shown to be 5.3 and its pH-optimum to be about pH 5.9. The enzyme is stable in the range from pH 5.9 to 10.5.

  3. 1,4-alpha-Glucan phosphorylase form Klebsiella pneumoniae covalently couple on porous glass.

    PubMed

    Wengenmayer, F; Linder, D; Wallenfels, K

    1977-09-01

    A simplified procedure for the preparation of 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is described. An 80-fold purification is achieved in two steps with an overall yield of about 50%. The specific activity of the homogeneous enzyme protein is 17.7 units/mg. Compared with glycogen phosphorylase from rabbit muscle the enzyme from K. pneumoniae shows a markedly higher stability against deforming and chaotropic agents. The 1,4-alpha-glucan phosphorylase was covalently bound to porous glass particles by three different methods. Coupling with glutaraldehyde gave the highest specific activity, i.e., 5.6 units/mg of bound protein or 133 units/g of glass with maltodextrin as substrate. This corresponds to about 30% of the specific activity of the soluble enzyme. With substrates of higher molecular weight, such as glycogen or amylopectin, lower relative activity was observed. The immobilized enzyme preparations showed pH activity profiles which were slightly displaced to higher values and exhibited an increased temperature stability.

  4. High phosphorylase activity is correlated with increased potato minituber formation and starch content during extended clinorotation

    NASA Astrophysics Data System (ADS)

    Nedukha, O. M.; Schnyukova, E. I.; Leach, J. E.

    2003-05-01

    The major purpose of these experiments were to investigate growth of potato storage organs and starch synthesis in minitubers at slow horizontal clinorotation (2 rpm), which partly mimics microgravity, and a secondary goal was to study the activity and localization of phosphorylase (EC 2.4.1.1) in storage parenchyma under these conditions. Miniplants of Solanum tuberosum L. (cv Adreta) were grown in culture for 30 days for both the vertical control and the horizontal clinorotation. During long-term clinorotation, an acceleration of minituber formation, and an increase of amyloplast number and size in storage parenchyma cells, as well as increased starch content, was observed in the minitubers. The differences among cytochemical reaction intensity, activity of phosphorylase, and carbohydrate content in storage parenchyma cells of minitubers grown in a horizontal clinostat were established by electron-cytochemical and biochemical methods. It is shown that high phosphorylase activity is correlated with increased starch content during extended clinorotation. The results demonstrate the increase in carbohydrate metabolism and possible accelerated growth of storage organs under the influence of microgravity, as mimicked by clinorotation; therefore, clinorotation can be used as a basis for future studies on mechanisms of starch synthesis under microgravity.

  5. Enzymatic synthesis of nucleosides by nucleoside phosphorylase co-expressed in Escherichia coli.

    PubMed

    Ding, Qing-bao; Ou, Ling; Wei, Dong-zhi; Wei, Xiao-kun; Xu, Yan-mei; Zhang, Chun-yan

    2010-11-01

    Nucleoside phosphorylase is an important enzyme involved in the biosynthesis of nucleosides. In this study, purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase were co-expressed in Escherichia coli and the intact cells were used as a catalyst for the biosynthesis of nucleosides. For protein induction, lactose was used in place of isopropyl β-D-1-thiogalactopyranoside (IPTG). When the concentration of lactose was above 0.5 mmol/L, the ability to induce protein expression was similar to that of IPTG. We determined that the reaction conditions of four bacterial strains co-expressing these genes (TUD, TAD, DUD, and DAD) were similar for the biosyntheses of 2,6-diaminopurine nucleoside and 2,6-diaminopurine deoxynucleoside. When the substrate concentration was 30 mmol/L and 0.5% of the recombinant bacterial cell volume was used as the catalyst (pH 7.5), a greater than 90% conversion yield was reached after a 2-h incubation at 50 °C. In addition, several other nucleosides and nucleoside derivatives were efficiently synthesized using bacterial strains co-expressing these recombinant enzymes.

  6. Enzymatic synthesis of nucleosides by nucleoside phosphorylase co-expressed in Escherichia coli

    PubMed Central

    Ding, Qing-bao; Ou, Ling; Wei, Dong-zhi; Wei, Xiao-kun; Xu, Yan-mei; Zhang, Chun-yan

    2010-01-01

    Nucleoside phosphorylase is an important enzyme involved in the biosynthesis of nucleosides. In this study, purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase were co-expressed in Escherichia coli and the intact cells were used as a catalyst for the biosynthesis of nucleosides. For protein induction, lactose was used in place of isopropyl β-D-1-thiogalactopyranoside (IPTG). When the concentration of lactose was above 0.5 mmol/L, the ability to induce protein expression was similar to that of IPTG. We determined that the reaction conditions of four bacterial strains co-expressing these genes (TUD, TAD, DUD, and DAD) were similar for the biosyntheses of 2,6-diaminopurine nucleoside and 2,6-diaminopurine deoxynucleoside. When the substrate concentration was 30 mmol/L and 0.5% of the recombinant bacterial cell volume was used as the catalyst (pH 7.5), a greater than 90% conversion yield was reached after a 2-h incubation at 50 °C. In addition, several other nucleosides and nucleoside derivatives were efficiently synthesized using bacterial strains co-expressing these recombinant enzymes. PMID:21043057

  7. Influence of substrates on in vitro dephosphorylation of glycogen phosphorylase a by protein phosphatase-1.

    PubMed Central

    Wang, Z X

    1999-01-01

    The kinetic theory of the substrate reaction during modification of enzyme activity has been applied to a study of the dephosphorylation of phosphorylase a by protein phosphatase-1 (ppase-1). On the basis of the kinetic equation of the substrate reaction in the presence of ppase-1, all the inactivation rate constants for the free enzyme and the enzyme-substrate(s) complexes have been determined. Binding of the allosteric substrate, glucose 1-phosphate, to one subunit of phosphorylase a protects completely against ppase-1 action on either the same subunit or the adjacent subunit, whereas binding of the non-allosteric substrate, glycogen, to one subunit protects this subunit partially, but has no effect on the modification on the neighbouring subunit. Analysis of the data suggests that the allosteric behaviour of phosphorylase a can be interpreted in terms of a modified concerted model. The present method also provides a novel approach for studying dephosphorylation reactions. Since the experimental conditions used resemble more closely the in vivo situation where the substrate is constantly being turned over while the enzyme is being modified, this new method would be particularly useful when the regulatory mechanism of the reversible phosphorylation reaction toward certain enzymes is being assessed. PMID:10417316

  8. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2′-anhydrouridine

    SciTech Connect

    Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.; Pavlyuk, Bogdan Ph.; Kachalova, Galina S.; Betzel, Christian

    2007-10-01

    S. typhimurium uridine phosphorylase has been isolated and crystallized in the presence of ligand. Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.

  9. Sterical recognition by T4 polynucleotide kinase of non-nucleosidic moieties 5'-attached to oligonucleotides.

    PubMed Central

    Fontanel, M L; Bazin, H; Téoule, R

    1994-01-01

    The ability of T4 polynucleotide kinase (PNK) to phosphorylate non-nucleosidic moieties 5'-attached to oligodeoxynucleotides (ODNs) has been investigated. Non-nucleosidic phosphoramidite units were prepared from ethane-1,2-diol and propane-1,3-diol backbones. Some of them corresponded to pure enantiomers. They were used to obtain the corresponding 5'-end modified oligothymidylates X(pdT)10. The free primary hydroxyl of the non-nucleosidic moieties (X) of these oligomers was phosphorylated by PNK. We report the stereoselective phosphorylation of the L form of the 5'-end attached non-nucleosidic chiral fragments; the non-chiral moieties were completely phosphorylated. Dimers of glycerol analogue and thymidine 3'-phosphate were not recognized by PNK and the shortest modified ODN able to be phosphorylated was a trinucleotide X(pdT)3. A modified X(pdT)10, bearing a cyclic abasic site (X) at its 5'-end, was prepared by chemical synthesis from 1,2-dideoxyribose phosphoramidite and was phosphorylated with a 90% yield. PMID:8029008

  10. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability.

    PubMed

    Shimada, Mikio; Dumitrache, Lavinia C; Russell, Helen R; McKinnon, Peter J

    2015-10-01

    Polynucleotide kinase-phosphatase (PNKP) is a DNA repair factor possessing both 5'-kinase and 3'-phosphatase activities to modify ends of a DNA break prior to ligation. Recently, decreased PNKP levels were identified as the cause of severe neuropathology present in the human microcephaly with seizures (MCSZ) syndrome. Utilizing novel murine Pnkp alleles that attenuate expression and a T424GfsX48 frame-shift allele identified in MCSZ individuals, we determined how PNKP inactivation impacts neurogenesis. Mice with PNKP inactivation in neural progenitors manifest neurodevelopmental abnormalities and postnatal death. This severe phenotype involved defective base excision repair and non-homologous end-joining, pathways required for repair of both DNA single- and double-strand breaks. Although mice homozygous for the T424GfsX48 allele were lethal embryonically, attenuated PNKP levels (akin to MCSZ) showed general neurodevelopmental defects, including microcephaly, indicating a critical developmental PNKP threshold. Directed postnatal neural inactivation of PNKP affected specific subpopulations including oligodendrocytes, indicating a broad requirement for genome maintenance, both during and after neurogenesis. These data illuminate the basis for selective neural vulnerability in DNA repair deficiency disease. © 2015 The Authors.

  11. Cadmium and copper inhibit both DNA repair activities of polynucleotide kinase.

    PubMed

    Whiteside, James R; Box, Clare L; McMillan, Trevor J; Allinson, Sarah L

    2010-01-02

    Human exposure to heavy metals is of increasing concern due to their well-documented toxicological and carcinogenic effects and rising environmental levels through industrial processes and pollution. It has been widely reported that such metals can be genotoxic by several modes of action including generation of reactive oxygen species and inhibition of DNA repair. However, although it has been observed that certain heavy metals can inhibit single strand break (SSB) rejoining, the effects of these metals on SSB end-processing enzymes has not previously been investigated. Accordingly, we have investigated the potential inhibition of polynucleotide kinase (PNK)-dependent single strand break repair by six metals: cadmium, cobalt, copper, nickel, lead and zinc. It was found that micromolar concentrations of cadmium and copper are able to inhibit the phosphatase and kinase activities of PNK in both human cell extracts and purified recombinant protein, while the other metals had no effect at the concentrations tested. The inhibition of PNK by environmentally and physiologically relevant concentrations of cadmium and copper suggests a novel means by which these toxic heavy metals may exert their carcinogenic and neurotoxic effects. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  12. Condensation of activated diguanylates on a Poly/C/ template. [prebiotic polynucleotide replication mechanism

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Bridson, P. K.; Orgel, L. E.

    1981-01-01

    The metal-ion catalysis of the oligomerization of activated diguanylate isomers on a polycytidylic acid template is studied in an investigation of possible early prebiotic polynucleotide replication mechanisms. The 5'-imidazolides of diguanylates linked 2' to 5' or 3' to 5' were reacted with polyC in a 1-methylimidazole or a 2,6-lutidine buffer in the presence of a Zn(+2) or a Pb(+2) catalyst, and reaction products were determined by paper chromatography, paper electrophoresis and liquid chromatography. In the lutidine buffer, the presence of both the Zn(+2) catalyst and the polyC template is found to result in the production of 3'-5' linked oligomers with up to 10 diguanylate units, and from diguanylates in the presence of the monomer. In the reactions conducted in the 1-methylimidazole buffer, the addition of Pb(+2) is found to lead to less marked increases in oligomerization in the presence of template, with approximately equal proportions of 2'-5' and 3'-5' oligomers formed from the 2'-5' substrate and mainly 3'-5' bonds from the 3'-5' linked dimer.

  13. Polysaccharide-polynucleotide complexes VIII. Cation-induced complex formation between polyuridylic acid and schizophyllan.

    PubMed

    Sakurai, Kazuo; Iguchi, Ritsuko; Koumoto, Kazuya; Kimura, Taro; Mizu, Masami; Hisaeda, Yoshio; Shinkai, Seiji

    2002-10-05

    Schizophyllan belongs to the beta-1,3-D-glucan family, and dissolves as a single chain in dimethyl sulfoxide (DMSO) and as a triple helix in water, respectively. It is already known that when we prepare a mixture of poly(C) and schizophyllan in DMSO and subsequently exchange the solvent to water, poly(C) and schizophyllan can form a complex. When we applied this procedure to the poly(U) system, we could not induce the complex formation between poly(U) and schizophyllan at all. However, we found that addition of some alkaline cations is necessary to induce the complexation between poly(U) and schizophyllan. The complex stability strongly depends on both the cation species and the salt concentration. The complexation is sensitively reflected in the CD spectrum. The magnitude of the spectral change is followed by the order; Rb(+) > K(+) > Na(+) ? Cs(+). This cation order in the stability is confirmed by the fluorescence polarization measurements. (23)Na-NMR spectroscopy reveals that the product system is stabilized by addition of the cations, suggesting that the OH group in schizophyllan and the phosphate anion in poly(U) synergistically form a specific ligand system for the cations. To the best of our knowledge, such a cation-induced specific interaction between saccharides and polynucleotides has not been reported, and may provide a new clue to understand the biological role of beta-1,3-D-glucans. Copyright 2002 Wiley Periodicals, Inc. Biopolymers 65: 1-9, 2002

  14. Nature of the open state in long polynucleotide double helices: possibility of soliton excitations.

    PubMed Central

    Englander, S W; Kallenbach, N R; Heeger, A J; Krumhansl, J A; Litwin, S

    1980-01-01

    The existence of transiently open states in DNA and synthetic polynucleotide double helices has been demonstrated by hydrogen exchange measurements; base pairs reversibly separate and reclose, exposing nucleotide protons to exchange with solvent protons. Recently it has been possible to define the equilibrium, kinetic, and activation parameters of the major open state that determines base pair hydrogen exchange. However, there is no direct information at the moment about the conformation of the open form. Here we consider the possibility that the low energy and slow opening and closing rates observed reflect a deformation involving several adjacent base pairs. Assuming a mobile open unit capable of diffusing along the double helix, we find that available data are consistent with structures of 10 or so adjacent open pairs. It is further suggested that these structures correspond to thermally induced soliton excitations of the double helix, which retain coherence by sharing the energy of a twist deformation among several base pairs. Solitons are nonlinear excitations that can travel as coherent solitary waves, and have been recognized as an important mechanism for mediating conformational changes in polymers and condensed systems generally. Comparison of the double helix with simple mechanical analogs suggests that soliton excitations may well exist within DNA chains, and the present analysis shows that the hydrogen exchange open state is consistent with these. PMID:6938969

  15. A label-free bioluminescent sensor for real-time monitoring polynucleotide kinase activity.

    PubMed

    Du, Jiao; Xu, Qinfeng; Lu, Xiaoquan; Zhang, Chun-yang

    2014-08-19

    Polynucleotide kinase (PNK) plays a crucial role in maintaining the genomic stability of cells and is becoming a potential target in the radio-therapeutic treatment of cancers. The fluorescent method is usually used to measure the PNK activity, but it is impossible to obtain the real-time monitoring without the employment of the labeled DNA probes. Here, we report a label-free bioluminescent sensor for PNK activity assay through real-time monitoring of the phosphorylation-dependent DNA ligation reaction. In this bioluminescent sensor, two hairpin DNA probes with 5'-protruding terminal are designed as the phosphate acceptor, and the widely used phosphate donor of ATP is substituted by dCTP. In the absence of PNK, the ligation reaction cannot be triggered due to the lack of 5'-phosphoryl groups in the probes, and the background signal is negligible. With the addition of PNK, the phosphorylation-ligation reaction of the probes is initiated with the release of AMP, and the subsequent conversion of AMP to ATP leads to the generation of distinct bioluminescence signal. The PNK activity assay can be performed in real time by continuously monitoring the bioluminescence signal. This bioluminescent sensor is much simpler, label-free, cost-effective, and free from the autofluorescence interference of biological matrix, and can be further used for quantitative, kinetic, and inhibition assay.

  16. Mice heterozygous for germ-line mutations in methylthioadenosine phosphorylase (MTAP) die prematurely of T-cell lymphoma.

    PubMed

    Kadariya, Yuwaraj; Yin, Bu; Tang, Baiqing; Shinton, Susan A; Quinlivan, Eoin P; Hua, Xiang; Klein-Szanto, Andres; Al-Saleem, Tahseen I; Bassing, Craig H; Hardy, Richard R; Kruger, Warren D

    2009-07-15

    Large homozygous deletions of 9p21 that inactivate CDKN2A, ARF, and MTAP are common in a wide variety of human cancers. The role for CDKN2A and ARF in tumorigenesis is well established, but whether MTAP loss directly affects tumorigenesis is unclear. MTAP encodes the enzyme methylthioadenosine phosphorylase, a key enzyme in the methionine salvage pathway. To determine if loss of MTAP plays a functional role in tumorigenesis, we have created an MTAP-knockout mouse. Mice homozygous for a MTAP null allele (Mtap(lacZ)) have an embryonic lethal phenotype dying around day 8 postconception. Mtap/Mtap(lacZ) heterozygotes are born at Mendelian frequencies and appear indistinguishable from wild-type mice during the first year of life, but they tend to die prematurely with a median survival of 585 days. Autopsies on these animals reveal that they have greatly enlarged spleens, altered thymic histology, and lymphocytic infiltration of their livers, consistent with lymphoma. Immunohistochemical staining and fluorescence-activated cell sorting analysis indicate that these lymphomas are primarily T-cell in origin. Lymphoma-infiltrated tissues tend to have reduced levels of Mtap mRNA and MTAP protein in addition to unaltered levels of methyldeoxycytidine. These studies show that Mtap is a tumor suppressor gene independent of CDKN2A and ARF.

  17. Preliminary investigation of the three-dimensional structure of Salmonella typhimurium uridine phosphorylase in the crystalline state.

    PubMed

    Dontsova, Maria V; Gabdoulkhakov, Azat G; Molchan, Olga K; Lashkov, Alexandr A; Garber, Maria B; Mironov, Alexandr S; Zhukhlistova, Nadegda E; Morgunova, Ekaterina Yu; Voelter, Wolfgang; Betzel, Christian; Zhang, Yang; Ealick, Steven E; Mikhailov, Al'bert M

    2005-04-01

    Uridine phosphorylase (UPh) catalyzes the phosphorolytic cleavage of the C-N glycosidic bond of uridine to ribose 1-phosphate and uracil in the pyrimidine-salvage pathway. The crystal structure of the Salmonella typhimurium uridine phosphorylase (StUPh) has been determined at 2.5 A resolution and refined to an R factor of 22.1% and an Rfree of 27.9%. The hexameric StUPh displays 32 point-group symmetry and utilizes both twofold and threefold non-crystallographic axes. A phosphate is bound at the active site and forms hydrogen bonds to Arg91, Arg30, Thr94 and Gly26 of one monomer and Arg48 of an adjacent monomer. The hexameric StUPh model reveals a close structural relationship to Escherichia coli uridine phosphorylase (EcUPh).

  18. Preliminary investigation of the three-dimensional structure of Salmonella typhimurium uridine phosphorylase in the crystalline state

    PubMed Central

    Dontsova, Maria V.; Gabdoulkhakov, Azat G.; Molchan, Olga K.; Lashkov, Alexandr A.; Garber, Maria B.; Mironov, Alexandr S.; Zhukhlistova, Nadegda E.; Morgunova, Ekaterina Yu.; Voelter, Wolfgang; Betzel, Christian; Zhang, Yang; Ealick, Steven E.; Mikhailov, Al’bert M.

    2005-01-01

    Uridine phosphorylase (UPh) catalyzes the phosphorolytic cleavage of the C—­N glycosidic bond of uridine to ribose 1-phosphate and uracil in the pyrimidine-salvage pathway. The crystal structure of the Salmonella typhimurium uridine phosphorylase (StUPh) has been determined at 2.5 Å resolution and refined to an R factor of 22.1% and an R free of 27.9%. The hexameric StUPh displays 32 point-group symmetry and utilizes both twofold and threefold non-crystallographic axes. A phosphate is bound at the active site and forms hydrogen bonds to Arg91, Arg30, Thr94 and Gly26 of one monomer and Arg48 of an adjacent monomer. The hexameric StUPh model reveals a close structural relationship to Escherichia coli uridine phosphorylase (EcUPh). PMID:16511035

  19. X-ray structure of Salmonella typhimurium uridine phosphorylase complexed with 5-fluorouracil and molecular modelling of the complex of 5-fluorouracil with uridine phosphorylase from Vibrio cholerae.

    PubMed

    Lashkov, Alexander A; Sotnichenko, Sergey E; Prokofiev, Igor I; Gabdulkhakov, Azat G; Agapov, Igor I; Shtil, Alexander A; Betzel, Christian; Mironov, Alexander S; Mikhailov, Al'bert M

    2012-08-01

    Uridine phosphorylase (UPh), which is a key enzyme in the reutilization pathway of pyrimidine nucleoside metabolism, is a validated target for the treatment of infectious diseases and cancer. A detailed analysis of the interactions of UPh with the therapeutic ligand 5-fluorouracil (5-FUra) is important for the rational design of pharmacological inhibitors of these enzymes in prokaryotes and eukaryotes. Expanding on the preliminary analysis of the spatial organization of the active centre of UPh from the pathogenic bacterium Salmonella typhimurium (StUPh) in complex with 5-FUra [Lashkov et al. (2009), Acta Cryst. F65, 601-603], the X-ray structure of the StUPh-5-FUra complex was analysed at atomic resolution and an in silico model of the complex formed by the drug with UPh from Vibrio cholerae (VchUPh) was generated. These results should be considered in the design of selective inhibitors of UPhs from various species.

  20. Crystal growth of phosphopantetheine adenylyltransferase, carboxypeptidase t, and thymidine phosphorylase on the international space station by the capillary counter-diffusion method

    NASA Astrophysics Data System (ADS)

    Kuranova, I. P.; Smirnova, E. A.; Abramchik, Yu. A.; Chupova, L. A.; Esipov, R. S.; Akparov, V. Kh.; Timofeev, V. I.; Kovalchuk, M. V.

    2011-09-01

    Crystals of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis, thymidine phosphorylase from Escherichia coli, carboxypeptidase T from Thermoactinomyces vulgaris and its mutant forms, and crystals of complexes of these proteins with functional ligands and inhibitors were grown by the capillary counter-diffusion method in the Japanese Experimental Module Kibo on the International Space Station. The high-resolution X-ray diffraction data sets suitable for the determination of high-resolution three-dimensional structures of these proteins were collected from the grown crystals on the SPring-8 synchrotron radiation facility. The conditions of crystal growth for the proteins and the data-collection statistics are reported. The crystals grown in microgravity diffracted to a higher resolution than crystals of the same proteins grown on Earth.

  1. Crystal growth of phosphopantetheine adenylyltransferase, carboxypeptidase t, and thymidine phosphorylase on the international space station by the capillary counter-diffusion method

    SciTech Connect

    Kuranova, I. P. Smirnova, E. A.; Abramchik, Yu. A.; Chupova, L. A.; Esipov, R. S.; Akparov, V. Kh.; Timofeev, V. I.; Kovalchuk, M. V.

    2011-09-15

    Crystals of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis, thymidine phosphorylase from Escherichia coli, carboxypeptidase T from Thermoactinomyces vulgaris and its mutant forms, and crystals of complexes of these proteins with functional ligands and inhibitors were grown by the capillary counter-diffusion method in the Japanese Experimental Module Kibo on the International Space Station. The high-resolution X-ray diffraction data sets suitable for the determination of high-resolution three-dimensional structures of these proteins were collected from the grown crystals on the SPring-8 synchrotron radiation facility. The conditions of crystal growth for the proteins and the data-collection statistics are reported. The crystals grown in microgravity diffracted to a higher resolution than crystals of the same proteins grown on Earth.

  2. The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase.

    PubMed

    Kaiser, A; Nishi, K; Gorin, F A; Walsh, D A; Bradbury, E M; Schnier, J B

    2001-02-15

    Flavopiridol has been shown to induce cell cycle arrest and apoptosis in various tumor cells in vitro and in vivo. Using immobilized flavopiridol, we identified glycogen phosphorylases (GP) from liver and brain as flavopiridol binding proteins from HeLa cell extract. Purified rabbit muscle GP also bound to the flavopiridol affinity column. GP is the rate-limiting enzyme in intracellular glycogen breakdown. Flavopiridol significantly inhibited the AMP-activated GP-b form of the purified rabbit muscle isoenzyme (IC50 of 1 microM at 0.8 mM AMP), but was less inhibitory to the active phosphorylated form of GP, GP-a (IC50 of 2.5 microM). The AMP-bound GP-a form was poorly inhibited by flavopiridol (40% at 10 microM). Increasing concentrations of the allosteric effector AMP resulted in a linear decrease in the GP-inhibitory activity of flavopiridol suggesting interference between flavopiridol and AMP. In contrast the GP inhibitor caffeine had no effect on the relative GP inhibition by flavopiridol, suggesting an additive effect of caffeine. Flavopiridol also inhibited the phosphorylase kinase-catalyzed phosphorylation of GP-b by inhibiting the kinase in vitro. Flavopiridol thus is able to interfere with both activating modifications of GP-b, AMP activation and phosphorylation. In A549 NSCLC cells flavopiridol treatment caused glycogen accumulation despite of an increase in GP activity, suggesting direct GP inhibition in vivo rather than inhibition of GP activation by phosphorylase kinase. These results suggest that the cyclin-dependent kinase inhibitor flavopiridol interferes with glycogen degradation, which may be responsible for flavopiridol's cytotoxicity and explain its resistance in some cell lines.

  3. Recombinant purine nucleoside phosphorylases from thermophiles: preparation, properties and activity towards purine and pyrimidine nucleosides.

    PubMed

    Zhou, Xinrui; Szeker, Kathleen; Janocha, Bernd; Böhme, Thomas; Albrecht, Dirk; Mikhailopulo, Igor A; Neubauer, Peter

    2013-03-01

    Thermostable nucleoside phosphorylases are attractive biocatalysts for the synthesis of modified nucleosides. Hence we report on the recombinant expression of three 'high molecular mass' purine nucleoside phosphorylases (PNPs) derived from the thermophilic bacteria Deinococcus geothermalis, Geobacillus thermoglucosidasius and from the hyperthermophilic archaeon Aeropyrum pernix (5'-methythioadenosine phosphorylase; ApMTAP). Thermostability studies, kinetic analysis and substrate specificities are reported. The PNPs were stable at their optimal temperatures (DgPNP, 55 °C; GtPNP, 70 °C; ApMTAP, activity rising to 99 °C). Substrate properties were investigated for natural purine nucleosides [adenosine, inosine and their C2'-deoxy counterparts (activity within 50-500 U·mg(-1))], analogues with 2'-amino modified 2'-deoxy-adenosine and -inosine (within 0.1-3 U·mg(-1)) as well as 2'-deoxy-2'-fluoroadenosine (9) and its C2'-arabino diastereomer (10, within 0.01-0.03 U·mg(-1)). Our results reveal that the structure of the heterocyclic base (e.g. adenine or hypoxanthine) can play a critical role in the phosphorolysis reaction. The implications of this finding may be helpful for reaction mechanism studies or optimization of reaction conditions. Unexpectedly, the diastereomeric 2'-deoxyfluoro adenine ribo- and arabino-nucleosides displayed similar substrate properties. Moreover, cytidine and 2'-deoxycytidine were found to be moderate substrates of the prepared PNPs, with substrate activities in a range similar to those determined for 2'-deoxyfluoro adenine nucleosides 9 and 10. C2'-modified nucleosides are accepted as substrates by all recombinant enzymes studied, making these enzymes promising biocatalysts for the synthesis of modified nucleosides. Indeed, the prepared PNPs performed well in preliminary transglycosylation reactions resulting in the synthesis of 2'-deoxyfluoro adenine ribo- and arabino- nucleosides in moderate yield (24%). © 2013 The Authors Journal

  4. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  5. 4(5)-Aryl-2-C-glucopyranosyl-imidazoles as New Nanomolar Glucose Analogue Inhibitors of Glycogen Phosphorylase

    PubMed Central

    2015-01-01

    Inhibition of glycogen phosphorylases may lead to pharmacological treatments of diseases in which glycogen metabolism plays an important role: first of all in diabetes, but also in cardiovascular and tumorous disorders. C-(β-d-Glucopyranosyl) isoxazole, pyrazole, thiazole, and imidazole type compounds were synthesized, and the latter showed the strongest inhibition against rabbit muscle glycogen phosphorylase b. Most efficient was 2-(β-d-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole (11b, Ki = 31 nM) representing the best nanomolar glucose derived inhibitor of the enzyme. PMID:26713107

  6. Compositions and methods involving methyladenosine phosphorylase in the diagnosis and treatment of proliferative disorders

    DOEpatents

    Olopade, Olufunmilayo I.

    2007-03-20

    Disclosed are novel nucleic acid and peptide compositions comprising methylthioadenosine phosphorylase (MTAP) and methods of use for MTAP amino acid sequences and DNA segments comprising MTAP in the diagnosis of human cancers and development of MTAP-specific antibodies. Also disclosed are methods for the diagnosis and treatment of tumors and other proliferative cell disorders, and identification of tumor suppressor genes and gene products from the human 9p21-p22 chromosome region. Such methods are useful in the diagnosis of multiple tumor types such as bladder cancer, lung cancer, breast cancer, pancreatic cancer, brain tumors, lymphomas, gliomas, melanomas, and leukemias.

  7. Methylthioadenosine phosphorylase compositions and methods of use in the diagnosis and treatment of proliferative disorders

    DOEpatents

    Olopade, Olufunmilayo I.

    2005-03-22

    Disclosed are novel nucleic acid and peptide compositions comprising methythlioadenosine phosphorylase (MTAP) and methods of use for MTAP amino acid sequences and DNA segments comprising MTAP in the diagnosis of human cancers and development of MTAP-specific antibodies. Also disclosed are methods for the diagnosis and treatment of tumors and other proliferative cell disorders, and idenification tumor suppressor genes and gene products from the human 9p21-p22 chromosome region. Such methods are useful in the diagnosis of multiple tumor types such as bladder cancer, lung cancer, breast cancer, pancreatic cancer, brain tumors, lymphomas, gliomas, melanomas, and leukemias.

  8. Synthesis of (benzimidazol-2-yl)aniline derivatives as glycogen phosphorylase inhibitors.

    PubMed

    Galal, Shadia A; Khattab, Muhammad; Andreadaki, Fotini; Chrysina, Evangelia D; Praly, Jean-Pierre; Ragab, Fatma A F; El Diwani, Hoda I

    2016-11-01

    A series of (benzimidazol-2-yl)-aniline (1) derivatives has been synthesized and evaluated as glycogen phosphorylase (GP) inhibitors. Kinetics studies revealed that compounds displaying a lateral heterocyclic residue with several heteroatoms (series 3 and 5) exhibited modest inhibitory properties with IC50 values in the 400-600μM range. Arylsulfonyl derivatives 7 (Ar: phenyl) and 9 (Ar: o-nitrophenyl) of 1 exhibited the highest activity (series 2) among the studied compounds (IC50 324μM and 357μM, respectively) with stronger effect than the p-tolyl analogue 8.

  9. Mitochondrial neurogastrointestinal encephalomyopathy: novel pathogenic mutations in thymidine phosphorylase gene in two Italian brothers.

    PubMed

    Libernini, Laura; Lupis, Chiara; Mastrangelo, Mario; Carrozzo, Rosalba; Santorelli, Filippo Maria; Inghilleri, Maurizio; Leuzzi, Vincenzo

    2012-08-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE, MIM 603041) is an autosomal recessive multisystem disorder occurring due to mutations in a nuclear gene coding for the enzyme thymidine phosphorylase (TYMP). Clinical features of MNGIE include gastrointestinal dysmotility, cachexia, ptosis or ophthalmoparesis, peripheral neuropathy, diffuse leukoencephalopathy, and signs of mitochondrial dysfunction in tissues. We report the clinical and molecular findings in two brothers in whom novel TYMP gene mutations (c.215-13_215delinsGCGTGA; c.1159 + 2T > A) were associated with different clinical presentations and outcomes.

  10. Facile enzymatic synthesis of sugar 1-phosphates as substrates for phosphorylases using anomeric kinases.

    PubMed

    Liu, Yuan; Nishimoto, Mamoru; Kitaoka, Motomitsu

    2015-01-12

    Three sugar 1-phosphates that are donor substrates for phosphorylases were produced at the gram scale from phosphoenolpyruvic acid and the corresponding sugars by the combined action of pyruvate kinase and the corresponding anomeric kinases in good yields. These sugar 1-phosphates were purified through two electrodialysis steps. α-D-Galactose 1-phosphate was finally isolated as crystals of dipotassium salts. α-D-Mannose 1-phosphate and 2-acetamido-2-deoxy-α-D-glucose 1-phosphate were isolated as crystals of bis(cyclohexylammonium) salts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Discovery of novel dual-action antidiabetic agents that inhibit glycogen phosphorylase and activate glucokinase.

    PubMed

    Zhang, Lei; Chen, Xiaojie; Liu, Jun; Zhu, Qingzhang; Leng, Ying; Luo, Xiaomin; Jiang, Hualiang; Liu, Hong

    2012-12-01

    Dual-target-directed agents simultaneously inhibiting glycogen phosphorylase (GP) and activating glucokinase (GK) could decelerate the inflow of glucose from glycogenolysis and accelerate the outflow of glucose in the liver, therefore allow for a better control over hyperglycaemia in a synergetic manner. A series of hybrid compounds were designed by structure-assisted and ligand-based strategies. In vitro bioassays found two novel compounds (1j, 6g) worthy of further optimization on balance of dual action to GP and GK. In addition, for single-target activity, two compounds exhibited more potent GP inhibitory activity and four compounds showed better GK activation than their corresponding references.

  12. Are there three polynucleotide strands in the catalytic centre of DNA polymerases?

    PubMed

    Lestienne, Patrick P

    2009-01-01

    Mitochondrial DNA may undergo large-scale rearrangements, thus leading to diseases. The mechanisms of these rearrangements are still the matter of debates. Several lines of evidence indicate that breakpoints are characterized by direct repeats (DR), one of them being eliminated from the normal genome. Analysis of DR showed their skewed nucleotide content compatible with the formation of known triple helices. Here, I propose a novel mechanism involving the formation of triplex structures that result from the dissociation of the [synthesized repeat-DNA polymerase] complex. Upon binding to the homologous sequence, replication is initiated from the primer bound in a triple helix manner. This feature implies the initiation of replication on the double-stranded DNA from the triple helix primer. Hereby, I review evidences supporting this model. Indeed, all short d(G)-rich primers 10 nucleotides long can be elongated on double-stranded DNA by phage, bacterial, reverse transcriptases and eukaryotic DNA polymerases. Mismatches may be tolerated between the primer and its double-stranded binding site. In contrast to previous studies, evidences for the parallel binding of the triple helix to its homologous strand are provided. This suggest the displacement of the non-template strand by the triple helix primer upon binding within the DNA polymerase catalytic centre. Computer modelling indicates that the triple helix primer lies within the major groove of the double helix, with its 3' hydroxyl end nearby the catalytic amino acids. Taken together, I bring new concepts on DNA rearrangements, and novel features of triple helices and DNA polymerases that can bind three polynucleotide strands similar to RNA polymerases.

  13. A WS2 nanosheet based sensing platform for highly sensitive detection of T4 polynucleotide kinase and its inhibitors

    NASA Astrophysics Data System (ADS)

    Ge, Jia; Tang, Li-Juan; Xi, Qiang; Li, Xi-Ping; Yu, Ru-Qin; Jiang, Jian-Hui; Chu, Xia

    2014-05-01

    DNA phosphorylation, catalyzed by polynucleotide kinase (PNK), plays significant regulatory roles in many biological events. Here, a novel fluorescent nanosensor based on phosphorylation-specific exonuclease reaction and efficient fluorescence quenching of single-stranded DNA (ssDNA) by a WS2 nanosheet has been developed for monitoring the activity of PNK using T4 polynucleotide kinase (T4 PNK) as a model target. The fluorescent dye-labeled double-stranded DNA (dsDNA) remains highly fluorescent when mixed with WS2 nanosheets because of the weak adsorption of dsDNA on WS2 nanosheets. While dsDNA is phosphorylated by T4 PNK, it can be specifically degraded by λ exonuclease, producing ssDNA strongly adsorbed on WS2 nanosheets with greatly quenched fluorescence. Because of the high quenching efficiency of WS2 nanosheets, the developed platform presents excellent performance with a wide linear range, low detection limit and high signal-to-background ratio. Additionally, inhibition effects from adenosine diphosphate, ammonium sulfate, and sodium chloride have been investigated. The method may provide a universal platform for PNK activity monitoring and inhibitor screening in drug discovery and clinic diagnostics.DNA phosphorylation, catalyzed by polynucleotide kinase (PNK), plays significant regulatory roles in many biological events. Here, a novel fluorescent nanosensor based on phosphorylation-specific exonuclease reaction and efficient fluorescence quenching of single-stranded DNA (ssDNA) by a WS2 nanosheet has been developed for monitoring the activity of PNK using T4 polynucleotide kinase (T4 PNK) as a model target. The fluorescent dye-labeled double-stranded DNA (dsDNA) remains highly fluorescent when mixed with WS2 nanosheets because of the weak adsorption of dsDNA on WS2 nanosheets. While dsDNA is phosphorylated by T4 PNK, it can be specifically degraded by λ exonuclease, producing ssDNA strongly adsorbed on WS2 nanosheets with greatly quenched fluorescence

  14. Double Knockout Mutants of Arabidopsis Grown under Normal Conditions Reveal that the Plastidial Phosphorylase Isozyme Participates in Transitory Starch Metabolism1[C][W

    PubMed Central

    Malinova, Irina; Mahlow, Sebastian; Alseekh, Saleh; Orawetz, Tom; Fernie, Alisdair R.; Baumann, Otto; Steup, Martin; Fettke, Joerg

    2014-01-01

    In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1 × phs1a and mex1 × phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1 × phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants. PMID:24302650

  15. Peroxisome proliferator-activated receptor gamma coactivator-1alpha enhances antiproliferative activity of 5'-deoxy-5-fluorouridine in cancer cells through induction of uridine phosphorylase.

    PubMed

    Kong, Xingxing; Fan, Heng; Liu, Xiaojun; Wang, Rui; Liang, Jichao; Gupta, Nishith; Chen, Yong; Fang, Fude; Chang, Yongsheng

    2009-10-01

    Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is capable of coactivating several nuclear receptors and transcription factors that participate in the regulation of multiple metabolic processes, including gluconeogenesis, mitochondrial biogenesis, and adaptive thermogenesis. Uridine phosphorylase (UPase) catalyzes the reversible conversion of uridine into uracil and contributes to the antineoplastic activity of 5'-deoxy-5-fluorouridine (5'-DFUR) and homeostasis of uridine levels in plasma and tissues. This study demonstrates uridine phosphorylase as a novel target gene of PGC-1alpha, which induces the transcription and enzymatic activity of UPase in various cancer cells and thus augments their susceptibility to 5'-DFUR. PGC-1alpha-induced activation of UPase expression occurs at its transcription level that is mediated by an estrogen-related receptor (ERR) binding site (-1078 to -1070 base pairs) mapped in the promoter region of UPase gene. Our mutational studies using luciferase reporter construct together with electrophoretic mobility shift assays confirm the binding of ERR to PGC-1alpha-responsive element. Moreover, the inhibition of PGC-1alpha/ERRalpha-dependent signaling by 3-[4-(2,4-bis-trifluoromethylbenzyloxy)-3-methoxyphenyl]-2-cyano-N-(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)acrylamide (XCT790) compromises the ability of PGC-1alpha to induce the transcript of UPase, indicating PGC-1alpha-dependent and ERRalpha-mediated up-regulation of UPase. Finally, the overexpression of PGC-1alpha sensitizes breast and colon cancer cells to growth inhibition by 5'-DFUR presumably by inducing apoptosis in tumor cells and XCT790 can inhibit the process. Taken together, our results corroborate the regulatory function of PGC-1alpha in uridine homeostasis and imply its links with the energy metabolism. The mechanistic elucidation of this association between both cellular pathways should advance the clinical use of 5-fluorouracil

  16. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors.

    PubMed

    Aerts, Dirk; Verhaeghe, Tom F; Roman, Bart I; Stevens, Christian V; Desmet, Tom; Soetaert, Wim

    2011-09-27

    In this study, the transglucosylation potential of six sucrose phosphorylase (SP) enzymes has been compared using eighty putative acceptors from different structural classes. To increase the solubility of hydrophobic acceptors, the addition of various co-solvents was first evaluated. All enzymes were found to retain at least 50% of their activity in 25% dimethylsulfoxide, with the enzymes from Bifidobacterium adolescentis and Streptococcus mutans being the most stable. Screening of the enzymes' specificity then revealed that the vast majority of acceptors are transglucosylated very slowly by SP, at a rate that is comparable to the contaminating hydrolytic reaction. The enzyme from S. mutans displayed the narrowest acceptor specificity and the one from Leuconostoc mesenteroides NRRL B1355 the broadest. However, high activity could only be detected on l-sorbose and l-arabinose, besides the native acceptors d-fructose and phosphate. Improving the affinity for alternative acceptors by means of enzyme engineering will, therefore, be a major challenge for the commercial exploitation of the transglucosylation potential of sucrose phosphorylase.

  17. Partial Purification and Characterization of Glycogen Phosphorylase from Dictyostelium discoideum1

    PubMed Central

    Jones, Theodore H. D.; Wright, Barbara E.

    1970-01-01

    Glycogen phosphorylase was isolated from cells of Dictyostelium discoideum in the culmination stage of development and purified 35-fold. The enzyme had a pH optimum of 6.9 and contained sulfhydryl groups essential for activity. The Km values for phosphate and glycogen were 3 mm and 0.06% (w/v), respectively. No dependence on, or stimulation by, any nucleotide was observed and a wide variety of nucleotides and glycolytic intermediates did not inhibit the enzyme. Nucleotide sugars competitively inhibited the enzyme. Guanosine diphosphoglucose and adenosine diphosphoglucose were the most effective, and uridine diphosphoglucose was the least effective of the nucleotide sugars tested. The specific activity of glycogen phosphorylase increased from about 0.004 unit per mg of protein in aggregating cells to about 0.024 unit per mg in culminating cells, and then decreased during sorocarp formation. This increase in enzyme specific activity during the starvation and aging of the system can account for the increased rate of glycogen degradation during this period of development. Amylase specific activity, measured at pH 4.8 and 6.9, varied between 0.005 and 0.013 unit per mg of protein during all stages of development. PMID:5530813

  18. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  19. Glucose analogue inhibitors of glycogen phosphorylase: from crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection.

    PubMed

    Watson, K A; Mitchell, E P; Johnson, L N; Cruciani, G; Son, J C; Bichard, C J; Fleet, G W; Oikonomakos, N G; Kontou, M; Zographos, S E

    1995-07-01

    Several inhibitors of the large regulatory enzyme glycogen phosphorylase (GP) have been studied in crystallographic and kinetic experiments. GP catalyses the first step in the phosphorylysis of glycogen to glucose-l-phosphate, which is utilized via glycolysis to provide energy to sustain muscle contraction and in the liver is converted to glucose. alpha-D-Glucose is a weak inhibitor of glycogen phosphorylase form b (GPb, K(i) = 1.7 mM) and acts as a physiological regulator of hepatic glycogen metabolism. Glucose binds to phosphorylase at the catalytic site and results in a conformational change that stabilizes the inactive T state of the enzyme, promoting the action of protein phosphatase 1 and stimulating glycogen synthase. It has been suggested that in the liver, glucose analogues with greater affinity for glycogen phosphorylase may result in a more effective regulatory agent. Several N-acetyl glucopyranosylamine derivatives have been synthesized and tested in a series of crystallographic and kinetic binding studies with GPb. The structural results of the bound enzyme-ligand complexes have been analysed together with the resulting affinities in an effort to understand and exploit the molecular interactions that might give rise to a better inhibitor. Comparison of the N-methylacetyl glucopyranosylamine (N-methylamide, K(i) = 0.032 mM) with the analogous beta-methylamide derivative (C-methylamide, K(i) = 0.16 mM) illustrate the importance of forming good hydrogen bonds and obtaining complementarity of van der Waals interactions. These studies also have shown that the binding modes can be unpredictable but may be rationalized with the benefit of structural data and that a buried and mixed polar/non-polar catalytic site poses problems for the systematic addition of functional groups. Together with previous studies of glucose analogue inhibitors of GPb, this work forms the basis of a training set suitable for three-dimensional quantitative structure

  20. Heterogeneous Nuclear Ribonucleoprotein H1/H2-dependent Unsplicing of Thymidine Phosphorylase Results in Anticancer Drug Resistance

    PubMed Central

    Stark, Michal; Bram, Eran E.; Akerman, Martin; Mandel-Gutfreund, Yael; Assaraf, Yehuda G.

    2011-01-01

    Thymidine phosphorylase (TP) catalyzes the conversion of thymidine to thymine and 2-deoxyribose-1-phosphate. The latter plays an important role in induction of angiogenesis. As such, many human malignancies exhibit TP overexpression that correlates with increased microvessel density, formation of aggressive tumors, and dismal prognosis. Because TP is frequently overexpressed in cancer, pro-drugs were developed that utilize TP activity for their bioactivation to cytotoxic drugs. In this respect, TP is indispensable for the pharmacologic activity of the chemotherapeutic drug capecitabine, as it converts its intermediary metabolite 5′-deoxyfluorouridine to 5-fluorouracil. Thus, loss of TP function confers resistance to the prodrug capecitabine, currently used for the treatment of metastatic colorectal cancer and breast cancer. However, drug resistance phenomena may frequently emerge that compromise the pharmacologic activity of capecitabine. Deciphering the molecular mechanisms underlying resistance to TP-activated prodrugs is an important goal toward the overcoming of such drug resistance phenomena. Here, we discovered that lack of TP protein in drug-resistant tumor cells is due to unsplicing of its pre-mRNA. Advanced bioinformatics identified the family of heterogeneous nuclear ribonucleoproteins (hnRNP) H/F as candidate splicing factors potentially responsible for impaired TP splicing. Indeed, whereas parental cells lacked nuclear localization of hnRNPs H1/H2 and F, drug-resistant cells harbored marked levels of these splicing factors. Nuclear RNA immunoprecipitation experiments established a strong binding of hnRNP H1/H2 to TP pre-mRNA, hence implicating them in TP splicing. Moreover, introduction of hnRNP H2 into drug-sensitive parental cells recapitulated aberrant TP splicing and 5′-deoxyfluorouridine resistance. Thus, this is the first study identifying altered function of hnRNP H1/H2 in tumor cells as a novel determinant of aberrant TP splicing thereby

  1. Heterogeneous nuclear ribonucleoprotein H1/H2-dependent unsplicing of thymidine phosphorylase results in anticancer drug resistance.

    PubMed

    Stark, Michal; Bram, Eran E; Akerman, Martin; Mandel-Gutfreund, Yael; Assaraf, Yehuda G

    2011-02-04

    Thymidine phosphorylase (TP) catalyzes the conversion of thymidine to thymine and 2-deoxyribose-1-phosphate. The latter plays an important role in induction of angiogenesis. As such, many human malignancies exhibit TP overexpression that correlates with increased microvessel density, formation of aggressive tumors, and dismal prognosis. Because TP is frequently overexpressed in cancer, pro-drugs were developed that utilize TP activity for their bioactivation to cytotoxic drugs. In this respect, TP is indispensable for the pharmacologic activity of the chemotherapeutic drug capecitabine, as it converts its intermediary metabolite 5'-deoxyfluorouridine to 5-fluorouracil. Thus, loss of TP function confers resistance to the prodrug capecitabine, currently used for the treatment of metastatic colorectal cancer and breast cancer. However, drug resistance phenomena may frequently emerge that compromise the pharmacologic activity of capecitabine. Deciphering the molecular mechanisms underlying resistance to TP-activated prodrugs is an important goal toward the overcoming of such drug resistance phenomena. Here, we discovered that lack of TP protein in drug-resistant tumor cells is due to unsplicing of its pre-mRNA. Advanced bioinformatics identified the family of heterogeneous nuclear ribonucleoproteins (hnRNP) H/F as candidate splicing factors potentially responsible for impaired TP splicing. Indeed, whereas parental cells lacked nuclear localization of hnRNPs H1/H2 and F, drug-resistant cells harbored marked levels of these splicing factors. Nuclear RNA immunoprecipitation experiments established a strong binding of hnRNP H1/H2 to TP pre-mRNA, hence implicating them in TP splicing. Moreover, introduction of hnRNP H2 into drug-sensitive parental cells recapitulated aberrant TP splicing and 5'-deoxyfluorouridine resistance. Thus, this is the first study identifying altered function of hnRNP H1/H2 in tumor cells as a novel determinant of aberrant TP splicing thereby

  2. Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans

    PubMed Central

    Nakajima, Masahiro; Tanaka, Nobukiyo; Furukawa, Nayuta; Nihira, Takanori; Kodutsumi, Yuki; Takahashi, Yuta; Sugimoto, Naohisa; Miyanaga, Akimasa; Fushinobu, Shinya; Taguchi, Hayao; Nakai, Hiroyuki

    2017-01-01

    Glycoside phosphorylases catalyze the phosphorolysis of oligosaccharides into sugar phosphates. Recently, we found a novel phosphorylase acting on β-1,2-glucooligosaccharides with degrees of polymerization of 3 or more (1,2-β-oligoglucan phosphorylase, SOGP) in glycoside hydrolase family (GH) 94. Here, we characterized SOGP from Lachnoclostridium phytofermentans (LpSOGP) and determined its crystal structure. LpSOGP is a monomeric enzyme that contains a unique β-sandwich domain (Ndom1) at its N-terminus. Unlike the dimeric GH94 enzymes possessing catalytic pockets at their dimer interface, LpSOGP has a catalytic pocket between Ndom1 and the catalytic domain. In the complex structure of LpSOGP with sophorose, sophorose binds at subsites +1 to +2. Notably, the Glc moiety at subsite +1 is flipped compared with the corresponding ligands in other GH94 enzymes. This inversion suggests the great distortion of the glycosidic bond between subsites −1 and +1, which is likely unfavorable for substrate binding. Compensation for this disadvantage at subsite +2 can be accounted for by the small distortion of the glycosidic bond in the sophorose molecule. Therefore, the binding mode at subsites +1 and +2 defines the substrate specificity of LpSOGP, which provides mechanistic insights into the substrate specificity of a phosphorylase acting on β-1,2-glucooligosaccharides. PMID:28198470

  3. Activation of phosphorylase by anoxia and dinitrophenol in rabbit colon smooth muscle: relation to release of calcium from mitochondria.

    PubMed

    Pettersson, G

    1983-05-01

    The effect of anoxia or 2,4-dinitrophenol (DNP) on the phosphorylase a activity and the calcium content in subcellular fractions from rabbit colon smooth muscle was studied. Anoxia for 15 min. as well as DNP (6.6 X 10(-5) M) for 5 min. increased the phosphorylase a activity. The calcium content in the mitochondrial subfraction, prepared from the anoxic- or DNP-treated intact muscle and determined by atomic absorption spectroscopy, was reduced. The calcium content in the nuclear and the microsomal fractions was not changed in preparations with a normal Ca-content. When the muscle was incubated for 60 min. in a Ca2+-free medium containing 2.0 mM EGTA, the calcium content in the mitochondrial fraction was reduced to 38% of the control. This calcium level was still further reduced and the phosphorylase a activity was increased by DNP in this "Ca-poor" muscle. In these preparations the Ca-content of the microsomal + supernatant fraction increased. Only when the muscle was incubated, initially, in an anoxic medium containing 0.1 mM Ca2+ for 120 min. and, subsequently, in an oxygenated medium containing 0.1 mM Ca2+ for 20 min., DNP failed to activate phosphorylase and to decrease the calcium content in the mitochondrial fraction. These results indicate that mitochondrial Ca2+ release is one of the regulatory factors of the anoxic-induced glycogenolysis.

  4. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2'-anhydrouridine.

    PubMed

    Timofeev, Vladimir I; Lashkov, Alexander A; Gabdoulkhakov, Azat G; Pavlyuk, Bogdan Ph; Kachalova, Galina S; Betzel, Christian; Morgunova, Ekaterina Yu; Zhukhlistova, Nadezhda E; Mikhailov, Al'bert M

    2007-10-01

    Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C-N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2'-anhydrouridine. X-ray diffraction data were collected to 2.15 A. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 A. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.

  5. Multiple phosphate positions in the catalytic site of glycogen phosphorylase: structure of the pyridoxal-5'-pyrophosphate coenzyme-substrate analog.

    PubMed Central

    Sprang, S. R.; Madsen, N. B.; Withers, S. G.

    1992-01-01

    The three-dimensional structure of an R-state conformer of glycogen phosphorylase containing the coenzyme-substrate analog pyridoxal-5'-diphosphate at the catalytic site (PLPP-GPb) has been refined by X-ray crystallography to a resolution of 2.87 A. The molecule comprises four subunits of phosphorylase related by approximate 222 symmetry. Whereas the quaternary structure of R-state PLPP-GPb is similar to that of phosphorylase crystallized in the presence of ammonium sulfate (Barford, D. & Johnson, L.N., 1989, Nature 340, 609-616), the tertiary structures differ in that the two domains of the PLPP-GPb subunits are rotated apart by 5 degrees relative to the T-state conformation. Global differences among the four subunits suggest that the major domains of the phosphorylase subunit are connected by a flexible hinge. The two different positions observed for the terminal phosphate of the PLPP are interpreted as distinct phosphate subsites that may be occupied at different points along the reaction pathway. The structural basis for the unique ability of R-state dimers to form tetramers results from the orientation of subunits with respect to the dyad axis of the dimer. Residues in opposing dimers are in proper registration to form tetramers only in the R-state. PMID:1304389

  6. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2′-anhydrouridine

    PubMed Central

    Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.; Pavlyuk, Bogdan Ph.; Kachalova, Galina S.; Betzel, Christian; Morgunova, Ekaterina Yu.; Zhukhlistova, Nadezhda E.; Mikhailov, Al’bert M.

    2007-01-01

    Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-­phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P212121, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit. PMID:17909287

  7. Inhibition and Structure of Trichomonas vaginalis Purine Nucleoside Phosphorylase with Picomolar Transition State Analogues

    SciTech Connect

    Rinaldo-Matthis,A.; Wing, C.; Ghanem, M.; Deng, H.; Wu, P.; Gupta, A.; Tyler, P.; Evans, G.; Furneaux, R.; et al.

    2007-01-01

    Trichomonas vaginalis is a parasitic protozoan purine auxotroph possessing a unique purine salvage pathway consisting of a bacterial type purine nucleoside phosphorylase (PNP) and a purine nucleoside kinase. Thus, T. vaginalis PNP (TvPNP) functions in the reverse direction relative to the PNPs in other organisms. Immucillin-A (ImmA) and DADMe-Immucillin-A (DADMe-ImmA) are transition stte mimics of adenosine with geometric and electrostatic features that resemble early and late transition states of adenosine at the transition state stabilized by TvPNP. ImmA demonstrates slow-onset tight-binding inhibition with TvPNP, to give an equilibrium dissociation constant of 87 pM, an inhibitor release half-time of 17.2 min, and a K{sub m}/K{sub d} ratio of 70,100. DADMe-ImmA resembles a late ribooxacarbenium ion transition state for TvPNP to give a dissociation constant of 30 pM, an inhibitor release half-time of 64 min, and a K{sub m}/K{sub d} ratio of 203,300. The tight binding of DADMe-ImmA supports a late S{sub N}1 transition state. Despite their tight binding to TvPNP, ImmA and DADMe-ImmA are weak inhibitors of human and P. falciparum PNPs. The crystal structures of the TvPNP-ImmA{center_dot}PO{sub 4} and TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4} ternary complexes differ from previous structures with substrate anologues. The tight binding with DADMe-ImmA is in part due to a 2.7 {angstrom} ionic interaction between a PO{sub 4} oxygen and the N1 cation of the hydroxypyrrolidine and is weaker in the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure at 3.5 {angstrom}. However, the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure includes hydrogen bonds between the 2'-hydroxyl and the protein that are not present in TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4}. These structures explain why DADMe-ImmA binds tighter than ImmA. Immucillin-H is a 12 nM inhibitor of TvPNP but a 56 pM inhibitor of human PNP. And this difference is explained by isotope

  8. Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction.

    PubMed

    Ozawa, Eijiro

    2011-01-01

    It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10(-7)-10(-4) M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3',5'-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction.

  9. Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction

    PubMed Central

    OZAWA, Eijiro

    2011-01-01

    It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10−7–10−4 M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3′,5′-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction. PMID:21986313

  10. Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Cabello-Aguilar, Simon; Balme, Sébastien; Chaaya, Adib Abou; Bechelany, Mikhael; Balanzat, Emmanuel; Janot, Jean-Marc; Pochat-Bohatier, Celine; Miele, Philippe; Dejardin, Philippe

    2013-09-01

    We report the formation of a hybrid biological/artificial nanopore by the direct insertion of non-modified α-hemolysin at the entrance of a high aspect ratio (length/diameter) biomimetic nanopore. In this robust hybrid system, the protein exhibits the same polynucleotide discrimination properties as in the biological membrane and the polynucleotide dwell time is strongly increased. This nanopore is very promising for DNA sequencing applications where the high DNA translocation velocity and the fragility of the support are the main bottlenecks.We report the formation of a hybrid biological/artificial nanopore by the direct insertion of non-modified α-hemolysin at the entrance of a high aspect ratio (length/diameter) biomimetic nanopore. In this robust hybrid system, the protein exhibits the same polynucleotide discrimination properties as in the biological membrane and the polynucleotide dwell time is strongly increased. This nanopore is very promising for DNA sequencing applications where the high DNA translocation velocity and the fragility of the support are the main bottlenecks. Electronic supplementary information (ESI) available: Materials, nanopore fabrication and characterization. See DOI: 10.1039/c3nr03683a

  11. Development of a new HPLC method using fluorescence detection without derivatization for determining purine nucleoside phosphorylase activity in human plasma.

    PubMed

    Giuliani, Patricia; Zuccarini, Mariachiara; Buccella, Silvana; Rossini, Margherita; D'Alimonte, Iolanda; Ciccarelli, Renata; Marzo, Matteo; Marzo, Antonio; Di Iorio, Patrizia; Caciagli, Francesco

    2016-01-15

    Purine nucleoside phosphorylase (PNP) activity is involved in cell survival and function, since PNP is a key enzyme in the purine metabolic pathway where it catalyzes the phosphorolysis of the nucleosides to the corresponding nucleobases. Its dysfunction has been found in relevant pathological conditions (such as inflammation and cancer), so the detection of PNP activity in plasma could represent an attractive marker for early diagnosis or assessment of disease progression. Thus the aim of this study was to develop a simple, fast and sensitive HPLC method for the determination of PNP activity in plasma. The separation was achieved on a Phenomenex Kinetex PFP column using 0.1% formic acid in water and methanol as mobile phases in gradient elution mode at a flow rate of 1ml/min and purine compounds were detected using UV absorption and fluorescence. The analysis was fast since the run was achieved within 13min. This method improved the separation of the different purines, allowing the UV-based quantification of the natural PNP substrates (inosine and guanosine) or products (hypoxanthine and guanine) and its subsequent metabolic products (xanthine and uric acid) with a good precision and accuracy. The most interesting innovation is the simultaneous use of a fluorescence detector (excitation/emission wavelength of 260/375nm) that allowed the quantification of guanosine and guanine without derivatization. Compared with UV, the fluorescence detection improved the sensitivity for guanine detection by about 10-fold and abolished almost completely the baseline noise due to the presence of plasma in the enzymatic reaction mixture. Thus, the validated method allowed an excellent evaluation of PNP activity in plasma which could be useful as an indicator of several pathological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Isolation, characterization, and inactivation of the APA1 gene encoding yeast diadenosine 5',5'''-P1,P4-tetraphosphate phosphorylase.

    PubMed Central

    Plateau, P; Fromant, M; Schmitter, J M; Buhler, J M; Blanquet, S

    1989-01-01

    The gene encoding diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) phosphorylase from yeast was isolated from a lambda gt11 library. The DNA sequence of the coding region was determined, and more than 90% of the deduced amino acid sequence was confirmed by peptide sequencing. The Ap4A phosphorylase gene (APA1) is unique in the yeast genome. Disruption experiments with this gene, first, supported the conclusion that, in vivo, Ap4A phosphorylase catabolizes the Ap4N nucleotides (where N is A, C, G, or U) and second, revealed the occurrence of a second Ap4A phosphorylase activity in yeast cells. Finally, evidence is provided that the APA1 gene product is responsible for most of the ADP sulfurylase activity in yeast extracts. Images PMID:2556364

  13. cDNA cloning and complete primary structure of skeletal muscle phosphorylase kinase (alpha subunit).

    PubMed Central

    Zander, N F; Meyer, H E; Hoffmann-Posorske, E; Crabb, J W; Heilmeyer, L M; Kilimann, M W

    1988-01-01

    We have isolated and sequenced a cDNA encoding the alpha subunit of phosphorylase kinase from rabbit fast-twitch skeletal muscle. The cDNA molecule consists of 388 nucleotides of 5'-nontranslated sequence, the complete coding sequence of 3711 nucleotides, and 342 nucleotides of 3'-nontranslated sequence followed by a poly(dA) tract. It encodes a polypeptide of 1237 amino acids and a deduced molecular mass of 138,422 Da. Nearly half of the deduced amino acid sequence is confirmed by peptide sequencing. Seven positions of endogenously phosphorylated serine residues and autophosphorylation sites, identified by peptide sequencing, could be assigned. They cluster in a segment of only 60 amino acids. RNA blot hybridization analysis demonstrates a predominant RNA species of approximately equal to 4500 nucleotides and a less abundant RNA of 8700 nucleotides. Images PMID:3362857

  14. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters.

    PubMed

    Ha, Suk-Jin; Galazka, Jonathan M; Joong Oh, Eun; Kordić, Vesna; Kim, Heejin; Jin, Yong-Su; Cate, Jamie H D

    2013-01-01

    Anaerobic bacteria assimilate cellodextrins from plant biomass by using a phosphorolytic pathway to generate glucose intermediates for growth. The yeast Saccharomyces cerevisiae can also be engineered to ferment cellobiose to ethanol using a cellodextrin transporter and a phosphorolytic pathway. However, strains with an intracellular cellobiose phosphorylase initially fermented cellobiose slowly relative to a strain employing an intracellular β-glucosidase. Fermentations by the phosphorolytic strains were greatly improved by using cellodextrin transporters with elevated rates of cellobiose transport. Furthermore under stress conditions, these phosphorolytic strains had higher biomass and ethanol yields compared to hydrolytic strains. These observations suggest that, although cellobiose phosphorolysis has energetic advantages, phosphorolytic strains are limited by the thermodynamics of cellobiose phosphorolysis (ΔG°=+3.6kJmol(-1)). A thermodynamic "push" from the reaction immediately upstream (transport) is therefore likely to be necessary to achieve high fermentation rates and energetic benefits of phosphorolysis pathways in engineered S. cerevisiae.

  15. Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate

    SciTech Connect

    Bianchetti, Christopher M.; Elsen, Nathaniel L.; Fox, Brian G.; Phillips, Jr., George N.

    2012-03-27

    Clostridium thermocellum is a cellulosome-producing bacterium that is able to efficiently degrade and utilize cellulose as a sole carbon source. Cellobiose phosphorylase (CBP) plays a critical role in cellulose degradation by catalyzing the reversible phosphate-dependent hydrolysis of cellobiose, the major product of cellulose degradation, into -D-glucose 1-phosphate and D-glucose. CBP from C. thermocellum is a modular enzyme composed of four domains [N-terminal domain, helical linker, (/)6-barrel domain and C-terminal domain] and is a member of glycoside hydrolase family 94. The 2.4 {angstrom} resolution X-ray crystal structure of C. thermocellum CBP reveals the residues involved in coordinating the catalytic phosphate as well as the residues that are likely to be involved in substrate binding and discrimination.

  16. Evaluation of capillary chromatographic supports for immobilized human purine nucleoside phosphorylase in frontal affinity chromatography studies.

    PubMed

    de Moraes, Marcela Cristina; Temporini, Caterina; Calleri, Enrica; Bruni, Giovanna; Ducati, Rodrigo Gay; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Massolini, Gabriella

    2014-04-18

    The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli.

    PubMed

    Lee, Jin-Ha; Moon, Young-Hwan; Kim, Nahyun; Kim, Young-Min; Kang, Hee-Kyoung; Jung, Ji-Yeon; Abada, Emad; Kang, Seong-Soo; Kim, Doman

    2008-04-01

    The gene encoding sucrose phosphorylase (742sp) in Leuconostoc mesenteroides NRRL B-742 was cloned and expressed in Escherichia coli. The nucleotide sequence of the transformed 742sp comprised an ORF of 1,458 bp giving a protein with calculated molecular mass of 55.3 kDa. 742SPase contains a C-terminal amino acid sequence that is significantly different from those of other Leu. mesenteroides SPases. The purified 742SPase had a specific activity of 1.8 U/mg with a K (m) of 3 mM with sucrose as a substrate; optimum activity was at 37 degrees C and pH 6.7. The purified 742SPase transferred the glucosyl moiety of sucrose to cytosine monophosphate (CMP).

  18. Purification, crystallization and preliminary X-ray analysis of uridine phosphorylase from Salmonella typhimurium.

    PubMed

    Dontsova, Mariya V; Savochkina, Yulia A; Gabdoulkhakov, Azat G; Baidakov, Sergey N; Lyashenko, Andrey V; Zolotukhina, Maria; Errais Lopes, Liubov; Garber, Mariya B; Morgunova, Ekaterina Yu; Nikonov, Stanislav V; Mironov, Alexandr S; Ealick, Steven E; Mikhailov, Al 'Bert M

    2004-04-01

    The structural udp gene encoding uridine phosphorylase (UPh) was cloned from the Salmonella typhimurium chromosome and overexpressed in Escherichia coli cells. S. typhimurium UPh (StUPh) was purified to apparent homogeneity and crystallized. The primary structure of StUPh has high homology to the UPh from E. coli, but the enzymes differ substantially in substrate specificity and sensitivity to the polarity of the medium. Single crystals of StUPh were grown using hanging-drop vapor diffusion with PEG 8000 as the precipitant. X-ray diffraction data were collected to 2.9 A resolution. Preliminary analysis of the diffraction data indicated that the crystal belonged to space group P6(1(5)), with unit-cell parameters a = 92.3, c = 267.5 A. The solvent content is 37.7% assuming the presence of one StUPh hexamer per asymmetric unit.

  19. Structural characterization of purine nucleoside phosphorylase from human pathogen Helicobacter pylori.

    PubMed

    Štefanić, Zoran; Mikleušević, Goran; Luić, Marija; Bzowska, Agnieszka; Leščić Ašler, Ivana

    2017-08-01

    Microaerophilic bacterium Helicobacer pylori is a well known human pathogen involved in the development of many diseases. Due to the evergrowing infection rate and increase of H. pylori antibiotic resistence, it is of utmost importance to find a new way to attack and eradicate H. pylori. The purine metabolism in H. pylori is solely dependant on the salvage pathway and one of the key enzymes in this pathway is purine nucleoside phosphorylase (PNP). In this timely context, we report here the basic biochemical and structural characterization of recombinant PNP from the H. pylori clinical isolate expressed in Escherichia coli. Structure of H. pylori PNP is typical for high molecular mass PNPs. However, its activity towards adenosine is very low, thus resembling more that of low molecular mass PNPs. Understanding the molecular mechanism of this key enzyme may lead to the development of new drug strategies and help in the eradication of H. pylori. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase.

    PubMed

    Mu, H H; Yu, Y; Wasserman, B P; Carman, G M

    2001-04-01

    A plastidic 112-kDa starch phosphorylase (SP) has been identified in the amyloplast stromal fraction of maize. This starch phosphorylase was purified 310-fold from maize endosperm and characterized with respect to its enzymological and kinetic properties. The purification procedure included ammonium sulfate fractionation, Sephacryl 300 HR chromatography, affinity starch adsorption, Q-Sepharose, and Mono Q chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and SDS-polyacrylamide gel electrophoresis. Anti-SP antibodies recognized the purified 112-kDa SP enzyme and N-terminal amino acid sequence analysis confirmed that the purified enzyme is the amyloplast stromal 112-kDa SP. Analysis of the purified enzyme by Superose 6 gel filtration chromatography indicated that the native enzyme consisted of two identical subunits. The pH optimum for the enzyme was 6.0 in the synthetic direction and 5.5 in the phosphorolytic direction. SP activity was inhibited by thioreactive agents, diethyl pyrocarbonate, phenylglyoxal, and ADP-glucose. The activation energies for the synthetic and phosphorolytic reactions were 11.1 and 16.9 kcal/mol, respectively, and the enzyme was thermally labile above 50 degrees C. Results of kinetic experiments indicated that the enzyme catalyzes its reaction via a sequential Bi Bi mechanism. The Km value for amylopectin was eight-fold lower than that of glycogen. A kinetic analysis indicated that the phosphorolytic reaction was favored over the synthetic reaction when malto-oligosaccharides (4 to 7 units) were used as substrates. The specificity constants (Vmax/Km) of the enzyme measured in either the synthetic or the phosphorolytic directions increased with increasing chain length.

  1. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design.

    PubMed

    El Omari, Kamel; Bronckaers, Annelies; Liekens, Sandra; Pérez-Pérez, Maria-Jésus; Balzarini, Jan; Stammers, David K

    2006-10-15

    HTP (human thymidine phosphorylase), also known as PD-ECGF (platelet-derived endothelial cell growth factor) or gliostatin, has an important role in nucleoside metabolism. HTP is implicated in angiogenesis and apoptosis and therefore is a prime target for drug design, including antitumour therapies. An HTP structure in a closed conformation complexed with an inhibitor has previously been solved. Earlier kinetic studies revealed an ordered release of thymine followed by ribose phosphate and product inhibition by both ligands. We have determined the structure of HTP from crystals grown in the presence of thymidine, which, surprisingly, resulted in bound thymine with HTP in a closed dead-end complex. Thus thymine appears to be able to reassociate with HTP after its initial ordered release before ribose phosphate and induces the closed conformation, hence explaining the mechanism of non-competitive product inhibition. In the active site in one of the four HTP molecules within the crystal asymmetric unit, additional electron density is present. This density has not been previously seen in any pyrimidine nucleoside phosphorylase and it defines a subsite that may be exploitable in drug design. Finally, because our crystals did not require proteolysed HTP to grow, the structure reveals a loop (residues 406-415), disordered in the previous HTP structure. This loop extends across the active-site cleft and appears to stabilize the dimer interface and the closed conformation by hydrogen-bonding. The present study will assist in the design of HTP inhibitors that could lead to drugs for anti-angiogenesis as well as for the potentiation of other nucleoside drugs.

  2. Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom

    PubMed Central

    2013-01-01

    Background Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling. Results We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses. Conclusion In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously

  3. Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom.

    PubMed

    Pettengill, Emily A; Pettengill, James B; Coleman, Gary D

    2013-08-19

    Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling. We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses. In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously uncharacterized NP-like proteins may

  4. Elevated thymidine phosphorylase activity in psoriatic lesions accounts for the apparent presence of an epidermal growth inhibitor, but is not in itself growth inhibitory

    SciTech Connect

    Hammerberg, C.; Fisher, G.J.; Voorhees, J.J.; Cooper, K.D. )

    1991-08-01

    An apparent tissue-specific growth inhibitor, or chalone, obtained from psoriatic lesions was tentatively identified in the 100-kDa fraction based upon inhibition of DNA synthesis, as measured by (3H)-thymidine uptake by a squamous cell carcinoma cell line, SCC 38. This fraction, however, failed to inhibit SCC 38 cell growth when assessed directly in a neutral red uptake assay. Characterization of the inhibitor of (3H)-thymidine uptake revealed it to have biochemical properties identical to thymidine phosphorylase: (1) molecular weight close to 100 kDa, (2) isoelectric point of 4.2, and (3) thymidine phosphorylase enzyme activity. Thus, the authors conclude that its ability to inhibit (3H)-thymidine uptake was due to thymidine catabolism rather than inhibition of DNA synthesis or growth inhibition. Examination of thymidine phosphorylase activity in keratome biopsies from psoriatic and normal skin demonstrated a twentyfold increase in activity in psoriatic lesions relative to non-lesional or normal skin. This increase in metabolism of thymidine was due to thymidine phosphorylase rather than uridine phosphorylase activity. The correlation between increased thymidine phosphorylase activity and increased keratinocyte proliferation in vitro (cultured) and in vivo (psoriasis), suggests that this enzyme may play a critical role in providing the thymidine necessary for keratinocyte proliferation.

  5. [Reconstruction of muscle glycogen phosphorylase b from an apoenzyme and pyridoxal-5'-phosphate and its analogs. Interaction of apophosphorylase and the reconstructed enzyme with specific ligands].

    PubMed

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaia, A A; Kurganov, B I; Gunar, V I

    1995-12-01

    Sedimentation methods were used to study the effects of modification of the pyridoxal-5'-phosphate (PLP) molecule at the 5th position on the affinity of reconstituted muscle glycogen phosphorylase b for the substrate (glycogen) and the allosteric inhibitor (FMN) as well as on the enzyme capacity to association induced by AMP. Reconstituted phosphorylase b was obtained with PLP analogs containing at the 5th position -CH2-CH2-COOH (analog I), trans-CH=CH-COOH (analog II) or -C identical to COOH (analog III) residues. Reconstitution of phosphorylase b is accompanied by the recovery of the enzyme quaternary structure. Phosphorylase b reconstituted with PLP or analogs I, II and III is not distinguished practically from the native enzyme in its affinity for glycogen. Substitution of the native coenzyme in the phosphorylase molecule with any tested PLP analog leads to lower enzyme affinity for FMN. Microscopic dissociation constants of the FMN-enzyme complexes increase in the following order: enzyme.I < enzyme.II < enzyme.III. Phosphorylase b reconstituted with analogs I, II and III differs substantially from the native enzyme in its capacity to association in the presence of 1 mM AMP: the reconstituted enzyme is represented practically by only the tetrameric form.

  6. Cloning of the maltose phosphorylase gene from Bacillus sp. strain RK-1 and efficient production of the cloned gene and the trehalose phosphorylase gene from Bacillus stearothermophilus SK-1 in Bacillus subtilis.

    PubMed

    Inoue, Yasushi; Yasutake, Nozomu; Oshima, Yoshie; Yamamoto, Yoshie; Tomita, Tetsuji; Miyoshi, Shinsuke; Yatake, Tsuneya

    2002-12-01

    The maltose phosphorylase (MPase) gene of Bacillus sp. strain RK-1 was cloned by PCR with oligonucleotide primers designed on the basis of a partial N-terminal amino acid sequence of the purified enzyme. The MPase gene consisted of 2,655 bp encoding a theoretical protein with a Mr of 88,460, and had no secretion signal sequence, although most of the MPase activity was detected in the culture supernatant of RK-1. This cloned MPase gene and the trehalose phosphorylase (TPase) gene from Bacillus stearothermophilus SK-1 were efficiently expressed intracellularly under the control of the Bacillus amyloliquefaciens alpha-amylase promoter in Bacillus subtilis. The production yields were estimated to be more than 2 g of enzyme per liter of medium, about 250 times the production of the original strains, in a simple shake flask. About 60% of maltose was converted into trehalose by the simultaneous action of both enzymes produced in B. subtilis.

  7. Interaction between adenovirus DNA-binding protein and single-stranded polynucleotides studied by circular dichroism and ultraviolet absorption.

    PubMed

    van Amerongen, H; van Grondelle, R; van der Vliet, P C

    1987-07-28

    The adenovirus DNA-binding protein (AdDBP) is a multifunctional protein required for viral DNA replication and control of transcription. We have studied the binding of AdDBP to single-stranded M13 DNA and to the homopolynucleotides poly(rA), poly(dA), and poly(dT) by means of circular dichroism (CD) and optical density (OD) measurements. The binding to all these polynucleotides was strong and nearly stoichiometric. Titration experiments showed that the size of the binding site is 9-11 nucleotides long for M13 DNA, poly(dA), and poly(rA). A higher value (15.0 +/- 0.8) was found for poly(dT). Pronounced changes in the circular dichroism and optical density spectra were observed upon binding of AdDBP. In general, both the positive peak around 260-270 nm and the negative peak around 240-250 nm in the CD spectra decreased in intensity, and a shift of the crossover point to longer wavelengths was found. The OD spectra observed upon binding of AdDBP are remarkably similar to those obtained with prokaryotic helix-destabilizing proteins like bacteriophage T4 gene 32 protein and fd gene 5 protein. The data can best be interpreted by assuming that the AdDBP-polynucleotide complex has a regular, rigid, and extended configuration that satifies two criteria: (1) a considerable tilt of the bases in combination with (2) a small rotation per base and/or a shift of the bases closer to the helix axis.

  8. Oxidized and Original article degraded mitochondrial polynucleotides (DeMPs), especially RNA, are potent immunogenic regulators in primary mouse macrophages.

    PubMed

    Saxena, Abhinav R; Gao, Linda Y; Srivatsa, Shachi; Bobersky, Elizabeth Z; Periasamy, Sivakumar; Hunt, Danielle T; Altman, Kyle E; Crawford, Dana R

    2017-03-01

    Certain mitochondrial components can act as damage-associated molecular patterns (DAMPs) or danger signals, triggering a proinflammatory response in target (usually immune) cells. We previously reported the selective degradation of mitochondrial DNA and RNA in response to cellular oxidative stress, and the immunogenic effect of this DNA in primary mouse astrocytes. Here, we extend these studies to assess the immunogenic role of both mitochondrial DNA and RNA isolated from hydrogen peroxide (HP) treated HA1 cells (designated "DeMPs" for degraded mitochondrial polynucleotides) using mouse bone marrow derived macrophages (BMDMs), a conventional immune cell type. DeMPs and control mitochondrial DNA (cont mtDNA) and RNA (cont mtRNA) were transfected into BMDMs and cell-free media analyzed for the presence of proinflammatory cytokines (IL-6, MCP-1, and TNFα) and Type I interferon (IFN-α and IFN-β). Cont mtDNA induced IL-6 and MCP-1 production, and this effect was even greater with DeMP DNA. A similar response was observed for Type I interferons. An even stronger induction of proinflammatory cytokine and type 1 interferons was observed for cont mtRNA. However, contrary to DeMP DNA, DeMP RNA attenuated rather than potentiated the cont mtRNA cytokine inductions. This attenuation effect was not accompanied by an IL-10 or TGFβ anti-inflammatory response. All DeMP effects were observed at multiple oxidant concentrations. Finally, DeMP production and immunogenicity overlaps with cellular adaptive response and so may contribute to cellular oxidant protection. These results provide new insight into the immunogenicity of mitochondrial polynucleotides, and identify new roles and selective consequences of cellular oxidation.

  9. Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals.

    PubMed

    Hawkins, Clare L; Davies, Michael J

    2002-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is a key bactericidal agent, but can also damage host tissue. As there is a strong link between chronic inflammation and some cancers, we have investigated HOCl damage to DNA, RNA, and polynucleotides. Reaction of HOCl with these materials is shown to yield multiple semistable chloramines (RNHCl/RR'NCl), which are the major initial products, and account for 50-95% of the added HOCl. These chloramines decay by thermal and metal-ion catalyzed processes, to give nucleoside-derived, nitrogen-centered, radicals. The latter have been characterized by EPR spin trapping. The propensity for radical formation with polynucleotides is cytidine > adenosine = guanosine > uridine = thymidine. The rates of decay, and yield of radicals formed, are dependent on the nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA gives rise to single- and double-strand breaks via chloramine-mediated reactions. Preformed nucleoside chloramines also induce plasmid cleavage, though this only occurs to a significant extent with unstable thymidine- and uridine-derived chloramines, where radical formation is rapid. Overall the data rationalize the preferential formation of chlorinated 2'-deoxycytidine and 2'-deoxyadenosine in DNA and suggest that DNA damage induced by HOCl, and preformed chloramines, occurs at sequence

  10. Design of an adenosine phosphorylase by active-site modification of murine purine nucleoside phosphorylase. Enzyme kinetics and molecular dynamics simulation of Asn-243 and Lys-244 substitutions of purine nucleoside phosphorylase.

    PubMed

    Maynes, J T; Yam, W; Jenuth, J P; Gang Yuan, R; Litster, S A; Phipps, B M; Snyder, F F

    1999-12-01

    Our objective was to alter the substrate specificity of purine nucleoside phosphorylase such that it would catalyse the phosphorolysis of 6-aminopurine nucleosides. We modified both Asn-243 and Lys-244 in order to promote the acceptance of the C6-amino group of adenosine. The Asn-243-Asp substitution resulted in an 8-fold increase in K(m) for inosine from 58 to 484 microM and a 1000-fold decrease in k(cat)/K(m). The Asn-243-Asp construct catalysed the phosphorolysis of adenosine with a K(m) of 45 microM and a k(cat)/K(m) 8-fold that with inosine. The Lys-244-Gln construct showed only marginal reduction in k(cat)/K(m), 83% of wild type, but had no activity with adenosine. The Asn-243-Asp;Lys-244-Gln construct had a 14-fold increase in K(m) with inosine and 7-fold decrease in k(cat)/K(m) as compared to wild type. This double substitution catalysed the phosphorolysis of adenosine with a K(m) of 42 microM and a k(cat)/K(m) twice that of the single Asn-243-Asp substitution. Molecular dynamics simulation of the engineered proteins with adenine as substrate revealed favourable hydrogen bond distances between N7 of the purine ring and the Asp-243 carboxylate at 2.93 and 2.88 A, for Asn-243-Asp and the Asn-243-Asp;Lys-244-Gln constructs respectively. Simulation also supported a favourable hydrogen bond distance between the purine C6-amino group and Asp-243 at 2.83 and 2.88 A for each construct respectively. The Asn-243-Thr substitution did not yield activity with adenosine and simulation gave unfavourable hydrogen bond distances between Thr-243 and both the C6-amino group and N7 of the purine ring. The substitutions were not in the region of phosphate binding and the apparent S(0.5) for phosphate with wild type and the Asn-243-Asp enzymes were 1.35+/-0.01 and 1.84+/-0.06 mM, respectively. Both proteins exhibited positive co-operativity with phosphate giving Hill coefficients of 7.9 and 3.8 respectively.

  11. Design of an adenosine phosphorylase by active-site modification of murine purine nucleoside phosphorylase. Enzyme kinetics and molecular dynamics simulation of Asn-243 and Lys-244 substitutions of purine nucleoside phosphorylase.

    PubMed Central

    Maynes, J T; Yam, W; Jenuth, J P; Gang Yuan, R; Litster, S A; Phipps, B M; Snyder, F F

    1999-01-01

    Our objective was to alter the substrate specificity of purine nucleoside phosphorylase such that it would catalyse the phosphorolysis of 6-aminopurine nucleosides. We modified both Asn-243 and Lys-244 in order to promote the acceptance of the C6-amino group of adenosine. The Asn-243-Asp substitution resulted in an 8-fold increase in K(m) for inosine from 58 to 484 microM and a 1000-fold decrease in k(cat)/K(m). The Asn-243-Asp construct catalysed the phosphorolysis of adenosine with a K(m) of 45 microM and a k(cat)/K(m) 8-fold that with inosine. The Lys-244-Gln construct showed only marginal reduction in k(cat)/K(m), 83% of wild type, but had no activity with adenosine. The Asn-243-Asp;Lys-244-Gln construct had a 14-fold increase in K(m) with inosine and 7-fold decrease in k(cat)/K(m) as compared to wild type. This double substitution catalysed the phosphorolysis of adenosine with a K(m) of 42 microM and a k(cat)/K(m) twice that of the single Asn-243-Asp substitution. Molecular dynamics simulation of the engineered proteins with adenine as substrate revealed favourable hydrogen bond distances between N7 of the purine ring and the Asp-243 carboxylate at 2.93 and 2.88 A, for Asn-243-Asp and the Asn-243-Asp;Lys-244-Gln constructs respectively. Simulation also supported a favourable hydrogen bond distance between the purine C6-amino group and Asp-243 at 2.83 and 2.88 A for each construct respectively. The Asn-243-Thr substitution did not yield activity with adenosine and simulation gave unfavourable hydrogen bond distances between Thr-243 and both the C6-amino group and N7 of the purine ring. The substitutions were not in the region of phosphate binding and the apparent S(0.5) for phosphate with wild type and the Asn-243-Asp enzymes were 1.35+/-0.01 and 1.84+/-0.06 mM, respectively. Both proteins exhibited positive co-operativity with phosphate giving Hill coefficients of 7.9 and 3.8 respectively. PMID:10567244

  12. Synthesis, thymidine phosphorylase inhibition and molecular modeling studies of 1,3,4-oxadiazole-2-thione derivatives.

    PubMed

    Shahzad, Sohail Anjum; Yar, Muhammad; Bajda, Marek; Shahzadi, Lubna; Khan, Zulfiqar Ali; Naqvi, Syed Ali Raza; Mutahir, Sadaf; Mahmood, Nasir; Khan, Khalid Mohammed

    2015-06-01

    Thymidine phosphorylase (TP) inhibitors have attracted great attention due to their ability to suppress the tumors formation. In our ongoing research, a series of 1,3,4-oxadiazole-2-thione (1-12) has been synthesized under simple reaction conditions in good to excellent yields (86-98%) and their TP inhibition potential has also been evaluated. The majority of synthesized compounds showed moderate thymidine phosphorylase inhibitory activity with IC50 values ranging from 38.24±1.28 to 258.43±0.43μM, and 7-deazaxanthine (7DX) was used as a reference compound (IC50 38.68±4.42). The TP activity was very much dependent on the C-5 substituents; among this series the compound 6 bearing 4-hydroxyphenyl group was found to be the most active with IC50 38.24±1.28μM. Molecular docking studies revealed their binding mode.

  13. Purification, crystallization and preliminary X-ray diffraction study on pyrimidine nucleoside phosphorylase TTHA1771 from Thermus thermophilus HB8

    SciTech Connect

    Shimizu, Katsumi; Kunishima, Naoki

    2007-04-01

    The pyrimidine nucleoside phosphorylase TTHA1771 from T. thermophilus HB8 has been overexpressed, purified and crystallized. The crystals diffract X-rays to 1.8 Å resolution using synchrotron radiation. Pyrimidine nucleoside phosphorylase (PYNP) catalyzes the reversible phosphorolysis of pyrimidines in the nucleotide-synthesis salvage pathway. In order to study the structure–thermostability relationship of this enzyme, PYNP from the extreme thermophile Thermus thermophilus HB8 (TTHA1771) has been cloned, overexpressed and purified. The TTHA1771 protein was crystallized at 291 K using the oil-microbatch method with PEG 4000 as a precipitant. A native data set was collected to 1.8 Å resolution using synchrotron radiation. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 58.83, b = 76.23, c = 103.86 Å, β = 91.3°.

  14. Measurement of the turnover of glycogen phosphorylase by GC/MS using stable isotope derivatives of pyridoxine (vitamin B6).

    PubMed Central

    Beynon, R J; Leyland, D M; Evershed, R P; Edwards, R H; Coburn, S P

    1996-01-01

    The majority of vitamin B6 in the body is in skeletal muscle, bound as the cofactor pyridoxal 5'-phosphate to one abundant protein, glycogen phosphorylase. Previous work has established that radiolabelled vitamin B6 can be used as a turnover label for glycogen phosphorylase. In this study, a stable isotope derivative of pyridoxine ¿dideuterated pyridoxine; 3-hydroxy-4-(hydroxymethyl) -5-[hydroxymethyl-2H2]-2-methylpyridine¿ ([2H2]PN) has been used as a metabolic tracer to study the kinetics of labelling of the body pools of vitamin B6 in mice. A non-invasive method was developed in which the isotope abundance of the urinary excretory product of vitamin B6 metabolism, 4-pyridoxic acid, was analysed by GC/MS. The change in isotope abundance of urinary 4-pyridoxic acid following administration of [2H2]PN reflects the kinetics of labelling of the body pools of vitamin B6, and yields, non-invasively, the rate of degradation of glycogen phosphorylase. PMID:8713093

  15. Cooperative behavior in the thiol oxidation of rabbit muscle glycogen phosphorylase in cysteamine/cystamine redox buffers

    SciTech Connect

    Cappel, R.E.; Gilbert, H.F.

    1986-11-25

    Glycogen phosphorylase a and b are irreversibly inactivated by oxidation with the disulfide cystamine. The mechanism is complex and involves oxidation of at least two classes of sulfhydryl groups. The oxidation of one or more of the first class of 4 +/- 1 sulfhydryl groups is reversible, but the equilibrium constant for the oxidation is so unfavorable (1 X 10(-4)) that the micromolar concentrations of cysteamine released stoichiometrically with enzyme oxidation are sufficient to prevent complete oxidation even in the presence of 100 mM cystamine. The rapid phase of inactivation of phosphorylase b, which is first order in cystamine (k = 2.9 +/- 0.3 M-1 min-1), is followed by the oxidation of 5 +/- 1 groups in an irreversible process that is second order in cystamine concentration (k = 3.9 +/- M-2 min-1). Similar behavior is observed for phosphorylase a, although the behavior is complicated by association/dissociation equilibrium. The second-order dependence of the rate of irreversible inactivation on cystamine concentration is interpreted in terms of a cooperative model in which a rapidly reversible thermodynamically unfavorable equilibrium oxidation of one or more sulfhydryl groups must precede the irreversible oxidation of one or more additional sulfhydryl groups. The thiol/disulfide oxidation equilibrium constant for the initial reversible reaction is estimated to be at least 10(4) less favorable than that for the reversible oxidation of phosphofructokinase.

  16. A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy.

    PubMed

    Bromley, Jennifer R; Warnes, Barbara J; Newell, Christine A; Thomson, Jamie C P; James, Celia M; Turnbull, Colin G N; Hanke, David E

    2014-03-01

    StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.

  17. Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis.

    PubMed

    Chen, Han-Min; Chang, Shih-Chung; Wu, Chi-Chen; Cuo, Ting-Shen; Wu, Jiann-Shing; Juang, Rong-Huay

    2002-04-01

    Starch phosphorylase (SP) is an enzyme used for the reversible phosphorolysis of the alpha-glucan in plant cells. When compared to its isoform in an animal cell, glycogen phosphorylase, a peptide containing 78 amino acids (L78) is inserted in the centre of the low-affinity type starch phosphorylase (L-SP). We found that the amino acid sequence of L78 had several interesting features including the presence of a PEST region, which serves as a signal for rapid degradation. Indeed, most L-SP molecules isolated from mature sweet potato roots were nicked in the middle of a molecule, but still retained their tertiary or quaternary structures, as well as full catalytic activity. The nicking sites on the L78 were identified by amino acid sequencing of these peptides, which also enabled us to propose a proteolytic process for L-SP. Enzyme kinetic studies of L-SP in the direction of starch synthesis indicated that the Km decreased during the proteolytic process when starch was used as the limiting substrate, but the Km for the other substrate (Glc-1-P) increased. On the other hand, the maximum velocities (Vmax) increased for both substrates. Mobility of the nicked L-SP was retarded on a native polyacrylamide gel containing soluble starch, indicating the increased affinity for starch. Results in this study suggested that L78 and its proteolytic modifications might play a regulatory role on the catalytic behaviour of L-SP in starch biosynthesis.

  18. The binding of D-gluconohydroximo-1,5-lactone to glycogen phosphorylase. Kinetic, ultracentrifugation and crystallographic studies.

    PubMed Central

    Papageorgiou, A C; Oikonomakos, N G; Leonidas, D D; Bernet, B; Beer, D; Vasella, A

    1991-01-01

    Combined kinetic, ultracentrifugation and X-ray-crystallographic studies have characterized the effect of the beta-glucosidase inhibitor gluconohydroximo-1,5-lactone on the catalytic and structural properties of glycogen phosphorylase. In the direction of glycogen synthesis, gluconohydroximo-1,5-lactone was found to competitively inhibit both the b (Ki 0.92 mM) and the alpha form of the enzyme (Ki 0.76 mM) with respect to glucose 1-phosphate in synergism with caffeine. In the direction of glycogen breakdown, gluconohydroximo-1,5-lactone was found to inhibit phosphorylase b in a non-competitive mode with respect to phosphate, and no synergism with caffeine could be demonstrated. Ultracentrifugation and crystallization experiments demonstrated that gluconohydroximo-1,5-lactone was able to induce dissociation of tetrameric phosphorylase alpha and stabilization of the dimeric T-state conformation. A crystallographic binding study with 100 mM-gluconohydroximo-1,5-lactone at 0.24 nm (2.4 A) resolution showed a major peak at the catalytic site, and no significant conformational changes were observed. Analysis of the electron-density map indicated that the ligand adopts a chair conformation. The results are discussed with reference to the ability of the catalytic site of the enzyme to distinguish between two or more conformations of the glucopyranose ring. PMID:1900987

  19. Laue and monochromatic diffraction studies on catalysis in phosphorylase b crystals.

    PubMed Central

    Duke, E. M.; Wakatsuki, S.; Hadfield, A.; Johnson, L. N.

    1994-01-01

    The conversion of substrate, heptenitol, to product, beta-1-C-methyl, alpha-D-glucose-1-phosphate (heptulose-2-P), in crystals of glycogen phosphorylase b has been studied by Laue and monochromatic diffraction methods. The phosphorolysis reaction in the crystal was started following liberation of phosphate from a caged phosphate compound, 3,5-dinitrophenyl phosphate (DNPP). The photolysis of DNPP, stimulated by flashes from a xenon flash lamp, was monitored in the crystal with a diode array spectrophotometer. In the Laue diffraction experiments, data to 2.8 A resolution were collected and the first time shot was obtained at 3 min from the start of reaction, and data collection comprised three 800-ms exposures. Careful data processing of Laue photographs for the large enzyme resulted in electron density maps of almost comparable quality to those produced by monochromatic methods. The difference maps obtained from the Laue measurements showed that very little catalysis had occurred 3 min and 1 h after release of phosphate, and a distinct peak consistent with the position expected for phosphate, in the attacking position was observed. Data collection times with monochromatic crystallographic methods on a home source took 16 h for data to 2.3 A resolution. Sufficient phosphate was released from the caged phosphate in the crystal from 5 flashes with a xenon flashlamp within 1 min for the reaction to go to completion within the time scale of the monochromatic data collection procedures. The heptulose-2-P product complex has been refined and the model agrees with that obtained previously with the major difference that the interchange of an aspartic acid (Asp 283) by an arginine (Arg 569) was not observed at the catalytic site. This change is part of the activation process of glycogen phosphorylase and may not have taken place in the current experiments because the caged compound binds weakly at the inhibitor site, restricting conformational change, and because activators

  20. Metabolic Mechanism of Mannan in a Ruminal Bacterium, Ruminococcus albus, Involving Two Mannoside Phosphorylases and Cellobiose 2-Epimerase

    PubMed Central

    Kawahara, Ryosuke; Saburi, Wataru; Odaka, Rei; Taguchi, Hidenori; Ito, Shigeaki; Mori, Haruhide; Matsui, Hirokazu

    2012-01-01

    Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-d-glucosyl-d-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-d-mannosyl-d-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-d-mannosyl 1-phosphate (Man1P) and d-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward d-glucose and 6-deoxy-d-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on d-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N′-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than d-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose. PMID:23093406

  1. Picomolar transition state analogue inhibitors of human 5'-methylthioadenosine phosphorylase and X-ray structure with MT-immucillin-A.

    PubMed

    Singh, Vipender; Shi, Wuxian; Evans, Gary B; Tyler, Peter C; Furneaux, Richard H; Almo, Steven C; Schramm, Vern L

    2004-01-13

    Methythioadenosine phosphorylase (MTAP) functions solely in the polyamine pathway of mammals to remove the methylthioadenosine (MTA) product from both spermidine synthase (2.5.1.16) and spermine synthase (2.5.1.22). Inhibition of polyamine synthesis is a validated anticancer target. We designed and synthesized chemically stable analogues for the proposed transition state of human MTAP on the basis of the known ribooxacarbenium character at all reported N-ribosyltransferase transition states [Schramm, V. L. (2003) Acc. Chem. Res. 36, 588-596]. Methylthio-immucillin-A (MT-ImmA) is an iminoribitol tight-binding transition state analogue inhibitor with an equilibrium dissociation constant of 1.0 nM. The immucillins resemble the ribooxacarbenium ion transition states of N-ribosyltransferases and are tightly bound as the N4' cations. An ion pair formed between the iminoribitol cation and phosphate anion mimics the ribooxacarbenium cation-phosphate anion pair formed at the transition state and is confirmed in the crystal structure. The X-ray crystal structure of human MTAP with bound MT-Imm-A also reveals that the 5'-methylthio group lies in a flexible hydrophobic pocket. Substitution of the 5'-methylthio group with a 5'-phenylthio group gives an equilibrium binding constant of 1.0 nM. Methylthio-DADMe-immucillin-A is a pyrrolidine analogue of the transition state with a methylene bridge between the 9-deazaadenine group and the pyrrolidine ribooxacarbenium mimic. It is a slow-onset inhibitor with a dissociation constant of 86 pM. Improved binding energy with DADMe-immucillin-A suggests that the transition state is more closely matched by increasing the distance between leaving group and ribooxacarbenium mimics, consistent with a more dissociative transition state. Increasing the hydrophobic volume near the 5'-position at the catalytic site with 5'-phenylthio-DADMe-immucillin-A gave a dissociation constant of 172 pM, slightly weaker than the 5'-methylthio group. p

  2. Troponins, heat shock proteins and glycogen phosphorylase BB in umbilical cord blood of complicated pregnancies.

    PubMed

    Mrkaic, Ana; Rosenn, Barak; Stojanovic, Ivana; Tivari, Samir

    2017-12-01

    Heat shock proteins (Hsp) are evolutionary conserved molecules with a chaperone role in cell survival. We hypothesized that cord blood concentrations of molecules reflecting fetal cardiac muscle insult, including Hsp, troponins cTnI and cTnT, and glycol-phosphorylase BB (GP-BB) would be elevated in pregnancies complicated by gestational diabetes (GDM) or preeclampsia (PIH) compared to healthy controls. Pregnant women admitted for delivery at >28 weeks were divided into four groups: healthy patients delivered vaginally (VAG), healthy patients delivered by c-section (CS), patients with PIH, and patients with GDM. Demographics, clinical characteristics, and cord blood concentrations of Hsp, troponins cTnI and cTnT, and GP-BB were compared between groups. Statistical analyses included t-test, Chi square, and Wilcoxon rank sum as appropriate. cTnI concentrations were significantly higher in the PIH group compared to the GDM and VAG groups and they were higher in the CS group compared to the VAG group. Concentrations of Hsp70 were higher in the GDM group compared to the VAG and CS groups. Concentration of GP-BB was higher in the PIH group compared to the VAG group. GP-BB and cTNI are the most sensitive markers for PIH-related fetal myocyte injury as is Hsp70 in pregnancies complicated by GDM.

  3. Kinetics and mechanistic study of competitive inhibition of thymidine phosphorylase by 5-fluoruracil derivatives.

    PubMed

    Petaccia, Manuela; Gentili, Patrizia; Bešker, Neva; D'Abramo, Marco; Giansanti, Luisa; Leonelli, Francesca; La Bella, Angela; Gradella Villalva, Denise; Mancini, Giovanna

    2016-04-01

    In a previous investigation, cationic liposomes formulated with new 5-FU derivatives, differing for the length of the polyoxyethylenic spacer that links the N(3) position of 5-FU to an alkyl chain of 12 carbon atoms, showed a higher cytotoxicity compared to free 5-FU, the cytotoxic effect being directly related to the length of the spacer. To better understand the correlation of the spacer length with toxicity, we carried out initial rate studies to determine inhibition, equilibrium and kinetic constants (KI, KM, kcat), and get inside inhibition activity of the 5-FU derivatives and their mechanism of action, a crucial information to design structural variations for improving the anticancer activity. The experimental investigation was supported by docking simulations based on the X-ray structure of thymidine phosphorylase (TP) from Escherichia coli complexed with 3'-azido-2'-fluoro-dideoxyuridin. Theoretical and experimental results showed that all the derivatives exert the same inhibition activity of 5-FU either as monomer and when embedded in lipid bilayer. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  5. The structure of brain glycogen phosphorylase-from allosteric regulation mechanisms to clinical perspectives.

    PubMed

    Mathieu, Cécile; Dupret, Jean-Marie; Rodrigues Lima, Fernando

    2017-02-01

    Glycogen phosphorylase (GP) is the key enzyme that regulates glycogen mobilization in cells. GP is a complex allosteric enzyme that comprises a family of three isozymes: muscle GP (mGP), liver GP (lGP), and brain GP (bGP). Although the three isozymes display high similarity and catalyze the same reaction, they differ in their sensitivity to the allosteric activator adenosine monophosphate (AMP). Moreover, inactivating mutations in mGP and lGP have been known to be associated with glycogen storage diseases (McArdle and Hers disease, respectively). The determination, decades ago, of the structure of mGP and lGP have allowed to better understand the allosteric regulation of these two isoforms and the development of specific inhibitors. Despite its important role in brain glycogen metabolism, the structure of the brain GP had remained elusive. Here, we provide an overview of the human brain GP structure and its relationship with the two other members of this key family of the metabolic enzymes. We also summarize how this structure provides valuable information to understand the regulation of bGP and to design specific ligands of potential pharmacological interest. © 2016 Federation of European Biochemical Societies.

  6. Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase.

    PubMed

    Bagarolo, Maria Libera; Porcelli, Marina; Martino, Elisa; Feller, Georges; Cacciapuoti, Giovanna

    2015-10-01

    5'-Deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus is a hexameric hyperthermophilic protein containing in each subunit two pairs of disulfide bridges, a CXC motif, and one free cysteine. The contribution of each disulfide bridge to the protein conformational stability and flexibility has been assessed by comparing the thermal unfolding and the limited proteolysis of the wild-type enzyme and its variants obtained by site-directed mutagenesis of the seven cysteine residues. All variants catalyzed efficiently MTA cleavage with specific activity similar to the wild-type enzyme. The elimination of all cysteine residues caused a substantial decrease of ΔHcal (850 kcal/mol) and Tmax (39°C) with respect to the wild-type indicating that all cysteine pairs and especially the CXC motif significantly contribute to the enzyme thermal stability. Disulfide bond Cys200-Cys262 and the CXC motif weakly affected protein flexibility while the elimination of the disulfide bond Cys138-Cys205 lead to an increased protease susceptibility. Experimental evidence from limited proteolysis, differential scanning calorimetry, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions also allowed to propose a stabilizing role for the free Cys164. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Thymidine phosphorylase gene variant, platelet counts and survival in gastrointestinal cancer patients treated by fluoropyrimidines

    PubMed Central

    Huang, Liu; Chen, Fengju; Chen, Yangyang; Yang, Xiaomei; Xu, Sanpeng; Ge, Shuwang; Fu, Shengling; Chao, Tengfei; Yu, Qianqian; Liao, Xin; Hu, Guangyuan; Zhang, Peng; Yuan, Xianglin

    2014-01-01

    The predictive value of thymidine phosphorylase gene variants (TP, also called platelet-derived endothelial cell growth factor) and thrombocytosis were controversial and worthy of further study in gastrointestinal cancer (GIC) patients. We screened all of the common missense single nucleotide polymorphisms (MAF ≥ 0.1) in fluoropyrimidines (FU) pathway genes (including TP, TS, ENOSF1 and DPD). Three of them were selected and genotyped using Sequenom MassARRAY in 141 GIC patients. TP expression was assessed by immunohistochemistry. Our aim was to evaluate the prognostic significance of studied genes and platelet counts in GIC patients. Multivariate analyses indicated in rs11479-T allele carriers, platelet counts negatively correlated to overall survival. In addition, T allele of TP: rs11479 was associated with higher TP expression in cancer tissues. We suggest TP: rs11479 variant combined with platelet counts may be useful prognostic makers in GIC patients receiving first-line FU chemotherapy and thrombopoietin factor should be used with caution in the rs11479 T allele bearing patients. PMID:25027354

  8. [Purification and characterization of a uridine phosphorylase from Enterobacter aerogenes EAM-Z1].

    PubMed

    Ruan, Qiping; Zhou, Changlin; Xu, Xudong; Wu, Wutong

    2003-06-01

    A uridine phosphorylase(UPase) was isolation from Enterobacter aerogenes EAM-Z1 and purified by means of ammonium sulfate precipitation, DEAE-cellulose, Phenyl-Sepharose, DEAE-Sepharose, FPLC ion exchange, and Sephacryl S-200 column chromatography. The purified UPase showed homogeneity on the native polacrylamide gel electrophoresis. The UPase is a trimer of 43 kD subunits. Fifteen residues from the amino terminal end of UPase were identified as MRMVDLIATKRDGGE. The isoelectric point was pH 4.46. Michaelis constant for uridine was 0.29 mmol/L. The UPase has a maximal activity at a pH value of 7.8 and 50 degrees C. The UPase could catalyses the phosphorolysis of uridine, thymidine, 5-Fluorouridine, 5-Fluoro-2'-deoxyuridine, uracil-beta-D-arbinofuranoside, and could also catalyse the synthesis of 5-Fluorouridine, a better prodrug form of the anticancer drug 5-fluorouracil, from 5-fluorouracil and uridine, and 47% uridine was converted to 5-Fluoro-uridine.

  9. The identification of starch phosphorylase in the developing mungbean (Vigna radiata L.).

    PubMed

    Ko, Yuan-Tih; Chang, Jin-Yi; Lee, Ya-Ting; Wu, Yi-Hui

    2005-07-13

    Starch phosphorylase (SP) in immature mungbean (Vigna radiata L. cv KPS1) seed soluble extract was detected by in situ activity staining and identified by MALDI-TOF mass analysis. After in situ SP assay on native-PAGE, a major starch-enzyme complex was located on the gel zymogram in a dose-dependent manner. This complex depicted two major SP-activity related proteins, 105 kDa and 55 kDa, by SDS-PAGE. The mass and predicted sequence of the tryptic fragments of the isolated 105 kDa protein, analyzed by MALDI-TOF spectroscopy and bioinformatic analysis, confirmed it to be mungbean SP as a result of high similarity to the L-SP of known plant. Polyclonal antibodies raised from the 55 kDa recognized both the 105 kDa and the 55 kDa proteins on the Western blot and neutralized partial SP activity, indicating that the two proteins were immunologically related. The 55 kDa protein possess high similarity to the N-terminal half of the 105 kDa SP was further confirmed. The SP activity and the activity stained protein density in mungbean soluble extract decreased as the seed size increased during early seed growth. These data indicate that mungbean 105 kDa SP and SP activity-related 55 kDa were identified in the developing mungbean.

  10. Dual-action hypoglycemic and hypocholesterolemic agents that inhibit glycogen phosphorylase and lanosterol demethylase.

    PubMed

    Harwood, H James; Petras, Stephen F; Hoover, Dennis J; Mankowski, Dayna C; Soliman, Victor F; Sugarman, Eliot D; Hulin, Bernard; Kwon, Younggil; Gibbs, E Michael; Mayne, James T; Treadway, Judith L

    2005-03-01

    Diabetic dyslipidemia requires simultaneous treatment with hypoglycemic agents and lipid-modulating drugs. We recently described glycogen phosphorylase inhibitors that reduce glycogenolysis in cells and lower plasma glucose in ob/ob mice (J. Med. Chem., 41: 2934, 1998). In evaluating the series prototype, CP-320626, in dogs, up to 90% reduction in plasma cholesterol was noted after 2 week treatment. Cholesterol reductions were also noted in ob/ob mice and in rats. In HepG2 cells, CP-320626 acutely and dose-dependently inhibited cholesterolgenesis without affecting fatty acid synthesis. Inhibition occurred together with a dose-dependent increase in the cholesterol precursor, lanosterol, suggesting that cholesterolgenesis inhibition was due to lanosterol 14alpha-demethylase (CYP51) inhibition. In ob/ob mice, acute treatment with CP-320626 resulted in a decrease in hepatic cholesterolgenesis with concomitant lanosterol accumulation, further implicating CYP51 inhibition as the mechanism of cholesterol lowering in these animals. CP-320626 and analogs directly inhibited rhCYP51, and this inhibition was highly correlated with HepG2 cell cholesterolgenesis inhibition (R2 = 0.77). These observations indicate that CP-320626 inhibits cholesterolgenesis via direct inhibition of CYP51, and that this is the mechanism whereby CP-320626 lowers plasma cholesterol in experimental animals. Dual-action glycogenolysis and cholesterolgenesis inhibitors therefore have the potential to favorably affect both the hyperglycemia and the dyslipidemia of type 2 diabetes.

  11. Antisense-mediated depletion of tomato GDP-L-galactose phosphorylase increases susceptibility to chilling stress.

    PubMed

    Wang, Li-Yan; Li, Dong; Deng, Yong-Sheng; Lv, Wei; Meng, Qing-Wei

    2013-02-15

    The GDP-L-galactose phosphorylase (GGP), which converts GDP-l-galactose to l-Gal-1-phosphate, is generally considered to be a key enzyme of the major ascorbate biosynthesis pathways in higher plants, but experimental evidence for its role in tomato is lacking. In the present study, the GGP gene was isolated from tomato (Solanum lycopersicum) and transient expression of SlGGP-GFP (green fluorescent protein) fusion protein in onion cells revealed the cytoplasmic and nucleus localization of the protein. Antisense transgenic tomato lines with only 50-75% ascorbate level of the wild type (WT) were obtained. Chilling treatment induced lower increase in AsA levels and redox ratio of ascorbate in antisense transgenic plants compared with WT plants. Under chilling stress, transgenic plants accumulated more malendialdehyde (MDA) and more O(2)(·-), leaked more electrolytes and showed lower maximal photochemical efficiency of PSII (Fv/Fm), net photosynthetic rate (Pn), and oxidizable P700 compared with WT plants. Furthermore, the antisense transgenic plants exhibited significantly higher H(2)O(2) level and lower ascorbate peroxidase (APX) activity. Our results suggested that GGP plays an important role in protecting plants against chilling stress by maintaining ascorbate pool and ascorbate redox state.

  12. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083.

    PubMed

    van den Broek, L A M; van Boxtel, E L; Kievit, R P; Verhoef, R; Beldman, G; Voragen, A G J

    2004-08-01

    Clones of a genomic library of Bifidobacterium adolescentis were grown in minimal medium with sucrose as sole carbon source. An enzymatic fructose dehydrogenase assay was used to identify sucrose-degrading enzymes. Plasmids were isolated from the positive colonies and sequence analysis revealed that two types of insert were present, which only differed with respect to their orientation in the plasmid. An open reading frame of 1,515 nucleotides with high homology for sucrose phosphorylases was detected on these inserts. The gene was designated SucP and encoded a protein of 56,189 Da. SucP was heterologously expressed in Escherichia coli, purified, and characterized. The molecular mass of SucP was 58 kDa, as estimated by SDS-PAGE, while 129 kDa was found with gel permeation, suggesting that the native enzyme was a dimer. The enzyme showed high activity towards sucrose and a lower extent towards alpha-glucose-1-phosphate. The transglucosylation properties were investigated using a broad range of monomeric sugars as acceptor substrate for the recombinant enzyme, while alpha-glucose-1-phosphate served as donor. D- and L-arabinose, D- and L-arabitol, and xylitol showed the highest production of transglucosylation products. The investigated disaccharides and trisaccharides were not suitable as acceptors. The structure of the transglucosylation product obtained with D-arabinose as acceptor was elucidated by NMR. The structure of the synthesized non-reducing dimer was alpha-Glcp(1-->1)beta-Araf.

  13. Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase.

    PubMed

    Kato, Atsushi; Nasu, Norio; Takebayashi, Kenji; Adachi, Isao; Minami, Yasuhiro; Sanae, Fujiko; Asano, Naoki; Watson, Alison A; Nash, Robert J

    2008-06-25

    Flavonoids are ubiquitous components in vegetables, fruits, tea, and wine. Therefore, they are often consumed in large quantities in our daily diet. Several flavonoids have been shown to have potential as antidiabetic agents. In the present study, we focused on inhibition of glycogen phosphorylase (GP) by flavonoids. 6-Hydroxyluteolin, hypolaetin, and quercetagetin were identified as good inhibitors of dephosphorylated GP (GPb), with IC 50 values of 11.6, 15.7, and 9.7 microM, respectively. Furthermore, a structure-activity relationship study revealed that the presence of the 3' and 4' OH groups in the B-ring and double bonds between C2 and C3 in flavones and flavonols are important factors for enzyme recognition and binding. Quercetagetin inhibited GPb in a noncompetitive manner, with a K i value of 3.5 microM. Multiple inhibition studies by Dixon plots suggested that quercetagetin binds to the allosteric site. In primary cultured rat hepatocytes, quercetagetin and quercetin suppressed glucagon-stimulated glycogenolysis, with IC 50 values of 66.2 and 68.7 microM, respectively. These results suggested that as a group of novel GP inhibitors, flavonoids have potential to contribute to the protection or improvement of control of diabetes type II.

  14. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options

    PubMed Central

    Yadak, Rana; Sillevis Smitt, Peter; van Gisbergen, Marike W.; van Til, Niek P.; de Coo, Irenaeus F. M.

    2017-01-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine (dUrd). In these patients, clinical features include mental regression, ophthalmoplegia, and fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (dNTPs), which may play a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact underlying mechanism remains unknown. The available therapeutic approaches include dialysis and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance. Allogeneic hematopoietic stem cell transplantation is shown to be able to restore normal enzyme activity and improve clinical manifestations in MNGIE patients. However, transplant related complications and disease progression result in a high mortality rate. New therapeutic approaches, such as adeno-associated viral vector and hematopoietic stem cell gene therapy have been tested in Tymp-/-Upp1-/- mice, a murine model for MNGIE. This review provides background information on disease manifestations of MNGIE with a focus on current management and treatment options. It also outlines the pre-clinical approaches toward future treatment of the disease. PMID:28261062

  15. Phosphorylase kinase β affects colorectal cancer cell growth and represents a novel prognostic biomarker.

    PubMed

    Wang, Guanghui; Shen, Wenbin; Liu, Chen-Ying; Liu, Yun; Wu, Tingyu; Cui, Ximao; Yu, Tong; Zhu, Yilian; Song, Jinglue; Du, Peng; Cui, Long

    2017-06-01

    To study the expression and intracellular localization of phosphorylase kinase β (PHKβ) protein in colorectal cancers (CRCs), analyze its correlation with clinicopathological features and prognosis, and study the biological roles and mechanism-of-action of PHKβ in CRC cell lines. Quantitative polymerase chain reaction (qPCR) and western blot assays were performed to compare the expressions of PHKβ mRNA and protein in CRC tissues and matched normal mucosa. Tissue microarrays and immunohistochemical staining were performed to detect the expression and intracellular location of PHKβ protein and analyze its correlation with the clinicopathological characteristics and prognosis in CRC patients. Proliferation, cell cycle, wound healing, and xenograft models were used to elucidate the potential role of PHKβ in vitro and in vivo. PHKβ mRNA and protein were found to be overexpressed in CRC tissue compared to the levels in normal mucosa. Positive expression of PHKβ was significantly correlated with TNM stage and distal metastasis, and elevated expression of PHKβ was an independent prognostic factor in patients with CRC. PHKβ knockdown impaired proliferation of CRC in vitro and in vivo and induced cell cycle arrest. PHKβ affects CRC cell growth and represents a novel prognostic biomarker.

  16. Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase.

    PubMed

    Ye, Xinhao; Zhang, Chenming; Zhang, Y-H Percival

    2012-06-01

    The Clostridium thermocellum cellobiose phosphorylase (CtCBP) is a large protein consisting of 812 amino acids and has great potential in the production of sugar phosphates, novel glycosides, and biofuels. It is relatively stable at 50 °C, but is rapidly inactivated at 70 °C. To stabilize CtCBP at elevated temperatures, two protein-engineering approaches were applied, i.e. site-directed mutagenesis based on structure-guided homology analysis and random mutagenesis at various mutation rates. The former chose substitutions by comparison of the protein sequences of CBP homologs, utilized structural information to identify key amino acid residues responsible for enhanced stability, and then created a few variants accurately. The latter constructed large libraries of random mutants at different mutagenesis frequencies. A novel combinational selection/screening strategy was employed to quickly isolate thermostability-enhanced and active variants. Several stability-enhanced mutants were obtained by both methods. Manually combining the stabilizing mutations identified from both rational and random approaches led to the best mutant (CM3) with the halftime of inactivation at 70 °C extended from 8.3 to 24.6 min. The temperature optimum of CM3 was increased from 60 to 80 °C. These results suggested that a combination of rational design and random mutagenesis could have a solid basis for engineering large proteins.

  17. Novel anomeric sugar phosphodiesters synthesis, hydrolytic mechanism, structure and interaction with purine nucleoside phosphorylase

    SciTech Connect

    Fathi, R.

    1988-01-01

    Some five-membered ring ribofuranosyl-1,2-cyclic phosphates were synthesized, purified, and characterized for the purpose of employing them as stereoselective electrophilic substrate analogs with a potential to trap enzymic nucleophiles on the purine salvage pathway. The purine salvage enzyme purine nucleoside phosphorylase from mammalian sources was irreversibly inactivated at its catalytic center by ..cap alpha..-D-ribofuranosyl-1,2-cyclic monophosphate. The product distribution and kinetics of hydronium and hydroxide catalyzed hydrolysis of cyclic phosphates were monitored by /sup 31/P NMR. Alkaline hydrolysis was demonstrated to proceed exclusively by O-P bond cleavage by employing a specifically /sup 18/O-labelled substrate. Acid hydrolysis proceeded by C-O bond cleavage. The high rates of alkaline hydrolysis were similar to those reported for ethylene phosphate, presumably due to the presence of a strained cyclic phosphate ring. Extensive NMR (/sup 1/H, /sup 13/C, and /sup 31/P) data on the cyclic phosphates were consistent with a C3-endo ribofuranosyl conformation.

  18. Clinicopathological significance of vascular endothelial growth factor, thymidine phosphorylase and microvessel density in colorectal cancer

    PubMed Central

    KIMURA, YUTAKA; MOROHASHI, SATOKO; YOSHIZAWA, TADASHI; SUZUKI, TAKAHIRO; MOROHASHI, HAJIME; SAKAMOTO, YOSHIYUKI; KOYAMA, MOTOI; MURATA, AKIHIKO; KIJIMA, HIROSHI; HAKAMADA, KENICHI

    2016-01-01

    Colorectal cancer is a common malignant disease, the incidence of which is increasing worldwide, therefore, identifying novel prognostic factors to improve adjuvant therapeutic strategies or postoperative monitoring is required. Angiogenesis, which is assessed by microvessel density (MVD), is significant in tumor growth and metastasis. However, the association between angiogenesis and clinical outcome remains controversial. In the present study, 84 surgically resected cases of colorectal cancer were examined to clarify the clinicopathological significance of vascular endothelial growth factor (VEGF), thymidine phosphorylase (TP) and cluster of differentiation (CD)34 expression levels. VEGF expression was identified to be significantly correlated with TP expression (r=0.45; P<0.0001) and MVD in the high VEGF expression group was observed to be significantly greater than that in the low VEGF expression group (P=0.0194). In the Dukes' stage D group, the MVD in the high TP expression group was significantly greater than that in the low TP expression group (P=0.0149). High VEGF expression was subsequently correlated with a short overall survival rate for patients exhibiting lymph node metastasis (P=0.0128); however, there was no significant difference in overall survival rate regarding the expression levels of TP and CD34. The results of the present study indicate that VEGF expression may serve as a prognostic factor for colorectal cancer patients exhibiting lymph node metastasis. Furthermore, angiogenesis, as assessed by MVD, is an important prognostic factor for tumor growth at the primary site. PMID:26676225

  19. Hexokinase 2, Glycogen Synthase and Phosphorylase Play a Key Role in Muscle Glycogen Supercompensation

    PubMed Central

    Irimia, José M.; Rovira, Jordi; Nielsen, Jakob N.; Guerrero, Mario; Wojtaszewski, Jørgen F. P.; Cussó, Roser

    2012-01-01

    Background Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood. Methods Using chronic low-frequency stimulation (CLFS) as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest. Results In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 5′-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels. Conclusions Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches. PMID:22860128

  20. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma

    PubMed Central

    Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W.; Novane, Nora; Shah, Jatin J.; Davis, Richard E.; Hou, Jian; Gagel, Robert F.; Yang, Jing

    2016-01-01

    Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP upregulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP upregulated the methylation of IRF8, thereby enhanced expression of NFATc1, leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2DDR. Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K/Akt signaling, and increased DNMT3A expression, resulting in hypermethylation of RUNX2, osterix, and IRF8. This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. As TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. PMID:27559096

  1. Amperometric flow-injection determination of sucrose with a mediated tri-enzyme electrode based on sucrose phosphorylase and electrocatalytic oxidation of NADH.

    PubMed

    Maestre, E; Katakis, L; Domínguez, E

    2001-01-01

    A new sucrose electrode is described for the determination of sucrose without interference from glucose or fructose. The sucrose electrode is based on the tri-enzymatic system of sucrose phosphorylase, phosphoglucomutase and glucose-6-phosphate 1-dehydrogenase, where NAD(P)H is produced from the last enzymatic reaction and recycled into NAD(P)+ through its electrocatalytic oxidation by Os(4,4'-dimethyl-2,2-bypyridine)2(1,10-phenanthroline-5,6-dione). The electrodes were optimised with respect to the various construction parameters and carrier composition in a FIA system and their response as a function of the pH and flow-rate was examined. The electrodes were suitable for operation in a FIA system and the analysis of real samples showed good agreement with the reference method. Typical optimised electrodes showed detection limits of 1 mM sucrose, response time of 5 min, sensitivity 1.010 nA mM(-1), and current density of 8.38 microA cm(-2), using 200 mM PIPES pH 7.25 with 10 mM phosphate and 5 mM MgCl2 as carrier.

  2. Product and rate determinations with chemically activated nucleotides in the presence of various prebiotic materials, including other mono- and polynucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Alberas, D. J.; Rosenbach, M. T.; Bernasconi, C. F.; Chang, S.

    1991-01-01

    We are investigating the reactions of ImpN's in the presence of a number of prebiotically plausible materials, such as metal ions, phosphate, amines and other nucleotides and hope to learn more about the stability/reactivity of ImpN's in a prebiotic aqueous environment. We find that, in the presence of phosphate, ImpN's form substantial amounts of diphosphate nucleotides. These diphosphate nucleotides are not very good substrates for template directed reactions, but are chemically activated and are known to revert to the phosphoimidazolides in the presence of imidazole under solid state conditions. With respect to our studies of the oligomerization reaction, the determination of the dimerization rate constant of a specific ImpN (guanosine 5'-phospho 2 methylimidazolide) both in the absence and the presence of the template leads to the conclusion that at 37 C the dimerization is not template directed, although the subsequent polymerization steps are. In other words, this specific polynucleotide synthesizing system favors the elongation of oligonucleotides as compared with the formation of dimers and trimers. This favoring of the synthesis of long as opposed to short oligonucleotides may be regarded as a rudimentary example of natural selection at the molecular level.

  3. Detection of T4 polynucleotide kinase activity with immobilization of TiO2 nanotubes and amplification of Au nanoparticles.

    PubMed

    Wang, Guangfeng; He, Xiuping; Xu, Gang; Chen, Ling; Zhu, Yanhong; Zhang, Xiaojun; Wang, Lun

    2013-05-15

    Determination of nucleotide kinase activity is valuable due to its importance in regulating nucleic acid metabolism. Herein, we describe a strategy for simply and accurately determining nucleotide kinase activity by TiO2 nanotubes mediated signal transition and Au nanoparticles amplification. In this method, DNA containing 5'-hydroxyl group is self-assembled onto a gold electrode and used as a substrate for T4 polynucleotide kinase (PNK). By the specific immobilization affinity of TiO2 nanotubes with the phosphorylated DNA, TiO2 nanotubes were linked with phosphorylated substrate DNA on the electrode. And then Au nanoparticles modified 5'-phosphate DNA was conjugated with the TiO2 nanotubes and hybridized with methylene blue labeled signal DNA. Because gold nanoparticles have high loading of signal indicator methylene blue, the electrochemical signal is generated and amplified. It presents an excellent performance with wide linear range and low detection limit. Additionally, inhibition effects of some salts have also been investigated. The developed method is a potentially useful tool in researching the interactions between proteins and nucleic acids and provides a diversified platform for a kinase activity assay. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Coordinated Ribosomal ITS2 RNA Processing by the Las1 Complex Integrating Endonuclease, Polynucleotide Kinase, and Exonuclease Activities.

    PubMed

    Gasse, Lisa; Flemming, Dirk; Hurt, Ed

    2015-12-03

    The rapidly evolving internal transcribed spacer 2 (ITS2) in the pre-ribosomal RNA is one of the most commonly applied phylogenetic markers at species and genus level. Yet, during ribosome biogenesis ITS2 is removed in all eukaryotes by a common, but still unknown, mechanism. Here we describe the existence of an RNA processome, assembled from four conserved subunits, Las1-Grc3-Rat1-Rai1, that carries all the necessary RNA processing enzymes to mediate coordinated ITS2 rRNA removal. Las1 is the long-sought-after endonuclease cleaving 27SB pre-rRNA at site C2 to yield a 5'-OH end at the 26S pre-rRNA and 2',3' cyclic phosphate at the 3' end of 7S pre-rRNA. Subsequently, polynucleotide kinase Grc3 catalyzes ATP-dependent 5'-OH phosphorylation of 26S pre-rRNA, which in turn enables Rat1-Rai1 exonuclease to generate 25S' pre-rRNA. ITS2 processing is reminiscent of tRNA splicing, but instead of subsequent tRNA ligation, the Las1 complex carries along an exonuclease tool to degrade the ITS2 rRNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. N-acetyl-beta-D-glucopyranosylamine: a potent T-state inhibitor of glycogen phosphorylase. A comparison with alpha-D-glucose.

    PubMed Central

    Oikonomakos, N. G.; Kontou, M.; Zographos, S. E.; Watson, K. A.; Johnson, L. N.; Bichard, C. J.; Fleet, G. W.; Acharya, K. R.

    1995-01-01

    Structure-based drug design has led to the discovery of a number of glucose analogue inhibitors of glycogen phosphorylase that have an increased affinity compared to alpha-D-glucose (Ki = 1.7 mM). The best inhibitor in the class of N-acyl derivatives of beta-D-glucopyranosylamine, N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc), has been characterized by kinetic, ultracentrifugation, and crystallographic studies. 1-GlcNAc acts as a competitive inhibitor for both the b (Ki = 32 microM) and the a (Ki = 35 microM) forms of the enzyme with respect to glucose 1-phosphate and in synergism with caffeine, mimicking the binding of glucose. Sedimentation velocity experiments demonstrated that 1-GlcNAc was able to induce dissociation of tetrameric phosphorylase a and stabilization of the dimeric T-state conformation. Co-crystals of the phosphorylase b-1-GlcNAc-IMP complex were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the complex structure has been refined to give a crystallographic R factor of 18.1%, for data between 8 and 2.3 A resolution. 1-GlcNAc binds tightly at the catalytic site of T-state phosphorylase b at approximately the same position as that of alpha-D-glucose. The ligand can be accommodated in the catalytic site with very little change in the protein structure and stabilizes the T-state conformation of the 280s loop by making several favorable contacts to Asn 284 of this loop. Structural comparisons show that the T-state phosphorylase b-1-GlcNAc-IMP complex structure is overall similar to the T-state phosphorylase b-alpha-D-glucose complex structure. The structure of the 1-GlcNAc complex provides a rational for the biochemical properties of the inhibitor. PMID:8580837

  6. Structures of yeast Apa2 reveal catalytic insights into a canonical AP₄A phosphorylase of the histidine triad superfamily.

    PubMed

    Hou, Wen-Tao; Li, Wen-Zhe; Chen, Yuxing; Jiang, Yong-Liang; Zhou, Cong-Zhao

    2013-08-09

    The homeostasis of intracellular diadenosine 5',5″'-P(1),P(4)-tetraphosphate (Ap4A) in the yeast Saccharomyces cerevisiae is maintained by two 60% sequence-identical paralogs of Ap4A phosphorylases (Apa1 and Apa2). Enzymatic assays show that, compared to Apa1, Apa2 has a relatively higher phosphorylase activity towards Ap3A (5',5″'-P(1),P(3)-tetraphosphate), Ap4A, and Ap5A (5',5″'-P(1),P(5)-tetraphosphate), and Ap4A is the favorable substrate for both enzymes. To decipher the catalytic insights, we determined the crystal structures of Apa2 in the apo-, AMP-, and Ap4A-complexed forms at 2.30, 2.80, and 2.70Å resolution, respectively. Apa2 is an α/β protein with a core domain of a twisted eight-stranded antiparallel β-sheet flanked by several α-helices, similar to the galactose-1-phosphate uridylyltransferase (GalT) members of the histidine triad (HIT) superfamily. However, a unique auxiliary domain enables an individual Apa2 monomer to possess an intact substrate-binding cleft, which is distinct from previously reported dimeric GalT proteins. This cleft is perfectly complementary to the favorable substrate Ap4A, the AMP and ATP moieties of which are perpendicular to each other, leaving the α-phosphate group exposed at the sharp turn against the catalytic residue His161. Structural comparisons combined with site-directed mutagenesis and activity assays enable us to define the key residues for catalysis. Furthermore, multiple-sequence alignment reveals that Apa2 and homologs represent canonical Ap4A phosphorylases, which could be grouped as a unique branch in the GalT family. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Enzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by E. coli nucleoside phosphorylases.

    PubMed

    Stepchenko, Vladimir A; Miroshnikov, Anatoly I; Seela, Frank; Mikhailopulo, Igor A

    2016-01-01

    The trans-2-deoxyribosylation of 4-thiouracil ((4S)Ura) and 2-thiouracil ((2S)Ura), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and E. coli purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either E. coli thymidine (TP) or uridine (UP) phosphorylases. (4S)Ura revealed satisfactory substrate activity for UP and, unexpectedly, complete inertness for TP; no formation of 2'-deoxy-2-thiouridine ((2S)Ud) was observed under analogous reaction conditions in the presence of UP and TP. On the contrary, (2S)U, (2S)Ud, (4S)Td and (2S)Td are good substrates for both UP and TP; moreover, (2S)U, (4S)Td and 2'-deoxy-5-azacytidine (Decitabine) are substrates for PNP and the phosphorolysis of the latter is reversible. Condensation of (2S)Ura and 5-azacytosine with dRib-1P (Ba salt) catalyzed by the accordant UP and PNP in Tris∙HCl buffer gave (2S)Ud and 2'-deoxy-5-azacytidine in 27% and 15% yields, respectively. 6-Azauracil and 6-azathymine showed good substrate properties for both TP and UP, whereas only TP recognizes 2-thio-6-azathymine as a substrate. 5-Phenyl and 5-tert-butyl derivatives of 6-azauracil and its 2-thioxo derivative were tested as substrates for UP and TP, and only 5-phenyl- and 5-tert-butyl-6-azauracils displayed very low substrate activity. The role of structural peculiarities and electronic properties in the substrate recognition by E. coli nucleoside phosphorylases is discussed.

  8. Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference.

    PubMed

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-03-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer.

  9. Enzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by E. coli nucleoside phosphorylases

    PubMed Central

    Stepchenko, Vladimir A; Miroshnikov, Anatoly I; Seela, Frank

    2016-01-01

    The trans-2-deoxyribosylation of 4-thiouracil (4SUra) and 2-thiouracil (2SUra), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and E. coli purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either E. coli thymidine (TP) or uridine (UP) phosphorylases. 4SUra revealed satisfactory substrate activity for UP and, unexpectedly, complete inertness for TP; no formation of 2’-deoxy-2-thiouridine (2SUd) was observed under analogous reaction conditions in the presence of UP and TP. On the contrary, 2SU, 2SUd, 4STd and 2STd are good substrates for both UP and TP; moreover, 2SU, 4STd and 2’-deoxy-5-azacytidine (Decitabine) are substrates for PNP and the phosphorolysis of the latter is reversible. Condensation of 2SUra and 5-azacytosine with dRib-1P (Ba salt) catalyzed by the accordant UP and PNP in Tris∙HCl buffer gave 2SUd and 2’-deoxy-5-azacytidine in 27% and 15% yields, respectively. 6-Azauracil and 6-azathymine showed good substrate properties for both TP and UP, whereas only TP recognizes 2-thio-6-azathymine as a substrate. 5-Phenyl and 5-tert-butyl derivatives of 6-azauracil and its 2-thioxo derivative were tested as substrates for UP and TP, and only 5-phenyl- and 5-tert-butyl-6-azauracils displayed very low substrate activity. The role of structural peculiarities and electronic properties in the substrate recognition by E. coli nucleoside phosphorylases is discussed. PMID:28144328

  10. Glycogen Phosphorylase in Acanthamoeba spp.: Determining the Role of the Enzyme during the Encystment Process Using RNA Interference▿

    PubMed Central

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-01-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer. PMID:18223117

  11. Phytogenic Polyphenols as Glycogen Phosphorylase Inhibitors: The Potential of Triterpenes and Flavonoids for Glycaemic Control in Type 2 Diabetes.

    PubMed

    Leonidas, Demetres D; Hayes, Joseph M; Kato, Atsushi; Skamnaki, Vassiliki T; Chatzileontiadou, Demetra S M; Kantsadi, Anastassia L; Kyriakis, Efthimios; Chetter, Ben A; Stravodimos, George A

    2017-01-01

    Glycogen phosphorylase (GP) is a validated pharmaceutical target for the development of antihyperglycaemic agents. Phytogenic polyphenols, mainly flavonoids and pentacyclic triterpenes, have been found to be potent inhibitors of GP. These compounds have both pharmaceutical and nutraceutical potential for glycemic control in diabetes type 2. This review focuses mainly on the most successful (potent) of these compounds discovered to date. The protein-ligand interactions that form the structural basis of their potencies are discussed, highlighting the potential for exploitation of their scaffolds in the future design of new GP inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis.

    PubMed

    Hamura, Ken; Saburi, Wataru; Matsui, Hirokazu; Mori, Haruhide

    2013-09-20

    Cellobiose phosphorylase (EC 2.4.1.20, CBP) catalyzes the reversible phosphorolysis of cellobiose to α-D-glucose 1-phosphate (Glc1P) and d-glucose. Cys485, Tyr648, and Glu653 of CBP from Ruminococcus albus, situated at the +1 subsite, were mutated to modulate acceptor specificity. C485A, Y648F, and Y648V were active enough for analysis. Their acceptor specificities were compared with the wild type based on the apparent kinetic parameters determined in the presence of 10 mM Glc1P. C485A showed higher preference for D-glucosamine than the wild type. Apparent kcat/Km values of Y648F for D-mannose and 2-deoxy-D-glucose were 8.2- and 4.0-fold higher than those of the wild type, respectively. Y648V had synthetic activity toward N-acetyl-D-glucosamine, while the other variants did not. The oligosaccharide production in the presence of the same concentrations of wild type and each mutant was compared. C485A produced 4-O-β-D-glucopyranosyl-D-glucosamine from 10 mM Glc1P and D-glucosamine at a rate similar to the wild type. Y648F and Y648V produced 4-O-β-D-glucopyranosyl-D-mannose and 4-O-β-D-glucopyranosyl-N-acetyl-D-glucosamine much more rapidly than the wild type when D-mannose and N-acetyl-D-glucosamine were used as acceptors, respectively. After a 4h reaction, the amounts of 4-O-β-D-glucopyranosyl-D-mannose and 4-O-β-D-glucopyranosyl-N-acetyl-D-glucosamine produced by Y648F and Y648V were 5.9- and 12-fold higher than the wild type, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Physicochemical changes in phosphorylase kinase induced by its cationic activator Mg2+

    PubMed Central

    Liu, Weiya; Nadeau, Owen W; Sage, Jessica; Carlson, Gerald M

    2013-01-01

    For over four decades free Mg2+ ions, that is, those in excess of MgATP, have been reported to affect a wide variety of properties of phosphorylase kinase (PhK), including its affinity for other molecules, proteolysis, chemical crosslinking, phosphorylation, binding to certain monoclonal antibodies, and activity, which is stimulated. Additionally, for over three decades Mg2+ has been known to act synergistically with Ca2+, another divalent activator of PhK, to affect even more properties of the enzyme. During all of this time, however, no study has been performed to determine the overall effects of free Mg2+ ions on the physical properties of PhK, even though the effects of Ca2+ ions on PhK's properties are well documented. In this study, changes in the physicochemical properties of PhK induced by Mg2+ under nonactivating (pH 6.8) and activating (pH 8.2) conditions were investigated by circular dichroism spectroscopy, zeta potential analyses, dynamic light scattering, second derivative UV absorption, negative stain electron microscopy, and differential chemical crosslinking. The effects of the activator Mg2+ on some of the properties of PhK measured by these techniques were found to be quite different at the two pH values, and displayed both differences and similarities with the effects previously reported to be induced by the activator Ca2+ (Liu et al., Protein Sci 2008;17:2111–2119). The similarities may reflect the fact that both cations are activators, and foremost among their similarities is the dramatically less negative zeta potential induced by their binding to PhK. PMID:23359552

  14. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase.

    PubMed

    Firestone, Ross S; Cameron, Scott A; Karp, Jerome M; Arcus, Vickery L; Schramm, Vern L

    2017-02-17

    Human 5'-methylthioadenosine phosphorylase (MTAP) catalyzes the phosphorolysis of 5'-methylthioadenosine (MTA). Its action regulates cellular MTA and links polyamine synthesis to S-adenosylmethionine (AdoMet) salvage. Transition state analogues with picomolar dissociation constants bind to MTAP in an entropically driven process at physiological temperatures, suggesting increased hydrophobic character or dynamic structure for the complexes. Inhibitor binding exhibits a negative heat capacity change (-ΔCp), and thus the changes in enthalpy and entropy upon binding are strongly temperature-dependent. The ΔCp of inhibitor binding by isothermal titration calorimetry does not follow conventional trends and is contrary to that expected from the hydrophobic effect. Thus, ligands of increasing hydrophobicity bind with increasing values of ΔCp. Crystal structures of MTAP complexed to transition-state analogues MT-DADMe-ImmA, BT-DADMe-ImmA, PrT-ImmA, and a substrate analogue, MT-tubercidin, reveal similar active site contacts and overall protein structural parameters, despite large differences in ΔCp for binding. In addition, ΔCp values are not correlated with Kd values. Temperature dependence of presteady state kinetics revealed the chemical step for the MTAP reaction to have a negative heat capacity for transition state formation (-ΔCp(‡)). A comparison of the ΔCp(‡) for MTAP presteady state chemistry and ΔCp for inhibitor binding revealed those transition-state analogues most structurally and thermodynamically similar to the transition state. Molecular dynamics simulations of MTAP apoenzyme and complexes with MT-DADMe-ImmA and MT-tubercidin show small, but increased dynamic motion in the inhibited complexes. Variable temperature CD spectroscopy studies for MTAP-inhibitor complexes indicate remarkable protein thermal stability (to Tm = 99 °C) in complexes with transition-state analogues.

  15. Possible role of thymidine phosphorylase in gynecological tumors as an individualized treatment strategy

    PubMed Central

    Shida, Masako; Yasuda, Masanori; Fujita, Mariko; Miyazawa, Masaki; Kajiwara, Hiroshi; Hirasawa, Takeshi; Ikeda, Masae; Matsui, Naruaki; Muramatsu, Toshinari; Mikami, Mikio

    2016-01-01

    Thymidine phosphorylase (TP) is structurally similar to platelet-derived endothelial cell growth factor, and it activates 5-fluorouracil (5-FU) prodrugs and also promotes angiogenesis. In the present study, the possibility of using TP expression as a biomarker for 5-FU prodrugs, and the significance of TP as an angiogenic factor, were investigated in patients with gynecological tumors. The subjects enrolled in the study were 188 patients with gynecological tumors who provided informed consent and underwent tumor resection at the Department of Obstetrics and Gynecology of Tokai University Hospital between February 2002 and January 2010. Measurement of the enzymatic activity of TP and dihydropyrimidine dehydrogenase (DPD) was performed by enzyme-linked immunosorbent assay. In addition, immunohistochemistry (IHC) analysis of microvessels by monochrome imaging, western blotting and reverse transcription-polymerase chain reaction were performed. The mean TP activity and the TP/DPD ratio were increased in squamous cell carcinoma of the cervix (306.9 and 2.2 U/mg protein, respectively) and adenosquamous carcinoma (317.6 and 1.4 U/mg protein, respectively) compared with benign tumors and other malignancies, including endometrial (uterine) carcinoma, ovarian serous adenocarcinoma and ovarian mucinous adenocarcinoma. However, these parameters were also elevated in other histological types of cancer such as clear cell adenocarcinoma of the ovary (115.2 and 2.1 U/mg protein, respectively), in which the microvessel area was the largest of all the histological types analyzed. Since high TP expression and a high TP/DPD ratio were identified in other tumors besides cervical cancer, it is possible that patients for whom 5-FU prodrugs are indicated could be selected appropriately if their TP activity is determined and their TP expression is analyzed by IHC prior to initiation of the treatment. PMID:27899985

  16. Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases.

    PubMed

    Wielgus-Kutrowska, B; Kulikowska, E; Wierzchowski, J; Bzowska, A; Shugar, D

    1997-01-15

    Nicotinamide 1-beta-D-riboside (Nir), the cationic, reducible moiety of the coenzyme NAD+, has been confirmed as an unusual substrate for purified purine-nucleoside phosphorylase (PNP) from a mammalian source (calf spleen). It is also a substrate of the enzyme from Escherichia coli. The Km values at pH 7, 1.48 mM and 0.62 mM, respectively, were 1-2 orders of magnitude higher than for the natural substrate inosine, but the Vmax values were comparable, 96% and 35% that for Ino. The pseudo first-order rate constants, Vmax/Km, were 1.1% and 2.5% for the calf spleen and E. coli enzymes. The aglycon, nicotinamide, was neither a substrate nor an inhibitor of PNP. Nir was a weak inhibitor of inosine phosphorolysis catalyzed by both enzymes, with Ki values close to the Km for its phosphorolysis, consistent with simple competitive inhibition; this was further confirmed by Dixon plots. Phosphorolysis of the fluorescent positively charged substrate 7-methylguanosine was also inhibited in a competitive manner by both Ino and Nir. Phosphorolysis of Nir by both enzymes was inhibited competitively by several specific inhibitors of calf spleen and E. coli PNP, with Ki values similar to those for inhibition of other natural substrates. The pH dependence of the kinetic constants for the phosphorolysis of Nir and of a variety of other substrates, was extensively investigated, particularly in the alkaline pH range, where Nir exhibited abnormally high substrate activity relative to the reduced reaction rates of both enzymes towards other anionic or neutral substrates. The overall results are discussed in relation to present concepts regarding binding and phosphorolysis of substrates by PNP based on crystallographic data of enzyme-inhibitor complexes, and current studies on enzymatic and nonenzymatic mechanisms of the cleavage of the Nir glycosidic bond.

  17. Affinity crystallography reveals the bioactive compounds of industrial juicing byproducts of Punica granatum for glycogen phosphorylase.

    PubMed

    Stravodimos, George A; Kantsadi, Anastassia L; Apostolou, Anna; Kyriakis, Efthimios; Kafaski-Kanelli, Vassiliki-Nafsika; Solovou, Theodora G A; Gatzona, Pagona; Liggri, Panagiota Cv; Theofanous, Stavroula; Gorgogietas, Vyron A; Kissa, Apostolia; Psachoula, Chariklia; Chatzileontiadou, Demetra S M; Lemonakis, Angelos; Psarra, Anna-Maria G; Skamnaki, Vassiliki T; Haroutounian, Serkos; Leonidas, Demetres D

    2017-06-18

    Glycogen phosphorylase (GP) is a pharmaceutical target for the discovery of new antihyperglycaemic agents. Punica granatum is a well-known plant for its potent antioxidant and antimicrobial activities but so far has not been examined for antihyperglycaemic activity. To examine the inhibitory potency of eighteen polyphenolic extracts obtained from Punica granatum fruits and industrial juicing byproducts against GP and discover their most bioactive ingredients. Kinetic experiments were conducted to measure the IC50 values of the extracts while affinity crystallography was used to identify the most bioactive ingredient. The inhibitory effect of one of the polyphenolic extracts was also verified ex vivo, in HepG2 cells. All extracts exhibit significant in vitro inhibitory potency (IC50 values in the range of low μg/mL). Affinity crystallography revealed that the most bioactive ingredients of the extracts were chlorogenic and ellagic acids, found bound in the active and the inhibitor site of GP, respectively. While ellagic acid is an established GP inhibitor, the inhibition of chlorogenic acid is reported for the first time. Kinetic analysis indicated that chlorogenic acid is an inhibitor with Ki=2.5 x 10-3 M that acts synergistically with ellagic acid. Our study provides the first evidence for a potential antidiabetic usage of Punica granatum extracts as antidiabetic food supplements. Although, more in vivo studies have to be performed before these extracts reach the stage of antidiabetic food supplements our study provides a first positive step towards this process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Four Generations of Transition State Analogues for Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Ho, M.; Shi, W; Rinaldo-Mathis, A; Tyler, P; Evans, G; Almo, S; Schramm, V

    2010-01-01

    Inhibition of human purine nucleoside phosphorylase (PNP) stops growth of activated T-cells and the formation of 6-oxypurine bases, making it a target for leukemia, autoimmune disorders, and gout. Four generations of ribocation transition-state mimics bound to PNP are structurally characterized. Immucillin-H (K*{sub i} = 58 pM, first-generation) contains an iminoribitol cation with four asymmetric carbons. DADMe-Immucillin-H (K*{sub i} = 9 pM, second-generation), uses a methylene-bridged dihydroxypyrrolidine cation with two asymmetric centers. DATMe-Immucillin-H (K*{sub i} = 9 pM, third-generation) contains an open-chain amino alcohol cation with two asymmetric carbons. SerMe-ImmH (K*{sub i} = 5 pM, fourth-generation) uses achiral dihydroxyaminoalcohol seramide as the ribocation mimic. Crystal structures of PNPs establish features of tight binding to be; (1) ion-pair formation between bound phosphate (or its mimic) and inhibitor cation, (2) leaving-group interactions to N1, O6, and N7 of 9-deazahypoxanthine, (3) interaction between phosphate and inhibitor hydroxyl groups, and (4) His257 interacting with the 5{prime}-hydroxyl group. The first generation analogue is an imperfect fit to the catalytic site with a long ion pair distance between the iminoribitol and bound phosphate and weaker interactions to the leaving group. Increasing the ribocation to leaving-group distance in the second- to fourth-generation analogues provides powerful binding interactions and a facile synthetic route to powerful inhibitors. Despite chemical diversity in the four generations of transition-state analogues, the catalytic site geometry is almost the same for all analogues. Multiple solutions in transition-state analogue design are available to convert the energy of catalytic rate enhancement to binding energy in human PNP.

  19. DNA intercalation of methylene blue and quinacrine: new insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides.

    PubMed

    Hossain, Maidul; Suresh Kumar, Gopinatha

    2009-11-01

    The binding of the known DNA intercalators methylene blue and quinacrine with four sequence specific polynucleotides, viz. poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dT).poly(dA-dT) and poly(dA).poly(dT), have been compared using absorbance, fluorescence, competition dialysis and thermal melting and the thermodynamic aspects of the interaction studied. In all the cases, non-cooperative binding phenomena obeying neighbor exclusion principle was observed though the affinity was remarkably higher for quinacrine and the nature of the binding was characterized to be true intercalation. The data on the salt dependence of binding derived from the plot of log Kvs. log[Na(+)] revealed a slope of around 1.0, consistent with the values predicted by the theories for the binding of monovalent cations, and contained contributions from polyelectrolytic and non-polyelectrolytic forces. The bindings were characterized by strong stabilization of the polynucleotides against thermal strand separation in both optical melting as well as differential scanning calorimetry studies. The data analyzed from the thermal melting and isothermal titration calorimetry studies were in close proximity to those obtained from absorption spectral titration data. Isothermal titration calorimetry results revealed the bindings to poly(dG-dC).poly(dG-dC), poly(dG).poly(dC) and poly(dA-dT).poly(dA-dT) to be exothermic and favoured by both negative enthalpy and large favourable positive entropy changes, while that to poly(dA).poly(dT) was endothermic and entropy driven. The heat capacity changes obtained from temperature dependence of enthalpy gave negative values to all polynucleotides. New insights on the molecular aspects of interaction of these molecules to DNA have emerged from these studies.

  20. Three-way multivariate curve resolution applied to speciation of acid-base and thermal unfolding transitions of an alternating polynucleotide.

    PubMed

    Vives, M; Gargallo, R; Tauler, R

    2001-12-01

    Analytical speciation of acid-base equilibria and thermal unfolding transitions of an alternating random polynucleotide containing cytosine and hypoxanthine, poly(C, I), is studied. The results are compared with those obtained previously for single-stranded polynucleotides, poly(I) and poly(C), and for the double-stranded poly(I). poly(C), to examine the influence of the secondary structure on the acid-base properties of bases. This study is based on monitoring acid-base titrations and thermal unfolding experiments by molecular absorption, CD, and molecular fluorescence spectroscopies. Experimental data were analyzed by a novel chemometric approach based on a recently developed three-way Multivariate Curve Resolution method, which allowed the simultaneous analysis of data from several spectroscopies. This procedure improves the resolution of the concentration profiles and pure spectra for the species and conformations present in folding-unfolding and acid-base equilibria. The results from acid-base studies showed the existence of only three species in the pH range 2-12 at 37 degrees C and 0.15M ionic strength. No cooperative effects were detected from the resolved concentration profiles, showing that equilibria concerning alternating polynucleotides like poly(C, I) are simpler than those involving poly(I). poly(C). Thermal unfolding experiments at neutral pH confirmed the existence of two transitions and one intermediate conformation. This intermediate conformation could only be detected and resolved without ambiguities when molecular absorption and CD spectral data were analyzed simultaneously. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 477-488, 2001

  1. A cobalt oxyhydroxide nanoflake-based nanoprobe for the sensitive fluorescence detection of T4 polynucleotide kinase activity and inhibition

    NASA Astrophysics Data System (ADS)

    Cen, Yao; Yang, Yuan; Yu, Ru-Qin; Chen, Ting-Ting; Chu, Xia

    2016-04-01

    Phosphorylation of nucleic acids with 5'-OH termini catalyzed by polynucleotide kinase (PNK) is an inevitable process and has been implicated in many important cellular events. Here, we found for the first time that there was a significant difference in the adsorbent ability of cobalt oxyhydroxide (CoOOH) nanoflakes between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which resulted in the fluorescent dye-labeled dsDNA still retaining strong fluorescence emission, while the fluorescence signal of ssDNA was significantly quenched by CoOOH nanoflakes. Based on this discovery, we developed a CoOOH nanoflake-based nanoprobe for the fluorescence sensing of T4 PNK activity and its inhibition by combining it with λ exonuclease cleavage reaction. In the presence of T4 PNK, dye-labeled dsDNA was phosphorylated and then cleaved by λ exonuclease to generate ssDNA, which could adsorb on the CoOOH nanoflakes and whose fluorescence was quenched by CoOOH nanoflakes. Due to the high quenching property of CoOOH nanoflakes as an efficient energy acceptor, a sensitive and selective sensing approach with satisfactory performance for T4 PNK sensing in a complex biological matrix has been successfully constructed and applied to the screening of inhibitors. The developed approach may potentially provide a new platform for further research, clinical diagnosis, and drug discovery of nucleotide kinase related diseases.Phosphorylation of nucleic acids with 5'-OH termini catalyzed by polynucleotide kinase (PNK) is an inevitable process and has been implicated in many important cellular events. Here, we found for the first time that there was a significant difference in the adsorbent ability of cobalt oxyhydroxide (CoOOH) nanoflakes between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which resulted in the fluorescent dye-labeled dsDNA still retaining strong fluorescence emission, while the fluorescence signal of ssDNA was significantly quenched by Co

  2. Regulation and functions of bacterial PNPase.

    PubMed

    Briani, Federica; Carzaniga, Thomas; Dehò, Gianni

    2016-01-01

    Polynucleotide phosphorylase (PNPase) is an exoribonuclease that catalyzes the processive phosphorolytic degradation of RNA from the 3'-end. The enzyme catalyzes also the reverse reaction of polymerization of nucleoside diphosphates that has been implicated in the generation of heteropolymeric tails at the RNA 3'-end. The enzyme is widely conserved and plays a major role in RNA decay in both Gram-negative and Gram-positive bacteria. Moreover, it participates in maturation and quality control of stable RNA. PNPase autoregulates its own expression at post-transcriptional level through a complex mechanism that involves the endoribonuclease RNase III and translation control. The activity of PNPase is modulated in an intricate and still unclear manner by interactions with small molecules and recruitment in different multiprotein complexes. Not surprisingly, given the wide spectrum of PNPase substrates, PNPase-defective mutations in different bacterial species have pleiotropic effects and perturb the execution of genetic programs involving drastic changes in global gene expression such as biofilm formation, growth at suboptimal temperatures, and virulence. © 2016 Wiley Periodicals, Inc.

  3. alpha-1,4-D-glucan phosphorylase of gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering.

    PubMed Central

    Weinhäusel, A; Griessler, R; Krebs, A; Zipper, P; Haltrich, D; Kulbe, K D; Nidetzky, B

    1997-01-01

    The alpha-1,4-D-glucan phosphorylase from gram-positive Corynebacterium callunae has been isolated and characterized. The enzyme is inducible approx. 2-fold by maltose, but remarkably not repressed by D-glucose. The phosphorylase is a homodimer with a stoichiometric content of the cofactor pyridoxal 5'-phosphate per 88-kDa protein subunit. The specificity constants (kcat/Km, glucan) in the directions of glucan synthesis and degradation are used for the classification of the enzyme as the first bacterial starch phosphorylase. A preference for large over small substrates is determined by variations in the apparent binding constants rather than catalytic-centre activities. The contribution of substrate chain length to binding energy is explained assuming two glucan binding sites in C. callunae phosphorylase: an oligosaccharide binding site composed of five subsites and a high-affinity polysaccharide site separated from the active site. A structural model of the molecular shape of the phosphorylase was obtained from small-angle solution X-ray scattering measurements. A flat, slightly elongated, ellipsoidal model with the three axes related to each other as 1:(0.87-0.95):0.43 showed scattering equivalence with the enzyme molecule. The model of C. callunae phosphorylase differs from the structurally well-characterized rabbit-muscle phosphorylase in size and axial dimensions. PMID:9307027

  4. Characterization of DNA Substrate Binding to the Phosphatase Domain of the DNA Repair Enzyme Polynucleotide Kinase/Phosphatase.

    PubMed

    Havali-Shahriari, Zahra; Weinfeld, Michael; Glover, J N Mark

    2017-03-28

    Polynucleotide kinase/phosphatase (PNKP) is a DNA strand break repair enzyme that uses separate 5' kinase and 3' phosphatase active sites to convert damaged 5'-hydroxyl/3'-phosphate strand termini to ligatable 5'-phosphate/3'-hydroxyl ends. The phosphatase active site has received particular attention as a target of inhibition in cancer therapy development. The phosphatase domain dephosphorylates a range of single- and double-stranded substrates; however, structural studies have shown that the phosphatase catalytic cleft can bind only single-stranded substrates. Here we use a catalytically inactive but structurally intact phosphatase mutant to probe interactions between PNKP and a variety of single- and double-stranded DNA substrates using an electrophoretic mobility shift assay. This work indicates that the phosphatase domain binds 3'-phosphorylated single-stranded DNAs in a manner that is highly dependent on the presence of the 3'-phosphate. Double-stranded substrate binding, in contrast, is not as dependent on the 3'-phosphate. Experiments comparing blunt-end, 3'-overhanging, and frayed-end substrates indicate that the predicted loss of energy due to base pair disruption upon binding of the phosphatase active site is likely balanced by favorable interactions between the liberated complementary strand and PNKP. Comparison of the effects on substrate binding of mutations within the phosphatase active site cleft with mutations in surrounding positively charged surfaces suggests that the surrounding surfaces are important for binding to double-stranded substrates. We further show that while fluorescence polarization methods can detect specific binding of single-stranded DNAs with the phosphatase domain, this method does not detect specific interactions between the PNKP phosphatase and double-stranded substrates.

  5. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.

    PubMed

    Ye, Yuxin; Saburi, Wataru; Odaka, Rei; Kato, Koji; Sakurai, Naofumi; Komoda, Keisuke; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide; Yao, Min

    2016-03-01

    In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. © 2016 Federation of European Biochemical Societies.

  6. Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves.

    PubMed Central

    Donoso, J; Muñoz, F; Garcia Blanco, F

    1993-01-01

    The absorption spectra of the coenzyme [pyridoxal 5'-phosphate (PLP)] in glycogen phosphorylase a (GPha), glycogen phosphorylase b (GPhb) and of the latter bound to various effectors and substrates were analysed on the basis of log-normal distribution curves. The results obtained showed that the ionization state of the PLP and GPha environment differs from that of GPhb. This divergence was interpreted in terms of tautomeric equilibria between some forms of the Schiff base of PLP and enzymic Lys-679. The ionic forms are slightly more predominant in GPha than they are in GPhb, so ionic and/or hydrogen-bonding interactions between the aromatic ring of PLP and GPha must be stronger than with GPhb. This confirms the purely structural role of the aromatic ring of the coenzyme. Binding of GPhb to AMP and Mg2+ results in the coenzyme adopting a similar state as in GPha. On the other hand, binding to IMP gives rise to no detectable changes in the tautomeric equilibrium of the coenzyme. PMID:8503849

  7. Purine nucleoside phosphorylase from Pseudoalteromonas sp. Bsi590: molecular cloning, gene expression and characterization of the recombinant protein.

    PubMed

    Li, Xiaohui; Jiang, Xinyin; Li, Huirong; Ren, Daming

    2008-05-01

    The gene encoding purine nucleoside phosphorylase (PNP) from the cold-adapted marine bacterium Pseudoalteromonas sp. Bsi590 was identified, cloned and expressed in Escherichia coli. The gene encodes a polypeptide of 233 amino acids with a calculated molecular weight of 25,018 Da. Pseudoalteromonas sp. Bsi590 PNP (PiPNP) shares 60% amino sequence identity and conservation of amino acid residues involved in catalysis with mesophilic Escherichia coli deoD-encoded purine nucleoside phosphorylase (EcPNP). N-terminal his-tagged PiPNP and EcPNP were purified to apparent homogeneity using Ni2+-chelating column. Compared with EcPNP, PiPNP possessed a lower temperature optimum and thermal stability. As for PNP enzymes in general, PiPNP and EcPNP displayed complicated kinetic properties; PiPNP possessed higher Km and catalytic efficiency (kcat/Km) compared to EcPNP at 37 degrees C. Substrate specificity results showed PiPNP catalyzed the phosphorolytic cleavage of 6-oxopurine and 6-aminopurine nucleosides (or 2-deoxynucleosides), and to a lesser extent purine arabinosides. PiPNP showed a better activity with inosine while no activity toward pyrimidine nucleosides. The protein conformation was analyzed by temperature perturbation difference spectrum. Results showed that PiPNP had lower conformation transition point temperature than EcPNP; phosphate buffer and KCl had significant influence on PiPNP protein conformation stability and thermostability.

  8. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    PubMed

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  9. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups

    SciTech Connect

    Sparks, Steven M.; Banker, Pierette; Bickett, David M.; Carter, H. Luke; Clancy, Daphne C.; Dickerson, Scott H.; Dwornik, Kate A.; Garrido, Dulce M.; Golden, Pamela L.; Nolte, Robert T.; Peat, Andrew J.; Sheckler, Lauren R.; Tavares, Francis X.; Thomson, Stephen A.; Wang, Liping; Weiel, James E.

    2009-05-15

    Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides 16 and 22 which displayed potent in vitro inhibition of GPa in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.

  10. 2-O-α-D-Glucosylglycerol Phosphorylase from Bacillus selenitireducens MLS10 Possessing Hydrolytic Activity on β-D-Glucose 1-Phosphate

    PubMed Central

    Nihira, Takanori; Saito, Yuka; Ohtsubo, Ken’ichi; Nakai, Hiroyuki; Kitaoka, Motomitsu

    2014-01-01

    The glycoside hydrolase family (GH) 65 is a family of inverting phosphorylases that act on α-glucosides. A GH65 protein (Bsel_2816) from Bacillus selenitireducens MLS10 exhibited inorganic phosphate (Pi)-dependent hydrolysis of kojibiose at the rate of 0.43 s−1. No carbohydrate acted as acceptor for the reverse phosphorolysis using β-d-glucose 1-phosphate (βGlc1P) as donor. During the search for a suitable acceptor, we found that Bsel_2816 possessed hydrolytic activity on βGlc1P with a kcat of 2.8 s−1; moreover, such significant hydrolytic activity on sugar 1-phosphate had not been reported for any inverting phosphorylase. The H218O incorporation experiment and the anomeric analysis during the hydrolysis of βGlc1P revealed that the hydrolysis was due to the glucosyl-transferring reaction to a water molecule and not a phosphatase-type reaction. Glycerol was found to be the best acceptor to generate 2-O-α-d-glucosylglycerol (GG) at the rate of 180 s−1. Bsel_2816 phosphorolyzed GG through sequential Bi-Bi mechanism with a kcat of 95 s−1. We propose 2-O-α-d-glucopyranosylglycerol: phosphate β-d-glucosyltransferase as the systematic name and 2-O-α-d-glucosylglycerol phosphorylase as the short name for Bsel_2816. This is the first report describing a phosphorylase that utilizes polyols, and not carbohydrates, as suitable acceptor substrates. PMID:24466148

  11. Three-dimensional structure of thymidine phosphorylase from E. coli in complex with 3'-azido-2'-fluoro-2',3'-dideoxyuridine

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Fateev, I. V.; Zhukhlistova, N. E.; Murav'eva, T. I.; Kuranova, I. P.; Esipov, R. S.

    2013-11-01

    The three-dimensional structures of thymidine phosphorylase from E. coli containing the bound sulfate ion in the phosphate-binding site and of the complex of thymidine phosphorylase with sulfate in the phosphate-binding site and the inhibitor 3'-azido-2'-fluoro-2',3'-dideoxyuridine (N3F-ddU) in the nucleoside-binding site were determined at 1.55 and 1.50 Å resolution, respectively. The amino-acid residues involved in the ligand binding and the hydrogen-bond network in the active site occupied by a large number of bound water molecules are described. A comparison of the structure of thymidine phosphorylase in complex with N3F-ddU with the structure of pyrimidine nucleoside phosphorylase from St. Aureus in complex with the natural substrate thymidine (PDB_ID: 3H5Q) shows that the substrate and the inhibitor in the nucleoside-binding pocket have different orientations. It is suggested that the position of N3F-ddU can be influenced by the presence of the azido group, which prefers a hydrophobic environment. In both structures, the active sites of the subunits are in the open conformation.

  12. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups.

    PubMed

    Sparks, Steven M; Banker, Pierette; Bickett, David M; Carter, H Luke; Clancy, Daphne C; Dickerson, Scott H; Dwornik, Kate A; Garrido, Dulce M; Golden, Pamela L; Nolte, Robert T; Peat, Andrew J; Sheckler, Lauren R; Tavares, Francis X; Thomson, Stephen A; Wang, Liping; Weiel, James E

    2009-02-01

    Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides 16 and 22 which displayed potent in vitro inhibition of GPa in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.

  13. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of Type 2 diabetes: 2. Optimization of serine and threonine ether amino acid residues.

    PubMed

    Sparks, Steven M; Banker, Pierette; Bickett, David M; Clancy, Daphne C; Dickerson, Scott H; Garrido, Dulce M; Golden, Pamela L; Peat, Andrew J; Sheckler, Lauren R; Tavares, Francis X; Thomson, Stephen A; Weiel, James E

    2009-02-01

    Optimization of the amino acid residue of a series of anthranilimide-based glycogen phosphorylase inhibitors is described leading to the identification of serine and threonine ether analogs. t-Butylthreonine analog 20 displayed potent in vitro inhibition of GPa, low potential for P450 inhibition, and excellent pharmacokinetic properties.

  14. Different patterns of stromal and cancer cell thymidine phosphorylase reactivity in non-small-cell lung cancer: impact on tumour neoangiogenesis and survival.

    PubMed Central

    Koukourakis, M. I.; Giatromanolaki, A.; Kakolyris, S.; O'Byrne, K. J.; Apostolikas, N.; Skarlatos, J.; Gatter, K. C.; Harris, A. L.

    1998-01-01

    Angiogenesis is recognized as an important step in tumour pathogenesis that is related to invasion and metastatic spread and which consequently results in poor clinical outcome. In this study, we have examined the role of tumour stroma-activated fibroblasts and macrophage infiltration in the development of the angiogenic and metastatic phenotype in non-small-cell lung cancer (NSCLC). A total of 141 cases of early stage I-II NSCLC treated with surgery alone were analysed. The JC-70 (anti-CD31) MAb was used for the assessment of vascular grade. The P-GF.44C MAb was used to assess thymidine phosphorylase (TP) reactivity in cancer cells, stromal fibroblasts and macrophages. Cancer cell TP overexpression related to high vascular grade and to advanced T stage (P = 0.0004 and P = 0.02). Expression of TP in stromal fibroblasts also correlated with high angiogenesis (P = 0.01), but was independent of cancer cell expression. Fibroblast TP overexpression was related to abundant stroma (P = 0.003), suggesting that TP may be a marker of active stroma. Moreover, intense macrophage infiltration was associated with fibroblast TP reactivity, regardless of the amount of stroma, suggesting that macrophages may be a major contributor to TP expression in stroma. Survival analysis showed that cancer cell TP overexpression was related to poor prognosis (P = 0.005). Although stroma TP is related to angiogenesis, in the low vascular grade group it defined a group of patients with better prognosis (P = 0.02). It may be that fibroblast TP reactivity is an indirect marker of tumour infiltration by functional macrophages, which have an antitumour effect. We conclude that stromal macrophage and fibroblast TP reactivity may have an important role in non-small-cell lung cancer behaviour. Understanding the role of stromal fibroblasts and inflammatory cells and their interaction with oncoprotein expression is essential for the elucidation of lung cancer pathogenesis. Images Figure 1 PMID:9635852

  15. On the phosphorylase activity of GH3 enzymes: A β-N-acetylglucosaminidase from Herbaspirillum seropedicae SmR1 and a glucosidase from Saccharopolyspora erythraea.

    PubMed

    Ducatti, Diogo R B; Carroll, Madison A; Jakeman, David L

    2016-11-29

    A phosphorolytic activity has been reported for beta-N-acetylglucosaminidases from glycoside hydrolase family 3 (GH3) giving an interesting explanation for an unusual histidine as catalytic acid/base residue and suggesting that members from this family may be phosphorylases [J. Biol. Chem. 2015, 290, 4887]. Here, we describe the characterization of Hsero1941, a GH3 beta-N-acetylglucosaminidase from the endophytic nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1. The enzyme has significantly higher activity against pNP-beta-D-GlcNAcp (Km = 0.24 mM, kcat = 1.2 s(-1), kcat/Km = 5.0 mM(-1)s(-1)) than pNP-beta-D-Glcp (Km = 33 mM, kcat = 3.3 × 10(-3) s(-1), kcat/Km = 9 × 10(-4) mM(-1)s(-1)). The presence of phosphate failed to significantly modify the kinetic parameters of the reaction. The enzyme showed a broad aglycone site specificity, being able to hydrolyze sugar phosphates beta-D-GlcNAc 1P and beta-D-Glc 1P, albeit at a fraction of the rate of hydrolysis of aryl glycosides. GH3 beta-glucosidase EryBI, that does not have a histidine as the general acid/base residue, also hydrolyzed beta-D-Glc 1P, at comparable rates to Hsero1941. These data indicate that Hsero1941 functions primarily as a hydrolase and that phosphorolytic activity is likely adventitious. The prevalence of histidine as a general acid/base residue is not predictive, nor correlative, with GH3 beta-N-acetylglucosaminidases having phosphorolytic activity.

  16. Ion mobility-mass spectrometry of phosphorylase B ions generated with supercharging reagents but in charge-reducing buffer.

    PubMed

    Hogan, Christopher J; Ogorzalek Loo, Rachel R; Loo, Joseph A; de la Mora, Juan Fernandez

    2010-11-07

    We investigate whether "supercharging" reagents able to shift the charge state distributions (CSDs) of electrosprayed protein ions upward also influence gas-phase protein structure. A differential mobility analyzer and a mass spectrometer are combined in series (DMA-MS) to measure the mass and mobility of monomer and multimeric phosphorylase B ions (monomer molecular weight ∼97 kDa) in atmospheric pressure air. Proteins are electrosprayed from charge-reducing triethylammonium formate in water (pH = 6.8) with and without the addition of the supercharging reagent tetramethylene sulfone (sulfolane). Because the DMA measures ion mobility prior to collisional heating or declustering, it probes the structure of supercharged protein ions immediately following solvent (water) evaporation. As in prior studies, the addition of sulfolane is found to drastically increase both the mean and maximum charge state of phosphorylase B ions. Ions from all protein n-mers were found to yield mobilities that, for a given charge state, were ∼6-10% higher in the absence of sulfolane. We find that the mobility decrease which arises with sulfolane is substantially smaller than that typically observed for folded-to-unfolded transitions in protein ions (where a ∼60% decrease in mobility is typical), suggesting that supercharging reagents do not cause structural protein modifications in solution as large as noted recently by Williams and colleagues [E. R. Williams et al., J. Am. Soc. Mass Spectrom., 2010, 21, 1762-1774]. In fact, the measurements described here indicate that the modest mobility decrease observed can be partly attributed to sulfolane trapping within the protein ions during DMA measurements, and probably also in solution. As the most abundant peaks in measured mass-mobility spectra for ions produced with and without sulfolane correspond to non-covalently bound phosphorylase B dimers, we find that in spite of a change in mobility/cross section, sulfolane addition does not

  17. Synthesis of 2-(β-D-glucopyranosylamino)-5-substituted-1,3,4-oxadiazoles for inhibition of glycogen phosphorylase.

    PubMed

    Tóth, Marietta; Szőcs, Béla; Kaszás, Tímea; Docsa, Tibor; Gergely, Pál; Somsák, László

    2013-11-15

    Aromatic aldehyde 4-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)semicarbazones were synthesized by the addition of different hydrazones onto O-peracetylated β-d-glucopyranosyl isocyanate. Oxidative transformations of these precursors gave O-protected 2-(β-d-glucopyranosylamino)-5-substituted-1,3,4-oxadiazoles. Removal of the O-acetyl protecting groups under Zemplén conditions gave test compounds to show low micromolar inhibition against rabbit muscle glycogen phosphorylase b. Best inhibitors of these series were 4-(β-d-glucopyranosyl)semicarbazones of 4-nitrobenzaldehyde (Ki=4.5μM), 2-naphthaldehyde (Ki=5.5μM) and 2-(β-d-glucopyranosylamino)-5-(4-methylphenyl)-1,3,4-oxadiazole (Ki=12μM).

  18. Plastidial Starch Phosphorylase in Sweet Potato Roots Is Proteolytically Modified by Protein-Protein Interaction with the 20S Proteasome

    PubMed Central

    Lin, Yi-Chen; Chen, Han-Min; Chou, I-Min; Chen, An-Na; Chen, Chia-Pei; Young, Guang-Huar; Lin, Chi-Tsai; Cheng, Chiung-Hsiang; Chang, Shih-Chung; Juang, Rong-Huay

    2012-01-01

    Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity. The two-dimensional gel electrophoresis, mass spectrometry, and reverse immunoprecipitation analyses showed that HX is composed of Pho1 and the 20S proteasome. Incubating sweet potato roots at 45°C triggers a stepwise degradation of Pho1; however, the degradation process can be partially inhibited by specific proteasome inhibitor MG132. The proteolytically modified Pho1 displays a lower binding affinity toward glucose 1-phosphate and a reduced starch-synthesizing activity. This study suggests that the 20S proteasome interacts with Pho1 and is involved in the regulation of the catalytic activity of Pho1 in sweet potato roots under heat stress conditions. PMID:22506077

  19. Plastidial starch phosphorylase in sweet potato roots is proteolytically modified by protein-protein interaction with the 20S proteasome.

    PubMed

    Lin, Yi-Chen; Chen, Han-Min; Chou, I-Min; Chen, An-Na; Chen, Chia-Pei; Young, Guang-Huar; Lin, Chi-Tsai; Cheng, Chiung-Hsiang; Chang, Shih-Chung; Juang, Rong-Huay

    2012-01-01

    Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity. The two-dimensional gel electrophoresis, mass spectrometry, and reverse immunoprecipitation analyses showed that HX is composed of Pho1 and the 20S proteasome. Incubating sweet potato roots at 45°C triggers a stepwise degradation of Pho1; however, the degradation process can be partially inhibited by specific proteasome inhibitor MG132. The proteolytically modified Pho1 displays a lower binding affinity toward glucose 1-phosphate and a reduced starch-synthesizing activity. This study suggests that the 20S proteasome interacts with Pho1 and is involved in the regulation of the catalytic activity of Pho1 in sweet potato roots under heat stress conditions.

  20. Crystallization and preliminary X-ray diffraction analysis of Salmonella typhimurium uridine phosphorylase complexed with 5-fluorouracil.

    PubMed

    Lashkov, A A; Gabdoulkhakov, A G; Shtil, A A; Mikhailov, A M

    2009-06-01

    Uridine phosphorylase (UPh; EC 2.4.2.3) catalyzes the phosphorolytic cleavage of the N-glycosidic bond of uridine to form ribose 1-phosphate and uracil. This enzyme also activates pyrimidine-containing drugs, including 5-fluorouracil (5-FU). In order to better understand the mechanism of the enzyme-drug interaction, the complex of Salmonella typhimurium UPh with 5-FU was cocrystallized using the hanging-drop vapour-diffusion method at 294 K. X-ray diffraction data were collected to 2.2 A resolution. Analysis of these data revealed that the crystal belonged to space group C2, with unit-cell parameters a = 158.26, b = 93.04, c = 149.87 A, alpha = gamma = 90, beta = 90.65 degrees . The solvent content was 45.85% assuming the presence of six hexameric molecules of the complex in the unit cell.

  1. Isolation, crystallization in the macrogravitation field, preliminary X-ray investigation of uridine phosphorylase from Escherichia coli K-12.

    PubMed

    Mikhailov, A M; Smirnova, E A; Tsuprun, V L; Tagunova, I V; Vainshtein, B K; Linkova, E V; Komissarov, A A; Siprashvili, Z Z; Mironov, A S

    1992-03-01

    Uridine phosphorylase (UPH) from Escherichia coli K-12 has been purified to near homogeneity from a strain harbouring the udp gene, encoding UPH, on a multicopy plasmid. UPH was purified to electrophoretic homogeneity with the specific activity 230 units/mg with a recovery of 80%, yielding 120 mg of enzyme from 3g cells. Crystals of enzyme suitable for X-ray diffraction analysis were obtained in a preparative ultracentrifuge. The packing of the molecules in the crystals may be described by the space group P2(1)2(1)2(1) with the unit cell constants a = 90.4; b = 128.8; c = 136.8 A. There is one molecule per asymmetric unit, Vm = 2.4. These crystals diffract to at least 2.5-2.7 A resolution. The hexameric structure of UPH was directly demonstrated by electron microscopy study and image processing.

  2. Glucose analog inhibitors of glycogen phosphorylases as potential antidiabetic agents: recent developments.

    PubMed

    Somsák, László; Nagya, Veronika; Hadady, Zsuzsa; Docsa, Tibor; Gergely, Pál

    2003-01-01

    Diabetes is among the largest contributors to global mortality through its long term complications. The worldwide epidemic of type 2 diabetes has been stimulating the quest for new concepts and targets for the treatment of this incurable disease. A new target is glycogen phosphorylase (GP), the main regulatory enzyme in the liver responsible for the control of blood glucose levels. One of several approaches to influence the action of GP is the use of glucose derivatives as active site inhibitors. This field of research commenced 10-15 years ago and, due to joint efforts in computer aided molecular design, organic synthesis, protein crystallography, and biological assays, resulted in glucopyranosylidene-spiro-hydantoin 16 (K(i) = 3-4 micro M) as the most efficient glucose analog inhibitor of GP of that time. The present paper surveys the recent developments of this field achieved mainly in the last five years: the synthesis and evaluation of glucopyranosylidene-spiro-thiohydantoin 18 (K(i) = 5 micro M) which has proven equipotent with 16, and is available in gram amounts; furanosylidene- and xylopyranosylidene-spiro-(thio)hydantoins whose ineffectiveness (K(i) > 10 mM) confirmed the high specificity of the catalytic site of GP towards the D-glucopyranosyl unit; "open" hydantoins like methyl N-(1-carboxamido-D-glucopyranosyl)carbamate 37 (K(i) = 16 micro M) and N-acyl-N'-(beta-D-glucopyranosyl)ureas among them the to date best glucose analog inhibitor N-(2-naphthoyl)-N'-(beta-D-glucopyranosyl)urea (35, K(i) = 0.4 micro M) which can also bind to the so-called new allosteric site of GP; C-(beta-D-glucopyranosyl)heterocycles (tetrazole, 1,3,4-oxadiazoles, benzimidazole (K(i) = 11 micro M), and benzothiazole). Iminosugars like isofagomine (45, IC(50) = 0.7 micro M), noeuromycin (53, IC(50) = 4 micro M), and azafagomine (54, IC(50) = 13.5 micro M) also bind strongly to the active site of GP, however, substitution on the nitrogens makes the binding weaker. The natural

  3. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes.

    PubMed

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-07-24

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.

  4. Insights into Phosphate Cooperativity and Influence of Substrate Modifications on Binding and Catalysis of Hexameric Purine Nucleoside Phosphorylases

    PubMed Central

    de Giuseppe, Priscila O.; Martins, Nadia H.; Meza, Andreia N.; dos Santos, Camila R.; Pereira, Humberto D’Muniz; Murakami, Mario T.

    2012-01-01

    The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2′deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine) in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2′deoxy)ribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5′ hydroxyl group of adenosine and Arg43* side chain contributes for the ribosyl radical to adopt an unusual C3’-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl6 and Br8 substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser90 by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr91) is responsible for the lack of negative cooperativity of phosphate binding in this

  5. Validation of a HPLC method for the measurement of erythrocyte encapsulated thymidine phosphorylase (EE-TP) activity.

    PubMed

    Fairbanks, Lynette D; Levene, Michelle; Bax, Bridget E

    2013-03-25

    A sensitive and simple reverse-phase high performance liquid chromatographic (HPLC) assay has been validated for the determination of thymine as a measure of thymidine phosphorylase activity encapsulated in erythrocytes (EE-TP), a formulation which is under clinical development as an enzyme replacement therapy for the treatment of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Diluted erythrocyte lysates were incubated in 100mM sodium phosphate buffer and 10mM thymidine at 37°C for 10min and the reaction stopped with 40% trichloroacetic acid. Following centrifugation, the supernatant was washed with water saturated diethyl ether, and injected onto a Spherisorb C(18) column (125mm×4.6mm, 5μm), with a mobile phase (40mM ammonium acetate, 5mM tetrabutyl ammonium hydrogen sulphate, pH 2.70) delivered at a flow rate of 1.0ml/min and run time of 8min. Ultraviolet detection (UV) was employed at 254nm. The method was linear in the range of 5-500nmol/ml (r(2)=0.992), specific with intra- and inter-day precisions of <9.6 and accuracies within ±20%. Limits of detection and quantification were 1.2nmol/ml and 10nmol/ml, respectively. The method was applied to quantify thymidine phosphorylase activity in samples of in-process controls and batches of EE-TP manufactured for clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Insights into phosphate cooperativity and influence of substrate modifications on binding and catalysis of hexameric purine nucleoside phosphorylases.

    PubMed

    de Giuseppe, Priscila O; Martins, Nadia H; Meza, Andreia N; dos Santos, Camila R; Pereira, Humberto D'Muniz; Murakami, Mario T

    2012-01-01

    The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2'deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine) in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2'deoxy)ribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5' hydroxyl group of adenosine and Arg(43*) side chain contributes for the ribosyl radical to adopt an unusual C3'-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl(6) and Br(8) substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser(90) by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr(91)) is responsible for the lack of negative cooperativity of phosphate binding in this

  7. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  8. Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme. I. Isolation and characterization. [Spinacia oleracea L. ; Pisum sativum L

    SciTech Connect

    Yang, Yi; Steup, M. )

    1990-11-01

    From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction with the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by {sup 14}C-labeling experiments in which the glucosyl transfer from ({sup 14}C)glucose 1-phosphate to the polysaccharide preparation was monitored.

  9. Synthesis and biological evaluation of novel oxadiazole derivatives: a new class of thymidine phosphorylase inhibitors as potential anti-tumor agents.

    PubMed

    Shahzad, Sohail Anjum; Yar, Muhammad; Bajda, Marek; Jadoon, Bushra; Khan, Zulfiqar Ali; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Hayat, Khizar; Mahmmod, Adeem; Mahmood, Nasir; Filipek, Sławomir

    2014-02-01

    Based on the fact that the thymidine phosphorylase inhibitors are considered potential anti-tumor agents, a range of novel oxadiazole derivatives 3a-3u was designed and synthesized by a simple and facile synthetic route. The biological assay revealed that majority of compounds displayed modest inhibitory activity against thymidine phosphorylase at low micromolar concentrations (IC50 173.23±3.04 to 14.40±2.45μM). In the current study the most active compounds were 3h and 3q with IC50 values 14.40±2.45 and 17.60±1.07μM, respectively. Molecular docking studies were performed on the most active compounds (3h, 3k, 3o-3q) to show their binding mode.

  10. Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy

    SciTech Connect

    Thomson, Stephen A.; Banker, Pierette; Bickett, D. Mark; Boucheron, Joyce A.; Carter, H. Luke; Clancy, Daphne C.; Cooper, Joel P.; Dickerson, Scott H.; Garrido, Dulce M.; Nolte, Robert T.; Peat, Andrew J.; Sheckler, Lauren R.; Sparks, Steven M.; Tavares, Francis X.; Wang, Liping; Wang, Tony Y.; Weiel, James E.

    2009-05-15

    Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.

  11. Microwave-assisted synthesis of C-8 aryl and heteroaryl inosines and determination of their inhibitory activities against Plasmodium falciparum purine nucleoside phosphorylase.

    PubMed

    Gigante, Alba; Priego, Eva-María; Sánchez-Carrasco, Paula; Ruiz-Pérez, Luis Miguel; Vande Voorde, Johan; Camarasa, María-José; Balzarini, Jan; González-Pacanowska, Dolores; Pérez-Pérez, María-Jesús

    2014-07-23

    8-Arylinosines have been scarcely studied for therapeutic purposes, probably due to difficulties in their synthesis. The recently described direct arylation reaction at position 8 of purine nucleosides has been employed to synthesize a series of 8-aryl and 8-pyridylinosines. These compounds have been studied for hydrolytic stability and subjected to biological evaluation. Three compounds have shown a pronounced specific inhibition of Plasmodium falciparum-encoded purine nucleoside phosphorylase, an important target for antimalarial chemotherapy.

  12. Glycogen phosphorylase a inhibitors with a phenethylphenylphthalimide skeleton derived from thalidomide-related alpha-glucosidase inhibitors and liver X receptor antagonists.

    PubMed

    Motoshima, Kazunori; Ishikawa, Minoru; Sugita, Kazuyuki; Hashimoto, Yuichi

    2009-09-01

    Novel glycogen phosphorylase a (GPa) inhibitors with a phenethylphenylphthalimide skeleton were prepared based on alpha-glucosidase inhibitors and liver X receptor (LXR) antagonists derived from thalidomide. Their structure-activity relationships were analyzed. Some of the compounds thus prepared showed potent inhibitory activity against rabbit muscle GPa with more than 10-fold greater efficacy than a typical GPa inhibitor, 1,4-dideoxy-1,4-imino-D-arabinitol.

  13. Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy.

    PubMed

    Thomson, Stephen A; Banker, Pierette; Bickett, D Mark; Boucheron, Joyce A; Carter, H Luke; Clancy, Daphne C; Cooper, Joel P; Dickerson, Scott H; Garrido, Dulce M; Nolte, Robert T; Peat, Andrew J; Sheckler, Lauren R; Sparks, Steven M; Tavares, Francis X; Wang, Liping; Wang, Tony Y; Weiel, James E

    2009-02-15

    Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.

  14. Enzymatic analysis of isomeric trithymidylates containing ultraviolet light-induced cyclobutane pyrimidine dimers. II. Phosphorylation by phage T4 polynucleotide kinase

    SciTech Connect

    Weinfeld, M.; Liuzzi, M.; Paterson, M.C.

    1989-04-15

    Phage T4 polynucleotide kinase proved incapable of catalyzing the phosphorylation of thymidylyl-(3'----5')-thymidine containing either a cis-syn-cyclobutane pyrimidine dimer (d-T less than p greater than T) or a 6-4'-(pyrimidin-2'-one)pyrimidine photoproduct (d-T(p)-T), and similarly the UV-modified compounds of (dT)3 bearing either photoproduct at their 5'-end (d-T less than p greater than TpT and d-T(p)TpT). In contrast, the 3'-structural isomers of these trinucleotides (d-TpT less than p greater than T and d-TpT(p)T) were phosphorylated at the same rate as the parent compound. These phosphorylatable lesion-containing oligonucleotides are quantitatively released from UV-irradiated poly(dA):poly(dT) by enzymatic hydrolysis with snake venom phosphodiesterase and alkaline phosphatase. By combining this digestion regimen with phosphorylation by polynucleotide kinase and (gamma-/sup 32/P)ATP, pyrimidine dimers were quantitated at the fmol level following exposure of poly(dA):poly(dT) and herring sperm DNA to biologically relevant UV fluences. The rate of dimer induction in the synthetic polymer, approximately 10 dimers/10(6) nucleotides/Jm-2, was in close agreement with that obtained by conventional methods. Dimers were induced at one-fourth of this rate in the natural DNA. Further treatment of the phosphorylated oligonucleotides derived from irradiated herring sperm DNA with nuclease P1 released the labeled 5'-nucleotide, thus permitting analysis of the nearest-neighbor bases 5' to the lesions. We observed a ratio for pyrimidine-to-purine bases of almost 6:1, implicating tripyrimidine stretches as hotspots for UV-induced DNA damage.

  15. Three-dimensional structures of unligated uridine phosphorylase from Yersinia pseudotuberculosis at 1.4 Å resolution and its complex with an antibacterial drug

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Gabdulkhakov, A. G.; Dontsova, M. V.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2015-07-01

    Uridine phosphorylases play an essential role in the cellular metabolism of some antibacterial agents. Acute infectious diseases (bubonic plague, yersiniosis, pseudotuberculosis, etc., caused by bacteria of the genus Yersinia) are treated using both sulfanilamide medicines and antibiotics, including trimethoprim. The action of an antibiotic on a bacterial cell is determined primarily by the character of its interactions with cellular components, including those which are not targets (for example, with pyrimidine phosphorylases). This type of interaction should be taken into account in designing drugs. The three-dimensional structure of uridine phosphorylase from the bacterium Yersinia pseudotuberculosis ( YptUPh) with the free active site was determined for the first time by X-ray crystallography and refined at 1.40 Å resolution (DPI = 0.062 Å; ID PDB: 4OF4). The structure of the complex of YptUPh with the bacteriostatic drug trimethoprim was studied by molecular docking and molecular dynamics methods. The trimethoprim molecule was shown to be buffered by the enzyme YptUPh, resulting in a decrease in the efficiency of the treatment of infectious diseases caused by bacteria of the genus Yersinia with trimethoprim.

  16. 1,N6-etheno-AMP and 1,N6-etheno-2'-deoxy-AMP as probes of the activator site of glycogen phosphorylase from rabbit skeletal muscle.

    PubMed Central

    Vandenbunder, B; Morange, M; Buc, H

    1976-01-01

    Both 1,N6-etheno-AMP and 1,N6-etheno-2'-deoxy-AMP bind at the AMP site of phosphorylase b (1,4-alpha-D-glucan:orthophosphate alpha-glucosyltransferase, EC 2.4.1.1). Etheno-AMP induces the same activation as AMP, about 30-fold higher than the activation induced by etheno-dAMP. The fluorescence of etheno-AMP and etheno-dAMP is associated with the base moiety; therefore, when free in solution, the two derivatives have identical fluorescence properties. However, when bound to phosphorylase, the fluorescence of etheno-AMP is quenched more efficiently than the fluorescence of etheno-dAMP. This difference between the fluorescence properties of the bound nucleotides suggests that a modification in the ribose ring affects the position of the adenine in the AMP site of phosphorylase b. The observed quenching may be due to a stacking interaction between an aromatic residue and the base moiety of the bound nucleotide. PMID:1066682

  17. Effects of eugenol-reduced clove extract on glycogen phosphorylase b and the development of diabetes in db/db mice.

    PubMed

    Sanae, Fujiko; Kamiyama, Ogusa; Ikeda-Obatake, Kyoko; Higashi, Yasuhiko; Asano, Naoki; Adachi, Isao; Kato, Atsushi

    2014-02-01

    We found that the 50% aqueous EtOH extract of clove (Syzygium aromaticum) had potent dose-dependent inhibitory activity toward glycogen phosphorylase b and glucagon-stimulated glucose production in primary rat hepatocytes. Among the components, eugeniin inhibited glycogen phosphorylase b and glucagon-stimulated glucose production in primary rat hepatocytes, with IC50 values of 0.14 and 4.7 μM, respectively. In sharp contrast, eugenol showed no significant inhibition toward glycogen phosphorylase b, even at a concentration of 400 μM. Eugenol-reduced clove extracts (erCE) were prepared and when fed to a db/db mouse they clearly suppressed the blood glucose and HbA1c levels. Furthermore, plasma triglyceride and non-esterified fatty acid levels in 5% and 10% erCE-fed db/db mice were significantly lowered, compared with control db/db mice without erCE supplementation. These results suggested that dietary supplementation with the erCE could beneficially modify glucose and lipid metabolism and contribute to the prevention of the progress of hyperglycemia and metabolic syndrome.

  18. Activity and substrate specificity of pyrimidine phosphorylases and their role in fluoropyrimidine sensitivity in colon cancer cell lines.

    PubMed

    Temmink, Olaf H; de Bruin, Michiel; Turksma, Annelies W; Cricca, Silvia; Laan, Adrie C; Peters, Godefridus J

    2007-01-01

    Thymidine phosphorylase (TP) and uridine phosphorylase (UP) are often upregulated in solid tumors and catalyze the phosphorolysis of natural (deoxy)nucleosides and a wide variety of fluorinated pyrimidine nucleosides. Because the relative contribution of each of the two enzymes to these reactions is still largely unknown, we investigated the substrate specificity of TP and UP in colon cancer cells for the (fluoro)pyrimidine nucleosides thymidine (TdR), uridine (Urd), 5'-deoxy-5-fluorouridine (5'DFUR), and 5FU. Specific inhibitors of TP (TPI) and UP (BAU) were used to determine the contribution of each enzyme in relation to their cytotoxic effect. The high TP expressing Colo320TP1 cells were most sensitive to 5'DFUR and 5FU, with IC50 values of 1.4 and 0.2 microM, respectively, while SW948 and SW1398 were insensitive to 5'DFUR (IC50>150 microM for 5'DFUR). TPI and BAU only moderately affected sensitivity of Colo320, SW948, and SW1398, whereas TPI significantly increased IC(50) for 5'DFUR (50-fold) and 5FU (11-fold) in Colo320TP1 and BAU that in C26A (9-fold for 5'DFUR; p<0.01). In the epithelial skin cell line HaCaT both inhibitors were able to decrease sensitivity to 5'DFUR and 5FU separately. HaCaT might be a model for 5'DFUR toxicity. In the colon cancer cells 5'DFUR degradation varied from 0.4 to 50 nmol 5FU/h/10(6)cells, that of TdR from 0.3 to 103 nmol thymine/h/10(6)cells, that of Urd from 0.8 to 79 nmol uracil/h/10(6)cells, while conversion of 5FU to FUrd was from 0.3 to 46 nmol/h/10(6)cells. SW948 and SW1398 were about equally sensitive to 5'DFUR and 5FU, but SW1398 had higher phosphorylase activity (>65-fold) compared to SW948. In SW948 and HaCaT TPI and BAU inhibited TdR and Urd phosphorolysis (>80%), respectively. Both TP and UP contributed to the phosphorolysis of 5'DFUR and 5FU. In the presence of both inhibitors, still phosphorolysis of 5FU (>40%) was detected in the tumor and HaCaT cell lines, and remarkably, that of all four substrates in SW1398

  19. Synthesis, enzyme kinetics and computational evaluation of N-(β-D-glucopyranosyl) oxadiazolecarboxamides as glycogen phosphorylase inhibitors.

    PubMed

    Polyák, Mária; Varga, Gergely; Szilágyi, Bence; Juhász, László; Docsa, Tibor; Gergely, Pál; Begum, Jaida; Hayes, Joseph M; Somsák, László

    2013-09-15

    All possible isomers of N-β-D-glucopyranosyl aryl-substituted oxadiazolecarboxamides were synthesised. O-Peracetylated N-cyanocarbonyl-β-D-glucopyranosylamine was transformed into the corresponding N-glucosyl tetrazole-5-carboxamide, which upon acylation gave N-glucosyl 5-aryl-1,3,4-oxadiazole-2-carboxamides. The nitrile group of the N-cyanocarbonyl derivative was converted to amidoxime which was ring closed by acylation to N-glucosyl 5-aryl-1,2,4-oxadiazole-3-carboxamides. A one-pot reaction of protected β-D-glucopyranosylamine with oxalyl chloride and then with arenecarboxamidoximes furnished N-glucosyl 3-aryl-1,2,4-oxadiazole-5-carboxamides. Removal of the O-acetyl protecting groups by the Zemplén method produced test compounds which were evaluated as inhibitors of glycogen phosphorylase. Best inhibitors of these series were N-(β-D-glucopyranosyl) 5-(naphth-1-yl)-1,2,4-oxadiazol-3-carboxamide (Ki = 30 μM), N-(β-D-glucopyranosyl) 5-(naphth-2-yl)-1,3,4-oxadiazol-2-carboxamide (Ki =33 μM), and N-(β-D-glucopyranosyl) 3-phenyl-1,2,4-oxadiazol-5-carboxamide (Ki = 104 μM). ADMET property predictions revealed these compounds to have promising oral drug-like properties without any toxicity.

  20. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis.

    PubMed

    Hamura, Ken; Saburi, Wataru; Abe, Shotaro; Morimoto, Naoki; Taguchi, Hidenori; Mori, Haruhide; Matsui, Hirokazu

    2012-01-01

    Cellobiose phosphorylase (CBP) catalyzes the reversible phosphorolysis of cellobiose to produce α-D-glucopyranosyl phosphate (Glc1P) and D-glucose. It is an essential enzyme for the metabolism of cello-oligosaccharides in a ruminal bacterium, Ruminococcus albus. In this study, recombinant R. albus CBP (RaCBP) produced in Escherichia coli was characterized. It showed highest activity at pH 6.2 at 50 °C, and was stable in a pH range of 5.5-8.8 and at below 40 °C. It phosphorolyzed only cellobiose efficiently, and the reaction proceeded through a random-ordered bi bi mechanism, by which inorganic phosphate and cellobiose bind in random order and D-glucose is released before Glc1P. In the synthetic reaction, RaCBP showed highest activity to D-glucose, followed by 6-deoxy-D-glucose. D-Mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, 1,5-anhydro-D-glucitol, and gentiobiose also served as acceptors, although the activities for them were much lower than for D-glucose. D-Glucose acted as a competitive-uncompetitive inhibitor of the reverse synthetic reaction, which bound not only the Glc1P site (competitive) but also the ternary enzyme-Glc1P-D-glucose complex (uncompetitive).

  1. Expression of a cDNA sequence encoding human purine nucleoside phosphorylase in rodent and human cells.

    PubMed Central

    McIvor, R S; Goddard, J M; Simonsen, C C; Martin, D W

    1985-01-01

    A cDNA sequence which contains the entire coding region for human purine nucleoside phosphorylase (PNP) was recombined for selection and expression in mammalian cells. Plasmids containing either the simian virus 40 early promoter or the mouse metallothionein promoter positioned just upstream of the PNP coding sequence were constructed. These plasmids also contained the gene for a methotrexate-resistant dihydrofolate reductase, allowing for selection and amplification of positive transferrents after transfection of cells by the DNA-calcium phosphate coprecipitation technique. Expression of human PNP activity was readily detected in both mouse (L) and CHO cells by isoelectric focusing of cell extracts followed by histochemical staining for PNP activity. The simian virus 40 early promoter directed considerable expression of human PNP activity in CHO cells but only scant activity in mouse cells. The mouse metallothionein promoter was not successful in effecting human PNP expression in CHO cells but provided substantial human PNP activity in mouse cells and was inducible by incubation with zinc. HeLa cell transferrents were isolated and screened for the presence of transferred PNP cDNA sequences by Southern hybridization analysis. RNA transcripts derived from the transferred PNP cDNA were identified in one of these cell lines. Images PMID:3929070

  2. Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.

    PubMed

    Suarez, Javier; Schramm, Vern L

    2015-09-08

    Computational chemistry predicts that atomic motions on the femtosecond timescale are coupled to transition-state formation (barrier-crossing) in human purine nucleoside phosphorylase (PNP). The prediction is experimentally supported by slowed catalytic site chemistry in isotopically labeled PNP (13C, 15N, and 2H). However, other explanations are possible, including altered volume or bond polarization from carbon-deuterium bonds or propagation of the femtosecond bond motions into slower (nanoseconds to milliseconds) motions of the larger protein architecture to alter catalytic site chemistry. We address these possibilities by analysis of chemistry rates in isotope-specific labeled PNPs. Catalytic site chemistry was slowed for both [2H]PNP and [13C, 15N]PNP in proportion to their altered protein masses. Secondary effects emanating from carbon-deuterium bond properties can therefore be eliminated. Heavy-enzyme mass effects were probed for local or global contributions to catalytic site chemistry by generating [15N, 2H]His8-PNP. Of the eight His per subunit, three participate in contacts to the bound reactants and five are remote from the catalytic sites. [15N, 2H]His8-PNP had reduced catalytic site chemistry larger than proportional to the enzymatic mass difference. Altered barrier crossing when only His are heavy supports local catalytic site femtosecond perturbations coupled to transition-state formation. Isotope-specific and amino acid specific labels extend the use of heavy enzyme methods to distinguish global from local isotope effects.

  3. Expression of muscle-gene-specific isozymes of phosphorylase and creatine kinase in innervated cultured human muscle

    PubMed Central

    1986-01-01

    Isozymes of creatine kinase and glycogen phosphorylase are excellent markers of skeletal muscle maturation. In adult innervated muscle only the muscle-gene-specific isozymes are present, whereas aneurally cultured human muscle has predominantly the fetal pattern of isozymes. We have studied the isozyme pattern of human muscle cultured in monolayer and innervated by rat embryo spinal cord explants for 20-42 d. In this culture system, large groups of innervated muscle fibers close to the ventral part of the spinal cord explant continuously contracted. The contractions were reversibly blocked by 1 mM d- tubocurarine. In those innervated fibers, the total activity and the muscle-gene-specific isozymes of both enzymes increased significantly. The amount of muscle-gene-specific isozymes directly correlated with the duration of innervation. Control noninnervated muscle fibers from the same dishes as the innervated fibers remained biochemically immature. This study demonstrated that de novo innervation of human muscle cultured in monolayer exerts a time-related maturational influence that is not mediated by a diffusable neural factor. PMID:3771644

  4. Solid state 31P cross-polarization/magic angle sample spinning nuclear magnetic resonance studies of crystalline glycogen phosphorylase b

    PubMed Central

    Taguchi, Jocelyn E.; Heyes, Stephen J.; Barford, David; Johnson, Louise N.; Dobson, Christopher M.

    1993-01-01

    31P cross-polarization/magic angle sample spinning nuclear magnetic resonance spectra have been obtained for pyridoxal 5′-phosphate (PLP) bound to glycogen phosphorylase b (GPb) in two different crystalline forms, monoclinic and tetragonal. Analysis of the intensities of the spinning sidebands in the nuclear magnetic resonance spectra has enabled estimates of the principal values of the 31P chemical shift tensors to be obtained. Differences between the two sets of values suggest differences in the environment of the phosphate moiety of the pyridoxal phosphate in the two crystalline forms. The tensor for the tetragonal crystalline form, T state GPb, is fully consistent with those found for dianionic phosphate groups in model compounds. The spectrum for the monoclinic crystalline form, R state GPb, although closer to that of dianionic than monoanionic model phosphate compounds, deviates significantly from that expected for a simple dianion or monoanion. This is likely to result from specific interactions between the PLP phosphate group and residues in its binding site in the protein. A possible explanation for the spectrum of the monoclinic crystals is that the shift tensor is averaged by a proton exchange process between different ionization states of the PLP associated with the presence of a sulfate ion bound in the vicinity of the PLP. PMID:8457673

  5. Methylthioadenosine phosphorylase gene is silenced by promoter hypermethylation in human lymphoma cell line DHL-9: another mechanism of enzyme deficiency.

    PubMed

    Ishii, Masaaki; Nakazawa, Keiko; Wada, Hideo; Nishioka, Junji; Nakatani, Kaname; Yamada, Yasuaki; Kamihira, Shimeru; Kusunoki, Masato; Nobori, Tsutomu

    2005-04-01

    Methylthioadenosine phosphorylase (MTAP) involved in the metabolism of purine and polyamine has been known to be deficient in a variety of tumors. Although this enzyme deficiency was reportedly caused by partial or total deletion of the MTAP gene, human MTAP-deficient lymphoma cell line DHL-9 has the intact MTAP gene. In order to determine the mechanism of MTAP deficiency in DHL-9, we carried out methylation-specific PCR analysis of sodium bisulfite-treated genomic DNA followed by DNA sequence analysis. Following incubation with various concentrations of 5-Aza-2'-deoxycytidine, DHL-9 cells were subjected to RT-PCR and an immunoblot analysis for MTAP expression. MTAP promoter in DHL-9 cells was methylated at cytosine of all CpG dinucleotides analyzed. Moreover, 5-Aza-2'-deoxycytidine treatment induced DHL-9 cells to express MTAP mRNA and protein. Taken together, MTAP deficiency in DHL-9 was caused by transcriptional silencing due to promoter methylation. Promoter methylation of the MTAP gene was also found in DNA samples from adult T-cell leukemia patients. These results indicated that promoter hypermethylation is another mechanism of MTAP deficiency in human malignancy. Thus, immunological diagnostics will be needed for an accurate evaluation of MTAP expression at the protein level.

  6. Purine nucleoside phosphorylase and the enzymatic antioxidant defense system in breast milk from women with different levels of arsenic exposure.

    PubMed

    Gaxiola-Robles, Ramón; Labrada-Martagón, Vanessa; Bitzer-Quintero, Oscar Kurt; Zenteno-Savín, Tania; Méndez-Rodríguez, Lía Celina

    2015-05-01

    Purine nucleoside phosphorylase (PNP) is an ubiquitous enzyme which plays an important role in arsenic (As) detoxification. As is a toxic metalloid present in air, soil and water; is abundant in the environment and is readily transferred along the trophic chain, being found even in human breast milk. Milk is the main nutrient source for the growth and development of neonates. Information on breast milk synthesis and its potential defense mechanism against As toxicity is scarce. In this study, PNP and antioxidant enzymes activities, as well as glutathione (GSH) and total arsenic (TAs) concentrations, were quantified in breast milk samples. PNP, superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) activities and GSH concentration were determined spectrophotometrically; TAs concentration ([TAs]) was measured by atomic absorption spectrometry. Data suggest an increase in PNP activity (median = 0.034 U mg protein-1) in the presence of TAs (median = 1.16 g L(-1)). To explain the possible association of PNP activity in breast milk with the activity of the antioxidant enzymes as well as with GSH and TAs concentrations, generalized linear models were built. In the adjusted model, GPx and GR activities showed a statistically significant (p<0.01) association with PNP activity. These results may suggest that PNP activity increases in the presence of TAs as part of the detoxification mechanism in breast milk. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model

    PubMed Central

    Cassera, María B.; Hazleton, Keith Z.; Merino, Emilio F.; Obaldia, Nicanor; Ho, Meng-Chiao; Murkin, Andrew S.; DePinto, Richard; Gutierrez, Jemy A.; Almo, Steven C.; Evans, Gary B.; Babu, Yarlagadda S.; Schramm, Vern L.

    2011-01-01

    Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent. PMID:22096507

  8. Humanized ADEPT Comprised of an Engineered Human Purine Nucleoside Phosphorylase and a Tumor Targeting Peptide for Treatment of Cancer

    PubMed Central

    Afshar, Sepideh; Asai, Tsuneaki; Morrison, Sherie L.

    2009-01-01

    Immunogenicity caused by the use of non-human enzymes in Antibody Directed Enzyme Prodrug Therapy (ADEPT) has limited its clinical application. To overcome this problem, we have developed a mutant human purine nucleoside phosphorylase (PNP), which unlike the wild-type enzyme, accepts (deoxy)adenosine-based prodrugs as substrates. Amongst the different mutants of human PNP tested, a double mutant with amino acid substitutions E201Q:N243D (hDM) is most efficient in cleaving (deoxy)adenosine-based prodrugs. While hDM is capable of utilizing multiple prodrugs as substrates, it is most effective at cleaving 2-fluoro-2′-deoxyadenosine to a cytotoxic drug. To target hDM to the tumor site, the enzyme was fused to an Anti-HER2/neu Peptide mimetic (AHNP). Treatment of HER2/neu expressing tumor cells with hDM-AHNP results in cellular localization of enzyme activity. As a consequence, harmless prodrug is converted to a cytotoxic drug in the vicinity of the tumor cells, resulting in tumor cell apoptosis. Unlike the non-human enzymes, the hDM should have minimal immunogenicity when used in ADEPT thus providing a novel promising therapeutic agent for the treatment of tumors. PMID:19139128

  9. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. 3'-Deoxy-3'-[(18)F]Fluorothymidine Uptake Is Related to Thymidine Phosphorylase Expression in Various Experimental Tumor Models.

    PubMed

    Schelhaas, Sonja; Heinzmann, Kathrin; Honess, Davina J; Smith, Donna-Michelle; Keen, Heather; Heskamp, Sandra; Witney, Timothy H; Besret, Laurent; Doblas, Sabrina; Griffiths, John R; Aboagye, Eric O; Jacobs, Andreas H

    2017-10-02

    We recently reported that high thymidine phosphorylase (TP) expression is accompanied by low tumor thymidine concentration and high 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) uptake in four untreated lung cancer xenografts. Here, we investigated whether this relationship also holds true for a broader range of tumor models. Lysates from n = 15 different tumor models originating from n = 6 institutions were tested for TP and thymidylate synthase (TS) expression using western blots. Results were correlated to [(18)F]FLT accumulation in the tumors as determined by positron emission tomography (PET) measurements in the different institutions and to previously published thymidine concentrations. Expression of TP correlated positively with [(18)F]FLT SUVmax (ρ = 0.549, P < 0.05). Furthermore, tumors with high TP levels possessed lower levels of thymidine (ρ = - 0.939, P < 0.001). In a broad range of tumors, [(18)F]FLT uptake as measured by PET is substantially influenced by TP expression and tumor thymidine concentrations. These data strengthen the role of TP as factor confounding [(18)F]FLT uptake.

  11. Crystallization and preliminary X-ray diffraction analysis of Salmonella typhimurium uridine phosphorylase complexed with 5-fluorouracil

    PubMed Central

    Lashkov, A. A.; Gabdoulkhakov, A. G.; Shtil, A. A.; Mikhailov, A. M.

    2009-01-01

    Uridine phosphorylase (UPh; EC 2.4.2.3) catalyzes the phosphorolytic cleavage of the N-glycosidic bond of uridine to form ribose 1-phosphate and uracil. This enzyme also activates pyrimidine-containing drugs, including 5-fluorouracil (5-FU). In order to better understand the mechanism of the enzyme–drug interaction, the complex of Salmonella typhimurium UPh with 5-FU was cocrystallized using the hanging-drop vapour-diffusion method at 294 K. X-ray diffraction data were collected to 2.2 Å resolution. Analysis of these data revealed that the crystal belonged to space group C2, with unit-cell parameters a = 158.26, b = 93.04, c = 149.87 Å, α = γ = 90, β = 90.65°. The solvent content was 45.85% assuming the presence of six hexameric molecules of the complex in the unit cell. PMID:19478441

  12. Identification of Bacillus selenitireducens MLS10 maltose phosphorylase possessing synthetic ability for branched α-D-glucosyl trisaccharides.

    PubMed

    Nihira, Takanori; Saito, Yuka; Kitaoka, Motomitsu; Otsubo, Ken'ichi; Nakai, Hiroyuki

    2012-10-01

    We discovered an inverting maltose phosphorylase (Bsel2056) belonging to glycoside hydrolase family 65 from Bacillus selenitireducens MLS10, which possesses synthetic ability for α-D-glucosyl disaccharides and trisaccharides through the reverse phosphorolysis with β-D-glucose 1-phosphate as the donor. Bsel2056 showed the flexibility for monosaccharide acceptors with alternative C2 substituent (2-amino-2-deoxy-D-glucose, 2-deoxy-D-arabino-hexose, 2-acetamido-2-deoxy-D-glucose, D-mannose), resulting in production of 1,4-α-D-glucosyl disaccharides with strict regioselectivity. In addition, Bsel2056 synthesized two maltose derivatives possessing additional D-glucosyl residue bound to C2 position of the D-glucose residue at the reducing end, 1,4-α-D-glucopyranosyl-[1,2-α-D-glucopyranosyl]-D-glucose and 1,4-α-D-glucopyranosyl-[1,2-β-D-glucopyranosyl]-D-glucose, from 1,2-α-D-glucopyranosyl-D-glucose (kojibiose) and 1,2-β-D-glucopyranosyl-D-glucose (sophorose), respectively, as the acceptors. These results suggested that Bsel2056 possessed a binding space to accommodate the bulky C2 substituent of D-glucose.

  13. Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase.

    PubMed

    de Kok, Stefan; Yilmaz, Duygu; Suir, Erwin; Pronk, Jack T; Daran, Jean-Marc; van Maris, Antonius J A

    2011-09-01

    Increasing free-energy conservation from the conversion of substrate into product is crucial for further development of many biotechnological processes. In theory, replacing the hydrolysis of disaccharides by a phosphorolytic cleavage reaction provides an opportunity to increase the ATP yield on the disaccharide. To test this concept, we first deleted the native maltose metabolism genes in Saccharomyces cerevisiae. The knockout strain showed no maltose-transport activity and a very low residual maltase activity (0.03 μmol mg protein(-1)min(-1)). Expression of a maltose phosphorylase gene from Lactobacillus sanfranciscensis and the MAL11 maltose-transporter gene resulted in relatively slow growth (μ(aerobic) 0.09 ± 0.03 h(-1)). Co-expression of Lactococcus lactis β-phosphoglucomutase accelerated maltose utilization via this route (μ(aerobic) 0.21 ± 0.01 h(-1), μ(anaerobic) 0.10 ± 0.00 h(-1)). Replacing maltose hydrolysis with phosphorolysis increased the anaerobic biomass yield on maltose in anaerobic maltose-limited chemostat cultures by 26%, thus demonstrating the potential of phosphorolysis to improve the free-energy conservation of disaccharide metabolism in industrial microorganisms.

  14. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters.

    PubMed

    Li, Juan; Liang, Dong; Li, Mingjun; Ma, Fengwang

    2013-09-01

    Ascorbic acid (AsA) plays an essential role in plants by protecting cells against oxidative damage. GDP-L-galactose phosphorylase (GGP) is the first committed gene for AsA synthesis. Our research examined AsA levels, regulation of GGP gene expression, and how these are related to abiotic stresses in two species of Actinidia (kiwifruit). When leaves were subjected to continuous darkness or light, ABA or MeJA, heat, or a hypoxic environment, we found some correlation between the relative levels of GGP mRNA and AsA concentrations. In transformed tobacco plants, activity of the GGP promoter was induced by all of these treatments. However, the degree of inducibility in the two kiwifruit species differed among the GGP promoter deletions. We deduced that the G-box motif, a light-responsive element, may have an important function in regulating GGP transcripts under various light conditions in both A. deliciosa and A. eriantha. Other elements such as ABRE, the CGTCA motif, and HSE might also control the promoter activities of GGP in kiwifruit. Altogether, these data suggest that GGP expression in the two kiwifruit species is regulated by light or abiotic stress via the relative cis-elements in their promoters. Furthermore, GGP has a critical role in modulating AsA concentrations in kiwifruit species under abiotic stresses.

  15. Bis[(1S)-1 4-azanediyl-1-(9-deazaadenin-9-yl)-1 4-dideoxy-5-methylsulfanyl-D-ribitol] tetrakis(hydrochloride) monohydrate: structure DFT energy and ligand docking results of a potent methylthioadenosine phosphorylase inhibitor found in different

    SciTech Connect

    G Gainsford; G Evans; K Johnston; M Seth

    2011-12-31

    The title compound, abbreviated as 5'ThiomethylImmA, is a potent inhibitor of methylthioadenosine phosphorylase [Singh et al. (2004). Biochemistry, 43, 9-18]. The synchrotron study reported here shows that the hydrochloride salt crystallizes with two independent, nearly superimposable, dications as a monohydrate with formula 2C{sub 12}H{sub 19}N{sub 5}O{sub 2}S{sup 2+}{center_dot}4Cl{sup -}{center_dot}H{sub 2}O. Hydrogen bonding utilizing the H atoms of the dication is found to favor certain molecular conformations in the salt, which are significantly different from those found as bound in the enzyme. Ligand docking studies starting from either of these dications or related neutral structures successfully place the conformationally revised structures in the enzyme active site but only under particular hydrogen-bonding and molecular flexibility criteria. Density functional theory calculations verify the energy similarity of the indendent cations and confirm the significant energy cost of the required conformation change to the enzyme bound form. The results suggest the using crystallographically determined free ligand coordinates as starting parameters for modelling may have serious limitations.

  16. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group.

    PubMed

    Sawano, Tatsuya; Saburi, Wataru; Hamura, Ken; Matsui, Hirokazu; Mori, Haruhide

    2013-09-01

    Ruminococcus albus has the ability to intracellularly degrade cello-oligosaccharides primarily via phosphorolysis. In this study, the enzymatic characteristics of R. albus cellodextrin phosphorylase (RaCDP), which is a member of glycoside hydrolase family 94, was investigated. RaCDP catalyzes the phosphorolysis of cellotriose through an ordered 'bi bi' mechanism in which cellotriose binds to RaCDP before inorganic phosphate, and then cellobiose and glucose 1-phosphate (Glc1P) are released in that order. Among the cello-oligosaccharides tested, RaCDP had the highest phosphorolytic and synthetic activities towards cellohexaose and cellopentaose, respectively. RaCDP successively transferred glucosyl residues from Glc1P to the growing cello-oligosaccharide chain, and insoluble cello-oligosaccharides comprising a mean of eight residues were produced. Sophorose, laminaribiose, β-1,4-xylobiose, β-1,4-mannobiose and cellobiitol served as acceptors for RaCDP. RaCDP had very low affinity for phosphate groups in both the phosphorolysis and synthesis directions. A sequence comparison revealed that RaCDP has Gln at position 646 where His is normally conserved in the phosphate binding sites of related enzymes. A Q646H mutant showed approximately twofold lower apparent K(m) values for inorganic phosphate and Glc1P than the wild-type. RaCDP has Phe at position 633 corresponding to Tyr and Val in the +1 subsites of cellobiose phosphorylase and N,N'-diacetylchitobiose phosphorylase, respectively. A F633Y mutant showed higher preference for cellobiose over β-1,4-mannobiose as an acceptor substrate in the synthetic reaction than the wild-type. Furthermore, the F633Y mutant showed 75- and 1100-fold lower apparent Km values for inorganic phosphate and Glc1P, respectively, in phosphorolysis and synthesis of cellotriose. © 2013 FEBS.

  17. Preclinical toxicity evaluation of erythrocyte-encapsulated thymidine phosphorylase in BALB/c mice and beagle dogs: an enzyme-replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy.

    PubMed

    Levene, Michelle; Coleman, David G; Kilpatrick, Hugh C; Fairbanks, Lynette D; Gangadharan, Babunilayam; Gasson, Charlotte; Bax, Bridget E

    2013-01-01

    Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is currently under development as an enzyme replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), an autosomal recessive disorder caused by a deficiency of thymidine phosphorylase. The rationale for the development of EE-TP is based on the pathologically elevated metabolites (thymidine and deoxyuridine) being able to freely diffuse across the erythrocyte membrane where the encapsulated enzyme catalyses their metabolism to the normal products. The systemic toxic potential of EE-TP was assessed when administered intermittently by iv bolus injection to BALB/c mice and Beagle dogs for 4 weeks. The studies consisted of one control group receiving sham-loaded erythrocytes twice weekly and two treated groups, one dosed once every 2 weeks and the other dosed twice per week. The administration of EE-TP to BALB/c mice resulted in thrombi/emboli in the lungs and spleen enlargement. These findings were also seen in the control group, and there was no relationship to the number of doses administered. In the dog, transient clinical signs were associated with EE-TP administration, suggestive of an immune-based reaction. Specific antithymidine phosphorylase antibodies were detected in two dogs and in a greater proportion of mice treated once every 2 weeks. Nonspecific antibodies were detected in all EE-TP-treated animals. In conclusion, these studies do not reveal serious toxicities that would preclude a clinical trial of EE-TP in patients with MNGIE, but caution should be taken for infusion-related reactions that may be related to the production of nonspecific antibodies or a cell-based immune response.

  18. 3'-Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: the peculiarity of the binding on the basis of X-ray study.

    PubMed

    Timofeev, Vladimir; Abramchik, Yulia; Zhukhlistova, Nadezda; Muravieva, Tatiana; Fateev, Ilya; Esipov, Roman; Kuranova, Inna

    2014-04-01

    The structural study of complexes of thymidine phosphorylase (TP) with nucleoside analogues which inhibit its activity is of special interest because many of these compounds are used as chemotherapeutic agents. Determination of kinetic parameters showed that 3'-azido-3'-deoxythymidine (3'-azidothymidine; AZT), which is widely used for the treatment of human immunodeficiency virus, is a reversible noncompetitive inhibitor of Escherichia coli thymidine phosphorylase (TP). The three-dimensional structure of E. coli TP complexed with AZT was solved by the molecular-replacement method and was refined at 1.52 Å resolution. Crystals for X-ray study were grown in microgravity by the counter-diffusion technique from a solution of the protein in phosphate buffer with ammonium sulfate as a precipitant. The AZT molecule was located with full occupancy in the electron-density maps in the nucleoside-binding pocket of TP, whereas the phosphate-binding pocket of the enzyme was occupied by phosphate (or sulfate) ion. The structure of the active-site cavity and conformational changes of the enzyme upon AZT binding are described in detail. It is found that the position of AZT differs remarkably from the positions of the pyrimidine bases and nucleoside analogues in other known complexes of pyrimidine phosphorylases, but coincides well with the position of 2'-fluoro-3'-azido-2',3'-dideoxyuridine (N3FddU) in the recently investigated complex of E. coli TP with this ligand (Timofeev et al., 2013). The peculiarities of the arrangement of N3FddU and 3'-azidothymidine in the nucleoside binding pocket of TP and correlations between the arrangement and inhibitory properties of these compounds are discussed.

  19. Design of inhibitors of glycogen phosphorylase: a study of alpha- and beta-C-glucosides and 1-thio-beta-D-glucose compounds.

    PubMed

    Watson, K A; Mitchell, E P; Johnson, L N; Son, J C; Bichard, C J; Orchard, M G; Fleet, G W; Oikonomakos, N G; Leonidas, D D; Kontou, M

    1994-05-17

    alpha-D-Glucose is a weak inhibitor of glycogen phosphorylase b (Ki = 1.7 mM) and acts as a physiological regulator of hepatic glycogen metabolism. Glucose binds to phosphorylase at the catalytic site and results in a conformational change that stabilizes the inactive T state of the enzyme, promoting the action of protein phosphatase 1 and stimulating glycogen synthase. It has been suggested that, in the liver, glucose analogues with greater affinity for glycogen phosphorylase may result in a more effective regulatory agent. Several alpha- and beta-anhydroglucoheptonic acid derivatives and 1-deoxy-1-thio-beta-D-glucose analogues have been synthesized and tested in a series of crystallographic and kinetic binding studies with glycogen phosphorylase. The structural results of the bound enzyme-ligand complexes have been analyzed, together with the resulting affinities, in an effort to understand and exploit the molecular interactions that might give rise to a better inhibitor. This work has shown the following: (i) Similar affinities may be obtained through different sets of interactions. Specifically, in the case of the alpha- and beta-glucose-C-amides, similar Ki's (0.37 and 0.44 mM, respectively) are obtained with the alpha-anomer through interactions from the ligand via water molecules to the protein and with the beta-anomer through direct interaction from the ligand to the protein. Thus, hydrogen bonds through water can contribute binding energy similar to that of hydrogen bonds directly to the protein. (ii) Attempts to improve the inhibition by additional groups did not always lead to the expected result. The addition of nonpolar groups to the alpha-carboxamide resulted in a change in conformation of the pyranose ring from a chair to a skew boat and the consequent loss of favorable hydrogen bonds and increase in the Ki. (iii) The addition of polar groups to the alpha-carboxamide led to compounds with the chair conformation, and in the examples studied, it

  20. Computational Methods for De novo Protein Design and its Applications to the Human Immunodeficiency Virus 1, Purine Nucleoside Phosphorylase, Ubiquitin Specific Protease 7, and Histone Demethylases

    PubMed Central

    Bellows, M.L.; Floudas, C.A.

    2010-01-01

    This paper provides an overview of computational de novo protein design methods, highlighting recent advances and successes. Four protein systems are described that are important targets for drug design: human immunodeficiency virus 1, purine nucleoside phosphorylase, ubiquitin specific protease 7, and histone demethylases. Target areas for drug design for each protein are described, along with known inhibitors, focusing on peptidic inhibitors, but also describing some small-molecule inhibitors. Computational design methods that have been employed in elucidating these inhibitors for each protein are outlined, along with steps that can be taken in order to apply computational protein design to a system that has mainly used experimental methods to date. PMID:20210752

  1. Site-specific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots.

    PubMed

    Young, Guang-Huar; Chen, Han-Min; Lin, Chi-Tsai; Tseng, Kuang-Ching; Wu, Jiann-Shing; Juang, Rong-Huay

    2006-02-01

    A 78-amino acid insertion (L78) is found in the low-affinity type (L-form) of starch phosphorylase (L-SP, EC 2.4.1.1). This insertion blocks the starch-binding site on the L-SP molecule, and it decreases the binding affinity of L-SP toward starch. The computational analysis of the amino acid sequence on L78 predicts several phosphorylation sites at its Ser residues. Indeed, from the immunoblotting results using antibodies against phosphoamino acids, we observed that the purified L-SP from mature sweet potato (Ipomoea batatas) roots is phosphorylated. This observation led us to the detection of a protein kinase activity in the protein fraction of the crude extract from the sweet potato roots. The kinase was partially purified by liquid chromatography, and its native molecular mass was estimated as 338 kDa. An expressed peptide (L78P) containing the essential part of L78 was intensively phosphorylated by the kinase. However, H-SP (the high-affinity isomer of SP lacking the L78 insertion) and the proteolytic modified L-SP, which lost its L78 fragment, could not be phosphorylated. Furthermore, using L78P mutants by site-directed mutagenesis at Ser residues on L78, we demonstrate that only one Ser residue on L78 is phosphorylated by the kinase. These results imply that this kinase is specific to L-SP, or more precisely, to the L78 insertion. The in vitro phosphorylated L-SP shows higher sensitivity to proteolytic modification, but has no change in its kinetic parameters.

  2. Distortional binding of transition state analogs to human purine nucleoside phosphorylase probed by magic angle spinning solid-state NMR

    PubMed Central

    Vetticatt, Mathew J.; Itin, Boris; Evans, Gary B.; Schramm, Vern L.

    2013-01-01

    Transition state analogs mimic the geometry and electronics of the transition state of enzymatic reactions. These molecules bind to the active site of the enzyme much tighter than substrate and are powerful noncovalent inhibitors. Immucillin-H (ImmH) and 4′-deaza-1′-aza-2′-deoxy-9-methylene Immucillin-H (DADMe-ImmH) are picomolar inhibitors of human purine nucleoside phosphorylase (hPNP). Although both molecules are electronically similar to the oxocarbenium-like dissociative hPNP transition state, DADMe-ImmH is more potent than ImmH. DADMe-ImmH captures more of the transition state binding energy by virtue of being a closer geometric match to the hPNP transition state than ImmH. A consequence of these similarities is that the active site of hPNP exerts greater distortional forces on ImmH than on DADMe-ImmH to “achieve” the hPNP transition state geometry. By using magic angle spinning solid-state NMR to investigate stable isotope-labeled ImmH and DADMe-ImmH, we have explored the difference in distortional binding of these two inhibitors to hPNP. High-precision determinations of internuclear distances from NMR recoupling techniques, rotational echo double resonance, and rotational resonance, have provided unprecedented atomistic insight into the geometric changes that occur upon binding of transition state analogs. We conclude that hPNP stabilizes conformations of these chemically distinct analogs having distances between the cation and leaving groups resembling those of the known transition state. PMID:24043827

  3. Efficient electrogene therapy for pancreatic adenocarcinoma treatment using the bacterial purine nucleoside phosphorylase suicide gene with fludarabine.

    PubMed

    Deharvengt, Sophie; Rejiba, Soukaina; Wack, Séverine; Aprahamian, Marc; Hajri, Amor

    2007-06-01

    The aim of this study was to demonstrate the potential of electrogene therapy with the bacterial purine nucleoside phosphorylase gene (ePNP), on pancreatic carcinoma (PC) large tumors. The in vivo electroporation (EP) conditions and efficacy were investigated on both subcutaneous xenografts of human PC cells in immunocompromised mice and orthotopic intrapancreatic grafts of rat PC cells in syngenic rats. After intratumoral injection of naked plasmid DNA, EP was performed using a two-needle array with 25-msec pulses and either a 300 V/cm field strength for subcutaneous or a 500 V/cm field strength for orthotopic PC, parameters providing the best electrotransfer as reflected by the measurements of both luciferase activity and ePNP mRNA. As expected, tumors developed sensitivity to prodrug treatment (6-methylpurine deoxyribose or fludarabine phosphate). We observed both significant inhibition of tumor growth and extended survival of treated mice. In fact, after prodrug treatment, PC growth in the subcutaneous model was delayed by 50-70% for ePNP-expressing tumors. In an orthotopic pancreatic tumor model, the animal survival was significantly prolonged after ePNP electrogene transfer followed by fludarabine treatment, with one animal out of 10 being tumor-free 6 months thereafter. The current study demonstrates for the first time on PC the in vivo feasibility of electrogene transfer and its therapeutic efficiency using the suicide gene/prodrug system, ePNP/fludarabine. These findings suggest that electrogene therapy strategy must be considered for pancreatic cancer treatment, particularly at advanced stages of the disease.

  4. Combination of thymidine phosphorylase gene transfer and deoxyinosine treatment greatly enhances 5-fluorouracil antitumor activity in vitro and in vivo.

    PubMed

    Ciccolini, J; Cuq, P; Evrard, A; Giacometti, S; Pelegrin, A; Aubert, C; Cano, J P; Iliadis, A

    2001-12-01

    We reported previously that 5-fluorouracil (FUra) efficacy could be enhanced by increasing tumoral thymidine phosphorylase (TP) activity. Potentiated TP yield was achieved by either transfecting cells with human TP gene (A. Evrard et al., Br. J. Cancer, 80: 1726-1733, 1999) or associating FUra with 2'-deoxyinosine (d-Ino), a modulator providing the tumors with TP cofactor deoxyribose 1-phosphate (J. Ciccolini et al., Clin. Cancer Res., 6: 1529-1535, 2000). The purpose of the present work was to study the effects of a combined modulation (TP gene transfer + use of d-Ino) on the sensitivity to FUra of the LS174T human colorectal cell line. Results showed a near 4000 times increase of cell sensitivity in vitro after double (genetic + biochemical) modulation. This potentiation of tumor response was accompanied by a total change in the FUra anabolic pathway with a 5000% increase of cytosolic fluorodeoxyuridine monophosphate, a stronger and longer inhibition of thymidylate synthase, and 300% augmentation of DNA damage. Besides, whereas thymidine failed to inhibit FUra cytotoxicity in LS174T wild-type cells, the potentiation of the antitumor activity observed in the modulating regimen was partly reversed by thymidine, indicative of thymidylate synthase as the main drug target. The impact of this double modulation was next investigated in xenograft-bearing nude mice. Results showed that whereas FUra alone was completely ineffective on wild-type tumor growth, the size of TP-transfected tumors in animals treated with the FUra/d-Ino combination was reduced by 80% (P < 0.05). Our results suggest that FUra exhibits stronger antiproliferative activity when activated via TP through the DNA pathway and that high tumoral TP activity therefore leads to enhanced sensitivity to fluoropyrimidines.

  5. Diagnosis of immunodeficiency caused by a purine nucleoside phosphorylase defect by using tandem mass spectrometry on dried blood spots.

    PubMed

    la Marca, Giancarlo; Canessa, Clementina; Giocaliere, Elisa; Romano, Francesca; Malvagia, Sabrina; Funghini, Silvia; Moriondo, Maria; Valleriani, Claudia; Lippi, Francesca; Ombrone, Daniela; Della Bona, Maria Luisa; Speckmann, Carsten; Borte, Stephan; Brodszki, Nicholas; Gennery, Andrew R; Weinacht, Katja; Celmeli, Fatih; Pagel, Julia; de Martino, Maurizio; Guerrini, Renzo; Wittkowski, Helmut; Santisteban, Ines; Bali, Pawan; Ikinciogullari, Aydan; Hershfield, Michael; Notarangelo, Luigi D; Resti, Massimo; Azzari, Chiara

    2014-07-01

    Purine nucleoside phosphorylase (PNP) deficiency is a rare form of autosomal recessive combined primary immunodeficiency caused by a enzyme defect leading to the accumulation of inosine, 2'-deoxy-inosine (dIno), guanosine, and 2'-deoxy-guanosine (dGuo) in all cells, especially lymphocytes. Treatments are available and curative for PNP deficiency, but their efficacy depends on the early approach. PNP-combined immunodeficiency complies with the criteria for inclusion in a newborn screening program. This study evaluate whether mass spectrometry can identify metabolite abnormalities in dried blood spots (DBSs) from affected patients, with the final goal of individuating the disease at birth during routine newborn screening. DBS samples from 9 patients with genetically confirmed PNP-combined immunodeficiency, 10,000 DBS samples from healthy newborns, and 240 DBSs from healthy donors of different age ranges were examined. Inosine, dIno, guanosine, and dGuo were tested by using tandem mass spectrometry (TMS). T-cell receptor excision circle (TREC) and kappa-deleting recombination excision circle (KREC) levels were evaluated by using quantitative RT-PCR only for the 2 patients (patients 8 and 9) whose neonatal DBSs were available. Mean levels of guanosine, inosine, dGuo, and dIno were 4.4, 133.3, 3.6, and 3.8 μmol/L, respectively, in affected patients. No indeterminate or false-positive results were found. In patient 8 TREC levels were borderline and KREC levels were abnormal; in patient 9 TRECs were undetectable, whereas KREC levels were normal. TMS is a valid method for diagnosis of PNP deficiency on DBSs of affected patients at a negligible cost. TMS identifies newborns with PNP deficiency, whereas TREC or KREC measurement alone can fail. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. 6-Methylpurine derived sugar modified nucleosides: Synthesis and evaluation of their substrate activity with purine nucleoside phosphorylases.

    PubMed

    Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Parker, William B; Allan, Paula W; Secrist, John A

    2016-04-01

    6-Methylpurine (MeP) is cytotoxic adenine analog that does not exhibit selectivity when administered systemically, and could be very useful in a gene therapy approach to cancer treatment involving Escherichia coli PNP. The prototype MeP releasing prodrug, 9-(β-d-ribofuranosyl)-6-methylpurine, MeP-dR has demonstrated good activity against tumors expressing E. coli PNP, but its antitumor activity is limited due to toxicity resulting from the generation of MeP from gut bacteria. Therefore, we have embarked on a medicinal chemistry program to identify non-toxic MeP prodrugs that could be used in conjunction with E. coli PNP. In this work, we report on the synthesis of 9-(6-deoxy-β-d-allofuranosyl)-6-methylpurine (3) and 9-(6-deoxy-5-C-methyl-β-d-ribo-hexofuranosyl)-6-methylpurine (4), and the evaluation of their substrate activity with several phosphorylases. The glycosyl donors; 1,2-di-O-acetyl-3,5-di-O-benzyl-α-d-allofuranose (10) and 1-O-acetyl-3-O-benzyl-2,5-di-O-benzoyl-6-deoxy-5-C-methyl-β-d-ribohexofuran-ose (15) were prepared from 1,2:5,6-di-O-isopropylidine-α-d-glucofuranose in 9 and 11 steps, respectively. Coupling of 10 and 15 with silylated 6-methylpurine under Vorbrüggen glycosylation conditions followed conventional deprotection of the hydroxyl groups furnished 5'-C-methylated-6-methylpurine nucleosides 3 and 4, respectively. Unlike 9-(6-deoxy-α-l-talo-furanosyl)-6-methylpurine, which showed good substrate activity with E. coli PNP mutant (M64V), the β-d-allo-furanosyl derivative 3 and the 5'-di-C-methyl derivative 4 were poor substrates for all tested glycosidic bond cleavage enzymes.

  7. Genetic pathways of 'de novo' colorectal carcinomas with reference to fetal-type glycogen phosphorylase positive foci.

    PubMed

    Shiomori, Kenji; Shimada, Shinya; Marutsuka, Takashi; Hatayama, Ichiro; Ogawa, Michio

    2003-01-01

    'De novo' carcinogenesis has been advocated besides 'adenoma carcinoma sequence' as another dominant pathway leading to the colorectal carcinoma. Our previous study demonstrated that brain (fetal)-type glycogen phosphorylase (BGP) positive foci in the transitional mucosa (BGP foci) have frequent p53 mutations and that the distribution of BGP foci has a close relationship with the location of 'de novo' carcinoma. The aims of the present study were to investigate further genetic alterations in the BGP foci and to clarify the mechanism of 'de novo' carcinogenesis. Twenty-eight colorectal carcinomas with invasion into submucosa or superficial muscularis propria without any adenoma component expressing immunoreactive p53 protein were selected from 168 resected specimens. Investigations of the p53, K-ras and APC mutations was performed in the BGP foci, BGP negative colorectal mucosa and 'de novo' carcinoma using PCR-SSCP and DNA squencing. In all 28 cases, immunoreactive BGP was positive in the carcinomas and the BGP foci were observed sporadically in the mucosa adjacent to the carcinoma. No K-ras mutation was observed in either carcinoma or BGP foci in any of the cases. Mutations of p53 and APC were 14 (50.0%) and 9 (32.1%) in 'de novo' carcinomas, and 11 (39.3%) and 1 (3.6%) in BGP foci, respectively. Both p53 and APC mutations were detected in 8 and 1, p53 mutation alone in 6 and 10, APC mutation alone in 1 and 0 out of 28 carcinomas and BGP positive foci, respectively. These results suggest that the BGP foci may play a very important role in the 'de novo' colorectal carcinogenesis from the frequent genetic alterations of p53, and that there may be two major pathways, i.e., the p53-APC pathway and the p53 alone pathway, from the chain of genetic alterations between BGP foci and 'de novo' carcinoma.

  8. Expression, purification, crystallization and preliminary X-ray structure analysis of Vibrio cholerae uridine phosphorylase in complex with thymidine

    PubMed Central

    Lashkov, Alexander A.; Gabdulkhakov, Azat G.; Prokofev, Igor I.; Seregina, Tatyana A.; Sotnichenko, Sergey E.; Lyashenko, Andrey V.; Shtil, Alexander A.; Mironov, Alexander S.; Betzel, Christian; Mikhailov, Al’bert M.

    2012-01-01

    A high-resolution structure of the complex of Vibrio cholerae uridine phosphorylase (VchUPh) with its physiological ligand thymidine is important in order to determine the mechanism of the substrate specificity of the enzyme and for the rational design of pharmacological modulators. Here, the expression and purification of VchUPh and the crystallization of its complex with thymidine are reported. Conditions for crystallization were determined with an automated Cartesian Dispensing System using The Classics, MbClass and MbClass II Suites crystallization kits. Crystals of the VchUPh–thymidine complex (of dimensions ∼200–350 µm) were grown by the sitting-drop vapour-diffusion method in ∼7 d at 291 K. The crystallization solution consisted of 1.5 µl VchUPh (15 mg ml−1), 1 µl 0.1 M thymidine and 1.5 µl reservoir solution [15%(w/v) PEG 4000, 0.2 M MgCl2.6H2O in 0.1 M Tris–HCl pH 8.5]. The crystals diffracted to 2.12 Å resolution and belonged to space group P21 (No. 4), with unit-cell parameters a = 91.80, b = 95.91, c = 91.89 Å, β = 119.96°. The Matthews coefficient was calculated as 2.18 Å3 Da−1; the corresponding solvent content was 43.74%. PMID:23143257

  9. Preoperative Chemoradiation for Rectal Cancer Using Capecitabine and Celecoxib Correlated With Posttreatment Assessment of Thymidylate Synthase and Thymidine Phosphorylase Expression

    SciTech Connect

    Unger, Keith R.; Romney, Davis A.; Koc, Mehmet; Moskaluk, Christopher A.; Friel, Charles M.; Foley, E.F.; Rich, Tyvin A.

    2011-08-01

    Purpose: Thymidylate synthase (TS) and thymidine phosphorylase (TP) expression have been shown to be predictors of response to therapy. The toxicity, efficacy, surgical morbidity, and immunohistochemical TS and TP expression were assessed in surgical resection specimens after preoperative chemoradiation. Methods and Materials: Twenty patients with clinical stage I to III rectal adenocarcinoma received preoperative chemoradiation and underwent surgical resection 6 weeks later. Results: Posttreatment tumor stages were T1 to T2 and N0 in 30% of patients; T3 to T4 and N0 in 30% of patients; and T1 to T3 and N1 to N2 in 15% of patients. Pathologic complete response (pCR) was evident in 25% and tumor regression occurred in a total of 80% of patients. Anal sphincter-sparing surgery was performed in 80% of cases. Acute and perioperative complications were minimal, with no grade 3/4 toxicity or treatment breaks. Pelvic control was obtained in 90% of patients. With a median follow-up of 65.5 months (range, 8-80 months), the 6-year actuarial survival rate was 75%. Local failure was significantly associated with nonresponse to therapy and with high TS and low TP expression (p = 0.008 and p = 0.04, respectively). Conclusions: The combination of capecitabine, celecoxib, and x-radiation therapy yields excellent response: a 25% pathologic pCR, no acute grade 3/4 toxicity, and minimal surgical morbidity. Nonresponders expressed significantly increased TS levels and decreased TP levels in posttreatment resection specimens compared to responders.

  10. Response of phage T4 polynucleotide kinase toward dinucleotides containing apurinic sites: Design of a sup 32 P-postlabeling assay for apurinic sites in DNA

    SciTech Connect

    Weinfeld, M.; Liuzzi, M.; Paterson, M.C. )

    1990-02-20

    The authors have examined the capacity of bacteriophage T4 polynucleotide kinase to phosphorylate the partially depurinated products of d-ApA, namely d-SpA and d-ApS (where S represents an apurinic deoxyribose group). It was observed that the enzyme acted only on the latter isomer. Since molecules of this type (d-NpS) are the sole apurinic site containing products resulting from the combined digestion of lightly depurinated DNA by snake venom phosphodiesterase and calf alkaline phosphatase they were able to devise a postlabeling assay for these biologically important DNA lesions. The method offers several advantages, including (a) elimination of the need for prelabeled DNA, (b) high (femtomole range) sensitivity, and (c) nearest-neighbor analysis of bases 5{prime} to apurinic/apyrimidinic sites. Using this assay, they obtained a value for the rate of depurination of form I pRSV neo plasmid DNA. The rate of depurination of poly(dA), treated in a similar fashion, was found to be {approximately}1 base per 10{sup 3} nucleotides per hour.

  11. The interaction between polynucleotide kinase phosphatase and the DNA repair protein XRCC1 is critical for repair of DNA alkylation damage and stable association at DNA damage sites.

    PubMed

    Della-Maria, Julie; Hegde, Muralidhar L; McNeill, Daniel R; Matsumoto, Yoshihiro; Tsai, Miaw-Sheue; Ellenberger, Tom; Wilson, David M; Mitra, Sankar; Tomkinson, Alan E

    2012-11-09

    XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase IIIα-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair.

  12. Polysaccharide-polynucleotide complexes. Part 32. Structural analysis of the curdlan/poly(cytidylic acid) complex with semiempirical molecular orbital calculations.

    PubMed

    Miyoshi, Kentaro; Uezu, Kazuya; Sakurai, Kazuo; Shinkai, Seiji

    2005-01-01

    Natural Curdlan adopts a right-handed 6(1) triple helix, in which the constituting glucan chains are underpinned with each other by the intermolecular hydrogen bonds. Curdlan can form a stoichiometric complex with polynucleotides [e.g., poly(cytidylic acid), poly(C)]. In this paper, we carried out the MOPAC (semiempirical molecular-orbital package) calculation to examine the molecular structure of the Curdlan/poly(C) complex. The calculation exhibited that two types of hydrogen bonds are formed between the Curdlan and the poly(C); the third nitrogen (N3) in cytosine forms a hydrogen bond with the second OH of one Curdlan chain, and the proton of N4 is interacting with the O2 of another Curdlan chain. In our model, the helix diameter of poly(C) is expanded from 11.0 to 15.3 A upon complexation. Despite such large conformational changes, the 6(1) helix structure of poly(C) was maintained even after the complexation. This fact is complementary to the experimental fact that the complexation does not change the band shape of the circular dichroism of poly(C). The chain length dependence of the reaction enthalpy indicated that the complexation becomes thermodynamically more favorable with the chain length increasing. This feature is also consistent with the experimental data.

  13. Amplified detection of DNA ligase and polynucleotide kinase/phosphatase on the basis of enrichment of catalytic G-quadruplex DNAzyme by rolling circle amplification.

    PubMed

    Jiang, Hong-Xin; Kong, De-Ming; Shen, Han-Xi

    2014-05-15

    As two commonly used tool enzymes, DNA ligase and polynucleotide kinase/phosphatase (PNKP) play important roles in DNA metabolism. More and more studies show that regulation of their activity represents promising means for cancer therapy. To detect the activity of DNA ligase with high sensitivity and specificity, a G-quadruplex DNAzyme-based DNA ligase sensor was developed. In this sensor, the use of G-quadruplex DNAzyme eliminated the needs for any labeled oligonucleotide probes, thus making label-free detection possible. The introduction of rolling circle amplification (RCA) reaction could lead to the formation of multimeric G-quadruplexes containing thousands of G-quadruplex units, which can provide highly active hemin-binding sites, thus significantly improving the sensitivity of the sensor. The proposed sensor allowed specific detection of T4 DNA ligase with a detection limit of 0.0019 U/mL. By adding a PNKP-triggered 5'-phosphroylation step of the template DNA, the above sensing strategy could be easily extended to the design of PNKP sensor. The established sensor allowed specific detection of T4 PNKP with a detection limit of 0.0018 U/mL. In addition, these two sensors could also be used for the studies on inhibitors of these two enzymes.

  14. The Interaction between Polynucleotide Kinase Phosphatase and the DNA Repair Protein XRCC1 Is Critical for Repair of DNA Alkylation Damage and Stable Association at DNA Damage Sites*

    PubMed Central

    Della-Maria, Julie; Hegde, Muralidhar L.; McNeill, Daniel R.; Matsumoto, Yoshihiro; Tsai, Miaw-Sheue; Ellenberger, Tom; Wilson, David M.; Mitra, Sankar; Tomkinson, Alan E.

    2012-01-01

    XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase IIIα-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair. PMID:22992732

  15. Overexpression of the Starch Phosphorylase-Like Gene (PHO3) in Lotus japonicus has a Profound Effect on the Growth of Plants and Reduction of Transitory Starch Accumulation

    PubMed Central

    Qin, Shanshan; Tang, Yuehui; Chen, Yaping; Wu, Pingzhi; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2016-01-01

    Two isoforms of starch phosphorylase (PHO; EC 2.4.1.1), plastidic PHO1 and cytosolic PHO2, have been found in all plants studied to date. Another starch phosphorylase-like gene, PHO3, which is an ortholog of Chlamydomonas PHOB, has been detected in some plant lineages. In this study, we identified three PHO isoform (LjPHO) genes in the Lotus japonicus genome. Expression of the LjPHO3 gene was observed in all tissues tested in L. japonicus, and the LjPHO3 protein was located in the chloroplast. Overexpression of LjPHO3 in L. japonicus resulted in a drastic decline in starch granule sizes and starch content in leaves. The LjPHO3 overexpression transgenic seedlings were smaller, and showed decreased pollen fertility and seed set rate. Our results suggest that LjPHO3 may participate in transitory starch metabolism in L. japonicus leaves, but its catalytic properties remain to be studied. PMID:27630651

  16. Assignment of human genes for phosphorylase kinase subunits alpha (PHKA) to Xq12-q13 and beta (PHKB) to 16q12-q13.

    PubMed Central

    Francke, U; Darras, B T; Zander, N F; Kilimann, M W

    1989-01-01

    Phosphorylase kinase (PHK), the enzyme that activates glycogen phosphorylases in muscle, liver, and other tissues, is composed of four different subunits. Recently isolated rabbit muscle cDNAs for the larger two subunits, alpha and beta, have been used to map the location of their cognate sequences on human chromosomes. Southern blot analysis of rodent x human somatic cell hybrid panels, as well as in situ chromosomal hybridization, have provided evidence of single sites for both genes. The alpha subunit gene (PHKA) is located on the proximal long arm of the X chromosome in region Xq12-q13 near the locus for phosphoglycerate kinase (PGK1). X-linked mutations leading to PHK deficiency, known to exist in humans and mice, are likely to involve this locus. This hypothesis is consistent with the proximity of the Phk and Pgk-1 loci on the mouse X chromosome. In contrast, the beta subunit gene (PHKB) was found to be autosomal and was mapped to chromosome 16, region q12-q13 on the proximal long arm. Several different autosomally inherited forms of PHK deficiency for which the PHKB could be a candidate gene have been described in humans and rats. PMID:2757032

  17. A phase 1 study of the pharmacokinetics of nucleoside analog trifluridine and thymidine phosphorylase inhibitor tipiracil (components of TAS-102) vs trifluridine alone.

    PubMed

    Cleary, James M; Rosen, Lee S; Yoshida, Kenichiro; Rasco, Drew; Shapiro, Geoffrey I; Sun, Weijing

    2017-04-01

    Background Trifluridine, a thymidine-based chemotherapeutic, has limited bioavailability after clinical administration as it is rapidly degraded via thymidine phosphorylase. An oral combination tablet combines trifluridine with a potent thymidine phosphorylase inhibitor, tipiracil hydrochloride. This study's objective was to evaluate whether trifluridine/tipiracil (TAS-102) administration increases trifluridine exposure vs trifluridine alone. Methods This open-label pharmacokinetic study randomly assigned patients with advanced solid tumors into two groups. On the morning of day 1, one group received a single 35 mg/m(2) dose of trifluridine/tipiracil and the other group received a single 35-mg/m(2) dose of trifluridine. Both groups received trifluridine/tipiracil 35 mg/m(2) on the evening of day 1, then twice daily on days 2-5 and 8-12 in a 28-day cycle. Results Twenty patients received an initial one-time dose of trifluridine alone and 19 other patients received an initial dose of trifluridine/tipiracil. Trifluridine area under the curve (AUC0-last) and maximum observed plasma concentrations (Cmax) were approximately 37- and 22-fold higher, respectively, with trifluridine/tipiracil vs trifluridine alone. Plasma concentrations of the major metabolite of trifluridine were lower following the administration of trifluridine/tipiracil vs trifluridine alone. Conclusion Tipiracil administered in combination with trifluridine significantly increased exposure to trifluridine compared with trifluridine alone.

  18. Crystallization of uridine phosphorylase from Shewanella oneidensis MR-1 in the laboratory and under microgravity and preliminary X-ray diffraction analysis.

    PubMed

    Safonova, Tatyana N; Mordkovich, Nadezhda N; Polyakov, Konstantin M; Manuvera, Valentin A; Veiko, Vladimir P; Popov, Vladimir O

    2012-11-01

    Uridine phosphorylase (UDP, EC 2.4.2.3), a key enzyme in the pyrimidine salvage pathway, catalyses the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. The gene expression of UDP from Shewanella oneidensis MR-1 was performed in the recipient strain Escherichia coli. The UDP protein was crystallized on earth (in the free form and in complex with uridine as the substrate) by the hanging-drop vapour-diffusion method at 296 K and under microgravity conditions (in the free form) aboard the Russian Segment of the International Space Station by the capillary counter-diffusion method. The data sets were collected to a resolution of 1.9 Å from crystals of the free form grown on earth, 1.6 Å from crystals of the complex with uridine and 0.95 Å from crystals of the free form grown under microgravity. All crystals belong to the space group P2(1) and have similar unit-cell parameters. The crystal of uridine phosphorylase grown under microgravity diffracted to ultra-high resolution and gave high-quality X-ray diffraction data.

  19. Construction of a 2.8-megabase yeast artificial chromosome contig and cloning of the human methylthioadenosine phosphorylase gene from the tumor suppressor region on 9p21

    SciTech Connect

    Olopade, O.I.; Pomykala, H.M.; Hagos, F.

    1995-07-03

    Many human malignant cells lack methylthioadenosine phosphorylase (MTAP) enzyme activity. The gene (MTAP) encoding this enzyme was previously mapped to the short arm of chromosome 9, band p21-22, a region that is frequently deleted in multiple tumor types. To clone candidate tumor suppressor genes from the deleted region on 9p21-22, we have constructed a long-range physical map of 2.8 megabases for 9p21 by using overlapping yeast artificial chromosome and cosmid clones. This map includes the type I IFN gene cluster, the recently identified candidate tumor suppressor genes CDKN2 (p16{sup INK4A}) and CDKN2B (p15{sup INK4B}), and several CpG islands. In addition, we have identified other transcription units within the yeast artificial chromosome contig. Sequence analysis of a 2.5-kb cDNA clone isolated from a CpG island that maps between the IFN genes and CDKN2 reveals a predicted open reading frame of 283 amino acids followed by 1302 nucleotides of 3{prime} untranslated sequence. This gene is evolutionarily conserved and shows significant amino acid homologies to mouse and human purine nucleoside phosphorylases and to a hypothetical 25.8-kDa protein in the pet gene (coding for cytochrome bc{sub 1} complex) region of Rhodospirillum rubrum. The location, expression pattern, and nucleotide sequences of this gene suggest that it codes for the MTAP enzyme. 35 refs., 4 figs., 1 tab.

  20. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase.

    PubMed

    Vidal-Meireles, André; Neupert, Juliane; Zsigmond, Laura; Rosado-Souza, Laise; Kovács, László; Nagy, Valéria; Galambos, Anikó; Fernie, Alisdair R; Bock, Ralph; Tóth, Szilvia Z

    2017-04-01

    Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and (1) O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.

  1. Novel Liver-targeted conjugates of Glycogen Phosphorylase Inhibitor PSN-357 for the Treatment of Diabetes: Design, Synthesis, Pharmacokinetic and Pharmacological Evaluations

    PubMed Central

    Zhang, Liying; Song, Chengjun; Miao, Guangxin; Zhao, Lianzhi; Yan, Zhiwei; Li, Jing; Wang, Youde

    2017-01-01

    PSN-357, an effective glycogen phosphorylase (GP) inhibitor for the treatment for type 2 diabetics, is hampered in its clinical use by the poor selectivity between the GP isoforms in liver and in skeletal muscle. In this study, by the introduction of cholic acid, 9 novel potent and liver-targeted conjugates of PSN-357 were obtained. Among these conjugates, conjugate 6 exhibited slight GP inhibitory activity (IC50 = 31.17 μM), good cellular efficacy (IC50 = 13.39 μM) and suitable stability under various conditions. The distribution and pharmacokinetic studies revealed that conjugate 6 could redistribute from plasma to liver resulting in a considerable higher exposure of PSN-357 metabolizing from 6 in liver (AUCliver/AUCplasma ratio was 18.74) vs that of PSN-357 (AUCliver/AUCplasma ratio was 10.06). In the in vivo animal study of hypoglycemia under the same dose of 50 mg/kg, conjugate 6 exhibited a small but significant hypoglycemic effects in longer-acting manners, that the hypoglycemic effects of 6 is somewhat weaker than PSN-357 from administration up to 6 h, and then became higher than PSN-357 for the rest time of the test. Those results indicate that the liver-targeted glycogen phosphorylase inhibitor may hold utility in the treatment of type 2 diabetes. PMID:28225016

  2. Localization of a new type of X-linked liver glycogenosis to the chromosomal region Xp22 containing the liver {alpha}-subunit of phosphorylase kinase (PHKA2)

    SciTech Connect

    Hendrickx, J.; Coucke, P.; Willems, P.J.

    1994-06-01

    The authors describe here a new type of X-linked liver glycogen storage disease. The main symptoms include liver enlargement and growth retardation. The clinical and biochemical abnormalities of this glycogenosis are similar to those of classical X-linked liver glycogenosis due to phosphorylase kinase deficiency (XLG). However, in constrast to patients with XLG, the patients described here have no reduced phosphorylase kinase activity in erythrocytes and leukocytes, and no enzyme deficiency could be found. Linkage analysis of four families with this X-linked type of liver glycogenosis assigned the disease gene to Xp22. Lod scores obtained with the markers DXS987, DXS207, and DXS999 were 3.97, 2.71, and 2.40, respectively, all at 0% recombination. Multipoint linkage analysis localized the disease gene between DXS143 and DXS989 with a maximum lod score of 4.70 at {theta}=0, relative to DXS987. As both the classical XLG gene and the liver {alpha}-subunit of PHK (PHKA2) are also located in Xp22, this variant type of XLG may be allelic to classical XLG, and both diseases may be caused by mutations in PHKA2. Therefore, they propose to classify XLG as XLG type I (the classical type of XLG) and XLG type II (the variant type of XLG). 28 refs., 2 figs., 3 tabs.

  3. Thymidine phosphorylase influences [(18)F]fluorothymidine uptake in cancer cells and patients with non-small cell lung cancer.

    PubMed

    Lee, Seung Jin; Yeo, Jeong Seok; Lee, Haeng Jung; Lee, Eun Jung; Kim, Seog Young; Jang, Se Jin; Lee, Jong Jin; Ryu, Jin-Sook; Moon, Dae Hyuk

    2014-07-01

    Thymidine phosphorylase (TP), a key enzyme in the pyrimidine nucleoside salvage pathway, catalyses the reversible phosphorylation of thymidine, thereby generating thymine and 2-deoxy-D-ribose-1-phosphate. By regulating the levels of endogenous thymidine, TP may influence [(18)F]fluorothymidine ([(18)F]FLT) uptake. We investigated the effect of TP activity on [(18)F]FLT uptake by tumours. Uptake of [(3)H]FLT and [(3)H]thymidine ([(3)H]Thd) and the activities of TP, thymidine kinase 1 (TK1), and equilibrative nucleoside transporter 1 (ENT1) were determined in exponentially growing A431, A549, HT29, HOP92, ACHN, and SKOV3 cells in the presence or absence of tipiracil hydrochloride, a TP inhibitor. Eighty-five non-small cell lung cancer tissues from a patient cohort that was previously studied with [(18)F]FLT positron emission tomography (PET) were retrieved and subjected to immunohistochemical analysis of TP expression. Factors that affected the maximum standardised uptake value (SUVmax) of [(18)F]FLT-PET were identified by multiple linear regression analysis. A431 cells had the highest TP activity; A549 and HT29 cells had moderate TP activity; and ACHN, SKOV3, and HOP92 cells had little detectable TP activity. Cell lines with high TP activity took up more [(3)H]FLT than [(3)H]Thd, whereas cells with little TP activity took up more [(3)H]Thd than [(3)H]FLT. In cells with high TP activity, TP inhibition decreased [(3)H]FLT uptake and increased [(3)H]Thd uptake. However, TP inhibition had no effect on ACHN, SKOV3, and HOP92 cells. TP inhibition did not change TK1 or ENT1 activity, but did increase the intracellular level of thymidine. The SUVmax of [(18)F]FLT was affected by three independent factors: Ki-67 expression (P < 0.001), immunohistochemical TP score (P < 0.001), and tumour size (P = 0.015). TP activity influences [(18)F]FLT uptake, and may explain preferential uptake of [(18)F]FLT over [(3)H]Thd. These results provide important insights into the

  4. Synchrotron X-Radiation Protein Crystallography and its Use in the Crystal Structure Determination of Purine Nucleoside Phosphorylase.

    NASA Astrophysics Data System (ADS)

    Rule, Stephen Anthony

    Available from UMI in association with The British Library. The availability of intense, tunable Synchrotron X-radiation (SR) has, in recent years, revolutionised certain aspects of macromolecular crystallography. Data collection times have been dramatically reduced, the range of suitable samples has been widened, and techniques such as optimised anomalous scattering and Laue diffraction have become feasible. An understanding of the characteristics of the SR beam and its interaction with single crystal monochromator systems leads to the possibility of a polychromatic diffraction experiment in which each ray's energy is correlated with its direction within the beam. Furthermore, this correlation is preserved in the reflections from a crystal sample, thereby allowing the wavelength dependent effects of an anomalous scatterer to be recorded simultaneously and yet remain resolved spatially. The potential of this approach is demonstrated by an experiment in which a small Re complex was exposed to a polychromatic beam centred on the Re L _{rm III} absorption edge wavelength. Purine nucleoside phosphorylase (PNP) is an important enzyme in purine catabolism and salvage. PNP deficiency is associated with selective T-cell immunodeficiency and, consequently, an effective PNP inhibitor might prove to be useful in treating various conditions including T-cell leukemias. With a view towards rational drug design, the crystal structure of PNP was initially determined at 6.0 A resolution using diffractometer data. However, the crystals diffract weakly and data to high resolution from native and derivative crystals were therefore collected at the Daresbury SRS. Phases were calculated by the method of isomorphous replacement and the final electron density map at 3.16 A resolution is of high quality, enabling the entire polypeptide chain to be followed. The structure consists principally of a six stranded beta sheet flanked by several alpha-helices. The region of the active centre is

  5. Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma.

    PubMed Central

    Leek, R. D.; Landers, R.; Fox, S. B.; Ng, F.; Harris, A. L.; Lewis, C. E.

    1998-01-01

    Angiogenesis is an essential requirement for tumour growth and metastasis and is regulated by a complex network of factors produced by both stromal cells and neoplastic cells within solid tumours. The cytokine tumour necrosis factor alpha (TNF-alpha) and the enzyme thymidine phosphorylase (TP) are two factors known to promote tumour angiogenesis. We have demonstrated recently that high numbers of tumour-associated macrophages (TAMs) are significantly associated with increased tumour angiogenesis and poor prognosis in invasive carcinoma of the breast. We have also shown that TAMs are a major source of TNF-alpha in invasive breast carcinomas, and that macrophage-like stromal cells as well as tumour cells synthesize TP in such tumours. However, little is known of the factors that regulate the production or activity of these factors in the tumour microenvironment. As TNF-alpha has been shown to up-regulate TP expression in tumour cells in vitro we performed an immunohistochemical study to investigate the possibility that TNF-alpha may be involved in the regulation of TP expression by malignant breast epithelial cells in vivo. To do this, we used a cocktail of non-neutralizing monoclonal anti-TNF-alpha antibodies to visualize both TNF-alpha-expressing macrophages and TNF-alpha bound to its receptors on tumour cells and endothelial cells in a series of 93 invasive carcinomas of the breast. A semiquantitative grading system was then used to compare these staining patterns with that for TP in the same biopsies. TNF-alpha immunoreactivity was also compared with various important tumour variables known to relate to outcome in this disease (microvessel density, node status, grade, stage, receptor status and macrophage infiltration), as well as relapse-free and overall survival data for these patients. Our data show significant positive correlations between TNF-alpha bound to its receptors on tumour cells and: (1) TP protein production by tumour cells, and (2) axillary lymph

  6. Promoting vibrations in human purine nucleoside phosphorylase. A molecular dynamics and hybrid quantum mechanical/molecular mechanical study.

    PubMed

    Núñez, Sara; Antoniou, Dimitri; Schramm, Vern L; Schwartz, Steven D

    2004-12-08

    Crystallographic studies of human purine nucleoside phosphorylase (hPNP) with several transition-state (TS) analogues in the immucillin family showed an unusual geometric arrangement of the atoms O-5', O-4', and O(P), the nucleophilic phosphate oxygen, lying in a close three-oxygen stack. These observations were corroborated by extensive experimental kinetic isotope effect analysis. We propose that protein-facilitated dynamic modes in hPNP cause this stack, centered on the ribosyl O-4' oxygen, to squeeze together and push electrons toward the purine ring, stabilizing the oxacarbenium character of the TS. As the N-ribosidic bond is cleaved during the reaction, the pK(a) values of N-7 and O-6 increase by the electron density expelled by the oxygen-stack compression toward the purine ring. Increased electron density in the purine ring improves electrostatic interactions with nearby residues and facilitates the abstraction of a proton from a solvent proton or an unidentified general acid, making the purine a better leaving group, and accelerating catalysis. Classical and mixed quantum/classical molecular dynamics (MD) simulations of the Michaelis complex of hPNP with the substrates guanosine and phosphate were performed to assess the existence of protein-promoting vibrations (PPVs). Analogous simulations were performed for the substrates in aqueous solution. In the catalytic site, the O-5', O-4', and O(P) oxygens vibrate at frequencies of ca. 125 and 465 cm(-1), as opposed to 285 cm(-1) in the absence of hPNP. The hybrid quantum mechanical/molecular mechanical method was used to assess whether this enzymatic vibration pushing the oxygens together is coupled to the reaction coordinate, and thus has a direct positive impact on catalysis. The potential energy surface for the phosphorolysis reaction for several snapshots taken from the classical MD simulation showed substantial differences in oxygen compression. Our calculations showed the existence of PPVs coupled to the

  7. Plasmonic AuNP/g-C3N4 Nanohybrid-based Photoelectrochemical Sensing Platform for Ultrasensitive Monitoring of Polynucleotide Kinase Activity Accompanying DNAzyme-Catalyzed Precipitation Amplification.

    PubMed

    Zhuang, Junyang; Lai, Wenqiang; Xu, Mingdi; Zhou, Qian; Tang, Dianping

    2015-04-22

    A convenient and feasible photoelectrochemical (PEC) sensing platform based on gold nanoparticles-decorated g-C3N4 nanosheets (AuNP/g-C3N4) was designed for highly sensitive monitoring of T4 polynucleotide kinase (PNK) activity, using DNAzyme-mediated catalytic precipitation amplification. To realize our design, the AuNP/g-C3N4 nanohybrid was initially synthesized through in situ reduction of Au(III) on the g-C3N4 nanosheets, which was utilized for the immobilization of hairpin DNA1 (HP1) on the sensing interface. Thereafter, a target-induced isothermal amplification was automatically carried out on hairpin DNA2 (HP2) in the solution phase through PNK-catalyzed 5'-phosphorylation accompanying formation of numerous trigger DNA fragments, which could induce generation of hemin/G-quadruplex-based DNAzyme on hairpin DNA1. Subsequently, the DNAzyme could catalyze the 4-chloro-1-naphthol (4-CN) oxidation to produce an insoluble precipitation on the AuNP/g-C3N4 surface, thereby resulting in the local alternation of the photocurrent. Experimental results revealed that introduction of AuNP on the g-C3N4 could cause a ∼100% increase in the photocurrent because of surface plasmon resonance-enhanced light harvesting and separation of photogenerated e-/h+ pairs. Under the optimal conditions, the percentage of photocurrent decrement (ΔI/I0, relative to background signal) increased with the increasing PNK activity in a dynamic working range from 2 to 100 mU mL(-1) with a low detection limit (LOD) of 1.0 mU mL(-1). The inhibition effect of adenosine diphosphate also received a good performance in PNK inhibitor screening research, thereby providing a useful scheme for practical use in quantitative PNK activity assay for life science and biological research.

  8. New ribosome-inactivating proteins with polynucleotide:adenosine glycosidase and antiviral activities from Basella rubra L. and bougainvillea spectabilis Willd.

    PubMed

    Bolognesi, A; Polito, L; Olivieri, F; Valbonesi, P; Barbieri, L; Battelli, M G; Carusi, M V; Benvenuto, E; Del Vecchio Blanco, F; Di Maro, A; Parente, A; Di Loreto, M; Stirpe, F

    1997-12-01

    New single-chain (type 1) ribosome-inactivating proteins (RIPs) were isolated from the seeds of Basella rubra L. (two proteins) and from the leaves of Bougainvillea spectabilis Willd. (one protein). These RIPs inhibit protein synthesis both in a cell-free system, with an IC50 (concentration causing 50% inhibition) in the 10(-10) M range, and by various cell lines, with IC50S in the 10(-8)-10(-6) M range. All three RIPs released adenine not only from rat liver ribosomes but also from Escherichia coli rRNA, polyadenylic acid, herring sperm DNA, and artichoke mottled crinkle virus (AMCV) genomic RNA, thus being polynucleotide:adenosine glycosidases. The proteins from Basella rubra had toxicity to mice similar to that of most type 1 RIPs (Barbieri et al., 1993, Biochim Biophys Acta 1154: 237-282) with an LD50 (concentration that is 50% lethal) < or = 8 mg.kg-1 body weight, whilst the RIP from Bougainvillea spectabilis had an LD50 > 32 mg.kg-1. The N-terminal sequence of the two RIPs from Basella rubra had 80-93% identity, whereas it differed from the sequence of the RIP from Bougainvillea spectabilis. When tested with antibodies against various RIPs, the RIPs from Basella gave some cross-reactivity with sera against dianthin 32, and weak cross-reactivity with momordin I and momorcochin-S, whilst the RIP from Bougainvillea did not cross-react with any antiserum tested. An RIP from Basella rubra and one from Bougainvillea spectabilis were tested for antiviral activity, and both inhibited infection of Nicotiana benthamiana by AMCV.

  9. Instantaneous inclusion of a polynucleotide and hydrophobic guest molecules into a helical core of cationic beta-1,3-glucan polysaccharide.

    PubMed

    Ikeda, Masato; Hasegawa, Teruaki; Numata, Munenori; Sugikawa, Kouta; Sakurai, Kazuo; Fujiki, Michiya; Shinkai, Seiji

    2007-04-04

    We succeeded in the quantitative and selective introduction of an ammonium cationic group into the C6 position of Curdlan (CUR) by "Click Chemistry", and the obtained cationic Curdlan (CUR-N+) showed good solubility in water. ORD studies suggested that CUR-N+ adopts a single-stranded structure, different from a right-handed, triple-stranded helical structure of beta-1,3-glucan polysaccharides in water. It has been revealed that the polymeric complexes of CUR-N+ with polymeric guest molecules, such as polycytidylic acid (poly(C)), permethyldecasilane (PMDS), and single-walled carbon nanotubes (SWNTs), can be easily obtained by just mixing them in water with sonication. The characterization of the resultant CUR-N+-poly(C) complexes by UV-vis, CD spectroscopic measurements, and AFM and TEM observations revealed that they have stoichiometric, nanosized fibrous structures. From these experimental results as well as our precedent studies (e.g., refs 6 and 23), we propose that the complexation would be driven by the cooperative action of (1) the hydrogen-bonding interaction between the OH group at the C2 position and hydrogen-bonding sites of the cytosine ring (ref 6d), (2) the electrostatic interaction between the ammonium cation and the phosphate anion (ref 23), as well as (3) the background hydrophobic interaction. In addition, the complexed polynucleotide chain showed a strong resistance against enzymatic hydrolysis. Likewise, the dispersion of PMDS and SWNTs in water by CUR-N+ and the fibrous structures of the complexes were confirmed by spectroscopic measurements as well as microscopic observations. These binding properties of CUR-N+, which can proceed spontaneously in water, clearly differ from those of schizophyllan (SPG), which inevitably require a denature-renature process corresponding to a conversion of a triple strand to single strands induced by DMSO or base for inclusion of polymeric guest molecules.

  10. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    SciTech Connect

    Lashkov, A. A. Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-15

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis (YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to {alpha}/{beta} proteins, and its topology is a three-layer {alpha}/{beta}/{alpha} sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% {beta} strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium (StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli (EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  11. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-01

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis ( YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to α/β proteins, and its topology is a three-layer α/β/α sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% β strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium ( StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli ( EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  12. Prognostic significance of thymidylate synthase, thymidine phosphorylase and dihydropyrimidine dehydrogenase expression in biliary tract cancer patients receiving adjuvant 5-fluorouracil-based chemotherapy

    PubMed Central

    KIM, KWAN WOO; KWON, HYUK-CHAN; KIM, SUNG-HYUN; OH, SUNG YONG; LEE, SUEE; LEE, JI HYUN; ROH, MYUNG HWAN; KIM, MIN CHAN; KIM, KI HAN; KIM, YOUNG HOON; ROH, YOUNG HOON; JEONG, JIN SOOK; KIM, HYO-JIN

    2013-01-01

    Biliary tract cancer (BTC) is a relatively uncommon type of cancer, accounting for ∼4% of the malignant neoplasms of the gastrointestinal tract. The aim of this study was to determine whether the expression of thymidylate synthase (TS), thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD) predict clinical outcome in BTC patients treated with adjuvant 5-fluorouracil (5-FU)-based chemotherapy. TS and TP expression were found to be significantly correlated with cancer location (P=0.044 and 0.031, respectively). The multivariate analysis revealed that age [hazard ratio (HR)=2.157, P=0.008], stage (HR=2.234, P<0.001), resection margin status (HR=2.748, P=0.004) and TP expression (HR=2.014, P=0.039) were independently associated with overall survival (OS). PMID:24649282

  13. The temporal relationship between glycogen phosphorylase and activation of the pyruvate dehydrogenase complex during adrenaline infusion in resting canine skeletal muscle

    PubMed Central

    Roberts, Paul A; Loxham, Susan J G; Poucher, Simon M; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2002-01-01

    The present study examined the effect of adrenaline infusion on the activation status of glycogen phosphorylase and the pyruvate dehydrogenase complex (PDC) and on the accumulation of glucose-6-phosphate (G-6-P) and acetylcarnitine in resting canine skeletal muscle. The study was performed in an effort to gain some insight into the temporal relationship between glycogen phosphorylase and PDC activation in vivo in skeletal muscle, which is currently unresolved. Multiple muscle samples were obtained from canine brachial muscle (n = 10) before and during (1, 3, 7 and 15 min) adrenaline infusion (0.14 μg (kg body mass)−1 min−1, i.v.). Adrenaline infusion increased glycogen phosphorylase ‘a’ by > 2-fold above basal levels after 3 min (pre-infusion = 9.2 ± 1.1 vs. 3 min = 22.3 ± 4.0 mmol glucosyl units (kg dry muscle)−1 min−1, P < 0.05). The concentration of G-6-P increased transiently from its basal concentration at 1 min (pre-infusion = 1.5 ± 0.2 vs. 1 min = 4.4 ± 0.9 mmol kg dry muscle)−1, P < 0.01), declined to its pre-infusion concentration at 3 min (P < 0.05), and then increased again after 7 min of infusion (P < 0.05). The PDC was activated following 7 min of adrenaline infusion (pre-infusion = 0.22 ± 0.04 vs. 7 min = 1.04 ± 0.15 mmol acetyl-CoA (kg wet muscle)−1 min−1, P < 0.01), and this degree of activation was maintained for the duration of infusion. During the first 3 min of infusion, the concentration of acetylcarnitine declined (pre-infusion = 3.8 ± 0.3 vs. 3 min = 1.6 ± 0.2 mmol (kg dry muscle)−1, P < 0.05), before transiently increasing at 7 min above the 3 min concentration (3 min = 1.6 ± 0.2 vs. 7 min = 5.1 ± 1.0 mmol (kg dry muscle)−1, P < 0.01). This is the first study to demonstrate that adrenaline can indirectly activate the PDC in skeletal muscle in vivo at rest. The results demonstrate that adrenaline increased glycogen phosphorylase activation and glycolytic flux within 3 min of infusion, but took several more

  14. Study of the hydrolysis and ionization constants of Schiff base from pyridoxal 5'-phosphate and n-hexylamine in partially aqueous solvents. An application to phosphorylase b.

    PubMed Central

    Donoso, J; Muñoz, F; García Del Vado, A; Echevarría, G; García Blanco, F

    1986-01-01

    Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate. PMID:3099764

  15. Muscle glycogenosis with low phosphorylase kinase activity: mutations in PHKA1, PHKG1 or six other candidate genes explain only a minority of cases.

    PubMed

    Burwinkel, Barbara; Hu, Bin; Schroers, Anja; Clemens, Paula R; Moses, Shimon W; Shin, Yoon S; Pongratz, Dieter; Vorgerd, Matthias; Kilimann, Manfred W

    2003-07-01

    Muscle-specific deficiency of phosphorylase kinase (Phk) causes glycogen storage disease, clinically manifesting in exercise intolerance with early fatiguability, pain, cramps and occasionally myoglobinuria. In two patients and in a mouse mutant with muscle Phk deficiency, mutations were previously found in the muscle isoform of the Phk alpha subunit, encoded by the X-chromosomal PHKA1 gene (MIM # 311870). No mutations have been identified in the muscle isoform of the Phk gamma subunit (PHKG1). In the present study, we determined Q1the structure of the PHKG1 gene and characterized its relationship to several pseudogenes. In six patients with adult- or juvenile-onset muscle glycogenosis and low Phk activity, we then searched for mutations in eight candidate genes. The coding sequences of all six genes that contribute to Phk in muscle were analysed: PHKA1, PHKB, PHKG1, CALM1, CALM2 and CALM3. We also analysed the genes of the muscle isoform of glycogen phosphorylase (PYGM), of a muscle-specific regulatory subunit of the AMP-dependent protein kinase (PRKAG3), and the promoter regions of PHKA1, PHKB and PHKG1. Only in one male patient did we find a PHKA1 missense mutation (D299V) that explains the enzyme deficiency. Two patients were heterozygous for single amino-acid replacements in PHKB that are of unclear significance (Q657K and Y770C). No sequence abnormalities were found in the other three patients. If these results can be generalized, only a fraction of cases with muscle glycogenosis and a biochemical diagnosis of low Phk activity are caused by coding, splice-site or promoter mutations in PHKA1, PHKG1 or other Phk subunit genes. Most patients with this diagnosis probably are affected either by elusive mutations of Phk subunit genes or by defects in other, unidentified genes.

  16. Structure of a mutant human purine nucleoside phosphorylase with the prodrug, 2-fluoro-2-deoxyadenosine and the cytotoxic drug, 2-fluoroadenine

    SciTech Connect

    Afshar, Sepideh; Sawaya, Michael R.; Morrison, Sherie L.

    2009-06-30

    A double mutant of human purine nucleoside phosphorylase (hDM) with the amino acid mutations Glu201Gln:Asn243Asp cleaves adenosine-based prodrugs to their corresponding cytotoxic drugs. When fused to an anti-tumor targeting component, hDM is targeted to tumor cells, where it effectively catalyzes phosphorolysis of the prodrug, 2-fluoro-2'-deoxyadenosine (F-dAdo) to the cytotoxic drug, 2-fluoroadenine (F-Ade). This cytotoxicity should be restricted only to the tumor microenvironment, because the endogenously expressed wild type enzyme cannot use adenosine-based prodrugs as substrates. To gain insight into the interaction of hDM with F-dAdo, we have determined the crystal structures of hDM with F-dAdo and F-Ade. The structures reveal that despite the two mutations, the overall fold of hDM is nearly identical to the wild type enzyme. Importantly, the residues Gln201 and Asp243 introduced by the mutation form hydrogen bond contacts with F-dAdo that result in its binding and catalysis. Comparison of substrate and product complexes suggest that the side chains of Gln201 and Asp243 as well as the purine base rotate during catalysis possibly facilitating cleavage of the glycosidic bond. The two structures suggest why hDM, unlike the wild-type enzyme, can utilize F-dAdo as substrate. More importantly, they provide a critical foundation for further optimization of cleavage of adenosine-based prodrugs, such as F-dAdo by mutants of human purine nucleoside phosphorylase.

  17. Las1 interacts with Grc3 polynucleotide kinase and is required for ribosome synthesis in Saccharomyces cerevisiae

    PubMed Central

    Castle, Christopher D.; Sardana, Richa; Dandekar, Varada; Borgianini, Victoria; Johnson, Arlen W.; Denicourt, Catherine

    2013-01-01

    Ribosome biogenesis is a multi-step process that couples cell growth with cell proliferation. Although several large-scale analysis of pre-ribosomal particles have identified numerous trans-acting factors involved in this process, many proteins involved in pre-rRNA processing and ribosomal subunit maturation have yet to be identified. Las1 was originally identified in Saccharomyces cerevisiae as a protein involved in cell morphogenesis. We previously demonstrated that the human homolog, Las1L, is required for efficient ITS2 rRNA processing and synthesis of the 60S ribosomal subunit. Here, we report that the functions of Las1 in ribosome biogenesis are also conserved in S. cerevisiae. Depletion of Las1 led to the accumulation of both the 27S and 7S rRNA intermediates and impaired the synthesis of the 60S subunit. We show that Las1 co-precipitates mainly with the 27S rRNA and associates with an Nsa1 and Rix1-containing pre-60S particle. We further identify Grc3 as a major Las1-interacting protein. We demonstrate that the kinase activity of Grc3 is required for efficient pre-rRNA processing and that depletion of Grc3 leads to rRNA processing defects similar to the ones observed in Las1-depleted cells. We propose that Las1 and Grc3 function together in a conserved mechanism to modulate rRNA processing and eukaryotic ribosome biogenesis. PMID:23175604

  18. Guanine polynucleotides are self-antigens for human natural autoantibodies and are significantly reduced in the human genome.

    PubMed

    Fattal, Ittai; Shental, Noam; Ben-Dor, Shifra; Molad, Yair; Gabrielli, Armando; Pokroy-Shapira, Elisheva; Oren, Shirly; Livneh, Avi; Langevitz, Pnina; Zandman-Goddard, Gisele; Sarig, Ofer; Margalit, Raanan; Gafter, Uzi; Domany, Eytan; Cohen, Irun R

    2015-11-01

    In the course of investigating anti-DNA autoantibodies, we examined IgM and IgG antibodies to poly-G and other oligonucleotides in the sera of healthy persons and those diagnosed with systemic lupus erythematosus (SLE), scleroderma (SSc), or pemphigus vulgaris (PV); we used an antigen microarray and informatic analysis. We now report that all of the 135 humans studied, irrespective of health or autoimmune disease, manifested relatively high amounts of IgG antibodies binding to the 20-mer G oligonucleotide (G20); no participants entirely lacked this reactivity. IgG antibodies to homo-nucleotides A20, C20 or T20 were present only in the sera of SLE patients who were positive for antibodies to dsDNA. The prevalence of anti-G20 antibodies led us to survey human, mouse and Drosophila melanogaster (fruit fly) genomes for runs of T20 and G20 or more: runs of T20 appear > 170,000 times compared with only 93 runs of G20 or more in the human genome; of these runs, 40 were close to brain-associated genes. Mouse and fruit fly genomes showed significantly lower T20/G20 ratios than did human genomes. Moreover, sera from both healthy and SLE mice contained relatively little or no anti-G20 antibodies; so natural anti-G20 antibodies appear to be characteristic of humans. These unexpected observations invite investigation of the immune functions of anti-G20 antibodies in human health and disease and of runs of G20 in the human genome.

  19. Guanine polynucleotides are self-antigens for human natural autoantibodies and are significantly reduced in the human genome

    PubMed Central

    Fattal, Ittai; Shental, Noam; Ben-Dor, Shifra; Molad, Yair; Gabrielli, Armando; Pokroy-Shapira, Elisheva; Oren, Shirly; Livneh, Avi; Langevitz, Pnina; Zandman-Goddard, Gisele; Sarig, Ofer; Margalit, Raanan; Gafter, Uzi; Domany, Eytan; Cohen, Irun R

    2015-01-01

    In the course of investigating anti-DNA autoantibodies, we examined IgM and IgG antibodies to poly-G and other oligonucleotides in the sera of healthy persons and those diagnosed with systemic lupus erythematosus (SLE), scleroderma (SSc), or pemphigus vulgaris (PV); we used an antigen microarray and informatic analysis. We now report that all of the 135 humans studied, irrespective of health or autoimmune disease, manifested relatively high amounts of IgG antibodies binding to the 20-mer G oligonucleotide (G20); no participants entirely lacked this reactivity. IgG antibodies to homo-nucleotides A20, C20 or T20 were present only in the sera of SLE patients who were positive for antibodies to dsDNA. The prevalence of anti-G20 antibodies led us to survey human, mouse and Drosophila melanogaster (fruit fly) genomes for runs of T20 and G20 or more: runs of T20 appear > 170 000 times compared with only 93 runs of G20 or more in the human genome; of these runs, 40 were close to brain-associated genes. Mouse and fruit fly genomes showed significantly lower T20/G20 ratios than did human genomes. Moreover, sera from both healthy and SLE mice contained relatively little or no anti-G20 antibodies; so natural anti-G20 antibodies appear to be characteristic of humans. These unexpected observations invite investigation of the immune functions of anti-G20 antibodies in human health and disease and of runs of G20 in the human genome. PMID:26227667

  20. Dephosphorylation of phosphoproteins and synthetic phosphopeptides. Study of the specificity of the polycation-stimulated and MgATP-dependent phosphorylase phosphatases.

    PubMed

    Agostinis, P; Goris, J; Waelkens, E; Pinna, L A; Marchiori, F; Merlevede, W

    1987-01-25

    The substrate specificity of different forms of polycation-stimulated (PCSH, PCSL, and PCSC) phosphorylase phosphatases and of the catalytic subunit of the MgATP-dependent protein phosphatase from rabbit skeletal muscle was investigated. This was done, with phosphorylase a as the reference substrate, using the synthetic phosphopeptides patterned after the phosphorylated sites of pyruvate kinase (type L) (Arg2-Ala-Ser(32P)-Val-Ala (S2), and its Thr(32P) substitute (T4)), inhibitor-1 (Arg4-Pro-Thr(32P)-Pro-Ala (T5), Arg2-Pro-Thr(32P)-Pro-Ala (T1), and its Ser(32P) substitute (S1)), and some modified phosphopeptides (Arg2-Ala-Thr(32P)-Pro-Ala (T2) and Arg2-Pro-Thr(32P)-Val-Ala (T3)), all phosphorylated by cyclic AMP-dependent protein kinase. In addition, casein(Thr-32P), phosphorylated by casein kinase-2, was also tested. The PCS phosphatases show a striking preference for the T4 configuration, PCSC being the least efficient. The catalytic subunit of the MgATP-dependent phosphatase was almost completely inactive toward all these substrates. As shown for the PCSH phosphatase, and comparing with T4, the two proline residues flanking the Thr(P) in T1 and T5, just as in inhibitor-1, drastically imparied the dephosphorylation by lowering the Vmax and not by affecting the apparent Km. The C-terminal proline (as in T2) by itself represents a highly unfavorable factor in the dephosphorylation. The critical effect of the sequence X-Thr(P)-Pro or Pro-Thr(P)-Pro (T1, T2, T5, and inhibitor-1) can be overcome by manganese ions. The additional finding that this is not the case with the Pro-Ser(P)-Pro sequence (S1) suggests that the effect of Mn2+ is highly substrate specific. These observations show the considerable importance of the primary structure of the substrate in determining the specificity of the protein phosphatases.