Science.gov

Sample records for polyox wsr-fra polyox

  1. An investigation into the stabilization of diltiazem HCl release from matrices made from aged polyox powders.

    PubMed

    Shojaee, Saeed; Asare-Addo, Kofi; Kaialy, Waseem; Nokhodchi, Ali; Cumming, Iain

    2013-09-01

    Matrices containing PEO fail to provide stable drug release profiles when stored at elevated temperatures for a period of time. The present study aims to stabilize diltiazem HCl release from matrices made from various molecular weights of polyox powders. To this end, various molecular weights of polyox with and without vitamin E (0.25, 0.5 and 1% w/w) were stored at 40°C for 0, 2, 4 and 8 weeks. The aged polyox powders were then mixed with the model drug at a ratio of 1:1 and compressed into tablets. At different time intervals, the aged polyox with vitamin E were taken out of oven and mixed with the drug (1:1 ratio) and compressed into tablets. Dissolution studies showed a significant increase in diltiazem HCl release rate to occur with increased storage time at 40°C ± 1 from tablets made from the aged polyox (no vitamin E). This was as a result of depolymerization of the aged polyox powders as compared to the fresh polyox samples. This was confirmed by differential scanning calorimetry (DSC) which showed a reduction in the melting point of the aged samples. Concentrations of vitamin E as low as 0.25% w/w was able to overcome the quick release of drug from the matrices made from aged polyox powders. DSC traces showed that the melting point of aged polyox samples containing vitamin E remained the same as that of the fresh samples. The presence of vitamin E is essential to stabilize the drug release from polyox matrices containing diltiazem HCl.

  2. Design and Evaluation of Polyox and Pluronic Controlled Gastroretentive Delivery of Troxipide

    PubMed Central

    Jagdale, Swati C.; Kamble, Shraddha B.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.

    2014-01-01

    Objective. Objective of the present work was to develop site-specific gastroretentive drug delivery of Troxipide using polymers Pluronic F127 and Polyox 205 WSR. Troxipide is a novel gastroprotective agent with antiulcer, anti-inflammatory, and mucus secreting properties with elimination half-life of 7.4 hrs. Troxipide inhibits H. pylori-derived urease. It is mainly absorbed from stomach. Methods. 32 factorial design was applied to study the effect of independent variable. Effects of concentration of polymer on dependant variables as swelling index, hardness, and % drug release were studied. Pluronic F127 and Polyox 205 WSR were used as rate controlled polymer. Sodium bicarbonate and citric acid were used as effervescent-generating agent. Results. From the factorial batches, it was observed that formulation F5 (19% Pluronic F127 and 80% Polyox 205 WSR) showed optimum controlled drug release (98.60% ± 1.82) for 10 hrs with ability to float >12 hrs. Optimized formulation characterized by FTIR and DSC studies confirmed no chemical interactions between drug and polymer. Gastroretention for 6 hrs for optimized formulations was confirmed by in vivo X-ray placebo study. Conclusion. Results demonstrated feasibility of Troxipide in the development of gastroretentive site-specific drug delivery. PMID:25505995

  3. Application of Design of Experiment for Polyox and Xanthan Gum Coated Floating Pulsatile Delivery of Sumatriptan Succinate in Migraine Treatment

    PubMed Central

    Jagdale, Swati C.; Pawar, Chandrakala R.

    2014-01-01

    Migraine follows circadian rhythm in which headache is more painful at the awakening time. This needs administration of dosage form at night time to release drug after lag period when pain gets worse. Sumatriptan succinate is a drug of choice for migraine. Sumatriptan succinate has bitter taste, low oral bioavailability, and shorter half-life. Present work deals with application of design of experiment for polyox and xanthan gum in development of press coated floating pulsatile tablet. Floating pulsatile concept was applied to increase gastric residence of the dosage form. Burst release was achieved through immediate release tablet using crospovidone as superdisintegrant (10%). Pulse lag time was achieved using swellable polymer polyox WSR 205 and xanthan gum. 32 experimental design was applied. Optimized formulation was evaluated for physical characteristics and in-vitro and in-vivo study. From results, it can be concluded that optimized batch F8 containing polyox WSR205 (72.72%) and xanthan gum (27.27%) of total weight of polymer has shown floating lag time of 55 ± 2 sec, drug content of 100.35 ± 0.4%, hardness of 6 ± 0.1 Kg/cm2, and 98.69 ± 2% drug release in pulse manner with lag time of 7 ± 0.1 h. Optimized batch showed prolong gastric residence which was confirmed by in-vivo X-ray study. PMID:25530963

  4. Application of design of experiment for polyox and xanthan gum coated floating pulsatile delivery of sumatriptan succinate in migraine treatment.

    PubMed

    Jagdale, Swati C; Pawar, Chandrakala R

    2014-01-01

    Migraine follows circadian rhythm in which headache is more painful at the awakening time. This needs administration of dosage form at night time to release drug after lag period when pain gets worse. Sumatriptan succinate is a drug of choice for migraine. Sumatriptan succinate has bitter taste, low oral bioavailability, and shorter half-life. Present work deals with application of design of experiment for polyox and xanthan gum in development of press coated floating pulsatile tablet. Floating pulsatile concept was applied to increase gastric residence of the dosage form. Burst release was achieved through immediate release tablet using crospovidone as superdisintegrant (10%). Pulse lag time was achieved using swellable polymer polyox WSR 205 and xanthan gum. 3(2) experimental design was applied. Optimized formulation was evaluated for physical characteristics and in-vitro and in-vivo study. From results, it can be concluded that optimized batch F8 containing polyox WSR205 (72.72%) and xanthan gum (27.27%) of total weight of polymer has shown floating lag time of 55 ± 2 sec, drug content of 100.35 ± 0.4%, hardness of 6 ± 0.1 Kg/cm(2), and 98.69 ± 2% drug release in pulse manner with lag time of 7 ± 0.1 h. Optimized batch showed prolong gastric residence which was confirmed by in-vivo X-ray study.

  5. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing.

    PubMed

    Boateng, Joshua S; Pawar, Harshavardhan V; Tetteh, John

    2013-01-30

    Polyethylene oxide (Polyox) and carrageenan based solvent cast films have been formulated as dressings for drug delivery to wounds. Films plasticised with glycerol were loaded with streptomycin (30%, w/w) and diclofenac (10%, w/w) for enhanced healing effects in chronic wounds. Blank and drug loaded films were characterised by texture analysis (for mechanical and mucoadhesive properties), scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared spectroscopy. In addition, swelling, in vitro drug release and antibacterial studies were conducted to further characterise the films. Both blank and drug loaded films showed a smooth, homogeneous surface morphology, excellent transparency, high elasticity and acceptable tensile (mechanical) properties. The drug loaded films showed a high capacity to absorb simulated wound fluid and significant mucoadhesion force which is expected to allow effective adherence to and protection of the wound. The films showed controlled release of both streptomycin and diclofenac for 72 h. These drug loaded films produced higher zones of inhibition against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli compared to the individual drugs zones of inhibition. Incorporation of streptomycin can prevent and treat chronic wound infections whereas diclofenac can target the inflammatory phase of wound healing to relieve pain and swelling.

  6. Optimization Studies on Compression Coated Floating-Pulsatile Drug Delivery of Bisoprolol

    PubMed Central

    Jagdale, Swati C.; Bari, Nilesh A.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.

    2013-01-01

    The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 32 full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55 mg) for Polyox WSR205 and level +1 (65 mg) for Polyox WSR N12K showed lag time of 4 h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4 h in indicating the optimization of the dosage form. PMID:24367788

  7. Bubble Dynamics in Polymer Solutions Undergoing Shear.

    DTIC Science & Technology

    1985-04-01

    20D 23 REYNOLDS NUMBER *10’ FIGURE 1-1. The effect of dilute polymer solutes on hydraulic cavitation inception (Ellis &Ting, 1974). (a) ( b ) FIGURE 1-2...Comparison of cavitation appearance in (a) water and ( b ) dilute aqueous Polyox solution (Ting, 1978). 3 cavitation is significantly altered (Figure...research fall into two distinct (but related) areas. These are (a) Newtonian (or viscous) flow-induced cavitation bubble deformation and ( b ) non

  8. The Measurement of the Diffusive Motion of Protons in Biological Systems.

    DTIC Science & Technology

    1983-06-02

    the diffusion coefficient being reduced from that of pure water by .20%. The properties of the water in the Artemia cysts differ greatly from those of...of agarose and polyox, and the cysts of the brine shrimp ( Artemia ) gave an affirmative answer to these questions. Our first experiments were on pure...were obtained on the Artemia cysts. This system is an important biological model, and is especially suited for QNS studies, since the hydration of the

  9. Evaluation of the drug solubility and rush ageing on drug release performance of various model drugs from the modified release polyethylene oxide matrix tablets.

    PubMed

    Shojaee, Saeed; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-02-01

    Hydrophilic matrix systems are currently some of the most widely used drug delivery systems for controlled-release oral dosage forms. Amongst a variety of polymers, polyethylene oxide (PEO) is considered an important material used in pharmaceutical formulations. As PEO is sensitive to thermal oxidation, it is susceptible to free radical oxidative attack. The aim of this study was to investigate the stability of PEO based formulations containing different model drugs with different water solubility, namely propranolol HCl, theophylline and zonisamide. Both polyox matrices 750 and 303 grade were used as model carriers for the manufacture of tablets stored at 40 °C. The results of the present study suggest that the drug release from the matrix was affected by the length of storage conditions, solubility of drugs and the molecular weight of the polymers. Generally, increased drug release rates were prevalent in soluble drug formulations (propranolol) when stored at the elevated temperature (40 °C). In contrast, it was not observed with semi soluble (theophylline) and poorly soluble (zonisamide) drugs especially when formulated with PEO 303 polymer. This indicates that the main parameters controlling the drug release from fresh polyox matrices are the solubility of the drug in the dissolution medium and the molecular weight of the polymer. DSC traces indicated that that there was a big difference in the enthalpy and melting points of fresh and aged PEO samples containing propranolol, whereas the melting point of the aged polyox samples containing theophylline and zonisamide was unaffected. Graphical abstract ᅟ.

  10. Formulation and in vitro evaluation of floating tablets of hydroxypropyl methylcellulose and polyethylene oxide using ranitidine hydrochloride as a model drug

    PubMed Central

    Gharti, KP; Thapa, P; Budhathoki, U; Bhargava, A

    2012-01-01

    The present study was carried out with an objective of preparation and in vitro evaluation of floating tablets of hydroxypropyl methyl cellulose (HPMC) and polyethylene oxide (PEO) using ranitidine hydrochloride as a model drug. The floating tablets were based on effervescent approach using sodium bicarbonate a gas generating agent. The tablets were prepared by dry granulation method. The effect of polymers concentration and viscosity grades of HPMC on drug release profile was evaluated. The effect of sodium bicarbonate and stearic acid on drug release profile and floating properties were also investigated. The result of in vitro dissolution study showed that the drug release profile could be sustained by increasing the concentration of HPMC K15MCR and Polyox WSR303. The formulation containing HPMC K15MCR and Polyox WSR303 at the concentration of 13.88% showed 91.2% drug release at the end of 24 hours. Changing the viscosity grade of HPMC from K15MCR to K100MCR had no significant effect on drug release profile. Sodium bicarbonate and stearic acid in combination showed no significant effect on drug release profile. The formulations containing sodium bicarbonate 20 mg per tablet showed desired buoyancy (floating lag time of about 2 minutes and total floating time of >24 hours). The present study shows that polymers like HPMC K15MCR and Polyox WSR303 in combination with sodium bicarbonate as a gas generating agent can be used to develop sustained release floating tablets of ranitidine hydrochloride. PMID:23493037

  11. A method for correlating the diameter and concentration effects on friction and heat transfer in drag-reducing flows

    NASA Astrophysics Data System (ADS)

    Yoon, Hyung K.; Ghajar, Afshin J.

    1988-06-01

    Friction and heat transfer data for three concentrations (100, 300, and 500 ppm) of a water-soluble polymer (Polyox WSR-301) and two pipe diameters (1.11 and 1.88 cm I.D.) are presented. The friction data are correlated by a single curve using the correlation method developed by Astarita et al. for drag reduction. This method is extended to the case of heat transfer reduction. Using the proposed method, all the heat transfer data also correlates by a single curve.

  12. Particle-laden tubeless siphon

    NASA Astrophysics Data System (ADS)

    Joseph, Daniel; Wang, Jing

    2003-11-01

    A tubeless siphon was created by sucking a 1% aqueous Polyox(Polyox is a registered trademark of Union Carbide.) solution laden with particles from a beaker into a cylinder by a moving piston. The piston speed and particle concentration were varied. At very high rates of withdrawal, all the fluid could be removed before the siphon broke. In this case, the beaker was completely cleaned without a trace of liquid. The addition of small concentrations of small, nearly neutrally buoyant particles greatly enhanced the pulling power of the liquid, reducing the threshold speed of withdrawal at which the beaker was completely cleaned. At speeds of withdrawal smaller than the threshold not all of the fluid-particle mixture is pulled out of the beaker. The amount pulled out first increases, then decreases as the particle concentration is increased. We present an argument, based on viscoelastic potential flow, that the enhancement of the effective extensional stress is due to the reversal of the sign of the normal stresses at stagnation points on the particles.

  13. Investigating the cubosomal ability for transnasal brain targeting: In vitro optimization, ex vivo permeation and in vivo biodistribution.

    PubMed

    Abdelrahman, Fatma Elzahraa; Elsayed, Ibrahim; Gad, Mary Kamal; Badr, Ahmed; Mohamed, Magdi Ibrahim

    2015-07-25

    The aim of this study was to enhance the risperidone delivery to the brain through the transnasal route via optimization of cubosomal gel. Cubosomes were prepared using glycerol mono-oleate (GMO), Pluronic F127 (PF127) and Tween 80 (T80). The prepared formulae were characterized by testing their particle size, polydispersity index, zeta potential, entrapment efficiency, in vitro drug release and transmission electron microscopy. Central composite design was planned for the formulae optimization and the selected formula (containing PF127 with concentration 15 mg/g GMO and T80 with concentration of 20mg/L) was re-prepared in presence of gelling polymer (gellan gum or polyox). The optimal cubosomal gel (containing 0.4% w/v polyox) had been subjected to ex-vivo permeation, histopathological evaluation and in vivo biodistribution studies. It showed significantly higher transnasal permeation and better distribution to the brain, when compared to the used control (drug solution and/or suspension). Finally, the cubosomal gel could be considered as a promising carrier for brain targeting of CNS acting drugs through the transnasal route.

  14. Development and optimization of press coated floating pulsatile drug delivery of sumatriptan succinate.

    PubMed

    Jagdale, Swati C; Pawar, Chandrakala R

    2014-01-01

    Floating pulsatile is combined approach designed according to circadian rhythm to deliver the drug at right time, in right quantity and at right site as per pathophysiological need of disease with prolong gastric residence and lag phase followed by burst release. As the migraine follows circadian rhythm in which headache is more painful at the awakening time, the dosage form should be given during night time to release drug when pain get worsen. Present work deals with formulation and optimization of floating pulsatile tablet of sumatriptan succinate. Core tablet containing crospovidone as superdisintegrant (10%) showed burst release. Lag time was maintained using swellable polymer as polyoxN12K and xanthum gum. 3(2) experimental design was carried out. Developed formulations were evaluated for physical characteristics, in vitro and in vivo study. Optimized batch F2 with concentration of polyox N12K (73.43%) and xanthum gum (26.56%) of total polymer weight showed floating lag time 15±2 sec, drug content 99.58±0.2 %, hardness 6±0.2 Kg/cm(2) and drug release 99.54±2% with pulsatile manner followed lag period of 7±0.1h. In vivo x-ray study confirms prolong gastric residence of system. Programmable pulsatile release has been achieved by formulation F2 which meet demand of chronotherapeutic objective of migraine.

  15. Eddy diffusivity of heat for drag reducing turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Yoon, Hyung K.; Ghajar, Afshin J.

    1987-06-01

    Experiments were conducted to verify the assumptions and general applicability of a new semiempirical equation for eddy diffusivity of heat proposed previously for viscoelastic turbulent pipe flows. The experiments were performed for Separan AP-273 and Polyox WSR-301 solutions with concentrations ranging from 10 to 1000 ppm and Separan AP-30 with concentration of 3000 ppm in thermally fully developed turbulent flow in pipes with diameters of 1.11 and 1.88 cm I.D. under constant wall heat flux. The experiments verified the assumptions made in regard to the universality of the minimum asymptotes for friction and heat transfer. The prediction of heat transfer coefficients with the use of the proposed equation for all of the experimental data is within a maximum deviation of 30 percent.

  16. Development of gastroretentive drug delivery system for cefuroxime axetil: in vitro and in vivo evaluation in human volunteers.

    PubMed

    Bomma, Ramesh; Veerabrahma, Kishan

    2013-01-01

    The objective of this investigation was to develop the cefuroxime axetil sustained-release floating tablets to prolong the gastric residence time and compare their pharmacokinetic behavior with marketed conventional tablets (Zocef). The floating tablets were developed using polymers like HPMC K4M and HPMC K100M alone, and polymer combination of HPMC K4M and Polyox WSR 303 by effervescent technique. Tablets were prepared by slugging method and evaluated for their physical characteristics, in vitro drug release, and buoyancy lag time. The best formulation (F10) was selected based on in vitro characteristics and used in vivo radiographic and bioavailability studies in healthy human volunteers. All the formulations could sustain drug release for 12 h. The dissolution profiles were subjected to various kinetic release models and it was found that the mechanism of drug release followed Peppas model. The in vivo radiographic studies revealed that the tablets remained in stomach for 225 ± 30 min. Based on in vivo performance, the developed floating tablets showed superior bioavailability than Zocef tablet. Based on in vivo performance significant difference was observed between Cmax, tmax, t1/2, AUC0-∞, and mean residence time of test and reference (p<0.05). The increase in relative bioavailability of test was 1.61 fold when compared to reference.

  17. A new mock circulatory loop and its application to the study of chemical additive and aortic pressure effects on hemolysis in the Penn State electric ventricular assist device.

    PubMed

    Garrison, L A; Frangos, J A; Geselowitz, D B; Lamson, T C; Tarbell, J M

    1994-05-01

    A new mock circulatory loop was developed for hemolysis studies associated with the Penn State electric ventricular assist device (EVAD). This flow loop has several advantages over previously designed loops. It is small enough to accommodate experiments in which only single units of blood are available, it is made out of biocompatible materials, it incorporates good geometry, and it provides normal physiological pressures and flows to both the aortic outlet and the venous inlet of the pumping device. Experiments with reduced aortic pressure but normal cardiac output showed that hemolysis in a loop with normal aortic blood pressure was significantly higher than that in a loop with lowered aortic pressure, thereby illustrating the importance of maintaining loop pressures as close as possible to those found in vivo. This data also imply that blood traveling through the left ventricle in an artificial heart may be subject to higher hemolysis rates than that traversing the right ventricle. Another set of experiments to determine the effects of 4 hemolysis or drag-reducing agents (Pluronic F-68, Dextran-40, Polyox WSR-301, and Praestol 2273TR) on blood trauma due to the EVAD and associated valves was performed. Results indicated that none of the additives significantly reduced hemolysis under the conditions found in the mock loop. Finally, a compilation of data gathered in these experiments showed that the index of hemolysis (IH) is dependent on hematocrit (HCT), which suggests that another parameter, IH/HCT, may be more suited to the quantification of hemolysis.

  18. Solid State Humidity Sensors

    NASA Astrophysics Data System (ADS)

    Chang, Song-Lin

    There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.

  19. Formulation and evaluation of micro hydrogel of Moxifloxacin hydrochloride.

    PubMed

    Nanjwade, Basavaraj K; Deshmukh, Rucha V; Gaikwad, Kishori R; Parikh, Kemy A; Manvi, F V

    2012-06-01

    The field of ocular drug delivery is one of the interesting and challenging endeavors facing the pharmaceutical scientist. Novel approaches for ophthalmic drug delivery need to be established to increase the ocular bioavailability by overcoming the inherent drawbacks of conventional dosage forms. In situ hydrogels are instilled as drops into the eye and undergoes a sol-to-gel transition in the cul-de-sac, improved ocular bioavailability by increasing the duration of contact with corneal tissue, thereby reducing the frequency of administration. The purpose of the present work was to develop an ophthalmic drug delivery system using three different gelling agents with different mechanisms for in situ gelation of Moxifloxacin hydrochloride, a fluoroquinolone antibiotic. polyox (a pH-sensitive gelling agent), sodium alginate (an ion-sensitive gelling agent), and poloxamer (a temperature-sensitive gelling agent) were employed for the formation of in situ hydrogel along with HPMC K4M as viscofying agent, which increases the residence time of the drug in the ocular cavity. The promising formulations MF(4), MF(5), and MF(9) were evaluated for pH, drug content, in vitro gelation, in vitro drug release, in vivo drug release, ocular irritation, and stability. Percent drug content of 98.2, 98.76, and 99.43%; viscosity of 15.724 × 100, 16.108 × 100, and 15.213 × 100 cP at 20 rpm, cumulative percent release of 75.364, 74.081, and 71.752%, and C (max) of 1,164.16, 1,187.09, and 1,220.58 ng/ml was observed for formulation MF(4), MF(5), and MF(9), respectively. The developed formulations were therapeutically efficacious, stable, and non-irritant and provided sustained release of the drug over 8 h.

  20. Comparative Study Between Different Ready-Made Orally Disintegrating Platforms for the Formulation of Sumatriptan Succinate Sublingual Tablets.

    PubMed

    Tayel, Saadya A; El Nabarawi, Mohamed A; Amin, Maha M; AbouGhaly, Mohamed H H

    2017-02-01

    Sumatriptan succinate (SS) is a selective serotonin receptor agonist used for the treatment of migraine attacks, suffering from extensive first-pass metabolism and low oral bioavailability (∼14%). The aim of this work is to compare the performance of different ready-made co-processed platforms (Pharmaburst®, Prosolv ODT®, Starlac®, Pearlitol Flash®, or Ludiflash®) in the formulation of SS sublingual orodispersible tablets (ODTs) using direct compression technique. The prepared SS ODT formulae were evaluated regarding hardness, friability, simulated wetting time, and in vitro disintegration and dissolution tests. Different mucoadhesive polymers-HPMC K4M, Carbopol®, chitosan, or Polyox®-were tested aiming to increase the residence time in the sublingual area. A pharmacokinetic study on healthy human volunteers was performed, using LC/MS/MS assay, to compare the optimum sublingual formula (Ph25/HPMC) with the conventional oral tablet Imitrex®. Results showed that tablets prepared using Pharmaburst® had significantly (p < 0.05) the lowest simulated wetting and in vitro disintegration times of 17.17 and 23.50 s, respectively, with Q 5 min of 83.62%. HPMC showed a significant (p < 0.05) increase in the residence time from 48.44 to 183.76 s. The relative bioavailability was found to be equal to 132.34% relative to the oral tablet Imitrex®. In conclusion, Pharmaburst® was chosen as the optimum ready-made co-processed platform that can be successfully used in the preparation of SS sublingual tablets for the rapid relief of migraine attacks.