Sample records for polyphase thrust tectonic

  1. Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tablas Islands, Philippines

    NASA Astrophysics Data System (ADS)

    Marchadier, Yves; Rangin, Claude

    1990-11-01

    The southern termination of the Manila trench within the South China Sea continental margin in Mindoro is marked by a complex polyphase tectonic fabric in the arc-trench gap area. Onshore Southern Mindoro the active deformation front of the Manila trench is marked by parallel folds and thrusts, grading southward to N50° W-trending left-lateral strike-slip faults. This transpressive tectonic regime, active at least since the Late Pliocene, has overprinted the collision of an Early Miocene volcanic arc with the South China Sea continental margin (San Jose platform). The collision is postdated by deposition of the Late Miocene-Early Pliocene elastics of the East Mindoro basin. The tectonic and geological framework of this arc, which overlies a metamorphic basement and Eocene elastics, suggests that it was built on a drifted block of the South China Sea continental margin.

  2. Polyphase thrust tectonic in the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Paris, I. A.

    1986-01-01

    In the circa 3.5 by-old Barberton greenstone belt, the supracrustal rocks form a thick and strongly deformed thrust complex. Structural studies in the southern part of the belt have shown that 2 separate phases of over-thrusting (D sub 1 and D sub 2) successively dismembered the original stratigraphy. Thrust nappes were subsequently refolded during later deformations (D sub 3 and D sub 4). This report deals with the second thrusting event which, in the study region appears to be dominant, and (unlike the earlier thrusting), affects the entire supracrustal pile. The supracrustal rocks form a predominantly NE/SW oriented, SE dipping tectonic fan (the D sub 2 fan) in which tectonic slices of ophiolitic-like rocks are interleaved with younger sedimentary sequences of the Diepgezet and malalotcha groups. Structural and sedimentological data indicate that the D sub 2 tectonic fan was formed during a prolonged, multi-stage regional horizontal shortening event during which several types of internal deformation mechanisms were successively and/or simultaneously active. Movement appears to have been predominantly to the NW and to the N. During D sub 2, periods of quiescence and sedimentation followed periods of thrust propagation. Although the exact kinematics which led to the formation of this fan is not yet known, paleoenvironmental interpretations together with structural data suggest that D sub 2 was probably related to (an) Archean collision(s).

  3. Polyphase tertiary fold-and-thrust tectonics in the Belluno Dolomites: new mapping, kinematic analysis, and 3D modelling

    NASA Astrophysics Data System (ADS)

    Chistolini, Filippo; Bistacchi, Andrea; Massironi, Matteo; Consonni, Davide; Cortinovis, Silvia

    2014-05-01

    The Belluno Dolomites are comprised in the eastern sector of the Southern Alps, which corresponds to the fold-and-thrust belt at the retro-wedge of the Alpine collisional orogen. They are characterized by a complex and polyphase fold-and-thrust tectonics, highlighted by multiple thrust sheets and thrust-related folding. We have studied this tectonics in the Vajont area where a sequence of Jurassic, Cretaceous and Tertiary units have been involved in multiple deformations. The onset of contractional tectonics in this part of the Alps is constrained to be Tertiary (likely Post-Eocene) by structural relationships with the Erto Flysch, whilst in the Mesozoic tectonics was extensional. We have recognized two contractional deformation phases (D1 and D2 in the following), of which only the second was mentioned in previous studies of the area and attributed to the Miocene Neoalpine event. D1 and D2 are characterized by roughly top-to-WSW (possibly Dinaric) and top-to-S (Alpine) transport directions respectively, implying a 90° rotation of the regional-scale shortening axis, and resulting in complex thrust and fold interference and reactivation patterns. Geological mapping and detailed outcrop-scale kinematic analysis allowed us to characterize the kinematics and chronology of deformations. Particularly, relative chronology was unravelled thanks to (1) diagnostic fold interference patterns and (2) crosscutting relationships between thrust faults and thrust-related folds. A km-scale D1 syncline, filled with the Eocene Erto Flysch and "decapitated" by a D2 thrust fault, provides the best map-scale example of crosscutting relationships allowing to reconstruct the faulting history. Due to the strong competence contrast between Jurassic carbonates and Tertiary flysch, in this syncline spectacular duplexes were also developed during D2. In order to quantitatively characterize the complex interference pattern resulting from two orthogonal thrusting and folding events, we performed a dip-domain analysis that allowed to categorize the different fold limbs and reduce the uncertainty in the reconstruction of the fault network topology in map view. This enabled us to reconstruct a high-quality, low-uncertainty 3D structural and geological model, which unambiguously proves that deformations with a top-to-WSW Dinaric transport direction propagate farther to the west than previously supposed in this part of the Southern Alps. Our new structural reconstruction of the Vajont valley have also clarified the structural control on the 1963 catastrophic landslide (which caused over 2000 losses). Besides being a challenging natural laboratory for testing analysis and modelling methodologies to be used when reconstructing in 3D this kind of complex interference structures, the Vajont area also provides useful clues on the still-enigmatic structures in the frontal part of the Friuli-Venetian Southern Alps, buried in the Venetian Plain foredeep. These include active seismogenic thrust-faults and, at the same time, represent a growing interest for the oil industry.

  4. Formation of an active thrust triangle zone associated with structural inversion in a subduction setting, eastern New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.; Nicol, Andrew

    2004-02-01

    We analyze a thrust triangle zone, which underlies the continental shelf of Hawke Bay, eastern New Zealand, within the Hikurangi subduction margin. This triangle zone differs from many other examples in that it is active, 90 km from the leading edge of the overriding plate, and formed due to polyphase deformation involving opposed dipping thrust duplex and backthrust, with the later structure forming in response to inversion of an extensional graben. The component structures of the zone mainly developed sequentially rather than synchronously. High-quality marine seismic reflection lines, tied to well and seabed samples, reveal the three-dimensional structure of the zone, together with its 25 Myr evolution and late Quaternary activity. The triangle zone occurs in the lateral overlap between a stack of NW dipping blind thrusts, and a principal backthrust, the Kidnappers fault. The NW dipping thrusts initiated in the early-middle Miocene during the early stages of subduction, with subsequent thrust duplex formation producing major uplift and erosion in the late Miocene-early Pliocene. The active backthrust formed during the late Miocene to early Pliocene as a thin-skinned listric extensional fault confined to the cover sequence. Structural inversion of the extensional fault commenced in the early-middle Pliocene, produced the backthrust and marks the formation of the thrust triangle zone. The thrust duplex and backthrust accrued strain following inversion; however, the later structure accommodated most of the surface deformation in the Quaternary. Section balancing of the triangle zone together with a detailed analysis of reverse displacements along the backthrust reveal spatial and temporal variations of strain accumulation on the two principal components of the zone. Although the formation of the triangle zone is strongly influenced by regional tectonics of the subduction system, these variations may also, in part, reflect local fault interaction. For example, high Quaternary displacement rates on the backthrust accounts for ˜70% of the displacement loss that occurs on the southern segments of the overlapping, Lachlan fault. Understanding the tectonic evolution of such complex, polyphase thrust triangle zones requires the preservation of growth strata that record sequential deformation history. In the absence of such data, synchroneity of opposed dipping thrusts in triangle zones cannot be assumed.

  5. Structural analysis and tectonic evolution of the eastern Binalud Mountains, NE Iran

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M. R.; Kouhpeyma, M.

    2012-10-01

    The Binalud Mountains are situated in the south of the Kopeh Dagh as a transitional zone between the Alborz and Central Iran zones. The Palaeotethys suture of the north Iran is located in this area. The Binalud Mountains consists of relatively thick successions of sedimentary, metamorphic and igneous rocks. The earliest deformation, a polyphase synmetamorphic deformation which occurred entirely in ductile conditions, is distinguished in the metamorphic rocks of the eastern part. D1, D2 and D3 deformation phases are related to this deformation. The D4 deformation affected the area after a period of sedimentation and erosion. The thrust faults of the central and southern part of the eastern Binalud were classified as structures related to the D5 tectonic event. From the geodynamic point of view, in Late Palaeozoic times the studied area formed an oceanic trench generated by the subduction of the Palaeotethys oceanic lithosphere beneath the Turan Plate. In the Late Triassic, the Early Cimmerian Event resulted in a collisional type orogeny generating a transpression polyphase deformation and the metamorphism of Permian and older sediments. Following this collision, granite intrusions were emplaced in the area and caused contact metamorphism. The exhumation and erosion of the rocks deformed and metamorphosed during Early Cimmerian Event caused the formation of molassic type sediments in a Rhaetian-Lias back arc basin. The continuation of convergence between the Turan and Iran Plates caused the metamorphism of these sediments and their transformation to phyllite and meta-sandstone. During Late Mesozoic and Early Cenozoic times, the convergence between Central Iran and Turan Plates continued and a NE compression caused folding of the Cretaceous and older rocks in the Kopeh Dagh area. In the Binalud area this deformation caused the generation of several thrust fault systems with S to SW vergence, resulting in a thrusting of Palaeozoic and Mesozoic successions on each other and on the Neogene sediments at the southern border of the Binalud Mountains.

  6. Polyphase deformation history and strain analyses of the post-amalgamation depositional basins in the Arabian-Nubian Shield: Evidence from Fatima, Ablah and Hammamat Basins

    NASA Astrophysics Data System (ADS)

    Hamimi, Zakaria; El-Fakharani, Abdelhamid; Abdeen, Mamdouh M.

    2014-11-01

    Post-amalgamation depositional basins <650 Ma (PADBs), dominated by volcano-sedimentary assemblages, unconformably overlying Neoproterozoic juvenile (mantle-derived) arcs, represent one of the main collage in the Arabian-Nubian Shield (ANS). In this work, three distinguished PADBs; namely Fatima, Ablah and Hammamat PADBs, are the subject matter of detailed field investigations and quantitative strain analysis in an attempt to highlight the polyphase deformation history of these PADBs and to discern whether the ANS's PADBs were deformed at the same time or not. The Fatima PADB is studied in its type locality along the northwestern flank of Wadi Fatima; between Jabal Abu Ghurrah and Jabal Daf, in Jeddah tectonic terrane. The Ablah PADB is examined around Wadi Yiba, further south of its type locality near Jabal Ablah in Al-Aqiq Quadrangle, in Asir tectonic terrane. The Hammamat PADB is investigated in Wadi Umm Gheig, Wadi Allaqi and Wadi Hodein in the Egyptian Eastern Desert tectonic terrane. It is supposed that the Fatima is a basin controlled by dextral transcurrent shearing occurred along the NE-oriented Wadi Fatima Shear Zone and the Ablah is a strike-slip pull-apart basin, and both basins were believed to be deposited during and soon after the Nabitah Orogeny (680-640 Ma) that marked suturing of the Afif terrane with the oceanic ANS terranes to the west. They were affected by at least three Neoproterozoic deformation phases and show geometric and kinematic relationships between folding and thrusting. The Hammamat PADB is a fault-bounded basin affected by a NW-SE- to NNW-SSE-oriented shortening phase just after the deposition of the molasse sediments, proved by NW- to NNW-verging folds and SE- to SSE-dipping thrusts that were refolded and thrusted in the same direction. The shortening phase in the Hammamat was followed by a transpressional wrenching phase related to the Najd Shear System, which resulted in the formation of NW-SE sinistral-slip faults associated with positive flower structures that comprise NE-verging folds and SW-dipping thrusts. Strain results in the three studied PADBs are nearly consistent, indicating that they are correlated and underwent the same history of deformation. The ANOVA test indicates that there is no significant difference for the Vector mean and ISYM for the three PADBs. There is only a significant difference for the Harmonic mean (P-value < 0.05). A Post Hoc test (Shefee) shows that the difference exists between the Allaqi and the Umm Gheig's deformed polymictic conglomeratic pebbles of the Hammamat PADB.

  7. Transposition of foliations and superposition of lineations during polyphase deformation in the Nevado-Filabride complex: tectonic implications

    NASA Astrophysics Data System (ADS)

    Ruiz-Fuentes, Alejandro; Aerden, Domingo G. A. M.

    2018-01-01

    Detailed structural analysis in a ca. 80 km2 area of the western Nevado-Filabride complex (Betic Cordillera) reveals a heterogeneous internal structure characterized by multiple cross-cutting foliations and lineations that locally transpose earlier ones. The large-scale geometry of these fabrics conflicts with continuous westward to south-westward tectonic transport related to thrusting or crustal extension, and mismatches a previously inferred extensional detachment in the area. Multiple crenulation lineations can be distinguished in the field and correlated with five foliation intersection axes (FIA1-5) preserved in garnet and plagioclase porphyroblasts of the western Sierra Nevada. These indicate crustal shortening in different directions associated with vertical foliation development and intermitted stages of gravitational collapse producing horizontal foliations. The large spread of lineation- and fold-axes trends in the Nevado-Filabride complex results from the mixed presence of multiple generations of these structures whose distinction is critical for tectonic models. The five principal FIA trends remarkably match successive vectors of relative Africa-Iberia plate motion since the Eocene, suggesting that deformation of the Nevado-Filabride took place during this period, although peak metamorphism in at least some of its parts was reached as late as the Middle Miocene.

  8. From thrusting to transpressional tectonics in the Aghdarband Basin (NE Iran): evidence for Cimmerian oblique convergence

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Balini, Marco; Ghassemi, Mohammad Reza; Zanchetta, Stefano

    2010-05-01

    The Aghdarband Basin, consisting of a strongly deformed arc-related Triassic marine succession, is a key-area for the study of the Cimmerian events, as it is unconformably covered by mid-Jurassic gently folded sediments entirely sealing the Cimmerian compressive structures. The basin developed during part of the Triassic in a highly mobile tectonic context suggested by abrupt facies variations and local unconformities. In addition, syn-sedimentary tectonic activity is testified by the occurrence of carbonate olistholiths in the deepest parts of the basin. The marine succession, spanning from Olenekian to lowermost Carnian, shows at the base continental conglomerates andsandstones, as well as basaltic lava flows, possibly of Early Triassic age. They are followed by the shallow water Sefid Kuh Limestone, in which an intraformational unconformity has been now identified. This unit is locally covered by deep-water limestones of the Nazarkardeh Fm. which interfinger with slope facies of the Sefid Kuh Limestone. The volcaniclastic sandstone layers of the Sina Fm follow up-section with a deep unconformity, marked in several places by deep erosion and tilting of the underlying units. The Sina Fm. is in turn unconformably covered by the coal bearing shales of the Miankhui Fm., with a Norian-Rhaetian age testified by plant megafossils, marking the end of marine sedimentation and of volcanic-arc activity. The Triassic units are overthrusted to the south by Upper Palaeozoic siliciclastic successions showing in some cases a LG metamorphic imprint. They largely include the Qara Geithan Fm. consisting of granitic rocks, acidic to basic volcanics, and locally also large blocks of Permian bioclastic limestones derived from the erosion of the Palaeotethys accretionary wedge, exposed south of Aghdarband. The whole succession of the Aghdarband Basin, including the unconformable Miankhui Fm., is deeply involved in a north-verging thrust stack which interacts in the northern part of the area with an important strike-slip shear zone. Several tectonic units have been recognized within the Triassic succession, causing repetitions of the whole stratigraphic succession. Two main thrust sheets are exposed in the southern part of the basin under the Upper Palaeozoic thrust stack. Thrust faults and folds consistently show a N-directed tectonic transport, suggested by dip-slip motion along S-dipping reverse faults and axial plane geometry. Deformation occurred at shallow levels taking to the formation of cataclastic shear zones and to disjunctive and pencil cleavage in the shale layers of the succession. The thrust sheets comprise the Miankhui Fm. which shows a thick basal coal layer (up to 10 m) deeply excavated at the Aghdarband Mine. Nice examples of coal-related tectonics are exposed in open pits and tunnels of the mine. Intensive deformation of the coal, forming complex shear zones with s-c bands, causes the décollement of the Miankhui beds which show intensive tectonic thickening and repetitions mainly caused by polyphase thrust imbrications and disharmonic folding. The northernmost part of the Triassic basin shows a very complex setting, with traspressional structures given by vertical strike-slip faults and closed to tight folds with steeply plunging axes. According to our new data, up to four tectonic slices can be distinguished in this complex area. This structural zone is directly bounded to the north by severely deformed LG metamorphic rocks resulting from a volcaniclastic succession with Devonian and Carboniferous marble layers. Systematic asymmetry of major and parasitic folds, as well as rotation and torsion of axial surfaces indicate a general left-lateral transpressional regime, whereas kinematic indicators along the main fault planes show both left- and right-lateral motions. According to our relative chronology, dextral movements follow in time the sinistral ones reactivating previous Cimmerian structures and displacing also the surrounding Jurassic to Neogene succession of Kopeh Dagh in relatively recent times. Fold analyses along the area of interaction between thrust structure and the transpressional zone suggest an intricate interference pattern between thrust-related folds and strike-slip brittle shear zones, suggesting that the latter caused a strong reorientation of previously formed folds. The extension of the traspressional zone, which can be followed for some 20 km across the study area, indicates that important left-lateral movements, roughly parallel to the orientation of the convergence zone, were active during the last stages of the Late Triassic Cimmerian event, in contrast to what indicated by previous authors in the Mashhad area.

  9. Structural evidence for northeastward movement on the Chocolate Mountains Thrust, southeasternmost California

    USGS Publications Warehouse

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-01-01

    The Late Cretaceous Chocolate Mountains Thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the Orocopia Schist. The Chocolate Mountains Thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal fault. An important parameter required to understand the tectonic significance of the Chocolate Mountains and related thrusts is their sense of movement. The only sense of movement consistent with collective asymmetry of the thrust zone folds is top to the northeast. Asymmetric microstructures studied at several localities also indicate top to the northeast movement. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. Movement of the upper plate of the chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. -from Authors

  10. A Review of Tectonic Models and Analytical Data from Almora-Dadeldhura Klippe, Northwest India and Far Western Nepal.

    NASA Astrophysics Data System (ADS)

    Bosu, S.; Robinson, D.; Saha, A.

    2017-12-01

    Tectonic models developed from the Himalayan thrust belt constitute three models- critical taper, channel flow and wedge extrusion. Their differences are manifested in predicted minimum shortening, deformation propagation style and tectonic architecture across the thrust belt. Recent studies from isolated synformal klippen composed of Greater and Tethyan Himalayan rock within the Himalayan thrust belt disagree over the tectonic history, especially in the Almora-Dadeldhura klippe, which is the largest klippe in the thrust belt. These recent studies are limited to one transect each, and two or fewer types of analytical data to justify their models. Due to the limited spatial coverage, these studies often reflect a narrow perspective in their tectonic models; thus, combining the data from these studies provides a holistic view of the regional tectonic history. This study compiled the available data across the 350 km wide Almora-Dadeldhura klippe, using petrology, stratigraphy, metamorphic history, microstructure, U-Pb ages of intrusive granite, monazite and muscovite ages of the shear zones, and exhumation ages from apatite fission track, along with original field observations, microstructure and microtexture data from 5 different transects in northwest India and far western Nepal. The review of the compiled data suggests that the Himalayan thrust belt in northwest India and far western Nepal is a forward propagating thrust system, and that the analytical data support the critical taper model.

  11. Orogenic front propagation in the basement involved Malargüe fold and thrust belt, Neuquén Basin, (Argentina)

    NASA Astrophysics Data System (ADS)

    Branellec, Matthieu; Nivière, Bertrand; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2015-04-01

    The Malargüe fold and thrust belt (MFTB) and the San Rafael Block (SRB) are located in the northern termination of the Neuquén basin in Argentina. This basin is a wide inverted intracratonic sag basin with polyphased evolution controlled at large scale by the dynamic of the Pacific subduction. By late Triassic times, narrow rift basins developed and evolved toward a sag basin from middle Jurassic to late Cretaceous. From that time on, compression at the trench resulted in various shortening pulses in the back-arc area. Here we aim to analyze the Andean system at 35°S by comparing the Miocene structuration in the MFTB and the current deformation along the oriental border or the San Rafael Block. The main structuration stage in the MFTB occurred by Miocene times (15 to 10 Ma) producing the principal uplift of the Andean Cordillera. As shown by new structural cross sections, Triassic-early Jurassic rift border faults localized the Miocene compressive tectonics. Deformation is compartmentalized and does not exhibit a classical propagation of homogeneous deformation sequence expected from the critical taper theory. Several intramontane basins in the hangingwall of the main thrusts progressively disconnected from the foreland. In addition, active tectonics has been described in the front of the MFTB attesting for the on-going compression in this area. 100 km farther to the east, The San Rafael Block, is separated from the MFTB by the Rio Grande basin. The SRB is mostly composed of Paleozoic terranes and Triassic rift-related rocks, overlain by late Miocene synorogenic deposits. The SRB is currently uplifted along its oriental border along several active faults. These faults have clear morphologic signatures in Quaternary alluvial terraces and folded Pleistocene lavas. As in the MFTB, the active deformation localization remains localized by structural inheritance. The Andean system is thus evolving as an atypical orogenic wedge partly by frontal accretion at the front of the belt and by migration and localization of strain far from the front leading to crustal block reactivation.

  12. The Eocene-Miocene tectonic evolution of the Rif chain (Morocco): new data from the Jebha area

    NASA Astrophysics Data System (ADS)

    D'Assisi Tramparulo, Francesco; Ciarcia, Sabatino; El Ouaragli, Bilal; Vitale, Stefano; Najib Zaghloul, Mohamed

    2016-04-01

    Keywords: structural analysis, tectonics, shear bands, Miocene, Jebha Fault The Jebha area, located in the Central Rif, is a key sector to understand the orogenic evolution of the Rif chain. Here, the left lateral Jebha-Chrafate transfer fault, allowed, in the Miocene time, the westward migration of the internal thrust front. The structural analysis of the area revealed a complex tectonic history. The Eocene orogenic pulse produced the tectonic stacking of the Ghomaride thrust sheets. During the late Aquitanian and Langhian, under a dominant ENE-WSW shortening, imbrication of several Internal Dorsale Calcaire slices occurred. The following orogenic stage, characterized by a main SE tectonic transport, allowed the External Dorsale Calcaire to overthrust the Maghrebian Flysch Basin Units by means of a dominant thin-skinned tectonics. Synchronously with the buttressing following the collision of the allochthonous wedge against the External Rif domain, an out-of-sequence thrusting stage involved the Ghomaride and Dorsale Calcaire Units and a general back-thrusting deformed the entire tectonic pile. A renewal of the NE-SW shortening produced strike-slip faults and SW-verging folds and finally a radial extension affected the whole chain.

  13. Palaeomagnetic evidence for post-thrusting tectonic rotation in the Southeast Pyrenees, Spain

    NASA Astrophysics Data System (ADS)

    Keller, P.; Lowrie, W.; Gehring, A. U.

    1994-12-01

    The structural framework of the Southeast Pyrenees led to two conflicting interpretations—thrust tectonics vs. wrench tectonics—to explain the geometry of this mountain range. In the present study palaeomagnetic data are presented in an attempt to resolve this conflict. The data reveal different magnetisation directions that indicate tectonic rotations about vertical axes. By means of a regionally homogeneous pattern of rotation, three tectonic units could be distinguished in the Southeast Pyrenees. The Internal Unit in the north reveals no rotation since the Permian. The External Unit to the south shows anticlockwise rotation of 25°, younger than the Early Oligocene. The Pedraforca Unit, placed on the External Unit, shows 57° clockwise rotation which can be assigned to the Neogene. The anticlockwise rotation of the External Unit can be explained by differential compression during the last phase of Pyrenean thrusting, whereas the clockwise rotation of the Pedraforca Unit can be interpreted by post-thrusting tectonics. The rotation pattern of the Southeast Pyrenees provides evidence for both Cretaceous to Paleogene N-S compression and Neogene right-lateral wrench tectonics.

  14. Geological evolution of the Pietersburg greenstonebelt, South Africa and associated gold mineralization

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Dewit, M. J.

    1986-01-01

    The polyphase history of gold mineralization seen in the Pietersburg greenstone belt is integrated with the geochemical and tectonic evolution of greenstone belts as a whole. The four distinct regional geological settings of gold mineralization are described.

  15. Kinematic evolution of Internal Getic nappes (Serbian Carpathians, eastern Serbia)

    NASA Astrophysics Data System (ADS)

    Krstekanic, Nemanja; Stojadinovic, Uros; Toljic, Marinko; Matenco, Liviu

    2017-04-01

    The tectonic evolution of the Carpatho - Balkanides Mountains is less understood in the critical segment of the Serbian Carpathians due to lack of available kinematic data. We have performed a field kinematic analysis combined with existing information from previous local and regional studies by focusing on the internal part of this orogenic segment, where the three highest most units of the nappe stack are exposed and separated by large offsets thrusts, i.e. the Supragetic, Upper Getic and Lower Getic. These units expose their metamorphic basement and Permo-Mesozoic cover penetrated by syn- and post-kinematic plutons and overlain or otherwise in structural contact with the Neogene fill of intramontane basins and the one of the Morava river corridor located in the prolongation of the much larger Pannonian basin. The kinematic analysis demonstrates seven superposed tectonic events of variable magnitudes and effects. Available superposition criteria and the correlation with the regional evolution demonstrate that four events are major tectonic episodes, while three others have a more limited influence or are local effects of strain partitioning and rotations. The first deformation event observed is the late Early Cretaceous cataclastic to brittle thrusting and shearing associated with the emplacement of the Supragetic nappe over the Getic unit. The observed paleostress NW-SE to SW-NE compressional directions were affected by the subsequent Cenozoic oroclinal bending of the Carpathians nappe stack. The first event was followed by Late Cretaceous E-W compression associated with significant strike-slip and transpression, the paleostress orientation being affected by the same subsequent rotations. The Paleogene - Early Miocene activation of the Cerna - Jiu and Timok faults system that cumulates an observed offset of 100 km is associated with large strikes-slip deformation with presently observed NNE-SSW oriented compressional directions in the study area. The formation of the Pannonian Basin and its prolongation in the Morava river corridor was associated at first with Early-Middle Miocene orogen-perpendicular extension, which was followed by orogen-parallel extension and strike-slip that started in the late Middle Miocene and lasted possibly until Pliocene times. This was followed by the Pliocene-Quaternary reactivation and thrusting of the Upper Getic thrust and strike slip with NNE-SSW to NNW-SSE oriented compression. All these deformations demonstrate a complex poly-phase history characterized at first by Cretaceous nappe stacking and transpressional deformations. This nappe stacking was followed by Cenozoic oroclinal bending associated with large-offset strike slip faults during the translation and rotation associated with the gradual closure of the Carpathians embayment, which interacted in the Serbian Carpathians with the back-arc extension of the Pannonian basin. This was followed by the regional inversion of the larger Pannonian Basin often reactivating inherited major structures or nappe contacts. This complex interplay was associated with significant strain partitioning that resulted in local rotations and changes of the paleostress directions.

  16. Did the Kyrenia Range of northern Cyprus rotate with the Troodos-Hatay microplate during the tectonic evolution of the eastern Mediterranean?

    NASA Astrophysics Data System (ADS)

    Morris, Antony; Robertson, Alastair H. F.; Anderson, Mark W.; Hodgson, Emma

    2016-01-01

    Previous palaeomagnetic studies have allowed the recognition of a distinctive area of Neotethyan oceanic rocks, including the Troodos ophiolite in Cyprus and the Hatay ophiolite to the east in southern Turkey, that underwent 90° of anticlockwise rotation between Late Cretaceous (Campanian) and Early Eocene time. The southern and western boundaries of this rotated Troodos-Hatay microplate have been inferred to lie within, or adjacent to, zones of deformed oceanic and continental margin rocks that are now exposed in southern and western Cyprus; however, the northern boundary of the microplate remains undefined. Relevant to this problem, palaeomagnetic data are presented here from basaltic lavas exposed along the Kyrenia Range, mostly from Late Cretaceous (Maastrichtian) sites and one Eocene site. A positive inclination-only fold test demonstrates that remanences are pre-deformational in age, and positive conglomerate tests show that magnetic remanences were acquired before Late Eocene-Early Oligocene time, together suggesting that primary magnetizations are preserved. Data from the eastern Kyrenia Range and the Karpas Peninsula (the easternmost extension of the Kyrenia Range) document significant relative tectonic rotation between these localities, with no rotation in the eastern range versus 30° of anticlockwise rotation of the Karpas Peninsula. Unfortunately, palaeomagnetic sites from the western Kyrenia Range did not yield tectonically interpretable magnetization directions, probably due to complex poly-phase thrusting and folding, and the central range also yielded no interpretable data. However, the available palaeomagnetic data are sufficient to demonstrate that the Kyrenia terrane underwent a separate rotation history to the Troodos-Hatay microplate and also implies that the northern boundary of the Troodos-Hatay microplate was located between the Troodos ophiolite and the Kyrenia Range. The former microplate margin has since been overridden and concealed by two phases of southwards thrusting and folding of the Kyrenia Range units (Mid-Eocene; latest Miocene-earliest Pliocene). The likely cause of the anticlockwise rotation affecting the Karpas Peninsula, and by implication the curvature of the Kyrenia Range as a whole, relates to regional late-stage subduction and diachronous continental collision. The Southern Neotethys sutured in SE Turkey during the Early Miocene, whereas a relict ocean basin remained further west in the easternmost Mediterranean, allowing a remnant N-dipping subduction zone to retreat southwards and so induce the present-day arcuate shape of the Kyrenia Range.

  17. 3D Rheological Modeling of NW Intraplate Europe, Deciphering Spatial Integrated strength patterns, Mechanical Strong Layering and EET

    NASA Astrophysics Data System (ADS)

    Beekman, F.; Hardebol, N.; Cloetingh, S.; Tesauro, M.

    2006-12-01

    Better understanding of 3D rheological heterogeneity of the European Lithosphere provide the key to tie the recorded intraplate deformation pattern to stress fields transmitted into plate interior from plate boundary forces. The first order strain patterns result from stresses transmitted through the European lithosphere that is marked by a patchwork of high strength variability from inherited structural and compositional heterogeneities and upper mantle thermal perturbations. As the lithospheric rheology depends primarily on its spatial structure, composition and thermal estate, the 3D strength model for the European lithosphere relies on a 3D compositional model that yields the compositional heterogeneities and an iteratively calculated thermal cube using Fouriers law for heat conduction. The accurate appraisal of spatial strength variability results from proper mapping and integration of the geophysical compositional and thermal input parameters. Therefore, much attention has been paid to a proper description of first order structural and tectonic features that facilitate compilation of the compositional and thermal input models. As such, the 3D strength model reflects the thermo-mechanical structure inherited from the Europeans polyphase deformation history. Major 3D spatial mechanical strength variability has been revealed. The East-European and Fennoscandian Craton to the NE exhibit high strength (30-50 1012 N/m) from low mantle temperatures and surface heatflow of 35-60 mW/m2 while central and western Europe reflect a polyphase Phanerozoic thermo- tectonic history. Here, regions with high rigidity are formed primarily by patches of thermally stabilized Variscan Massifs (e.g. Rhenish, Armorican, Bohemian, and Iberian Massif) with low heatflow and lithospheric thickness values (50-65 mW/m2; 110-150 km) yielding strengths of ~15-25 1012 N/m. In contrast, major axis of weakened lithosphere coincides with Cenozoic Rift System (e.g. Upper and Lower Rhine Grabens, Pannonian Basin and Massif Central) attributed to the presence of tomographically imaged plumes. This study has elucidated the memory of the present-days Europeans lithosphere induced by compositional and thermal heterogeneities. The resulting lateral strength variations has a clear signature of the pst lithospheres polyphase deformation and also entails active tectonics, tectonically induced topography and surface processes.

  18. Structural evidence for northeastward movement on the Chocolate Mountains thrust, southeasternmost Calfornia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-11-10

    The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sensemore » of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.« less

  19. Constraints on the tectonics of the Mule Mountains Thrust System, southeast California and southwest Arizona

    NASA Astrophysics Data System (ADS)

    Tosdal, Richard M.

    1990-11-01

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015° to 035°) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79±2 Ma and 70±4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.

  20. The polyphased tectonic evolution of the Anegada Passage in the northern Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Marcaillou, B.; Graindorge, D.; Klingelhoefer, F.; Lallemand, S.; Laigle, M.; Lebrun, J.-F.

    2017-05-01

    The influence of the highly oblique plate convergence at the northern Lesser Antilles onto the margin strain partitioning and deformation pattern, although frequently invoked, has never been clearly imaged. The Anegada Passage is a set of basins and deep valleys, regularly related to the southern boundary of the Puerto Rico-Virgin Islands (PRVI) microplate. Despite the publications of various tectonic models mostly based on bathymetric data, the tectonic origin and deformation of this Passage remains unconstrained in the absence of deep structure imaging. During cruises Antithesis 1 and 3 (2013-2016), we recorded the first deep multichannel seismic images and new multibeam data in the northern Lesser Antilles margin segment in order to shed a new light on the structure and tectonic pattern of the Anegada Passage. We image the northeastern extent of the Anegada Passage, from the Sombrero Basin to the Lesser Antilles margin front. Our results reveal that this northeastern segment is an EW trending left-stepping en échelon strike-slip system that consists of the Sombrero and Malliwana pull-apart basins, the Malliwana and Anguilla left-lateral faults, and the NE-SW compressional restraining bend at the Malliwana Hill. Reviewing the structure of the Anegada Passage, from the south of Puerto Rico to the Lesser Antilles margin front, reveals a polyphased tectonic history. The Anegada Passage is formed by a NW-SE extension, possibly related to the rotation or escape of PRVI block due to collision of the Bahamas Bank. Currently, it is deformed by an active WNW-ESE strike-slip deformation associated to the shear component of the strain partitioning resulting from the subduction obliquity.

  1. Phanerozoic geological evolution of Northern and Central Africa: An overview

    NASA Astrophysics Data System (ADS)

    Guiraud, R.; Bosworth, W.; Thierry, J.; Delplanque, A.

    2005-10-01

    The principal paleogeographic characteristics of North and Central Africa during the Paleozoic were the permanency of large exposed lands over central Africa, surrounded by northerly and northwesterly dipping pediplanes episodically flooded by epicontinental seas related to the Paleotethys Ocean. The intra-continental Congo-Zaire Basin was also a long-lived feature, as well as the Somali Basin from Late Carboniferous times, in conjunction with the development of the Karoo basins of southern Africa. This configuration, in combination with eustatic sea-level fluctuations, had a strong influence on facies distributions. Significant transgressions occurred during the Early Cambrian, Tremadocian, Llandovery, Middle to Late Devonian, Early Carboniferous, and Moscovian. The Paleozoic tectonic history shows an alternation of long periods of predominantly gentle basin subsidence and short periods of gentle folding and occasionally basin inversion. Some local rift basins developed episodically, located mainly along the northern African-Arabian plate margin and near the West African Craton/Pan-African Belt suture. Several arches or spurs, mainly N-S to NE-SW trending and inherited from late Pan-African fault swarms, played an important role. The Nubia Province was the site of numerous alkaline anorogenic intrusions, starting in Ordovician times, and subsequently formed a large swell. Paleozoic compressional events occurred in the latest Early Cambrian ("Iskelian"), Medial Ordovician to earliest Silurian ("pre-Caradoc" and "Taconian"), the end Silurian ("Early Acadian" or "Ardennian"), mid-Devonian ("Mid-Acadian"), the end Devonian ("Late Acadian" or "Bretonnian"), the earliest Serpukhovian ("Sudetic"), and the latest Carboniferous-earliest Permian ("Alleghanian" or "Asturian"). The strongest deformations, including folding, thrusting, and active strike-slip faulting, were registered in Northwestern Africa during the last stage of the Pan-African Belt development around the West African Craton (end Early Cambrian) and during the polyphased Hercynian-Variscan Orogeny that extended the final closure of the Paleotethys Ocean and resulted in the formation of the Maghrebian and Mauritanides belts. Only gentle deformation affected central and northeastern African during the Paleozoic, the latter remaining a passive margin of the Paleotethys Ocean up to the Early Permian when the development of the Neotethys initiated along the Eastern Mediterranean Basins. The Mesozoic-Cenozoic sedimentary sequence similarly consists of a succession of eustatically and tectonically controlled depositional cycles. Through time, progressive southwards shift of the basin margins occurred, related to the opening of the Neotethys Ocean and to the transgressions resulting from warming of the global climate and associated rise of the global sea level. The Guinean-Nigerian Shield, the Hoggar, Tibesti-Central Cyrenaica, Nubia, western Saudi Arabia, Central African Republic, and other long-lived arches delimited the principal basins. The main tectonic events were the polyphased extension, inversion, and folding of the northern African-Arabian shelf margin resulting in the development of the Alpine Maghrebian and Syrian Arc belts, rifting and drifting along the Central Atlantic, Somali Basins, and Gulf of Aden-Red Sea domains, inversion of the Murzuq-Djado Basin, and rifting and partial inversion along the Central African Rift System. Two major compressional events occurred in the Late Santonian and early Late Eocene. The former entailed folding and strike-slip faulting along the northeastern African-northern Arabian margin (Syrian Arc) and the Central African Fold Belt System (from Benue to Ogaden), and thrusting in Oman. The latter ("Pyrenean-Atlasic") resulted in folding, thrusting, and local metamorphism of the northern African-Arabian plate margin, and rejuvenation of intra-plate fault zones. Minor or more localized compressional deformations took place in the end Cretaceous, the Burdigalian, the Tortonian and Early Quaternary. Recent tectonic activity is mainly concentrated along the Maghrebian Alpine Belt, the offshore Nile Delta, the Red Sea-East African Rifts Province, the Aqaba-Dead Sea-Bekaa sinistral strike-slip fault zone, and some major intra-plate fault zones including the Guinean-Nubian, Aswa, and central Sinai lineaments. Large, long-lived magmatic provinces developed in the Egypt-Sudan confines (Nubia), in the Hoggar-Air massifs, along the Cameroon Line and Nigerian Jos Plateau, and along the Levant margin, resulting in uplifts that influenced the paleogeography. Extensive tholeiitic basaltic magmatism at ˜200 Ma preceded continental break-up in the Central Atlantic domain, while extensive alkaline to transitional basaltic magmatism accompanied the Oligocene to Recent rifting along the Red Sea-Gulf of Aden-East African rift province.

  2. Geomorphic indices indicated differential active tectonics of the Longmen Shan

    NASA Astrophysics Data System (ADS)

    Gao, M.; Xu, X.; Tan, X.

    2012-12-01

    The Longmen Shan thrust belt is located at the eastern margin of the Tibetan Plateau. It is a region of rapid active tectonics with high erosion rates and dense vegetation. The structure of the Longmen Shan region is dominated by northeast-trending thrusts and overturned folds that verge to the east and southeast (Burchfiel et al. 1995, Chen and Wilson 1996). The Longmen Shan thrust belt consists of three major faults from west to east: back-range fault, central fault, and frontal-range fault. The Mw 7.9 Wenchuan earthquake ruptured two large thrust faults along the Longmen Shan thrust belt (Xiwei et al., 2009). In this paper, we focus on investigating the spatial variance of tectonic activeness from the back-range fault to the frontal-range fault, particular emphasis on the differential recent tectonic activeness reflected by the hypsometry and the asymmetric factor of the drainage. Results from asymmetric factor indicate the back-rannge thrust fault on the south of the Maoxian caused drainage basins tilted on the hanging wall. For the north of the Maoxian, the strike-slip fault controlled the shapes of the drainage basins. Constantly river capture caused the expansion of the drainage basins which traversed by the fault. The drainages on the central fault and the frontal-range fault are also controlled by the fault slip. The drainage asymmetric factor suggested the central and southern segments of the Longmen Shan are more active than the northern segment, which is coherence with results of Huiping et al. (2010). The results from hypsometry show the back-range fault is the most active fault among the three major faults. Central fault is less active than the back-range fault but more active than the frontal-range fault. Beichuan is identified as the most active area along the central fault. Our geomorphic indices reflect an overall eastward decreasing of tectonic activeness of the Longmen Shan thrust belt.

  3. Effect of basement structure and salt tectonics on deformation styles along strike: An example from the Kuqa fold-thrust belt, West China

    NASA Astrophysics Data System (ADS)

    Neng, Yuan; Xie, Huiwen; Yin, Hongwei; Li, Yong; Wang, Wei

    2018-04-01

    The Kuqa fold-thrust belt (KFTB) has a complex thrust-system geometry and comprises basement-involved thrusts, décollement thrusts, triangle zones, strike-slip faults, transpressional faults, and pop-up structures. These structures, combined with the effects of Paleogene salt tectonics and Paleozoic basement uplift form a complex structural zone trending E-W. Interpretation and comprehensive analysis of recent high-quality seismic data, field observations, boreholes, and gravity data covering the KFTB has been performed to understand the characteristics and mechanisms of the deformation styles along strike. Regional sections, fold-thrust system maps of the surface and the sub-salt layer, salt and basement structure distribution maps have been created, and a comprehensive analysis of thrust systems performed. The results indicate that the thrust-fold system in Paleogene salt range can be divided into five segments from east to west: the Kela-3, Keshen, Dabei, Bozi, and Awate segments. In the easternmost and westernmost parts of the Paleogene salt range, strike-slip faulting and basement-involved thrusting are the dominant deformation styles, as basement uplift and the limits of the Cenozoic evaporite deposit are the main controls on deformation. Salt-core detachment fold-thrust systems coincide with areas of salt tectonics, and pop-up, imbricate, and duplex structures are associated with the main thrust faults in the sub-salt layer. Distribution maps of thrust systems, basement structures, and salt tectonics show that Paleozoic basement uplift controlled the Paleozoic foreland basin morphology and the distribution of Cenozoic salt in the KFTB, and thus had a strong influence on the segmented structural deformation and evolution of the fold-thrust belt. Three types of transfer zone are identified, based on the characteristics of the salt layer and basement uplift, and the effects of these zones on the fault systems are evaluated. Basement uplift and the boundary of the salt deposit generated strike-slip faults in the sub-salt layer and supra-salt layers at the basin boundary (Model A). When changes in the basement occurred within the salt basin, strike-slip faults controlled the deformation styles in the sub-salt layer and shear-zone dominated in the supra-salt layer (Model B). A homogeneous basement and discontinues salt layer formed different accommodation zones in the sub- and supra-salt layers (Model C). In the sub-salt layer the thrusts form imbricate structures on the basal décollement, whereas the supra-salt layer shows overlapping, discontinuous faults and folds with kinds of salt tectonics, and has greater structural variation than the sub-salt layer.

  4. Alongstrike geometry variations of the Carpathian thrust front east of Tarnów (SE Poland) as intersection phenomenon related to thrust-floor palaeotopography

    NASA Astrophysics Data System (ADS)

    Gluszynski, Andrzej; Aleksandrowski, Pawel

    2017-04-01

    Structural geometry of the Miocene (Badenian-Sarmatian) Carpathian orogenic front between Tarnów and Pilzno was investigated, using borehole and 2D and 3D seismic data. In line with some earlier studies by other authors, but in much more comprehensive way, our study reveals details of the alongstrike changing structural geometry of the Carpathian orogenic front and offers a model of its tectonic evolution. At places the frontal thrust of the Carpathians is blind and accompanied by well developed wedge tectonics phenomena. Elsewhere it is emergent at the surface and shows an apparently simple structure. The base of the fold-thrust zone rests on a substratum with highly variable palaeotopography, which includes a major palaeovalley incised in the Mesozoic basement to a depth exceeding 1 km. The palaeovalley floor was covered with salt-bearing evaporites at the time when the thrusting took place. The wedge tectonics phenomena include backthrusts and a prominent crocodile structure. The tectonic wedge is formed by stacked thrust-slices of the Cretaceous-to-Oligocene flysch of the Skole nappe. This wedge has forced a basal Miocene evaporitic layer (including salt) to split into two horizons (1) the lower one, which acted as a tectonic lubricant along the floor thrust of the forward-moving flysch wedge, and (2) the upper one, along which the Miocene sediments of the Carpathian foredeep were underthrusted by the flysch wedge. This resulting crocodile structure has the flysch wedge in its core, a passive roof of Miocene sediments at the top and tilted Miocene strata at its front, defining a frontal homocline. A minor triangle zone, cored with deformed evaporites, has formed due to backthrust branching at the rear of the frontal monocline. At other places, the Carpathian flysch and its basal thrust, emerge at the surface. The flysch must have once also formed a wedge there, but was mostly removed by erosion following its elevation above the present-day topographic surface on the frontal thrust. The Skole flysch units overlie a relatively thin zone of deformed Miocene evaporitic series that covers autochthonous clastic Miocene sediments of the inner parts of the Carpathian foredeep. The sediments are southerly dipping at a shallow angle below the Outer Carpathian nappe structure. Our study indicates that the lateral variations in the structural geometry at the thrust front of the Carpathian orogen are due to different levels of erosional truncation that were controlled mainly by a predeformational palaeotopography of the base of the Carpathian foredeep. At the same time, the wedge tectonics phenomena owe their formation to the limited lateral extent of the evaporitic layer and its facies changes. At erosionally lowered locations of the foredeep's base, represented by the deep palaeovalley of Pogórska Wola, the Carpathian thrust front is a fully preserved, subsurface structure, concealed below the Miocene molasse of the foredeep. In areas where the pre-thrusting erosion was not so efficient (outside the palaeovalley), the Carpathian orogenic front is emergent at the surface. We infer that the originally existent flysch tectonic wedge, splitting the evaporites at its front, was thrusted to upper levels and then eroded at such locations.

  5. Incorporation of New and Old Tectonics Concepts Into a Modern Course in Tectonics.

    ERIC Educational Resources Information Center

    Hatcher, Robert D., Jr.

    1983-01-01

    Describes a graduate-level tectonics course which includes the historical basis for modern tectonics concepts and an in-depth review of pros/cons of plate tectonics. Tectonic features discussed include: ocean basins; volcanic arcs; continental margins; continents; orogenic belts; foreland fold and thrust belts; volcanic/plutonic belts of orogens;…

  6. Palinspastic reconstruction of the Alpine thrust belt at the Alpine-Carpathian transition - A geological Sudoku

    NASA Astrophysics Data System (ADS)

    Beidinger, A.; Decker, K.; Zamolyi, A.; Hölzel, M.; Hoprich, M.; Strauss, P.

    2009-04-01

    The palinspastic reconstruction of the Austroalpine thrust belt is part of the project Karpatian Tectonics, which is funded by OMV Austria. The objective is to reconstruct the evolution of the thrust belt through the Early to Middle Miocene in order to obtain information on the palaeogeographic position of the Northern Calcareous Alps (NCA) in the region of the present Vienna Basin. A particular goal of the study is to constrain the position of reservoir rocks within the Rhenodanubic Flysch units and the NCA with respect to the autochthonous Malmian source rocks overlying the European basement below the Alpine-Carpathian thrust wedge, and to constrain the burial history of these source rocks. Reconstruction uses regional 2D seismic lines crossing from the European foreland into the fold-thrust belt, 3D seismic data covering the external thrust sheets, and lithostratigraphic data from a total of 51 selected wells, which were drilled and provided by OMV Austria. The main criterion, whether a well was suitable for palinspastic reconstruction or not, was its penetration of Alpine thrust sheets down to the Autochthonous Molasse of the foreland. Additional wells, which do not penetrate the entire Alpine thrust complex but include the Allochthonous Molasse or the external Alpine-Carpathian nappes (Waschberg and Roseldorf thrust unit, Rhenodanubic Flysch nappes) in their well path, were also taken into account. The well data in particular comprise stratigraphic information on the youngest overthrust sediments of the different thrust units and the underlying Autochthonous foreland Molasse. These data allow constraining the timing of thrust events in the allochthonous thrust units and overthrusting of the Autochthonous Molasse. In the particular case of overthrust Autochthonous Molasse, additionally to the timing of overthrusting, which can be derived from the youngest overthrust sediments, the palaeogeographic position of the Alpine Carpathian thrust front could directly be inferred from well data for the specific time period. By further utilization of geological maps, geological cross sections and two regional c. 80 km long composite 2D seismic sections through the external Alpine thrusts, the positions of major thrusts could be approximated for five time slices. This procedure was applied for the front of the allochthonous Molasse units, the floor thrust of the Roseldorf thrust unit, the Waschberg thrust unit and the frontal thrusts of the Rhenodanubic Flysch and the NCA. In addition, several out-of-sequence thrusts within the Waschberg unit, the Molasse unit, the Rhenodanubic Flysch and the Calcareous Alps (floor thrust of the NCA and two internal thrusts) were taken into account. The reconstruction results in 5 palinspastic maps for the time slices early Egerian (25 Ma), early Eggenburgian (20 Ma), Ottnangian (17.5 Ma), Lower Karpatian (16.5 Ma) and the Karpatian/ Badenian stage boundary (16 Ma). Convergence rates, which were calculated for the four intervening time intervals, range from about 3 mm/yr to 5 mm/yr. These values compare well with estimated convergence rates reconstructed for the Miocene in the western Eastern Alps (Schmid et al., 1996), as well as with plate tectonic constraints on Tertiary convergence rates (Dewey et al., 1989). Dewey, J., Helman, M.L., Turco, E., Hutton, D.H.W.&Knott, S.D., 1989. Kinematics of the western Mediterranean, in: N.P. Coward, D. Dietrich & R.G. Park (eds.), Alpine Tectonics, Geol. Soc. Spec. Publ., 45: 265-283. Schmid, S.M., Pfiffner, O.A., Frotzheim, N., Schönborn, G. & Kissling, E., 1996. Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics, 15: 1036-1064.

  7. Mesozoic contractile and extensional structures in the Boyer Gap area, northern Dome Rock Mountains, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, S.S.

    1993-04-01

    Mesozoic polyphase contractile and superposed ductile extensional structures affect Proterozoic augen gneiss, Paleozoic metasedimentary rocks, and Jurassic granitoids in the Boyer Gap area of the northern Dome Rock Mtns, W-central Arizona. The nappe-style contractile structures are preserved in the footwall of the Tyson Thrust shear zone, which is one of the structurally lowest thrust faults in the E-trending Jurassic and Cretaceous Maria fold and thrust belt. Contractile deformation preceded emplacement of Late Cretaceous granite (ca 80 Ma, U-Pb zircon) and some may be older than variably deformed Late Jurassic leucogranite. Specifically, detailed structural mapping reveals the presence of a km-scalemore » antiformal syncline that apparently formed as a result of superposition of tight to isoclinal, south-facing folds on an earlier, north-facing recumbent fold. The stratigraphic sequence of metamorphosed Paleozoic cratonal strata is largely intact in the northern Dome Rock Mtns, such that overturned and upright stratigraphic units can be distinguished. A third phase of folding in the Boyer Gap area is distinguished by intersection lineations that are folded obliquely across the hinges of open to tight, sheath folds. The axial planes of the sheet folds are subparallel to the mylonitic foliation in top-to-the-northeast extensional shear zones. The timing of ductile extensional structures in the northern Dome Rock is constrained by [sup 40]Ar/[sup 39]Ar isochron ages of 56 Ma and 48 Ma on biotite from mylonitic rocks in both the hanging wall and footwall of the Tyson Thrust shear zone. The two early phases of folding are the dominant mechanism by which shortening was accommodated in the Boyer Gap area, as opposed to deformation along discrete thrust faults with large offset. All of the ductile extensional structures are spectacularly displayed at an outcrop scale but are not of sufficient magnitude to obliterate the km-scale Mesozoic polyphase contractile structures.« less

  8. Constraints on the tectonics of the Mule Mountains thrust system, southeast California and southwest Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosdal, R.M.

    1990-11-10

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015{degree} to 035{degree}) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic( ) and Cretaceous sedimentary rocks across the various partsmore » of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79{plus minus}2 Ma and 70{plus minus}4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.« less

  9. The Cenozoic fold-and-thrust belt of Eastern Sardinia: Evidences from the integration of field data with numerically balanced geological cross section

    NASA Astrophysics Data System (ADS)

    Arragoni, S.; Maggi, M.; Cianfarra, P.; Salvini, F.

    2016-06-01

    Newly collected structural data in Eastern Sardinia (Italy) integrated with numerical techniques led to the reconstruction of a 2-D admissible and balanced model revealing the presence of a widespread Cenozoic fold-and-thrust belt. The model was achieved with the FORC software, obtaining a 3-D (2-D + time) numerical reconstruction of the continuous evolution of the structure through time. The Mesozoic carbonate units of Eastern Sardinia and their basement present a fold-and-thrust tectonic setting, with a westward direction of tectonic transport (referred to the present-day coordinates). The tectonic style of the upper levels is thin skinned, with flat sectors prevailing over ramps and younger-on-older thrusts. Three regional tectonic units are present, bounded by two regional thrusts. Strike-slip faults overprint the fold-and-thrust belt and developed during the Sardinia-Corsica Block rotation along the strike of the preexisting fault ramps, not affecting the numerical section balancing. This fold-and-thrust belt represents the southward prosecution of the Alpine Corsica collisional chain and the missing link between the Alpine Chain and the Calabria-Peloritani Block. Relative ages relate its evolution to the meso-Alpine event (Eocene-Oligocene times), prior to the opening of the Tyrrhenian Sea (Tortonian). Results fill a gap of information about the geodynamic evolution of the European margin in Central Mediterranean, between Corsica and the Calabria-Peloritani Block, and imply the presence of remnants of this double-verging belt, missing in the Southern Tyrrhenian basin, within the Southern Apennine chain. The used methodology proved effective for constraining balanced cross sections also for areas lacking exposures of the large-scale structures, as the case of Eastern Sardinia.

  10. Micro-seismicity and seismotectonic study in Western Himalaya-Ladakh-Karakoram using local broadband seismic data

    NASA Astrophysics Data System (ADS)

    Kanna, Nagaraju; Gupta, Sandeep; Prakasam, K. S.

    2018-02-01

    We document the seismic activity and fault plane solutions (FPSs) in the Western Himalaya, Ladakh and Karakoram using data from 16 broadband seismographs operated during June 2002 to December 2003. We locate 206 earthquakes with a local magnitude in the range of 1.5 to 4.9 and calculate FPSs of 19 selected earthquakes based on moment tensor solutions. The earthquakes are distributed throughout the study region and indicate active tectonics in this region. The observed seismicity pattern is quite different than a well-defined pattern of seismicity, along the Main Central Thrust zone, in the eastern side of the study region (i.e., Kumaon-Garhwal Himalaya). In the Himalaya region, the earthquakes are distributed in the crust and upper mantle, whereas in the Ladakh-Karakoram area the earthquakes are mostly confined up to crustal depths. The fault plane solutions show a mixture of thrust, normal and strike-slip type mechanisms, which are well corroborated with the known faults/tectonics of the region. The normal fault earthquakes are observed along the Southern Tibet Detachment, Zanskar Shear Zone, Tso-Morari dome, and Kaurik-Chango fault; and suggest E-W extension tectonics in the Higher and Tethys Himalaya. The earthquakes of thrust mechanism with the left-lateral strike-slip component are seen along the Kistwar fault. The right-lateral strike-slip faulting with thrust component along the bending of the Main Boundary Thrust and Main Central Thrust shows the transpressional tectonics in this part of the Himalaya. The observed earthquakes with right-lateral strike-slip faulting indicate seismically active nature of the Karakoram fault.

  11. Constraints on the tectonics of the Mule Mountains thrust system, southeast California and southwest Arizona

    USGS Publications Warehouse

    Tosdal, R.M.

    1990-01-01

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in this Blythe-Quartzsite region. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust N-NE (015??-035??) over a lower plate metamorphic terrane. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79??2 Ma and 70??4 Ma. Results suggest that the thrust system forms the southern boundary of the narow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling. -from Author

  12. Metamorphic and tectonic evolution of Ceuta peninsula (Internal Rif): new interpretation in the framework of arc and back arc evolution

    NASA Astrophysics Data System (ADS)

    Homonnay, Emmanuelle; Lardeaux, Jean-Marc; Corsini, Michel; Cenki-Tok, Bénédicte; Bosch, Delphine; Munch, Philippe; Romagny, Adrien; Ouazzani-Touhami, Mohamed

    2016-04-01

    In the last twenty years, various geophysical investigations have established that the Western Mediterranean opened in a subduction context as a back arc domain. In the Alboran basin the dip of the subduction plane is eastwards or southeastwards depending of considered models. If the geological records of back-arc opening are well-known, the arc-related tectonic and petrologic evolutions are still poorly documented. In order to decipher these markers, we focalised structural, petrological and thermo-chronological studies on the Ceuta peninsula located in the Rif belt, on the western part of the Gibraltar arc to the North of Morocco. The present-day tectonic pile is constituted by: (1) the upper Ceuta unit, composed of High Pressure and High Temperature metapelites retromorphosed under Amphibolite-facies condition, with Ultra-High Pressure relicts, and pyrigarnite and spinel bearing peridotites boudins at its base, (2) the lower Monte Hacho unit, with orthogneisses metamorphosed under Amphibolite-facies conditions. Structural analysis indicates a polyphase tectonic evolution: (1) an earlier deformation phase only observed in the UHP metapelites and characterized by a steep S1 foliation plane, (2) a main deformation phase associated to a pervasive gently dipping S2 foliation plane bearing a L2 stretching lineation and synschistose folds whose axes are parallel to L2 and (3) a late deformation phase which developed S3 foliation plane and L3 stretching lineation coeval with development of narrow normal ductile shear zones. A zone of increasing deformation, several dozen meters wide, is identified as a major ductile shear zone involving the peridotitic lenses at the base of the metapelites of the Ceuta unit and overlaying this upper unit on top of the orthogneisses of the Monte Hacho lower unit. The attitude of mylonitic foliation and stretching and mineral lineations as well as the numerous shear sense indicators observed in the shear zone are consistent with a thrusting toward the NE. Furthermore, biotite-sillimanite bearing S2 foliation affecting the whole of crustal rocks is contemporaneous with the movement on this main ductile thrusting. We combined garnet-biotite and GASP thermo-barometers with thermodynamic modelling (Theriak-Domino) in order to constrain pressure and temperature conditions of D2 and D3 tectono-metamorphic events. P-T conditions of D2 deformation are in the range 7-10kbar and 770-820°C and are compatible with syn-tectonic partial melting. D3 deformation event occurred at 1-7kbar and 400-550°C. These metamorphic conditions reflect abnormally high geothermal gradients during both shortening and thinning and are clearly compatible with the thermal evolution recognized in continental arcs. Preliminary U-Th-Pb (monazite, zircon and xenotime) and previous Ar39/Ar40 (micas) analyses, furnished similar ages around 21 Ma for D2 and D3 events, suggesting a very fast transition from arc to back-arc dynamics.

  13. The Grenville orogeny in the Llano Uplift, Texas: A record of collision and contraction along the southern margin of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, J.F.

    1993-02-01

    Precambrian metamorphic rocks in the SE Llano Uplift record NE-directed ductile thrusting and regional-scale polyphase folding. This deformation is in response to Grenville-age shortening and crustal thickening associated with the collision of a south-lying tectonic block with the southern margin of North America. In the SE Llano Uplift, the most intense and pervasive deformational event, D2, is characterized in the Packsaddle Schist (PS) and Valley Spring Gneiss (VSG) by SSE-plunging, NE-verging isoclinal folds (F2) with an associated SW-dipping axial planar metamorphic layering (S2), and SW-dipping mylonite zones with kinematic indicators showing top-to-the-NE motion. In the Red Mountain and augen-bearing Bigmore » Branch gneisses, D2 structures are SW-dipping mylonite zones parallel to S2, and a SW-plunging stretching lineation. Taken together, this suite of structures indicates tectonic transport was to the NE, perpendicular to the NW trending regional structural and metamorphic grain. D2 structures were reoriented by at least two later phases of folding. Timing of all ductile deformation in the SE Llano Uplift is constrained from post-1,215 Ma (deformed PS) to pre-1,098 Ma (undeformed melarhyolite dike). From south to north, metatonalitic, arc-derived Big Branch Gneiss ([approximately] 1,303 Ma) and older mafic schist country rock, previously interpreted as possible ophiolitic melange, structurally overlie much younger, lithologically heterogeneous PS units (1,248-1,215 Ma), previously considered as arc flank deposits. In turn, the PS has been tectonically emplaced above the predominantly felsic VSG (1,270-1,232 Ma). The presence of older zircons in the VSG, of similar age ([approximately]1360 Ma) to Western Granite-Rhyolite Terrane rocks to the north, suggests that the VSG formed in a settling proximal to North America.« less

  14. Thrusting and back-thrusting as post-emplacement kinematics of the Almora klippe: Insights from Low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Patel, R. C.; Singh, Paramjeet; Lal, Nand

    2015-06-01

    Crystalline klippen over the Lesser Himalayan Sequence (LHS) in the Kumaon and Garhwal regions of NW-Himalaya, are the representative of southern portion of the Main Central Thrust (MCT) hanging wall. These were tectonically transported over the juxtaposed thrust sheets (Berinag, Tons and Ramgarh) of the LHS zone along the MCT. These klippen comprise of NW-SE trending synformal folded thrust sheet bounded by thrusts in the south and north. In the present study, the exhumation histories of two well-known klippen namely Almora and Baijnath, and the Ramgarh thrust sheet, in the Kumaon and Garhwal regions vis-a-vis Himalayan orogeny have been investigated using Apatite Fission Track (AFT) ages. Along a ~ 60 km long orogen perpendicular transect across the Almora klippe and the Ramgarh thrust sheet, 16 AFT cooling ages from the Almora klippe and 2 from the Ramgarh thrust sheet have been found to range from 3.7 ± 0.8 to 13.2 ± 2.7 Ma, and 6.3 ± 0.8 to 7.2 ± 1.0 Ma respectively. From LHS meta-sedimentary rocks only a single AFT age of 3.6 ± 0.8 Ma could be obtained. Three AFT ages from the Baijnath klippe range between 4.7 ± 0.5 and 6.6 ± 0.8 Ma. AFT ages and exhumation rates of different klippen show a dynamic coupling between tectonic and erosion processes in the Kumaon and Garhwal regions of NW-Himalaya. However, the tectonic processes play a dominant role in controlling the exhumation. Thrusting and back thrusting within the Almora klippe and Ramgarh thrust sheet are the post-emplacement kinematics that controlled the exhumation of the Almora klippe. Combining these results with the already published AFT ages from the crystalline klippen and the Higher Himalayan Crystalline (HHC), the kinematics of emplacement of the klippen over the LHS and exhumation pattern across the MCT in the Kumaon and Garhwal regions of NW-Himalaya have been investigated.

  15. Geometry and kinematics of Majiatan Fold-and-thrust Belt, Western Ordos Basin: implication for Tectonic Evolution of North-South Tectonic Belt

    NASA Astrophysics Data System (ADS)

    He, D.

    2017-12-01

    The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous. During Cenozoic, MFTB is moderately modified by the northeastward compression due to the NE propagation of Qinghai-Tibet Plateau, and distinctly superimposed by the Yingchuan half-graben. North-South Tectonic Belt underwent a full cycle from extension during Middle Proterozoic to Paleozoic to compression since late Triassic.

  16. Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Navabpour, Payman; Barrier, Eric

    2012-12-01

    The present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian-Triassic rifting, undergoing later collisional deformation in mid-late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affectedthe sedimentary cover in Triassic-Jurassic times with an approximately N-S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE-SW trend during Jurassic-Cretaceous times. The stress state significantly changed to thrust setting, with a NE-SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene-Miocene times. This compression was then followed by a strike-slip stress state with an approximately N-S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene-Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectively.

  17. Dillon cutoff-Basement-involved tectonic link between the disturbed belt of west-central Montana and the overthrust belt of extreme southwestern Montana

    NASA Astrophysics Data System (ADS)

    O'Neill, J. Michael; Schmidt, Christopher J.; Genovese, Paul W.

    1990-11-01

    The front of the Cordilleran fold and thrust belt in western Montana follows the disturbed belt in the north, merges with the southwest Montana transverse zone in the west-central part of the region, and in southwestern Montana is marked by a broad zone characterized by complex interaction between thrust belt structures and basement uplifts. The front margin of the thrust belt in Montana reflects mainly thin-skinned tectonic features in the north, an east-trending lateral ramp that curves southwest in the central part into the Dillon cutoff, an oblique-slip, thick-skinned displacement transfer zone that cuts through basement rocks of the Lima recess, and a zone of overlap between thin- and thick-skinned thrusts in extreme southwestern Montana. The transverse ramp and basement-involved thrust faults are controlled by Proterozoic structures.

  18. Coseismic Contortion and Coupled Nocturnal Ionospheric Perturbations During 2016 Kaikoura, Mw 7.8 New Zealand Earthquake

    NASA Astrophysics Data System (ADS)

    Bagiya, Mala S.; Sunil, P. S.; Sunil, A. S.; Ramesh, D. S.

    2018-02-01

    The oblique-thrust Kaikoura earthquake of Mw 7.8 that struck New Zealand on 13 November 2016 at 11:02:56 UTC (local time at 00:02:56 a.m. on 14 November 2016) was one of the most geometrically and tectonically complex earthquakes recorded onshore in modern seismology. The event ruptured in the region of multisegmented faults and propagated unilaterally northeastward for more than 170 km from the epicenter. The GPS derived coseismic surface displacements reveal a larger widespread horizontal and vertical coseismic surface offsets of 6 m and 2 m, respectively, with two distinct tectonic thrust zones. We study the characteristics of coseismic ionospheric perturbations based on tectonic and nontectonic forcing mechanisms and demonstrate that these perturbations are linked to two distinct surface thrust zones with rotating horizontal reinforcement trending the rupture, rather than merely to the displacements oriented along the rupture propagation direction.

  19. Reinterpretation of Mesozoic and Cenozoic tectonic events, Mountain Pass area, northeastern San Bernardino County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, M.A.

    1993-04-01

    Detailed mapping, stratigraphic structural analysis in the Mountain Pass area has resulted in a reinterpretation of Mesozoic and Cenozoic tectonic events in the area. Mesozoic events are characterized by north vergent folds and thrust faults followed by east vergent thrusting. Folding created two synclines and an anticline which were than cut at different stratigraphic levels by subsequent thrust faults. Thrusting created composite tectono-stratigraphic sections containing autochthonous, para-autothonous, and allochthonous sections. Normal faults cutting these composite sections including North, Kokoweef, White Line, and Piute fault must be post-thrusting, not pre-thrusting as in previous interpretations. Detailed study of these faults results inmore » differentiation of at least three orders of faults and suggest they represent Cenozoic extension correlated with regional extensional events between 11 and 19 my. Mesozoic stratigraphy reflects regional orogenic uplift, magmatic activity, and thrusting. Inclusion of Kaibab clasts in the Chinle, Kaibab and Chinle clasts in the Aztec, and Chinle, Aztec, and previously deposited Delfonte Volcanics clasts in the younger members of the Delfonte Volcanics suggest regional uplift prior to the thrusting of Cambrian Bonanza King over Delfonte Volcanics by the Mescal Thrust fault. The absence of clasts younger than Kaibab argues against pre-thrusting activity for the Kokoweef fault.« less

  20. Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming

    NASA Astrophysics Data System (ADS)

    Amrouch, Khalid; Lacombe, Olivier; Bellahsen, Nicolas; Daniel, Jean-Marc; Callot, Jean-Paul

    2010-02-01

    In order to characterize and compare the stress-strain record prior to, during, and just after folding at the macroscopic and the microscopic scales and to provide insights into stress levels sustained by folded rocks, we investigate the relationship between the stress-strain distribution in folded strata derived from fractures, striated microfaults, and calcite twins and the development of the Laramide, basement-cored Sheep Mountain Anticline, Wyoming. Tectonic data were mainly collected in Lower Carboniferous to Permian carbonates and sandstones. In both rock matrix and veins, calcite twins recorded three different tectonic stages: the first stage is a pre-Laramide (Sevier) layer-parallel shortening (LPS) parallel to fold axis, the second one is a Laramide LPS perpendicular to the fold axis, and the third stage corresponds to Laramide late fold tightening with compression also perpendicular to the fold axis. Stress and strain orientations and regimes at the microscale agree with the polyphase stress evolution revealed by populations of fractures and striated microfaults, testifying for the homogeneity of stress record at different scales through time. Calcite twin analysis additionally reveals significant variations of differential stress magnitudes between fold limbs. Our results especially point to an increase of differential stress magnitudes related to Laramide LPS from the backlimb to the forelimb of the fold possibly in relation with motion of an underlying basement thrust fault that likely induced stress concentrations at its upper tip. This result is confirmed by a simple numerical model. Beyond regional implications, this study highlights the potential of calcite twin analyses to yield a representative quantitative picture of stress and strain patterns related to folding.

  1. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    NASA Astrophysics Data System (ADS)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  2. Progressive deformation and superposed fabrics related to Cretaceous crustal underthrusting in western Arizona, U.S.A.

    USGS Publications Warehouse

    Laubach, S.E.; Reynolds, S.J.; Spencer, J.E.; Marshak, S.

    1989-01-01

    In the Maria fold and thrust belt, a newly recognized E-trending Cretaceous orogenic belt in the southwestern United States, ductile thrusts, large folds and superposed cleavages record discordant emplacement of crystalline thrust sheets across previously tilted sections of crust. Style of deformation and direction of thrusting are in sharp contrast to those of the foreland fold-thrust belt in adjacent segments of the Cordillera. The net effect of polyphase deformation in the Maria belt was underthrusting of Paleozoic and Mesozoic metasedimentary rocks under the Proterozoic crystalline basement of North America. The structure of the Maria belt is illustrated by the Granite Wash Mountains in west-central Arizona, where at least four non-coaxial deformation events (D1-D4) occurred during the Cretaceous. SSE-facing D1 folds are associated with S-directed thrusts and a low-grade slaty cleavage. D1 structures are truncated by the gently-dipping Hercules thrust zone (D2), a regional SW-vergent shear zone that placed Proterozoic and Jurassic crystalline rocks over upturned Paleozoic and Mesozoic supracrustal rocks. Exposures across the footwall margin of the Hercules thrust zone show the progressive development of folds, cleavage and metamorphism related to thrusting. D3 and D4 structures include open folds and spaced cleavages that refold or transect D1 and D2 folds. The D2 Hercules thrust zone and a D3 shear zone are discordantly crosscut by late Cretaceous plutons. ?? 1989.

  3. Crustal shortening and thickening in Neoarchean granite-greenstone belts: A case study from the link between the ∼2.7 Ga Elu and Hope Bay belts, northeast Slave craton, Canada

    NASA Astrophysics Data System (ADS)

    Mvondo, Hubert; Lentz, Dave; Bardoux, Marc

    2017-11-01

    The Elu Link between the ∼2.7 Ga Hope Bay and Elu belts in the northeast Bathurst Block of the Slave craton comprises supracrustal and intrusive rocks variably deformed by three tectono-metamorphic events (D1-D3). The geometry of D1 structures formed during prograde metamorphism is uncertain, because of subsequent overprint. D2 occurred in two stages predating (D2a) and postdating (D2b) peak metamorphism. D1 and D2a were thrusting events inferred from peak metamorphic pressures of ∼6.7 kbar (670 MPa) retained by a garnet orthogneiss. The latter is diagnostic of thrust tectonism in Archean granite-greenstone belts with no characteristic thrust faults. Unlike D2a, D2b was a vertical general flattening event prevailing during the formation of magmatic domes and interdomal folds that form the main strain patterns of the belts. This was followed by the formation of buckled F3 folds associated with D3 vertical constriction. The switch from thrust to vertical tectonics during peak metamorphism and subsequent deformation resulted in intense recrystallization that explains the poor preservation and scarcity of early-formed shears, including thrust zones. A tectonic process, combining D1+D2a thrust stacking, sagduction, and vertical stretching during D2b and D3, is suggested to explain crustal thickening in the Elu Link and terrains of similar ages.

  4. Holocene compression in the Acequión valley (Andes Precordillera, San Juan province, Argentina): Geomorphic, tectonic, and paleoseismic evidence

    NASA Astrophysics Data System (ADS)

    Audemard, M.; Franck, A.; Perucca, L.; Laura, P.; Pantano, Ana; Avila, Carlos R.; Onorato, M. Romina; Vargas, Horacio N.; Alvarado, Patricia; Viete, Hewart

    2016-04-01

    The Matagusanos-Maradona-Acequión Valley sits within the Andes Precordillera fold-thrust belt of western Argentina. It is an elongated topographic depression bounded by the roughly N-S trending Precordillera Central and Oriental in the San Juan Province. Moreover, it is not a piggy-back basin as we could have expected between two ranges belonging to a fold-thrust belt, but a very active tectonic corridor coinciding with a thick-skinned triangular zone, squeezed between two different tectonic domains. The two domains converge, where the Precordillera Oriental has been incorporated to the Sierras Pampeanas province, becoming the western leading edge of the west-verging broken foreland Sierras Pampeanas domain. This latter province has been in turn incorporated into the active deformation framework of the Andes back-arc at these latitudes as a result of enhanced coupling between the converging plates due to the subduction of the Juan Fernández ridge that flattens the Nazca slab under the South American continent. This study focuses on the neotectonics of the southern tip of this N-S elongated depression, known as Acequión (from the homonym river that crosses the area), between the Del Agua and Los Pozos rivers. This depression dies out against the transversely oriented Precordillera Sur, which exhibits a similar tectonic style as Precordillera Occidental and Central (east-verging fold-thrust belt). This contribution brings supporting evidence of the ongoing deformation during the Late Pleistocene and Holocene of the triangular zone bounded between the two leading and converging edges of Precordillera Central and Oriental thrust fronts, recorded in a multi-episodic lake sequence of the Acequión and Nikes rivers. The herein gathered evidence comprise Late Pleistocene-Holocene landforms of active thrusting, fault kinematics (micro-tectonic) data and outcrop-scale (meso-tectonic) faulting and folding of recent lake and alluvial sequences. In addition, seismically-induced effects already reported in the literature by this working team further support the tectonic activity of neighboring faults in the Holocene. As a concluding remark we could state that the ongoing deformation in the region under study is driven by a compressional regime whose maximum horizontal stress in the late Pleistocene-Holocene is roughly east-west oriented. This is further supported by focal mechanism solutions.

  5. Miocene tectonics of the Western Alboran domain: from mantle extensional exhumation to westward thrusting

    NASA Astrophysics Data System (ADS)

    Gueydan, F.; Frasca, G.; Brun, J. P.

    2015-12-01

    In the frame of the Africa-Europe convergence, the Mediterranean tectonic system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western Mediterranean is characterized by the exhumation of the largest subcontinental mantle massif worldwide (the Ronda Peridotite) and a narrow arcuate geometryacross the Gibraltar arc within the Betic-Rif belt (the internal part being called the Alboran domain), where the relationship between slab dynamics and surface tectonics is not well understood. New structural and geochronological data are used to argue for 1/ hyperstrechting of the continental lithosphere allowing extensional mantle exhumation to shallow depths, followed by 2/ lower miocene thrusting. Two Lower Miocene E-W-trending strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60°-trending thrusts and N140°-trending normal faults developed simultaneously during dextral strike-slip simple shear. The inferred continuous westward translation of the Alboran Domain is accommodated by a major E-W-trending lateral ramp (strike-slip) and a N60°-trending frontal thrust. At lithosphere-scale, we interpret the observed deformation pattern as the upper-plate expression of a lateral slab tear and of its westward propagation since Lower Miocene. The crustal emplacement of the Ronda Peridotites occurred at the onset of this westward motion.The Miocene tectonics of the western Alboran is therefore marked by the inversion of a continental rift, triggered by shortening of the upper continental plate and accommodated by E-W dextral strike-slip corridors. During thrusting and westward displacement of the Alboran domain with respect to Iberia, the hot upper plate, which involved the previously exhumed sub-continental mantle, underwent fast cooling.

  6. Transverse tectonic structural elements across Himalayan mountain front, eastern Arunachal Himalaya, India: Implication of superposed landform development on analysis of neotectonics

    NASA Astrophysics Data System (ADS)

    Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro

    2017-04-01

    Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the mountain front along the Sesseri, Siluk, Siku, Siang, Mingo, Sileng, Dikari, and Simen rivers. At some such junctions, landforms associated with the active right-lateral strike-slip faults are superposed over the earlier landforms formed by transverse normal faults. In addition to linear transverse features, we see evidence that the fold-thrust belt of the frontal part of the Arunachal Himalaya has also been affected by the neotectonically active NW-SE trending major fold known as the Siang antiform that again is aligned transverse to the mountain front. The folding of the HFT and MBT along this antiform has reshaped the landscape developed between its two western and eastern limbs running N-S and NW-SE, respectively. The transverse faults are parallel to the already reported deep-seated transverse seismogenic strike-slip fault. Therefore, a single take home message is that any true manifestation of the neotectonics and seismic hazard assessment in the Himalayan region must take into account the role of transverse tectonics.

  7. The Western Carpathians fold and thrust belt and its relationships with the inner zone of the orogen: constraints from sequentially restored, balanced cross-sections integrated with low-temperature thermochronometry

    NASA Astrophysics Data System (ADS)

    Mazzoli, Stefano; Castelluccio, Ada; Andreucci, Benedetta; Jankowski, Leszek; Ketcham, Richard A.; Szaniawski, Rafal; Zattin, Massimiliano

    2017-04-01

    The Western Carpathians are the northernmost, W-E-trending branch of a more than 1500 km long, curved orogen. Traditionally, the Western Carpathians have been divided into two distinct parts, namely the Inner Carpathians (including basement nappes) and the Outer Carpathians fold and thrust belt. These two major domains are separated by the so-called 'Pieniny Klippen Belt', a narrow zone of intensely deformed and sheared Mesozoic to Palaeogene rocks. In this contribution, a new interpretation for the tectonic evolution of the Western Carpathians is provided based on: (i) the analysis of the stratigraphy of the Mesozoic-Tertiary successions across the different orogenic domains; (ii) the construction of a series of balanced and restored cross-sections, validated by 2D forward modeling; and (iii) the integration of a large thermochronometric dataset (apatite fission tracks and apatite and zircon (U-Th-(Sm))/He ages). The latter work included thermo-kinematic modeling using FetKin, a finite element solver that takes as input a series of balanced cross-sections. The software solves the heat flow equations in 2D together with the predicted thermochronometric ages, which can be compared with the measured data. Moreover, the spatial distribution of burial depths, cooling ages and the rate of exhumation were correlated with heat flow, topographic relief, crustal and lithospheric thickness. This process allowed us to obtain the cooling history along each section and test the response of low-temperature thermochronometers to the changes in the thrust belt geometry produced by fault activity and topography evolution. Our sequentially restored, balanced cross-sections, showing a mix of thin-skinned thrusting and thick-skinned tectonic inversion involving the reactivation of pre-existing basement normal faults, effectively unravel the tectonic evolution of the thrust belt-foreland basin system. Our analysis provides a robust correlation of the stratigraphy from the Outer to the Inner Carpathians, independently of the occurrence of oceanic lithosphere in the area; it also allows for the reinterpretation of the tectonic relationships between the two major tectonic domains of the orogen, and the exhumation mechanisms affecting them. The interplay between thick- and thin-skinned thrusting had a relevant effect on the distribution of cooling ages. The non-homogeneous burial and exhumation history unravelled by our work suggests that different exhumation processes controlled the Neogene stages of the Carpathian evolution. In particular, the data point out a significant along-strike variation of exhumation mechanisms in the Outer Carpathian domain, ranging from Early Miocene syn-thrusting erosion to the west, to post-thrusting tectonic denudation in the central sector, to post-thrusting exhumation associated with uplift of the accretionary wedge to the east. Relatively young cooling ages (13 to 4 Ma) obtained for the Inner Carpathian domain were mainly associated with a later uplift, partly controlled by high-angle faulting, and coeval erosion. The effective integration of structural and thermochronometric methods carried out in this study provided, for the first time, a high-resolution thermo-kinematic model of the Western Carpathians from the Early Cretaceous onset of shortening to the present-day.

  8. Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Van Den Driessche, Jean

    2017-03-01

    New U-Pb dating on zircon yielded ca. 470 Ma ages for the granitoids from the Lévézou massif in the southern French Massif Central. These new ages do not support the previous interpretation of these granitoids as syn-tectonic intrusions emplaced during the Late Devonian-Early Carboniferous thrusting. The geochemical and isotopic nature of this magmatism is linked to a major magmatic Ordovician event recorded throughout the European Variscan belt and related to extreme thinning of continental margins during a rifting event or a back-arc extension. The comparable isotopic signatures of these granitoids on each side of the eclogite-bearing leptyno-amphibolitic complex in the Lévézou massif, together with the fact that they were emplaced at the same time, strongly suggest that these granitoids were originally part of a single unit, tectonically duplicated by either isoclinal folding or thrusting during the Variscan tectonics.

  9. Regional polyphase deformation of the Eastern Sierras Pampeanas (Argentina Andean foreland): strengths and weaknesses of paleostress inversion

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Zampieri, Dario; Massironi, Matteo; Viola, Giulio; Alvarado, Patricia; Di Toro, Giulio

    2016-04-01

    The Eastern Sierras Pampeanas of central Argentina are composed of a series of basement-cored ranges, located in the Andean foreland c. 600 km east of the Andean Cordillera. Although uplift of the ranges is partly attributed to the regional Neogene evolution (Ramos et al. 2002), many questions remain as to the timing and style of deformation. In fact, the Eastern Sierras Pampeanas show compelling evidence of a long lasting brittle history (spanning the Early Carboniferous to Present time), characterised by several deformation events reflecting different tectonic regimes. Each deformation phase resulted in further strain increments accommodated by reactivation of inherited structures and rheological anisotropies (Martino 2003). In the framework of such a polyphase brittle tectonic evolution affecting highly anisotropic basement rocks, the application of paleostress inversion methods, though powerful, suffers from some shortcomings, such as the likely heterogeneous character of fault slip datasets and the possible reactivation of even highly misoriented structures, and thus requires careful analysis. The challenge is to gather sufficient fault-slip data, to develop a proper understanding of the regional evolution. This is done by the identification of internally consistent fault and fracture subsets (associated to distinct stress states on the basis of their geometric and kinematic compatibility) in order to generate a chronologically-constrained evolutionary conceptual model. Based on large fault-slip datasets collected in the Sierras de Cordoba (Eastern Sierras Pampeanas), reduced stress tensors have been generated and interpreted as part of an evolutionary model by considering the obtained results against: (i) existing K-Ar illite ages of fault gouges in the study area (Bense et al. 2013), (ii) the nature and orientation of pre-existing anisotropies and (iii) the present-day stress field due to the convergence of the Nazca and South America plates (main shortening oriented WSW-ENE). Although remarkable differences in reactivation mechanisms have been observed for the various studied lithological domains (schist, gneiss and granitic rocks), the brittle regional polyphase deformation of the Eastern Sierras Pampeanas appears to be dominated by two extensional episodes (σ3 oriented NE/ENE and WNW, respectively), which can be associated with Middle-Late Permian to Early Cretaceous tectonism, followed by a compressional paleostress (σ1 oriented ENE), which is compatible with the present day Andean convergence. Paleostress inversion techniques, despite all uncertainties involved, represent a robust approach to disentangle complex polyphase deformation histories both in term of reactivation mechanisms and strain partitioning. References: Bense, F. A., Wemmer, K., Löbens, S., & Siegesmund, S. (2013). Fault gouge analyses: K-Ar illite dating, clay mineralogy and tectonic significance-a study from the Sierras Pampeanas, Argentina. International Journal of Earth Sciences, 103, 189-218. Martino, R. D. (2003). Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba : Una reseña general. Revista de La Asociación Geológica Argentina, 58(4), 549-571. Ramos, V. A., Cristallini, E. O., & Perez, D. J. (2002). The Pampean flat-slab of the Central Andes. Journal of South American Earth Sciences, 15, 59-78.

  10. Tectonic significance of Kibaran structures in Central and Eastern Africa

    NASA Astrophysics Data System (ADS)

    Rumvegeri, B. T.

    Tectonical movements of the Kibaran belt (1400-950 Ma) can be subdivided into two major deformation events, corresponding to tight, upright or recumbent folds, thrust faults, nappes and stretching lineation with a general plunging southwards. At the regional scale, the stretching lineation, associated with thrust faults and nappes is interpreted as an indication of a northwards moving direction. The shear zone with mafic-ultramafic rocks across Burundi, MW-Tanzania, SW-Uganda and NE-Zaïre is the suture zone of the Kibaran belt. Kibaran metamorphism is plurifacial and has four epizodes. The second, syn-D2, is the most important and constitutes the climax; it reached the granulite facies. The succession of tectonic, metamorphic and magmatic features suggests geotectonic evolution by subduction-collision.

  11. Tectono-sedimentary constraints to the Oligocene-to-Miocene evolution of the Peloritani thrust belt (NE Sicily)

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Nigro, F.

    1999-12-01

    The Peloritani thrust belt belongs to the southern sector of the Calabrian Arc and is formed by a set of south-verging tectonic units, including crystalline basement and sedimentary cover (from the top: Aspromonte U.; Mela U.; Mandanici U.; Fondachelli U.; Longi-Taormina U.), piled up starting from Late Oligocene. At least two main terrigenous clastic formations lie with complicated relationships on top of the previous units: the Frazzanò Fm (Oligocene) and the Stilo-Capo d'Orlando Fm (Late Oligocene?-Early Miocene), as syn-to-post-tectonic deposits. These clastic deposits have different characteristics, in space and time, representing or flysch-like sequences involved in several thrust events (Frazzanò Fm) or molassic-like sequences (Stilo-Capo d'Orlando Fm), which unconformably overlie the tectonic units. In the present paper we describe a kinematic model of the progressive foreland migration of the Peloritani thrust belt, starting from Oligocene, carrying piggy-back basins and incorporating foredeep deposits, recognised in the Frazzanò-Stilo-Capo d'Orlando terrigenous successions. In general, the facies and structural observations on the overall Oligo-Miocene clastic sequences, outcropping in the Western Peloritani Mts, indicate: (a) the distal character of the Frazzanò Fm; (b) a complex group of terrigenous facies of the Stilo-Capo d'Orlando Fm, with lateral-to-vertical organisation, characterised by a distal-to-proximal-to-distal facies trend; (c) facies analogies of the basal portions of the Stilo-Capo d'Orlando Fm with the Frazzanò Fm; (d) the involvement of the Frazzanò Fm in lowermost and more external thrusting, and of the basal (Late Oligocene?) distal Stilo-Capo d'Orlando facies in the higher and inner thrusting during the early stages of deformation; (e) the involvement of the proximal Stilo-Capo d'Orlando facies in the tectonic edifice during the Early Miocene deformation; (f) the generally unconformable stratigraphical contacts of the higher proximal-to-distal (Early Miocene) Stilo-Capo d'Orlando facies on the constructing mobile belt; and (g) the presence of various thrust-faults, distinguished in a sequential order. The collected data allow us to hypothesise that the Oligo-Miocene tectono-sedimentary history was characterised by a foredeep with a deforming internal flank, probably lying in onlap on the constructing tectonic edifice (Frazzanò-lower Stilo-Capo d'Orlando Fms), and then deformed and covered by a piggy-back like sequence (middle-upper Stilo-Capo d'Orlando Fm), which was subsequently also deformed. The tectono-sedimentary evolution of the Peloritani belt has been probably developed through a progressive migration towards the foreland of a foredeep-compressional front couple and the chain body. The thrust stack progressively incorporates terrigenous foredeep deposits and in turn carried piggy-back basins.

  12. Critical taper wedge mechanics of fold-and-thrust belts on Venus - Initial results from Magellan

    NASA Technical Reports Server (NTRS)

    Suppe, John; Connors, Chris

    1992-01-01

    Examples of fold-and-thrust belts from a variety of tectonic settings on Venus are introduced. Predictions for the mechanics of fold-and-thrust belts on Venus are examined on the basis of wedge theory, rock mechanics data, and currently known conditions on Venus. The theoretical predictions are then compared with new Magellan data.

  13. Geologic setting of the Fortymile River area - Polyphase deformational history within part of the eastern Yukon-Tanana uplands of Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Day, Warren C.; Gamble, Bruce M.; Henning, Mitchell W.; Smith, Bruce D.

    2000-01-01

    The Fortymile River area lies within the Yukon-Tanana lithotectonic terrane of east-central Alaska. This terrane is a mosaic of several lithotectonic assemblages, each with a coherent lithologic, metamorphic, and deformational history. Previous workers have shown that the Fortymile River area is underlain by rocks of the Seventymile, Taylor Mountain, and Nisutlin assemblages. The Taylor Mountain tectonostratigraphic assemblage is the most widespread within study area and is made up of amphibolite-grade Paleozoic(?) metamorphosed supracrustal rocks that have been intruded by plutonic rocks. The protoliths for the supracrustal rocks include mafic volcanic(?) rocks, graywacke, sulfide-rich siliciclastic sediments, quartz-rich sandstone, pelite, and marble, all of which are cut by late sulfide-bearing quartz veins. The mafic metavolcanic(?) rocks are of both tholeiitic and calc-alkalic affinity and have distinctly different rare-earth-element abundances. The supracrustal rocks are interpreted to have been deposited on a continental margin and (or) distal to an island-arc complex in a back-arc basin.The Steele Creek Dome Tonalite is defined herein as a composite body of foliated biotite-hornblende tonalitic orthogneiss containing country-rock rafts of paragneiss. The complex lies within the Taylor Mountain assemblage and has been tectonized and presumably recrystallized during regional Early Jurassic ductile deformation. The tonalite is compositionally similar to other volcanic-arc granites. The entire sequence was intruded by a Early Jurassic(?) hornblende monzodioritediorite-quartz diorite suite.The area has been subjected to at least three phases of deformation. The first (D1) produced a strong regional S1 schistosity and local mineral lineations. The second (D2) deformation generated tight to isoclinal F2 folds, folding the S1 schistosity and L1 mineral lineations, and was accompanied by a weak axial-planar S2 cleavage and both L2 mineral and stretching lineations. The question remains if the D1 and D2 tectonic fabrics either (1) record end members of a continuous, relatively long lived, progressive ductile deformation associated with the peak regional metamorphism and northward-directed thrusting; or (2) were separate and distinct pulses of tectonism. The youngest deformation recognized (D3) folded the ductile fabric elements about south-plunging, east-vergent, open folds and records east-west-directed tectonic shortening.

  14. a Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?

    NASA Astrophysics Data System (ADS)

    Tikku, A. A.

    2011-12-01

    The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.

  15. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun Sub-Himalaya, India

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Negi, Sanjay S.

    2017-02-01

    The shape of the frontal part of the Himalaya around the north-eastern corner of the Kumaun Sub-Himalaya, along the Kali River valley, is defined by folded hanging wall rocks of the Himalayan Frontal Thrust (HFT). Two parallel faults (Kalaunia and Tanakpur faults) trace along the axial zone of the folded HFT. Between these faults, the hinge zone of this transverse fold is relatively straight and along these faults, the beds abruptly change their attitudes and their widths are tectonically attenuated across two hinge lines of fold. The area is constituted of various surfaces of coalescing fans and terraces. Fans comprise predominantly of sandstone clasts laid down by the steep-gradient streams originating from the Siwalik range. The alluvial fans are characterised by compound and superimposed fans with high relief, which are generated by the tectonic activities associated with the thrusting along the HFT. The truncated fan along the HFT has formed a 100 m high-escarpment running E-W for ˜5 km. Quaternary terrace deposits suggest two phases of tectonic uplift in the basal part of the hanging wall block of the HFT dipping towards the north. The first phase is represented by tilting of the terrace sediments by ˜30 ∘ towards the NW; while the second phase is evident from deformed structures in the terrace deposit comprising mainly of reverse faults, fault propagation folds, convolute laminations, flower structures and back thrust faults. The second phase produced ˜1.0 m offset of stratification of the terrace along a thrust fault. Tectonic escarpments are recognised across the splay thrust near south of the HFT trace. The south facing hill slopes exhibit numerous landslides along active channels incising the hanging wall rocks of the HFT. The study area shows weak seismicity. The major Moradabad Fault crosses near the study area. This transverse fault may have suppressed the seismicity in the Tanakpur area, and the movement along the Moradabad and Kasganj-Tanakpur faults cause the neotectonic activities as observed. The role of transverse fault tectonics in the formation of the curvature cannot be ruled out.

  16. Multi-scale Onland-Offshore Investigations of the New Caledonia Ophiolite, SW Pacific

    NASA Astrophysics Data System (ADS)

    Clerc, C. N.; Collot, J.; Sevin, B.; Patriat, M.; Etienne, S.; Iseppi, M.; Lesimple, S.; Jeanpert, J.; Mortimer, N. N.; Poli, S.; Pattier, F.; Juan, C.; Robineau, B.; Godard, M.; Cluzel, D.

    2017-12-01

    The Peridotite Nappe of New Caledonia is one of the largest ultramafic ophiolite in the World: it represents about one quarter of the 500 x 80 km island of Grande Terre. This extensive upper mantle unit was tectonically emplaced during the Eocene onto the northeastern edge of Zealandia continent. It is weakly deformed because it was not involved in a collision belt after obduction. A dome-shaped Eocene HP/LT metamorphic complex was exhumed across the fore-arc mantle lithosphere in the northern tip of the island. Post-obduction Miocene to Present coral reefs developed in shallow waters around Grande Terre and surrounding islands. In the perspective of a possible onshore/offshore drilling project (IODP/ICDP), we present recent advances in our understanding of offshore extensions of this ophiolite. To the south of New Caledonia, the offshore continuation of the ultramafic allochthon has been identified by dredges and by its geophysical signature as a continuous linear body that extends over a distance of more than 400 km at about 2000m bsl. Such water depths allow an unprecedented seismic reflection imaging of a drowned and well-preserved ophiolite. Seismic profiles show that the nappe has a flat-top, and is capped by carbonate reefs and dissected by several major normal faults. To the east of this presumed ultramafic body, Felicité Ridge is a 30 km wide, 350 km long, dome-shaped ridge, which may be interpreted as the possible southern extension of the HP/LT metamorphic complex observed onshore. Onshore, several 150 to 200 m long cores were drilled in the ophiolite and airborne electromagnetic allowed high-resolution imaging down to 400 m depth. These recent results allow identification of internal thrusts within the peridotite body and more superficial landslides. The analysis of polyphase fracturation and associated serpentinization brings new constraints on the tectonic evolution of the ophiolite and its subsequent weathering pattern. We integrate these data and discuss the chronology of pre-, syn-, and post-obduction tectonic events. But our limited access to the deep parts of the ophiolite calls for the necessity of planning an onshore/offshore deep drilling project.

  17. Tectonic control on coarse-grained foreland-basin sequences: An example from the Cordilleran foreland basin, Utah

    NASA Astrophysics Data System (ADS)

    Horton, Brian K.; Constenius, Kurt N.; Decelles, Peter G.

    2004-07-01

    Newly released reflection seismic and borehole data, combined with sedimentological, provenance, and biostratigraphic data from Upper Cretaceous Paleocene strata in the proximal part of the Cordilleran foreland-basin system in Utah, establish the nature of tectonic controls on stratigraphic sequences in the proximal to distal foreland basin. During Campanian time, coarse-grained sand and gravel were derived from the internally shortening Charleston-Nebo salient of the Sevier thrust belt. A rapid, regional Campanian progradational event in the distal foreland basin (>200 km from the thrust belt in <8 m.y.) can be tied directly to active thrust-generated growth structures and an influx of quartzose detritus derived from the Charleston-Nebo salient. Eustatic sea-level variation exerted a minimal role in sequence progradation.

  18. Paleomagnetic evidence for rapid vertical-axis rotations during thrusting in an active collision zone, northeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, Peter D.; Coe, Robert S.

    1997-06-01

    A paleomagnetic study of three thrust sheets of the fold and thrust belt north of the Ramu-Markham Fault Zone (RMFZ) indicates very rapid vertical-axis rotations, with differential declination anomalies related to tectonic transport of thrust units. Data from this investigation indicate depositional ages straddling the Brunhes-Matuyama reversal (780 ka) for the Leron Formation in Erap Valley. Net counterclockwise, vertical-axis rotations as great as 90° since 1 Ma have occurred locally in the Erap Valley area. These rotations appear to be kinematically related to shear across a tear fault within the foreland fold and thrust belt of the colliding Finisterre Arc, which in turn is aligned with and may be structurally controlled by a major fault in the lower plate. These data indicate that vertical-axis rotations occurred during thrusting; consequently, the actual rotation rate is likely several times higher than the calculated minimum rate. Such very rapid rotations during thrust sheet emplacement may be more common in fold and thrust belts than is presently recognized. Anisotropy of magnetic susceptibility data yields foliated fabrics with subordinate, well-grouped lineations that differ markedly in azimuth in the three thrust sheets. The susceptibility lineations are rendered parallel by the same bedding-perpendicular rotations used to restore the paleomagnetic remanence to N-S thus independently confirming the rapid rotations. The restored lineations are perpendicular to the direction of tectonic transport, and the minimum susceptibility axes are streaked perpendicular to the lineation. We interpret these anisotropy of magnetic susceptibility data as primary sedimentary fabrics modified by weak strain accompanying foreland thrusting.

  19. Active Tectonics of Himalayan Faults/Thrusts System in Northern India on the basis of recent & Paleo earthquake Studies

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Biswal, S.; Parija, M. P.

    2016-12-01

    The Himalaya overrides the Indian plate along a decollement fault, referred as the Main Himalayan Thrust (MHT). The 2400 km long Himalayan mountain arc in the northern boundary of the Indian sub-continent is one of the most seismically active regions of the world. The Himalayan Frontal Thrust (HFT) is characterized by an abrupt physiographic and tectonic break between the Himalayan front and the Indo-Gangetic plain. The HFT represents the southern surface expression of the MHT on the Himalayan front. The tectonic zone between the Main Boundary Thrust (MBT) and the HFT encompasses the Himalayan Frontal Fault System (HFFS). The zone indicates late Quaternary-Holocene active deformation. Late Quaternary intramontane basin of Dehradun flanked to the south by the Mohand anticline lies between the MBT and the HFT in Garhwal Sub Himalaya. Slip rate 13-15 mm/yr has been estimated on the HFT based on uplifted strath terrace on the Himalyan front (Wesnousky et al. 2006). An out of sequence active fault, Bhauwala Thrust (BT), is observed between the HFT and the MBT. The Himalayan Frontal Fault System includes MBT, BT, HFT and PF active fault structures (Thakur, 2013). The HFFS structures were developed analogous to proto-thrusts in subduction zone, suggesting that the plate boundary is not a single structure, but series of structures across strike. Seismicity recorded by WIHG shows a concentrated belt of seismic events located in the Main Central Thrust Zone and the physiographic transition zone between the Higher and Lesser Himalaya. However, there is quiescence in the Himalayan frontal zone where surface rupture and active faults are reported. GPS measurements indicate the segment between the southern extent of microseismicity zone and the HFT is locked. The great earthquake originating in the locked segment rupture the plate boundary fault and propagate to the Himalaya front and are registered as surface rupture reactivating the fault in the HFFS.

  20. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    NASA Astrophysics Data System (ADS)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide insights into the tectonic evolution of accretionary wedges in an intra-arc setting.

  1. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  2. Structural evolution and tectonic context of the Mfongosi Group, Natal thrust front, Tugela terrane, South Africa

    NASA Astrophysics Data System (ADS)

    Basson, I. J.; Watkeys, M. K.; Phillips, D.

    2005-11-01

    The Mesoproterozoic Natal Metamorphic Province of Kwazulu-Natal in South Africa is an assemblage of several tectonic units, including accreted oceanic island arcs, obducted oceanic crust and deformed basin material. The highly deformed Mfongosi Group occurs at the leading edge of collision (the Natal thrust front), against and directly overlying the southern margin of the Kaapvaal Craton. Structures within the Mfongosi Group record "local" D1 and D2 events, the first of which was "oblique obduction", with predominantly N- to NNE-verging thrusting ( D1). This was followed by sinistral transpression combined with vertical constriction, forming SW-plunging kink folds and SW-plunging prolate pillow basalts ( D2). The third and final event ( D3) was E-W to ESE-WNW extension in a post-thrusting phase, defined by fibrous antitaxial quartz-calcite veining. The westernmost portion of the Mfongosi Group, the Ngubevu area, shows significantly higher finite strains (up to Rf = 12) compared to central Mfongosi and eastern Nkandlha areas ( Rf = 1.5 and less), suggesting highly oblique, largely NE-directed initial collision. Deformation of the NTF in the context of nappe emplacement is constrained by 40Ar/ 39Ar dating of post-cataclastic nematoblastic/porphyroblastic hornblende of the Manyane amphibolite close to the thrust between the Tugela nappe and the Mfongosi Group in the Mfongosi area. Hornblende overgrew the products of low-temperature deformation during the "local" D1 and D2. A minimum age of 1171 ± 16 Ma (95% conf., including J-error; weighted by √MSWD; MSWD = 4.3) is obtained for the tectonic juxtaposition of the Tugela nappe against the southern portions of the "Mfongosi Basin". This "local" D1 and D2 of the Mfongosi Group pre-dates the regional "oblique D1" and "left-lateral D2" previously determined for the central and southern terranes of the Natal Metamorphic Province by other researchers. Comparison of the 1171 ± 16 Ma age, with ages for shearing and intrusion, suggests that thrusting and/or mylonite-forming events migrated southwards throughout the Natal Metamorphic Province, being separated by approximately 25 million years. Thrusting and/or mylonite-forming events occurred in the nappe zone from ca. 1135 Ma to 1077 Ma, followed by a period of "quiescence" during which granites intruded, in turn followed by late-tectonic deformation of the southern Mzumbe and Margate terranes from ca. 1004 Ma to 970 Ma. Such a scenario supports previously-proposed indentation models with their implications of oblique convergence and late-tectonic escape of island arcs to the E/ENE (African azimuths).

  3. Deformation bands, early markers of tectonic activity in front of a fold-and-thrust belt: Example from the Tremp-Graus basin, southern Pyrenees, Spain

    NASA Astrophysics Data System (ADS)

    Robert, Romain; Robion, Philippe; Souloumiac, Pauline; David, Christian; Saillet, Elodie

    2018-05-01

    Strain localization in a porous calcarenite facies of the Aren formation in the Tremp basin was studied. This Maastrichtian syn-tectonic formation exposed in front of the Boixols thrust, in the Central South Pyrenean Zone, hosts bedding perpendicular deformation bands. These bands are organized in two major band sets, striking East-West and N-020 respectively. Both populations formed during early deformation stages linked to the growth of the fold and thrust. A magnetic fabric study (Anisotropy of Magnetic Susceptibility, AMS) was carried out to constrain the shortening direction responsible for the deformation bands development during the upper Cretaceous-Paleocene N-S contraction in the region, which allowed us to define populations of Pure Compaction Bands (PCB) and Shear Enhanced Compaction Bands (SECB) regarding their orientations compared to the shortening direction. Both sets are formed by cataclastic deformation, but more intense in the case of SECBs, which are also thinner than PCBs. The initial pore space is both mechanically reduced and chemically filled by several cementation phases. We propose a geomechanical model based on the regional context of layer parallel shortening, thrusting and strike-slip tectonics considering the burial history of the formation, in order to explain the development of both types of bands at remarkably shallow depths.

  4. Persistent Scatterer Interferometry analysis of ground deformation in the Po Plain (Piacenza-Reggio Emilia sector, Northern Italy): seismo-tectonic implications

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico

    2016-08-01

    This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time-series has allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time-series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time-series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm yr-1) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesize a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterized by interseismic periods possibly dominated by aseismic creep.

  5. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: Implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan

    2016-04-01

    On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.

  6. Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.

    2007-12-01

    The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.

  7. Basin analysis in the Southern Tethyan margin: Facies sequences, stratal pattern and subsidence history highlight extension-to-inversion processes in the Cretaceous Panormide carbonate platform (NW Sicily)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio

    2018-01-01

    In the Mediterranean, the South-Tethys paleomargin experienced polyphased tectonic episodes and paleoenvironmental perturbations during Mesozoic time. The Cretaceous shallow-water carbonate successions of the Panormide platform, outcropping in the northern edge of the Palermo Mountains (NW Sicily), were studied by integrating facies and stratal pattern with backstripping analysis to recognize the tectonics vs. carbonate sedimentation interaction. The features of the Requienid limestone, including geometric configuration, facies sequence, lithological changes and significance of the top-unconformity, highlight that at the end of the Lower Cretaceous the carbonate platform was tectonically dismembered in various rotating fault-blocks. The variable trends of the subsidence curves testify to different responses, both uplift and downthrow, of various platform-blocks impacted by extensional tectonics. Physical stratigraphic and facies analysis of the Rudistid limestone highlight that during the Upper Cretaceous the previously carbonate platform faulted-blocks were subjected to vertical movements in the direction opposite to the displacement produced by the extensional tectonics, indicating a positive tectonic inversion. Comparisons with other sectors of the Southern Tethyan and Adria paleomargins indicate that during the Cretaceous these areas underwent the same extensional and compressional stages occurring in the Panormide carbonate platform, suggesting a regional scale significance, in time and kinematics, for these tectonic events.

  8. Crustal structure and tectonics of the Hidaka Collision Zone, Hokkaido (Japan), revealed by vibroseis seismic reflection and gravity surveys

    NASA Astrophysics Data System (ADS)

    Arita, Kazunori; Ikawa, Takashi; Ito, Tanio; Yamamoto, Akihiko; Saito, Matsuhiko; Nishida, Yasunori; Satoh, Hideyuki; Kimura, Gaku; Watanabe, Teruo; Ikawa, Takeshi; Kuroda, Toru

    1998-05-01

    This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of ˜7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9-6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.

  9. Superposed ridges of the Hesperia Planum area on Mars

    NASA Technical Reports Server (NTRS)

    Raitala, Jouko

    1988-01-01

    Mare ridges of the Hesperia Planum area form linear, reticular and circular structures. The main factors effective in mare ridge formation have been: (1) a large areal, or maybe even global, shortening and compression, (2) major crustal tectonics, and (3) the moderation of tectonic movements by the megaregolith discontinuity layer(s) between surface lavas and the bedrock leaving the compressional thrust to dominate over other fault movements in surface tectonics.

  10. Indentation and Lateral Escape in Western Ishtar Terra, Venus — An Analog for Deformation of the Archean Abitibi Subprovince, Superior Craton, Canada Without Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Harris, L. B.; Bédard, J. H.

    2015-05-01

    Radar about Lakshmi Planum, Venus, shows regional transcurrent shear zones, folds and thrusts formed by indentation and lateral escape. The Archean Abitibi subprovince Canada shows identical structures suggesting a similar, non-plate tectonic origin.

  11. Tectonic contraction across Los Angeles after removal of groundwater pumping effects

    USGS Publications Warehouse

    Bawden, G.W.; Thatcher, W.; Stein, R.S.; Hudnut, K.W.; Peltzer, G.

    2001-01-01

    After the 1987 Whittier Narrows and 1994 Northridge earthquakes revealed that blind thrust faults represent a significant threat to metropolitan Los Angeles, a network of 250 continuously recording global positioning system (GPS) stations was deployed to monitor displacements associated with deep slip on both blind and surface faults. Here we augment this GPS data with interferometric synthetic aperture radar imagery to take into account the deformation associated with groundwater pumping and strike-slip faulting. After removing these non-tectonic signals, we are left with 4.4 mm yr-1 of uniaxial contraction across the Los Angeles basin, oriented N 36??E (perpendicular to the major strike-slip faults in the area). This indicates that the contraction is primarily accommodated on thrust faults rather than on the northeast-trending strike-slip faults. We have found that widespread groundwater and oil pumping obscures and in some cases mimics the tectonic signals expected from the blind thrust faults. In the 40-km-long Santa Ana basin, groundwater withdrawal and re-injection produces 12 mm yr-1 of long-term subsidence, accompanied by an unprecedented seasonal oscillation of 55 mm in the vertical direction and 7 mm horizontally.

  12. Late-Miocene thrust fault-related folding in the northern Tibetan Plateau: Insight from paleomagnetic and structural analyses of the Kumkol basin

    NASA Astrophysics Data System (ADS)

    Lu, Haijian; Fu, Bihong; Shi, Pilong; Xue, Guoliang; Li, Haibing

    2018-05-01

    Constraints on the timing and style of the Tibetan Plateau growth help spur new understanding of the tectonic evolution of the northern Tibetan Plateau and its relation to the India-Asia continental collision. In this regard, records of tectonic deformation with accurate ages are urgently needed, especially in regions without relevant studies. The Kumkol basin, located between two major intermontane basins (the Hoh Xil and Qaidam basins), may hold clues to how these major basins evolve during the Cenozoic. However, little has been known about the exact ages of the strata and tectonic deformation of the basin. Herein, detailed paleomagnetic and structural studies are conducted on the southern Baiquanhe section in the central Kumkol basin, northern Tibetan Plateau. The magnetostratigraphic study indicates that the southern Baiquanhe section spans a time interval of 8.2-4.2 Ma. Well-preserved growth strata date to 7.5 Ma, providing evidence for a significant thrust fault-related folding. This thrust-related folding has also been identified in the Tian Shan foreland and in the northern Tibetan Plateau, most likely implying a pulsed basinward deformation during the late Miocene.

  13. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan)

    NASA Astrophysics Data System (ADS)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.

    2018-01-01

    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  14. Determining heterogeneous deformation for granitic rocks in the northern thrust in Wadi Mubarak belt, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.

    2011-05-01

    Finite-strain was studied in the mylonitic granitic and metasedimentary rocks in the northern thrust in Wadi Mubarak belt to show a relationship to nappe contacts between the old granitic and metavolcano-sedimentary rocks and to shed light on the heterogeneous deformation for the northern thrust in Wadi Mubarak belt. We used the Rf/ϕ and Fry methods on feldspar porphyroclasts, quartz and mafic grains from 7 old granitic and 7 metasedimentary samples in the northern thrust in Wadi Mubarak belt. The finite-strain data shows that old granitic rocks were moderate to highly deformed and axial ratios in the XZ section range from 3.05 to 7.10 for granitic and metasedimentary rocks. The long axes (X) of the finite-strain ellipsoids trend W/WNW and E/ENE in the northern thrust in Wadi Mubarak belt. Furthermore, the short axes (Z) are subvertical associated with a subhorizontal foliation. The value of strain magnitudes mainly constants towards the tectonic contacts between the mylonitic granite and metavolcano-sedimentary rocks. The data indicate oblate strain symmetry (flattening strain) in the mylonitic granite rocks. It is suggested that the accumulation of finite strain was formed before or/and during nappe contacts. The penetrative subhorizontal foliation is subparallel to the tectonic contacts with the overlying nappes and foliation was formed during nappe thrusting.

  15. A possible explanation for foreland thrust propagation

    NASA Astrophysics Data System (ADS)

    Panian, John; Pilant, Walter

    1990-06-01

    A common feature of thin-skinned fold and thrust belts is the sequential nature of foreland directed thrust systems. As a rule, younger thrusts develop in the footwalls of older thrusts, the whole sequence propagating towards the foreland in the transport direction. As each new younger thrust develops, the entire sequence is thickened; particularly in the frontal region. The compressive toe region can be likened to an advancing wave; as the mountainous thrust belt advanced the down-surface slope stresses drive thrusts ahead of it much like a surfboard rider. In an attempt to investigate the stresses in the frontal regions of thrustsheets, a numerical method has been devised from the algorithm given by McTigue and Mei [1981]. The algorithm yields a quickly computed approximate solution of the gravity- and tectonic-induced stresses of a two-dimensional homogeneous elastic half-space with an arbitrarily shaped free surface of small slope. A comparison of the numerical method with analytical examples shows excellent agreement. The numerical method was devised because it greatly facilitates the stress calculations and frees one from using the restrictive, simple topographic profiles necessary to obtain an analytical solution. The numerical version of the McTigue and Mei algorithm shows that there is a region of increased maximum resolved shear stress, τ, directly beneath the toe of the overthrust sheet. Utilizing the Mohr-Coulomb failure criterion, predicted fault lines are computed. It is shown that they flatten and become horizontal in some portions of this zone of increased τ. Thrust sheets are known to advance upon weak decollement zones. If there is a coincidence of increased τ, a weak rock layer, and a potential fault line parallel to this weak layer, we have in place all the elements necessary to initiate a new thrusting event. That is, this combination acts as a nucleating center to initiate a new thrusting event. Therefore, thrusts develop in sequence towards the foreland as a consequence of the stress concentrating abilities of the toe of the thrust sheet. The gravity- and tectonic-induced stresses due to the surface topography (usually ignored in previous analyses) of an advancing thrust sheet play a key role in the nature of shallow foreland thrust propagation.

  16. Late Cretaceous fluvial systems and inferred tectonic history, central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, T.F.

    1983-08-01

    Upper Campanian nonmarine sedimentary rocks exposed between the Wasatch Plateau and the Green River in central Utah record a tectonic transition from thin-skinned deformation in the thrust belt to basement-cored uplift in the foreland region. Sandstones within the section consist of two distinct compositional suites, a lower quartzose petrofacies and an upper lithic petrofacies. The volcanic lithic grains of the Farrer and Tuscher Formations were derived from more distal arc sources to the southwest, and transported through the thrust belt somewhere west of the Kaiparowits region, where time-equivalent sedimentary rocks are also rich in volcanic lithic fragments. Disappearance of volcanicmore » lithics and appearance of pebbles at the top of the Tuscher Formation is interpreted to reflect a latest Campanian reorganization of drainage patterns that marked initial growth of the San Rafael swell and similar basement uplifts to the south of the swell. Contemporaneous fluvial systems that deposited the uppermost part of the Price River Formation in the Wasatch Plateau were apparently unaffected by the uplift and continued to flow northeast. Depositional patterns thus indicate that initial growth of the San Rafael swell was probably concurrent with late deformation in the thrust belt. Depositional onlap across the Mesaverde Group by a largely post-tectonic assemblage of fluvial and lacustrine strata (North Horn Formation) indicates a minimum late Paleocene age for growth of the San Rafael swell and deformation within the thrust belt.« less

  17. Passive bookshelf faulting driven by gravitational spreading as the cause of the tiger-stripe-fracture formation and development in the South Polar Terrain of Enceladus

    NASA Astrophysics Data System (ADS)

    Yin, A.; Pappalardo, R. T.

    2013-12-01

    Detailed photogeologic mapping of the tiger-stripe fractures in the South Polar Terrain (SPT) of Enceladus indicates that these structures are left-slip faults and terminate at hook-shaped fold-thrust zones and/or Y-shaped horsetail splay-fault zones. The semi-square-shaped tectonic domain that hosts the tiger-stripe faults is bounded by right-slip and left-slip faults on the north and south edges and fold-thrust and extensional zones on the western and eastern edges. We explain the above observations by a passive bookshelf-faulting model in which individual tiger-stripe faults are bounded by deformable wall rocks accommodating distributed deformation. Based on topographic data, we suggest that gravitational spreading had caused the SPT to spread unevenly from west to east. This process was accommodated by right-slip and left-slip faulting on the north and south sides and thrusting and extension along the eastern and southern margins of the tiger-stripe tectonic domain. The uneven spreading, expressed by a gradual northward increase in the number of extensional faults and thrusts/folds along the western and eastern margins, was accommodated by distributed right-slip simple shear across the whole tiger-stripe tectonic domain. This mode of deformation in turn resulted in the development of a passive bookshelf-fault system characterized by left-slip faulting on individual tiger-stripe fractures.

  18. Foreland crustal structure of the New York recess, northeastern United States

    USGS Publications Warehouse

    Herman, G.C.; Monteverde, D.H.; Schlische, R.W.; Pitcher, D.M.

    1997-01-01

    A new structural model for the northeast part of the Central Appalachian foreland and fold-and-thrust belt is based on detailed field mapping, geophysical data, and balanced cross-section analysis. The model demonstrates that the region contains a multiply deformed, parautochthonous fold-and-thrust system of Paleozoic age. Our interpretations differ from previous ones in which the entire region north of the Newark basin was considered to be allochthonous. The new interpretation requires a substantial decrease in Paleozoic tectonic shortening northeastward from adjacent parts of the Central Appalachian foreland and illustrates the common occurrence of back-thrusting within the region. During early Paleozoic time northern New Jersey consisted of a Taconic orogenic foreland in which cover folds (F1) involved lower Paleozoic carbonate and flysch overlying Middle Proterozoic basement. F1 folds are open and upright in the foreland and more gently inclined to recumbent southeastward toward the trace of the Taconic allochthons. F1 structures were cut and transported by a fold-and-thrust system of the Allegheny orogeny. This thrust system mostly involves synthetic faults originating from a master decollement rooted in Proterozoic basement. Antithetic faults locally modify early synthetic overthrusts and S1 cleavage in lower Paleozoic cover and show out-of-sequence structural development. The synthetic parts of the regional thrust system are bounded in the northwestern foreland by blind antithetic faults interpreted from seismic-reflection data. This antithetic faulting probably represents Paleozoic reactivation of Late Proterozoic basement faults. Tectonic contraction in overlying cover occurred by wedge faulting where synthetic and antithetic components of the foreland fault system overlap. S2 cleavage in the Paleozoic cover stems from Alleghanian shortening and flattening and commonly occurs in the footwall of large overthrust sheets. Paleozoic structures in Proterozoic basement include fault blocks bounded by high-angle faults and low- to moderate-angle shear zones that locally produce overlying cover folds. Broad and open folds in basement probably reflect shear-zone displacement of subhorizontal foliation. Our cross-section interpretations require limited involvement of lower Paleozoic cover folds in the footwalls of major overthrust faults. Palinspastic restoration of F1 folds produces an arched passive-margin sequence. The tectonic contraction for the Valley and Ridge province and southeastern Pocono Plateau is about 25 km, and tectonic wedge angles are 8??-11??.

  19. New structural and stratigraphic insights for northwestern Pakistan from field and Landsat Thematic Mapper data

    USGS Publications Warehouse

    Robinson, J.; Beck, R.; Gnos, E.; Vincent, R.K.

    2000-01-01

    The remote Waziristan region of northwestern Pakistan includes outcrops of the India-Asia suture zone. The excellent exposure of the Waziristan ophiolite and associated sedimentary lithosomes and their inaccessibility made the use of Landsat Thematic Mapper (TM) data desirable in this study. Landsat TM data were used to create a spectral ratio image of bands 3/4, 5/4, and 7/5, displayed as red, green, and blue, respectively, and a principal component analysis image of bands 4, 5, and 7 (RGB). These images were interpreted in the context of available geologic maps, limited field work, and biostratigraphic, lithostratigraphic, and radiometric data. They were used to create a coherent geologic map of Waziristan and cross section of the area that document five tectonic units in the region and provide a new and more detailed tectonic history for the region. The lowest unit is comprised of Indian shelf sediments that were thrust under the Waziristan ophiolite. The ophiolite has been tectonically shuffled and consists of two separate tectonic units. The top thrust sheet is a nappe comprised of distal Triassic to Lower Cretaceous Neotethyan sediments that were underthrust during the Late Cretaceous by the ophiolite riding on Indian shelf strata. The uppermost unit contains unconformable Tertiary and younger strata. The thrust sheets show that the Waziristan ophiolite was obducted during Late Cretaceous time and imply that the Paleocene and Eocene deformation represents collision of India with the Kabul block and/or Asia.

  20. The present geodynamics of Albania

    NASA Astrophysics Data System (ADS)

    Koçi, Rexhep; Dushi, Edmond; Begu, Enkela; Bozo, Rrezart

    2017-04-01

    Geological structure of Albania comprises different formations widely varying in age beginning since the Paleozoic era to Quaternary. From the tectonic stand point Albanides belongs to folded Alpine belt, representing a particular node in the geology of the Mediterranean Alps. Albanian geological environment have a long and complicated history. It is folded and dissected by many tectonic faults. During the Alpine geological evolution of Albanides, an imbricated tectonic thrusting system, with considerable amplitude, has been developed in the outer part, while a series of normal faults have been developed in the inner part. The convergence of the geological structures is southwest oriented, from inner to external tectonic area, associated by mass displacement. These displacements can be observed nowadays from geodynamic measurements, of the GPS networks in Albania, and the surrounding. GPS data for Albanian territory, recorded during a 10-years period, in reference to the Eurasia and Apulia plates, reveal an important pre-Pliocene compression of the outer Albanides, including Sazani, Ionian and Kruja zones, undergoing a major post-Pliocene shortening in the western side. The outer Albanides are structured by infringements of over-thrust and up-thrust type, by NNW-SSE oriented folds, which in some cases are dislocated by transverse faults, of NE orientation. Actual results from GPS measurements of the points located in outer Albanides show a displacement towards west and northwest in relation to Eurasia, and southwest in relation to Apulia block. From numerous focal mechanisms solutions (FMS) of shallow earthquakes it results a horizontal compression dominating along the Adriatic collision contact. Active tectonics in this area is reflected from historical and instrumental strong earthquakes. Quite often, they are generated from the activation of tectonic faults, which in turn are responsible for this seismic activity of the country. Referring to the historical data, the whole territory of Balkans and its southwest territory in particular, is characterized by a high seismicity rate. In general, Albanian seismicity is characterized by an intense micro-activity (1.0 ≤ M ≤ 3.0), by many small earthquakes (3.0 ≤ M ≤ 5.0), by medium size earthquakes (5.0 ≤ M ≤ 7.0) and very seldom by strong ones (M > 7.0). This paper aims a general representation of the geodynamics of Albania, based on recent results from earthquake and GPS instrumental data. Keywords: Albanides, frontal collision, thrusting system, normal faults

  1. From nappe stacking to extensional detachments at the contact between the Carpathians and Dinarides - The Jastrebac Mountains of Central Serbia

    NASA Astrophysics Data System (ADS)

    Erak, Dalibor; Matenco, Liviu; Toljić, Marinko; Stojadinović, Uroš; Andriessen, Paul A. M.; Willingshofer, Ernst; Ducea, Mihai N.

    2017-07-01

    Reactivation of inherited nappe contacts is a common process in orogenic areas affected by back-arc extension. The amount of back-arc extension is often variable along the orogenic strike, owing to the evolution of arcuated mountain chains during stages of rapid slab retreat. This evolution creates low rates of extension near rotation poles, where kinematics and interplay with the pre-existing orogenic structure are less understood. The amount of Miocene extension recorded by the Pannonian Basin of Central Europe decreases SE-wards along the inherited Cretaceous - Paleogene contact between the Dinarides and Carpathian Mountains. Our study combines kinematic data obtained from field and micro-structural observations assisted with fission track thermochronological analysis and U-Pb zircon dating to demonstrate a complex poly-phase evolution in the key area of the Jastrebac Mountains of Serbia. A first event of Late Cretaceous exhumation was followed by latest Cretaceous - Eocene thrusting and magmatism related to a continental collision that sutured the accretionary wedge containing contractional trench turbidites. The suture zone was subsequently reactivated and exhumed by a newly observed Miocene extensional detachment that lasted longer in the Jastrebac Mountains when compared with similar structures situated elsewhere in the same structural position. Such extensional zones situated near the pole of extensional-driven rotation favour late stage truncations and migration of extension in a hanging-wall direction, while directions of tectonic transport show significant differences in short distances across the strike of major structures.

  2. Late Alpine to recent thick-skinned tectonics of the central Swiss Molasse Basin, Canton of Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Mock, Samuel; Allenbach, Robin; Wehrens, Philip; Reynolds, Lance; Kurmann-Matzenauer, Eva; Michael, Salomè; Herwegh, Marco

    2017-04-01

    The Swiss Molasse Basin (SMB) forms part of the North Alpine Foreland Basin. It is a typical peripheral foreland basin, which developed in Paleogene and Neogene times in response to flexural bending of the European lithosphere induced by the orogenic loading of the advancing Alpine thrust wedge. The tectonics of the SMB and the role of Paleozoic and Mesozoic structures are still poorly understood. It is widely accepted that during the main deformation phase of the Jura fold-and-thrust belt, the SMB was riding piggy-back above a major detachment horizon situated within Triassic evaporites. In recent years it has been observed that the Jura fold-and-thrust belt is today deforming in a thick-skinned tectonic style. As for the western and central SMB, most authors still argue in favor of a classical foreland type, thin-skinned style of deformation. Based on the geological 3D modeling of seismic interpretations, we present new insights into the structural configuration of the central SMB. Revised and new interpretations of 2D reflection seismic data from the 1960s to the 1980s reveal a major strike-slip fault zone affecting not only the Mesozoic and Cenozoic cover, but also the crystalline basement beneath. The fault zone reactivated late Paleozoic synsedimentary normal faults bounding a Permo-Carboniferous trough. Basement-involved thrusting observed in the southern part of the SMB seems to be controlled by the presence of slightly inverted Permo-Carboniferous troughs as well. These observations, combined with a compiled structural map and the distribution of recent earthquake hypocenters suggest a late stage, NNW-SSE directed, compressional thick-skinned and strike-slip dominated tectonic activity of the central SMB, post-dating the main deformation phase of the Jura fold-and-thrust belt. This still ongoing deformation might be related to the slab rollback of the European plate and the associated lower crustal delamination as recently suggested by Singer et al. (2014). References: Singer, J., Diehl, T., Husen, S., Kissling, E., Duretz, T., 2014. Alpine lithosphere slab rollback causing lower crustal seismicity in northern foreland. Earth Planet. Sci. Lett. 397, 42-56. doi:10.1016/j.epsl.2014.04.002

  3. Late Neogene and Active Tectonics along the Northern Margin of the Central Anatolian Plateau,TURKEY

    NASA Astrophysics Data System (ADS)

    Yildirim, C.; Schildgen, T. F.; Melnick, D.; Echtler, H. P.; Strecker, M. R.

    2009-12-01

    Margins of orogenic plateaus are conspicuous geomorphic provinces that archive tectonic and climatic variations related to surface uplift. Their growth is associated with spatial and temporal variations of mode and rate of tectonics and surface processes. Those processes can be strongly linked to the evolution of margins and plateaus thorough time. As one of the major morpho-tectonic provinces of Turkey, the Central Pontides (coinciding with the northern margin of the Central Anatolian Plateau (CAP)) display a remarkable topography and present valuable geologic and geomorphic indicators to identify active tectonics. Morpho-tectonic analysis, geological cross-sections, seismic profiles, and geodetic analysis reveal continuous deformation characterized by brittle faults from Late Miocene to recent across the northern margin of the CAP. In the Sinop Peninsula and offshore in the southern Black Sea, pervasive faulting and folding and uplift of Late Miocene to Quaternary marine deposits is related to active margin tectonics of the offshore southern Black Sea thrust and the onshore Balifaki and Erikli faults. In the Kastamonu-Boyabat sedimentary basin, the Late Miocene to Quaternary continental equivalents are strongly deformed by the Ekinveren Fault. This vergent inverse and thrust fault with overstepping en echelon segments deforms not only Quaternary travertines and conglomerates, but also patterns of the Pleistocene to Holocene drainage systems. In the southern Kastamonu-Boyabat basin, an antithetic thrust fault of the Ekinveren Fault system deformed also Quaternary fluviatile terrace deposits. Farther south, a dextral transpressive splay of the North Anatolian Fault (NAF) deforms pediment surfaces and forms the northern flank of the Ilgaz active mountain range. The Ilgaz Range rises up to 2587 m.a.s.l and is delimited by active segments of the NAF.The Central Pontides are located at the apex of northward convex arc of the NAF. Geodetic analysis indicate a deviation of the slip vectors and strain partitioning in the Central Pontides due to the large restraining bend geometry of the NAF. DEM analysis and field observations reveal that the Central Pontides integrate an active bivergent wedge, indicating out-of sequence thrusting and topographical asymmetry, with a gentle pro-wedge northern slope and a steep retro-wedge southern slopes, and regional surface tilting from south to north. Uplifted presumably Late Pleistocene to Holocene marine terraces 4 to 40 m.a.s.l. along the coast and well developed pediment and fill and strath terrace surfaces ranging from 10 to 300 m above along the Gokirmak and Kizilirmak rivers will provide chronological constraints on the uplift and incision rates of the study area.

  4. Final « pop-up » structural reactivation of the internal part of an orogenic wedge: west-central Pyrenees

    NASA Astrophysics Data System (ADS)

    Meresse, F.; Jolivet, M.; Labaume, P.; Teixell, A.

    2009-04-01

    Université Montpellier 2, INSU-CNRS, Laboratoire Géosciences Montpellier, cc060, 34095 Montpellier Cedex 5, France florian.meresse@gm.univ-montp2.fr Tectonics-sedimentation relationships are often used to describe the tectonic evolution of orogenic wedges. However, does the sedimentary record associated to the build-up of the wedge recall the entire tectonic history? Numerous studies based on tectono-stratigraphic and thermochronological data, as well as numerical modeling, have demonstrated that on the large scale the growth of the Pyrenees is characterized by a southward propagation of the deformation (e.g., Muñoz, 1992; Morris et al., 1998; Fitzgerald et al., 1999; Beaumont et al., 2000). However, in the west-central Pyrenees, recent thermochronological data have suggested that the in-sequence propagation of the basement thrust system was followed by out-of-sequence (re)activation of hinterland structures after the South-Pyrenean Frontal Thrust had been sealed (Jolivet et al., 2007). To better describe the structural evolution of the Pyrenean prism, we focused our work on a NNE-SSW transect from the northern piedmont (Bagnères-de-Bigorre), through the Axial Zone and down to the Jaca basin where tectonics-sedimentation relationships have been extensively described (e.g., Teixell, 1996). A crustal scale cross-section combined with detailed apatite fission track analysis are used as a case study to unravel in detail the deformation history. Apatite fission track data from the Bagnères-de-Bigorre Paleozoic massif (central ages: 41-42 Ma) and the Lesponne Hercynian granite (central age: 31 Ma) located in the North-Pyrenean Zone and in the north of the Axial Zone, respectively, reveal Middle Eocene-Early Oligocene denudation ages of the northern part of the wedge. Immediately to the south, central ages around 24-20 Ma attest to a Latest Oligocene-Early Miocene denudation ages of the Chiroulet granite. According to the structural context, these results suggest a late exhumation stage associated with the tectonic (re)activation of north-vergent thrusts in the northern part of the Axial Zone. Similarly, results from the southern flank of the Axial Zone and the northern part of the Jaca basin suggest a denudation age around 18 Ma (Meresse et al., this volume), which may be linked to out-of-sequence tectonic movements on a south-vergent basement thrust (Bielsa thrust, Jolivet et al., 2007). In conclusion, thermochronological data reveal an Early Miocene "pop-up" exhumation of the internal parts of the Pyrenean wedge, which also shows that the Pyrenean compressional deformation ended later than the generally accepted Aquitanian age deduced from tectonics-sedimentation relationships. This late exhumation was achieved through out-of-sequence (re)activation of hinterland structures linked to a final internal thickening stage in the orogenic prism.

  5. Development of a glacially dominated shelf-slope-fan system in tectonically active southeast Alaska: Results of IODP Expedition 341 core-log-seismic integrated studies at glacial cycle resolution

    NASA Astrophysics Data System (ADS)

    Gulick, Sean; Jaeger, John; Mix, Alan; Swartz, John; Worthington, Lindsay; Reece, Robert

    2014-05-01

    Collision of the Yakutat microplate with North American formed the St. Elias Mountains in coastal Gulf of Alaska. While the tectonic driver for orogenesis has been ongoing since the Miocene, results from the Integrated Ocean Drilling Program Expedition 341 suggests that direct climatic perturbation of active orogenesis through glacial erosion is non-linear. Geophysical studies of the glaciated continental margin, slope, and adjacent deep-sea Surveyor Fan allow examination of the glaciated orogen from source to sink. Using high-resolution and crustal-scale seismic data and through comparison with other glaciated margins, we can identify key diagnostic seismic morphologies and facies indicative of glacial proximity and sediment routing. Expedition drilling results calibrated these images suggesting a timeline for initial advances of the Cordilleran ice sheet related glacial systems onto the shelf and a further timeline for the development of ice streams that reach the shelf edge. Comparisons can be made within this single margin between evolution of the tectonic-glacial system where erosion and sediment transport are occurring within a fold and thrust belt versus on a more stable shelf region. Onshore the Bering-Bagley glacial system in the west flows across the Yakataga fold and thrust belt, allowing examination of whether glacial erosion can cause tectonic feedbacks, whereas offshore the Bering-Bagley system interacts with the Pamplona Zone thrusts in a region of significant sediment accommodation. Results from Expedition 341 imply that timing of glacial advance to the shelf edge in this region may be driven by the necessity of filling up the accommodation through aggradation followed by progradation and thus is autogenic. In contrast the Malaspina-Hubbard glacial system to the east encountered significantly less accommodation and more directly responded to climatic forcing including showing outer shelf glacial occupation since the mid-Pleistocene transition-MPT to 100 kyr glacial-interglacial cycles. Examination of the sink for both of these systems, which includes the Surveyor Fan and Aleutian Trench wedge, demonstrates a clear climatic driver for sediment flux to the deep sea. The first appearance of ice-rafted debris at our distal drill site closely approximates the start of the Pleistocene and a doubling of sediment accumulation accompanies the MPT. Converting sediment volumes just within the deep-sea sinks back to erosion rates in the orogen and correlating with changes in exhumation rates from thermochronology demonstrates a lack of accelerated tectonic response to the intensification of Northern Hemisphere glaciations at the start of the Pleistocene but increased shortening and exhumation of sediments at the MPT. The form of tectonic response differs between out-of-sequence thrusting or antiformal stacking within the fold and thrust belt to the west and a near vertical advection of material in a tectonic aneurysm in the core of the orogen to the east.

  6. Identification of new NE-trending deep-seated faults and tectonic pattern updating in northern Tunisia (Mogodos-Bizerte region), insights from field and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Essid, El Mabrouk; Kadri, Ali; Inoubli, Mohamed Hedi; Zargouni, Fouad

    2016-07-01

    The northern Tunisia is occupied by the Tellian domain constituent the eastern end of the Maghrebides, Alpine fold-thrust belt. Study area includes partially the Tellian domain (Mogodos belt) and its foreland (Bizerte region). Most of this region outcrops consist of Numidian thrust sheet flysch attributed to the lower Oligocene-Burdigalian. In the study area, the major fault systems are still subject of discussion. The Numidian nappe structure, the distribution of basalt and Triassic outcrops within and at the front of this Tellian domain deserve more explanation. In this work we intend to update the structural scheme and the tectonic evolution of the northern Tunisia, taking into account salt tectonics and magmatism. The updated tectonic evolution will be integrated in the geodynamic framework of the Central Mediterranean. For this purpose, we have analyzed morphologic, seismic and structural data. The compilation of the results has allowed the identification of new regional NE-trending faults dipping towards the NW: the Bled el Aouana-Bizerte, the Sejnane-Ras Enjla and the Oued el Harka faults. They correspond to the reactivation of deep-seated normal faults splaying on the Triassic evaporites. This fault system constitutes the main component of the northern Tunisia structural scheme and has influenced its tectonic evolution marked by the main following stages. The Tellian thrust-sheets were immobilized at the uppermost Langhian. During the major Tortonian NW-trending compressive phase, these faults were reactivated with reverse kinematics and controlled the distribution of the post-nappes Neogene continental deposits. At the early Pleistocene, a compressive NNW-trending event has reactivated again these faults with sinistral-reverse movements and deformed the post-nappes Neogene series. Late Quaternary to Actual, the tectonic regime continues to be compressive with a NNW-trending maximum horizontal stress.

  7. Tectonic stratification and seismicity of the accretionary prism of the Azerbaijani part of Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Alizade, Akif; Kangarli, Talat; Aliyev, Fuad

    2013-04-01

    The Greater Caucasus has formed during last stage of the tectogenesis in a geodynamic condition of the lateral compression, peculiar to the zone pseudo-subduction interaction zone between Northern and Southern Caucasian continental microplates. Its present day structure formed as a result of horizontal movements of the different phases and sub-phases of Alpine tectogenesis (from late Cimmerian to Valakhian), and is generally regarded as zone where, along Zangi deformation, the insular arc formations of the Northern edge of South Caucasian microplate thrust under the Meso-Cenozoic substantial complex contained in the facials of marginal sea of Greater Caucasus. The last, in its turn, has been pushed beneath the North-Caucasus continental margin of the Scythian plate along Main Caucasus Thrust fault. Data collected from the territory of Azerbaijan and its' sector of the Caspian area stands for pseudo-subduction interaction of microplates which resulted in the tectonic stratification of the continental slope of Alpine formations, marginal sea and insular arc into different scale plates of south vergent combined into napping complexes. In the orogeny's present structure, tectonically stratified Alpine substantial complex of the marginal sea of Greater Caucasus bordered by Main Caucasus and Zangi thrusts, is represented by allochthonous south vergent accretionary prism in the front of first deformation with its' root buried under the southern border of Scythian plate. Allocated beneath mentioned prism, the autochthonous bedding is presented by Meso-Cenosoic complex of the Northern flank of the South-Caucasian miroplate, which is in its' turn crushed and lensed into southward shifted tectonic microplates gently overlapping the northern flank of Kura flexure along Ganykh-Ayrichay-Alyat thrust. Data of real-time GPS measurement of regional geodynamics indicates that pseudo-subduction of South Caucasian microplate under the North Caucasian microplate still continues during present stage of alpine tectogenesis. Among others, ongoing pseudo-subduction is indicated by data of regional seismicity which is irregularly distributed by depth (foci levels 2-6; 8-12; 17-22; 25-45 km). Horizontal and vertical seismic zoning is explained by Earth crust's block divisibility and tectonic stratification, within the structure of which the earthquake focuses are mainly confined to the crossing nodes of differently oriented ruptures, or to the planes of deep tectonic disruptions and lateral displacements along unstable contacts of the substantial complexes with various degree of competence. At present stage of tectogenesis, seismically most active are the structures of the northern flank of South Caucasian microplate, controlled by Ganyx-Ayrichay-Alyat deep thrust with "General Caucasus" spread in the west, and sub-meridian right-lateral strike slip zone of the Western Caspian fault in the east of Azerbaijani part of Greater Caucasus.

  8. Synthrusting deposition of the Pennsylvanian and Permian Strathearn Formation, Northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Theodore, T.G.; Berger, V.I.; Singer, D.A.; Harris, A.G.; Stevens, C.H.

    2004-01-01

    The middle Upper Pennsylvanian and middle Lower Permian Strathearn Formation belongs to the overlap assemblage of the Antler orogen in Nevada. At Beaver Peak, near the Carlin Trend of gold deposits, it contains synorogenic conglomerate deposits associated with emplacement of a regionally extensive, 1-km-thick tectonic wedge that is floored by the Coyote thrust. Normal marine conodont biofacies throughout the Strathearn Formation suggest middle shelf or deeper, depositional environments. The allochthon floored by the Coyote thrust has been thrust above a middle Upper Pennsylvanian, lower conglomerate unit of the Strathearn Formation. A middle Lower Permian upper conglomerate unit, the highest unit recognized in the Strathearn Formation, as well as similarly aged dolomitic siltstone, onlap directly onto Ordovician quartzarenite of the Vinini Formation that makes up most of the Coyote allochthon. Quartz grains and quartzarenite fragments of variable roundness and shape in the conglomerate units were derived from the presently adjoining tectonic lobe of mostly quartzarenite that advanced southeast (present geographic coordinates) during the late Paleozoic into the developing Strathearn basin. Chert fragments in the conglomerates probably were derived mostly from Devonian Slaven Chert, including a widespread thick me??lange unit of the Slaven Chert in the footwall of the Coyote thrust.Lithologic and shape ratio data from approximately 4200 clasts at 17 sites of the two major conglomerate units in the Strathearn Formation at Beaver Peak are roughly similar in that they contain only chert and quartzarenite clasts, and chert clasts predominate in both units. They differ in the relative proportion of the two lithologies whereby quartzarenite clasts increase sixfold in the upper unit (middle Lower Permian) versus its content in the lower conglomerate unit. Relations at the unconformity between the upper conglomerate unit and its underlying quartzarenite shows quartzarenite fragments actually breaking away from an immediately subjacent source. Ordovocian quartzarenite, which forms a tectonically uplifted wedge with the Coyote thrust at its base, became a source region for much of the quartzarenite detritus deposited preferentially in the upper parts of the Strathearn Formation. The conglomerate units of the Strathearn Formation temporally bracket emplacement of the Coyote thrust. Thrusting related to contractional reactivation of the Robert Mountains thrust system largely was completed by middle Early Permian. ?? 2004 Published by Elsevier B.V.

  9. Magnetic fabrics in tectonically inverted sedimentary basins: a review

    NASA Astrophysics Data System (ADS)

    García-Lasanta, Cristina; Román-Berdiel, Teresa; Casas-Sainz, Antonio; Oliva-Urcia, Belén; Soto, Ruth; Izquierdo-Llavall, Esther

    2017-04-01

    Magnetic fabric studies in sedimentary rocks were firstly focused on strongly deformed tectonic contexts, such as fold-and-thrust belts. As measurement techniques were improved by the introduction of high-resolution equipments (e.g. KLY3-S and more recent Kappabridge susceptometers from AGICO Inc., Czech Republic), more complex tectonic contexts could be subjected to anisotropy of magnetic susceptibility (AMS) analyses in order to describe the relationship between tectonic conditions and the orientation and shape of the resultant magnetic ellipsoids. One of the most common complex tectonic frames involving deformed sedimentary rocks are inverted extensional basins. In the last decade, multiple AMS studies revealed that the magnetic fabric associated with the extensional stage (i.e. a primary magnetic fabric) can be preserved despite the occurrence of subsequent deformational processes. In these cases, magnetic fabrics may provide valuable information about the geometry and kinematics of the extensional episode (i.e. magnetic ellipsoids with their minimum susceptibility axis oriented perpendicular to the deposit plane and magnetic lineation oriented parallel to the extension direction). On the other hand, several of these studies have also determined how the subsequent compressional stage can modify the primary extensional fabric in some cases, particularly in areas subjected to more intense deformation (with development of compression-related cleavage). In this contribution we present a compilation of AMS studies developed in sedimentary basins that underwent different degree of tectonic inversion during their history, in order to describe the relationship of this degree of deformation and the degree of imprint that tectonic conditions have in the previous magnetic ellipsoid (primary extension-related geometry). The inverted basins included in this synthesis are located in the Iberian Peninsula and show: i) weak deformation (W Castilian Branch and Maestrazgo basin, Iberian Range); ii) transport along the hangingwall of thrusts with very slight internal deformation (Organyà basin, Central Pyrenees); iii) record of incipient compressive strain and foliation development (Cabuerniga basin, Basque-Cantabrian Basin; Lusitanian basin, W Portugal); iv) complete inversion associated with a remarkable transport along the hangingwall of thrusts and relatively large internal deformation (Cameros basin, Iberian Range); and v) major folding and flattening linked to foliation (Mauléon basin, Northern Pyrenees; Nogueres unit, Pyrenean Axial Zone).

  10. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling

    NASA Astrophysics Data System (ADS)

    Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael

    2016-03-01

    Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.

  11. SW-NE extensional low-angle faults in Mallorca, key for integrating the Balearic Promontory in the Miocene tectonic evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Moragues, Lluis; Azañón, Jose Miguel; Roldán, Francisco J.; Pérez-Peña, Jose Vicente

    2017-04-01

    Mallorca forms part of the external thrust belt of the Betics. However, presently, it is surrounded by thin crust of the Valencia Trough and the Algero-balearic basin and is disconnected from the Internal Betic domains. The main tectonic structures described in the island correspond to thrusts that structured the Tramuntana and Llevant Serres during the Late Oligocene to Middle Miocene. Meanwhile, normal faults with NW-SE transport determined the development of Serravallian to Tortonian basins. Here we present a preliminary tectonic model for Mallorca after revising the contacts between supposed thrusts in Tramuntana and Serres de Llevant. This analysis shows the existence of important low-angle extensional faults with SW-NE transport, older than the high-angle NW-SE directed extensional system. Extensional deformation is more pervasive towards the Serres de Llevant where normal faults represent most of the contacts between units. This extensional gradient is favored by ENE-WSW strike-slip transfer faults, and probably, by the faults that bound the southeastern margin of Mallorca. These faults produced the extensional collapse of Mallorca during the Late Langhian-Serravallian, dismembering the external from the internal zones, which now occupy a more westerly position in the core of the Betics.

  12. Late Miocene-Early Pliocene reactivation of the Main Boundary Thrust: Evidence from the seismites in southeastern Kumaun Himalaya, India

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Srivastava, Deepak C.; Shah, Jyoti

    2013-05-01

    Tectonic history of the Himalaya is punctuated by successive development of the faults that run along the boundaries between different lithotectonic terrains. The Main Boundary Fault, defining the southern limit of the Lesser Himalayan terrain, is tectonically most active. A review of published literature reveals that the nature and age of reactivation events on the Main Boundary Fault is one of the poorly understood aspects of the Himalayan orogen. By systematic outcrop mapping of the seismites, this study identifies a Late Miocene-Early Pliocene reactivation on the Main Boundary Thrust in southeast Kumaun Himalaya. Relatively friable and cohesionless Neogene sedimentary sequences host abundant soft-sediment deformation structures in the vicinity of the Main Boundary Thrust. Among a large variety of structures, deformed cross-beds, liquefaction pockets, slump folds, convolute laminations, sand dykes, mushroom structures, fluid escape structures, flame and load structures and synsedimentary faults are common. The morphological attributes, the structural association and the distribution pattern of the soft-sediment deformation structures with respect to the Main Boundary Fault strongly suggest their development by seismically triggered liquefaction and fluidization. Available magnetostratigraphic age data imply that the seismites were developed during a Late Miocene-Early Pliocene slip on the Main Boundary Thrust. The hypocenter of the main seismic event may lie on the Main Boundary Thrust or to the north of the study area on an unknown fault or the Basal Detachment Thrust.

  13. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    NASA Astrophysics Data System (ADS)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional shear zone formed at or near the brittle-ductile transition under relatively high stress conditions. Moreover, we demonstrate the utility of combined crystallographic and rigid grain methods of vorticity analysis for deducing deformation geometries, kinematics, and tectonic histories in polyphase shear zones.

  14. Fault Dating in the US Rockies and Large Regional Extent of Deformation Pulses Along the Sevier Orogen of North America.

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B.; Lynch, E. A.; Pana, D.; Yonkee, A.

    2017-12-01

    Recent Ar dating of clay-rich fault rock in the Canadian Rockies identified multiple orogenic pulses: Late Jurassic (163-146 Ma), Mid-Cretaceous (103-99 Ma), Late Cretaceous (76-72 Ma) and Eocene (54-52 Ma; Pana and van der Pluijm, GSAB 2015). New dating in the US Rockies combined with ages in the most frontal section along an Idaho-Wyoming transect show a remarkably similar age pattern: Meade Thrust, 108-102 Ma; (S)Absaroka Thrust, 73 Ma; Darby-Bear Thrust, 56-50 Ma. These radiometric fault ages in the US Rockies match field and tectono-stratigraphic predictions, analogues to those in the Canadian Rockies. Thus, a remarkably long (>1500km) lateral tract along the North American Sevier orogen is characterized by at least three major orogenic pulses that are structurally contiguous. These orogenic pulses are progressively younger in the direction of easterly thrust fault motion (toward cratonic interior) and are separated by long periods of relative tectonic quiescence. We interpret the extensive regional continuity of deformation pulses and tectonic quiescence along the Sevier Orogen as the result of three plate reorganization events in western North America since the Late Jurassic.

  15. Denan Depression controlled by northeast-directed Olongbulak Thrust Zone in northeastern Qaidam basin: Implications for growth of northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yu, Xiangjiang; Guo, Zhaojie; Zhang, Qiquan; Cheng, Xiang; Du, Wei; Wang, Zhendong; Bian, Qing

    2017-10-01

    The Denan Depression is a unique depression in the northeastern Qaidam basin, with a maximum Cenozoic sedimentary thickness of 5 km. Detailed field work, interpretation of seismic profiles and analyzation of well data were conducted to define the Cenozoic tectonic evolution of the northeastern Qaidam basin. All geological evidences indicate that the Denan Depression is controlled by the northeast-directed Olongbulak Thrust at its southern boundary. The Denan Depression grew in concert with the development of the northeast-directed Olongbulak Thrust at least since it began to accept the Xiaganchaigou Formation, supporting the early Cenozoic growth of the northern Tibetan Plateau. Surface and subsurface data both point to enhanced tectonic activity since the Quaternary in the northeastern Qaidam basin, leading to a more individual Denan Depression relative to the main Qaidam basin. The northern boundary of the Denan Depression is a passive boundary, and no foreland developed at the northern slope of the Denan Depression.

  16. Using apatite fission track thermochronology to document the deformation sequence in an exhumed foreland basin: an example from the southern Pyrenees.

    NASA Astrophysics Data System (ADS)

    Meresse, F.; Labaume, P.; Jolivet, M.; Teixell, A.

    2009-04-01

    Université Montpellier 2, INSU-CNRS, Laboratoire Géosciences Montpellier, cc060, 34095 Montpellier Cedex 5, France florian.meresse@gm.univ-montp2.fr The study of foreland basins provides important constraints on the evolution of orogenic wedges. In particular, the study of tectonics-sedimentation relationships is essential to date the tectonic activity. However, processes linked to wedge growth are not always completely recorded by the tecto-sedimentary markers, and thermochronological study of the basin-fill can provide further insights. In this work, we have combined apatite fission track analysis (apatite FTA) with structural analysis to precise the timing of the deformation sequence and to characterise the coupling between thrust activity, burial and denudation in the south-Pyrenean foreland basin, a proximal foredeep of the Pyrenees that has been incorporated in the Pyrenean thrust wedge. We have focused the study on a NNE-SSW cross-section of the south-vergent thrust system from the southern flank of the Axial Zone to the South-Pyrenean Frontal Thrust (SPFT), in the west-central part of the belt. This section provides a complete transverse of the South-Pyrenean Zone, here corresponding to the Ainsa and Jaca basins. Apatite FTA provides important new constraints on the south-Pyrenean foreland basin evolution: (i) Data show the southward decrease of the fission track reset level, from a total reset (indicating heating at Tmax>110°C) in the Paleozoic of the Axial Zone, to a partial reset (110°C>Tmax>60°C) in the lower-middle Eocene Hecho Group turbidites in the northern part of the Jaca basin, and to the absence of reset (Tmax<60°C) in the middle Eocene-Oligocene continental sediments of the southern part of the Jaca basin. This indicates a decreasing amount of denudation going southwards, from more than 4.5 km in the north to less than 2.5 km in the south if we assume an average geothermal gradient around 25°/km. The structural setting of the Jaca basin attests that the burial of sediments was mainly due to sedimentary accumulation. (ii) Results in the Hecho Group turbidites bring evidence of exhumation around 18 Ma on the Oturia thrust in the middle of the Jaca basin, an age that is younger than the Middle Eocene to Aquitanian deformation registered by tecto-sedimentary relationships in the southernmost part of the basin (Guarga syncline and SPFT). These tectonic movements may be related to the exhumation, at the same time, of the southern flank of the Axial Zone by out-of-sequence thrusting on the Bielsa basement thrust (Jolivet et al., 2007*). Therefore, low-temperature thermochronology reveals an out-of-sequence episode of deformation in the interior of the south-Pyrenean thrust wedge that had remained unknown due to the lack of related sedimentary record. This late tectonic activity is younger than the generally admitted Aquitanian age for the end of the Pyrenean compression, and would be linked to an ultimate internal thickening stage in the orogenic wedge (Meresse et al., this volume). (*Tectonics, 2007, vol. 26, doi: 10.1029/2006TC002080)

  17. Mise en évidence d'un nouveau front de chevauchement dans l'Atlas tunisien oriental de Tunisie par sismique réflexion. Contexte structural régional et rôle du Trias salifère

    NASA Astrophysics Data System (ADS)

    Khomsi, Sami; Bédir, Mourad; Ben Jemia, M. Ghazi; Zouari, Hédi

    2004-11-01

    Structural interpretations of newly acquired seismic lines in northeastern Tunisia allow us to highlight a new thrust front for the Atlasic range of Tunisia, in contrast to the previously Zaghouan fault thrust Dorsale zone. This new thrust front takes place on weakness tectonic zones, materialized by inherited faults anchored on the pre-Triassic basement. This front seems to be a paleogeographic trend controlling structural style and basin fill with a synsedimentary activity. The front is expressed by reverse faults, thrust faults, back thrusting, and decollement structures. To cite this article: S. Khomsi et al., C. R. Geoscience 336 (2004).

  18. Gravity tectonics and seismic gaps in the mantle

    NASA Technical Reports Server (NTRS)

    Liu, H. S.

    1974-01-01

    The concept of gravity tectonics is applied to reveal the major clue as to the conditions which result in the correspondence of seismic and tectonic gaps in the mantle. An asymptotic theory is developed for the calculation of the thrust and moment when a descending lithospheric plate encounters resistance to its downward motion in the mesosphere. Dynamic analysis falls into two parts: (1) deriving equations for forces in the descending lithosphere, (2) deducing moment distribution which causes the detachment of lithosphere. For the analysis of forces a mathematical theory of shells is given. In order to determine the detachment mechanism, solutions of equations are obtained by asymptotic integration. It is found that a thrust N sub phi coupled with a moment M sub phi due to gravitational forces generated by density contrast may play a key role in the initial detachment of a piece of descending lithosphere. The results are in agreement with the observed seismic gaps beneath South America, Toga-Fiji, New Zealand and New Hebrides regions.

  19. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  20. Late Archean greenstone tectonics: Evidence for thermal and thrust-loading lithospheric subsidence from stratigraphic sections in the Slave Province, Canada

    NASA Technical Reports Server (NTRS)

    Kidd, W. S. F.; Kusky, T. M.; Bradley, D. C.

    1988-01-01

    How late Archean tectonics could be seen to have operated in the Slave Province is illustrated. Lithospheric thinning and stretching, with the formation of rifted margins (to continental or island arc fragments), and lithospheric flexural loading of the kind familiar in arcs and mountain belts could be discerned.

  1. Comment on: "Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya", by Kothyari et al. 2017, Geomorphology (285), 272-286

    NASA Astrophysics Data System (ADS)

    Rana, Naresh; Sharma, Shubhra

    2018-01-01

    The recent paper by Kothyari et al. (2017) suggests that the North Almora Thrust (NAT) and a few subsidiary faults in the central Lesser Himalaya were active during the late Quaternary and Holocene. Considering that in the Indian Summer Monsoon (ISM) dominated and tectonically active central Himalaya, the landscape owes their genesis to a coupling between the tectonics and climate. The present study would have been a good contribution toward improving our understanding on this important topic. Unfortunately, the inferences drawn by the authors are based on inadequate/vague field observations, supported by misquoted references, which reflects their poor understanding of the geomorphic processes. For example, authors implicate tectonics in the landform evolution without providing an argument to negate the role of climate (ISM). In view of this, the above contribution does not add anything substantial in improving our existing knowledge of climate-tectonic interaction in landform evolution. On the contrary, if the above publication is not questioned for its scientific merit, it may create enormous confusion and proliferation of wrong scientific data and inferences.

  2. Quaternary extensional and compressional tectonics revealed from Quaternary landforms along Kosi River valley, outer Kumaun Lesser Himalaya, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Kothyari, Girish Ch.; Tripathi, Kavita; Pant, P. D.

    2016-04-01

    A portion of the Kosi River in the outer Kumaun Lesser Himalaya is characterized by wide river course situated south of the Ramgarh Thrust, where huge thickness (~200 m) of the landslide deposits and two to three levels of unpaired fan terraces are present. Brittle normal faults, suggesting extensional tectonics, are recognized in the Quaternary deposits and bedrocks as further supported by surface morphology. Trending E-W, these faults measure from 3 to 5 km in length and are traced as discontinuous linear mini-horst and fault scarps (sackungen) exposed due to cutting across by streams. Active normal faults have displaced the coarsely laminated debris fan deposits at two sites located 550 m apart. At one of the sites, the faults look like bookshelf faulting with the maximum displacement of ~2 m and rotation of the Quaternary boulders along the fault plane is observed. At another site, the maximum displacement measures about 0.60 cm. Thick mud units deposited due to blocking of the streams by landslides are observed within and above the fan deposit. Landslide debris fans and terrace landforms are widely developed; the highest level of fan is observed ~1240 m above mean sea level. At some places, the reworking of the debris fans by streams is characterized by thick laminated sand body. Along the South Almora Thrust and Ramgarh Thrust zones, the valleys are narrow and V-shaped where Quaternary deposits are sparse due to relatively rapid uplift across these thrusts. Along the South Almora Thrust zone, three to four levels of fluvial terraces are observed and have been incised by river exposing the bedrocks due to recent movement along the RT and SAT. Abandoned channel, tilted mud deposits, incised meandering, deep-cut V-shaped valleys and strath terraces indicate rapid uplift of the area. Thick mud sequences in the Quaternary columns indicate damming of streams. A ~10-km-long north-south trending transverse Garampani Fault has offset the Ramgarh Thrust producing tectonic landforms.

  3. Andean subduction orogeny: feedbacks between tectonics, relief evolution and global climate

    NASA Astrophysics Data System (ADS)

    Lacassin, Robin; Armijo, Rolando; Coudurier-Curveur, Aurélie; Carrizo, Daniel

    2016-04-01

    The Andean subduction margin, largest tectonic relief on the Earth (13 km vertically from the trench to the Altiplano) has a stepped morphology, which results of the evolution over the past 50 Myr of two parallel flat-ramp thrust systems, at the - previously unidentified - West Andean Thrust (WAT), and at the subduction interface. The evolution of those thrusts appears concomitant with increasing aridity in the Atacama Desert, which keeps a large-scale record of interplaying tectonics and Cenozoic climate change. The coastal morphology is dominated by the Atacama Bench, a giant uplifted terrace at 1-2km asl. Geomorphic and climatic data, numerical experiments of drainage formation are consistent with the development of a flat Atacama morphology close to sea level, interrupted at ≤10 Ma by tectonic uplift prevailing to the present. This suggests recent trench-ward relief growth by incorporation of the coastal Atacama Bench to the Andes reliefs. Thrust splay structures and other complexities above the subduction interface may explain this relief growth, as well as the distribution of asperities under the oceanward forearc, and the down-dip segmentation of coupling and seismicity on the megathrust. Combining those results with geological knowledge at the scale of the whole Central Andes, we show that the Andean orogeny results from protracted processes of bivergent crustal shortening in a wide region squeezed between the rigid Marginal Block and the S America Plate. The overall growth curve of Andean orogeny over the past 50 Myr appears synchronous with the onset of the "ramp-shaped" temperature decrease since the Early Eocene climatic optimum. Andean growth and global cooling may have operated under the same forcing mechanism at plate-scale, involving viscous flow in the mantle. But Andean growth appears modulated by climatic feedbacks causative of stepwise reductions of erosive power over the Andean margin. The first of such events is coeval with Late Eocene cooling and promoted the eastward propagation of deformation towards the continent interior. The second one, coeval with Late Miocene cooling, is associated with the establishment of hyper-aridity in the Atacama Desert, and is responsible of a tectonic "freezing" which promoted since the triggering of subduction of the Brazilian craton, the Andean bivergent growth, and rapid uplift throughout the Andes-Altiplano. Armijo R., Lacassin R., Coudurier-Curveur A., Carrizo D., Coupled tectonic evolution of Andean orogeny and global climate, Earth Science Reviews, 143, 1-35, doi:10.1016/j.earscirev.2015.01.005, 2015.

  4. Geomorphology and Kinematics of the Nobi-Ise Active Fault Zone, Central Japan: Implications for the kinematic growth of tectonic landforms within an active thrust belt

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Mueller, K. J.; Togo, M.; Takemura, K.; Okada, A.

    2002-12-01

    We present structural models constrained by tectonic geomorphology, surface geologic mapping and high-resolution seismic reflection profiles to define the kinematic evolution and geometry of active fault-related folds along the Nobi-Ise active fault zone (NAFZ). The NAFZ is an active intraplate fault system in central Japan, and consists of a 110-km-long array of active, east-verging reverse faults. We focus on the northern half of the NAFZ, where we use the kinematic evolution of active fault-related folds to constrain rates of slip on underlying blind thrusts and the rate of contraction across the belt since early Quaternary time. Fluvial terraces folded across the east-dipping forelimb, and west-dipping backlimb of the frontal Kuwana anticline suggest that it grows above a stacked sequence of thin-skinned wedge thrusts. Numerous secondary, bedding-parallel thrusts also deform the terraces and are interpreted to form by flexural slip folding that acts to consume slip on the primary blind thrusts across synclinal axial surfaces. Late Holocene fold scarps formed in the floodplain of the Ibi River east of Kuwana anticline coincide with the projected surface trace of the east-vergent wedge thrust tip and indicate the structure has accommodated coseismic (?) kink-band migration of a fault-bend fold during a historic blind thrust earthquake in 1586. A topographic cross-section based on a detailed photogrammetric map suggests 111 m of uplift of ca. 50-80 ka fluvial terraces deposited across the forelimb. For a 35° thrust, this yields the minimum slip rate of 2.7-4.8 mm/yr on the deepest wedge thrust beneath Kuwana anticline. Kinematic analysis for the much larger thrust defined to the west (the Fumotomura fault) suggests that folding of fluvial terraces occurred by trishear fault-propagation folding above a more steeply-dipping (54°), basement-involved blind thrust that propagated upward from the base of the seismogenic crust (about 12 km). Pleistocene growth strata defined by tephra (ca. 1.6 Ma) suggest the Fumotomura fault slips at a rate of 0.7-0.9 mm/yr.

  5. Evaluation of Alternative Seismic Source Characterization Models for the Inner Borderlands of Southern California

    NASA Astrophysics Data System (ADS)

    Hanson, K. L.; Angell, M.; Foxall, W.; Rietman, J.

    2002-12-01

    Alternative source characterizations for seismic hazard analysis are developed to capture the range of plausible fault geometries and interactions between postulated thrusts (i.e., the Oceanside blind thrust (OBT) and San Joaquin Hills blind fault (SJBF)) and strike-slip faults (Rose Canyon (RC)-Newport Inglewood (NI) faults) along the Southern California inner borderlands. Evaluation of 2D and high-resolution shallow seismic data show evidence for a relatively continuous zone of deformation (OZD) linking the RC and NI, both of which are active strike-slip faults, based on seismicity and paleoseismic data. Geodetic data are consistent with NNW-shear and show little or no convergence across the inner borderland, or evidence of a regional "driving" force that would reactivate a large seismogenic thrust (see Moriwaki and others, this volume). Fault and fold deformation observed along the OZD between the RC and NI is consistent with transpressional right lateral slip along a N20W-trending fault zone. Evidence to support reactivation of the entire OBT in the current tectonic environment is not demonstrated. Seismicity and possible late Pleistocene/Holocene reverse faults and associated folding can be explained by localized contraction in left steps or bends in a transpressional right-slip tectonic environment. Clockwise rotation of crustal blocks in the inner borderland (which is not inconsistent with geodetic data suggesting a component of extension across the southern inner borderland) could account for the greater intensity of contractional structures in the hanging wall of the northern OBT west of the OZD. This might explain the local reactivation of portions of the OBT, but would not require reactivation of the entire detachment. Much of the contractional deformation observed in the inner borderland (e.g., the San Mateo thrust belt) could have occurred during the Pliocene. Regional coastal uplift, which has been cited as evidence that the Oceanside and Thirtymile Bank thrusts are active on a regional basis, may be attributed to other processes, such as rift shoulder thermal isostasy (e.g., Kier et.al, Tectonics 2002). We present relative weights for three alternative source models that consider a throughgoing strike-slip fault system (inactive OBT), a regional blind thrust (OBT), or an oblique fault in which strain is partitioned updip onto a strike-slip (offshore strike-slip fault) and reactivated thrust (OBT).

  6. Geospeedometry in the inverted metamorphic gradient of the Nestos Thrust Zone in central Rhodope (Northern Greece)

    NASA Astrophysics Data System (ADS)

    Cioldi, Stefania; Moulas, Evangelos; Burg, Jean-Pierre

    2015-04-01

    Thrust tectonics and inverted metamorphic gradients are major consequences of large and likely fast movements of crustal segments in compressional environments. The purpose of this study is to investigate the tectonic setting and the timescale of inverted metamorphic zonations related to crustal-scale thrusting. The aim is to contribute understanding the link between mechanical and thermal evolution of major thrust zones and to clarify the nature and the origin of orogenic heat. The Rhodope metamorphic complex (Northern Greece) is interpreted as a part of the Alpine-Himalaya orogenic belt and represents a collisional system with an association of both large-scale thrusting and pervasive exhumation tectonics. The Nestos Shear Zone overprints the suture boundary with a NNE-dipping pile of schists displaying inverted isograds. The inverted metamorphic zones start from chlorite-muscovite grade at the bottom and reach kyanite-sillimanite grades with migmatites in the upper structural levels. In order to reconstruct the thermo-tectonic evolution of inverted metamorphic zonation, reliable geochronological data are essential. 40Ar/39Ar geochronology with step-heating technique on white mica from micaschists provided a temporal resolution with the potential to characterize shearing. 40Ar/39Ar dating across the Nestos Shear Zone yields Late Eocene-Early Oligocene (40-30 Ma) cooling (~400-350° C) ages, which correspond to local thermo-deformation episodes linked to late and post-orogenic intrusions. U-Pb Sensitive High Resolution Ion Microprobe (SHRIMP) zircon geochronology on leucosomes from migmatitic orthogneisses were considered to estimate the age of peak metamorphic conditions, contemporaneous with anatexis. U-Pb ages of zircon rims specify regional partial melting during the Early Cretaceous (160-120 Ma). This is in disagreement with previous assertions, which argued that the formation of leucosomes in this region is Late Eocene (42-35 Ma) and implied multiple subductions and multiple metamorphic cycles during orogeny. Garnet geospeedometry considers the kinetic response of minerals and allowed estimating the absolute time-dependent thermal evolution by diffusive element profiles in garnet. Inverse-fitting numerical model considering Fractionation and Diffusion in GarnEt (FRIDGE) calculates garnet composition profiles by introducing P-T-t paths and bulk-rock composition of a specific sample. Preliminary results of Fe-Mg - Ca - Mn garnet fractionation-diffusion modelling indicate very short timescale (between 2 and 5 Ma) for peak metamorphic conditions in the Rhodope collisional system.

  7. Thrust-controlled, gold quartz-vein mineralisation at the Tom's Gully mine, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Sheppard, S.

    1996-01-01

    Metasedimentary and minor metavolcanic rocks of the Early Proterozoic Pine Creek Inlier rest unconformably on Late Archaean granitic basement. Three basin-wide, regional deformation events at ca.1885 1870 Ma are recognised: I) W- to NW-verging thrusts and recumbent folds (D2), II) upright, open to tight, doubly-plunging, NNE- to NNW-trending folds (D3), and III) open, upright, E-trending folds (D4). In the centre of the Pine Creek Inlier, post-tectonic granites (1835 1820 Ma) are spatially, temporally and probably genetically associated with mesothermal gold-quartz vein deposits. The Tom's Gully deposit consists of a shallowly S-dipping quartz reef in graphitic shale and siltstone within the thermal aureole of the post-tectonic (1831 ± 6 Ma) Mt Bundey pluton. Gold mineralisation comprises two(?) SSW-plunging sulphidic ore-shoots which are intimately associated with brecciation and recrystallisation of early barren quartz. Where early quartz is absent from the thrust, gold mineralisation is not developed, indicating that this secondary brittle fracturing was essential to sulphide and gold deposition. The ore-shoots plunge parallel to the trend of D3 fold axes. The reef is hosted by a D2 thrust fault with transport to the NW. D3 folds in the hangingwall and footwall decrease in amplitude toward the reef indicating that, during continued E-W compression, the thrust acted as a décollement zone. Field relationships and microstructural studies suggest that quartz and sulphide were deposited in a reactivated thrust during wrench shear along several NNE-trending faults associated with emplacement of the Mt Bundey pluton.

  8. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  9. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled the Late Cretaceous to Cenozoic evolution of the Magallanes fold-and-thrust belt, yielding the observed deformation pattern.

  10. Stenian Estuarine System and Early Neoproterozoic Microbial Records of Capiru Formation, Southern Ribeira Belt.

    NASA Astrophysics Data System (ADS)

    Cury, L. F.; Santos, L. D. R.; Leandro, R.; Lange, L.; Bahniuk Rumbelsperger, A.

    2017-12-01

    The Capiru formation is a low-grade metasedimentary sequence composed by slates, rhythmic phyllites, quartzites and marbles, disposed and disrupted in tectonic blocks delimited by thrust and strike-slip faults related to oblique collisions in the southern Ribeira Belt, Curitiba terrane, southern Brazil. The rocks of the Capiru formation crops out as a thrust-folded belt, delimited on the north by the transcurrent faults of Lancinha Shear Zone (LSZ), and to the south by thrust faults with large isograde variation. Three lithological sequences are recognized mainly by their compositional and stratigraphic records, including a (i) ferruginous sequence with quartzites, metasandstones and metaconglomerates with goethite/hematite cements and phyllites with magnetite; ii) metadolomites with stromatolites, interbeded with pelitic layers and iii) a metapelitic sequence with metarhythmites and metasandstones with well preserved organic-rich material. The records of two tectonic-metamorphic events related to thrust and transpressive tectonics are heterogeneously developed in all sequences, still been recognized sections with the original stratigraphic succession. The stratigraphic record suggests an estuarine environment with rising sea level developing tidal flats and tidal channels. U-Pb detrital zircon analyses characterizes Rhyacian ages (between 2.2-2.1 Ga) as the main sources, and Stenian ages (between 1.08-1.20 Ga) as maximum age for sedimentation. The metapelites mineral assemblage is composed by quartz, muscovite, sericite, illite, kaolinite, sepiolite, magnetite, goethite, hematite and carbonaceous material with bulk organic carbon content (BOC) ranging from 0.09 to 1.21 (%), a precambrian microbial activity record. The metadolomites are characterized by the presence of stromatolites in different types and dimensions, with microbial activity records supported by SEM-EDS (up to 91% C), with EPS-like morphologies within microporosity, NaCl compounds and clay minerals, probably indicative of microorganism contribution during the deposition.

  11. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands

    USGS Publications Warehouse

    Bradley, D.C.; Leach, D.L.

    2003-01-01

    Most of the world's Mississippi Valley-type (MVT) zinc-lead deposits occur in orogenic forelands. We examine tectonic aspects of foreland evolution as part of a broader study of why some forelands are rich in MVT deposits, whereas others are barren. The type of orogenic foreland (collisional versus Andean-type versus inversion-type) is not a first-order control, because each has MVT deposits (e.g., Northern Arkansas, Pine Point, and Cevennes, respectively). In some MVT districts (e.g., Tri-State and Central Tennessee), mineralization took place atop an orogenic forebulge, a low-amplitude (a few hundred meters), long-wavelength (100-200 km) swell formed by vertical loading of the foreland plate. In the foreland of the active Banda Arc collision zone, a discontinuous forebulge reveals some of the physiographic and geologic complexities of the forebulge environment, and the importance of sea level in determining whether or not a forebulge will emerge and thus be subject to erosion. In addition to those on extant forebulges, some MVT deposits occur immediately below unconformities that originated at a forebulge, only to be subsequently carried toward the orogen by the plate-tectonic conveyor (e.g., Daniel's Harbour and East Tennessee). Likewise, some deposits are located along syn-collisional, flexure-induced normal and strike-slip faults in collisional forelands (e.g., Northern Arkansas, Daniel's Harbour, and Tri-State districts). These findings reveal the importance of lithospheric flexure, and suggest a conceptual tectonic model that accounts for an important subset of MVT deposits-those in the forelands of collisional orogens. The MVT deposits occur both in flat-lying and in thrust-faulted strata; in the latter group, mineralization postdated thrusting in some instances (e.g., Picos de Europa) but may have predated thrusting in other cases (e.g., East Tennessee).

  12. The Role of Proto-Thrusts in Frontal Accretion and Accommodation of Plate Convergence, Hikurangi Subduction Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, P.; Ghisetti, F.; Ellis, S. M.; Morgan, J.

    2016-12-01

    Proto-thrusts are an enigmatic structural feature at the toe of many subduction accretionary wedges. They are commonly recognised in seismic reflection sections as relatively small-displacement (tens of metres) faults seaward of the primary deformation front. Although widely assumed to reflect incipient accretionary deformation and to mark the location of future thrusts, proto-thrusts have received relatively little attention. Few studies have attempted to characterise their displacement properties, evolution, and kinematic role in frontal accretion processes associated with propagation of the interface décollement. In this study, we make use of excellent quality geophysical and bathymetric imaging of the spectacular 25 km-wide Hikurangi margin proto-thrust zone (PTZ), the structure of which varies significantly along strike. From a detailed structural analysis, we provide the first substantial quantitative dataset on proto-thrust geometry, displacement profiles, fault scaling relationships, and fault population characteristics. These analyses provide new insights into the role of inferred stratigraphic inhomogeneity in proto-thrust development, and the role of proto-thrust arrays in frontal accretion. Our observations, combined with our own recently published reconstructions of the wedge, and ongoing numerical simulations, indicate a migrating wave of proto-thrust activity in association with forward-advancement of the décollement. Calculation of tectonic shortening accommodated by the active PTZ east of the present deformation front, from measurements of seismically-imaged fault displacements and estimates of sub-seismic faulting derived from power law relationships, reveal their surprisingly significant role in accommodating regional plate convergence. South of the colliding Bennett Knoll Seamount, the predominantly seaward-vergent PTZ has accommodated 3.3 km of tectonic shortening, of which 70% is at sub-seismic scale. In comparison, north of Bennett Knoll Seamount, the predominantly landward-vergent PTZ has accommodated 4 km of shortening, of which 87% is at sub-seismic scale. These data combined with estimates of stratigraphic ages and deformation duration, indicate that proto-thrusts potentially accommodate up 30-50% of the total convergence rate.

  13. Cathodoluminescence, fluid inclusion and stable C-O isotope study of tectonic breccias from thrusting plane of a thin-skinned calcareous nappe

    NASA Astrophysics Data System (ADS)

    Milovský, Rastislav; van den Kerkhof, Alfons; Hoefs, Jochen; Hurai, Vratislav; Prochaska, Walter

    2012-03-01

    Basal hydraulic breccias of alpine thin-skinned Muráň nappe were investigated by means of cathodoluminescence petrography, stable isotope geochemistry and fluid inclusions analysis. Our study reveals an unusual dynamic fluid regime along basal thrust plane during final episode of the nappe emplacement over its metamorphic substratum. Basal thrusting fluids enriched in 18O, silica, alumina, alkalies and phosphates were generated in the underlying metamorphosed basement at epizonal conditions corresponding to the temperatures of 400-450°C. The fluids fluxed the tectonized nappe base, leached evaporite-bearing formations in hangingwall, whereby becoming oversaturated with sulphates and chlorides. The fluids further modified their composition by dedolomitization and isotopic exchange with the host carbonatic cataclasites. Newly formed mineral assemblage of quartz, phlogopite, albite, potassium feldspar, apatite, dravite tourmaline and anhydrite precipitated from these fluids on cooling down to 180-200°C. Finally, the cataclastic mush was cemented by calcite at ambient anchizonal conditions. Recurrent fluid injections as described above probably enhanced the final motion of the Muráň nappe.

  14. Kinematic reconstruction of a thin-skinned, deep-water fold and thrust belt: the case of the Outer Tuscan Nappe (Umbria, Italy)

    NASA Astrophysics Data System (ADS)

    Carboni, Filippo; Barchi, Massimiliano; Brozzetti, Francesco; Cruciani, Francesco; Ercoli, Maurizio; Mirabella, Francesco; Porreca, Massimiliano

    2017-04-01

    Fold-and-Thrust Belts occur worldwide in a variety of tectonic settings. Most of them develop in a deepwater environment (Deep Water Fold-and-Thrust Belts, DWFTBs), at both continental passive and active margins, driven by gravity (near-field stresses) and tectonic forces (far-field stresses) respectively. Here we present a multidisciplinary geological study of the Outer Tuscan Nappe (OTN), an imbricate thrust system in the Northern Apennines of Italy, emplaced in Early Miocene times in deep water environment. Despite the wide scientific literature, the geometry and the kinematic evolution of the OTN were never reconstructed in detail. Furthermore, its total amount of shortening and then its shortening rate, were never measured and calculated through proper restoration techniques. The OTN involves a 2000 m thick, Late Cretaceous-Tertiary "Tuscan" succession, consisting of arenaceous turbidites (Macigno Fm.), overlying a thick level of marls and calcarenites (Scaglia Toscana Fm.), which form the major basal décollement of the imbricate system. Along this basal décollement, the OTN overthrusts eastward younger turbidite units (Mt. Rentella and Marnoso-Arenacea successions). In this study we interpreted a set of 2D seismic reflection profiles calibrated with a deep borehole, crossing transversally (WSW-ENE) and longitudinally (NNW-SSE) the OTN. To better constrain the interpretation, selected controls of key outcrops was performed, mainly aimed at reconstructing: i) the actual transport direction during the OTN emplacement; ii) the position of the subsequent, NNW-SSE trending, extensional faults dissecting the tectonic wedge; iii) the role of transversal faults, longitudinally segmenting the thrust system. Combining the aforesaid data, we drew an integrated 20 km long geological cross section showing the internal geometry of the imbricate thrust system, down to the main basal décollement. The integrated section was successively restored in 2D using the software MOVE (Midland Valley). The integrated section shows a thin-skinned deformation, where the basal thrust becomes progressively shallower from W to E, from a depth of about 5 km to 1 km. Correspondingly, the reconstructed OTN tectonic wedge is up to 5 km thick in its western part, and tapers progressively eastward: these values are consistent with previous estimates, based on thermal burial data. The total measured shortening of the OTN imbricate thrust system is about 43 km, including 19 km of internal imbrication and, at least, 24 km of horizontal ENE-ward transport along the basal décollement. To this, we have to add 13 km of passive transport caused by the subsequent deformation of the underlying units (e.g., Mt. Rentella and Marnoso-Arenacea successions). The total percentage of internal shortening is 42 % (measured as an average value between the Macigno and the Scaglia Toscana formations). Finally, we discuss the possible role of gravity in the evolution of this DW-FTB, generated in convergent settings, in an early collisional stage. The OTN geometry (e.g., high taper angle, close-range internal thrusts) and the high percentage of shortening are not characteristic of an exclusively gravity driven DWFTB therefore we think it should be interpreted as a Type 2b DWFTB (exclusively far-field stress-driven) based on the Morley's DWFTBs classification.

  15. Synfolding magnetization in the Jurassic Preuss Sandstone, Wyoming- Idaho-Utah thrust belt

    USGS Publications Warehouse

    Hudson, M.R.; Reynolds, R.L.; Fishman, N.S.

    1989-01-01

    The Jurassic Preuss Sandstone, exposed in five thrust plates of the Wyoming-Idaho-Utah thrust belt, carried directions of remanent magnetization that group most tightly after only partial unfolding. Field, petrographic, and rock magnetic evidence indicates that the carrier of this magnetization is detrital, low-Ti titanomagnetite. The detrital titanomagnetite was remagnetized at low temperatures (75??-150??C) probably completely during folding. Anisotropy of magnetic susceptibility and petrographic observations indicate that the detrital titanomagnetite has been affected by tectonic strain. The locus of acquisition of synfolding magnetization in the Preuss migrated in conjunction with deformation in the thrust belt. A model is presented in which synfolding magnetization was acquired during cooling and folding as strata moved up thrust ramps. A lack of reverse-polarity directions remains a puzzling feature of the remanence. -from Authors

  16. Geologic map of the Basque-Cantabrian Basin and a new tectonic interpretation of the Basque Arc

    NASA Astrophysics Data System (ADS)

    Ábalos, B.

    2016-11-01

    A new printable 1/200.000 bedrock geological map of the onshore Basque-Cantabrian Basin is presented, aimed to contribute to future geologic developments in the central segment of the Pyrenean-Cantabrian Alpine orogenic system. It is accompanied in separate appendixes by a historic report on the precedent geological maps and by a compilation above 350 bibliographic citations of maps and academic reports (usually overlooked or ignored) that are central to this contribution. Structural scrutiny of the map permits to propose a new tectonic interpretation of the Basque Arc, implementing previously published partial reconstructions. It is presented as a printable 1/400.000 tectonic map. The Basque Arc consists of various thrust slices that can expose at the surface basement rocks (Palaeozoic to Lower Triassic) and their sedimentary cover (uppermost Triassic to Tertiary), from which they are detached by intervening (Upper Triassic) evaporites and associated rocks. The slice-bounding thrusts are in most cases reactivated normal faults active during Meso-Cenozoic sedimentation that can be readily related to basement discontinuities generated during the Hercynian orogeny.

  17. Structural record of Lower Miocene westward motion of the Alboran Domain in the Western Betics, Spain

    NASA Astrophysics Data System (ADS)

    Frasca, Gianluca; Gueydan, Frédéric; Brun, Jean-Pierre

    2015-08-01

    In the framework of the Africa-Europe convergence, the Mediterranean system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western end of the system shows a narrow arcuate geometry across the Gibraltar arc, the Betic-Rif belt, in which the relationship between slab dynamics and surface tectonics is not well understood. The present study focuses on the Western Betics, which is characterized by two major thrusts: 1) the Internal/External Zone Boundary limits the metamorphic domain (Alboran Domain) from the fold-and-thrust belts in the External Zone; 2) the Ronda Peridotites Thrust allows the juxtaposition of a strongly attenuated lithosphere section with large bodies of sub-continental mantle rocks on top of upper crustal rocks. New structural data show that two major E-W strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60° thrusts and N140° normal faults developed simultaneously during dextral strike-slip simple shear. Olistostromic sediments of Lower Miocene age were deposited and deformed in this tectonic context and hence provide an age estimate for the inferred continuous westward translation of the Alboran Domain that is accommodated by an E-W lateral (strike-slip) ramp and a N60° frontal thrust. The crustal emplacement of large bodies of sub-continental mantle may occur at the onset of this westward thrusting in the Western Alboran domain. At lithosphere-scale, we interpret the observed deformation pattern as the subduction upper-plate expression of a lateral slab tear and its westward propagation since the Lower Miocene.

  18. Recent and active tectonics of the external zone of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Boccaletti, Mario; Corti, Giacomo; Martelli, Luca

    2011-08-01

    We present a comprehensive study of the recent and active tectonics of the external part of the Northern Apennines (Italy) by using morphotectonic, geological-structural, and stratigraphic analysis, compared with the current seismicity of the region. This analysis suggests that the external part of the Northern Apennines is characterised by presence of three major systems of Quaternary compressive structures corresponding to (1) the Apenninic watershed, (2) the Apennines-Po Plain margin (pede-Apenninic thrust front), and (3) the Emilia, Ferrara, and Adriatic Fold systems buried below the Po Plain. Geological data and interpreted seismic sections indicate a roughly N-S Quaternary deformation direction, with rates <2.5 mm/year. The shortening decreased since the Pliocene, when our data indicate compression in a NNW-SSE direction and rates up to 7 mm/year. The trend and kinematics of the structures affecting the Apennines-Po Plain margin and the Po Plain subsoil fit well the pattern of the current seismicity of the area, as well as recent GPS and geodetic levelling data, pointing to a current activity of these thrust systems controlled by an overall compressive stress field. Close to the Apenninic watershed, earthquake focal mechanisms indicate that shallow extension is associated to deep compression. The extensional events may be related to a secondary extensional stress field developing on the hangingwall of the thrust system affecting the Apenninic watershed; alternatively, this thrust system may have been recently deactivated and overprinted by active normal faulting. Deeper compressive events are related to the activity of both a major basement thrust that connects at surface with the pede-Apenninic thrust front and a major Moho structure.

  19. Role of tectonic inheritance in the instauration of Tunisian Atlassic fold-and-thrust belt: Case of Bouhedma - Boudouaou structures

    NASA Astrophysics Data System (ADS)

    Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad

    2016-07-01

    Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.

  20. Reducing risk where tectonic plates collide

    USGS Publications Warehouse

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  1. Inversion of calcite twin data for paleostress orientations and magnitudes: A new technique tested and calibrated on numerically-generated and natural data

    NASA Astrophysics Data System (ADS)

    Parlangeau, Camille; Lacombe, Olivier; Schueller, Sylvie; Daniel, Jean-Marc

    2018-01-01

    The inversion of calcite twin data is a powerful tool to reconstruct paleostresses sustained by carbonate rocks during their geological history. Following Etchecopar's (1984) pioneering work, this study presents a new technique for the inversion of calcite twin data that reconstructs the 5 parameters of the deviatoric stress tensors from both monophase and polyphase twin datasets. The uncertainties in the parameters of the stress tensors reconstructed by this new technique are evaluated on numerically-generated datasets. The technique not only reliably defines the 5 parameters of the deviatoric stress tensor, but also reliably separates very close superimposed stress tensors (30° of difference in maximum principal stress orientation or switch between σ3 and σ2 axes). The technique is further shown to be robust to sampling bias and to slight variability in the critical resolved shear stress. Due to our still incomplete knowledge of the evolution of the critical resolved shear stress with grain size, our results show that it is recommended to analyze twin data subsets of homogeneous grain size to minimize possible errors, mainly those concerning differential stress values. The methodological uncertainty in principal stress orientations is about ± 10°; it is about ± 0.1 for the stress ratio. For differential stresses, the uncertainty is lower than ± 30%. Applying the technique to vein samples within Mesozoic limestones from the Monte Nero anticline (northern Apennines, Italy) demonstrates its ability to reliably detect and separate tectonically significant paleostress orientations and magnitudes from naturally deformed polyphase samples, hence to fingerprint the regional paleostresses of interest in tectonic studies.

  2. Tectonics of the North American Cordillera near the Fortieth Parallel

    USGS Publications Warehouse

    King, P.B.

    1978-01-01

    The North American Cordillera near the Fortieth Parallel consists of the following tectonic units: 1. (A) To the east is a reactivated cratonic area, in the Southern Rocky Mountains and Colorado Plateau, in which the supracrustal rocks (Cambrian to Cretaceous) were broadly deformed during the late Cretaceous-Paleocene Laramide orogeny, and the Precambrian basement was raised in folds of wide amplitude. 2. (B) West of it is a miogeosynclinal belt, in the eastern Great Basin, in which a thick sequence of Paleozoic carbonates and related deposits was thrust eastward along low-angle faults during the middle to late Cretaceous Sevier orogeny. The miogeosyncline is the downwarped western margin of the original North American continent, and its rocks accumulated on Precambrian basement. 3. (C) Beyond is a eugeosynclinal belt, in the western Great Basin, in which Paleozoic graywackes, cherts, and volcanics were thrust easteastward along low-angle faults during several Paleozoic orogenies - the mid-Paleozoic Antler orogeny which produced the Roberts thrust on the east, and the end-Paleozoic Sonoma orogeny which produced the Golconda thrust farther west. The Paleozoic eugeosynclinal rocks accumulated on oceanic basement. They are overlapped from the west by Triassic and Jurassic shelf deposits, which pass westward into eugeosynclinal deposits. 4. (D) A volcanic island-arc belt existed on the sites of the Sierra Nevada in Paleozoic and early Mesozoic time, which produced thick bodies of sediments and volcanics. During the mid-Mesozoic Nevadan orogeny these were steeply deformed and thrust westward over subduction zones, and were intruded by granitic rocks that rose from the upper mantle to form great batholiths. 5. (E) West of the Sierra Nevada, in the Great Valley, is a great sedimentary embankment of later Mesozoic flysch or turbidite, largely younger than the supracrustal rocks of the Sierra Nevada and the Nevadan orogeny. It was formed of the erosional products of the supracrustal and granitic rocks of the Sierra Nevada. 6. (F) This sequence is, in turn, thrust westward over the Mesozoic Franciscan terrane of the Coast Ranges, which forms the westernmost belt of the Cordillera, and which is being treated in other papers in this symposium. The net effect of the prolonged events that produced the Cordillera in this segment has been the addition of successive tectonic belts to the North American continent at the expense of the Pacific Ocean basin during Phanerozoic time. ?? 1978.

  3. Birth of an oceanic spreading center at a magma-poor rift system.

    PubMed

    Gillard, Morgane; Sauter, Daniel; Tugend, Julie; Tomasi, Simon; Epin, Marie-Eva; Manatschal, Gianreto

    2017-11-08

    Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.

  4. Geodetic Imaging of Glacio-Seismotectonic Processes in Southern Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Bruhn, R.; Forster, R.; Hofton, M.

    2008-12-01

    Across southern Alaska the northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin. Over the last couple of decades the rate of ongoing deformation associated with subduction and a locked main thrust zone has been estimated by geodetic measurements. In the last five years more extensive geodetic measurements, structural and tectonic field studies, thermochronolgy, and high-resolution lidar have been acquired and analyzed as part of the STEEP project [Pavlis et al., 2006]. The nature and magnitude of accretion and translation on upper crustal faults and folds remains uncertain, however, due to complex variations in the style of tectonic deformation, pervasive and changing glaciation, and the logistical challenges of conducting field studies in formidable topography. In this study, we analyze new high-resolution lidar data to extract locations, geometry, and heights of seismogenic faults and zones of active folding across the Malaspina-Seward-Bagley region of the southern Alaska plate boundary that is hypothesized to accommodate upper crustal shortening and right-lateral slip. Airborne Topographic Mapper (ATM) lidar swath data acquired by Krabill et al. in the summer of 2005 and ICESat data (1993-present) cross a number of proposed faults and folds partially masked by glaciation, including the Malaspina thrust, Esker Creek, Chugach-St.Elias thrust, and Contact. Focal mechanisms from this region indicate mostly shallow (0-30 km) thrust and oblique strike-slip faulting. Similarly, rupture in the 1979 St. Elias earthquake (M=7.4) started as a shallow, north-dipping thrust that later changed to more steeply NE dipping with a large right-lateral strike-slip component. Additionally, we are using the morphology and dynamics of glaciers derived from L-Band SAR ice velocities and SAR images to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. The new lidar, InSAR, and STEEP results provide constraints that enable us to critically re-evaluate alternate models of the nature of tectonics and structures hidden beneath the ice originally proposed by Ford et al [2003] . Ford, A.L., R.R. Forster, and R.L. Bruhn, 2003, Ice surface velocity patterns on Seward Glacier, Alaska/Yukon, and their implications for regional tectonics in the Saint Elias Mountains, Annals of Glaciology, 36, 21-28.

  5. Géométrie et cinématique des chevauchements varisques du Nord-Est du Massif armoricain (France)Geometry and kinematics of Variscan thrusts in the northeastern Armorican Massif (France)

    NASA Astrophysics Data System (ADS)

    Butaeye, Damien; Laville, Edgard; Le Gall, Jean

    2001-02-01

    Variscan structures of the northeastern Armorican massif consist of folds induced by south-verging thrust faults. This thin-skinned process is controlled by a major décollement that would be expected at the base of the Brioverian flysch. So, the northeastern Armorican domain can be integrated to the tectonic model admitted at the Variscan Orogenesis scale.

  6. The Inskip Formation, the Harmony Formation, and the Havallah Sequence of Northwestern Nevada - An Interrelated Paleozoic Assemblage in the Home of the Sonoma Orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2008-01-01

    An area between the towns of Winnemucca and Battle Mountain in northwestern Nevada, termed the arkosic triangle, includes the type areas of the middle to upper Paleozoic Inskip Formation and Havallah sequence, the Upper Devonian to Mississippian Harmony Formation, the Sonoma orogeny, and the Golconda thrust. According to an extensive body of scientific literature, the Havallah sequence, a diverse assemblage of oceanic rocks, was obducted onto the continent during the latest Permian or earliest Triassic Sonoma orogeny by way of the Golconda thrust. This has been the most commonly accepted theory for half a century, often cited but rarely challenged. The tectonic roles of the Inskip and Harmony Formations have remained uncertain, and they have never been fully integrated into the accepted theory. New, and newly interpreted, data are incompatible with the accepted theory and force comprehensive stratigraphic and tectonic concepts that include the Inskip and Harmony Formations as follows: middle to upper Paleozoic strata, including the Inskip, Harmony, and Havallah, form an interrelated assemblage that was deposited in a single basin on an autochthonous sequence of Cambrian, Ordovician, and lowest Silurian strata of the outer miogeocline. Sediments composing the Upper Devonian to Permian sequence entered the basin from both sides, arkosic sands, gravel, limestone olistoliths, and other detrital components entered from the west, and quartz, quartzite, chert, and other clasts from the east. Tectonic activity was expressed as: (1) Devonian uplift and erosion of part of the outer miogeocline; (2) Late Devonian depression of the same area, forming a trough, probably fault-bounded, in which the Inskip, Harmony, and Havallah were deposited; (3) production of intraformational and extrabasinal conglomerates derived from the basinal rocks; and (4) folding or tilting of the east side of the depositional basin in the Pennsylvanian. These middle to upper Paleozoic deposits were compressed in the Jurassic, causing east-verging thrusts in the eastern part of the depositional basin (Golconda thrust) and west-verging thrusts and folds in the western part. Hypotheses involving a far-traveled allochthon that was obducted from an ocean or back-arc basin are incompatible with modern observations and concepts.

  7. Late Mesozoic deformations of the Verkhoyansk-Kolyma orogenic belt, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Fridovsky, Valery

    2016-04-01

    The Verkhoyansk-Kolyma orogenic belt marks the boundary between the Kolyma-Omolon superterrane (microcontinent) and the submerged eastern margin of the North Asian craton. The orogenic system is remark able for its large number of economically viable gold deposits (Natalka, Pavlik, Rodionovskoe, Drazhnoe, Bazovskoe, Badran, Malo-Tarynskoe, etc.). The Verkhoyansk - Kolyma orogenic belt is subdivided into Kular-Nera and the Polousny-Debin terranes. The Kular-Nera terrane is mainly composed of the Upper Permian, Triassic, and Lower Jurassic black shales that are metamorphosed at lower greenschist facies conditions. The Charky-Indigirka and the Chai-Yureya faults separate the Kular-Nera from the Polousny-Debin terrane that is predominantly composed of the Jurassic flyschoi dturbidites. The deformation structure of the region evolved in association with several late Mesozoic tectonic events that took place in the north-eastern part ofthe Paleo-Pacific. In Late Jurassic-Early Cretaceous several generations of fold and thrust systems were formed due to frontal accretion of the Kolyma-Omolon superterrane to the eastern margin of the North Asian craton.Thrusting and folding was accompanied by granitic magmatism, metamorphic reworking of the Late Paleozoic and the Early Mesozoic sedimentary rocks, and formation of Au-Sn-W mineralization. Three stages of deformation related to frontal accretion can be distinguished. First stage D1 has developed in the north-eastern part of the Verkhoyansk - Kolyma orogenic belt. Early tight and isoclinal folds F1 and assosiated thrusts are characteristic of D1. Major thrusts, linear concentric folds F2 and cleavage were formed during D2. The main ore-controlling structures are thrust faults forming imbricate fan systems. Frontal and oblique ramps and systems of bedding and cross thrusts forming duplexes are common. It is notable that mineralized tectonized zones commonly develop along thrusts at the contacts of rocks of contrasting competence. The superimposed structures are recognized from the early cleavage deformations. Folds F3 are often chevron type, open or tight. D1, D2 and D3 deformations are coaxial. In the Late-Neocomian-Aptian the Kolyma-Omolon superterrane started moving to the west. As a result, the thrust faults were reactivated with sinistral strike-slip motions along fault planes. At that time, granitoids of the North and Transverse belts were emplaced in the northwestern part of the Kolyma-Omolon superterrane. The strike slip faults were associated with cross open folds. The postacrettionary stage is associated with the development of the Albian-Late Cretaceous Okhotsk-Chukotka subduction zone. During this stage strike-slip faults and associated deformation structures were superimposed upon accretion-related tectonic structures of the Verkhoyansk - Kolyma orogenic belt.

  8. CHARACTER AND REGIONAL SIGNIFICANCE OF GREAT FALLS TECTONIC ZONE, EAST-CENTRAL IDAHO AND WEST-CENTRAL MONTANA.

    USGS Publications Warehouse

    O'Neill, J. Michael; Lopez, David A.

    1985-01-01

    The Great Falls tectonic zone, here named, is a belt of diverse northeast-trending geologic features that can be traced from the Idaho batholith in the Cordilleran miogeocline, across thrust-belt structures and basement rocks of west-central and southwestern Montana, through cratonic rocks of central Montana, and into southwestern-most Saskatchewan, Canada. Geologic mapping in east-central Idaho and west-central Montana has outlined a continuous zone of high-angle faults and shear zones. Recurrent fault movement in this zone and strong structural control over igneous intrusion suggest a fundamental tectonic feature that has influenced the tectonic development of the Idaho-Montana area from a least middle Proterozoic time to the present. Refs.

  9. A new look at formation and timing of thrust fault scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Watters, T. R.; Robinson, M. S.; Beyer, R. A.; Bell, J. F.; Pritchard, M. E.; Banks, M. E.; Garry, W. B.; Williams, N. R.

    2009-12-01

    The current view of lunar tectonics is that most crustal deformation is directly associated with mare basins. Lunar lobate scarps, in contrast to nearside mare wrinkle ridges, and graben, are found most often in the highlands and are the dominant tectonic landform on the farside. Lunar scarps are relatively small-scale tectonic landforms, only easily resolved in the highest resolution Apollo Panoramic Camera and Lunar Orbiter images. These scarps are interpreted to be the surface expression of thrust faults, yet they have not been well characterized and their global spatial distribution remains unknown. Images from the Lunar Reconnaissance Orbiter Camera (LROC) reveal previously undetected scarps as well as remarkable new features related to some previously known lobate scarps. LROC Narrow Angle Camera (NAC) 1 to 2 m/pixel images show meter-scale tectonic landforms associated with the Lee-Lincoln scarp. The Lee-Lincoln thrust fault scarp cuts across the mare basalt-filled Taurus-Littrow valley near the Apollo 17 landing site, trending roughly north-south between two highland massifs. The fault scarp extends into the highlands of North Massif where it cuts up slope for a short distance and abruptly changes trend to the northwest cutting along slope for kilometers. NAC stereo-derived topography shows a narrow rise associated with the scarp segment in the valley floor. Spatially correlated with the rise is an array of fractures and shallow extensional troughs or graben. The small-scale graben have maximum widths of ~25 m and are typically 100-200 meters in length. The rise is interpreted to be the result of flexural bending of the valley floor basalts with bending stresses causing extension of the upper regolith. Lobate scarps appear to be among the youngest tectonic landforms on the Moon based on their generally crisp appearance and a lack of superposed, relatively large-diameter (>500 m), impact craters. NAC images of known and newly detected scarps reveal evidence of crosscut impact craters as small as ~5-10 m-in-diameter. Crosscut meter-scale craters indicate a young age for the lobate scarps. Until now, the identification of lobate scarps has been limited by the lack of high resolution images with optimal lighting geometry for most of the Moon. The vast majority of the known lunar scarps are confined to the equatorial zone in areas imaged by the Apollo Panoramic Cameras. LROC NAC imaging now makes global detection of the small-scale scarps possible. A previously undetected lobate scarp has been found in the north polar region at ~88 degrees N. This discovery suggests that thrust fault scarps may be globally distributed. The young age of the lobate scarps indicated by crosscutting relations with impact craters and the discovery of a high-latitude scarp suggests global-scale, late-stage contraction. If thrust fault scarps are proven to be globally distributed, this discovery has important implications for the thermal history of the Moon.

  10. Inferring tectonic activity using drainage network and RT model: an example from the western Himalayas, India

    NASA Astrophysics Data System (ADS)

    Sahoo, Ramendra; Jain, Vikrant

    2017-04-01

    Morphology of the landscape and derived features are regarded to be an important tool for inferring about tectonic activity in an area, since surface exposures of these subsurface processes may not be available or may get eroded away over time. This has led to an extensive research in application of the non-planar morphological attributes like river long profile and hypsometry for tectonic studies, whereas drainage network as a proxy for tectonic activity has not been explored greatly. Though, significant work has been done on drainage network pattern which started in a qualitative manner and over the years, has evolved to incorporate more quantitative aspects, like studying the evolution of a network under the influence of external and internal controls. Random Topology (RT) model is one of these concepts, which elucidates the connection between evolution of a drainage network pattern and the entropy of the drainage system and it states that in absence of any geological controls, a natural population of channel networks will be topologically random. We have used the entropy maximization principle to provide a theoretical structure for the RT model. Furthermore, analysis was carried out on the drainage network structures around Jwalamukhi thrust in the Kangra reentrant in western Himalayas, India, to investigate the tectonic activity in the region. Around one thousand networks were extracted from the foot-wall (fw) and hanging-wall (hw) region of the thrust sheet and later categorized based on their magnitudes. We have adopted the goodness of fit test for comparing the network patterns in fw and hw drainage with those derived using the RT model. The null hypothesis for the test was, the drainage networks in the fw are statistically more similar than those on the hw, to the network patterns derived using the RT model for any given magnitude. The test results are favorable to our null hypothesis for networks with smaller magnitudes (< 9), whereas for larger magnitudes, both hw and fw networks were found to be statistically not similar to the model network patterns. Calculation of pattern frequency for each magnitude and subsequent hypothesis testing were carried out using Matlab (v R2015a). Our results will help to define drainage network pattern as one of the geomorphic proxy to identify tectonically active area. This study also serve as a supplementary proof of the neo-tectonic control on the morphology of landscape and its derivatives around the Jwalamukhi thrust. Additionally, it will help to verify the theory of probabilistic evolution of drainage networks.

  11. Porphyry copper deposits distribution along the western Tethyan and Andean subductions: insights from a paleogeographic approach

    NASA Astrophysics Data System (ADS)

    Bertrand, G.

    2012-12-01

    The genesis of many types of mineral deposits is closely linked to tectonic and petrographic conditions resulting from specific geodynamic contexts. Porphyry deposits, for instance, are associated to calc-alkaline magmatism of subduction zones. In order to better understand the relationships between ore deposit distribution and their tectonic context, and help identifying geodynamic-related criteria of favorability that would, in turn, help mineral exploration, we propose a paleogeographic approach. Paleogeographic reconstructions, based on global or regional plate tectonic models, are crucial tools to assess tectonic and kinematic contexts of the past. We use this approach to study the distribution of porphyry copper deposits along the western Tethyan and Andean subductions since Lower Cretaceous and Paleocene, respectively. For both convergent contexts, databases of porphyry copper deposits, including, among other data, their age and location, were compiled. Spatial and temporal distribution of the deposits is not random and show that they were emplaced in distinct clusters. Five clusters are identified along the western Tethyan suture, from Lower Cretaceous to Pleistocene, and at least three along the Andes, from Paleocene to Miocene. Two clusters in the Aegean-Balkan-Carpathian area, that were emplaced in Upper Cretaceous and Oligo-Miocene, and two others in the Andes, that were emplaced in late Eocene and Miocene, are studied in details and correlated with the past kinematics of the Africa-Eurasia and Nazca-South America plate convergences, respectively. All these clusters are associated with a similar polyphased kinematic context that is closely related to the dynamics of the subductions. This context is characterized by 1) a relatively fast convergence rate, shortly followed by 2) a drastic decrease of this rate. To explain these results, we propose a polyphased genetic model for porphyry copper deposits with 1) a first stage of rapid subduction rate, favoring high melt production in the mantle wedge, by dehydration of the subducted oceanic crust, and increased influx of mafic magmas in the MASH (Melting, Assimilation, Storage, Homogenization) zone, and 2) a subsequent significant decrease in subduction rate, favoring extensional regime within the upper plate and easing upward migration of fertile magmas to the upper crust. This second effect seems to be confirmed in the Aegean-Balkan-Carpathian area where the two clusters are spatially and temporally correlated with known extensional regimes. Although preliminary, these results highlight the control of the geodynamic context, and especially the subduction kinematics, on the spatial and temporal distribution of porphyry copper deposits. This study also confirms that the paleogeographic approach is a promising tool that could help identifying geodynamic and tectonic criteria favoring the genesis of various ore deposit types. Correlatively, ore deposits may be considered, in future studies, as possible markers of past geodynamic contexts.

  12. Claritas Fossae Enhanced Color

    NASA Image and Video Library

    1998-06-04

    Mars Syria Planum-centered volcanism and tectonism produced fractures, narrow to broad grabens, large scarps, and broad fold and thrust ridges that deformed a basement complex captured by NASA's Viking Orbiter 2. http://photojournal.jpl.nasa.gov/catalog/PIA00154

  13. Kinematic analysis of serpentinite structures and the manifestation of transpression in southwestern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.; Anderson, Thomas H.

    2009-12-01

    Faults and shear zones recorded in the Monte del Estado and Río Guanajibo serpentinite masses in southwestern Puerto Rico show previously unrecognized southwestward tectonic transport. The orientations of planar and linear structures and the sense of slip along faults and shear zones determined by offset rock layers, drag folds in foliations, and steps in slickensided surfaces and/or S-C fabrics from 1846 shear planes studied at more than 300 stations reveal two predominant groups of faults: 1) northwesterly-striking thrust faults and easterly-striking left-lateral faults and, 2) northwesterly-striking right-lateral faults and easterly-striking thrust faults. Shortening and extension (P and T) axes calculated for geographic domains within the serpentinite reveal early north-trending shortening followed by southwestward-directed movement during which older structures were re-activated. The SW-directed shortening is attributed to transpression that accompanied Late Eocene left-lateral shearing of the serpentinite. A third, younger, group comprising fewer faults consists of northwesterly-striking left-lateral faults and north-directed thrusts that also may be related to the latest transpressional deformation within Puerto Rico. Deformational events in Puerto Rico correlate to tectonic events along the Caribbean-North American plate boundary.

  14. Découverte d'un chevauchement d'âge quaternaire au sud de la Grande Kabylie (Algérie)

    NASA Astrophysics Data System (ADS)

    Boudiaf, Azzedine; Philip, Hervé; Coutelle, Alain; Ritz, Jean-François

    1999-03-01

    In the Maghreb, the southern border of the Kabylie (Algeria) mountains is considered as an aseismic region. The detailed study of the historical seismicity of this region shows moderate seismic activity (M 1 = 5.0) which is not coherent with the observed tectonic deformations. However, an analysis of the morphology on Landsat image, aerial photos and the topography shows Quaternary deformations in the southern side of the "Kabylie massifs" (Algeria). These deformations are interpreted as reactivation of Miocene thrust faults. The tectonic Quaternary scarps are more spectacular in the Bouira and Tazmalt region and might be associated with successive strong earthquakes (M = 7.0). Therefore, this major active thrust fault observed in this region, as in many intraplate regions, poses the problem of the long return period of seismic activity in this zone. Elsevier, Paris

  15. Intraplate extensional tectonics of the eastern Basin-Range Inferencess on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Bruhn, R. L.

    1984-01-01

    Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.

  16. Sequential filling of a late paleozoic foreland basin

    USGS Publications Warehouse

    Mars', J. C.; Thomas, W.A.

    1999-01-01

    Through the use of an extensive data base of geophysical well logs, parasequence-scale subdivisions within a late Paleozoic synorogenic clastic wedge resolve cycles of sequential subsidence of a foreland basin, sediment progradation, subsidence of a carbonate shelf edge, diachronously subsiding discrete depositional centers, and basinwide transgression. Although temporal resolution of biostratigraphic markers is less precise in Paleozoic successions than in younger basins, parasequence-scale subdivisions provide more detailed resolution within marker-defined units in Paleozoic strata. As an example, the late Paleozoic Black Warrior basin in the foreland of the Ouachita thrust belt is filled with a synorogenic clastic wedge, the lower part of which intertongues with the fringe of a cratonic carbonate facie??s in the distal part of the basin. The stratal geometry of one tongue of the carbonate facie??s (lower tongue of Bangor Limestone) defines a ramp that grades basinward into a thin black shale. An overlying tongue of the synorogenic clastic wedge (lower tongue of Parkwood Formation) consists of cyclic delta and delta-front deposits, in which parasequences are defined by marine-flooding surfaces above coarsening- and shallow ing-upward successions of mudstone and sandstone. Within the lower Parkwood tongue, two genetic stratigraphie sequences (A and B) are defined by parasequence offlap and downlap patterns and are bounded at the tops by basinwide maximum-flooding surfaces. The distribution of parasequences within sequences A and B indicates two cycles of sequential subsidence (deepening) and progradation, suggesting subsidence during thrust advance and progradation during thrust quiescence. Parasequence stacking in sequences A and B also indicates diachronous differential tectonic subsidence of two discrete depositional centers within the basin. The uppermost sequence (C) includes reworked sandstones and an overlying shallow-marine limestone, a vertical succession that reflects no tectonic subsidence, a very minor or null sediment supply, and basinwide transgression. The temporal resolution at parasequence scale significantly improves the resolution of the tectonic history of the thrust belt-foreland basin system. Copyright ?? 1999, SEPM (Society for Sedimentary Geology).

  17. Detrital zircon microtextures and U-PB geochronology of Upper Jurassic to Paleocene strata in the distal North American Cordillera foreland basin

    NASA Astrophysics Data System (ADS)

    Finzel, E. S.

    2017-07-01

    Detrital zircon surface microtextures, geochronologic U-Pb data, and tectonic subsidence analysis from Upper Jurassic to Paleocene strata in the Black Hills of South Dakota reveal provenance variations in the distal portion of the Cordillera foreland basin in response to tectonic events along the outboard margin of western North America. During Late Jurassic to Early Cretaceous time, nonmarine strata record initially low rates of tectonic subsidence that facilitated widespread recycling of older foreland basin strata in eolian and fluvial systems that dispersed sediment to the northeast, with minimal sediment derived from the thrust belt. By middle Cretaceous time, marine inundation reflects increased subsidence rates coincident with a change to eastern sediment sources. Lowstand Albian fluvial systems in the Black Hills may have been linked to fluvial systems upstream in the midcontinent and downstream in the Bighorn Basin in Wyoming. During latest Cretaceous time, tectonic uplift in the study area reflects dynamic processes related to Laramide low-angle subduction that, relative to other basins to the west, was more influential due to the greater distance from the thrust load. Provenance data from Maastrichtian and lower Paleocene strata indicate a change back to western sources that included the Idaho-Montana batholith and exhumed Belt Supergroup. This study provides a significant contribution to the growing database that is refining the tectonics and continental-scale sediment dispersal patterns in North America during Late Jurassic-early Paleocene time. In addition, it demonstrates the merit of using detrital zircon grain shape and surface microtextures to aid in provenance interpretations.

  18. Extrusional Tectonics over Plate Corner: an Example in Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Chia-Yu; Lee, Jian-Cheng; Li, Zhinuo; Lee, Ching-An; Yeh, Chia-Hung

    2016-04-01

    In northern Taiwan, contraction, transcurrent shearing, block rotation and extension are four essential tectonic deformation mechanisms involved in the progressive deformation of this arcuate collision mountain belt. The neotectonic evolution of the Taiwan mountain belt is mainly controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also the corner shape of the plate boundary. Based on field observations and analyses, and taking geophysical data (mostly GPS) and experimental modelling into account, we interpret the curved belt of northern Taiwan as a result of of contractional deformation (with compression, thrust-sheet stacking & folding, back thrust duplex & back folding) that induced vertical extrusion, combined with increasing transcurrent & rotational deformation (with transcurrent faulting, bookshelf-type strike-slip faulting and block rotation) that induced transcurrent/rotational extrusion and extension deformation which in turn induced extensional extrusion. As a consequence, a special type of extrusional folds was formed in association with contractional, transcurrent & rotational and extensional extrusions subsequently. The extrusional tectonics in northern Taiwan reflect a single, albeit complicated, regional pattern of deformation. The crescent-shaped mountain belt of Northeastern Taiwan develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough.

  19. Extrusional Tectonics at Plate Corner: an Example in Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, C. Y.; Lee, J. C.; Li, Z.; Yeh, C. H.; Lee, C. A.

    2015-12-01

    In northern Taiwan, contraction, transcurrent shearing, block rotation and extension are four essential tectonic deformation mechanisms involved in the progressive deformation of this arcuate collision mountain belt. The neotectonic evolution of the Taiwan mountain belt is mainly controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also the corner shape of the plate boundary. Based on field observations and analyses, and taking geophysical data (mostly GPS) and experimental modelling into account, we interpret the curved belt of northern Taiwan as a result of of contractional deformation (with compression, thrust-sheet stacking & folding, back thrust duplex & back folding) that induced vertical extrusion, combined with increasing transcurrent & rotational deformation (with transcurrent faulting, bookshelf-type strike-slip faulting and block rotation) that induced transcurrent/rotational extrusion and extension deformation which in turn induced extensional extrusion. As a consequence, a special type of extrusional folds was formed in association with contractional, transcurrent & rotational and extensional extrusions subsequently. The extrusional tectonics in northern Taiwan reflect a single, albeit complicated, regional pattern of deformation. The crescent-shaped mountain belt of Northeastern Taiwan develops in response to oblique indentation by an asymmetric wedge indenter and opening of the Okinawa trough at plate corner.

  20. Structure and tectonic evolution of the NE segment of the Polish-Ukrainian Carpathians during the Late Cenozoic: subsurface cross-sections and palinspastic models

    NASA Astrophysics Data System (ADS)

    Kuśmierek, Jan; Baran, Urszula

    2016-08-01

    The discrepant arrangement of the Carpathian nappes and syntectonic deposits of the Carpathian Foredeep reveals the oroclinal migration of the subduction direction of the platform margin during the Late Cenozoic. Formation of the nappes was induced by their detachment from disintegrated segments of the European Platform; the segments were shortened as a result of their vertical rotation in zones of compressional sutures. It finds expression in local occurrence of the backward vergence of folding against the generally forward vergence toward the Carpathian Foredeep. The precompressional configuration of sedimentation areas of particular nappes was reconstructed with application of the palinspastic method, on the basis of the hitherto undervalued model which emphasizes the influence of the subduction and differentiated morphology of the platform basement on the tectonic evolution of the fold and thrust belt. Superposition of the palaeogeographic representations and the present geometry of the orogen allows understanding of the impact of the magnitudes of tectonic displacements on the differentiation of the geological structure in the NE segment of the Carpathians. The differentiation has inspired different views of Polish and Ukrainian geologists on structural classification and evolution of the frontal thrusts.

  1. Impact of an interbedded viscous décollement on the structural and kinematic coupling in fold-and-thrust belts: Insights from analogue modeling

    NASA Astrophysics Data System (ADS)

    Borderie, Sandra; Graveleau, Fabien; Witt, César; Vendeville, Bruno C.

    2018-01-01

    Fold-and-thrust belts (FTBs) can be segmented both across and along strike because of various factors including tectonic and stratigraphic inheritance. In this study, we investigated along/across-strike structural interactions in a FTB propagating toward a foreland which displays contrasted lithological sequences. A set of analogue models was performed in a compressional box where a single viscous level of varying width was interbedded within a frictional series. The tectonic interaction between the viscous and the frictional provinces was tested both along and across strike. Results indicate that a frictional province influences the along-strike tectonic evolution of an adjacent viscous province. This influence decreases when the width of the viscous province increases. The frictional provinces control the taper, structural style, obliquity of the structures' trend and kinematics of the shallow deformation front of the viscous province. Results evidence how far a frictional province can impact the deformation of an adjacent viscous province. For frictional-viscous wedges, it appears that the critical taper theory, which is generally applied in 2-D, should be likely considered in terms of 3-D. Moreover, the kinematics of the deep deformation front shows mutual influences between the adjacent viscous and frictional provinces. Experimental results are compared to natural examples in the Kuqa Basin (Southern Tian Shan, China) and the Salt Range (Pakistan), and give an insight to a better understanding of the dynamics of fold-and-thrust belts bearing a viscous décollement, such as salt.

  2. Strain partitioning in the footwall of the Somiedo Nappe: structural evolution of the Narcea Tectonic Window, NW Spain

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Alonso, Gabriel

    1996-10-01

    The Somiedo Nappe is a major thrust unit in the Cantabrian Zone, the external foreland fold and thrust belt of the North Iberian Variscan orogen. Exposed at the Narcea Tectonic Window are Precambrian rocks below the basal decollement of the Somiedo Nappe, which exhibit a different deformation style than the overlying Paleozoic rocks above the basal decollement. During Variscan deformation, folding and widespread subhorizontal, bedding-parallel decollements were produced in the hanging wall within the Paleozoic rocks. Vertical folding, with related axial-planar cleavage at a high angle to the decollement planes, developed simultaneously in the upper Proterozoic Narcea Slates of the footwall, below the detachment. The relative magnitude of finite strain, measured in the footwall rocks, diminishes towards the foreland. These observations indicate that (1) significant deformation may occur in the footwall of foreland fold and thrust belts, (2) the shortening mechanism in the footwall may be different from that of the hanging wall, and (3) in this particular case, the partitioning of the deformation implies the existence of a deeper, blind decollement surface contemporaneous with the first stages of the foreland development, that does not crop out in the region. This implies a significant shortening in the footwall, which must be taken into account when restoration and balancing of cross-sections is attempted. A sequential diagram of the evolution of the Narcea Tectonic Window with a minimum shortening of 85 km is proposed, explaining the complete Variscan evolution of the foreland to hinterland transition in the North Iberian Variscan orogen.

  3. Structure, paleogeographic inheritance, and deformation history of the southern Atlas foreland fold and thrust belt of Tunisia

    NASA Astrophysics Data System (ADS)

    SaïD, Aymen; Baby, Patrice; Chardon, Dominique; Ouali, Jamel

    2011-12-01

    Structural analysis of the southern Tunisian Atlas was carried out using field observation, seismic interpretation, and cross section balancing. It shows a mix of thick-skinned and thin-skinned tectonics with lateral variations in regional structural geometry and amounts of shortening controlled by NW-SE oblique ramps and tear faults. It confirms the role of the Late Triassic-Early Jurassic rifting inheritance in the structuring of the active foreland fold and thrust belt of the southern Tunisian Atlas, in particular in the development of NW-SE oblique structures such as the Gafsa fault. The Late Triassic-Early Jurassic structural pattern is characterized by a family of first-order NW-SE trending normal faults dipping to the east and by second-order E-W trending normal faults limiting a complex system of grabens and horsts. These faults have been inverted during two contractional tectonic events. The first event occurred between the middle Turonian and the late Maastrichtian and can be correlated with the onset of the convergence between Africa and Eurasia. The second event corresponding to the principal shortening tectonic event in the southern Atlas started in the Serravalian-Tortonian and is still active. During the Neogene, the southern Atlas foreland fold and thrust belt propagated on the evaporitic décollement level infilling the Late Triassic-Early Jurassic rift. The major Eocene "Atlas event," described in hinterland domains and in eastern Tunisia, did not deform significantly the southern Tunisian Atlas, which corresponded in this period to a backbulge broad depozone.

  4. Late Oligocene-Early Miocene compressional tectosedimentary episode and associated land-mammal faunas in the Andes of central Chile and adjacent Argentina (32 37°s)

    NASA Astrophysics Data System (ADS)

    Semper, Thierry; Marshall, Larry G.; Rivano, Sergio; Godoy, Estanislao

    1994-01-01

    A reassessment of the geologic and land-mammal fossil evidence used in attribution of a tectosedimentary episode in the Andes between 32 and 37°S to the Middle Eocene "Incaic tectonic phase" of Peru indicates that the episode occurred during Late Oligocene-Early Miocene times(~ 27-20 Ma). From west to east, three structural domains are recognized for this time span in the study area: a volcanic arc (Chile); a thin-skinned, E-verging fold-thrust belt (Cordillera Principal, Chile-Argentina border strip); and a foreland basin (Argentina). Initiation of thrusting in the Cordillera Principal fold-thrust belt produced the coeval initiation of sedimentation in the foreland basin of adjacent Argentina. This onset of foreland deposition postdates strata bearing a Divisaderan Land Mammal Age fauna (i.e. ~ 35-30 Ma) and is marked at ~ 36°30'S by the base of the "Rodados Lustrosos" conglomerates, which are conformably overlain by sedimentary rocks containing a Deseadan Land Mammal Age fauna (i.e. ~ 29-21 Ma). Geologic relationships between the thick volcanic Abanico (Coya-Machalí) and Farellones formations also demonstrate that this tectosedimentary episode practically ended at ~ 20 Ma at least in the volcanic arc, and was therefore roughly coeval with the major tectonic crisis (~ 27-19 Ma) known in northwestern Andean Bolivia some 1500 km to the north. This strongly suggests that a long, outstanding tectonic upheaval affected at least an extended 12-37°S segment of the Andean margin of South America during Late Oligocene and Early Miocene times.

  5. Rifting and reactivation of a Cretaceous structural belt at the northern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Nanni, Ugo; Pubellier, Manuel; Chan, Lung Sang; Sewell, Roderick J.

    2017-04-01

    The Tiu Tang Lung Fault, Hong Kong Special Administrative Region - China, is located on the northern stretched continental margin of the South China Sea. Along this fault, Middle Jurassic volcanic rocks of the Tai Mo Shan Formation are tectonically juxtaposed on Lower Cretaceous sedimentary rocks of the Pat Sin Leng Formation. Both extensional detachments and compressional features are observed and various genetic strain configurations are proposed for the Tiu Tang Lung Fault with implications for understanding the dynamics of the pre-South China Sea rifting during the Cretaceous. We have identified tilted bedding planes in the continental deposits of the Pat Sin Leng Formation which can be related to Early Cretaceous syn-extensional deposition. A mid-Cretaceous penetrative top-to-the-south to top-to-the-west shear fabric is also observed and serves as an indicator of the strain pattern. This deformation is expressed by cleavages, schistosity, S/C fabrics, kink-folds, phacoids and stretched pebbles at both a macroscopic and microscopic scale. Cleavages and bedding are generally sub-parallel to the local shear orientation. The whole sedimentary pile is crosscut by Cenozoic N70 and N150 normal faults. These constraints, together with previous fission track, seismic and structural data, allow us to reinterpret the kinematics of this domain during syn-orogenic to syn-extensional periods. The observed top-to-the-south thrusting event is coeval with NE-SW strike-slip sinistral fault movement. Subsequent N-S extension can be correlated with South China Sea rifting from Eocene to Oligocene. These observations reveal a polyphase history associated with continental margin inversion which witnessed localized extension on previous compressional structures.

  6. Collisional Tectonics in the St. Elias Orogen, Alaska Observed by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.

    2008-12-01

    The rugged topography of the St. Elias orogen of southern Alaska and the adjacent region of Canada is the result of the on-going collision of the Yakutat block with southern Alaska. Nearly 45 mm/yr of NW-SE directed convergence from the collision is currently accommodated within the St. Elias orogen. A key to understanding this complex collisional boundary is knowing the locations of the structures taking up the convergence. GPS provides a snapshot of the present-day strain field and helps to delineate active structures. As part of the St. Elias Erosion/Tectonics Project (STEEP), we re-surveyed 70 campaign GPS sites across the St. Elias orogen during the summer of 2008. Strain rates derived from our GPS data highlight several areas within the St. Elias orogen. The highest strain rates occur across Icy Bay and the western edge of the Malaspina Glacier. Rates there approach -1 microstrain/yr, a value higher than that observed in the Himalaya. Lower, but still significant, strain rates of about -0.2 microstrain/yr extend north from Icy Bay to the region surrounding Mt. St. Elias. The second major focus of compressive strain in the orogen is centered over the Yakataga fold-and-thrust belt. Strain rates there are in the range of -0.40 to -0.50 microstrain/yr. Little significant strain is seen across the Bagley icefield or to the north of that feature. These results suggest that most of the convergence across the St. Elias orogen is currently accommodated on structures located south of the Bagely icefield, specifically in the Icy Bay, upper Malaspina/Mt. St. Elias, and Yakataga fold-and-thrust belt regions. We use block modeling techniques to describe the tectonic elements of the St. Elias orogen and connect them with the tectonic regime in southeast Alaska. Our preliminary results indicate that a single thrust fault through Icy Bay cannot explain the data there; multiple NW and N directed thrust faults through Icy Bay, along the western edge of the Malaspina Glacier, and between Icy Bay and Mt. St. Elias are required. Over half of the relative convergence between the Yakutat block and southern Alaska may be accommodated by elastic strain accumulation on these faults.

  7. Predicting Folding Sequences Based on the Maximum Rock Strength and Mechanical Equilibrium

    NASA Astrophysics Data System (ADS)

    Cubas, N.; Souloumiac, P.; Maillot, B.; Leroy, Y. M.

    2007-12-01

    The objective is to propose and validate simple procedures, compared to the finite-element method, to select and optimize the dominant mode of folding in fold-and-thrust belts and accretionary wedges, and to determine its stress distribution. Mechanical equilibrium as well as the constraints due to the limited rock strength of the bulk material and of major discontinuities, such as décollements, are accounted for. The first part of the proposed procedure, which is at the core of the external approach of classical limit analysis, consists in estimating the least upper bound on the tectonic force by minimisation of the internal dissipation and part of the external work. The new twist to the method is that the optimization is also done with respect to the geometry of the evolving fold. If several folding events are possible, the dominant mode is the one leading to the least upper bound. The second part of the procedure is based on the Equilibrium Element Method, which is an application of the internal approach of limit analysis. The optimum stress field, obtained by spatial discretisation of the fold, provides the best lower bound on the tectonic force. The difference between the two bounds defines an error estimate of the exact unknown tectonic force. To show the merits of the proposed procedure, its first part is applied to predict the life span of a thrust within an accretionary prism, from its onset, its development with a relief build up and its arrest because of the onset of a more favorable new thrust (Cubas et al., 2007). This life span is sensitive to the friction angles over the ramp and the décollement. It is shown how the normal sequence of thrusting in a supercritical wedge is ended with the first out-of sequence event. The second part of the procedure provides the stress state over each thrust showing that the active back thrust is a narrow fan which dip is sensitive to the friction angle over the ramp and the amount of relief build up (Souloumiac et al., 2007). The stress state is dominated by a concentration at the root of the active ramp and the presence of the back thrust. Analogue experiments with sand demonstrate the ability of the first part of the proposed procedure to predict the position and the lifetime of thrusts, the topographic evolution, as well as the value of the compressive force. The simplicity and lightness of the procedure allows to determine probability distributions of the friction angles of the décollement, the ramps, and the pristine material using an inverse problem formalism. Applied to a section at the front of Nanka'i's wedge, Southeast Japon, the two parts of the method confirm the relative weakness of the basal décollement. From the first part, we conclude that the active thrust is necessarily weaker than the incipient thrust and that the frontal section is likely inhomogeneous. The second part shows that, close to criticality, for minutes changes in the décollement friction angle, the stress concentrations, marking the onset of thrusting, can be positioned at very different locations, the details of which depend on relief irregularities.

  8. Banded iron-formations of late Proterozoic age in the central eastern desert, Egypt: geology and tectonic setting.

    USGS Publications Warehouse

    Sims, P.K.; James, H.L.

    1984-01-01

    Iron-formation occurs as stratigraphic units within a layered andesite-basalt sequence. The sequence is metamorphosed to greenschist facies, intruded by syntectonic granodiorite and post-tectonic granite, and complexly deformed and grossly fragmented; the rocks are allochthonous along thrust faults. The iron deposits are chemical precipitates, accumulated during lulls in volcanism, apparently in an intraoceanic island-arc environment. The deposits are of the Algoma type of iron-formation.-G.J.N.

  9. Lateral ramps in the folded Appalachians and in overthrust belts worldwide; a fundamental element of thrust-belt architecture

    USGS Publications Warehouse

    Pohn, Howard A.

    2000-01-01

    Lateral ramps are zones where decollements change stratigraphic level along strike; they differ from frontal ramps, which are zones where decollements change stratigraphic level perpendicular to strike. In the Appalachian Mountains, the surface criteria for recognizing the subsurface presence of lateral ramps include (1) an abrupt change in wavelength or a termination of folds along strike, (2) a conspicuous change in the frequency of mapped faults or disturbed zones (extremely disrupted duplexes) at the surface, (3) long, straight river trends emerging onto the coastal plain or into the Appalachian Plateaus province, (4) major geomorphic discontinuities in the trend of the Blue Ridge province, (5) interruption of Mesozoic basins by cross-strike border faults, and (6) zones of modern and probable ancient seismic activity. Additional features related to lateral ramps include tectonic windows, cross-strike igneous intrusions, areas of giant landslides, and abrupt changes in Paleozoic sedimentation along strike. Proprietary strike-line seismic-reflection profiles cross three of the lateral ramps that were identified by using the surface criteria. The profiles confirm their presence and show their detailed nature in the subsurface. Like frontal ramps, lateral ramps are one of two possible consequences of fold-and-thrust-belt tectonics and are common elements in the Appalachian fold-and-thrust belt. A survey of other thrust belts in the United States and elsewhere strongly suggests that lateral ramps at depth can be identified by their surface effects. Lateral ramps probably are the result of thrust sheet motion caused by continued activation of ancient cratonic fracture systems. Such fractures localized the transform faults along which the continental segments adjusted during episodes of sea-floor spreading.

  10. Meteorite Impact Structures as Outcrop-Scale Analogues for Mountain Building Events: Weaubleau and Decaturville, MO

    NASA Astrophysics Data System (ADS)

    Wu, S.; McKay, M.; Evans, K. R.

    2017-12-01

    Understanding the architecture of mountain belts is limited because studies are typically confined to surficial exposures with lesser amounts of subsurface data and active margins are prone to successive tectonism that obscures the rock record. In west-central Missouri, two Paleozoic meteorite impacts are exposed that contain a range of outcrop-scale structures. While the strain rate in a meteorite impact is an order of magnitude greater than that in orogeny-scale structures, the morphology and spatial relationships in these impact structures may provide insight into larger tectonic features. The entire crater could not be compared to an orogenic event because the amount of strain diffuses as distance increases from the impactor during an impacting event. The center of an impact crater could not be compared to an orogenic event because it has become too deformed. However, the crater rim and the immediate surrounding area could be used as a comparison because it has undergone the right amount of deformation to have recognizable structures. High-detail mapping and structural analyses of road cut exposures near Decaturville, MO reveals thrust fault sequences contain 1-2 m thick mixed carbonate and clastic sheets that include rollover anticlines, structural orphans, and lateral ramp features. Thrust faults dip away from the impact structure and represent gravitational collapse of the central uplift seconds after collision. Thrust sheet thickness, thrust fault spacing, ramp/flat morphology, and shortening of within these structures will be presented and assessed as an analogue for map-scale features in the Southern Appalachian fold and thrust belt. Because temperature controls rock mechanic properties, a thermal model based on thermochronology and thermobarometry for the section will also be presented and discussed in the context of orogenic thermomechanics.

  11. Flat-ramp vs. convex-concave thrust geometries in a deformable hanging wall: new insights from analogue modeling experiments

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Tomas, Ricardo; Rosas, Filipe; Duarte, Joao; Terrinha, Pedro

    2015-04-01

    Different modes of strain accommodation affecting a deformable hanging-wall in a flat-ramp-flat thrust system were previously addressed through several (sandbox) analog modeling studies, focusing on the influence of different variables, such as: a) thrust ramp dip angle and friction (Bonini et al, 2000); b) prescribed thickness of the hanging-wall (Koy and Maillot, 2007); and c) sin-thrust erosion (compensating for topographic thrust edification, e.g. Persson and Sokoutis, 2002). In the present work we reproduce the same experimental procedure to investigate the influence of two different parameters on hanging-wall deformation: 1) the geometry of the thrusting surface; and 2) the absence of a velocity discontinuity (VD) that is always present in previous similar analogue modeling studies. Considering the first variable we use two end member ramp geometries, flat-ramp-flat and convex-concave, to understand the control exerted by the abrupt ramp edges in the hanging-wall stress-strain distribution, comparing the obtain results with the situation in which such edge singularities are absent (convex-concave thrust ramp). Considering the second investigated parameter, our motivation was the recognition that the VD found in the different analogue modeling settings simply does not exist in nature, despite the fact that it has a major influence on strain accommodation in the deformable hanging-wall. We thus eliminate such apparatus artifact from our models and compare the obtained results with the previous ones. Our preliminary results suggest that both investigated variables play a non-negligible role on the structural style characterizing the hanging-wall deformation of convergent tectonic settings were such thrust-ramp systems were recognized. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013. Pedro Almeida wants to thank to FCT for the Ph.D. grant (SFRH/BD/52556/2014) under the Doctoral Program EarthSystems in IDL/UL. References Bonini, M., Sokoutis, D., Mulugeta, G., Katrivanos, E. (2000) - Modelling hanging wall accommodation above rigid thrust ramps. Journal of Structural Geology, 22, pp. 1165-1179. Persson, K. & Sokoutis, D (2002) - Analogue models of orogenic wedges controlled by erosion. Tectonophysics, 356, pp. 323- 336. Koy, H. & Bertrand, M. (2007) - Tectonic thickening of hanging-wall units over a ramp.Journal of Structural Geology, 29, pp. 924-932.

  12. Fluvial systems of Upper Cretaceous Mesaverde Group and Paleocene North Horn formation, central Utah: record of transition from thin-skinned deformation in foreland region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, T.F.

    1985-05-01

    Nonmarine strata of the upper part of the Mesaverde Group and North Horn Formation exposed between the Wasatch Plateau and the Green River in central Utah record a late Campanian tectonic transition from thrust-belt deformation to basement-cored uplift. Mesaverde Group sediments were deposited by synorogenic braided and meandering rivers. During most of Campanian time, sediment transport was east and northeast away from the thrust belt across a fluvial coastal plain. Subsequent development of the San Rafael swell, a basement uplift, between western and eastern localities caused erosional thinning of the section. Sandstones within the upper part of the Mesaverde Groupmore » form two distinct compositional suites, a lower quartzose petrofacies and an upper lithic petrofacies. Lithic grain populations of the upper petrofacies are dominated by sedimentary lithic grains were derived from the thrust belt, whereas volcanic lithic grains were derived from a volcanic terrane to the southwest. Tributary streams carrying quartzose detritus from the thrust belt entered a northeast-flowing trunk system and caused a basinward dilution of volcanic detritus. Disappearance of volcanic grains and local changes in paleocurrent directions in latest Campanian time reflect initial growth of the San Rafael swell and development of an intermontane trunk-tributary fluvial system. Depositional onlap across the Mesaverde Group by the post-tectonic North Horn Formation indicates a minimum late Paleocene age for uplift of the San Rafael swell.« less

  13. Deformation geometry and timing of theWupoer thrust belt in the NE Pamir and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaogan; Chen, Hanlin; Lin, Xiubin; Yang, Shufeng; Chen, Shenqiang; Zhang, Fenfen; Li, Kang; Liu, Zelin

    2016-12-01

    The Pamir region, located to the northwest of the Tibetan Plateau, provides important information that can aid the understanding of the plateau's tectonic evolution. Here we present new findings on the deformation geometry and timing of the Wupoer thrust belt at the northeastern margin of Pamir. Field investigations and interpretations of seismic profiles indicate that the eastern portion of the Wupoer thrust belt is dominated by an underlying foreland basin and an overlying piggy-back basin. A regional unconformity occurs between the Pliocene (N2) and the underlying Miocene (N1) or Paleogene (Pg) strata associated with two other local unconformities between Lower Pleistocene (Q1) and N2 and between Middle Pleistocene (Q2-4) and Q1 strata. Results of structural restorations suggest that compressional deformation was initiated during the latest Miocene to earliest Pliocene, contributing a total shortening magnitude of 48.6 km with a total shortening rate of 48.12%, most of which occurred in the period from the latest Miocene to earliest Pliocene. These results, combined with previous studies on the Kongur and Tarshkorgan extensional system, suggest an interesting picture of strong piedmont compressional thrusting activity concurrent with interorogen extensional rifting. Combining these results with previously published work on the lithospheric architecture of the Pamir, we propose that gravitational collapse drove the formation of simultaneous extensional and compressional structures with a weak, ductile middle crustal layer acting as a décollement along which both the extensional and compressional faults merged.

  14. Timing, quantification and tectonic modelling of Pliocene-Quaternary movements in the NW Himalaya: evidence from fission track dating

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Kumar, Devender; Singh, Sandeep; Kumar, Ashok; Lal, Nand

    2000-07-01

    Variable exhumation rates, deduced from the Pliocene-Quaternary FT zircon-apatite ages from the Himalayan Metamorphic Belt (HMB) of the NW Himalaya along the Sutlej Valley in Himachal Pradesh, have been modelled in the tectonic framework of fast exhumed Lesser Himalayan windows, which caused lateral extensional sliding of the metamorphic nappe cover along the well-known Main Central Thrust (MCT) and differential movements along thrust zones as well. In the northern belt of the Higher Himalayan Crystallines (HHC), two distinct clusters of the FT apatite ages have been deciphered: apatite ages having a weighted mean of 4.9±0.2 Ma (1 σ) in basal parts on the hanging wall of the MCT, and 1.49±0.07 Ma (1 σ) in the hanging wall of a newly, recognized NE, dipping Chaura thrust further north. Fast exhumation of the Chaura thrust hanging wall has been inferred at a rate of 4.82±0.55 mm/yr from the zircon-apatite cogenetic pairs during 1.54 Ma and 0.97 Ma, and 2.01±0.35 mm/yr since 1.49 Ma. In comparison, its foot wall has been exhumed at a much slower rate of 0.61±0.10 mm/yr since 4.9 Ma. The overlying Vaikrita Thrust zone rocks reveal an exhumation rate of 1.98±0.34 mm/yr from 2.70±0.40 Ma to 1.31±0.22 Ma and 2.29±0.66 mm/yr since 1.31±0.22 Ma. Using these data, a vertical displacement of ca. 2.08±0.68 km has been calculated along the Chaura thrust between 4.9 and 1.50 Ma on an average rate of 0.6 mm/yr. It is of the order of 1.18 km from 2.70 Ma to 1.54 Ma along the Vaikrita Thrust, and 0.78 mm/yr from 1.31 Ma to 0.97 Ma, and has behaved as an extensional normal fault during these periods. Tectonic modelling of the exhumation rates in the NW Himalaya reveals fastest uplifting Himalayan domes and windows like the Nanga Parbat in Pakistan, Suru and Chisoti domes in Zanskar and Kishwar-Kulu-Rampur Window axis in SE Kashmir and Himachal Pradesh during Pliocene-Quaternary. These windows appear to have caused lateral extensional sliding of the Himalayan metamorphic nappes in the lower parts. The middle parts of the HHC belt have witnessed both overthrusting and extensional faulting due to complex and variable exhumation patterns within the hanging and foot walls of the MCT and Vaikrita Thrust along the Sutlej Valley, thus causing movement of upthrust crustal wedge between the extensional ones. Thus, FT zircon-apatite ages provide evidence for the presence of a number of crustal wedges having distinct tectonothermal history within the HHC.

  15. Seismic imaging of the Main Frontal Thrust in Nepal reveals a shallow décollement and blind thrusting

    NASA Astrophysics Data System (ADS)

    Almeida, Rafael V.; Hubbard, Judith; Liberty, Lee; Foster, Anna; Sapkota, Soma Nath

    2018-07-01

    Because great earthquakes in the Himalaya have an average recurrence interval exceeding 500 yr, most of what we know about past earthquakes comes from paleoseismology and tectonic geomorphology studies of the youngest fault system there, the Main Frontal Thrust (MFT). However, these data are sparse relative to fault segmentation and length, and interpretations are often hard to validate in the absence of information about fault geometry. Here, we image the upper two km of strata in the vicinity of the fault tip of the MFT in central Nepal (around the town of Bardibas) applying a pre-stack migration approach to two new seismic reflection profiles that we interpret using quantitative fault-bend folding theory. Our results provide direct evidence that a shallow décollement produces both emergent (Patu thrust) and blind (Bardibas thrust) fault strands. We show that the décollement lies about 2 km below the land surface near the fault tip, and steps down to a regional 5 km deep décollement level to the north. This implies that there is significant variation in the depth of the décollement. We demonstrate that some active faults do not reach the surface, and therefore paleoseismic trenching alone cannot characterize the earthquake history at these locations. Although blind, these faults have associated growth strata that allow us to infer their most recent displacement history. We present the first direct evidence of fault dip on two fault strands of the MFT at depth that can allow terrace uplift measurements to be more accurately converted to fault slip. We identify a beveled erosional surface buried beneath Quaternary sediments, indicating that strath surface formation is modulated by both climate-related base level changes and tectonics. Together, these results indicate that subsurface imaging, in conjunction with traditional paleoseismological tools, can best characterize the history of fault slip in the Himalaya and other similar thrust fault systems.

  16. Control of preexisting faults and near-surface diapirs on geometry and kinematics of fold-and-thrust belts (Internal Prebetic, Eastern Betic Cordillera)

    NASA Astrophysics Data System (ADS)

    Pedrera, Antonio; Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; García-Lobón, José Luis

    2014-07-01

    We have determined, for the first time, the 3D geometry of a sector of the eastern Internal Prebetic comprised between Parcent and Altea diapirs, combining structural, borehole and multichannel seismic reflection data. The tectonic structure of the Jurassic-Cretaceous carbonate series is characterized by regional ENE-WSW fold-and-thrusts that interact with oblique N-S and WNW-ESE folds, detached over Triassic evaporites and clays. The structural style comprises box-shape anticlines, and N-vergent anticlines with vertical to overturned limbs frequently bordered by reverse and strike-slip faults. The anticlines surround a triangular broad synclinal structure, the Tárbena basin, filled by a late Oligocene to Tortonian sedimentary sequence that recorded folding and thrusting history. The location and geometrical characteristics of fold-and-thrusts may be controlled by the positive inversion of pre-existing Mesozoic normal faults, and by the position and shape of near-surface diapirs composed of Triassic rocks. Therefore, we propose an initial near-surface diapir emplacement of Triassic evaporitic rocks driven by late Jurassic to early Cretaceous rifting of the southern Iberian paleomargin. Thrusting and folding started during the latest Oligocene (∼28-23 Ma) roughly orthogonal to the NW-directed shortening. Deformation migrated to the south during Aquitanian (∼23-20 Ma), when tectonic inversion implied the left-lateral transpressive reactivation of N-S striking former normal faults and right-lateral/reverse reactivation of inherited WNW-ESE faults. We show two mechanisms driving the extrusion of the diapirs during contraction: lateral migration of a pre-existing near-surface diapir associated with dextral transpression; and squeezing of a previous near-surface diapir at the front of an anticline. Our study underlines the value of 3D geological modeling to characterize geometry and kinematics of complex fold-and-thrust belts influenced by preexisting faults and near-surface diapirs.

  17. Limited climate control of the Chugach/St. Elias thrust wedge in southern Alaska demonstrated by orogenic widening during Pliocene to Quaternary climate change

    NASA Astrophysics Data System (ADS)

    Meigs, Andrew

    2014-05-01

    Critical taper wedge theory is the gold standard by which climate control of convergent orogenic belts is inferred. The theory predicts (and models reproduce) that an orogenic belt narrows if erosion increases in erosion in the face of a constant tectonic influx. Numerous papers now argue on the basis of thermochronologic data that the Chugach/ St. Elias Range (CSE) of southern Alaska narrowed as a direct response to Quaternary climate change because glaciers dominated erosion of the orogenic belt. The CSE formed in response to collision of a microplate with North America and is notable because glacial erosion has dominated the CSE for the past 5 to 6 Ma. An increase in sediment accumulation rates in the foreland basin over that time suggests that glacial erosion become more efficient. If correct, it is possible that glacial erosion outpaced rock influx thereby inducing a climatically controlled narrowing of the orogenic wedge during the Quaternary. Growth strata preserved within the wedge provide a test of that interpretation because they demonstrate the spatial and temporal pattern of deformation during the Pliocene to Quaternary climate transition. A thrust front established between 6 and 5 Ma jumped towards the foreland by 30 and 15 km at 1.8 and 0.25 Ma, respectively. Distributed deformation within the thrust belt accompanied the thrust front relocations. Continuous exhumation recorded by low-temperature thermochronometers occurred contemporaneously with the shortening, parallel the structural not the topographic grain, and ages become younger towards the foreland as well. Interpreted in terms of critical wedge theory, continuous distributed deformation reflects a sub-critical wedge taper resulting from the combined effects of persistent exhumation and incremental accretion and orogenic widening via thrust front jumps into the undeformed foreland. Taper angle varies according to published cross-sections and ranges from 3 to 9 degrees. If the wedge oscillated about critical taper, a pore fluid ratio between 0.7 and 0.97 is suggested by range of taper angles. Thus, the thrust belt response to Pliocene to Quaternary climate change and a likely increase in glacial coverage is in fact the opposite of the expected response of a critical-taper wedge to an increase in hinterland erosion rate. The CSE hovered near critical taper throughout the Quaternary and the tectonic influx equaled or exceeded the erosional efflux, implying that glacial erosion was paced by, not independent of, tectonic rock uplift rate.

  18. Structure and regional significance of the Late Permian(?) Sierra Nevada - Death Valley thrust system, east-central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2005-01-01

    An imbricate system of north-trending, east-directed thrust faults of late Early Permian to middle Early Triassic (most likely Late Permian) age forms a belt in east-central California extending from the Mount Morrison roof pendant in the eastern Sierra Nevada to Death Valley. Six major thrust faults typically with a spacing of 15-20 km, original dips probably of 25-35??, and stratigraphic throws of 2-5 km compose this structural belt, which we call the Sierra Nevada-Death Valley thrust system. These thrusts presumably merge into a de??collement at depth, perhaps at the contact with crystalline basement, the position of which is unknown. We interpret the deformation that produced these thrusts to have been related to the initiation of convergent plate motion along a southeast-trending continental margin segment probably formed by Pennsylvanian transform truncation. This deformation apparently represents a period of tectonic transition to full-scale convergence and arc magmatism along the continental margin beginning in the Late Triassic in central California. ?? 2005 Elsevier B.V. All rights reserved.

  19. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  20. Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model

    NASA Astrophysics Data System (ADS)

    Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu

    2014-09-01

    The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.

  1. The Middle Pleistocene evolution of the Molise intermontane basins: revision of the chrono-stratigraphic framework and new results inferred from a deep core of the Isernia - Le Piane basin

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Patrizio Ciro Aucelli, Pietro; Cesarano, Massimo; Rosskopf, Carmen Maria

    2014-05-01

    The Molise sector of the Apennine chain includes several Quaternary intermontane basins of tectonic origin (Venafro, Isernia-Le Piane, Carpino, Sessano, Boiano and Sepino basins). Since the Middle Pleistocene, the palaeoenvironmental evolution of these basins has been strongly conditioned by extensional tectonics, dominated by fault systems with a general NW-SE trend. This tectonics has produced important vertical displacements which are testified by the elevated thickness of basin fillings and the presence of several generations of palaeosurfaces, gentle erosion glacis and hanging valleys, the latter being generally located along the borders of the basins. Our research has focused, in the last years, on clarifying the infilling nature and the Quaternary evolution of the Boiano and Sessano basins and, more recently, of the Venafro and Isernia basins, the latter being investigated also by a new deep drilling. The present paper aims at presenting the results of the detailed, integrated analysis of the palaeoenvironmental and geomorphological evolution of these basins, that allowed for constraining the chronology of the basin infillings and for clarifying the significance and age of the ancient gentle surfaces, now hanging up to hundreds of meters above the basins floors. Furthermore, the main palaeoenvironmental changes and the tectonic phases are highlighted. The dating of several tephra layers interbedded within the investigated fluvial-marshy and lacustrine-palustrine successions, allowed to correlate different basin successions, and to refer the main sedimentary facies and some of the palaeosurface generations to the Middle Pleistocene. The obtained results confirm that the Middle Pleistocene evolution of the Molise Apennine was controlled by a polyphasic extensional tectonics, with periods of relative landscape stability alternating with periods of major landscape fragmentation, due to the variable interplay of tectonic and climate. They allow, furthermore, to better decipher the Middle Pleistocene tectonic evolution providing new data on the number of phases and their differences in length, intensity and related accommodation rates.

  2. Miocene exhumation of the Indus-Yarlung Suture Zone in NW India: An insight into the controls of tectonics and climate

    NASA Astrophysics Data System (ADS)

    Bhattacharya, G.; Robinson, D. M.; Orme, D. A.; Olree, E.; Bosu, S.

    2016-12-01

    Detritus from the India-Asia collision and subsequent Cenozoic tectonic events is preserved in sedimentary basins along the 2500 km long Indus-Yarlung Suture Zone (IYSZ) in India and Tibet. In northwest India, these Eocene-Miocene synorogenic sedimentary rocks are preserved in the Tar and Indus Groups. We use (U-Th)/He dating of detrital zircons from units within these sedimentary basins, including the Temesgam Formation at Temesgam, the Lower Nimu Formation and the Sumdo Formation in the Zanskar Gorge, and the Artsa Formation and the Miru Formation in the Upshi-Lato region. These analyses indicate a phase of rapid exhumation from 19-8 Ma. Possible explanations for these data include a combination of tectonic events and the influence of climate. Regional back-thrusting initiated at 20 Ma along the Great Counter Thrust, which buried the IYSZ footwall with the Lamayuru slope deposits of the Indian passive margin. In south Tibet, previous studies identify underthrusting of the Indian plate as a key factor for basin exhumation in the IYSZ, which may also be a driver in northwest India. The flow of the paleo-Indus river through the IYSZ in Early Miocene time might have been triggered by the onset of Asian monsoon at 24 Ma and its intensification between 18-10 Ma. Our data demonstrate a phase of rapid exhumation in northwest India from 19-8 Ma, which may be linked to all of these tectonic and climate influences. Data in this study are similar to the data of Carrapa et al. (2014) from south Tibet that show peak exhumation at 17 Ma, and suggest that a regional cooling episode, driven by tectonics and climate, might have prevailed in the Miocene along the IYSZ.

  3. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  4. Paleomagnetic study of an active arc-continent collision, Finisterre Arc Terrane, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, Peter Donald

    1999-12-01

    This dissertation includes 3 studies from the active collision zone between the Finisterre volcanic arc and Papua New Guinea. Chapter 1 is a paleomagnetic study of thrust sheets of the fold and thrust belt north of the Ramu-Markham suture indicating very rapid vertical-axis rotations related to tectonic transport of thrust units. Our data indicate that rotations as great as 90° since 1 Ma have occurred locally in the Erap Valley area. Such rapid rotations during thrust sheet emplacement may be more common in fold and thrust belts than is presently recognized. Anisotropy of magnetic susceptibility (AMS) lineations are rendered parallel by the same rotations used to restore the paleomagnetic remanence to N-S thus independently confirming the rapid rotations. In Chapter 2, we compare the AMS fabrics from the Erap Valley with microscopic shape fabrics obtained through digital image analysis. We find that the orientations of principal axes found by the two techniques agree very well, but that the maximum and intermediate axes of the magnetic fabric are inverted relative to the grain shape. We interpret the shape fabric as a primary depositional fabric, and the magnetic fabric as the result of a weak tectonic strain overprinting a depositional fabric. Thus, comparison of these fabrics detects the earliest transition from depositional to tectonic strain fabric. Finally, in Chapter 3, we turn to larger scale paleomagnetic results from the colliding Finisterre Arc. Hemipelagic rocks possess a syn-collisional remagnetization indicating a clockwise rotation of the colliding terrane through about 40° in post-Miocene time. Decreasing paleomagnetic declination anomalies as a function of along-strike distance in the Finisterre Terrane, analyzed by our preferred model of a linear remagnetization and a migrating Euler pole, suggests an average rotation rate of 8°/Ma. Thus, we propose that the rotation results from a rigid-body rotation of the Finisterre Terrane rather than from sequential docking of independently colliding blocks. We examine models of a syn-collisional remagnetization with both fixed and migrating Euler poles, and suggest that the Euler pole describing Bismarck/Australia plate motion may have migrated 675 km through post-Miocene time to its present location at the collision suture.

  5. 3D seismic investigation of the structural and stratigraphic characteristics of the Pagasa Wedge, Southwest Palawan Basin, Philippines, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Ilao, Kimberly A.; Morley, Christopher K.; Aurelio, Mario A.

    2018-04-01

    The Pagasa Wedge is a poorly imaged deepwater orogenic wedge that has been variously interpreted as representing an accretionary prism, a former accretionary prism modified by thrusting onto a thinned continental margin, and a gravity-driven fold-thrust belt. This study, using 2D and 3D seismic data, together with well information indicates that at least the external part of the wedge is dominantly composed of mass transport complexes, capped by syn-kinematic sediments that have thrusts and normal faults superimposed upon them. Drilling shows that despite stratigraphic repetition of Eocene Middle Miocene units, there is stratigraphic omission of Oligocene and Early Miocene units. This absence suggests that mass transport processes have introduced the Eocene section into the wedge rather than tectonic thrusting. The accretionary prism stage (Oligocene) of the Central Palawan Ophiolite history appears to be marked by predominantly north-vergent deformation. The Deep Regional Unconformity (∼17 Ma) likely indicates the approximate time when obduction ceased in Palawan. The Pagasa Wedge is a late-stage product of the convergence history that was active in its final phase sometime above the top of the Nido Limestone (∼16 Ma) and the base of the Tabon Limestone in the Aboabo-A1X well (∼9 Ma). The top of the wedge is traditionally associated with the Middle Miocene Unconformity (MMU), However the presence of multiple unconformities, diachronous formation tops, local tectonic unconformities and regional diachronous events (e.g. migrating forebulges) all suggest simply giving a single age (or assigning a single unconformity, such as the MMU as defining the top of the Pagasa Wedge is inappropriate. The overall NE-SW trend of the wedge, and the dominant NW transport of structures within the wedge diverge from the more northerly transport direction determined from outcrops in Palawan, and also from the Nido Limestone in the SW part of the Pagasa Wedge. Possibly this NW transport direction is more related to gravity-driven structures responding to uplift of NE-SW Dangerous Grounds margin during the Middle Miocene (related to slab breakoff?) than it is to thrusting rooted in a plate boundary. The final modification of the wedge occurred when the effects of compression deformation on the wedge had largely ended, but gravity processes (in particular mass transport and normal faulting) still operated.

  6. Deformation Front Development at the Northeast Margin of the Tainan Basin, Tainan-Kaohsiung Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Tsann; Yang, Kenn-Ming; Hung, Jih-Hao; Wu, Jong-Chang; Ting, Hsin-Hsiu; Mei, Wen-Wei; Hsu, Shiang-Horng; Lee, Min

    2004-03-01

    The geological setting south of the Tsengwen River and the Tsochen Fault is the transitional zone between the Tainan foreland basin and Manila accretionary wedge in Southwestern Taiwan. This transitional zone is characterized by the triangle zone geological model associated with back thrusts that is quite unique compared to the other parts of the Western foreland that are dominated by thrust imbrications. The Hsinhua structure, the Tainan anticline, and the offshore H2 anticline are the first group of major culminations in the westernmost part of the Fold-and-Thrust belt that formed during the Penglay Orogeny. Structures in the the Tainan and Kaohsiung areas provide important features of the initial mountain building stage in Western Taiwan. A deeply buried basal detachment with ramp-flat geometry existed in the constructed geological sections. A typical triangle is found by back thrusting, such as where the Hsinhua Fault cuts upsection of the Upper Pliocene and Pleistocene from a lower detachment along the lower Gutingkeng Formation. The Tainan structure is a southward extension of the Hinhua Fault and has an asymmetric geometry of gentle western and steep eastern limbs. Our studies suggest that the Tainan anticline is similar to the structure formed by the Hsinhua Fault. Both are characterized by back thrusts and rooted into a detachment about 5 km deep. The triangle zone structure stops at H2 anticline offshore Tainan and beyond the west of it, All the structures are replaced by rift tectonic settings developed in the passive continental margin. On the basal detachment, a major ramp interpreted as a tectonic discontinuity was found in this study. Above the northeastern end of the major ramp of basal detachment, the Lungchuan Fault is associated with a triangle system development, while at the southwestern end a thrust wedge is present. It could be deduced that a thrust wedge intrudes northwestward. The area below the major ramp, or equivalent to the trailing edge of the basal detachment, mud diapers often occur in relation to the thickest deposits of the Gutingkeng Formation and caused by the mechanism of detachment folding

  7. Kinematics and Seismotectonics of the Montello Thrust Fault (Southeastern Alps, Italy) Revealed by Local GPS and Seismic Networks

    NASA Astrophysics Data System (ADS)

    Serpelloni, E.; Anderlini, L.; Cavaliere, A.; Danesi, S.; Pondrelli, S.; Salimbeni, S.; Danecek, P.; Massa, M.; Lovati, S.

    2014-12-01

    The southern Alps fold-and-thrust belt (FTB) in northern Italy is a tectonically active area accommodating large part of the ~N-S Adria-Eurasia plate convergence, that in the southeastern Alps ranges from 1.5 to 2.5 mm/yr, as constrained by a geodetically defined rotation pole. Because of the high seismic hazard of northeastern Italy, the area is well monitored at a regional scale by seismic and GPS networks. However, more localized seismotectonic and kinematic features, at the scale of the fault segments, are not yet resolved, limiting our knowledge about the seismic potential of the different fault segments belonging to the southeastern Alps FTB. Here we present the results obtained from the analysis of data collected during local seismic and geodetic experiments conducted installing denser geophysical networks across the Montello-Bassano-Belluno system, a segment of the FTB that is presently characterized by a lower sismicity rate with respect to the surrounding domains. The Montello anticline, which is the southernmost tectonic features of the southeastern Alps FTB (located ~15 km south of the mountain front), is a nice example of growing anticline associated with a blind thrust fault. However, how the Adria-Alps convergence is partitioned across the FTB and the seismic potential of the Montello thrust (the area has been struck by a Mw~6.5 in 1695 but the causative fault is still largely debated) remained still unresolved. The new, denser, GPS data show that this area is undergoing among the highest geodetic deformation rates of the entire south Alpine chain, with a steep velocity gradient across the Montello anticline. The earthquakes recorded during the experiment, precisely relocated with double difference methods, and the new earthquake focal mechanisms well correlate with available information about sub-surface geological structures and highlight the seismotectonic activity of the Montello thrust fault. We model the GPS velocities using elastic dislocations embedded in a kinematic block model approach, which suggest that the Montello thrust fault is weakly coupled with respect to surrounding segments of the southernmost thrust system. Future works will include the integration of InSAR data and the densification/improvement of the geodetic infrastructure.

  8. Reconnaissance geology of the Central Mastuj Valley, Chitral State, Pakistan

    USGS Publications Warehouse

    Stauffer, Karl W.

    1975-01-01

    The Mastuj Valley in Chitral State is a part of the Hindu Kush Range, and is one of the structurally most complicated areas in northern Pakistan. Sedimentary rocks ranging from at least Middle Devonian to Cretaceous, and perhaps Early Tertiary age lie between ridge-forming granodiorite intrusions and are cut by thrust faults. The thrust planes dip 10? to 40? to the north- west. Movement of the upper thrust plates has been toward the southeast relative to the lower blocks. If this area is structurally typical of the Hindu-Kush and Karakoram Ranges, then these mountains are much more tectonically disturbed than previously recorded, and suggest compression on a scale compatible with the hypothesis that the Himalayan, Karakoram, and Hindu Kush Ranges form part of a continental collision zone. The thrust faults outline two plates consisting of distinctive sedimentary rocks. The lower thrust plate is about 3,000 feet thick and consists of the isoclinally folded Upper Cretaceous to perhaps lower Tertiary Reshun Formation. It has overridden the Paleozoic metasedimentary rocks of the Chitral Slate unit. This thrust plate is, in turn, overridden by an 8,000-foot thick sequence consisting largely of Devonian to Carboniferous limestones and quartzites. A key factor in the tectonic processes has been the relatively soft and plastic lithology of the siltstone layers in the Reshun Formation which have acted as lubricants along the principal thrust faults, where they are commonly found today as fault slices and smears. The stratigraphic sequence, in the central Mastuj Valley was tentatively divided into 9 mapped units. The fossiliferous shales and carbonates of the recently defined Shogram Formation and the clastlcs of the Reshun Formation have been fitted into a sequence of sedimentary rocks that has a total thick- ness of at least 13,000 feet and ranges in age from Devonian to Neogene. Minerals of potential economic significance include antimony sulfides which have been mined elsewhere in Chitral, the tungstate, scheelite, which occurs in relatively high concentrations in heavy-mineral fractions of stream sands, and an iron-rich lateritic rock.

  9. Seismic images of a tectonic subdivision of the Greenville Orogen beneath lakes Ontario and Erie

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.

    1994-01-01

    New seismic data from marine air-gun and Vibroseis profiles in Lake Ontario and Lake Erie provide images of subhorizontal Phanerozoic sediments underlain by a remarkable series of easterly dipping reflections that extends from the crystalline basement to the lower crust. These reflections are interpreted as structural features of crustal-scale subdivisions within the Grenville Orogen. Broadly deformed, imbricated, and overlapping thrust sheets within the western Central Metasedimentary Belt are succeeded to the west by a complex zone of easterly dipping, apparent thrust faults that are interpreted as a southwest subsurface extension of the boundary zone between the Central Metasedimentary Belt and the Central Gneiss Belt. The interpreted Central Metasedimentary Belt boundary zone has a characteristic magnetic anomaly that provides a link from the adjacent ends of lakes Ontario and Erie to structures exposed 150 km to the north. Less reflective, west-dipping events are interpreted as structures within the eastern Central Gneiss Belt. The seismic interpretation augments current tectonic models that suggest the exposed ductile structures formed at depth as a result of crustal shortening along northwest-verging thrust faults. Relatively shallow reflections across the boundary region suggest local, Late Proterozoic extensional troughs containing post-Grenville sediments, preserved possibly as a result of pre-Paleozoic reactivation of basement structures.

  10. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake.

    PubMed

    Donnellan, Andrea; Grant Ludwig, Lisa; Parker, Jay W; Rundle, John B; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott

    2015-09-01

    Tectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933  M 6.4 Long Beach and 1994  M 6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north-south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M 5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left-lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still-locked deeper structures. A future M 6.1-6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping.

  11. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake

    PubMed Central

    Grant Ludwig, Lisa; Parker, Jay W.; Rundle, John B.; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott

    2015-01-01

    Abstract Tectonic motion across the Los Angeles region is distributed across an intricate network of strike‐slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike‐slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north‐south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left‐lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still‐locked deeper structures. A future M6.1–6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping. PMID:27981074

  12. The petrology, structure and geochemistry of an Archean terrane in the North Snowy Block, Beartooth Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.

    1984-12-01

    Six major rock units in the North Snowy Block in an Archean mobile belt are recognized between all units representing discontinuities in metamorphic grade, structural style, geochemistry, and isotopic ages. Four of the units occur in NE trending linear belts; the Basement Gneiss; the phyllitic Davis Creek Schist; the mount cowen augen gneis; the Paragneiss unit. Overlying the linear units is the 3.2 Ga old Pine Creek Nappe Complex, an isoclinally folded, middle to upper amphibolite facies, thrust nappe consisting of the Barney Creek Amphibolite, George Lake Marble and Jewel Quartzite. The highest structural units, including a thick sequence of upper amphibolite grade supracrustal rocks and a lower section of injected 3.4 Ga old granitic to tonalitic migmatitic rocks were emplaced on the Columbine Thrust. It is shown that there was secular variation in tectonic style in the Archean of southwest Montana. Three stages are recognized: (1) melting of ancient matic crust produced trondhjemitic continental nuclei; (2) numerous ensialic basins were created and destroyed, resulting in high grade metamorphism and mignatization of supracrustal rocks; and (3) contemporary style plate tectonics resulted in generation of large volumes of andesities and calc-alkaline granitic rocks, transcurrent faulting, and thrust faulting.

  13. Tectonic interpretations of Central Ishtar Terra (Venus) from Venera 15/16 and Magellan full-resolution radar images

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Vergely, P.; Masson, P.

    1994-03-01

    For more than a decade, the mapping of Venus has revealed a surface that has had a complex volcanic and tectonic history, especially in the northern latitudes. Detailed morphostructural analysis and tectonic interpretations of Central Ishtar Terra, based both on Venera 15/16 and Magellan full-resolution radar images, have provided additional insight to the formation and evolution of Venusian terrains. Ishtar Terra, centered at 0 deg E longitude and 62 deg N latitude, consists of a broad high plateau, Lakshmi Planum, partly surrounded by two highlands, Freyja and Maxwell Montes, which have been interpreted as orogenic belts based on Venera 15 and 16 data. Lakshmi Planum, the oldest part of Ishtar Terra, is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. The plateau is partially covered by fluid lava flows similar to the Deccan traps in India, which underwent a late stage of extensional fracturing. After the extensional deformation of Lakshmi Planum, Freyja and Maxwell Montes were created by regional E-W horizontal shortening that produced a series of N-S folds and thrusts. However, this regional arrangement of folds and thrusts is disturbed locally, e.g. the compressive deformation of Freyja Montes was closely controlled by parallel WNW-ESE-trending left-lateral shear zones and the northwestern part of Maxwell Montes seems to be extruded laterally to the southwest, which implies a second oblique thrust front overlapping Lakshmi Planum. These mountain belts also shows evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trends, especially in Maxwell Montes.

  14. Buoyant subduction on Venus: Implications for subduction around coronae

    NASA Astrophysics Data System (ADS)

    Burt, J. D.; Head, J. W.

    1993-03-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  15. Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults?

    NASA Astrophysics Data System (ADS)

    Silva, Sónia; Terrinha, Pedro; Matias, Luis; Duarte, João C.; Roque, Cristina; Ranero, César R.; Geissler, Wolfram H.; Zitellini, Nevio

    2017-10-01

    The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.

  16. Seismicity of the Earth 1900–2010 Middle East and vicinity

    USGS Publications Warehouse

    Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.

    2013-01-01

    No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.

  17. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    NASA Astrophysics Data System (ADS)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP data. No obvious strike-slip faults are revealed in the MCS or CHIRP imagery. This result is consistent with a published analysis of GPS measurements that suggests oblique convergence on a south-dipping reverse fault along the southern shore of the lake.

  18. Morphologic and structural evolution of the Algerian Margin since Messinian (-6 Myr); First results of a new experimental approach.

    NASA Astrophysics Data System (ADS)

    Dominguez, S.; Strzerzynski, P.; Déverchère, J.; Boudiaf, A.; Yelles, K.

    2009-04-01

    In the framework of the ANR (Agence Nationale de la Recherche) DANACOR Project, dedicated to the seismo-tectonic study of the Algerian Margin, we have developed an experimental approach based on a new type of analog models to investigate its morpho-structural evolution over the last 6 Myr. Present day structure of the Algerian margin results from a polyphased geologic evolution starting, during Late Oligocene, with the opening of the Western Mediterranean Sea. During lower Miocene, back-arc extension and slab roll-back, associated to the Tethyan oceanic subduction induced accretion of the Kabylian crustal blocks against the North African passive margin. At the end of Miocene, a main tectono-climatic event occurred, the Messinian salinity crisis, that left a significant footprint on the marine sedimentation and coastal morphology. Finally, during Upper Pliocene and Quaternary, due to the ongoing crustal convergence between Africa and Eurasia, the Algerian Margin experienced active compression as shown by north dipping thrusts located onland (Yelles et al., 2006) and south dipping reverse faults located at sea (Déverchère et al. 2005, Domzig et al., 2006). The occurrence of moderate to strong compressive earthquakes, such as the Boumerdes earthquake (Mw 6.9, 2003) indicates that the deformation is still active. In such a context, the objectives of our study are to evaluate the impact of the Messinian salinity crisis on the morphological and sedimentological evolution of the margin and to test different hypothesis concerning the recent compressive tectonic event that developed in the last millions years and more particularly how it affects the margin and coastal domain tectonics. To model a whole continental margin, we've modified a recent experimental technique developed initially to study the interactions between Tectonics-Erosion-Sedimentation (TES) in active mountain foreland (Graveleau and Dominguez, 2008). Erosion of emerged topographies (coastal domain) is produced by sprinkling thin rain droplets on the model surface. Boundary conditions, models rheology and dimensioning parameters were determined using the available geologic and geophysical data. For such complex models, rigorous dimensioning cannot be achieved but, at a first order, 1 cm in the model can be considered as equivalent to 500 m in nature and 1s to about 50 years. Up to now, we performed 5 main experiments to determine the boundary conditions in terms of geometry and internal structure and also to find the most appropriate analog material rheology. All experiments started at the beginning of the Messinian salinity crisis (-5.96 Myr) by a rapid decrease of the sea level to -2500m (-5 cm), followed by 400000 yr (2 hours) of a low stand sea level. A specific material is then manually deposited to simulate the Messinian evaporites. During this stage, extreme erosion, creating several huge canyon systems on the emerged margin and onland, is observed as well as large fan deposits at the base of the margin. Finally, we induce a rapid sea level rise to simulate the replenishment of the Mediterranean Sea at -5.33 Myr. During the next 2 Myr (10 hours), only erosion of the coastal domain is performed resulting in progradation of marine sediments that deposited on the margin proximal domain. Near the end of Pliocene (about -2.3 Myr), compressive deformation is imposed and the model starts shortening. During this stage, that lasts more than 12 hours, reverse faults dipping landward develop together with a few backthrusts that affect the coastal domain as it is observed on the Algerian margin. A significant part of the upper domain of the margin emerged, inducing a seaward displacement of the coastal line. These new reliefs enhance erosion onland and sedimentation at sea that interact with the different active faults. This work represents a first attempt to model a tectonized continental margin by including realistic onland and at sea geological processes. Even if some work is still required to better take into account the specificity of the Algerian Margin, it allows to discuss the impact of the different tectono-climatic events undergone by the margin on its present day evolution. - Yelles-Chaouche A.K., Boudiaf A., Djellit H., and Bracène R., Active tectonics in northern Algeria, C.R. Geoscience, 338(1-2),126-139, 2006 - Déverchère J., K. Yelles, A. Domzig, B. Mercier de Lépinay, J-P. Bouillin, V. Gaullier, R. Bracène, E. Calais, B. Savoye, A. Kherroubi, P. Le Roy, H. Pauc, and G. Dan, 2005. Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake, Geophys. Res. Lett., 32, L04311. - Domzig A., Le Roy C., Yelles K., Déverchère J., Bouillin J-P., Bracene R., Mercier de Lépinay B., LE ROY P., Calais E., Kherroubi A., Gaullier V., Savoye B., & Pauc H., 2006. Searching for the Africa-Eurasia Miocene boundary offshore western Algeria (MARADJA'03 cruise), C.R. Géoscience, vol. 338, 80-91. - Graveleau and Dominguez, 2008. Analogue modelling of the interaction between tectonics, erosion and sedimentation in foreland thrust belts, C.R. Géoscience, vol. 340, no5, pp. 324-333.

  19. Valemount strain zone: A dextral oblique-slip thrust system linking the Rocky Mountain and Omineca belts of the southeastern Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    McDonough, Michael R.; Simony, Philip S.

    1989-03-01

    The Valemount strain zone (VSZ), a narrow zone of high orogen-parallel (OP) strain in pebble conglomerate of the Late Proterozoic Miette Group, is the footwall expression of a thrust fault on the western edge of the Rocky Mountain belt, marking the eastern limit of a wide zone of OP fabrics distributed through the Omineca crystalline and western Rocky Mountain belts of the southeastern Canadian Cordillera. Kinematic indicators from the VSZ and the adjacent Bear Foot thrust zone show that both thrust and dextral displacement are associated with folding and thrust motion in the Rocky Mountains, thereby linking the southern Rocky Mountain belt to the Omineca belt by an oblique-slip thrust regime that is tectonically unrelated to the Southern Rocky Mountain Trench. Transverse shortening of thrust sheets and subsequent distribution of OP shear are invoked to explain the parallelism of stretching lineations and fold axes. Strain and kinematic data and the thrust-belt geometry of the VSZ suggest that OP lineations are a product of a large amount of transverse shortening during slightly oblique A-type subduction. Thus, OP lineations are not representative of relative plate motions between North America and accreted terranes, but probably are a function of footwall buttressing of thrust sheets, a mechanism that may be widely applicable to the internal zones of collisional orogens.

  20. Assessment of undiscovered petroleum resources of the Arctic Alaska Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Arctic Alaska Petroleum Province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald arch tectonic belts and south of the northern (outboard) margin of the Alaska rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America, with total known resources (cumulative production plus proved reserves) of about 28 billion barrels of oil equivalent. For assessment purposes, the province is divided into a platform assessment unit, comprising the Alaska rift shoulder and its relatively undeformed flanks, and a fold-and-thrust belt assessment unit, comprising the deformed area north of the Brooks Range and Herald arch tectonic belts. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil and 122 trillion cubic feet of nonassociated gas in the platform assessment unit and 2 billion barrels of oil and 59 trillion cubic feet of nonassociated gas in the fold-and-thrust belt assessment unit.

  1. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin; Faure, Michel; Lin, Wei; Chen, Yan; Chu, Yang; Xue, Zhenhua

    2018-01-01

    The South China Block (SCB) experienced a polyphase reworking by the Phanerozoic tectonothermal events. To better understand its Late Mesozoic tectonics, an integrated multidisciplinary investigation has been conducted on the Dayunshan-Mufushan composite batholith in the north-central SCB. This batholith consists of two major intrusions that recorded distinct emplacement features. According to our structural analysis, two deformation events in relation to batholith emplacement and subsequent exhumation are identified. The early one (D1) was observed mostly at the southern border of the batholith, characterized by a top-to-the-SW ductile shearing in the early-stage intrusion and along its contact zone. This deformation, chiefly associated with the pluton emplacement at ca. 150 Ma, was probably assisted by farfield compression from the northern Yangtze foreland belt. The second but main event (D2) involved two phases: (1) ductile shearing (D2a) prominently expressed along the Dayunshan detachment fault at the western border of the batholith where the syntectonic late-stage intrusion and minor metasedimentary basement in the footwall suffered mylonitization with top-to-the-NW kinematics; and (2) subsequent brittle faulting (D2b) further exhumed the entire batholith that behaved as rift shoulder with half-graben basins developed on its both sides. Geochronological constraints show that the crustal ductile extension occurred during 132-95 Ma. Such a Cretaceous NW-SE extensional tectonic regime, as indicated by the D2 event, has been recognized in a vast area of East Asia. This tectonism was responsible not only for the destruction of the North China craton but also for the formation of the so-called "southeast China basin and range tectonics."

  2. Polyphase tectono-magmatic and fluid history related to mantle exhumation in an ultra-distal rift domain: example of the fossil Platta domain, SE Switzerland

    NASA Astrophysics Data System (ADS)

    Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic; Lescanne, Marc

    2017-04-01

    Despite the fact that many studies have investigated mantle exhumation at magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid and thermal evolution of these ultra-distal domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex, however, the processes controlling the morpho-tectonic and magmatic evolution of these domains remain unknown. The aim of this study is to describe the 3D top basement morphology of an exhumed mantle domain, exposed over 200 km2 in the fossil Platta domain in SE Switzerland, and to define the timing and processes controlling its evolution. The examined Platta nappe corresponds to a remnant of the former ultra-distal Adriatic margin of the Alpine Tethys. The rift-structures are relatively well preserved due to the weak Alpine tectonic and metamorphic overprint during the emplacement in the Alpine nappe stack. Detailed mapping of parts of the Platta nappe enabled us to document the top basement architecture of an exhumed mantle domain and to investigate its link to later, rift/oceanic structures, magmatic additions and fluids. Our observations show a polyphase and/or complex: 1) deformation history associated with mantle exhumation along low-angle exhumation faults overprinted by later high-angle normal faults, 2) top basement morphology capped by magmato-sedimentary rocks, 3) tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and 4) fluid history including serpentinization, calcification, hydrothermal vent, rodingitization and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide important information on the temporal and spatial evolution of the tectonic, magmatic and fluid systems controlling the formation of ultra-distal magma-poor rifted margins as well as the processes controlling lithospheric breakup. In this context, our field observations can help to better understand the tectono-magmatic processes associated to these, not yet drilled domains that may form in young, narrow rifted margins (e.g. Red Sea, Gulf of Aden) or may represent the Ocean-Continent Transition in more mature, magma-poor Atlantic type systems.

  3. Evidence for synchronous thin-skinned and basement deformation in the Cordilleran fold-thrust belt: the Tendoy Mountains, southwestern Montana

    NASA Astrophysics Data System (ADS)

    McDowell, Robin John

    1997-01-01

    The Tendoy Mountains contain the easternmost thin-skinned thrust sheets in the Cordilleran fold-thrust belt of southwestern Montana, and are in the zone of tectonic overlap between the Rocky Mountain foreland and the Cordilleran fold-thrust belt. The three frontal thrust sheets of the Tendoy Mountains are from north to south, the Armstead, McKenzie, and Tendoy sheets. Near the southeastern terminus of the Tendoy thrust sheet is a lateral ramp in which the Tendoy thrust climbs along strike from the Upper Mississippian Lombard Limestone to lower Cretaceous rocks. This ramp coincides with the southeastern side of the Paleozoic Snowcrest trough and projection of the range-flanking basement thrust of the Blacktail-Snowcrest uplift, suggesting either basement or stratigraphic control on location of the lateral ramp. Axes of major folds on the southern part of the Tendoy thrust sheet are parallel to the direction of thrust transport and to the trend of the Snowcrest Range. They are a result of: (1) Pre-thrust folding above basement faults; (2) Passive transportation of the folds from a down-plunge position; (3) Minor reactivation of basement faults; and (4) Emplacement of blind, sub-Tendoy, thin-skinned thrust faults. The Tendoy sheet also contains a major out-of-sequence thrust fault that formed in thick Upper Mississippian shales and created large, overturned, foreland-verging folds in Upper Mississippian to Triassic rocks. The out-of-sequence fault can be identified where stratigraphic section is omitted, and by a stratigraphic separation diagram that shows it cutting down section in the direction of transport. The prominent lateral ramp at the southern terminus of the Tendoy thrust sheet is a result of fault propagation through strata folded over the edge of the Blacktail-Snowcrest uplift.

  4. Connecting the Yakima fold and thrust belt to active faults in the Puget Lowland, Washington

    USGS Publications Warehouse

    Blakely, R.J.; Sherrod, B.L.; Weaver, C.S.; Wells, R.E.; Rohay, A.C.; Barnett, E.A.; Knepprath, N.E.

    2011-01-01

    High-resolution aeromagnetic surveys of the Cascade Range and Yakima fold and thrust belt (YFTB), Washington, provide insights on tectonic connections between forearc and back-arc regions of the Cascadia convergent margin. Magnetic surveys were measured at a nominal altitude of 250 m above terrain and along flight lines spaced 400 m apart. Upper crustal rocks in this region have diverse magnetic properties, ranging from highly magnetic rocks of the Miocene Columbia River Basalt Group to weakly magnetic sedimentary rocks of various ages. These distinctive magnetic properties permit mapping of important faults and folds from exposures to covered areas. Magnetic lineaments correspond with mapped Quaternary faults and with scarps identified in lidar (light detection and ranging) topographic data and aerial photography. A two-dimensional model of the northwest striking Umtanum Ridge fault zone, based on magnetic and gravity data and constrained by geologic mapping and three deep wells, suggests that thrust faults extend through the Tertiary section and into underlying pre-Tertiary basement. Excavation of two trenches across a prominent scarp at the base of Umtanum Ridge uncovered evidence for bending moment faulting possibly caused by a blind thrust. Using aeromagnetic, gravity, and paleoseismic evidence, we postulate possible tectonic connections between the YFTB in eastern Washington and active faults of the Puget Lowland. We suggest that faults and folds of Umtanum Ridge extend northwestward through the Cascade Range and merge with the Southern Whidbey Island and Seattle faults near Snoqualmie Pass 35 km east of Seattle. Recent earthquakes (MW ≤ 5.3) suggest that this confluence of faults may be seismically active today.

  5. Seismicity and velocity structures along the south-Alpine thrust front of the Venetian Alps (NE-Italy)

    NASA Astrophysics Data System (ADS)

    Anselmi, M.; Govoni, A.; De Gori, P.; Chiarabba, C.

    2011-12-01

    In this paper we show the seismicity and velocity structure of a segment of the Alpine retro-belt front along the continental collision margin of the Venetian Alps (NE Italy). Our goal is to gain insight on the buried structures and deep fault geometry in a "silent" area, i.e., an area with poor instrumental seismicity but high potential for future earthquakes, as indicated by historical earthquakes (1695 Me = 6.7 Asolo and 1936 Ms = 5.8 Bosco del Cansiglio). Local earthquakes recorded by a dense temporary seismic network are used to compute 3-D Vp and Vp/Vs tomographic images, yielding well resolved images of the upper crust underneath the south-Alpine front. We show the presence of two main distinct high Vp S-verging thrust units, the innermost coincides with the piedmont hill and the outermost is buried under a thick pile of sediments in the Po plain. Background seismicity and Vp/Vs anomalies, interpreted as cracked fluid-filled volumes, suggest that the NE portion of the outermost blind thrust and its oblique/lateral ramps may be a zone of high fluid pressure prone to future earthquakes. Three-dimensional focal mechanisms show compressive and transpressive solutions, in agreement with the tectonic setting, stress field maps and geodetic observations. The bulk of the microseismicity is clustered in two different areas, both in correspondence of inherited lateral ramps of the thrust system. Tomographic images highlight the influence of the paleogeographic setting in the tectonic style and seismic activity of the region.

  6. Control of Precambrian basement deformation zones on emplacement of the Laramide Boulder batholith and Butte mining district, Montana, United States

    USGS Publications Warehouse

    Berger, Byron R.; Hildenbrand, Thomas G.; O'Neill, J. Michael

    2011-01-01

    What are the roles of deep Precambrian basement deformation zones in the localization of subsequent shallow-crustal deformation zones and magmas? The Paleoproterozoic Great Falls tectonic zone and its included Boulder batholith (Montana, United States) provide an opportunity to examine the importance of inherited deformation fabrics in batholith emplacement and the localization of magmatic-hydrothermal mineral deposits. Northeast-trending deformation fabrics predominate in the Great Falls tectonic zone, which formed during the suturing of Paleoproterozoic and Archean cratonic masses approximately 1,800 mega-annum (Ma). Subsequent Mesoproterozoic to Neoproterozoic deformation fabrics trend northwest. Following Paleozoic through Early Cretaceous sedimentation, a Late Cretaceous fold-and-thrust belt with associated strike-slip faulting developed across the region, wherein some Proterozoic faults localized thrust faulting, while others were reactivated as strike-slip faults. The 81- to 76-Ma Boulder batholith was emplaced along the reactivated central Paleoproterozoic suture in the Great Falls tectonic zone. Early-stage Boulder batholith plutons were emplaced concurrent with east-directed thrust faulting and localized primarily by northwest-trending strike-slip and related faults. The late-stage Butte Quartz Monzonite pluton was localized in a northeast-trending pull-apart structure that formed behind the active thrust front and is axially symmetric across the underlying northeast-striking Paleoproterozoic fault zone, interpreted as a crustal suture. The modeling of potential-field geophysical data indicates that pull-apart?stage magmas fed into the structure through two funnel-shaped zones beneath the batholith. Renewed magmatic activity in the southern feeder from 66 to 64 Ma led to the formation of two small porphyry-style copper-molybdenum deposits and ensuing world-class polymetallic copper- and silver-bearing veins in the Butte mining district. Vein orientations parallel joints in the Butte Quartz Monzonite that, in turn, mimic Precambrian deformation fabrics found outside the district. The faults controlling the Butte veins are interpreted to have formed through activation under shear of preexisting northeast-striking joints as master faults from which splay faults formed along generally east-west and northwest joint plane orientations.

  7. Crustal architecture and tectonic evolution of the Cauvery Suture Zone, southern India

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Yellappa, T.; Santosh, M.

    2016-11-01

    The Cauvery suture zone (CSZ) in southern India has witnessed multiple deformations associated with multiple subduction-collision history, with incorporation of the related accretionary belts sequentially into the southern continental margin of the Archaean Dharwar craton since Neoarchean to Neoproterozoic. The accreted tectonic elements include suprasubduction complexes of arc magmatic sequences, high-grade supracrustals, thrust duplexes, ophiolites, and younger intrusions that are dispersed along the suture. The intra-oceanic Neoarchean-Neoproterozoic arc assemblages are well exposed in the form of tectonic mélanges dominantly towards the eastern sector of the CSZ and are typically subjected to complex and multiple deformation events. Multi-scale analysis of structural elements with detailed geological mapping of the sub-regions and their structural cross sections, geochemical and geochronological data and integrated geophysical observations suggest that the CSZ is an important zone that preserves the imprints of multiple cycles of Precambrian plate tectonic regimes.

  8. Constraints on the evolution of the Naga Hills: from disparate origins to tectonic amalgamation

    NASA Astrophysics Data System (ADS)

    Aitchison, J. C.; Clarke, G. L.; Ireland, T. R.; Ao, A.; Bhowmik, S. K.; Kapesa, L.; Roeder, T.; Stojanovic, D.; Kachovich, S.

    2016-12-01

    Recent field expeditions supported by the Australia-India Strategic Research Fund (AISRF07021) have allowed a collaborative team of Australian and Indian geologists to examine, in detail, regions along the border between Nagaland and Manipur in India and Myanmar. This area has previously been little explored and we present new field and laboratory observations. The Myanmar microplate has been dextrally translated over 480 km northwards along Sagaing Fault system during the Miocene. Clearly it did not originate where it presently lies but how far it has travelled remains uncertain. The Indo-Myanmar ranges include the Naga Hills that are dominated by Cenozoic sediments, which have been thrust westwards (in present-day coordinates). They structurally overlie an Indian passive-margin sequence that includes the Gondwana break-up rift-drift counterpart to parts of the NW Shelf of Australia. Near the Indo-Myanmar border this giant imbricate thrust stack also contains sheets of ophiolitic mélange. The ophiolite is heavily disrupted and subsequent to this dismemberment it has been overlain by a succession of Eocene shallow marine shelf sediments; the Phokphur Formation. Further east a succession of high-grade metamorphic units is also thrust westwards over the ophiolite. Well-preserved radiolarian microfossils and U/PB SHRIMP data provide important new age constraints. While superficially it appears that rocks in this area can be correlated with units known from the Himalaya in fact this is problematic. As oceans to the north and west of Australia have opened, grown and been recycled through subduction various continental fragments that originated as part of Gondwana have departed and, with time, transferred to Asia. They have not necessarily all followed the same tectonic pathways. The area lies to the east of the Namche Barwa syntaxis and tectonic reconstructions indicate it has not directly participated in continent-continent collision. Indeed, stratigraphic and structural architecture differ markedly from that seen in classic Himalayan transects. New detrital zircon U/Pb studies reveal a fascinating history that suggests derivation of some units from Sibumasu rather than the Lhasa or Qiangtang terranes. Detailed study of this area sheds important light on the tectonic evolution of the SE Asia region.

  9. Tectonic Deformation Pattern along the Longmen Shan Fault Zone in Eastern Tibet: Insights from Focal Mechanisms of the Wenchuan and Lushan Earthquake Sequences, Southwestern China

    NASA Astrophysics Data System (ADS)

    Yi, G.; Vallage, A.; Klinger, Y.; Long, F.; Wang, S.

    2017-12-01

    760 ML≥3.5 aftershocks of the 2008 Wenchuan earthquake, the 2013 Lushan mainshock and its 87 ML≥3.5 aftershocks were selected to obtain focal mechanism solutions from CAP waveform inversion method (Zhu and Helmberger, 1996), along with strain rosette (Amelung and King, 1997) and Areal strain (As) (Vallage et al., 2014), we aimed to analyze the tectonic deformation pattern along the Longmen Shan (LMS) fault zone, southwestern China. The As values show that 93% compressional earthquakes for the Lushan sequence are of pure thrust for the southern segment of the LMS fault zone, while only 50% compressional and nearly 40% of strike-slip and oblique-thrust events for the Wenchuan sequence reflect the strike-slip component increase on the central-northern segment of the LMS fault zone, meaning many different faults responsible for the Wenchuan aftershock activity. The strain rosettes with purely NW-trending compressional white lobe for the entire 87 aftershocks and 4 different classes of magnitudes are very similar to that of the Lushan mainshock. We infer that the geological structures for the southern segment are of thrust faulting under NW compressional deformation. The strain rosettes exhibit self-similarity in terms of orientation and shape for all classes, reflecting that the deformation pattern of the southern segment is independent with earthquake size, and suggesting that each class is representative of the overall deformation for the southern segment. We obtained EW-oriented pure compressional strain rosette of the entire 760 aftershocks and NW-oriented white lobe with small NE-oriented black lobe of the Wenchuan mainshock, and this difference may reflect different tectonic deformation pattern during the co-seismic and post-seismic stages. The deformation segmentation along the Wenchuan coseismic surface rupture is also evidenced from the different orientation of strain rosettes, i.e., NW for the southern area, NE for the central and NNW for the northern parts. The above inferences indicate a very complicated tectonic deformation pattern related to the complex geological structure. The segment of the northern aftershock area without ruptures behaves an oblique compressional deformation.

  10. Seafloor expressions of tectonic structures in Isfjorden, Svalbard: implications for fluid migration

    NASA Astrophysics Data System (ADS)

    Roy, Srikumar; Noormets, Riko; Braathen, Alvar

    2014-05-01

    This study investigates the seafloor expressions of Isfjorden in western Svalbard, interlinked with sub-seafloor structures using a dense grid of 2D multichannel marine seismic and magnetic data integrated with high resolution multibeam bathymetric data. The underlying bedrock structures spans from Paleozoic carbonates and evaporates to Mesozoic and Paleogene sandstones and shales. This 4 to 6 km thick succession is truncated by structures linked to Eocene transpressional deformation that resulted in the formation of the West Spitsbergen Fold-and-Thrust Belt (WSFTB). The WSFTB divides into three major belts : (a) western zone characterized by a basement involved fold-thrust complex, (b) central zone consisting of three thin-skinned fold-thrust sheets with thrusts splaying from décollement layers and, east of a frontal duplex system, (c) eastern zone showing décollement in Mesozoic shales with some thrust splays, and with the décollement interacting with reactivated, steep and basement-rooted faults (Bergh et al., 1997). In the continuation, we discuss combined seafloor and bedrock observations, starting from the west. In the west, a 6.5 km long and 5 to 9 m high ridge demarcates the eastern boundary of the major basement involved fold complex, with thrusted and folded competent Cretaceous to Paleogene units reaching the seafloor. Three submarine slides originate from this ridge, possibly triggered by tectonic activities. In Central Isfjorden (central zone of the WSFTB), several NNW-SSE striking ridges with a relief of 5 to 25 m have been tied with shallow, steep faults and folds. In addition to the NNW-SSE striking ridges, a set of SW-NE striking ridges with relief of 2 to 5 m are observed in Nordfjorden. Based on the seismic data observations, these ridges can be linked to the surface expression of competent sandstones that are transported on splay-thrusts above a décollement in Triassic shales. Further, seafloor ridges with relief of 5 of 18 m, linked to high amplitude flat reflectors and high magnetic values have been interpreted as Cretaceous dolerite intrusions in Nordfjorden and central Isfjorden. In the eastern Isfjorden (eastern zone of WSFTB), a 10.5 km long N-S striking ridge in Billefjorden corresponds to the deep-seated Billefjorden Fault Zone, extending south across the mouth of Tempelfjorden where it is 8.5 km long. This composite ridge is bound by a steep east-dipping fault, placing competent Carboniferous and Permian carbonates at the seafloor. Overall, our study shows a distinct pattern of pockmarks concentrated along the identified ridges on the seafloor of Isfjorden. These ridges can be linked to fault-fold systems and dolerite intrusions in the bedrock, thereby suggesting various possible fluid migration pathways towards pockmarks: (i) along fracture networks associated with folds and intrusions, (ii) along décollement zones and faults acting as localized conduits, and (iii) directly from organic rich layers when exposed at the seafloor. Reference: Bergh, S. G., Braathen, A., and Andresen, A., 1997, Interaction of basement-involved and thin-skinned tectonism in the Tertiary fold-thrust belt of central Spitsbergen, Svalbard: AAPG Bulletin, v. 81, no. 4, p. 637-661.

  11. Fluid-rock interactions related to metamorphic reducing fluid flow in meta-sediments: example of the Pic-de-Port-Vieux thrust (Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Trincal, Vincent; Buatier, Martine; Charpentier, Delphine; Lacroix, Brice; Lanari, Pierre; Labaume, Pierre; Lahfid, Abdeltif; Vennemann, Torsten

    2017-09-01

    In orogens, shortening is mainly accommodated by thrusts, which constitute preferential zones for fluid-rock interactions. Fluid flow, mass transfer, and mineralogical reactions taking place along thrusts have been intensely investigated, especially in sedimentary basins for petroleum and uranium research. This study combines petrological investigations, mineralogical quantifications, and geochemical characterizations with a wide range of analytical tools with the aim of defining the fluid properties (nature, origin, temperature, and redox) and fluid-host rock interactions (mass transfers, recrystallization mechanisms, and newly formed synkinematic mineralization) in the Pic-de-Port-Vieux thrust fault zone (Pyrenees, Spain). We demonstrate that two geochemically contrasted rocks have been transformed by fluid flow under low-grade metamorphism conditions during thrusting. The hanging-wall Triassic red pelite was locally bleached, while the footwall Cretaceous dolomitic limestone was mylonitized. The results suggest that thrusting was accompanied by a dynamic calcite recrystallization in the dolomitic limestone as well as by leaching of iron via destabilization of iron oxides and phyllosilicate crystallization in the pelite. Geochemical and physical changes highlighted in this study have strong implications on the understanding of the thrust behavior (tectonic and hydraulic), and improve our knowledge of fluid-rock interactions in open fluid systems in the crust.

  12. Earthquakes, geodesy, and the structure of mountain belts

    NASA Astrophysics Data System (ADS)

    Allen, Mark; Walters, Richard; Nissen, Ed

    2015-04-01

    Most terrestrial mountain belts are the topographic expression of thrust faulting and folding, which are how the continents deform in compression. Fold-and-thrust belts are therefore a global phenomenon, in existence since at least the onset of plate tectonics. They are typically described as wedge-shaped zones of deformation, overlying a basal low-angle thrust fault (≤10o dip). Here we use earthquake focal mechanisms and geodetic data from active continental fold-and-thrust belts worldwide, to test these concepts. We find that widespread, seismogenic, low-angle thrusting at the base of a wedge occurs only in the Himalayas, New Guinea, Talesh and far-eastern Zagros, which are plausibly underthrust by strong plates. In other ranges there is no focal mechanism evidence for a basal low-angle thrust, and well-constrained hypocentre depths are typically <20 km. Available geodetic data show that active deformation is focussed on a single, low-angle thrust in the Himalayas and New Guinea, but distributed in other ranges for which there are sufficient observations. We suggest that the more common style of deformation approximates to pure shear, with a brittle lid overlying the rest of the plate, where ductile or plastic deformation predominates. Interpretations of both active and ancient mountain belts will need re-evaluation in the light of these results.

  13. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  14. Kinematic evolution of southern Hellenides (western Crete, Greece)

    NASA Astrophysics Data System (ADS)

    Chatzaras, V.; Xypolias, P.; Kokkalas, S.; Koukouvelas, I. K.

    2010-05-01

    Combined kinematic, structural and paleostress analyses were performed to reevaluate the tectonic evolution of the southern Hellenides in western Crete. Our work shows that the structural architecture of the study area was mainly established by two contractional deformation phases. SSW-directed thrusting from Oligocene to lower Miocene times (D1 phase) lead to brittle stacking of the upper thrust sheets and concomitant ductile exhumation-related imbrication of the lower HP tectonic units (Phyllite-Quartzite (PQ), Tripali and Plattenkalk units). Kinematic analysis in the PQ unit reveals a main southward ductile transport followed by late bulk coaxial deformation. The PQ unit rocks comprise the body of a crustal scale shear zone confined at its base by a major ductile thrust and in accordance with the proposed models we suggest that the exhumation process of the PQ unit involved S-directed ductile extrusion. Structural trends of ductile D1 thrusts define a salient bounded to the east by a NE-trending transverse zone situated in the western margin of the Lefka Ori window. At the eastern limb of the salient, the trajectories of L1 stretching lineation formed on a gently dipping S1 foliation in the PQ unit, show a clockwise rotation with proximity to the transverse zone. This suggests that the latter acted as an oblique buttress against the southward extruding PQ unit rocks causing their lateral escape. D2 phase was governed by regional NNW to NNE compression and involved significant folding and out-of-sequence with respect to D1 thrusting. The early D2a phase is related to the brittle-stage of exhumation of the HP-units and spans from middle to upper Miocene. D2a deformation involved thrust-related folding, tectonic imbrication and the formation of a middle Miocene thrust-top basin. The F2a folds are characterized by a predominant S(SE)-vergence and show a pronounced curvature of their hinge orientations from a regional E-W to a local NE-SW trend, the latter only present at the eastern limb of the salient. In the transverse zone, combined forward-directed imbricate thrusting and backthrusting lead to the development of a major pop-up structure and a triangle zone. Moreover, the trend of compression axes at the salient's eastern limb are deflected from the regional NNE to NNW orientation to a local NW orientation perpendicular to the transverse zone. These findings suggest that the transverse zone should have served as an oblique ramp to the southward transport of HP-rocks, while the steep dip of the ramp may has impeded displacement of the PQ unit rocks up the ramp acting as a buttress to their foreland propagation. The late D2b phase lasted from upper Miocene to Pleistocene and involved SW-directed thrust-related folding with synchronous sinistral strike-slip faulting and NE-striking normal faulting causing extension parallel to F2b fold hinges. The D2b-related paleostress field is characterized by local NE compression and NW extension orientations defining a transpressive to pure extensive regime. Where these coexist, the normal faults related to tension cut all previous structures suggesting that the extension postdates compression. This could possibly be attributed to a relaxation of the NE compression, which progressively evolved to the NW extension. The described kinematic evolution of southern Hellenides in western Crete reveals that the NE-trending transverse zone, which is possibly aligned with an inherited rift-related Mesozoic fault system, exerted significant control on the deformation pattern at progressively shallower structural levels within the crust.

  15. Tectonic Evolution of Jabal Tays Ophiolite Complex, Eastern Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    AlHumidan, Saad; Kassem, Osama; Almutairi, Majed; Al-Faifi, Hussain; Kahal, Ali

    2017-04-01

    Microstructural analysis is important for investigation of tectonic evaluation of Jable Tays area. Furthermore, the Jable Tays ophiolite complex is effected by Al Amar -Idsas fault. The nature of the Al Amar-Idsas fault is a part of the Eastern Arabian Shield, which was subjected to multiple interpretations. Through fieldwork investigation, microscopic examination, and microstructural analysis, we aim to understand the evolution and tectonic setting of the Jable Tays area. Finite-strain data displays that the Abt schist, the metavolcanics and the metagranites are highly to moderately deformed. The axial ratios in the XZ section range from 1.40 to 2.20. The long axes of the finite-strain ellipsoids trend NW- SE and W-E in the Jable Tays area while, their short axes are subvertical to subhorizontal foliations. The strain magnitude does not increase towards the tectonic contacts between the Abt schist and metavolcano-sedimentary. While majority of the obtained data indicate a dominant oblate with minor prolate strain symmetries in the Abt schist, metavolcano-sedimentary and metagranites. The strain data also indicate flattening with some constriction. We assume that the Abt schist and the metavolcano-sedimentry rocks have similar deformation behavior. The finite strain in the studied rocks accumulated during the metamorphism that effected by thrusting activity. Based on these results, we finally concluded that the contact between Abt schist and metavolcano-sedimentary rocks were formed during the progressive thrusting under brittle to semi-ductile deformation conditions by simple shear that also involved a component of vertical shortening, causing subhorizontal foliation in Jable Tays area.

  16. Comments on "The Cenozoic fold-and-thrust belt of Eastern Sardinia: Evidences from the integration of field data with numerically balanced geological cross section" by Arragoni et al., 2016

    NASA Astrophysics Data System (ADS)

    Berra, F.; Lanfranchi, A.; Jadoul, F.

    2017-02-01

    Arragoni et al. (2016) suggest in their paper published on tectonics that the carbonate succession of Eastern Sardinia represents a Cenozoic fold-and-thrust belt, related to the Alpine orogenesis. According to these authors, this supposed fold-and-thrust belt represents the southward continuation of the Alpine Corsica collisional chain and the missing link between the Alpine Chain and the Calabria-Peloritani domain. Field evidence and the published literature document instead that all the surfaces that Arragoni et al. interpret as thrust are actually stratigraphic contacts. The balanced geological section of Arragoni represents thus a geometric exercise missing the basic data needed to nurse the proposed model, and it does not reflect the geology of Eastern Sardinia. The data provided by Arragoni et al. (2016) do not support the presence of an Alpine thrust-and-fold belt in Eastern Sardinia, and this paper may suggest to the geological community a misleading interpretation of the geodynamic evolution of the Alpine and Mediterranean area.

  17. Duplex thrusting in the South Dabashan arcuate belt, central China

    NASA Astrophysics Data System (ADS)

    Li, Wangpeng; Liu, Shaofeng; Wang, Yi; Qian, Tao; Gao, Tangjun

    2017-10-01

    Due to later tectonic superpositioning and reworking, the South Dabashan arcuate belt extending NW to SE has experienced several episodes of deformation. The earlier deformational style and formation mechanism of this belt remain controversial. Seismic interpretations and fieldwork show that the curved orogen can be divided into three sub-belts perpendicular to the strike of the orogen, the imbricate thrust fault belt, the detachment fold belt and the frontal belt from NE to SW. The imbricate thrust fault belt is characterized by a series of SW-directed thrust faults and nappes. Two regional detachment layers at different depths have been recognized in the detachment fold and frontal belts, and these detachment layers divide the sub-belts into three structural layers: the lower, middle, and upper structural layers. The middle structural layer is characterized by a passive roof duplex structure, which is composed of a roof thrust at the top of the Sinian units, a floor thrust in the upper Lower Triassic units, and horses in between. Apatite fission track dating results and regional structural analyses indicate that the imbricate thrust fault belt may have formed during the latest Early Cretaceous to earliest Paleogene and that the detachment fold belt may have formed during the latest Late Cretaceous to earliest Neogene. Our findings provide important reference values for researching intra-continental orogenic and deformation mechanisms in foreland fold-thrust belts.

  18. Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Storti, Fabrizio; Bausã, Jordi; MuñOz, Josep A.

    2012-08-01

    Thrust-related anticlines exposed at the mountain front of the Cenozoic Appenninic thrust-and-fold belt share the presence of hinterlandward dipping extensional fault zones running parallel to the hosting anticlines. These fault zones downthrow the crests and the backlimbs with displacements lower than, but comparable to, the uplift of the hosting anticline. Contrasting information feeds a debate about the relative timing between thrust-related folding and beginning of extensional faulting, since several extensional episodes, spanning from early Jurassic to Quaternary, are documented in the central and northern Apennines. Mesostructural data were collected in the frontal anticline of the Sibillini thrust sheet, the mountain front in the Umbria-Marche sector of the northern Apennines, with the aim of fully constraining the stress history recorded in the deformed multilayer. Compressional structures developed during thrust propagation and fold growth, mostly locating in the fold limbs. Extensional elements striking about perpendicular to the shortening direction developed during two distinct episodes: before fold growth, when the area deformed by outer-arc extension in the peripheral bulge, and during a late to post thrusting stage. Most of the the extensional deformation occurred during the second stage, when the syn-thrusting erosional exhumation of the structures caused the development of pervasive longitudinal extensional fracturing in the crestal sector of the growing anticline, which anticipated the subsequent widespread Quaternary extensional tectonics.

  19. Caledonian evolution of the Moine Supergroup: Prograde garnet growth and context for quartz fabric-based deformation thermometry

    NASA Astrophysics Data System (ADS)

    Law, Richard; Ashley, Kyle; Thigpen, Ryan

    2014-05-01

    Despite the detailed Caledonian structural/tectonic framework developed for the Moine Supergroup of northern Scotland, debate continues over the tectonic processes that drove metamorphism. Rapid temporal evolution of the metamorphic sequence has led some geologists to suggest that crustal thickening alone cannot provide sufficient heat flow to reach the metamorphic grades observed. Rather, they postulate that large-scale contact metamorphism or initial heating in an extensional, back-arc setting is required. We present coupled petrographic analyses and forward phase stability modeling for quantifying prograde metamorphic evolution in pelite horizons dispersed across the Caledonian thrust sheets. Results suggest garnet growth was syn-kinematic during prograde decompression. Rutile and ilmenite inclusions in garnet cores and rims, respectively, support this claim, while chemical profiles and crystal morphology argue against a detrital origin for these garnet grains. The observed clockwise P-T path for these garnets is incompatible with extensional or contact metamorphic models (would require counter-clockwise paths). Rather, the P-T data suggests advection of isotherms during thrusting as the dominant mechanism for metamorphism (Thigpen et al., 2013). Recent studies in other orogens (e.g., Spear et al., 2012) suggest that heating over long time scales under mid-crustal conditions may not be needed to reach the metamorphic grades observed. Therefore the structurally higher, more hinterland Caledonian thrust sheets may have reached peak metamorphism in a much shorter time period than previously expected. The paucity of pelitic horizons across the foreland-positioned Moine thrust sheet has previously limited insight into the prograde evolution of these rocks. However, the dominance of quartz-rich units has allowed the thermal structure of the thrust sheet to be evaluated using quartz c-axis fabric opening angle-based deformation thermometry. Microstructures in the pelites sampled indicate that garnet (rim) growth is syn-kinematic with respect to the Scandian (mid-Silurian) deformation fabrics. Deformation temperatures indicated by quartz fabric opening angles are very similar to temperatures of metamorphism constrained using pseudosection and petrographic data from adjacent pelite horizons. This suggests that the deformation- and petrology-based data sets are providing information on the same thermal event. These results support the use of quartz deformation thermometry in obtaining thermal profiles across tectonic units where rock types (usually pelites), with metamorphic mineral assemblages suitable for petrology-based thermometry, are not present. Thigpen, J.R., Law, R.D., Loehn, C.L., Strachan, R.A., Tracy, R.J., Lloyd, G.E., Roth, B.L., and Brown, S.J., 2013, Thermal structure and tectonic evolution of the Scandian orogenic wedge, Scottish Caledonides: integrating geothermometry, deformation temperatures and conceptual kinematic-thermal models, J. Metamorphic Geol., 31, 813-842. Spear, F.S., Ashley, K.T., Webb, L.E., and Thomas, J.B., 2012, Ti diffusion in quartz inclusions: implications for metamorphic time scales, Contrib. Mineral Petrol., 164, 977-986.

  20. Cenozoic extension along the reactivated Aurora Fault System in the East Antarctic Craton

    NASA Astrophysics Data System (ADS)

    Cianfarra, Paola; Maggi, Matteo

    2017-04-01

    The East Antarctic Craton is characterized by major intracontinental basins and highlands buried under the 34 Ma East Antarctic Ice Sheet. Their formation remains a major open question. Paleozoic to Cenozoic intraplate extensional tectonic activity has been proposed for their development and in this work the latter hypothesis is supported. Here we focus on the Aurora Trench (AT) within the Aurora Subglacial Basin (latitude 75°-77°S, longitude 117°-118°E) whose origin is still poorly constrained. The AT is an over 150-km-long, 25-km-wide subglacial trough, elongated in the NNW-SSE direction. Geophysical campaigns allowed better definition of the AT physiography showing typical half-graben geometry. The rounded morphology of the western flank of the AT was simulated through tectonic numerical modelling. We consider the subglacial landscape to primarily reflect the locally preserved relict morphology of the tectonic processes affecting the interior of East Antarctica in the Cenozoic. The bedrock morphology was replicated through the activity of the listric Aurora Trench Fault, characterized by a basal detachment at 34 km (considered the base of the crust according to available geophysical interpretations) and vertical displacements ranging between 700 and 300 m. The predicted displacement is interpreted as the (partial) reactivation of a weaker zone along a major Precambrian crustal-scale tectonic boundary. We propose that the Aurora Trench Fault is the southern continuation of the > 1000 km long Aurora Fault independently recognized by previous studies. Together they form the Aurora Fault System, a long lived tectonic boundary with poly-phased tectonic history within the EAC that bounds the eastern side of the Aurora Subglacial Basin. The younger Cenozoic reactivation of the investigated segment of the Aurora Fault System relates to the intraplate propagation of far-field stresses associated to the plate-scale kinematics in the Southern Ocean.

  1. The Post-Eocene Evolution of the Doruneh Fault Region (Central Iran): The Intraplate Response to the Reorganization of the Arabia-Eurasia Collision Zone

    NASA Astrophysics Data System (ADS)

    Tadayon, Meisam; Rossetti, Federico; Zattin, Massimiliano; Nozaem, Reza; Calzolari, Gabriele; Madanipour, Saeed; Salvini, Francesco

    2017-12-01

    The Cenozoic deformation history of Central Iran has been dominantly accommodated by the activation of major intracontinental strike-slip fault zones, developed in the hinterland domain of the Arabia-Eurasia convergent margin. Few quantitative temporal and kinematic constraints are available from these strike-slip deformation zones, hampering a full assessment of the style and timing of intraplate deformation in Iran and the understanding of the possible linkage to the tectonic reorganization of the Zagros collisional zone. This study focuses on the region to the north of the active trace of the sinistral Doruneh Fault. By combing structural and low-temperature apatite fission track (AFT) and (U-Th)/He (AHe) thermochronology investigations, we provide new kinematic and temporal constraints to the deformation history of Central Iran. Our results document a post-Eocene polyphase tectonic evolution dominated by dextral strike-slip tectonics, whose activity is constrained since the early Miocene in response to an early, NW-SE oriented paleo-σ1 direction. A major phase of enhanced cooling/exhumation is constrained at the Miocene/Pliocene boundary, caused by a switch of the maximum paleo-σ1 direction to N-S. When integrated into the regional scenario, these data are framed into a new tectonic reconstruction for the Miocene-Quaternary time lapse, where strike-slip deformation in the intracontinental domain of Central Iran is interpreted as guided by the reorganization of the Zagros collisional zone in the transition from an immature to a mature stage of continental collision.

  2. Northward laramide thrusting in the quitovac region, northwestern sonora, mexico: Implications for the juxtaposition of paleoproterozoic basement blocks and the mojave-sonora megashear hypothesis

    USGS Publications Warehouse

    Iriondo, Alexander; Martínez-Torres, Luis M.; Kunk, Michael J.; Atkinson, William W.; Premo, Wayne R.; McIntosh, William C.

    2005-01-01

    Restoration of 12%–30% Basin and Range extension allows direct interpretation of ductile fabrics associated with a stack of Laramide thrust faults in the Quitovac region in northwestern Sonora. The inferred direction of displacement of these thrusts varies gradually from N63°W to N23°E and is interpreted to represent a clockwise rotation of the direction of Laramide thrusting through time. The thrust faults represent a piggy-back sequence of thrusting propagating north, toward the foreland. The average direction and sense of displacement of the thrusts is N18°W, and the cumulative 45 km of estimated northward-directed displacement corresponds to ∼86% of shortening.Based on geochronological constraints, onset of thrusting in Quitovac occurred sometime between 75 and 61 Ma, whereas cessation occurred at ca. 39 Ma. The presence of Paleocene-Eocene orogenic gold mineralization, spatially associated with thrusting, strengthens our idea that compressional tectonism associated with the Laramide orogeny is a very important and widespread dynamometamorphic event in the region.Similarities in age, kinematics, and structural stratigraphy indicate that the thrusting in the Quitovac region may be equivalent to the Laramide Quitobaquito Thrust in southwestern Arizona. In both areas, thrust faults juxtapose the Paleoproterozoic Caborca and “North America” basement blocks. This juxtaposition was previously proposed as exclusively related to movements along the hypothetical Upper Jurassic Mojave-Sonora megashear. The Laramide northward displacements and clockwise rotations recorded in the Caborca block rocks in Quitovac contradict the southward displacements (∼800 km) and counterclockwise rotations inherent in the left-lateral Upper Jurassic Mojave-Sonora megashear hypothesis. We conclude that if this megashear exists in northwestern Sonora, its trace should be to the southwest of the Quitovac region.

  3. Kinematics and Ophiolite obduction in the Gerania and Helicon Mountains, central Greece

    NASA Astrophysics Data System (ADS)

    Kaplanis, A.; Koukouvelas, I.; Xypolias, P.; Kokkalas, S.

    2013-06-01

    New structural, petrofabric and palaeostress data from the Beotia area (central Greece) were used to investigate the tectonic evolution of the suture zone between the External (Parnassus microplate) and Internal Hellenides (Pelagonian microplate). Petrofabric studies of ultramafic rocks were done using conventional U-stage analysis and the electron backscatter diffraction (EBSD) technique. Detailed structural analysis enabled us to distinguish three main deformation phases that took place from the Triassic to the Eocene. Triassic-Jurassic deformation is related to continental rifting and the progressive formation of an ocean basin. Ophiolites formed above a westward-dipping supra-subduction zone (SSZ) in the Early-Late Jurassic. Trench-margin collision resulted in the southeastward emplacement of the ophiolite nappe over the Pelagonian margin. There is also evidence for a north-westward thrusting of ophiolitic rocks over the Gerania and Helicon units during Berriasian time. This latter tectonic process is closely related to the deposition of "Beotian flysch" into a foreland basin. An extensional phase of deformation accompanied by shallow-water carbonate sedimentation is documented in the Upper Cretaceous. Later, during Paleocene the area was subjected to a compressional deformation phase characterised by SW-directed thrusting and folding, as well as NE-verging backthrusts and backfolds. Our proposed geotectonic model suggests the consumption of the ocean between the Parnassus and Pelagonian microplates. This model includes Late Jurassic eastward ophiolite obduction followed by Early Cretaceous west directed ophiolite thrusting.

  4. Structure and tectonics of the Main Himalayan Thrust and associated faults from recent earthquake and seismic imaging studies using the NAMASTE array

    NASA Astrophysics Data System (ADS)

    Karplus, M. S.; Pant, M.; Velasco, A. A.; Nabelek, J.; Kuna, V. M.; Sapkota, S. N.; Ghosh, A.; Mendoza, M.; Adhikari, L. B.; Klemperer, S. L.

    2017-12-01

    The India-Eurasia collision zone presents a significant earthquake hazard, as demonstrated by the recent, devastating April 25, 2015 M=7.8 Gorkha earthquake and the following May 12, 2015 M=7.3 earthquake. Important questions remain, including distinguishing possible geometries of the Main Himalayan Thrust (MHT), the role of other regional faults, the crustal composition and role of fluids in faulting, and the details of the rupture process, including structural causes and locations of rupture segmentation both along-strike and down-dip. These recent earthquakes and their aftershocks provide a unique opportunity to learn more about this collision zone. In June 2015, funded by NSF, we deployed the Nepal Array Measuring Aftershock Seismicity Trailing Earthquake (NAMASTE) array of 46 seismic stations distributed across eastern and central Nepal, spanning the region with most of the aftershocks. This array remained in place for 11 months from June 2015 to May 2016. We combine new results from this aftershock network in Nepal with previous geophysical and geological studies across the Himalaya to derive a new understanding of the tectonics of the Himalaya and southern Tibet in Nepal and surrounding countries. We focus on structure and composition of the Main Himalayan Thrust and compare this continent-continent subduction megathrust with megathrusts in other subduction zones.

  5. Spatial and Temporal Variations in the Moment Tensor Solutions of the 2008 Wenchuan Earthquake Aftershocks and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Lin, X.; Dreger, D.; Ge, H.; Xu, P.; Wu, M.; Chiang, A.; Zhao, G.; Yuan, H.

    2018-03-01

    Following the mainshock of the 2008 M8 Wenchuan Earthquake, there were more than 300 ML ≥ 4.0 aftershocks that occurred between 12 May 2008 and 8 September 2010. We analyzed the broadband waveforms for these events and found 160 events with sufficient signal-to-noise levels to invert for seismic moment tensors. Considering the length of the activated fault and the distances to the recording stations, four velocity models were employed to account for variability in crustal structure. The moment tensor solutions show considerable variations with a mixture of mainly reverse and strike-slip mechanisms and a small number of normal events and ambiguous events. We analyzed the spatial and temporal distribution of the aftershocks and their mechanism types to characterize the structure and the deformation occurring in the Longmen Shan fold and thrust belt. Our results suggest that the stress is very complex at the Longmen Shan fault zone. The moment tensors have both a spatial segmentation with two major categories of the moment tensor of thrust and strike slip; and a temporal pattern that the majority of the aftershocks gradually migrated to thrust-type events. The variability of aftershock mechanisms is a strong indication of significant tectonic release and stress reorganization that activated numerous small faults in the system.

  6. Geologic Map of the Pahranagat Range 30' x 60' Quadrangle, Lincoln and Nye Counties, Nevada

    USGS Publications Warehouse

    Jayko, A.S.

    2007-01-01

    Introduction The Pahranagat Range 30' x 60' quadrangle lies within an arid, sparsely populated part of Lincoln and Nye Counties, southeastern Nevada. Much of the area is public land that includes the Desert National Wildlife Range, the Pahranagat National Wildlife Refuge, and the Nellis Air Force Base. The topography, typical of much of the Basin and Range Province, consists of north-south-trending ranges and intervening broad alluvial valleys. Elevations range from about 1,000 to 2,900 m. At the regional scale, the Pahranagat Range quadrangle lies within the Mesozoic and early Tertiary Sevier Fold-and-Thrust Belt and the Cenozoic Basin and Range Province. The quadrangle is underlain by a Proterozoic to Permian miogeoclinal section, a nonmarine clastic and volcanic section of middle Oligocene or older to late Miocene age, and alluvial deposits of late Cenozoic age. The structural features that are exposed reflect relatively shallow crustal deformation. Mesozoic deformation is dominated by thrust faults and asymmetric or open folds. Cenozoic deformation is dominated by faults that dip more than 45i and dominostyle tilted blocks. At least three major tectonic events have affected the area: Mesozoic (Sevier) folding and thrust faulting, pre-middle Oligocene extensional deformation, and late Cenozoic (mainly late Miocene to Holocene) extensional deformation. Continued tectonic activity is expressed in the Pahranagat Range area by seismicity and faults having scarps that cut alluvial deposits.

  7. Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Stübner, Konstanze; Grujic, Djordje; Dunkl, István; Thiede, Rasmus; Eugster, Patricia

    2018-01-01

    The Himalayan thrust belt comprises three in-sequence foreland-propagating orogen-scale faults, the Main Central thrust, the Main Boundary thrust, and the Main Frontal thrust. Recently, the Munsiari-Ramgarh-Shumar thrust system has been recognized as an additional, potentially orogen-scale shear zone in the proximal footwall of the Main Central thrust. The timing of the Munsiari, Ramgarh, and Shumar thrusts and their role in Himalayan tectonics are disputed. We present 31 new zircon (U-Th)/He ages from a profile across the central Himachal Himalaya in the Beas River area. Within a ∼40 km wide belt northeast of the Kullu-Larji-Rampur window, ages ranging from 2.4 ± 0.4 Ma to 5.4 ± 0.9 Ma constrain a distinct episode of rapid Pliocene to Present exhumation; north and south of this belt, zircon (U-Th)/He ages are older (7.0 ± 0.7 Ma to 42.2 ± 2.1 Ma). We attribute the Pliocene rapid exhumation episode to basal accretion to the Himalayan thrust belt and duplex formation in the Lesser Himalayan sequence including initiation of the Munsiari thrust. Pecube thermokinematic modelling suggests exhumation rates of ∼2-3 mm/yr from 4-7 to 0 Ma above the duplex contrasting with lower (<0.3 mm/yr) middle-late Miocene exhumation rates. The Munsiari thrust terminates laterally in central Himachal Pradesh. In the NW Indian Himalaya, the Main Central thrust zone comprises the sheared basal sections of the Greater Himalayan sequence and the mylonitic 'Bajaura nappe' of Lesser Himalayan affinity. We correlate the Bajaura unit with the Ramgarh thrust sheet in Nepal based on similar lithologies and the middle Miocene age of deformation. The Munsiari thrust in the central Himachal Himalaya is several Myr younger than deformation in the Bajaura and Ramgarh thrust sheets. Our results illustrate the complex and segmented nature of the Munsiari-Ramgarh-Shumar thrust system.

  8. Focal mechanisms and tidal modulation for tectonic tremors in Taiwan

    NASA Astrophysics Data System (ADS)

    Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.

    2015-12-01

    Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.

  9. Potential earthquake faults offshore Southern California, from the eastern Santa Barbara Channel south to Dana Point

    USGS Publications Warehouse

    Fisher, M.A.; Sorlien, C.C.; Sliter, R.W.

    2009-01-01

    Urban areas in Southern California are at risk from major earthquakes, not only quakes generated by long-recognized onshore faults but also ones that occur along poorly understood offshore faults. We summarize recent research findings concerning these lesser known faults. Research by the U.S. Geological Survey during the past five years indicates that these faults from the eastern Santa Barbara Channel south to Dana Point pose a potential earthquake threat. Historical seismicity in this area indicates that, in general, offshore faults can unleash earthquakes having at least moderate (M 5-6) magnitude. Estimating the earthquake hazard in Southern California is complicated by strain partitioning and by inheritance of structures from early tectonic episodes. The three main episodes are Mesozoic through early Miocene subduction, early Miocene crustal extension coeval with rotation of the Western Transverse Ranges, and Pliocene and younger transpression related to plate-boundary motion along the San Andreas Fault. Additional complication in the analysis of earthquake hazards derives from the partitioning of tectonic strain into strike-slip and thrust components along separate but kinematically related faults. The eastern Santa Barbara Basin is deformed by large active reverse and thrust faults, and this area appears to be underlain regionally by the north-dipping Channel Islands thrust fault. These faults could produce moderate to strong earthquakes and destructive tsunamis. On the Malibu coast, earthquakes along offshore faults could have left-lateral-oblique focal mechanisms, and the Santa Monica Mountains thrust fault, which underlies the oblique faults, could give rise to large (M ??7) earthquakes. Offshore faults near Santa Monica Bay and the San Pedro shelf are likely to produce both strike-slip and thrust earthquakes along northwest-striking faults. In all areas, transverse structures, such as lateral ramps and tear faults, which crosscut the main faults, could segment earthquake rupture zones. ?? 2009 The Geological Society of America.

  10. Structure of the Red Dog District, western Brooks Range, Alaska

    USGS Publications Warehouse

    de Vera, Jean-Pierre P.; McClay, K. R.

    2004-01-01

    The Red Dog district of the western Brooks Range of northern Alaska, which includes the sediment-hosted Zn-Pb-Ag ± Ba deposits at Red Dog, Su-Lik, and Anarraaq, contains one of the world's largest reserves of zinc. This paper presents a new model for the structural development of the area and shows that understanding the structure is crucial for future exploration efforts and new mineral discoveries in the district. In the Red Dog district, a telescoped Late Devonian through Jurassic continental passive margin is exposed in a series of subhorizontally stacked, internally imbricated, and regionally folded thrust sheets. These sheets were emplaced during the Middle Jurassic to Late Cretaceous Brookian orogeny and subsequently were uplifted by late tectonic activity in the Tertiary. The thrust sheet stack comprises seven tectonostratigraphically distinct allochthonous sheets, three of which have been subject to regional and detailed structural analysis. The lowermost of these is the Endicott Mountains allochthon, which is overlain by the structurally higher Picnic Creek and Kelly River allochthons. Each individual allochthon is itself internally imbricated into a series of tectonostratigraphically coherent and distinct thrust plates and subplates. This structural style gives rise to duplex development and imbrication at a range of scales, from a few meters to tens of kilometers. The variable mechanical properties of the lithologic units of the ancient passive margin resulted in changes in structural styles and scales of structures across allochthon boundaries. Structural mapping and analysis of the district indicate a dominant northwest to west-northwest direction of regional tectonic transport. Local north to north-northeast transport of thrust sheets is interpreted to reflect the influence of underlying lateral and/or oblique ramps, which may have been controlled by inherited basin margin structures. Some thrust-sheet stacking patterns suggest out-of-sequence thrusting. The west-northwest-east-southeast-trending Wrench Creek and Sivukat Mountain faults were previously interpreted to be strike-slip faults, but this study shows that they are Tertiary (Eocene?) late extensional faults with little or no lateral displacement.

  11. Long term landscape evolution within central Apennines (Italy): Marsica and Peligna region morphotectonics and surface processes

    NASA Astrophysics Data System (ADS)

    Miccadei, E.; Piacentini, T.; Berti, C.

    2010-12-01

    The relief features of the Apennines have been developed in a complex geomorphological and geological setting from Neogene to Quaternary. Growth of topography has been driven by active tectonics (thrust-related crustal shortening and high-angle normal faulting related to crustal extension), regional rock uplift, and surface processes, starting from Late Miocene(?) - Early Pliocene. At present a high-relief landscape is dominated by morphostructures including high-standing, resistant Mesozoic and early Tertiary carbonates ridges (i.e. thrust ridges, faulted homocline ridges) and intervening, erodible Tertiary siliciclastics valleys (i.e. fault line valleys) and Quaternary continental deposits filled basins (i.e. tectonic valleys, tectonic basins). This study tries to identify paleo-uplands that may be linked to paleo-base levels and aims at the reconstruction of ancient landscapes since the incipient phases of morphogenesis. It analyzes the role of tectonics and morphogenic processes in the long term temporal scale landscape evolution (i.e. Mio?-Pliocene to Quaternary). It is focused on the marsicano-peligna region, located along the main drainage divide between Adriatic side and Tyrrhenian side of Central Apennines, one of the highest average elevation area of the whole chain. The work incorporates GIS-based geomorphologic field mapping of morphostructures and Quaternary continental deposits, and plano-altimetric analysis and morphometry (DEM-, map-based) of the drainage network (i.e. patterns, hypsometry, knick points, Ks). Field mapping give clues on the definition of paleo-landscapes related to different paleo-morpho-climatic environments (i.e. karst, glacial, slope, fluvial). Geomorphological evidence of tectonics and their cross-cutting relationships with morphostructures, continental deposits and faults, provide clues on the deciphering of the reciprocal relationship of antecedence of the paleo-landscapes and on the timing of morphotectonics. Morphotectonic features are related to Neogene thrusts, reactivated or displaced by complex kinematic strike slip and followed by extensional tectonic features (present surface evidence given by fault line scarps, fault line valleys, fault scarps, fault slopes, wind gaps, etc.). Geomorphic evidence of faults is provided also by morphometry of the drainage network: highest long slope of the main streams (knick points and Ks) are located where the streams cut across or run along recent faults. Correlation of tectonic elements, paleosurfaces, Quaternary continental deposits, by means of morphotectonic cross sections, lead to the identification, in the marsicano-peligna region, of areas in which morphotectonics acted in the same period, becoming younger moving from the West to the East. In conclusion, recognition of different morphotectonic features, identification of different paleo-landscapes, and reconstruction of their migration history, contribute to define the main phases of syn and post orogenic, Apennine chain landscape evolution: it results from the link of alternating morphotectonics and surface processes, due to migrating fault activity, rock uplift processes and alternating karst, glacial, slope, fluvial processes.

  12. Stratigraphic relations and U-Pb geochronology of the Upper Cretaceous upper McCoy Mountains Formation, southwestern Arizona

    USGS Publications Warehouse

    Tosdal, R.M.; Stone, P.

    1994-01-01

    A previously unrecognized angular unconformity divides the Jurassic and Cretaceous McCoy Mountains Formation into a lower and an upper unit in the Dome Rock Mountains and Livingston Hills of western Arizona. The intraformation unconformity in the McCoy Mountains Formation developed where rocks of the lower unit were deformed adjacent to the southern margin of the Maria fold and thrust belt. The upper unit of the formation is interpreted as a foreland-basin deposit that was shed southward from the actively rising and deforming fold and thrust belt. The apparent absence of an equivalent unconformity in the McCoy Mountains Formation in adjacent California is presumably a consequence of the observed westward divergence of the outcrop belt from the fold and thrust belt. Tectonic burial beneath the north-vergent Mule Mountains thrust system in the latest Late Cretaceous (~70 Ma) marked the end of Mesozoic contractile deformation in the area. -from Authors

  13. Present-day Horizontal Mobility in the Serbian Part of the Pannonian Basin; Inferences from the Geometric Analysis of Deformations

    NASA Astrophysics Data System (ADS)

    Sušić, Zoran; Toljić, Marinko; Bulatović, Vladimir; Ninkov, Toša; Stojadinović, Uroš

    2016-10-01

    In tectonically complex environments, such as the Pannonian Basin surrounded by the Alps-Dinarides and Carpathians orogens, monitoring of recent deformations represents very challenging matter. Efficient quantification of active continental deformations demands the use of a multidisciplinary approach, including neotectonic, seismotectonic and geodetic methods. The present-day tectonic mobility in the Pannonian Basin is predominantly controlled by the northward movement of the Adria micro-plate, which has produced compressional stresses that were party accommodated by the Alps-Dinarides thrust belt and partly transferred towards its hinterland. Influence of thus induced stresses on the recent strain field, deformations and tectonic mobility in the southern segment of the Pannonian Basin has been investigated using GPS measurements of the horizontal mobility in the Vojvodina area (northern Serbia).

  14. Deformation history of the Neoproterozoic basement complex, Ain Shams area, Western Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Fakharani, Abdelhamid; Hamimi, Zakaria

    2013-04-01

    Ain Shams area, Western Arabian Shield, Saudi Arabia, is occupied by four main rock units; gneisses, metavolcanics, metasediments and syn- to post-tectonic granitoids. Field and structural studies reveal that the area was subjected to at least three phases of deformation (D1, D2 and D3). The structural features of the D1 are represented by tight to isoclinal and intrafolial folds (F1), axial plane foliation (S1) and stretching lineations (L1). This phase is believed to be resulted from an early NW-SE contractional phase due to the amalgamation between Asir and Jeddah tectonic terranes. D2 deformation phase progressively overprinted D1 structures and was dominated by thrusts, minor and major F2 thrust-related overturned folds. These structures indicate a top-to-the-NW movement direction and compressional regime during the D2 phase. Emplacement of the syn-tectonic granitoids is likely to have occurred during this phase. D3 structures are manifested F3 folds, which are open with steep to subvertical axial planes and axes moderately to steeply plunging towards the E, ENE and ESE directions, L3 is represented by crenulation lineations and kink bands. These structures attest NE-SW contractional phase, concurrent with the accretion of the Arabian-Nubian Shield (ANS) to the Saharan Metacraton (SM) and the final assembly between the continental blocks of East and West Gondwana.

  15. Deformation during terrane accretion in the Saint Elias orogen, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Pavlis, T.L.; Plafker, G.; Serpa, L.

    2004-01-01

    The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from the topographic backbone of the Saint Elias Mountains onto the coastal plain. The Malaspina fault-Pamplona structural zone separates the eastern and central parts of the orogen and is marked by reverse faulting and folding. Onshore, most of this boundary is buried beneath the western or "Agassiz" lobe of the Malaspina piedmont glacier. The boundary between the central fold-and-thrust belt and western zone of superimposed folding lies beneath the middle and lower course of the Bering piedmont glacier. ?? 2004 Geological Society of America.

  16. Thrust Slip Rates as a Control on the Presence and Spatial Distribution of High Metamorphic Heating Rates in Collisional Systems: The "Hot Iron" Model Revisited

    NASA Astrophysics Data System (ADS)

    Thigpen, R.; Ashley, K. T.; Law, R. D.; Mako, C. A.

    2017-12-01

    In natural systems, two key observations indicate that major strain discontinuities such as faults and shear zones should play a fundamental role in orogenic thermal evolution: (1) Large faults and shear zones often separate components of the composite orogen that have experienced broadly different thermal and deformational histories, and (2) quantitative metamorphic and diffusional studies indicate that heating rates are much faster and the duration of peak conditions much shorter in natural collisional systems than those predicted by numerical continuum deformation models. Because heat transfer processes such as conduction usually operate at much slower time scales than rates of other tectonic processes, thermal evolution is often transient and thus can be strongly influenced by tectonic disturbances that occur at rates much faster than thermal relaxation. Here, we use coupled thermal-mechanical finite element models of thrust faults to explore how fault slip rate may fundamentally influence the thermal evolution of individual footwall and hanging wall thrust slices. The model geometry involves a single crustal-scale thrust with a dip of 25° that is translated up the ramp at average velocities of 20, 35, and 50 km Myr-1, interpreted to represent average to relatively high slip rates observed in many collisional systems. Boundary conditions include crustal radioactive heat production, basal mantle heat flow, and surface erosion rates that are a function of thrust rate and subsequent topography generation. In the models, translation of the hanging wall along the crustal-scale detachment results in erosion, exhumation, and retrograde metamorphism of the emerging hanging wall topography and coeval burial, `hot iron' heating, and prograde metamorphism of the thrust footwall. Thrust slip rates of 20, 35, and 50 km Myr-1 yield maximum footwall heating rates ranging from 55-90° C Myr-1 and maximum hanging wall cooling rates of 138-303° C Myr-1. These relatively rapid heating rates explain, in part, the presence of chemical diffusion profiles in metamorphic minerals that are indicative of high heating rates. Additionally, the relatively high cooling rates explain preservation of chemical zoning, as rapid cooling prevents diffusive profiles from being substantially modified during exhumation.

  17. Yakataga fold-and-thrust belt: Structural geometry and tectonic implications of a small continental collision zone

    NASA Astrophysics Data System (ADS)

    Wallace, Wesley K.

    Collision of the Yakutat terrane with southern Alaska created a collisional fold-and-thrust belt along the Pacific-North America plate boundary. This southerner fold-and-thrust belt formed within continental sedimentary rocks but with the seaward vergence and tectonic position typical of an accretionary wedge. Northward exposure of progressively older rocks reflects that the fold-and-thrust belt forms a southward-tapered orogenic wedge that increases northward in structural relief and depth of erosion. Narrow, sharp anticlines separate wider, flat-bottomed synclines. Relatively steep thrust faults commonly cut the forelimbs of anticlines. Fold shortening and fault displacement both generally increase northward, whereas fault dip generally decreases northward. The coal-bearing lower part of the sedimentary section serves as a detachment for both folds and thrust faults. The folded and faulted sedimentary section defines a regional south dip of about 8°. The structural relief combined with the low magnitude of shortening of the sedimentary section suggest that the underlying basement is structurally thickened. I propose a new interpretation in which this thickening was accommodated by a passive-roof duplex with basement horses that are separated from the overlying folded and thrust-faulted sedimentary cover by a roof thrust with a backthrust sense of motion. Basement horses are ˜7 km thick, based on the thickness between the inferred roof thrust and the top of the basement in offshore seismic reflection data. This thickness is consistent with the depth of the zone of seismicity onshore. The inferred zone of detachment and imbrication of basement corresponds with the area of surface exposure of the fold-and-thrust belt within the Yakutat terrane and with the Wrangell subduction zone and arc farther landward. By contrast, to the west, the crust of the Yakutat terrane has been carried down a subduction zone that extends far landward with a gentle dip, corresponding with a gap in arc magmatism, anomalous topography, and the rupture zone of the 1964 great southern Alaska earthquake. I suggest that, to the east, detachment and imbrication of basement combined with coupling in the fold-and-thrust belt allowed the delaminated dense mantle lithosphere to subduct with a steeper dip than to the west, where buoyant Yakutat terrane crust remains attached to the subducted lithosphere. According to this interpretation, the Wrangell subduction zone is lithosphere of the Yakutat terrane, not Pacific Ocean lithosphere subducted beneath the Yakutat terrane. The Pacific-North America plate boundary would be within the northern deformed part of the Yakutat terrane, not along the boundary between the undeformed southern part of the Yakutat terrane and oceanic crust of the Pacific Ocean. The plate boundary is an evolving zone of distributed deformation in which most of the convergent component has been accommodated within the fold-and-thrust belt south of the northern boundary of the Yakutat terrane, the Chugach-St. Elias thrust fault, and most of the right-lateral component likely has been accommodated on the Bagley Icefield fault just to the north.

  18. Geochronologic evidence for Late Cretaceous and Miocene tectonism in northern New England

    NASA Astrophysics Data System (ADS)

    Amidon, W. H.; Barr, M.; Walcott, C.; Kylander-Clark, A. R.

    2017-12-01

    The persistence of mountainous relief in the northeastern U.S. suggests post-rift tectonic rejuvenation has occurred, although specific mechanisms and timing have been difficult to identify. Here we present direct evidence for significant tectonism in New Hampshire and Vermont during the Late-Cretaceous ( 85-65 Ma) and Miocene periods ( 20-5 Ma). Low temperature thermochronology from a drill core in the White Mountains of New Hampshire suggests 2-3 km of accelerated exhumation during the Late Cretaceous. This exhumation is synchronous with compressional thrusting and rapid exhumation on many other Atlantic margins and also with a change in spreading direction in the Atlantic from 85-65 Ma. Recently obtained U-Pb ages of vein calcite from faults and fractures in the Champlain Valley of New York and Vermont suggest significant brittle fracturing occurred during the Late Cretaceous and also during the Miocene. Although many questions remain, this evidence points to tectonic rejuvenation by lateral tectonic stresses in the latest Cretaceous and possibly in the Miocene. The Late Cretaceous seems to have been a particularly significant tectonic episode in northern New England and elsewhere in the circum-Atlantic region.

  19. In search of transient subduction interfaces in the Dent Blanche-Sesia Tectonic System (W. Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-09-01

    In this paper we study the Alpine metamorphic history of a major tectonic zone which formed during Alpine orogeny, the Dent Blanche Thrust (DBT). This contact, located in the Northern Western Alps, juxtaposes some ophiolitic metasediment-rich remnants of the Liguro-Piemontese ocean (Tsaté Complex) with a composite continental, km-sized complex (Dent Blanche Tectonic System, DBTS) of Adriatic affinity thrusted over the ophiolite. In order to better understand the geodynamic meaning of the DBT region and adjacent units, we have reconstructed the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr geochronology, and field relationships. We show that the Tsaté Complex is formed by a stack of km-thick calcschists-bearing tectonic slices having experienced variable maximum burial temperatures between 360 °C and 490 °C at depths of ca. 25-40 km. Associated deformation ages span a range between 37 Ma and 41 Ma. The Arolla gneissic mylonites at the base of the DBTS experienced high-pressure (12-14 kbar), top-to-NW deformation at ca. 450 °C between 43 and 48 Ma. A first age of ca. 58 Ma has been obtained for high-pressure ductile deformation in the Valpelline shear zone, atop Arolla gneisses. Some of the primary, peak metamorphic fabrics have been reworked and later backfolded during exhumation and collisional overprint (ca. 20 km depth, 37-40 Ma) leading to the regional greenschist-facies retrogression which is particularly prominent within Tsaté metasediments. We interpret the Dent Blanche Thrust, at the base of the Arolla unit, as a fossilized subduction interface active between 43 and 48 Ma. Our geochronological results on the shear zone lining the top of the Arolla unit, together with previous P-T-t estimates on equivalent blueschist-facies shear zones cutting the Sesia unit, indicate an older tectonic activity between 58 and 65 Ma. We demonstrate here that observed younger ages towards lowermost structural levels are witness of the transient, downwards migration of the Alpine early Cenozoic blueschist-facies subduction interface. This down-stepping is interpreted to reflect the progressive underplating acting between 30 and 40 km depth in the Alpine subduction zone between late Cretaceous and late Eocene. Underplating involved first continental material derived from the stretched Adriatic margin followed by underplating of ocean-derived rocks in the Eocene. These results shed light on subduction-zone accretion processes and therefore provide a new perspective for the understanding of geophysical results imaging the plate-interface region in active subduction zones.

  20. Penokean tectonics along a promontory-embayment margin in east-central Minnesota

    USGS Publications Warehouse

    Chandler, V.W.; Boerboom, Terrence; Jirsa, M.A.

    2007-01-01

    Recent geologic investigations in east-central Minnesota have utilized geophysical data, test drilling, and high-resolution geochronologic dating to produce a significantly improved map of a poorly exposed part of the 1880-1830 Ma Penokean orogen. These investigations have elucidated major changes in the structure of the orogen, as compared to its counterparts in northern Michigan and northwestern Wisconsin. Foreland basin, fold and thrust belt, and magmatic terrane components that are recognized to the east extend into east-central Minnesota, but they appear to be deflected southwards and truncated in proximity to Archean rocks of the Minnesota River Valley (MRV) subprovince. In contrast, the interior of the MRV subprovince to the southwest shows little sign of Penokean tectonism. In addition, the magmatic and metamorphic rocks of the internal zone of the orogen in east-central Minnesota are extensively invaded by ca. 1785-1770 Ma granitic rocks (the East-Central Minnesota Batholith), whereas, post-orogenic granites of this age occur sparingly to the east. These differences in orogenic structure may be related to their location near the juncture of an embayment (Becker embayment) and a promontory (MRV promontory) that formed the pre-Penokean continental margin. In this scenario, the MRV promontory, which at the surface consists chiefly of high-metamorphic-grade Mesoarchean gneisses, would have formed competent, high-standing crust that resisted deformation and did not host significantly thick continental margin sequences. In contrast, the part of the Becker Embayment adjoining the promontory would have involved relatively weak, low-standing crust that favored deposition of continental margin sequences and, during Penokean collision, would have accommodated tectonic loading of the cratonic margin through thin-skinned deformation. Thrusting of thick embayment sequences and possibly a block of Archean crust (Marshfield terrane) onto the embayment margin may have produced a greatly thickened crust that subsequently promoted crustal melting and generation of the geon 17 granites. Preliminary gravity and magnetic model studies of the present-day crust imply that rocks of the fold and thrust belt may sole out at 5-8 km depth; whereas, magmatic and high-metamorphic-grade rocks associated with the internal zone of the orogen could extend to mid-crustal depths. The tectonic model proposed here, implies that a collision between an embayment and an impinging continental mass may enhance tectonic thickening and subsequent generation of post-orogenic magmas. This and other hypotheses regarding the Penokean orogen need to be investigated further in the third dimension of depth, which will require a comprehensive suite of geophysical studies. ?? 2007 Elsevier B.V. All rights reserved.

  1. Reply to Comments on "the Cenozoic Fold-and-Thrust Belt of Eastern Sardinia: Evidences from the Integration of Field Data With Numerically Balanced Geological Cross Section" by Arragoni et al. (2016)

    NASA Astrophysics Data System (ADS)

    Salvini, F.; Arragoni, S.; Cianfarra, P.; Maggi, M.

    2017-10-01

    The comment by Berra et al. (2017) on the evidence of Alpine tectonics in Eastern Sardinia proposed by Arragoni et al. (2016) is based on the sedimentological interpretations of few local outcrops in a marginal portion of the study area. The Cenozoic Alpine fold-and-thrust setting, which characterizes this region, presents flat-over-flat shear planes acting along originally stratigraphic contacts, where stratigraphic continuity is obviously maintained. The ramp sectors present steeply dipping bedding attitudes, and there is no need to invoke and to force prograding clinoforms with unrealistic angles to justify them. The balanced geological cross section proposed by Arragoni et al. (2016) is fully supported by robust newly collected structural data and is compatible with the overall tectonic setting, while the interpretation proposed by Berra et al. (2017) lacks a detailed structural investigation. We believe that the partial application of the techniques available to modern geology may lead to incorrect interpretations, thus representing an obstacle for the progress of knowledge in the Earth sciences.

  2. Use of PSInSAR™ data to infer active tectonics: Clues on the differential uplift across the Giudicarie belt (Central-Eastern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Massironi, M.; Zampieri, D.; Bianchi, M.; Schiavo, A.; Franceschini, A.

    2009-10-01

    The Permanent Scatterers Synthetic Aperture Radar INterferometry (PSInSAR™) methodology provides high-resolution assessment of surface deformations (precision ranging from 0.8 to 0.1 mm/year) over long periods of observation. Hence, it is particularly suitable to analyze surface motion over wide regions associated to a weak tectonic activity. For this reason we have adopted the PSInSAR technique to study regional movement across the Giudicarie belt, a NNE-trending trust belt oblique to the Southern Alpine chain and presently characterized by a low to moderate seismicity. Over 11,000 PS velocities along the satellite Line Of Sight (LOS) were calculated using images acquired in descending orbit during the 1992-1996 time span. The PSInSAR data show a differential uplift of around 1.4-1.7 mm/year across the most external WNW-dipping thrusts of the Giudicarie belt (Mt. Baldo, Mt. Stivo and Mt. Grattacul thrusts alignment). This corresponds to a horizontal contraction across the external part of the Giudicarie belt of about 1.3-1.5 mm/year.

  3. Tectonic control and mass-wasting processes along S. Vicente Canyon (SW Iberia): evidences from multibeam bathymetry and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Valadares, V.; Roque, C.; Terrinha, P.

    2009-04-01

    The S. Vicente Canyon is located in the Gulf of Cadiz (GoC), in the Northwest Atlantic Ocean, offshore SW Iberia. The GoC is located between the Straits of Gibraltar (5°W) and the Gorringe Bank (12°W) and 34°N and 38°N. It is situated in a complex geodynamic setting at the Eastern tip of the Azores-Gibraltar fracture zone, part of the convergent plate boundary between Northwest Africa and Southwest Eurasia. There are several evidences for active tectonics, moderate seismic activity and some events of high magnitude for earthquakes and tsunamis (like the 1755 and 1969 events). The canyon lies between two of the most prominent faults in the GoC: the Marquês de Pombal and the Horseshoe thrust faults. Since the 1990's nineteen multibeam swath bathymetry surveys were carried out in the Gulf of Cadiz and a compilation of the data was produced adding up to more than 180.000km2. This 100m cellsize compilation allowed a detailed analysis of the seafloor of the GoC including the South and Western Portuguese margins and is in the junction point between these two margins that the S. Vicente Canyon (SVC) is located. The bathymetry data here presented is derived from the MATESPRO survey from 2004, the first large multibeam swath bathymetry survey in the area. The canyon has a general staircase-like shape with the upper and lower parts trending NE-SW and the middle sector with an NNE-SSW direction. The SVC head lies very close to the shore, at depths shallower than 70m and runs towards the Horseshoe Abyssal Plain (HAP) at around 4900m depth. It extends for more than 120km (larger than any other submarine canyon on the GoC) and can reach up to 20 km in width. The walls are steep and frequently affected by mass wasting scars and also strongly incised by minor contributories valleys. A major kink is present where the canyon diverts about 60° from its upper course, as well as several minor ones and some knickpoints are also identifiable across its entire track. Across its length the morphology changes: the SE side is the steepest for the upper and deepest parts, whilst for the intermediate sector the NW wall is steeper. Its head has an amphitheater shape due to the pattern defined by its minor contributories as a result of slumps and slides and therefore appears to be retreating upslope in the direction of the shore. Reflectivity imagery derived from the multibeam probe shows high reflectance throughout the whole of the S. Vicente Canyon thalweg indicating that the canyon and its sedimentary transport are active in present times. The HAP also shows a relatively high backscatter response, probably related to the abundant turbidite deposits whose coarse sedimentary load was partially carried by the SVC. Inspection of several multichannel seismic profiles revealed that the two major structures that are more closely located to the canyon present a polyphase and complex history. The Marquês de Pombal Thrust (MPT), located to the NW of the SVC, reveals an extensional activity during continental break-up in the Mesozoic. The compressive episodes started in the Eocene/Oligocene (and extended until present times) and were followed by other compressive events, the more relevant ones in the Late Miocene. The Horseshoe Thrust Fault, located SE of the deepest section of the canyon, revealed no major extensional events and shows a compressional history somewhat similar to the previously described MPT. These events and the compressive history is related with the relative movement between Africa and Iberia and the tectonic plate boundary convergence. The compressive episodes and fault activity during the Miocene have led to the uplift of this sector of the margin, causing major erosion onshore, redistributing sediments and leading to the submarine incision and canyon formation after the Miocene, more precisely in Lower Pliocene times.

  4. Response: Discussion of 'Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya' by Kothyari et al. (2017), Geomorphology (285), 272-286

    NASA Astrophysics Data System (ADS)

    Kothyari, Girish Ch.; Kandregula, Raj Sunil; Luirei, Khayingshing

    2018-01-01

    Rana and Sharma (2017) dispute our tectonic interpretation mainly on the basis of what they believe (climate?). However, we welcome their comments, as this gives us a chance to highlight the ambiguity inherent in discriminating the climate-tectonic imprints in morphotectonic records that are prevalent in current research. We should note that the paper published by Kothyari et al. (2017) was reviewed by national/international reviewers. We would like to emphasize the fact that the paper does not rule out the role of climate. However, most importantly, it presents significant features and observations that collection/assemblage points toward the dominant role of tectonics in their shaping, and not solely climate, as postulated by Rana and Sharma (2017). The objective of this paper is to identify tectonic signatures (geomorphology) in a monsoon - dominated, tectonically active terrain like the North Almora Thrust (NAT). These faults are marked by previous workers based on field evidence such as folding and faulting of lithological units; presence of slickensides parallel to the fault; offset of NAT owing to a transverse fault; and offset of drainage, drainage basin analysis, strath terraces, fluviolacustrine terraces, development of scarp, narrow river course, and deeply incised valleys. However, we disagree with the comments raised by Rana and Sharma (2017), because they are highly skewed toward the climate school of thought, and did not perceive the setting as a collection of landforms. Instead, they attempted to view them in isolation. Because these comments are important, we will try to further our research incorporating issues related to isolation of climate and tectonics imprints in the immediate future. We would like to thank Rana and Sharma (2017) for raising some basic questions on our work as this gave us an excellent opportunity to summarize and present the dominance of various processes and related landforms as earlier reported by Kothyari et al. (2017). A point-by-point detailed rebuttal/explanation of their queries is provided below.

  5. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-01-01

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic [open quotes]lowstand[close quotes] systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  6. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-12-31

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic {open_quotes}lowstand{close_quotes} systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  7. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    NASA Astrophysics Data System (ADS)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  8. Morphologic expression of Quaternary deformation in the northwestern foothills of the Ysyk-Köl basin, Tien Shan

    NASA Astrophysics Data System (ADS)

    Korjenkov, A. M.; Povolotskaya, I. E.; Mamyrov, E.

    2007-03-01

    The Tien Shan is one of the most active intracontinental mountain belts exhibiting numerous examples of Quaternary fault-related folding. To provide insight into the deformation of the Quaternary intermontane basins, the territory of the northwestern Ysyk-Köl region, where the growing Ak-Teke Anticline divided the piedmont apron of alluvial fans, is studied. It is shown that the Ak-Teke Hills are a sharply asymmetric anticline, which formed as a result of tectonic uplift and erosion related to motions along the South Ak-Teke Thrust Fault. The tectonic uplift gave rise to the local deviation of the drainage network in front of the northern limb of the fold. Optical (luminescent) dating suggests that the tectonic uplifting of the young anticline and the antecedent downcutting started 157 ka ago. The last upthrow of the high floodplain of the Toru-Aygyr River took place 1300 years ago. The structure of the South Ak-Teke Fault is examined by means of seismologic trenching and shallow seismic profiling across the fault. A laser tachymeter is applied to determine the vertical deformation of alluvial terraces in the Toru-Aygyr River valley at its intersection with the South Ak-Teke Fault. The rates of vertical deformation and an inferred number of strong earthquakes, which resulted in the upthrow of Quaternary river terraces of different ages, are calculated. The study territory is an example of changes in fluvial systems on growing folds in piedmont regions. As a result of shortening of the Earth’s crust in the mountainous belt owing to thrusting, new territories of previous sedimentation are involved in emergence. The tectonic activity migrates with time from the framing ridges toward the axial parts of intramontane basins.

  9. Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin: Geometry and kinematics of the NW Taiwan fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Mouthereau, FréDéRic; Angelier, Jacques; Chu, Hao-Tsu; Lee, Jian-Cheng

    2003-06-01

    Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric "primary arc" type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N-S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate.

  10. Seismic source study of the Racha-Dzhava (Georgia) earthquake from aftershocks and broad-band teleseismic body-wave records: An example of active nappe tectonics

    USGS Publications Warehouse

    Fuenzalida, H.; Rivera, L.; Haessler, H.; Legrand, D.; Philip, H.; Dorbath, L.; McCormack, D.; Arefiev, S.; Langer, C.; Cisternas, A.

    1997-01-01

    The Racha-Dzhava earthquake (Ms = 7.0) that occurred on 1991 April 29 at 09:12:48.1 GMT in the southern border of the Great Caucasus is the biggest event ever recorded in the region, stronger than the Spitak earthquake (Ms = 6.9) of 1988. A field expedition to the epicentral area was organised and a temporary seismic network of 37 stations was deployed to record the aftershock activity. A very precise image of the aftershock distribution is obtained, showing an elongated cloud oriented N105??, with one branch trending N310?? in the western part. The southernmost part extends over 80 km, with the depth ranging from 0 to 15 km, and dips north. The northern branch, which is about 30 km long, shows activity that ranges in depth from 5 to 15 km. The complex thrust dips northwards. A stress-tensor inversion from P-wave first-motion polarities shows a state of triaxial compression, with the major principal axis oriented roughly N-S, the minor principal axis being vertical. Body-waveform inversion of teleseismic seismograms was performed for the main shock, which can be divided into four subevents with a total rupture-time duration of 22 s. The most important part of the seismic moment was released by a gentle northerly dipping thrust. The model is consistent with the compressive tectonics of the region and is in agreement with the aftershock distribution and the stress tensor deduced from the aftershocks. The focal mechanisms of the three largest aftershocks were also inverted from body-wave records. The April 29th (Ms = 6.1) and May 5th (Ms = 5.4) aftershocks have thrust mechanisms on roughly E-W-oriented planes, similar to the main shock. Surprisingly, the June 15th (Ms = 6.2) aftershock shows a thrust fault striking N-S. This mechanism is explained by the structural control of the rupture along the east-dipping geometry of the Dzirula Massif close to the Borzhomi-Kazbeg strike-slip fault. In fact, the orientation and shape of the stress tensor produce a thrust on a N-S oriented plane. Nappe tectonics has been identified as an important feature in the Caucasus, and the source mechanism is consistent with this observation. A hidden fault is present below the nappe, and no large surface breaks were observed due to the main shock. The epicentral region is characterized by sediments that are trapped between two crystalline basements: the Dzirula Massif, which crops out south of Chiatoura, and the Caucasus Main Range north of Oni. Most, if not all, of the rupture is controlled by the thrusting of overlapping, deformed and folded sediments over the Dzirula Massif. This event is another example of blind active faults, with the distinctive feature that the fault plane dips at a gentle angle. The Racha Range is one of the surface expressions of this blind thrust, and its growth is the consequence and evidence of similar earthquakes in the past.

  11. Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.

    1994-01-01

    Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.

  12. Determination of tectonic shortening rates from progressively deformed flights of terraces above the Chelungpu and Changhua thrust ramps, Taiwan

    NASA Astrophysics Data System (ADS)

    Yue, L.; Suppe, J.

    2007-12-01

    The Chelungpu and Changhua thrust ramps in central Taiwan show contrasting hanging-wall structural geometries that suggest different kinematics, even though they involve the same stratigraphic section and basal detachment. The Chelungpu thrust shows a classic fault-bend folding geometry, which predicts folding solely by kink-band migration, whereas the hanging wall of the Changhua thrust demonstrates the characteristic geometry of a shear fault-bend folding, which predicts a progressive limb rotation with minor kink-band migration. We test the kinematic predictions of classic and shear fault-bend folding theories by analyzing deformed flights of terraces and coseismic displacements in the Mw=7.6 Chi-Chi earthquake. The Chelungpu terraces shows differences in uplift magnitudes across active axial surfaces that closely approximate the assumptions of classical fault-bend folding, including constant fault-parallel displacement, implying conservation of bed length, and hanging-wall uplift rates that are proportional to the sine of the fault dip. This provides a basis for precise determination of total fault slip since the formation of each terrace and combined with terrace dating gives long- term fault-slip rates for the Chelungpu thrust system. An estimation of the long term fault-slip rate of the Chelungpu thrust in the north Hsinshe terrace yields 15 mm/yr over the last 55 ka, which is similar to the combined shortening rate of 16 mm/y on the Chelungpu and Chushiang thrusts in the south estimated by Simoes et al. in 2006. Evan the coseismic displacements of 3 to 9m in the Chi-Chi earthquake are approximately fault-parallel but have additional transient components that are averaged out over the timescale of terrace deformation, which represents 10-100 large earthquakes. In contrast, terrace deformation in the hanging wall of the Changhua thrust ramp shows progressive limb rotation, as predicted from its shear fault-bend folding geometry, which combined with terrace dating allows an estimation of the long term fault-slip rate of 21 mm/yr over the last 31 ka. A combined shortening rate of 37 mm/yr is obtained for this part of the western Taiwan thrust belt, which is about 45 percent of the total plate-tectonic shortening rate across Taiwan. The Changhua shear fault-bend fold ramp is in the early stages of its development with only 1.7km total displacement whereas the Chelungpu classical fault-bend folding ramp in the same stratigraphy has nearly an order of magnitude more displacement (~14 km). We suggest that shear fault-bend folding may be favored mechanically at low displacement, whereas classical fault-bend folding would be favored at large displacement.

  13. Determination of tectonic shortening rates from progressively deformed flights of terraces above the Chelungpu and Changhua thrust ramps, Taiwan

    NASA Astrophysics Data System (ADS)

    Yue, L.; Suppe, J.

    2004-12-01

    The Chelungpu and Changhua thrust ramps in central Taiwan show contrasting hanging-wall structural geometries that suggest different kinematics, even though they involve the same stratigraphic section and basal detachment. The Chelungpu thrust shows a classic fault-bend folding geometry, which predicts folding solely by kink-band migration, whereas the hanging wall of the Changhua thrust demonstrates the characteristic geometry of a shear fault-bend folding, which predicts a progressive limb rotation with minor kink-band migration. We test the kinematic predictions of classic and shear fault-bend folding theories by analyzing deformed flights of terraces and coseismic displacements in the Mw=7.6 Chi-Chi earthquake. The Chelungpu terraces shows differences in uplift magnitudes across active axial surfaces that closely approximate the assumptions of classical fault-bend folding, including constant fault-parallel displacement, implying conservation of bed length, and hanging-wall uplift rates that are proportional to the sine of the fault dip. This provides a basis for precise determination of total fault slip since the formation of each terrace and combined with terrace dating gives long- term fault-slip rates for the Chelungpu thrust system. An estimation of the long term fault-slip rate of the Chelungpu thrust in the north Hsinshe terrace yields 15 mm/yr over the last 55 ka, which is similar to the combined shortening rate of 16 mm/y on the Chelungpu and Chushiang thrusts in the south estimated by Simoes et al. in 2006. Evan the coseismic displacements of 3 to 9m in the Chi-Chi earthquake are approximately fault-parallel but have additional transient components that are averaged out over the timescale of terrace deformation, which represents 10-100 large earthquakes. In contrast, terrace deformation in the hanging wall of the Changhua thrust ramp shows progressive limb rotation, as predicted from its shear fault-bend folding geometry, which combined with terrace dating allows an estimation of the long term fault-slip rate of 21 mm/yr over the last 31 ka. A combined shortening rate of 37 mm/yr is obtained for this part of the western Taiwan thrust belt, which is about 45 percent of the total plate-tectonic shortening rate across Taiwan. The Changhua shear fault-bend fold ramp is in the early stages of its development with only 1.7km total displacement whereas the Chelungpu classical fault-bend folding ramp in the same stratigraphy has nearly an order of magnitude more displacement (~14 km). We suggest that shear fault-bend folding may be favored mechanically at low displacement, whereas classical fault-bend folding would be favored at large displacement.

  14. On the distinction of tectonic and nontectonic faulting in palaeoseismological research: a case study from the southern Marmara region of Turkey

    NASA Astrophysics Data System (ADS)

    Özaksoy, Volkan

    2017-12-01

    This study reports on spectacular deformation structures, including arrays of striated thrusts, discovered by excavation work in Holocene deposits in vicinity of a major neotectonic strike-slip fault in one of the tectonically most active regions of Turkey. The deformation structures were initially considered an evidence of sub-recent tectonic activity, but their detailed multidisciplinary study surprisingly revealed that the deformation of the clay-rich soil and its strongly weathered Jurassic substrate was of nontectonic origin, caused by argilliturbation. This phenomenon of vertisol self-deformation is well-known to pedologists, but may easily be mistaken for tectonic deformation by geologists less familiar with pedogenic processes. The possibility of argilliturbation thus needs to be taken into consideration in palaeoseismological field research wherever the deformed substrate consists of clay-rich muddy deposits. The paper reviews a range of specific diagnostic features that can serve as field criteria for the recognition of nontectonic deformation structures induced by argilliturbation in mud-dominated geological settings.

  15. Tectonomorphic evolution of the Eastern Cordillera fold-thrust belt, Colombia: New insights based on apatite and zircon (U-Th)/He thermochronometers

    NASA Astrophysics Data System (ADS)

    Ghorbal, B.; Stockli, D. F.; Mora, A.; Horton, B. K.; Blanco, V.; Sanchez, N.

    2010-12-01

    The Eastern Cordillera (EC) of Colombia marks the eastern boundary of Cenozoic fold-thrust deformation in the northern Andes. It is a classic example of an inversion belt formed in the retro-arc region, in this case superimposed on a Triassic/Jurassic to Cretaceous intracontinental rift system of northern South America. Ongoing thrust reactivation (inversion) in this contractional orogen provides an excellent opportunity to study the patterns of deformation and influence of preexisting anisotropies (Mora et al., 2006). The objective of this detailed (U-Th)/He study is to unravel the tectonic and thermal evolution of the EC from the Magdalena Valley basin in the west to the Llanos foreland basin in the east and reconstruct the temporal and spatial progression of deformation in the EC fold-thrust belt. Furthermore, the Subandean or foothills zone of Colombia is key for understanding the petroleum systems in the complex frontal zone of the inverted fold-thrust belt. We present detailed apatite and zircon (U-Th)/He thermochronometric data from surface samples along a ~220 km WNW-ESE transect across the EC from the frontal fold-thrust belt at the edge of the Llanos basin to the western edge of the EC, the Magdalena basin. Surface and borehole zircon and apatite (U-Th)/He data, integrated with structural data, show that the EC fold-thrust belt propagated foreland-ward from the axial zone to the modern edges of the fold-thrust belt from at least the early Oligocene to the early Miocene. Detailed apatite and zircon (U-Th)/He data from surface samples and borehole samples in the foothills-Llanos transition zone and the Middle Magdalena Valley basin, between the large-displacement Guaicaramo and Pajarito-Chámeza thrusts in the east and the La Salina fault system in the west show a temporally complex evolution. The frontal fold-thrust belt was characterized by continued progressive foreland-ward migration of deformation and an apparent phase of major out-of-sequence motion along both sides of the orogen in the latest Miocene to early Pliocene, with recent to active deformation again concentrated along the frontal-most faults of the EC. These detailed new apatite and zircon (U-Th)/He thermochronometric data elucidate the progressive deformation, thermal history, and along-long strike variation (Mora et al., 2010) of the fold-thrust belt in the EC of Colombia and provide important new insights into the complex interplay between hydrocarbon maturation and temporal and kinematic evolution of the frontal fold-thrust belt. References [1] Mora, A., M. Parra, M. R. Strecker, A. Kammer, C. Dimaté, and F. Rodriguez, 2006, Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia: Tectonics, v. 25, TC2010. [2] Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., Garcia, D. and D.F. Stockli, 2010, Cenozoic deformation patterns in the Eastern Cordillera, Colombia: Inferences from fission track results and structural relationships. AAPG Bulletin, in press.

  16. Rotational reflectance of dispersed vitrinite from the Arkoma basin

    USGS Publications Warehouse

    Houseknecht, D.W.; Weesner, C.M.B.

    1997-01-01

    Rotational reflectance of dispersed vitrinite provides superior documentation of thermal maturity and a capability for interpreting relative timing between thermal and kinematic events in Arkoma Basin strata characterized by vitrinite reflectances up to 5%. Rotational reflectance (R(rot)) is a more precise and less ambiguous index of thermal maturity than maximum (R'(max)), minimum (R(min)), and random (R(ran)) reflectance. Vitrinite reflectance anisotropy becomes sufficiently large to be measurable (using a microscope equipped with an automated rotating polarizer) at ???2% R(rot) and increases following a power function with increasing thermal maturity. Rotational reflectance data can be used to infer the shape of the vitrinite reflectance indicating surface (i.e. indicatrix) and, in turn, to enhance interpretations of the timing between thermal maxima and compressional tectonic events. Data from three wells in the Arkoma Basin Ouachita frontal thrust belt are used as examples. The absence of offsets in measured R(rot) across thrust faults combined with a predominance of uniaxial vitrinite in the thrust faulted part of the section suggest thermal maximum postdated thrust faulting in the western Ouachita frontal thrust belt of Oklahoma. In contrast, the general absence of offsets in measured R(rot) across thrust faults combined with a predominance of biaxial vitrinite in the thrust faulted part of the section suggest that the thermal maximum was coeval with thrust faulting in the eastern Ouachita frontal thrust belt of Arkansas. The presence of biaxial vitrinite in an allochthonous section and uniaxial vitrinite in an underlying, autochthonous section suggests that the thermal maximum was coeval with listric thrust faulting in the central Arkoma Basin of Oklahoma, and that rotational reflectance data can be used as a strain indicator to detect subtle decollement zones.

  17. Flower-strucutre deformation pattern of theTian Shan mountains as revealed by Late Quaternary geological and modern Geodesy slip rates

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhang, P.; Zheng, W.; Wang, H.; Zhang, Z.; Ren, Z.; Zheng, D.; Yu, J.; Wu, G.

    2017-12-01

    The deformation pattern and strain distribution of the Tian Shan is a hot issue.Previous studies mainly focus on the thrust-fold systems on both sides of Tian Shan, the strike-slip faults within the mountains are rarely reported. The understanding about the deformation characteristics of Tian Shan is not complete for lacking information of these strike-slip faults.Our studies show the NEE trending structures of Maidan fault and Nalati fault in the southwestern Tian Shan are all active during the Holence. These faults are characterized by sinistral strike-slip and thrust movement. The minimum average sinistral strike-slip rate of the Maidan fault is 1.07 ± 0.13 mm/yr. During the late Quaternary, the average shortening rate and sinistral strike-slip rate of the Nalati fault are 2.1 ±0.4 mm/yr and 2.56 ±0.25 mm/yr, respectively . In the interior of the Tian Shan area, two groups of strike-slip faults were developed. The NEE trending faults with sinistral strike-slipmovement, and the NWW trending faults with dextral strike-slip movement show the shape of "X"in geometrical structure. The piedmont thrust faults and the thrust strike-slip faults in the interior mountain constitute the tectonic framework of Tian Shan. Threegroups of active fault systems are the main seismogenic and geological structures, which control the current tectonic deformation pattern of Tian Shan (Figure 1). GPS observation data also showthe similar deformation characteristics with the geological results (Figures 2, 3). In addition to the crustal shortening, there is a certain strike-slip shear movement in the interior of the Tian Shan.The strike-slip rate defined by the geological and GPS data is approximately consistent with each other near the same longitude. We suggest the two groups of strike-slip faults in the interior of mountains is a set of conjugate structures. The whole Tian Shan forms a large flower-structure in a profile view. The complete tectonic deformation of the Tian Shan mountains consists ofthe shortening deformationof the N-S direction and the lateral extrusion of the E-W direction (Figure 2). The late Cenozoic deformation of the Tian Shan mountains is due to the northward subduction of Tarim Block. Although the activedeformation of the Tian Shan decrease eastward, the geological sturcutrein eastern Tian Shan is similar.

  18. Applications of Morphochronology to the Active Tectonics of Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Tapponnier, P; Finkel, R C

    2005-01-28

    The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported bymore » relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate a significant eastward decrease in the shortening rate. This rate decrease is consistent with the transfer of slip from the Altyn Tagh Fault (ATF) to genetically-related thrust mountain building at its terminus. Rates on the ATF suggest a similar decrease in rate, but the current data set is too small to be definitive. Overall, the high, late Pleistocene-Holocene, geomorphic slip velocities on the major strike-slip faults of Tibet, suggests that they absorb as much of India's convergence relative to Siberia as the Himalayan Main Frontal Thrust on the southern edge of the plateau.« less

  19. Influence of Tectonics on the Channel Pattern of Alaknanda River in Srinagar Valley (Garhwal Himalaya)

    NASA Astrophysics Data System (ADS)

    Datt, Devi

    2017-04-01

    This paper describes the results of a continuing investigation of tectonic influence on channel pattern and morphology of Alaknanda River in Lesser Garhwal Himalaya, Uttarakhand, India. Extensive field investigations using conventional methods supported by topographical sheets and remote sensing data (LISS IV), were undertaken.The results are classified into three sections :- tectonics, channel pattern and impact of tectonics on channel pattern. The channel length is divided into 8 meanders sets of 3 segments from Supana to Kirtinagar. Thereafter, a litho-tectonic map of the Srinagar valley was prepared. The style of active tectonics on deformation and characterization of fluvial landscape was investigated on typical strike-slip transverse faults near the zone of North Almora Thrust (NAT). NAT is a major tectonic unit of the Lesser Himalaya which passes through the northern margin from NW to SE direction.. The structural and lithological controls on the Alaknanda River system in Srinagar valley are reflected on distinct drainage patterns, abrupt change in flow direction, incised meandering, offset river channels, straight river lines, palaeo-channels, multi levels of terraces, knick points and pools in longitudinal profile. The results of the study show that the sinuosity index of the river is 1.35. Transverse faulting is very common along the NAT. An earlier generation of linear tectonic features were displaced by the latter phase of deformation. Significant deviations were observed in river channel at deformation junctions. Moreover, all 8 sets of meanders are strongly influenced by tectonic features. The meandering course is, thereby, correlated with tectonic features. It is shown that the river channel is strongly influenced by the tectonic features in the study area. Key Words: Tectonic, Meander, Channel pattern, deformation, Knick point.

  20. The Story of a Yakima Fold and How It Informs Late Neogene and Quaternary Backarc Deformation in the Cascadia Subduction Zone, Manastash Anticline, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kelsey, Harvey M.; Ladinsky, Tyler C.; Staisch, Lydia; Sherrod, Brian L.; Blakely, Richard J.; Pratt, Thomas L.; Stephenson, William J.; Odum, Jack K.; Wan, Elmira

    2017-10-01

    The Yakima folds of central Washington, USA, are prominent anticlines that are the primary tectonic features of the backarc of the northern Cascadia subduction zone. What accounts for their topographic expression and how much strain do they accommodate and over what time period? We investigate Manastash anticline, a north vergent fault propagation fold typical of structures in the fold province. From retrodeformation of line- and area-balanced cross sections, the crust has horizontally shortened by 11% (0.8-0.9 km). The fold, and by inference all other folds in the fold province, formed no earlier than 15.6 Ma as they developed on a landscape that was reset to negligible relief following voluminous outpouring of Grande Ronde Basalt. Deformation is accommodated on two fault sets including west-northwest striking frontal thrust faults and shorter north to northeast striking faults. The frontal thrust fault system is active with late Quaternary scarps at the base of the range front. The fault-cored Manastash anticline terminates to the east at the Naneum anticline and fault; activity on the north trending Naneum structures predates emplacement of the Grande Ronde Basalt. The west trending Yakima folds and west striking thrust faults, the shorter north to northeast striking faults, and the Naneum fault together constitute the tectonic structures that accommodate deformation in the low strain rate environment in the backarc of the Cascadia Subduction Zone.

  1. The story of a Yakima fold and how it informs Late Neogene and Quaternary backarc deformation in the Cascadia subduction zone, Manastash anticline, Washington, USA

    USGS Publications Warehouse

    Kelsey, Harvey M.; Ladinsky, Tyler C.; Staisch, Lydia; Sherrod, Brian; Blakely, Richard J.; Pratt, Thomas; Stephenson, William; Odum, Jackson K.; Wan, Elmira

    2017-01-01

    The Yakima folds of central Washington, USA, are prominent anticlines that are the primary tectonic features of the backarc of the northern Cascadia subduction zone. What accounts for their topographic expression and how much strain do they accommodate and over what time period? We investigate Manastash anticline, a north vergent fault propagation fold typical of structures in the fold province. From retrodeformation of line- and area-balanced cross sections, the crust has horizontally shortened by 11% (0.8–0.9 km). The fold, and by inference all other folds in the fold province, formed no earlier than 15.6 Ma as they developed on a landscape that was reset to negligible relief following voluminous outpouring of Grande Ronde Basalt. Deformation is accommodated on two fault sets including west-northwest striking frontal thrust faults and shorter north to northeast striking faults. The frontal thrust fault system is active with late Quaternary scarps at the base of the range front. The fault-cored Manastash anticline terminates to the east at the Naneum anticline and fault; activity on the north trending Naneum structures predates emplacement of the Grande Ronde Basalt. The west trending Yakima folds and west striking thrust faults, the shorter north to northeast striking faults, and the Naneum fault together constitute the tectonic structures that accommodate deformation in the low strain rate environment in the backarc of the Cascadia Subduction Zone.

  2. [Impact of OSA Therapy on Established Polyphasic Sleep].

    PubMed

    Kerl, J; Dellweg, D

    2018-05-23

     The prevalence of polyphasic sleep (PS) in patients with sleep apnoea (OSA) is investigated in this study. In established PS the possible impact of OSA therapy on sleep behaviour was examined.  Sleep patterns in 24 hours of initial recepted OSA patients were recorded by questionnaire (n = 163). In polyphasic sleepers the sleep patterns were reevaluated after OSA therapy initiation. In additional patients polyphasic therapy usage was investigated by telemonitoring data (n = 487). 39,6 % of the patients had PS. After OSA therapy initiation in 97,0 % of the polyphasic sleepers a monophasic device usage was established while 3,0 % had a polyphasic usage. PS was switched to monophasic sleep in 81,8 % of the patients. 15.2 % had preserved PS without device usage on daytimes. 2,9 % of the telemonitoring patients showed a polyphasic usage pattern. The prevalence of PS in OSA patients is higher than in the general population. PS is converted to monophasic sleep in 81,8 % after OSA therapy initiation. In preserved PS the majority of patients doesn't use the therapy while napping. Polyphasic device usage was 2,9 % in telemonitoring patients and 3,0 % of the controls of this study. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Tectonic setting of the Wooded Island earthquake swarm, eastern Washington

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Rohay, Alan C.; Wells, Ray E.

    2012-01-01

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site,Washington. Epicenters were concentrated in a 2 km2 area nearWooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

  4. Latest Neoproterozoic basin inversion of the Beardmore Group, central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Goodge, John W.

    1997-08-01

    Structural and age relationships in Beardmore Group rocks in the central Transantarctic Mountains of Antarctica indicate that they experienced a single deformation in latest Neoproterozoic to early Paleozoic time. New structural data contrast with earlier suggestions that Beardmore rocks record two orogenic deformations, one of the early Paleozoic Ross orogeny and a distinct earlier tectonic event of presumed Neoproterozoic age referred to as the Beardmore orogeny. In the Nimrod Glacier area, Beardmore metasedimentary rocks contain only a single set of geometrically related regional structures associated with the development of upright, large- and small-scale flexural-slip folds. Deformation of Beardmore strata involved west directed contraction of modest regional strain at relatively high crustal levels. Existing ages of detrital zircons from the Cobham and Goldie formations constrain Beardmore Group deposition to be younger than ˜600 Ma. This is significantly younger than previous age estimates and suggests that Beardmore deposition may be closely linked to a latest Neoproterozoic East Antarctic rift margin. The lack of structural evidence for polyphase deformation and the relatively young depositional age for the Beardmore Group thus raises the question of a temporally and/or technically unique Beardmore orogeny. Here I suggest that Beardmore shortening may be related to tectonic inversion of East Antarctic marginal-basin strata because of localized compression during proto-Pacific seafloor spreading. Basin inversion is but one stage in a protracted Ross tectonic cycle of rifting, tectonic inversion, subduction initiation, and development of a mature convergent continental margin during latest Neoproterozoic and early Paleozoic time. The term "Beardmore orogeny" has little meaning as an event of orogenic status, and it should be abandoned. Recognition of this latest Neoproterozoic history reinforces the view that the broader Ross orogeny was not a single event but rather was a long-lived postrifting tectonic process along the East Antarctic margin of Gondwanaland.

  5. Crustal structure of the southeastern Brazilian margin, Campos Basin, from aeromagnetic data: New kinematic constraints

    NASA Astrophysics Data System (ADS)

    Stanton, N.; Schmitt, R.; Galdeano, A.; Maia, M.; Mane, M.

    2010-07-01

    The continental and adjacent marginal features along southeast Brazil were investigated, focusing on the basement structural relationships between onshore and offshore provinces. Lateral and vertical variations in the magnetic anomalies provided a good correlation with the regional tectonic features. The sin-rift dykes and faults are associated with the magnetic lineaments and lie sub parallel to the Precambrian N45E-S45W basement structure of the Ribeira Belt, but orthogonally to the Cabo Frio Tectonic Domain (CFTD) basement, implying that: (1) the upper portion of the continental crust was widely affected by Mesozoic extensional deformation; and (2) tectonic features related to the process of break up of the Gondwana at the CFTD were form regardless of the preexisting structural basement orientation being controlled by the stress orientation during the rift phase. The deep crustal structure (5 km depth) is characterized by NE-SW magnetic "provinces" related to the Ribeira Belt tectonic units, while deep suture zones are defined by magnetic lows. The offshore Campos structural framework is N30E-S30W oriented and resulted from a main WNW-ESE direction of extension in Early Cretaceous. Transfer zones are represented by NW-SE and E-W oriented discontinuities. A slight difference in orientation between onshore (N45E) and offshore (N30E) structural systems seems to reflect a re-orientation of stress during rifting. We proposed a kinematical model to explain the structural evolution of this portion of the margin, characterized by polyphase rifting, associated with the rotation of the South American plate. The Campos Magnetic High (CMH), an important tectonic feature of the Campos Basin corresponds to a wide area of high crustal magnetization. The CMH wass interpreted as a magmatic feature, mafic to ultramafic in composition that extends down to 14 km depth and constitutes an evidence of intense crustal extension at 60 km from the coast.

  6. Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Togo, Masami; Okada, Atsumasa; Takemura, Keiji

    2004-12-01

    We combine surface mapping of fault and fold scarps that deform late Quaternary alluvial strata with interpretation of a high-resolution seismic reflection profile to develop a kinematic model and determine fault slip rates for an active blind wedge thrust system that underlies Kuwana anticline in central Japan. Surface fold scarps on Kuwana anticline are closely correlated with narrow fold limbs and angular hinges on the seismic profile that suggest at least ˜1.3 km of fault slip completely consumed by folding in the upper 4 km of the crust. The close coincidence and kinematic link between folded terraces and the underlying thrust geometry indicate that Kuwana anticline has accommodated slip at an average rate of 2.2 ± 0.5 mm/yr on a 27°, west dipping thrust fault since early-middle Pleistocene time. In contrast to classical fault bend folds the fault slip budget in the stacked wedge thrusts also indicates that (1) the fault tip propagated upward at a low rate relative to the accrual of fault slip and (2) fault slip is partly absorbed by numerous bedding plane flexural-slip faults above the tips of wedge thrusts. An historic earthquake that occurred on the Kuwana blind thrust system possibly in A.D. 1586 is shown to have produced coseismic surface deformation above the doubly vergent wedge tip. Structural analyses of Kuwana anticline coupled with tectonic geomorphology at 103-105 years timescales illustrate the significance of active folds as indicators of slip on underlying blind thrust faults and thus their otherwise inaccessible seismic hazards.

  7. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet

    USGS Publications Warehouse

    Liu-Zeng, J.; Zhang, Z.; Wen, L.; Tapponnier, P.; Sun, Jielun; Xing, X.; Hu, G.; Xu, Q.; Zeng, L.; Ding, L.; Ji, C.; Hudnut, K.W.; van der Woerd, J.

    2009-01-01

    The Ms 8.0, Wenchuan earthquake, which devastated the mountainous western rim of the Sichuan basin in central China, produced a surface rupture over 200??km-long with oblique thrust/dextral slip and maximum scarp heights of ~ 10??m. It thus ranks as one of the world's largest continental mega-thrust events in the last 150??yrs. Field investigation shows clear surface breaks along two of the main branches of the NE-trending Longmen Shan thrust fault system. The principal rupture, on the NW-dipping Beichuan fault, displays nearly equal amounts of thrust and right-lateral slip. Basin-ward of this rupture, another continuous surface break is observed for over 70??km on the parallel, more shallowly NW-dipping Pengguan fault. Slip on this latter fault was pure thrusting, with a maximum scarp height of ~ 3.5??m. This is one of the very few reported instances of crustal-scale co-seismic slip partitioning on parallel thrusts. This out-of-sequence event, with distributed surface breaks on crustal mega-thrusts, highlights regional, ~ EW-directed, present day crustal shortening oblique to the Longmen Shan margin of Tibet. The long rupture and large offsets with strong horizontal shortening that characterize the Wenchuan earthquake herald a re-evaluation of tectonic models anticipating little or no active shortening of the upper crust along this edge of the plateau, and require a re-assessment of seismic hazard along potentially under-rated active faults across the densely populated western Sichuan basin and mountains. ?? 2009 Elsevier B.V.

  8. Tectonic Evolution of the Çayirhan Neogene Basin (Ankara), Central Turkey

    NASA Astrophysics Data System (ADS)

    Behzad, Bezhan; Koral, Hayrettin; İşb&idot; l, Duygu; Karaaǧa; ç, Serdal

    2016-04-01

    Çayırhan (Ankara) is located at crossroads of the Western Anatolian extensional region, analogous to the Basin and Range Province, and suture zone of the Neotethys-Ocean, which is locus of the North Anatolian Transform since the Late Miocene. To the north of Çayırhan (Ankara), a Neogene sedimentary basin comprises Lower-Middle Miocene and Upper Miocene age formations, characterized by swamp, fluvial and lacustrine settings respectively. This sequence is folded and transected by neotectonic faults. The Sekli thrust fault is older than the Lower-Middle Miocene age formations. The Davutoǧlan fault is younger than the Lower-Middle Miocene formations and is contemporaneous to the Upper Miocene formation. The Çatalkaya fault is younger than the Upper Miocene formation. The sedimentary and tectonic features provide information on mode, timing and evolution of this Neogene age sedimentary basin in Central Turkey. It is concluded that the region underwent a period of uplift and erosion under the influence of contractional tectonics prior to the Early-Middle Miocene, before becoming a semi-closed basin under influence of transtensional tectonics during the Early-Middle Miocene and under influence of predominantly extensional tectonics during the post-Late Miocene times. Keywords: Tectonics, Extension, Transtension, Stratigraphy, Neotectonic features.

  9. Polyphase-discrete Fourier transform spectrum analysis for the Search for Extraterrestrial Intelligence sky survey

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Gulkis, S.

    1991-01-01

    The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).

  10. Tectono-sedimentary evolution of salt controlled minibasin in a fold-an-thrust belt setting Example from the Sivas Basin Turkey and physical model.

    NASA Astrophysics Data System (ADS)

    Kergaravat, Charlie; Ribes, Charlotte; Darnault, Romain; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2017-04-01

    The aim of this study is to present the influence of regional shortening on the evolution of a minibasin province and the associated foldbelt geometry based on a natural example, the Sivas Basin, then compared to a physical experiment. The Sivas Basin in the Central Anatolian Plateau (Turkey) is a foreland fold-and-thrust belt, displaying in the central part a typical wall and basin province characterized by spectacularly exposed minibasins, separated by continuous steep-flanked walls and diapirs over a large area (45x25 km). The advance of the orogenic wedge is expressed within the second generation of minibasins by a shortening-induced squeezing of diapirs. Network of walls and diapirs evolve form polygonal to linear pattern probably induced by the squeezing of pre-existing evaporite walls and diapirs, separating linear primary minibasins. From base to top of secondary minibasins, halokinetic structures seem to evolve from small-scale objects along diapir flanks, showing hook and wedges halokinetic sequences, to large stratigraphic wedging, megaflap and salt sheets. Minibasins show progressively more linear shape at right angle to the regional shortening and present angular unconformities along salt structures related to the rejuvenation of pre-existing salt diapirs and walls probably encouraged by the shortening tectonic regime. The advance of the fold-and-thrust belts during the minibasins emplacement is mainly expressed during the late stage of minibasins development by a complex polygonal network of small- and intermediate-scale tectonic objects: (1) squeezed evaporite walls and diapirs, sometimes thrusted forming oblique or vertical welds, (2) allochthonous evaporite sheets, (3) thrusts and strike-slip faults recording translation and rotation of minibasins about vertical axis. Some minibasins are also tilted, with up to vertical position, associated with both the salt expulsion during minibasins sinking, recorded by large stratigraphic wedge, and the late thrust faults developments. The influence of the regional shortening deformation seems to be effective when the majority of the evaporite is remobilized toward the foreland. Results of scaled physical experiments, where continuous shortening is applied during minibasins emplacement, closely match with the deformation patterns observed in the Sivas minibasins. Shortening induce deformations such as translation of minibasins basinward, strike-slip fault zones along minibasin margin, rejuvenation of silicon walls and diapirs, emergence of silicon glaciers and rotation of minibasins along vertical and horizontal axis.

  11. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which provided initial pathways for fluid flow and later served as precipitation sites for ore minerals. Alteration, during, and perhaps prior to mineralization, enhanced primary permeability by dissolution, by removal of calcite, and by formation of dolomite. Ore-stage sulfide minerals and alteration minerals commonly precipitated in pore spaces among dolomite grains. Microveinlets and microbrecciation in zones of intense alteration also provided networks of secondary permeability that further enhanced fluid flux and produced additional sites for ore deposition.

  12. The Quaternary thrust system of the northern Alaska Range

    USGS Publications Warehouse

    Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.

    2012-01-01

    The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.

  13. Using U-Th-Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Mottram, Catherine M.; Parrish, Randall R.; Regis, Daniele; Warren, Clare J.; Argles, Tom W.; Harris, Nigel B. W.; Roberts, Nick M. W.

    2015-07-01

    Quantitative constraints on the rates of tectonic processes underpin our understanding of the mechanisms that form mountains. In the Sikkim Himalaya, late structural doming has revealed time-transgressive evidence of metamorphism and thrusting that permit calculation of the minimum rate of movement on a major ductile fault zone, the Main Central Thrust (MCT), by a novel methodology. U-Th-Pb monazite ages, compositions, and metamorphic pressure-temperature determinations from rocks directly beneath the MCT reveal that samples from 50 km along the transport direction of the thrust experienced similar prograde, peak, and retrograde metamorphic conditions at different times. In the southern, frontal edge of the thrust zone, the rocks were buried to conditions of 550°C and 0.8 GPa between 21 and 18 Ma along the prograde path. Peak metamorphic conditions of 650°C and 0.8-1.0 GPa were subsequently reached as this footwall material was underplated to the hanging wall at 17-14 Ma. This same process occurred at analogous metamorphic conditions between 18-16 Ma and 14.5-13 Ma in the midsection of the thrust zone and between 13 Ma and 12 Ma in the northern, rear edge of the thrust zone. Northward younging muscovite 40Ar/39Ar ages are consistently 4 Ma younger than the youngest monazite ages for equivalent samples. By combining the geochronological data with the >50 km minimum distance separating samples along the transport axis, a minimum average thrusting rate of 10 ± 3 mm yr-1 can be calculated. This provides a minimum constraint on the amount of Miocene India-Asia convergence that was accommodated along the MCT.

  14. New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS

    NASA Astrophysics Data System (ADS)

    Koulali, A.; Tregoning, P.; McClusky, S.; Stanaway, R.; Wallace, L.; Lister, G.

    2015-08-01

    New Guinea is a region characterized by rapid oblique convergence between the Pacific and Australian tectonic plates. The detailed tectonics of the region, including the partitioning of relative block motions and fault slip rates within this complex boundary plate boundary zone are still not well understood. In this study, we quantify the distribution of the deformation throughout the central and western parts of Papua New Guinea (PNG) using 20 yr of GPS data (1993-2014). We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for the location and rotation rates of microplate Euler poles as well as fault slip parameters in the region. Convergence between the Pacific and the Australian plates is accommodated in northwestern PNG largely by the New Guinea Trench with rates exceeding 90 mm yr-1, indicating that this is the major active interplate boundary. However, some convergent deformation is partitioned into a shear component with ˜12 per cent accommodated by the Bewani-Torricelli fault zone and the southern Highlands Fold-and-Thrust Belt. New GPS velocities in the eastern New Guinea Highlands region have led to the identification of the New Guinea Highlands and the Papuan Peninsula being distinctly different blocks, separated by a boundary through the Aure Fold-and-Thrust Belt complex which accommodates an estimated 4-5 mm yr-1 of left-lateral and 2-3 mm yr-1 of convergent motion. This implies that the Highlands Block is rotating in a clockwise direction relative to the rigid Australian Plate, consistent with the observed transition to left-lateral strike-slip regime observed in western New Guinea Highlands. We find a better fit of our block model to the observed velocities when assigning the current active boundary between the Papuan Peninsula and the South Bismark Block to be to the north of the city of Lae on the Gain Thrust, rather than on the more southerly Ramu-Markham fault as previously thought. This may indicate a temporary shift of activity onto out of sequence thrusts like the Gain Thrust as opposed to the main frontal thrust (the Ramu-Markham fault). In addition, we show that the southern Highlands Fold-and-Thrust Belt is the major boundary between the rigid Australian Plate and the New Guinea Highlands Block, with convergence occurring at rates between ˜6 and 13 mm yr-1.

  15. Seismotectonics of the 6 February 2012 Mw 6.7 Negros Earthquake, central Philippines

    NASA Astrophysics Data System (ADS)

    Aurelio, M. A.; Dianala, J. D. B.; Taguibao, K. J. L.; Pastoriza, L. R.; Reyes, K.; Sarande, R.; Lucero, A.

    2017-07-01

    At 03:49 UTC on the 6th of February 2012, Negros Island in the Visayan region of central Philippines was struck by a magnitude Mw 6.7 earthquake causing deaths of over 50 people and tremendous infrastructure damage leaving hundreds of families homeless. The epicenter was located in the vicinity of the eastern coastal towns of La Libertad and Tayasan of the Province of Negros Oriental. Earthquake-induced surface deformation was mostly in the form of landslides, liquefaction, ground settlement, subsidence and lateral spread. There were no clear indications of a fault surface rupture. The earthquake was triggered by a fault that has not been previously recognized. Earthquake data, including epicentral and hypocentral distributions of main shock and aftershocks, and focal mechanism solutions of the main shock and major aftershocks, indicate a northeast striking, northwest dipping nodal plane with a reverse fault mechanism. Offshore seismic profiles in the Tañon Strait between the islands of Negros and Cebu show a northwest dipping reverse fault consistent in location, geometry and mechanism with the nodal plane calculated from earthquake data. The earthquake generator is here proposed to be named the Negros Oriental Thrust (NOT). Geologic transects established from structural traverses across the earthquake region reveal an east-verging fold-thrust system. In the latitude of Guihulngan, this fold-thrust system is represented by the Razor Back Anticline - Negros Oriental Thrust pair, and by the Pamplona Anticline - Yupisan Thrust pair in the latitude of Dumaguete to the south. Together, these active fold-thrust systems are causing active deformation of the western section of the Visayan Sea Basin under a compressional tectonic regime. This finding contradicts previous tectonic models that interpret the Tañon Strait as a graben, bounded on both sides by normal faults supposedly operating under an extensional regime. The Negros Earthquake and the active fold-thrust systems that were discovered in the course of the structural analysis provide strong arguments for basin inversion processes now affecting the Visayan Sea Basin, albeit under very slow strain rates derived from previous GPS campaigns. The occurrence of the earthquake in an area where no active faults have been previously recognized and characterized by slow present-day strain rates underscores the necessity of paying more attention to and exerting more effort in the evaluation of earthquake hazards of regions that are seemingly seismically quiet, especially when they underlie highly urbanized areas.

  16. Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.

    2009-12-01

    The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust fault scarps. In this presentation we review the geologic characteristics and context of these newly-identified, potentially tectonic landforms. The lengths and relief of some of these linear and curvilinear features are consistent with previously identified lobate scarps. Most of these features are in the highlands, though a few occur along the edges of mare and/or crater ejecta deposits. In many cases the resolution of the Metric Camera frames (~10 m/pix) is not adequate to unequivocally determine the origin of these features. Thus, to assess if the newly identified features have tectonic or other origins, we are examining them in higher-resolution Panoramic Camera (currently being scanned) and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera images [Watters et al., this meeting, 2009].

  17. The Western Chugach-St. Elias Orogen, Alaska: Strain Partitioning and the Effect of Glacial Erosion

    NASA Astrophysics Data System (ADS)

    Berger, A. L.; Spotila, J. A.

    2006-12-01

    The ongoing collision between the Yakutat terrane and the North American plate in southeastern Alaska's St. Elias orogen is a modern analog for the tectonic processes which produced, and shaped, much of the Cordillera. With convergence rates comparable to that of the Himalaya (>4 cm/yr), a young and dynamic zone of thin-skinned interplate deformation has constructed the highest coastal relief on Earth, and given rise to the second and third highest peaks in North America (5,959 and 5,489 m). The orogen receives upwards of 4 m precipitation annually, has been heavily glaciated for the last 5 Ma, and contains some of the fastest short-term erosion rates known. Over the last few years, evidence has steadily mounted that within such tectonic settings, climate and tectonics exist as a coupled system (i.e. Taiwan and Nanga Parbat). Our ongoing research, aimed at quantifying spatial patterns in exhumation rate as well as the location of active structures within the western half of the St. Elias orogen, bolsters this new paradigm. Bedrock ([U-Th]/He) cooling ages in apatite show that exhumation is currently focused on the windward side of the orogen. Time- averaged, long-term, exhumation rates near the coast are generally ~2-3 mm/yr, versus <0.5 mm/yr on the leeward side of the range. However, the rapid exhumation rates along the windward flank are not spatially uniform with the highest rates measured thus far >~5.5 mm/yr (0.4 Ma cooling age) situated near the Bering and Steller Glaciers. This locus of exhumation could reflect a redistribution of strain by focused erosion beneath these large outlet glaciers. Yet, the structural mechanism of this focused strain is still speculative. Pairs of helium ages spanning the foot-wall and hanging-wall of the Chugach-St. Elias thrust, the suture between the North American plate and colliding Yakutat terrane, imply that the thrust became inactive at some time between 2 and 5 Ma. Because of the coincidence in timing between this transition and the onset of glaciation, we speculate that deformation shifted onto more seaward fore-thrusts which were better situated to maintain a critical wedge geometry as erosion patters and magnitudes evolved. The pattern of ages also suggests that previously unrecognized back-thrusts, with unknown oblique components, exist beneath the Bagley Ice Field (Contact Fault) and north of the rapidly exhuming Mt. Tom White. New low-temperature cooling ages are thus important for constraining the activity and distribution of active structures in this thrust belt, as well as illustrating the influence of focused glacial erosion in the partitioning of strain within zones of crustal convergence.

  18. Foreshock occurrence rates before large earthquakes worldwide

    USGS Publications Warehouse

    Reasenberg, P.A.

    1999-01-01

    Global rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured, using earthquakes listed in the Harvard CMT catalog for the period 1978-1996. These rates are similar to rates ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering, which is based on patterns of small and moderate aftershocks in California, and were found to exceed the California model by a factor of approximately 2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events a large majority, composed of events located in shallow subduction zones, registered a high foreshock rate, while a minority, located in continental thrust belts, measured a low rate. These differences may explain why previous surveys have revealed low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggest the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich.

  19. Metamorphic and tectonic evolution of the Greater Himalayan Crystalline Complex in Nyalam region, south Tibet

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Zhang, Jin-Jiang; Rubatto, Daniela

    2016-04-01

    Recent studies evoke dispute whether the Himalayan metamorphic core - Greater Himalayan Crystalline Complex (GHC) - was exhumed as a lateral crustal flow or a critical taper wedge during the India-Asia collision. This contribution investigated the evolution of the GHC in the Nyalam region, south Tibet, with comprehensive studies on structural kinematics, metamorphic petrology and geochronology. The GHC in the Nyalam region can be divided into the lower and upper GHC. Phase equilibria modelling and conventional thermobarometric results show that peak temperature conditions are lower in the lower GHC (~660-700°C) and higher in the upper GHC (~740-780°C), whereas corresponding pressure conditions at peak-T decrease from ~9-13 kbar to ~4 kbar northward. Monazite, zircon and rutile U-Pb dating results reveal two distinct blocks within the GHC of the Nyalam region. The upper GHC underwent higher degree of partial melting (15-25%, via muscovite dehydration melting) that initiated at ~32 Ma, peaked at ~29 Ma to 25 Ma, possibly ended at ~20 Ma. The lower GHC underwent lower degree of melting (0-10%) that lasted from 19 to 16 Ma, which was produced mainly via H2O-saturated melting. At different times, both the upper and lower blocks underwent initial slow cooling (35 ± 8 and 10 ± 5°C/Myr, respectively) and subsequent rapid cooling (120 ± 40°C/Myr). The established timescale of metamorphism suggests that high-temperature metamorphism within the GHC lasted a long duration (~15 Myr), whereas duration of partial melting lasted for ~3 Myr in the lower GHC and lasted for 7-12 Myr in the upper GHC. The documented diachronous metamorphism and discontinuity of peak P-T conditions implies the presence of the Nyalam Thrust in the study area. This thrust is probably connected to the other thrusts in Nepal and Sikkim Himalaya, which extends over ~800 km and is named the "High Himalayan Thrust". Timing of activity along this thrust is at ~25-16 Ma, which is coeval with active timing along the South Tibetan detachment (27-16 Ma) but precedes that along the MCT (16-10 Ma). Comparison between the obtained P-T-t data and model predictions implies that a lateral crustal flow process dominated the exhumation of the high-grade upper GHC migmitites during 25-16 Ma, whereas a critical taper thrusting process dominated the exhumation of the MCT zone nonmigmatites and cooled migmatites in the lower GHC at 16-10 Ma. In other words, at different temporal and spatial scale, both propagating thrusting along large tectonic boundaries and a low-viscosity melting crust could contribute to the exhumation of high-grade metamorphic rocks in Himalaya-like large hot collisional orogens. KEY WORDS: Greater Himalayan Crystalline Complex; P-T path; U-Pb geochronology; channel flow; tectonic discontinuity References: Wang, J.M., Rubatto, D., Zhang, J.J., 2015a. Timing of partial melting and cooling across the Greater Himalayan Crystalline Complex (Nyalam, central Himalaya): in-sequence thrusting and its implications. Journal of Petrology, 56, 1677-1702. Wang, J.M., Zhang, J.J., Wei, C.J., Rai, S.M., Wang, M., Qian, J.H., 2015b. Characterizing the metamorphic discontinuity across the Main Central Thrust Zone of eastern-central Nepal. Journal of Asian Earth Sciences 101, 83-100. Wang, J.M., Zhang, J.J., Wang, X.X., 2013. Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet: implication for a revised channel flow. Journal of Metamorphic Geology 31, 607-628.

  20. Geologic Map of the Eastern Three-Quarters of the Cuyama 30' x 60' Quadrangle, California

    USGS Publications Warehouse

    Kellogg, Karl S.; Minor, Scott A.; Cossette, Pamela M.

    2008-01-01

    The map area encompasses a large part of the western Transverse Ranges and southern Coast Ranges of southern California. The San Andreas fault (SAF) cuts the northern part of the map. The area south of the SAF, about 80 percent of the map area, encompasses several distinct tectonic blocks bounded by major thrust or reverse faults, including the Santa Ynez fault, Big Pine fault (and structurally continuous Pine Mountain fault), Tule Creek fault, Nacimiento fault, Ozena fault, Munson Creek fault, Morales fault, and Frazier Mountain Thrust System. Movement on these faults is as old as Miocene and some faults may still be active. In addition, the Paleocene Sawmill Mountain Thrust south of the SAF and the Pastoria Thrust north of the SAF place Cretaceous and older crystalline rocks above Pelona Schist (south of the SAF) and Rand Schist (north of the SAF). South of the SAF, each tectonic block contains a unique stratigraphy, reflecting either large-scale movement on bounding faults or different depositional environments within each block. On Mount Pinos and Frazier Mountain, intrusive and metamorphic rocks as old as Mesoproterozoic, but including voluminous Cretaceous granitoid rocks, underlie or are thrust above non-marine sedimentary rocks as old as Miocene. Elsewhere, marine and non-marine sedimentary rocks are as old as Cretaceous, dominated by thick sequences of both Eocene and Cretaceous marine shales and sandstones. Middle Miocene to early Oligocene volcanic rocks crop out in the Caliente Hills (part of Caliente Formation) and south of Mount Pinos (part of the Plush Ranch Formation). Fault-bounded windows of Jurassic Franciscan Complex ophiolitic rocks are evident in the southwest corner of the area. North of the SAF, marine and non-marine sedimentary rocks as old as Eocene and Miocene volcanic rocks overlie a crystalline basement complex. Basement rocks include Cretaceous intrusive rocks that range from monzogranite to diorite, and Jurassic to late Paleozoic intrusive and metamorphic rocks. The Jurassic to late Paleozoic intrusive rocks include diorite, gabbro, and ultramafic rocks, and the metasedimentary rocks include marble, quartzite, schist, and gneiss.

  1. Dating Tectonic Activity on Mercury’s Large-Scale Lobate-Scarp Thrust Faults

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; E Banks, Maria

    2017-10-01

    Mercury’s widespread large-scale lobate-scarp thrust faults reveal that the planet’s tectonic history has been dominated by global contraction, primarily due to cooling of its interior. Constraining the timing and duration of this contraction provides key insight into Mercury’s thermal and geologic evolution. We combine two techniques to enhance the statistical validity of size-frequency distribution crater analyses and constrain timing of the 1) earliest and 2) most recent detectable activity on several of Mercury’s largest lobate-scarp thrust faults. We use the sizes of craters directly transected by or superposed on the edge of the scarp face to define a count area around the scarp, a method we call the Modified Buffered Crater Counting Technique (MBCCT). We developed the MBCCT to avoid the issue of a near-zero scarp width since feature widths are included in area calculations of the commonly used Buffered Crater Counting Technique (BCCT). Since only craters directly intersecting the scarp face edge conclusively show evidence of crosscutting relations, we increase the number of craters in our analysis (and reduce uncertainties) by using the morphologic degradation state (i.e. relative age) of these intersecting craters to classify other similarly degraded craters within the count area (i.e., those with the same relative age) as superposing or transected. The resulting crater counts are divided into two categories: transected craters constrain the earliest possible activity and superposed craters constrain the most recent detectable activity. Absolute ages are computed for each population using the Marchi et al. [2009] model production function. A test of the Blossom lobate scarp indicates the MBCCT gives statistically equivalent results to the BCCT. We find that all scarps in this study crosscut surfaces Tolstojan or older in age (>~3.7 Ga). The most recent detectable activity along lobate-scarp thrust faults ranges from Calorian to Kuiperian (~3.7 Ga to present). Our results complement previous relative-age studies with absolute ages and indicate global contraction continued over the last ~3-4 Gyr. At least some thrust fault activity occurred on Mercury in relatively recent times (<280 Ma).

  2. New Insight into the Role of Tectonics versus Gravitational Deformation in Development of Surface Ruptures along the Ragged Mountain Fault, Katalla, Alaska USA: Applications of High-Resolution Three-Dimensional Terrain Models

    NASA Astrophysics Data System (ADS)

    Heinlein, S. N.; Pavlis, T. L.; Bruhn, R. L.; McCalpin, J. P.

    2017-12-01

    This study evaluates a surface structure using 3D visualization of LiDAR and aerial photography then analyzes these datasets using structure mapping techniques. Results provide new insight into the role of tectonics versus gravitational deformation. The study area is located in southern Alaska in the western edge of the St. Elias Orogen where the Yakutat microplate is colliding into Alaska. Computer applications were used to produce 3D terrain models to create a kinematic assessment of the Ragged Mountain fault which trends along the length of the east flank of Ragged Mountain. The area contains geomorphic and structural features which are utilize to determine the type of displacement on the fault. Previous studies described the Ragged Mountain fault as a very shallow (8°), west-dipping thrust fault that reactivated in the Late Holocene by westward-directed gravity sliding and inferred at least 180 m of normal slip, in a direction opposite to the (relative) eastward thrust transport of the structure inferred from stratigraphic juxtaposition. More recently this gravity sliding hypothesis has been questioned and this study evaluates one of these alternative hypotheses; that uphill facing normal fault-scarps along the Ragged Mountain fault trace represent extension above a buried ramp in a thrust and is evaluated with a fault-parallel flow model of hanging-wall folding and extension. Profiles across the scarp trace were used to illustrate the curvature of the topographic surfaces adjacent to the scarps system and evaluate their origin. This simple kinematic model tests the hypothesis that extensional fault scarps at the surface are produced by flexure above a deeper ramp in a largely blind thrust system. The data in the context of this model implies that the extensional scarp structures previously examined represent a combination of erosionally modified features overprinted by flexural extension above a thrust system. Analyses of scarp heights along the structure are combined with the model to suggest a decrease in Holocene slip from south to north along the Ragged Mountain fault from 11.3 m to 0.2 m, respectively.

  3. Publications - PIR 2008-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    of recent geologic field investigations in the Brooks Range Foothills and North Slope, Alaska: Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska ; Tectonics; Thermal History; Thrust; Toolik River; Torok Formation; Turbidites; Turonian; Valanginian Top of

  4. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation.

    PubMed

    Beaumont, C; Jamieson, R A; Nguyen, M H; Lee, B

    2001-12-13

    Recent interpretations of Himalayan-Tibetan tectonics have proposed that channel flow in the middle to lower crust can explain outward growth of the Tibetan plateau, and that ductile extrusion of high-grade metamorphic rocks between coeval normal- and thrust-sense shear zones can explain exhumation of the Greater Himalayan sequence. Here we use coupled thermal-mechanical numerical models to show that these two processes-channel flow and ductile extrusion-may be dynamically linked through the effects of surface denudation focused at the edge of a plateau that is underlain by low-viscosity material. Our models provide an internally self-consistent explanation for many observed features of the Himalayan-Tibetan system.

  5. A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.

    1991-01-01

    A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.

  6. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India

    NASA Astrophysics Data System (ADS)

    Nair, Nisha; Pandey, Dhananjai K.

    2018-02-01

    Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.

  7. Reprocessing and Interpretation of Vintage Seismic Reflection Data: Evidence for the Tectonic History of the Rocky Mountain Trench, Northwest Montana.

    NASA Astrophysics Data System (ADS)

    Porter, M.; Speece, M. A.; Rutherford, B. S.; Constenius, K. N.

    2014-12-01

    In 1983 Techno, Inc. collected five seismic reflection profiles in the region between Whitefish, Montana and the United States-Canada border. The poulter method was used to gather four of these profiles and one profile was collected using a vibroseis source. We are currently reprocessing these data in order to construct a regional geological interpretation. The profiles cover a key position in the hinterland of the Cordillera in the lee of the Lewis thrust salient where the east-northeast verging Lewis thrust fault system translated (horizontal displacement >100 km) and inverted a thick, strong slab of primarily Belt-Purcell rocks out of a deep Precambrian depositional basin onto a cratonic platform. In this event, Belt-Purcell rocks were thrust over complexly imbricated Phanerozoic strata in the foreland. Late Mesozoic compressional deformation was followed by Cenozoic extensional collapse of the over-thickened Cordillera and subsequent basin and range style deformation that produced an array of northwest trending grabens. Three of the seismic profiles cross the Rocky Mountain Trench; the Trench is a linear structure of regional dimension that is an expression of the extensional fragmentation of the Cordillera. Strong reflections, interpreted as sills encased within Lower Belt rocks (encountered in the Arco-Marathon 1 Paul Gibbs borehole), outline the complexly folded and faulted structure of the eastern limb of the Purcell anticlinorium. East of the Rocky Mountain Trench stratified reflections within Belt rocks clearly outline the Wigwam Thrust. Beneath the Whitefish Range, an apparent inflection in the strongly reflective basal Cambrian veneer marks the westerly increase in dip of the Rocky Mountain Basal Detachment. The dip contrast between the foreland and hinterland might be a manifestation of the tectonic loading of the Belt basin margin and the loading might have localized extension across the Rocky Mountain Trench.

  8. Inverted temperature sequences: role of deformation partitioning

    NASA Astrophysics Data System (ADS)

    Grujic, D.; Ashley, K. T.; Coble, M. A.; Coutand, I.; Kellett, D.; Whynot, N.

    2015-12-01

    The inverted metamorphism associated with the Main Central thrust zone in the Himalaya has been historically attributed to a number of tectonic processes. Here we show that there is actually a composite peak and deformation temperature sequence that formed in succession via different tectonic processes. The deformation partitioning seems to the have played a key role, and the magnitude of each process has varied along strike of the orogen. To explain the formation of the inverted metamorphic sequence across the Lesser Himalayan Sequence (LHS) in eastern Bhutan, we used Raman spectroscopy of carbonaceous material (RSCM) to determine the peak metamorphic temperatures and Ti-in-quartz thermobarometry to determine the deformation temperatures combined with thermochronology including published apatite and zircon U-Th/He and fission-track data and new 40Ar/39Ar dating of muscovite. The dataset was inverted using 3D-thermal-kinematic modeling to constrain the ranges of geological parameters such as fault geometry and slip rates, location and rates of localized basal accretion, and thermal properties of the crust. RSCM results indicate that there are two peak temperature sequences separated by a major thrust within the LHS. The internal temperature sequence shows an inverted peak temperature gradient of 12 °C/km; in the external (southern) sequence, the peak temperatures are constant across the structural sequence. Thermo-kinematic modeling suggest that the thermochronologic and thermobarometric data are compatible with a two-stage scenario: an Early-Middle Miocene phase of fast overthrusting of a hot hanging wall over a downgoing footwall and inversion of the synkinematic isotherms, followed by the formation of the external duplex developed by dominant underthrusting and basal accretion. To reconcile our observations with the experimental data, we suggest that pervasive ductile deformation within the upper LHS and along the Main Central thrust zone at its top stopped at ~11 Ma at which time the deformation shifted and focused within the external duplex and the Main Boundary Thrust.

  9. First Results from a Forward, 3-Dimensional Regional Model of a Transpressional San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2001-12-01

    We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity catalogs, stress orientation, surface strain, triggering, etc.), which may allow inferences on the stress state of fault systems.

  10. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Qi, X.; Zheng, M.

    2015-12-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.

  11. Application of High Resolution Topography and Remote Sensing: Imagery to the Kinematics of Fold-and-Thrust Belts

    NASA Technical Reports Server (NTRS)

    Rubin, Charles

    1997-01-01

    This report summarizes one year of funding for NASA contract NAGW-3691, Application of High Resolution Topography and Remote Sensing: Imagery to the Kinematics of Fold-and-Thrust Belts. I never received year three from NASA. The funds were to support on going tectonic and topographic studies along the front of the central Transverse Ranges and expand the topographic studies to the north. Below are results from the first two years of actual funds that I received from NASA (see attached Federal Cash Transaction Reports). The main focus of this contract was to define and understand the major tectonic processes affecting the formation and evolution of the topography in convergent tectonic settings. The results will be used to test ongoing space-based geodetic measurements and will be compared with present-day seismicity in the central Transverse Ranges and adjacent basins. Two major factors that controls topography in active regions are (1) tectonic uplift due to fault-normal compression and (2) subsequent erosion. The central Transverse and Temblor Ranges are excellent regions for these focused topographic studies. The tectonic processes leading to the mountain building are relatively straightforward and thus are easy to model. Available evidence suggests that the topography in this region is relatively young, - 3.5 Ma or less. In addition,, erosional processes may be relatively easier to model compared to larger and more ancient mountain belts. For example, in larger mountain belts, topographic relief may cause significant orographic effects and high elevation may result in part of the topography located above snowline. Both factors complicate interpretation of erosional processes that may be controlled by elevation. Mountain ranges that are significantly older may have experienced a much wider variety of erosional or climatic conditions over their lifetime. While erosion rates have certainly not been consistent in the Transverse or Temblor ranges over its 3.5 Ma lifetime, we are sure that the region was spared the Pleistocene glaciation that affected parts of the Sierra Nevada Range.

  12. Microseismicity, tectonics and seismic potential in the Western Himalayan segment, NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Parija, Mahesh Prasad; Kumar, Sushil; Tiwari, V. M.; Rao, N. Purnachandra; Kumar, Narendra; Biswal, Shubhasmita; Singh, Ishwar

    2018-06-01

    The tectonics and seismic potential of the western Himalayan segment (30-33°N; 76-80°E) of the NW Himalayan (India) region have been determined in this study. 423 earthquakes were located in the NW Himalaya between 2004 and 2013 using more than 4495 P and 4453 S differential travel times to determine the moment tensors for 8 (Mw ≥ 4.0) of these earthquakes using their broadband regional waveforms. The geometry of the Main Himalayan Thrust (MHT) plane which varies along the strike of the Himalaya in flat and ramp segments with a dip ranging between ∼2.5 to ∼4° to ∼19° below the Himalayan Frontal Thrust (HFT) in the south to the South Tibetan Detachment (STD) in the north has also been deduced in this study. Two crustal ramps were reported in this study with a depth variance below the Main Central Thrust (MCT) and to the South Tibetan Detachment (STD) between 12 to 22 km and 28 to 40 km depth respectively. The estimated earthquake potential prevailing in the western Himalayan seismic gap lying between the epicentral zone of the 1905 Kangra earthquake and the 1975 Kinnaur earthquake reveals that the total amount of energy released since the last great event is only a fraction (3-5%) of the accommodated energy i.e.1.1E+28 dyne-cm/yr. This suggests that if an earthquake hits this NW Himalayan segment in the future, its magnitude might be around Mw ≥ 8.0.

  13. Geomorphology of submerged river channels indicates Late Quaternary tectonic activity in the Gulf of Trieste, Northern Adriatic

    NASA Astrophysics Data System (ADS)

    Vrabec, M.; Slavec, P.; Poglajen, S.; Busetti, M.

    2012-04-01

    We use multibeam and parametric subbottom sonar data, complemented with multichannel and high-resolution single-channel seismic profiles, to investigate sea-bottom morphology and subbottom sediment structure in the south-eastern half of the Gulf of Trieste, northern Adriatic Sea. The study area comprises 180 km2 of predominantly flat seabed with the water depth from 20 to 25 m. Pre-Quaternary basement consists of Mesozoic-Paleogene carbonate platform unit, overlain by Eocene marls and sandstones, covered by up to 300 m thick Quaternary sediments of predominantly continental origin. The uppermost few meters of sediment consist of Holocene fine-grained marine deposits. Structurally, the investigated area belongs to the imbricated rim of the Adriatic microplate and is dissected by several NE-dipping low-angle thrusts with up to several kms of displacement. The thrusts are cut by younger NE-SW-trending steeply dipping faults with sinistral and/or normal offset, mapped onshore. The continuation of those faults into the offshore area is suggested by mismatch of thrust structures between parallel seismic profiles. Geodetic data on present-day tectonic activity is controversial. Whereas the Adriatic microplate is currently moving northwards towards Eurasia at the rate of 2-4 mm/yr, the GNSS data show no measurable deformation in the Gulf of Trieste. On the other hand, onshore precise-levelling data suggest localized vertical motions in the range of 1 mm/yr, interpreted as an indication of thrust activity. High-resolution swath bathymetry revealed several current-related erosional and depositional features such as gullies and megadunes with up to 5 m of relief. The most conspicuous seabed morphological features are pre-Holocene river channels preserved in low-erosion submarine environment, which make excellent markers for studying the long-term geomorphological evolution of the area. The WNW-ESE-trending paleo-Rižana river is characterized by highly sinuous meandering channels. Sequential profiles perpendicular to the river course suggest consistent ~NE-ward lateral shifting of channels, parallel with inclination of the present-day seabed and with the present-day lateral gradient in channel depth. A longitudinal profile of the Rižana river plain revealed downstream increase in elevation of the stream bed, visible both from seabed bathymetry and from vertical position of channel lag deposits in subbottom sonar profiles. These observations suggest post-depositional tectonic tilting of the fluvial sediments that could be related either to activation of NE-dipping thrusts in the pre-Quaternary basement, or to minor anticlinal folding associated with Quaternary transpressional faulting along NW-SE-trending zones, implied from seismic profiles NW-ward of our study area. An enigmatic low-sinuosity channel feature runs along the coastline in the NE-SW direction and crosses the paleo-Rižana channel. Subbottom sonar profiles show asymmetric channel geometry and strong reflectors (channel lag deposits?) at the channel bottom, typical of other documented river channels in the area. This feature is vertically offset by a NE-SW-trending linear morphological flexure that corresponds in location and orientation to the onshore Monte Spaccato fault. Subbottom profiling revealed in several places an abrupt truncation of horizontal reflectors that could be manifestation of faulting. These indications of Late Quaternary - Holocene tectonic activity may have important implications for seismic hazard in the heavily populated coastal area of the Gulf of Trieste.

  14. Thermochronological evidence for polyphase post-rift reactivation in SE Brazil

    NASA Astrophysics Data System (ADS)

    Cogné, N.; Gallagher, K.; Cobbold, P. R.; Riccomini, C.

    2012-04-01

    The continental margin of SE Brazil shows good evidence for tectonic activity well after the break-up of Western Gondwana (see Cobbold et al., 2001 for a review). Additionally, SE Brazil ranks as an HEPM (high elevation passive margin), summits reaching 2800 m. To constrain the onshore evolution of the margin, especially during the Tertiary, we did a new thermochronological and structural study. After an initial regional study, during which we found additional evidence for a major phase of exhumation during the Late Cretaceous to Early Tertiary (Cogné et al., 2011), we focussed on a region that was clearly subject to Tertiary tectonics. This region includes the Tertiary Taubaté basin and the adjacent Serra do Mar and Serra da Mantiqueira. We used two thermochronolgical methods on the same samples, apatite fission tracks (AFT) and U-Th/He on apatite (AHe). AFT ages range from 129.3±4.3 Ma to 60.7±1.9 Ma with mean track lengths (MTL) from 14.31±0.24 μm to 11.41±0.23 μm, whereas AHe ages range from 519.6±16.6 to 10.1±0.1 Ma. A subset of AHe ages, selected on the basis of data consistency and geological arguments, has a smaller range (122.4±2.5 to 45.1±1.5 Ma). We have combined inverse and forward modelling to assess the range of acceptable thermal histories. Results of inverse modelling confirm our earlier study by showing a Late Cretaceous phase of cooling. Around the onshore Taubaté Basin, for a limited number of samples, another period of cooling occurred during the Early Tertiary, around the time when the basin formed. The inferred thermal histories for most of the samples also imply a later reheating, followed by a Neogene cooling. According to forward modelling, the evidence for reheating seems to be robust around the margins of the Taubaté Basin, but elsewhere the data cannot really discriminate between this and a less complex thermal history. However forward modelling and geologically independent information support the conclusion that the whole area cooled and uplifted during the Neogene. The synchronicity of the cooling phases with tectonic pulses in the Andes and in NE Brazil, as well as the tectonic setting of the Tertiary basins (Cogné et al., submitted) lead us to attribute these phases to a plate-wide compressive stress, which reactivated inherited structures during the Late Cretaceous and Tertiary. The relief of the margin is therefore due, more to polyphase post-rift reactivation and uplift, than to rifting itself. - Cobbold, P.R., Meisling, K.E., Mount, V.S., 2001. Reactivation of an obliquely rifted margin, Campos and Santos Basins, Southeastern Brazil. AAPG Bulletin 85, 1925-1944. - Cogné, N., Gallagher, K., Cobbold, P.R., 2011. Post-rift reactivation of the onshore margin of southeast Brazil: Evidence from apatite (U-Th)/He and fission-track data. Earth and Planetary Science Letters 309, 118-130. - Cogné, N., Cobbold, P.R., Riccomini, C., Gallagher, K. Tectonic setting of the Taubaté basin (southeastern Brazil): insights from regional seismic profiles and outcrop data. Submitted to Journal of South American Earth Sciences.

  15. Drainage - Structure Correlation in tectonically active Regions: Case studies in the Bolivian and Colombian Andes

    NASA Astrophysics Data System (ADS)

    Zeilinger, Gerold; Parra, Mauricio; Kober, Florian

    2017-04-01

    It is widely accepted, that drainage patterns are often controlled by tectonics/climate and geology/rheology. Classical drainage patterns can be found 1) in fault-and-thrust belt, where rives follow the valleys parallel or cut perpendicular to strike trough the ridges, forming a trellis pattern, 2) at dome structures where the drainage form a radial pattern or 3) rectangular patterns in strongly fractured regions. In this study, we focus on fault-and-thrust belts, that undergone different phases of tectonic activity. According to classical models, the deformation is propagating into the foreland, hence being youngest at the frontal part and getting successively older towards the axis of the orogen. Drainage patterns in the more interior parts of the orogenic wedge should be then less influenced by the direction of structures, as landscape evolution is changing to a tectonic passive stage. This relationship might represent the transience and maturity of drainage pattern evolution. Here we study drainage patterns of the Bolivian and the eastern Colombian Andes by comparing the relative orientation of the drainage network with the orogen structural grain. The drainage is extracted from Digital Elevation Models (SRTM 30 m) and indexed by their Strahler Order. Order 1 channels have an upstream area of 1 km2. The direction of all segments is analyzed by linear directional mean function that results in the mean orientation of input channels with approx. 500 m average length. The orientation of structures for different structural domains is calculated using the same function on digitized faults and fold-axis. Rose diagrams show the length-weighted directional distribution of structures, of higher (>= 4) and of lower order (<= 3) channels. The structural trend in the Bolivian Andes is controlled by the orocline, where a predominant NW-SE trend turns into an N-S trend at 18°S and where the eastern orogen comprise from west to east, the Eastern Cordillera (EC), the Interandean Zone and the Subandean Zone (SA), exhibiting a catchment relief of up to 5000 m. While the structural trend in the EC is predominately NW-SE with a uniform (no preferred orientation) distribution of lower order fluvial channels, it changes in the SA into a distinct N-S trend with a pronounced E-W orientation of lower order fluvial channels. A similar pattern is recognized in the Eastern Andes of Colombia, where the structural trend is NE-SW. The Eastern Cordillera comprise a frontal thin-skinned Neogene and Paleogene domain (FR) and the more interior lower Cretaceous an Upper Paleozoic thick-skinned region (IR). The trend of higher order channels is, as expected, parallel to the structures in the interior parts and perpendicular in the frontal part. However, the trend of lower order channels reveal no directional correlation to the structural trend in the interior, but a significant correlation to the structures in the frontal range that suffered relatively to the interior domains younger deformation phases. We therefore postulate a dependency of the directional evolution of drainage patterns on the relative timing of tectonic activity. The only weakly preferred orientation of drainages in the interior parts (EC and IR) suggests a balance between structural control and drainage occupation, and higher maturity of the landscape. In contrast, the distinct pattern of drainages oblique to the structural grain in the frontal ranges (SA and FR) highlights the alignment of tributaries and suggests an ongoing tectonic control on drainage orientation. We test the hypothesis whether the correlation between the direction of small order rivers and the direction of structures can be used as a proxy for relative tectonic activity, which might be relevant in questions on 1) dominance of tectonics over climate, 2) dynamics of deformation propagation in fault-and-thrust-belts and 3) occurrence of higher erosion rates despite "limited" relief or threshold slopes. Ongoing efforts will investigate the possibility to quantify or compare relative tectonic activity across sites.

  16. Seismic interpretation and thrust tectonics of the Amadeus Basin, central Australia, along the BMR regional seismic line

    NASA Astrophysics Data System (ADS)

    Shaw, Russell D.; Korsch, Russell J.; Wright, C.; Goleby, B. R.

    At the northern margin of the Amadeus Basin the monoclinal upturn (the MacDonnell Homocline) is interpreted to be the result of rotation and limited back-thrusting of the sedimentary sequence in front of a southerly-directed, imbricate basement thrust-wedge. This thrust complex is linked at depth to the crust-cutting Redbank Thrust Zone. In the northern part of the basin immediately to the south, regional seismic reflection profiling across the Missionary Plain shows a sub-horizontal, north-dipping, parautochthonous sedimentary sequence between about 8.5 km and 12.0 km thick. This sedimentary sequence shows upturning only at the northern and southern extremities, and represents an unusual, relatively undeformed region between converging thrust systems. In this intervening region, the crust appears to have been tilted downwards and northwards in response to the upthrusting to the north. Still farther to the south, the vertical uplift of the southern hanging wall of the Gardiner Thrust is about 6 km. Seismic reflection profiling in the region immediately south of the Gardiner Thrust indicates repetition of the sedimentary sequence. At the far end of the profile, in the Kernot Range, an imbricate thrust system fans ahead of a ramp-flat thrust pair. This thrust system (the Kernot Range Thrust System) occurs immediately north of an aeromagnetic domain boundary which marks the southern limit of a central ridge region characterized by thin Palaeozoic sedimentary cover and shallow depths to magnetic basement. A planar seismic event, imaged to a depth of at least 18 km, may correspond to the same boundary and is interpreted as a pre-basin Proterozoic thrust. Overall, the structure in the shallow sedimentary section in the central-southern region of the Amadeus Basin indicates that north-directed thrusting during the Dovonian-Carboniferous Alice Springs Orogeny was thin-skinned. During this orogeny an earlier thrust system, formed during the Petermann Ranges Orogeny and precursor orogenies in the Late Proterozoic, was reactivated with Proterozoic salt deposits localising the decollement zone. The Alice Springs Orogeny also reactivated a major mid Proterozoic province boundary in the basement to the north of the basin, resulting in major thrust movement at the northern basin margin.

  17. Along-strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt: The view from Northeastern India

    NASA Astrophysics Data System (ADS)

    DeCelles, P. G.; Carrapa, B.; Gehrels, G. E.; Chakraborty, T.; Ghosh, P.

    2016-12-01

    The Himalaya consists of thrust sheets tectonically shingled together since 58 Ma as India collided with and slid beneath Asia. Major Himalayan structures, including the South Tibetan Detachment (STD), Main Central Thrust (MCT), Lesser Himalayan Duplex (LHD), Main Boundary Thrust (MBT), and Main Frontal Thrust (MFT), persist along strike from northwestern India to Arunachal Pradesh near the eastern end of the orogenic belt. Previous work suggests significant basement involvement and a kinematic history unique to the Arunachal Himalaya. We present new geologic and geochronologic data to support a regional structural cross section and kinematic restoration of the Arunachal Himalaya. Large Paleoproterozoic orthogneiss bodies (Bomdila Gneiss) previously interpreted as Indian basement have ages of 1774-1810 Ma, approximately 50 Ma younger than Lesser Himalayan strata into which their granitic protoliths intruded. Bomdila Gneiss is therefore part of the Lesser Himalayan cover sequence, and no evidence exists for basement involvement in the Arunachal Himalaya. Minimum shortening in rocks structurally beneath the STD is 421 km. The MCT was active during the early Miocene; STD extension overlapped MCT shortening and continued until approximately 15-12 Ma; and growth of the LHD began 11 Ma, followed by slip along the MBT (post-7.5 Ma) and MFT (post-1 Ma) systems. Earlier thrusting events involved long-distance transport of strong, low-taper thrust sheets, whereas events after 12-10 Ma stacked smaller, weaker thrust sheets into a steeply tapered orogenic wedge dominated by duplexing. A coeval kinematic transition is observed in other Himalayan regions, suggesting that orogenic wedge behavior was controlled by rock strength and erodibility.

  18. Latest Cretaceous-Paleogene basin development and resultant sedimentation patterns in the thrust belt and broken foreland of central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, T.F.; Franczyk, K.J.; Pitman, J.K.

    1990-05-01

    Latest Cretaceous tectonism in central and east-central Utah formed several intermontane basins both atop thrust sheets and between the thrust front and basement-involved uplifts in the former foreland basin. The upper Campanian Castlegate Sandstone and its inferred western equivalents were the last strata deposited prior to segmentation of the foreland basin. Thereafter, eastward transport of the thrust allochthon uplifted the most proximal part of the Castlegate depositional wedge. West of the thrust front, small intermontane basins formed on the allochthon. Sediment was transported into these basins from both eastern and western sources. In each basin, facies grade from basin-margin conglomeraticmore » alluvial fan deposits to basin-interior flood-plain and lacustrine deposits within a few kilometers. These intermontane basins existed from latest Campanian through the late Paleocene, and may have been transported a short distance eastward as they formed. East of the thrust front in the latest Campanian and contemporaneous with basin formation on the allochthon, a northward-northeastward-flowing big river system transported sediment into the foreland basin from feldspar-rich source areas southwest of the study area. Subsequently, major movement of the San Rafael uplift in the very late Campanian or early Maastrichtian gave rise to an intermontane basin between the thrust front and the San Rafael uplift. Northwestward-flowing, pebble-bearing braided rivers deposited the oldest sediments in this basin prior to an influx from the south and southwest of sediment that formed a thick Maastrichtian clastic sequence. In contrast to deposition in basins on the allochthon, deposition east of the thrust front in the Paleocene was intermittent and restricted to rapidly shifting centers of basin subsidence.« less

  19. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, A.; Harrison, T.M.; Murphy, M.A.

    1999-11-01

    Geologic mapping and geochronological analysis in southwest (Kailas area) and southeast (Zedong area) Tibet reveal two major episodes of Tertiary crustal shortening along the classic Indus-Tsangpo suture in the Yalu River valley. The older event occurred between ca. 30 and 24 Ma during movement along the north-dipping Gangdese thrust. The development of this thrust caused extensive denudation of the Gangdese batholith in its hanging wall and underthrusting of the Xigase forearc strata in its footwall. Examination of timing of major tectonic events in central Asia suggests that the initiation of the Gangdese thrust was approximately coeval with the late Oligocenemore » initiation and development of north-south shortening in the eastern Kunlun Shan of northern Tibet, the Nan Shan at the northeastern end of the Altyn Tagh fault, the western Kunlun Shan at the southwestern end of the Altyn Tagh fault, and finally the Tian Shan (north of the tarim basin). Such regionally synchronous initiation of crustal shortening in and around the plateau may have been related to changes in convergence rate and direction between the Eurasian plate and the Indian and Pacific plates. The younger thrusting event along the Yalu River valley occurred between 19 and 10 Ma along the south-dipping Great Counter thrust system, equivalent to the locally named Renbu-Zedong thrust in southeastern Tibet, the Backthrust system in south-central Tibet, and the South Kailas thrust in southwest Tibet. The coeval development of the Great Counter thrust and the North Himalayan granite-gneiss dome belt is consistent with their development being related to thermal weakening of the north Himalayan and south Tibetan crust, due perhaps to thermal relaxation of an already thickened crust created by the early phase of collision between India and Asia or frictional heating along major thrusts, such as the Main Central thrust, beneath the Himalaya.« less

  20. Neogene deformation of thrust-top Rzeszów Basin (Outer Carpathians, Poland)

    NASA Astrophysics Data System (ADS)

    Uroda, Joanna

    2015-04-01

    The Rzeszów Basin is a 220 km2 basin located in the frontal part of Polish Outer Carpathians fold-and-thrust belt. Its sedimentary succession consist of ca. 600 m- thick Miocene evaporates, litoral and marine sediments. This basin developed between Babica-Kąkolówka anticline and frontal thrust of Carpathian Orogen. Rzeszów thrust-top basin is a part of Carpathian foreland basin system- wedge-top depozone. The sediments of wedge -top depozone were syntectonic deformed, what is valuable tool to understand kinematic history of the orogen. Analysis of field and 3D seismic reflection data showed the internal structure of the basin. Seismic data reveal the presence of fault-bend-folds in the basement of Rzeszów basin. The architecture of the basin - the presence of fault-releated folds - suggest that the sediments were deformed in last compressing phase of Carpathian Orogen deformation. Evolution of Rzeszów Basin is compared with Bonini et.al. (1999) model of thrust-top basin whose development is controlled by the kinematics of two competing thrust anticlines. Analysis of seismic and well data in Rzeszów basin suggest that growth sediments are thicker in south part of the basin. During the thrusting the passive rotation of the internal thrust had taken place, what influence the basin fill architecture and depocentre migration opposite to thrust propagation. Acknowledgments This study was supported by grant No 2012/07/N/ST10/03221 of the Polish National Centre of Science "Tectonic activity of the Skole Nappe based on analysis of changes in the vertical profile and depocentre migration of Neogene sediments in Rzeszów-Strzyżów area (Outer Carpathians)". Seismic data by courtesy of the Polish Gas and Oil Company. References Bonini M., Moratti G., Sani F., 1999, Evolution and depocentre migration in thrust-top basins: inferences from the Messinian Velona Basin (Northern Apennines, Italy), Tectonophysics 304, 95-108.

  1. Identifying Early Paleozoic tectonic relations in a region affected by post-Taconian transcurrent faulting, an example from the PA-DE Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcock, J.; Wagner, M.E.; Srogi, L.A.

    1993-03-01

    Post-Taconian transcurrent faulting in the Appalachian Piedmont presents a significant problem to workers attempting to reconstruct the Early Paleozoic tectonic history. One solution to the problem is to identify blocks that lie between zones of transcurrent faulting and that retain the Early Paleozoic arrangement of litho-tectonic units. The authors propose that a comparison of metamorphic histories of different units can be used to recognize blocks of this type. The Wilmington Complex (WC) arc terrane, the pre-Taconian Laurentian margin rocks (LM) exposed in basement-cored massifs, and the Wissahickon Group metapelites (WS) that lie between them are three litho-tectonic units in themore » PA-DE Piedmont that comprise a block assembled in the Early Paleozoic. Evidence supporting this interpretation includes: (1) Metamorphic and lithologic differences across the WC-WS contact and detailed geologic mapping of the contact that suggest thrusting of the WC onto the WS; (2) A metamorphic gradient in the WS with highest grade, including spinel-cordierite migmatites, adjacent to the WC indicating that peak metamorphism of the WS resulted from heating by the WC; (3) A metamorphic discontinuity at the WS-LM contact, evidence for emplacement of the WS onto the LM after WS peak metamorphism; (4) A correlation of mineral assemblage in the Cockeysville Marble of the LM with distance from the WS indicating that peak metamorphism of the LM occurred after emplacement of the WS; and (5) Early Paleozoic lower intercept zircon ages for the LM that are interpreted to date Taconian regional metamorphism. Analysis of metamorphism and its timing relative to thrusting suggest that the WS was associated with the WC before the WS was emplaced onto the LM during the Taconian. It follows that these units form a block that has not been significantly disrupted by later transcurrent shear.« less

  2. Deformation of the Roberts Mountains Allochthon in north-central Nevada

    USGS Publications Warehouse

    Evans, James George; Theodore, Ted G.

    1978-01-01

    During the Antler orogeny in Late Devonian and Early Mississippian time, early and middle Paleozoic siliceous rocks, largely chert and sha1e, were thrust eastward for 90 to 160 km over coexisting carbonate rocks. Minor and major structures of two small areas of the allochthon at Battle Mountain and in the southern Tuscarora Mountains were studied in order to characterize the deformation and test the consistency of the movement plan with respect to the large eastward displacement. In the Battle Mountain area, the lower Paleozoic Scott Canyon and Valmy Formations were deformed in the Antler orogeny but were unaffected by later tectonism during late Paleozoic or early Mesozoic. In the southern Tuscarora Mountains area, the Ordovician and Silurian siliceous rocks deformed in the Antler Orogeny were deformed by later, possibly Mesozoic, folding and thrusting. Most of the minor folding visible in the allochthon is in the cheret, but proportionally more of the strain was taken up in the shale and argillite, both poorly exposed but predominant rock types. Most minor folds, concentric in form, plunge at small angles to the north-northeast and south-southwest with steeply dipping or vertical axial planes. The b-fabric axis, parallel to these folds, is identical apparently to the B-kinematic axis. The horizontal component of tectonic shortening of the allochthon, N. 70?-75? W. both in the Battle Mountain area and in the southern Tuscarora Mountains area, is therefore consistent with an eastward direction of movement of the allochthon. Folds with west- northwest trends locally present in the allochthon, may have formed in the direction of tectonic transport. In the southern Tuscarora Mountains, local strain in and below the allochthon was different from the prevailing strain in the allochthon, and tectonic shortening was locally at large angles to the accepted direction of movement of the allochthon.

  3. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong

    2015-12-01

    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by widespread intracontinental orogeny and continental reconstruction, are commonly termed the Yanshan Revolution (Movement) in the Chinese literature.

  4. Convergent tectonics in the Huon Peninsula region, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Davies, H. L.; Lock, J.; Tiffin, D. L.; Honza, E.; Okuda, Y.; Murakami, F.; Kisimoto, K.

    1987-09-01

    The anticlinal nappe which forms the Huon Peninsula and adjacent ranges extends offshore as the Huon Ridge. The frontal thrust of the nappe is the Ramu-Markham Fault (onshore) and a deformation front along the line of the Markham Canyon (offshore). The timing and geometry of the Finisterre arc-continent collision is controversial, and the origin of the Finsch Deep is unresolved.

  5. Extent and architecture of major fault systems between northern Victoria Land and the eastern margin of the Wilkes Subglacial Basin (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Armadillo, E.; Ferraccioli, F.; Balbi, P.; Bozzo, E.

    2013-12-01

    Terrane bounding and intra-terrane faults of the Ross Orogen in East Antarctica are linked to several phases of Cambrian to Ordovician age subduction and accretion along the active paleo-Pacific margin of Gondwana. Here we compile and analyse new enhanced aeromagnetic anomaly images over the Northern Victoria Land (NVL) segment of the Ross Orogen and the eastern margin of the Wilkes Subglacial Basin (WSB) that help constrain the extent and structural architecture of these fault systems and enable us re-assess their tectonic evolution. Long-wavelength magnetic lows and residual Bouguer gravity highs are modelled as several-km thick inverted sedimentary basins of early Cambrian(?) age. Tectonic inversion occurred along major thrust faults during the late stages of the Ross Orogen, forming a major high-grade pop-up structure within the central Wilson Terrane, flanked by lower grade rocks. The Prince Albert Fault System can now be recongnised as being located to the west of the Exiles Thrust fault system rather than representing its southern continuation. Relatively thin sheets of mylonitic sheared granitoids and possible ultramafic lenses are associated with the late-Ross (ca 480 Ma) Exiles Thrust fault system, while significantly larger and thicker batholiths were emplaced along the Prince Albert Fault System. Recent zircon U-Pb dating over small exposures of gabbro-diorites within the Prince Albert Mountains to the south lead us to propose that this part of the magmatic arc was emplaced during an earlier phase of subduction (~520 Ma or older?), compared to the late-Ross intrusions to the east. Whether the Prince Albert Fault System was indeed a major cryptic suture in early Cambrian times (Ferraccioli et al., 2002, GRL) remains speculative, but possible. Our aeromagnetic interpretation leads us to conclude that these inherited terrane bounding and intra-terrane fault systems of the Ross Orogen exerted a key influence on Cenozoic tectonic blocks and faults of the Transantarctic Mountains, and that the eastern margin of the WSB adjacent to NVL was also strongly controlled by a complex array of major intraplate strike-slip fault systems.

  6. One microplate - three orogens: Alps, Dinarides, Apennines and the role of the Adriatic plate

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Le Breton, Eline; Balling, Philipp; Handy, Mark R.; Molli, Giancarlo; Tomljenović, Bruno

    2017-04-01

    The motion of the Adriatic microplate with respect to the Eurasian and African plates is responsible for the Mesozoic to present tectonic evolution of the Alps, Carpathians, the Dinarides and Hellenides as well as the Apennines. The classical approach for reconstructing plate motions is to assume that tectonic plates are rigid, then apply Euler's theorem to describe their rotation on an ideally spherical Earth by stepwise restorations of magnetic anomalies and fracture zones in oceanic basins. However, this approach is inadequate for reconstructing the motion of Mediterranean microplates like Adria, which, at present, is surrounded by convergent margins and whose oceanic portions have by now been entirely subducted. Most constraints on the motion of the Adriatic microplate come either from palaeomagnetics or from shortening estimates in the Alps, i.e., its northern margin. This approach renders plate tectonic reconstructions prone to numerous errors, yielding inadmissible misfits in the Ionian Sea between southern Italy and northern Greece. At the same time, Adria's western and eastern margins in the Apennines and in the Dinarides have hitherto not been appropriately considered for improving constraints on the motion of Adria. This presentation presents new results of ongoing collaborative research that aims at improving the relative motion path for the Adriatic microplate for the Cenozoic by additionally quantifying and restoring the amount of shortening and extension in a set of geophysical-geological transects from the Tyrrhenian Sea, the Apennines and the Dinarides. Already now, our approach yields an improved motion path for the Adriatic microplate for the last 20 Ma, which minimizes misfits in previous reconstructions. The currently largest challenge in our reconstructions is to reconcile amount and age of shortening in the Dinarides fold-and-thrust belt. For one thing, we see good agreement between the cross-sectional length of subducted material (c. 135 km, estimated from p-wave tomographic models) and shortening in the external carbonate platform of the Dinarides thrust belt (c. 127 km, from balanced cross sections). However, most of the thrust belt shortening is of Palaeogene age, which is difficult to bring into agreement with the fact that most of the subduction observed in tomographic models is most likely of Neogene age. This suggests that a substantial amount of Neogene crustal shortening must have been accommodated in the internal parts of the Dinarides fold-and-thrust belt rather than along its front. More field studies are therefore badly needed to obtain a better understanding of the timing of individual faults and their role during the Neogene evolution of the NE margin of the Adriatic plate.

  7. Escape tectonics in the Los Angeles metropolitan region and implications for seismic risk

    NASA Astrophysics Data System (ADS)

    Walls, Christian; Rockwell, Thomas; Mueller, Karl; Bock, Yehuda; Williams, Simon; Pfanner, John; Dolan, James; Fang, Peng

    1998-07-01

    Recent damaging earthquakes in California, including the 1971 San Fernando, 1983 Coalinga, 1987 Whittier Narrows and 1994 Northridge events, have drawn attention to thrust faults as both potentially hazardous seismic sources and as a mechanism for accommodating shortening in many regions of southern California. Consequently, many geological studies, have concluded that thrust faults in Southern California pose the greatest seismic hazard, and also account for most of the estimated 5-7mmyr-1 of contraction across the greater Los Angeles metropolitan area, indicated by Global Positioning System geodetic measurements. Our study demonstrates, however, that less than 50% of the geodetically observed contraction is accommodated on the principal thrust systems across the Los Angeles region. We integrate the most recent geological, geodetic and seismological data to assess the spatial distribution of strain across the Los Angeles metropolitan region. We then demonstrate that a significant component of seismic moment release and shortening in this region is accommodated by east-west crustal escape `extrusion' along known strike-slip and oblique-slip faults.

  8. Closing of the Midcontinent-Rift - a far-field effect on Grenvillian compression

    USGS Publications Warehouse

    Cannon, W.F.

    1994-01-01

    The Midcontinent rift formed in the Laurentian supercontinent between 1109 and 1094 Ma. Soon after rifting, stresses changed from extensional to compressional, and the central graben of the rift was partly inverted by thrusting on original extensional faults. Thrusting culminated at about 1060 Ma but may have begun as early as 1080 Ma. On the southwest-trending arm of the rift, the crust was shortened about 30km; on the southeast-trending arm, strike-slip motion was dominant. The rift developed adjacent to the tectonically active Grenville province, and its rapid evolution from an extensional to a compressional feature at c1080 Ma was coincident with renewal of northwest-directed thrusting in the Grenville, probably caused by continent-continent collision. A zone of weak lithosphere created by rifting became the locus for deformation within the otherwise strong continental lithosphere. Stresses transmitted from the Grenville province utilized this weak zone to close and invert the rift. -Author

  9. Lateral Moho variations and the geometry of Main Himalayan Thrust beneath Nepal Himalayan orogen revealed by teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    He, Ping; Lei, Jianshe; Yuan, Xiaohui; Xu, Xiwei; Xu, Qiang; Liu, Zhikun; Mi, Qi; Zhou, Lianqing

    2018-05-01

    The lateral Moho variations and the geometry of the Main Himalayan Thrust under the Nepal Himalayan orogen are investigated to determine a new crustal model using a large number of high-quality receiver functions recorded by the HIMNT and HiCLIMB portable seismic networks. Our new model shows an evident and complicated lateral Moho depth variation of 8-16 km in the east-west direction, which is related to the surface tectonic features. These results suggest a non-uniformed crustal deformation, resulted from the splitting and/or tearing of the Indian plate during the northward subduction. Our migrated receiver function images illustrate a discernible ramp structure of the Main Himalayan Thrust with an abrupt downward bending close to the hypocenter of the 2015 Gorkha Mw 7.8 earthquake. The distribution of the aftershocks coincides with the present decollement structure. Integrating previous magnetotelluric soundings and tomographic results, our results suggest that the ramp-shaped structure within the Main Himalayan Thrust could enhance stress concentration leading to the nucleation of the large earthquake. Our new crustal model provides new clues to the formation of the Himalayan orogen.

  10. Co-axial superposed folding and inverted regional metamorphism in the Tonga Formation: Cretaceous accretionary thrust tectonics in the Cascades crystalline core

    NASA Astrophysics Data System (ADS)

    Luke, Jensen; Lebit, Hermann; Paterson, Scott; Miller, Robert; Vernon, Ron

    2017-04-01

    The Cascades crystalline core forms part of the Cretaceous magmatic belt of western North America and exposes a crustal section composed of primarily tonalitic plutons that intruded siliciclastic metasediments of an arc-derived accretional system, and local meta-basalt/chert sequences. This study is the first attempt to correlate the well understood intrusive and P-T-t history of the metasedimentary and plutonic terrane with the kinematics and tectonic boundary conditions by rigorous analysis of structures documented in the Tonga Formation exposed at the western edge of the core. The Tonga Formation comprises pelite-psammite metasediments, which increase from greenschist ( 300-350° C) to amphibolite grade ( 500-600° C) from south to north. This metamorphic gradient is inverted relative to a major westward verging and downward facing fold system that dominates the internal architecture of the formation and implies that the initial regional metamorphic signature was established prior to the early fold generation. Subsequent co-axial fold superposition is seen as a consequence of the persistent accretional west-vergent thrusting in the foreland of the magmatic arc. The central section of the Cascades Range, exposed in western Washington, forms part of the Cretaceous accretional/magmatic arc extending over 4,000 km along western North America from Baja California to British Columbia (Fig. 1a) (e.g. Misch, 1966; Brown, 1987; Tabor et al., 1989). Two models exist for the evolution of the Cascades crystalline core with one invoking magmatic loading (e.g. Brown and Walker, 1993) as the major cause for rapid loading, consequent regional metamorphism and vertical uplift (Evans and Berti, 1986). Conversely, other workers favor a model that suggests loading as a consequence of tectonic, thrust-related thickening, followed by rapid exhumation of the exposed crustal section of 10 to 40 km paleodepth (e.g. Matzel, 2004; Patterson et al., 2004; Stowell et al., 2007). In this context, the Tonga Formation, on the westernmost boundary of the Cascades crystalline core, records Cretaceous plutonism, contact to regional metamorphism, and multiple episodes of folding, evidencing intense, arc-perpendicular contractional deformation, similar to that observed in the neighboring Chiwaukum Schist to the east (Miller and Paterson, 1992; Miller et al., 1993; Paterson and Miller, 1998; Miller et al., 2006). Building on previous extensive mapping and metamorphic and petrologic analysis in the Cascades, we use the Tonga Formation as a means to a comprehensive tectonic synthesis incorporating detailed analysis of the kinematics and timing of structural evolution, magma emplacement, and metamorphism.

  11. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar

    USGS Publications Warehouse

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.

    2011-01-01

    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  12. Northeastern Brazilian margin: Regional tectonic evolution based on integrated analysis of seismic reflection and potential field data and modelling

    NASA Astrophysics Data System (ADS)

    Blaich, Olav A.; Tsikalas, Filippos; Faleide, Jan Inge

    2008-10-01

    Integration of regional seismic reflection and potential field data along the northeastern Brazilian margin, complemented by crustal-scale gravity modelling, is used to reveal and illustrate onshore-offshore crustal structure correlation, the character of the continent-ocean boundary, and the relationship of crustal structure to regional variation of potential field anomalies. The study reveals distinct along-margin structural and magmatic changes that are spatially related to a number of conjugate Brazil-West Africa transfer systems, governing the margin segmentation and evolution. Several conceptual tectonic models are invoked to explain the structural evolution of the different margin segments in a conjugate margin context. Furthermore, the constructed transects, the observed and modelled Moho relief, and the potential field anomalies indicate that the Recôncavo, Tucano and Jatobá rift system may reflect a polyphase deformation rifting-mode associated with a complex time-dependent thermal structure of the lithosphere. The constructed transects and available seismic reflection profiles, indicate that the northern part of the study area lacks major breakup-related magmatic activity, suggesting a rifted non-volcanic margin affinity. In contrast, the southern part of the study area is characterized by abrupt crustal thinning and evidence for breakup magmatic activity, suggesting that this region evolved, partially, with a rifted volcanic margin affinity and character.

  13. Structural analysis of Nalagarh lobe, NW Himalaya: implication of thrusting across tectonic edge of NW limb of Nahan salient, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Bhakuni, S. S.; Philip, G.; Suresh, N.

    2017-07-01

    The Main Boundary Fault (MBF), convex towards southwest, forms the leading edge of the Nahan salient. Near the southern end of an oblique ramp, a lobe-shaped physiographic front, named in this work as Nalagarh lobe, has developed across NW limb of salient. The lobe has formed across the MBF that separates the hanging wall Lower Tertiary Dharmsala rocks from the footwall Upper Tertiary Siwalik rocks and overlying Quaternaries. In front of lobe, thrust fault splays (Splay-1 and Splay-2) and associated tectonic fabrics have developed within the Late Pleistocene fan deposit. Structural elements developed across the front of Nalagarh lobe are analysed with reference to evolution of lobe. An unweathered 15-m-high hanging wall or wedge top forms the uplifted and rejuvenated bedrock fault scarp of the MBF. Below the MBF, the fan deposit has underthrust along Splay-1. Later the Splay-2 formed within fan deposit near south of Splay-1. Geometry of the overturned limb of tight to isoclinal fault propagation fold, formed on Splay-2 plane, suggests that the fold formed by normal drag, produced by intermittent fault-slips along Splay-2. The displacement along Splay-2 offset the marker bed to 1 m by which some clasts rotated parallel to the traces of brittle axial planes of fold. The variable fold geometry and style of deformation are analysed along length of thrust splays for 5 km. It is revealed that the lobe is bounded by transverse thrust faults along its NW and SE margins. The geometry of salient and oblique ramp suggests that the transverse thrust faults and associated transverse folds formed by right-lateral displacement along the NW limb of the salient. Marking the northern margin of the intermontane piggyback basin of Pinjaur dun, the MBF is interpreted to be an out-of-sequence thrust that has brought up the Lower Tertiary Dharmsala rocks over the Late Pleistocene fan deposit. The geometry of lobe and its bounding transverse faults suggest that faults are intimately associated with the kinematics of the transition between the Nahan salient and Kangra recess. The transition is a transfer zone forming a long pre-Himalayan lineament across which the stratigraphic set of the Tethys and Lesser Himalaya is different. The study suggests that the lateral ramp on the Main Himalayan Thrust does not exist beneath the apex and also beneath the SE limb of the salient in the Sub-Himalayan region. This ramp should be present only beneath near end point of SW limb of the Nahan salient.

  14. Terrain classification and land hazard mapping in Kalsi-Chakrata area (Garhwal Himalaya), India

    NASA Astrophysics Data System (ADS)

    Choubey, Vishnu D.; Litoria, Pradeep K.

    Terrain classification and land system mapping of a part of the Garhwal Himalaya (India) have been used to provide a base map for land hazard evaluation, with special reference to landslides and other mass movements. The study was based on MSS images, aerial photographs and 1:50,000 scale maps, followed by detailed field-work. The area is composed of two groups of rocks: well exposed sedimentary Precambrian formations in the Himalayan Main Boundary Thrust Belt and the Tertiary molasse deposits of the Siwaliks. Major tectonic boundaries were taken as the natural boundaries of land systems. A physiographic terrain classification included slope category, forest cover, occurrence of landslides, seismicity and tectonic activity in the area.

  15. Ouachitas need more exploratory drilling

    USGS Publications Warehouse

    Suneson, Neil H.; Campbell, Jock A.

    1990-01-01

    The Ouachita Mountains in southeastern Oklahoma and western Arkansas are part of a mostly buried late Paleozoic fold and thrust belt that extends from Alabama to northern Mexico. The principal hydrocarbon reservoirs in the Ouachita tectonic province can be subdivided into those that produce natural gas from shallow-water units and those that produce oil and/or natural gas from deep-water units. They can also be divided into those that are fractured and those that produce from primary pore spaces or vugs. The first successful oil well in the Ouachita Mountains was drilled in 1913 or 1914. Since the discovery of the Redden field, over 800 oil and gas wells have been drilled in the Ouachita tectonic province in Oklahoma. Yet, most of the region remains little explored.

  16. Preliminary results constraining the kinematics of subduction and exhumation processes on Skopelos island, Northern Sporades (Aegean Domain)

    NASA Astrophysics Data System (ADS)

    Porkolab, Kristof; Willingshofer, Ernst; Sokoutis, Dimitrios; Creton, Iverna

    2017-04-01

    Extension in the Aegean region is a process driven by slab rollback since 45 Ma (e.g. Brun and Sokoutis, 2007; Brun et al. 2016). These and other studies dominantly focused on the northern Aegean/Rhodope or the Cycladic tectonic systems, yielding abundant kinematic, structural, petrologic and geochronological data to constrain their geodynamic evolution. This contrasts with the region of the Northern Sporades, which have not yet been thoroughly studied in the light of subduction-exhumation processes. In particular, a detailed kinematic analysis, the focus of this study, is missing that allows for establishing the relation between the deformation structures on the island, and the large-scale tectonic events in the Aegean domain. The Northern Sporades consist of three major (area ≥ 50km2) islands (Skiathos, Skopelos, and Alonnisos) and a number of smaller islands. As the first phase of exploring the structural evolution of the Northern Sporades, this work reports the results of field work performed on the island of Skopelos, and aims to provide a preliminary model for the deformation history of the island. Skopelos consists from bottom to top of three structural units, which are separated by thrust contacts (Jacobshagen and Wallbrecher, 1984; Matarangas, 1992; Jacobshagen and Matarangas, 2004): the Pelagonian, the Eohellenic, and the Palouki unit. The age of the formations constituting these units ranges from Paleozoic to Paleogene, and all formations have been metamorphosed under lower greenschist or possibly also blueschist facies conditions (Mposkos and Liati, 1991) and experienced polyphase deformation. Based on our field kinematic and structural analysis we suggest the following deformation sequence on Skopelos island: D1 is characterized by tight to isoclinal folding (F1) and the formation of a penetrative foliation (S1), which is the axial plane cleavage to the F1 folds. S1 planes carry a NE-SW trending stretching lineation, along which top-SW shear has been inferred. The second phase of deformation (D2) is defined by top-NE to E shear using the already existing S1 foliation planes in many cases. D2 folding (F2) entails the formation of sheath folds with their axes being sub-parallel to the dominantly NE-SW trending stretching lineation in zones of high strain, upright folds with NE-SW trending axes as well as recumbent folds that affected the already tilted penetrative foliation. The D3 phase is semi-brittle to brittle and is defined by outcrop-to regional-scale fault (and fault-related fold) systems, which have shaped the geometry and elevation of islands and basins of the region until present days. We interpret D1 to reflect prograde metamorphism and top-SW deformation during subduction of the Pelagonian continental block. In contrast, D2 records progressive and distributed top-NE to E extensional deformation and provides the main mechanism for exhuming the previously buried rocks. This phase of deformation was probably triggered by the southward retreat of the Hellenic trench. The emplacement of the Eohellenic and the Palouki units by thrusting (D3) is post-metamorphic and in our view related to the dextral displacement along the fault that borders the North Aegean Trough.

  17. Seismicity of the Earth 1900–2010 Himalaya and vicinity

    USGS Publications Warehouse

    Turner, Bethan; Jenkins, Jennifer; Turner, Rebecca; Parker, Amy; Sinclair, Alison; Davies, Sian; Hayes, Gavin P.; Villaseñor, Antonio; Dart, Rirchard L.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.

    2013-01-01

    Seismicity in the Himalaya region predominantly results from the collision of the India and Eurasia continental plates, which are converging at a relative rate of 40–50 mm/yr. Northward underthrusting of India beneath Eurasia generates numerous earthquakes and consequently makes this area one of the most seismically hazardous regions on Earth. The surface expression of the plate boundary is marked by the foothills of the north-south trending Sulaiman Range in the west, the Indo-Burmese Arc in the east, and the east-west trending Himalaya Front in the north of India. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Further north again, the Tian Shan is a seismically active intra-continental mountain belt defined by a series of east-west trending thrust faults thought to be related to the broad footprint of the India-Eurasia collision. Tectonics in northern India are dominated by motion along the Main Frontal Thrust and associated thrust faults of the India-Eurasia plate boundary, which have resulted in a series of large and devastating earthquakes in (and prior to) the 20th century. The Tibetan Plateau to the north of the main plate boundary is a broad region of uplift associated with the India-Eurasia collision, and is cut by a series of generally east-west trending strike-slip faults. These include the Kunlun, Haiyuan, and the Altyn Tagh faults, all of which are left-lateral structures, and the Kara-Koram right-lateral fault. Throughout the plateau, thrust faults accommodate the north-south compressional component of crustal shortening associated with the ongoing collision of India and Eurasia, while strike-slip and normal faults accommodate east-west extension. To the east, The Longmen Shan thrust belt marks the eastern margin of the Tibetan Plateau separating the complex tectonics of the plateau region from the relatively undeformed Sichuan Basin. Further south, the left-lateral Xiangshuihe-Xiaojiiang, right-lateral Red River and right-lateral Sagaing strike-slip fault systems accommodate deformation along the eastern margin of the India plate. Deep earthquakes have also occurred in the Indo-Burmese Arc region, thought to be an expression of eastward-directed subduction of the India plate, though whether subduction is ongoing is still debated.

  18. Regional magnetic anomalies, crustal strength, and the location of the northern Cordilleran fold-and-thrust belt

    USGS Publications Warehouse

    Saltus, R.W.; Hudson, T.L.

    2007-01-01

    The northern Cordilleran fold-and-thrust belt in Canada and Alaska is at the boundary between the broad continental margin mobile belt and the stable North American craton. The fold-and-thrust belt is marked by several significant changes in geometry: cratonward extensions in the central Yukon Territory and northeastern Alaska are separated by marginward re-entrants. These geometric features of the Cordilleran mobile belt are controlled by relations between lithospheric strength and compressional tectonic forces developed along the continental margin. Regional magnetic anomalies indicate deep thermal and compositional characteristics that contribute to variations in crustal strength. Our detailed analysis of one such anomaly, the North Slope deep magnetic high, helps to explain the geometry of the fold-and-thrust front in northern Alaska. This large magnetic anomaly is inferred to reflect voluminous mafic magmatism in an old (Devonian?) extensional domain. The presence of massive amounts of malic material in the lower crust implies geochemical depletion of the underlying upper mantle, which serves to strengthen the lithosphere against thermal erosion by upper mantle convection. We infer that deep-source magnetic highs are an important indicator of strong lower crust and upper mantle. This stronger lithosphere forms buttresses that play an important role in the structural development of the northern Cordilleran fold-and-thrust belt. ?? 2007 The Geological Society of America.

  19. Morphologic evolution of the Central Andes of Peru

    NASA Astrophysics Data System (ADS)

    Gonzalez, Laura; Pfiffner, O. Adrian

    2012-01-01

    In this paper, we analyze the morphology of the Andes of Peru and its evolution based on the geometry of river channels, their bedrock profiles, stream gradient indices and the relation between thrust faults and morphology. The rivers of the Pacific Basin incised Mesozoic sediments of the Marañon thrust belt, Cenozoic volcanics and the granitic rocks of the Coastal Batholith. They are mainly bedrock channels with convex upward shapes and show signs of active ongoing incision. The changes in lithology do not correlate with breaks in slope of the channels (or knick points) such that the high gradient indices (K) with values between 2,000-3,000 and higher than 3,000 suggest that incision is controlled by tectonic activity. Our analysis reveals that many of the ranges of the Western Cordillera were uplifted to the actual elevations where peaks reach to 6,000 m above sea level by thrusting along steeply dipping faults. We correlate this uplift with the Quechua Phase of Neogene age documented for the Subandean thrust belt. The rivers of the Amazonas Basin have steep slopes and high gradient indices of 2,000-3,000 and locally more than 3,000 in those segments where the rivers flow over the crystalline basement of the Eastern Cordillera affected by vertical faulting. Gradient indices decrease to 1,000-2,000 within the east-vergent thrust belt of the Subandean Zone. Here a correlation between breaks in river channel slopes and location of thrust faults can be established, suggesting that the young, Quechua Phase thrust faults of the Subandean thrust belt, which involve Neogene sediments, influenced the channel geometry. In the eastern lowlands, these rivers become meandering and flow parallel to anticlines that formed in the hanging wall of Quechua Phase thrust faults, suggesting that the river courses were actively displaced outward into the foreland.

  20. Quaternary Deformation Constrained by River Terraces across the Longmen Shan Fold-and-Thrust Belt, Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Jiang, D., Sr.; Ding, R.; Li, W.; Gomez, F. G.

    2017-12-01

    The Longmen Shan is known for both the steep topography and the absence of Cenozoic foreland deposition. The 2008 Wenchuan Mw 7.9 earthquake, which ruptured the thrust faults along the range front, inspires vigorous debates about topography origin and seismic hazard. Two end-member models, crustal shortening and lower crustal flow, have been proposed. However, both of them need further verification. The Minjiang river and the Qingyijiang river run through the middle and the southern Longmen Shan respectively, which make it possible to study the strain distribution by relict river terraces. Longitudinal profiles of river terraces were restored by detailed field survey, high-precision measurement, sediment dating and chemical analyses. Deformed fluvial terraces shows that most thrust faults are active in the late Quaternary, and crust shortening dominates the fold-and-thrust belt, but the strain distributions are quite different between the south and north segments. In the north, thrust slips are mainly accommodated along the range front, the crustal shortening rate is 1.4 to 2.0 mm/yr, and only 25% of crust shortening are absorbed by the foreland. In the south, thrust slips are distributed among the thrust belt, the crustal shortening rate is 2.9 to 4.6mm/yr, and up to 83% of crustal shortening are absorbed by the foreland. Compared with other margins of the Tibetan Plateau, the Longmen Shan has much narrower thrust belt and nappe. The Himalayas, the Karakoram and the Qilian Shan thrust nappes are about 3 to 5 times wider than the Longmen Shan. However, all of these belts have comparable elevations above their foreland, respectively. Comparable altitude difference distributed across a narrow belt makes a greater topographic relief in the Longmen Shan, where narrow thrust nappe exerts less tectonic loading on the footwall which doesn't favor the formation of foreland basin. Our research results favor the model of crustal shortening, and reveal that all basement-involved thrust faults have potentials to strong earthquakes with recurrent intervals about three to six thousand years.

  1. Tectonic Evolution of the Careón Ophiolite (Northwest Spain): A Remnant of Oceanic Lithosphere in the Variscan Belt.

    PubMed

    Díaz García F; Arenas; Martínez Catalán JR; González del Tánago J; Dunning

    1999-09-01

    Analysis of the Careón Unit in the Ordenes Complex (northwest Iberian Massif) has supplied relevant data concerning the existence of a Paleozoic oceanic lithosphere, probably related to the Rheic realm, and the early subduction-related events that were obscured along much of the Variscan belt by subsequent collision tectonics. The ophiolite consists of serpentinized harzburgite and dunite in the lower section and a crustal section made up of coarse-grained and pegmatitic gabbros. An Early Devonian zircon age (395+/-2 Ma, U-Pb) was obtained in a leucocratic gabbro. The whole section was intruded by numerous diabasic gabbro dikes. Convergence processes took place shortly afterward, giving rise to a mantle-rooted synthetic thrust system, with some coeval igneous activity. Garnet amphibolite, developed in metamorphic soles, was found discontinuously attached to the thrust fault. The soles graded downward to epidote-amphibolite facies metabasite and were partially retrogressed to greenschist facies conditions. Thermobarometric estimations carried out at a metamorphic sole (T approximately 650 degrees C; P approximately 11.5 kbar) suggested that imbrications developed in a subduction setting, and regional geology places this subduction in the context of an early Variscan accretionary wedge. Subduction and imbrication of oceanic lithosphere was followed by underthrusting of the Gondwana continental margin.

  2. Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the 2011, Mw7.1, dip-slip Van earthquake, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Rolland, Lucie M.; Vergnolle, Mathilde; Nocquet, Jean-Mathieu; Sladen, Anthony; Dessa, Jean-Xavier; Tavakoli, Farokh; Nankali, Hamid Reza; Cappa, FréDéRic

    2013-06-01

    It has previously been suggested that ionospheric perturbations triggered by large dip-slip earthquakes might offer additional source parameter information compared to the information gathered from land observations. Based on 3D modeling of GPS- and GLONASS-derived total electron content signals recorded during the 2011 Van earthquake (thrust, intra-plate event, Mw = 7.1, Turkey), we confirm that coseismic ionospheric signals do contain important information about the earthquake source, namely its slip mode. Moreover, we show that part of the ionospheric signal (initial polarity and amplitude distribution) is not related to the earthquake source, but is instead controlled by the geomagnetic field and the geometry of the Global Navigation Satellite System satellites constellation. Ignoring these non-tectonic effects would lead to an incorrect description of the earthquake source. Thus, our work emphasizes the added caution that should be used when analyzing ionospheric signals for earthquake source studies.

  3. Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the 2011, Mw 7.1, dip-slip Van earthquake, Eastern Turkey (Invited)

    NASA Astrophysics Data System (ADS)

    Rolland, L. M.; Vergnolle, M.; Nocquet, J.; Sladen, A.; Dessa, J.; Tavakoli, F.; Nankali, H.; Cappa, F.

    2013-12-01

    It has previously been suggested that ionospheric perturbations triggered by large dip-slip earthquakes might offer additional source parameter information compared to the information gathered from land observations. Based on 3D modeling of GPS- and GLONASS-derived total electron content signals recorded during the 2011 Van earthquake (thrust, intra-plate event, Mw = 7.1, Turkey), we confirm that coseismic ionospheric signals do contain important information about the earthquake source, namely its slip mode. Moreover, we show that part of the ionospheric signal (initial polarity and amplitude distribution) is not related to the earthquake source, but is instead controlled by the geomagnetic field and the geometry of the Global Navigation Satellite System satellites constellation. Ignoring these non-tectonic effects would lead to an incorrect description of the earthquake source. Thus, our work emphasizes the added caution that should be used when analyzing ionospheric signals for earthquake source studies.

  4. Permian deposition in the north central Brooks Range, Alaska Constraints for tectonic reconstructions

    USGS Publications Warehouse

    Adams, K.E.; Mull, C.G.; Crowder, R.K.

    1997-01-01

    Two opposing tectonic models have been offered to explain the regional structural relations in the north central Brooks Range fold-thrust belt of northern Alaska. The first suggests that rocks of the northern Endicott Mountains were thrust from south to north over the area of the present Mount Doonerak high and are therefore highly allochthonous. The second implies that the rocks of the northern Endicott Mountains were deposited in a basin that lay north of the Mount Doonerak high and later were thrust a short distance southward onto the northern flank of the high and are thus parautochthonous. To provide stratigraphic constraints for these models, this study examines Permian facies of the north central Brooks Range. Permian rocks in the north central Brooks Range comprise a thin (40 to 160 m thick), fining-upward succession of clastic, storm-influenced shelf deposits. When the rocks of the northern Endicott Mountains are restored south of the Mount Doonerak area, a minimum distance of 80 km, the Permian deposits grade systematically from distal facies (Siksikpuk Formation) in the southwest to proximal facies (Echooka Formation) in the northeast. Facies trends in the reconstructed Permian basin include, from southwest to northeast, (1) an increase in carbonate content and corresponding decrease in silica content, (2) a general darkening and thickening of shaley intervals, (3) an increase in proximal features of storm beds, including coarser, thicker, more abundant, and more closely spaced beds, and (4) an increase in abundance and diversity of the faunal assemblage with a corresponding decrease in age. These stratigraphic relations imply that rocks of the northern Endicott Mountains are allochthonous and structurally overlie a proximal stratigraphic succession similar to that exposed in the Mount Doonerak area and northeastern Brooks Range. Copyright 1997 by the American Geophysical Union.

  5. A reconstruction of Proterozoic rocks in north-central New Mexico: Tectonic implications from the Proterozoic to the Cenozoic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, C.G.; Karlstrom, K.E.

    1993-04-01

    Distinctive lithostratigraphic markers, metamorphic isobaric surfaces, major ductile thrusts and overturned folds in Early Proterozoic rocks from 4 isolated uplifts in north-central NM provide relatively firm piercing points for restoration of over 50 km of right lateral strike-slip movement along a network of N-S trending faults. In addition, the authors speculate that the Uncompahgre Group in the Needle Mts. of southern Colorado is correlative with the Hondo Group in northern NM; suggesting over 150 km of right-lateral strike slip offset has occurred across a network of N-S trending faults that includes the Picuris-Pecos fault, the Borrego fault, the Nacimiento faultmore » and others. The tectonic implications of this reconstruction span geologic time from the Proterozoic to the Cenozoic. The restoration of slip provides new insights into the structure of the Proterozoic basement in NM. Volcanogenic basement (1.74--1.72 Ga) and overlying sedimentary cover (Hondo Group) are imbricated in an originally EW- to NW-trending ductile foreland thrust and fold belt that formed near the southern margin of 1.74--1.72 basement. The authors propose that the volcanogenic basement rocks correlate with rocks of the Yavapi Province in Arizona and that the Hondo Group correlates with foreland rocks of the Tonto Basin Supergroup. Rocks south of this belt are 1.65 Ga or younger and are interpreted to belong to a separate crustal province which correlates with the Mazatzal Province in Arizona. Proterozoic ductile fault geometries suggest that the Mazatzal Province was thrust northward and resulted in imbrication of Yavapi Province basement and its siliciclastic over sequence.« less

  6. Influence of pre-existing basement faults on the structural evolution of the Zagros Simply Folded belt: 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Ruh, Jonas B.; Gerya, Taras

    2015-04-01

    The Simply Folded Belt of the Zagros orogen is characterized by elongated fold trains symptomatically defining the geomorphology along this mountain range. The Zagros orogen results from the collision of the Arabian and the Eurasian plates. The Simply Folded Belt is located southwest of the Zagros suture zone. An up to 2 km thick salt horizon below the sedimentary sequence enables mechanical and structural detachment from the underlying Arabian basement. Nevertheless, deformation within the basement influences the structural evolution of the Simply Folded Belt. It has been shown that thrusts in form of reactivated normal faults can trigger out-of-sequence deformation within the sedimentary stratigraphy. Furthermore, deeply rooted strike-slip faults, such as the Kazerun faults between the Fars zone in the southeast and the Dezful embayment and the Izeh zone, are largely dispersing into the overlying stratigraphy, strongly influencing the tectonic evolution and mechanical behaviour. The aim of this study is to reveal the influence of basement thrusts and strike-slip faults on the structural evolution of the Simply Folded Belt depending on the occurrence of intercrustal weak horizons (Hormuz salt) and the rheology and thermal structure of the basement. Therefore, we present high-resolution 3D thermo-mechnical models with pre-existing, inversively reactivated normal faults or strike-slip faults within the basement. Numerical models are based on finite difference, marker-in-cell technique with (power-law) visco-plastic rheology accounting for brittle deformation. Preliminary results show that deep tectonic structures present in the basement may have crucial effects on the morphology and evolution of a fold-and-thrust belt above a major detachment horizon.

  7. Potential field signatures along the Zagros collision zone in Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.

    2018-01-01

    The Zagros orogenic belt, known as an active fold-thrust belt, was formed in southwestern Iran due to the convergence of the Arabian and Eurasian plates. In this study, potential field data are inverted in 3D to image the variations of magnetic susceptibility and density contrast along the collision zone, resulting in better tectonic understanding of the studied region. Geophysical data measured by airborne magnetic and ground-based gravity systems are used to construct an integrated model that facilitates the interpretations of various tectonic zones across a 450-km line. This line intersects the main structural units from the SW portion of the Zagros belt. The constructed model reveals a contrast that indicates the transition between the two continental plates coinciding with the western boundaries of the Sanandaj-Sirjan Zone (SSZ) at the Main Zagros Thrust (MZT) fault. The subduction of the Arabian continental crust below the Iranian one is evident because of its lower susceptibility property and alternating sequence of high and low density regions. Higher susceptibility, magnetic remanence and density are the mainstays of the Urumieh-Dokhtar Magmatic Assemblage (UDMA) zone at the NE of the studied route, whereas lower values of these properties correspond to (1) the thin massive Tertiary-Neogene and Quaternary sediments of the central domain (CD) zone, and (2) the thick sedimentary and salt intrusion cover over the Zagros Fold-and-Thrust belt (ZFTB). Higher density of regions in the Arabian crust below the ZFTB implies that fault activities have caused significant vertical displacement of the basement. Finally, a simplified geological model is presented based upon the inversions of the geophysical data, in which the main geological units are divided along the studied route.

  8. A review of the arcuate structures in the Iberian Variscides; constraints and genetic models

    NASA Astrophysics Data System (ADS)

    Dias, R.; Ribeiro, A.; Romão, J.; Coke, C.; Moreira, N.

    2016-06-01

    The main Ibero-Armorican Arc (IAA) is essentially defined by a predominant NW-SE trend in the Iberian branch and an E-W trend in the Brittany one. However, in northern Spain it presents a 180° rotation, sometimes known as the Cantabrian Arc (CA). The relation between both arcs is controversial, being considered either as a single arc due to one tectonic event, or as the result of a polyphasic process. According to the last assumption, there is a later arcuate structure (CA), overlapping a previous major one (IAA). Whatever the models, they must be able to explain the presence of a Variscan sinistral transpression in Iberia and a dextral one in Armorica, and a deformation spanning from the Devonian to the Upper Carboniferous. Another arcuate structure, in continuity with the CA, the Central-Iberian Arc (CIA) was recently proposed mainly based upon on magnetic anomalies, geometry of major folds and Ordovician paleocurrents. The critical review of the structural, stratigraphic and geophysical data supports both the IAA and the CA, but as independent structures. However, the presence of a CIA is highly questionable and could not be supported. The complex strain pattern of the IAA and the CA could be explained by a Devonian - Carboniferous polyphasic indentation of a Gondwana promontory. In this model the CA is essentially a thin-skinned arc, while the IAA has a more complex and longer evolution that has led to a thick-skinned first order structure. Nevertheless, both arcs are essentially the result of a lithospheric bending process during the Iberian Variscides.

  9. Reevaluation of 1935 M 7.0 earthquake fault, Miaoli-Taichung Area, western Taiwan: a DEM and field study

    NASA Astrophysics Data System (ADS)

    Lin, Y. N.; Chen, Y.; Ota, Y.

    2003-12-01

    A large earthquake (M 7.0) took place in Miaoli area, western Taiwan on April 21st, 1935. Right to its south is the 1999 Chi-Chi earthquake fault, indicating it is not only tectonically but seismically active. As the previous study, the study area is located in the mature zone of a tectonic collision that occurred between Philippine sea Plate and Eurasia continental Plate. The associated surface ruptures of 1935 earthquake daylighted Tungtsichiao Fault, a tear fault trending NE in the south and Chihhu Fault, a back thrust trending N-S in the north, but no ruptures occurred in between. Strike-slip component was identified by the horizontal offset observed along Tungtsichiao Fault; however, there are still disputes on the reported field evidence. Our purposes are (1) to identify the structural behaviors of these two faults, (2) to find out what the seismogenic structure is, and (3) to reconstruct the regional geology by information given by this earthquake. By DEM interpretation and field survey, we can clearly recognize a lot of the 1935 associated features. In the west of Chihhu Fault, a series of N-S higher terraces can be identified with eastward tilted surfaces and nearly 200 m relative height. Another lower terrace is also believed being created during the 1935 earthquake, showing an east-facing scarp with a height of ca. 1.5~2 m. Outcrop investigation reveals that the late-Miocene bedrock has been easterly thrusted over the Holocene conglomerates, indicating a west-dipping fault plane. The Tungtsichiao Fault cuts through a lateritic terrace at Holi, which is supposed developed in Pleistocene. The fault scarp is only discernible in the northeastern ending. Other noticeable features are the fault related antiforms that line up along the surface rupture. There is no outcrop to show the fault geometry among bedrocks. We re-interpret the northern Chihhu Fault as the back thrust generated from a main subsurface detachment, which may be the actual seismogenic fault. Due to the bend geometry normally existing between ramp and detachment, stress accumulated and earthquake happened right on it. The fault tip of this main thrust may be blind on land or break out offshore, which explains why no surface ruptures related to the main thrust were found.

  10. Tectonic stress pattern in the Chinese Mainland from the inversion of focal mechanism data

    NASA Astrophysics Data System (ADS)

    Wei, Ju; Weifeng, Sun; Xiaojing, Ma

    2017-04-01

    The tectonic stress pattern in the Chinese Mainland and kinematic models have been subjected to much debate. In the past several decades, several tectonic stress maps have been figured out; however, they generally suffer a poor time control. In the present study, 421 focal mechanism data up to January 2010 were compiled from the Global/Harvard CMT catalogue, and 396 of them were grouped into 23 distinct regions in function of geographic proximity. Reduced stress tensors were obtained from formal stress inversion for each region. The results indicated that, in the Chinese Mainland, the directions of maximum principal stress were ˜NE-SW-trending in the northeastern region, ˜NEE-SWW-trending in the North China region, ˜N-S-trending in western Xinjiang, southern Tibet and the southern Yunnan region, ˜NNE-SSW-trending in the northern Tibet and Qinghai region, ˜NW-SE-trending in Gansu region, and ˜E-W-trending in the western Sichuan region. The average tectonic stress regime was strike-slip faulting (SS) in the eastern Chinese Mainland and northern Tibet region, normal faulting (NF) in the southern Tibet, western Xinjiang and Yunnan region, and thrust faulting (TF) in most regions of Xinjiang, Qinghai and Gansu. The results of the present study combined with GPS velocities in the Chinese Mainland supported and could provide new insights into previous tectonic models (e.g., the extrusion model). From the perspective of tectonics, the mutual actions among the Eurasian plate, Pacific plate and Indian plate caused the present-day tectonic stress field in the Chinese Mainland.

  11. Paleomagnetic and Tectonic studies in Uruguay: a brief synthesis of the last decade

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.

    2013-05-01

    The paleomagnetic studies in Uruguay have been applied as a complementary tool to geological studies. Paleomagnetic data can be very useful for geodynamic reconstructions, fundamentally for determine the latitudinal tectonic transport, rotations of crustal blocks. This technique has been applied to Paleoproterozoic, Neoproterozoic and Paleozoic units. The geology of the Uruguayan territory is divided into four tectonic units of Uruguay that include a) the Piedra Alta tectonostratigraphic terrane (PATT) and b) Nico Pérez tectonostratigraphic terrane (NPTT), separated by the Sarandí del Yí high-strain zone. Both terranes are well exposed in the Río de La Plata craton (RPC) and have paleoproterozoic ages, the last was reworked in Neoproterozoic times (metacraton). The most thoroughly investigated Neoproterozoic sections are located in the eastern and southeastern regions of Uruguay. The c) Dom Feliciano Belt shows a tectonic evolution from back-arc to foreland basin characterized by fold-and-thrust, thick-skinned belts developed during the Brasiliano/Pan-African orogenic cycle. And finally d) The high metamorphic grade Punta del Este terrane where its most notable feature is their African affinity. There is a significant shortage of geochemical and geochronological data for the existing geological complexity.

  12. Indentation tectonics in northern Taiwan: insights from field observations and analog models

    NASA Astrophysics Data System (ADS)

    Lu, Chia-Yu; Lee, Jian-Cheng; Malavieille, Jacques

    2017-04-01

    In northern Taiwan, contraction, extension, transcurrent shearing, and block rotation are four major tectonic deformation mechanisms involved in the progressive deformation of this arcuate mountain belt. The recent evolution of the orogen is controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also by the corner shape of the plate boundary. Based on field observations, analyses, geophysical data (mostly GPS) and results of experimental models, we interpret the curved shape of northern Taiwan as a result of contractional deformation (involving imbricate thrusting and folding, backthrusting and backfolding). The subsequent horizontal and vertical extrusion, combined with increasing transcurrent & rotational deformation (bookshelf-type strike-slip faulting and block rotation) induced transcurrent/ rotational extrusion and extrusion related extensional deformation. A special type of extrusional folds characterizes that complex deformation regime. The tectonics in northern Taiwan reflects a single, regional pattern of deformation. The crescent-shaped mountain belt develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough. Three sets of analog sandbox models are presented to illustrate the development of tectonic structures and their kinematic evolution

  13. Major strike-slip faulting along the tectonic boundary between East and West Antarctica: implications for early Gondwana break-up and Jurassic granitic magma emplacement

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Anderson, L.; Ross, N.; Corr, H.; Leat, P. T.; Bingham, R.; Rippin, D. M.; Le Brocq, A. M.; Siegert, M. J.

    2013-12-01

    The fragmentation of the Gondwana supercontinent began with continental rifting between the Weddell Sea region of Antarctica and South Africa during the Jurassic. This initial Jurassic phase of continental rifting is critical for understanding the process that initiated supercontinent breakup and dispersal, including the role of mantle plumes and major intracrustal tectonic structures. However, due to the remote location and blanketing ice sheets, the tectonic and magmatic evolution of the Weddell Sea Sector of Antarctica has remained relatively poorly understood. Our recent aeromagnetic and airborne gravity investigations have revealed the inland extent of the Weddell Sea Rift system beneath the West Antarctic Ice Sheet, and indicate the presence of a major left-lateral strike slip fault system separating the Ellsworth Whitmore block (a possible exotic microcontinent derived from the Natal Embayment, or the Shackleton Range region of East Antarctica) from East Antarctica (Jordan et al., 2013 Tectonophysics). In this study we use GPlates plate-tectonic reconstruction software to start evaluating the influence of strike-slip faulting between East and West Antarctica on Gondwana breakup models. Specifically, we investigate the possibility of poly-phase motion along the fault system and explore scenarios involving more diffuse strike slip faulting extending into the interior of East Antarctica in the hinterland of the Transantarctic Mountains. Our preliminary models suggest that there may be a link between the prominent step in the flank of the later Cretaceous-Cenozoic West Antarctic Rift System (at the southern end of Ellsworth-Whitmore Block) and the earlier Jurassic Weddell Sea rift system. Additionally, we present preliminary joint 3D magnetic and gravity models to investigate the crustal architecture of the proposed strike-slip fault system and assess its influence on the emplacement of voluminous Jurassic granitic magmatism along the boundary of the Ellsworth-Whitmore block.

  14. P-wave velocity anisotropy related to sealed fractures reactivation tracing the structural diagenesis in carbonates

    NASA Astrophysics Data System (ADS)

    Matonti, C.; Guglielmi, Y.; Viseur, S.; Garambois, S.; Marié, L.

    2017-05-01

    Fracture properties are important in carbonate reservoir characterization, as they are responsible for a large part of the fluid transfer properties at all scales. It is especially true in tight rocks where the matrix transfer properties only slightly contribute to the fluid flow. Open fractures are known to strongly affect seismic velocities, amplitudes and anisotropy. Here, we explore the impact of fracture evolution on the geophysical signature and directional Vp anisotropy of fractured carbonates through diagenesis. For that purpose, we studied a meter-scale, parallelepiped quarry block of limestone using a detailed structural and diagenetic characterization, and numerous Vp measurements. The block is affected by two en-échelon fracture clusters, both being formed in opening mode (mode 1) and cemented, but only one being reactivated in shear. We compared the diagenetic evolution of the fractures, which are almost all 100% filled with successive calcite cements, with the P-wave velocities measured across this meter-scale block of carbonate, which recorded the tectonic and diagenetic changes of a South Provence sedimentary basin. We found that a directional Vp anisotropy magnitude as high as 8-16% correlates with the reactivated fractures' cluster dip angle, which is explained by the complex filling sequence and softer material present inside the fractures that have been reactivated during the basin's tectonic inversion. We show that although a late karstification phase preferentially affected these reactivated fractures, it only amplified the pre-existing anisotropy due to tectonic shear. We conclude that Vp anisotropy measurements may help to identify the fracture sealing/opening processes associated with polyphased tectonic history, the anisotropy being independent of the current stress-state. This case shows that velocity anisotropies induced by fractures resulted here from a cause that is different from how these features have often been interpreted: selective reactivation of sealed fractures clusters rather than direction of currently open ones.

  15. Impact of the slab dip change onto the deformation partitioning in the northern Lesser Antilles oblique subduction zone (Antigua-Virgin Islands)

    NASA Astrophysics Data System (ADS)

    Laurencin, Muriel; Marcaillou, Boris; Klingelhoefer, Frauke; Graindorge, David; Lebrun, Jean-Frédéric; Laigle, Mireille; Lallemand, Serge

    2017-04-01

    Marine geophysical cruises Antithesis (2013-2016) investigate the impact of the variations in interplate geometry onto margin tectonic deformation along the strongly oblique Lesser Antilles subduction zone. A striking features of this margin is the drastic increase in earthquake number from the quiet Barbuda-St Martin segment to the Virgin Islands platform. Wide-angle seismic data highlight a northward shallowing of the downgoing plate: in a 150 km distance from the deformation front, the slab dipping angle in the convergence direction decreases from 12° offshore of Antigua Island to 7° offshore of Virgin Islands. North-South wide-angle seismic line substantiates a drastic slab-dip change that likely causes this northward shallowing. This dip change is located beneath the southern tip of the Virgin Islands platform where the Anegada Passage entails the upper plate. Based on deep seismic lines and bathymetric data, the Anegada Passage is a 450 km long W-E trending set of pull-apart basins and strike-slip faults that extends from the Lesser Antilles accretionary prism to Puerto Rico. The newly observed sedimentary architecture within pull-apart Sombrero and Malliwana basins indicates a polyphased tectonic history. A past prominent NW-SE extensive to transtensive phase, possibly related to the Bahamas Bank collision, opened the Anegada Passage as previously published. Transpressive tectonic evidences indicate that these structures have been recently reactivated in an en-echelon sinistral strike-slip system. The interpreted strain ellipsoid is consistent with deformation partitioning. We propose that the slab northward shallowing increases the interplate coupling and the seismic activity beneath the Virgin Islands platform comparatively to the quiet Barbuda-St Martin segment. It is noteworthy that the major tectonic partitioning structure in the Lesser Antilles forearc is located above the slab dip change where the interplate seismic coupling increases.

  16. The influence of pre-existing basement structures on salt tectonics in the Upper Silurian Salina Group, Appalachian Basin, NE Pennsylvania: results from 3D seismic analysis and analogue modelling

    NASA Astrophysics Data System (ADS)

    Harding, M. R.; Rowan, C. J.

    2013-12-01

    The Upper Silurian Salina Group in Pennsylvania's Appalachian basin consists of several hundred feet of highly deformable and mobile salt that was a significant influence on the tectonic and structural development of the Appalachian Mountains during the late Paleozoic. Understanding how halokinesis and décollement thrusting of the Salina Group has contributed to the present-day structure of the Appalachian Basin is of intense current interest due to the energy resource potential of the overlying Marcellus Shale and underlying Utica Shale. Seismic data suggest that halokinesis of the Salina Group in the Appalachian Basin might be strongly influenced by the presence of preexisting faults in the underlying Neoproterozoic basement, which suggests that these structures may have interacted with the Salina Group or its interior during deformation. We examine these apparent interactions in more detail using high-resolution 3D seismic data from the Appalachian Basin of NE Pennsylvania to identify and characterize salt tectonic-related structures developed above and within the Salina Group during orogenesis, verify their geographic association with major basement faults, and document how reactivation of these preexisting faults might have influenced later deformation within and above the salt units. We also present the results of sandbox modelling of thin-skinned thrusting in a salt-analogue décollement. Multiple runs in the presence and absence of preexisting basement structures provide insight into how the modern structures observed in the seismic data initiated and evolved during progressively more intense orogenesis, and better constrain the physical processes that control the structural linkage through the Salina décollement.

  17. Offshore Tectonics of the St. Elias Mountains: Insights from Ocean Drilling and Seismic Stratigraphy on the Yakutat Shelf

    NASA Astrophysics Data System (ADS)

    Worthington, L. L.; Gulick, S. P. S.; Montelli, A.; Jaeger, J. M.; Zellers, S.; Walczak, M. H.; Mix, A. C.

    2015-12-01

    Ongoing collision of the Yakutat (YAK) microplate with North America (NA) in southern Alaska has driven orogenesis of the St. Elias Mountains and the advance of the offshore deformation front to the southeast. The offshore St. Elias fold-thrust belt records the complex interaction between collisional tectonics and glacial climate variability, providing insight for models of orogenesis and the evolution of glacial depocenters. Glacial erosion and deposition have provided sediment that constructed the upper continental shelf, much of which has been reincorporated into the orogenic wedge through offshore faulting and folding. We integrate core and downhole logging data from IODP Expedition 341 (Sites U1420 and U1421) drilled on the Yakutat shelf and slope with high-resolution and regional seismic profiles to investigate the coupled structural and stratigraphic evolution of the St. Elias margin. Site U1420 lies on the Yakutat shelf within the Bering Trough, a shelf-crossing trough that is within primary depocenter for Bering Glacier sediments. Two faults underlie the glacial packages and have been rendered inactive as the depositional environment has evolved, while faulting elsewhere on the shelf has initiated. Site U1421 lies on the current continental slope, within the backlimb of an active thrust that forms part of the modern YAK-NA deformation front. At each of these sites, we recovered glacigenic diamict (at depths up to ~1015 m at Site U1420), much of which is younger than 0.3 Ma. Age models within the trough indicated that initiation of active deformation away from the Bering Trough depocenter likely occurred since 0.3 Ma, suggesting that possible tectonic reorganization due to mass redistribution by glacial processes can occur at time scales on the order of 100kyr-1Myr.

  18. Structure of the Castillo granite, Southwest Spain: Variscan deformation of a late Cadomian pluton

    NASA Astrophysics Data System (ADS)

    EguíLuz, L.; Apraiz, A.; ÁBalos, B.

    1999-12-01

    A geometrical reconstruction of the 500 Ma old Castillo granite pluton (SW Iberia) is completed on the basis of structural and geophysical (rock magnetism) techniques. The pluton is intrusive into latest Proterozoic-earliest Cambrian metasediments and conforms a tabular intrusion 6 km in diameter and 1.7 km thick that was emplaced at a depth of 10 km. Its magnetic fabric reveals that the strike of moderately to steeply dipping magmatic flow planes forms a high angle to the regional tectonic trends. Magnetic foliations and associated moderately to gently plunging magnetic lineations represent magmatic flow planes and directions. The internal anisotropy of the granite together with the structure shown by the country rocks attest the lateral propagation of the pluton and its latter inflation. The pluton's root zone would correspond to a likely thin, subvertical feeder structure initiated near the orientation of regional σ1 at the time of emplacement. During the Variscan orogeny the pluton was tilted and underwent localized brittle-ductile strain in relation to shear zone deformation in the footwall of a major ductile thrust. Tilting permits the observation and study of a vertical profile of the intrusion. Localized deformation caused superposition of tectonic zonations on the magmatic ones, a reactivation of the basal contact of the pluton, and dismemberment from its root. This and other granitoid plutons of similar age emplaced at a similar depth constrained the creation of crustal mechanical heterogeneity and anisotropy. This controlled the site of pluton emplacement, the nucleation of a major ductile thrust, and localization of deformation and tectonic displacements along the pluton margins during later orogenic reactivation.

  19. Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet

    NASA Astrophysics Data System (ADS)

    Laskowski, Andrew K.; Kapp, Paul; Ding, Lin; Campbell, Clay; Liu, XiaoHui

    2017-01-01

    The Lopu Range, located 600 km west of Lhasa, exposes a continental high-pressure metamorphic complex beneath India-Asia (Yarlung) suture zone assemblages. Geologic mapping, 14 detrital U-Pb zircon (n = 1895 ages), 11 igneous U-Pb zircon, and nine zircon (U-Th)/He samples reveal the structure, age, provenance, and time-temperature histories of Lopu Range rocks. A hornblende-plagioclase-epidote paragneiss block in ophiolitic mélange, deposited during Middle Jurassic time, records Late Jurassic or Early Cretaceous subduction initiation followed by Early Cretaceous fore-arc extension. A depositional contact between fore-arc strata (maximum depositional age 97 ± 1 Ma) and ophiolitic mélange indicates that the ophiolites were in a suprasubduction zone position prior to Late Cretaceous time. Five Gangdese arc granitoids that intrude subduction-accretion mélange yield U-Pb ages between 49 and 37 Ma, recording Eocene southward trench migration after collision initiation. The south dipping Great Counter Thrust system cuts older suture zone structures, placing fore-arc strata on the Kailas Formation, and sedimentary-matrix mélange on fore-arc strata during early Miocene time. The north-south, range-bounding Lopukangri and Rujiao faults comprise a horst that cuts the Great Counter Thrust system, recording the early Miocene ( 16 Ma) transition from north-south contraction to orogen-parallel (E-W) extension. Five early Miocene (17-15 Ma) U-Pb ages from leucogranite dikes and plutons record crustal melting during extension onset. Seven zircon (U-Th)/He ages from the horst block record 12-6 Ma tectonic exhumation. Jurassic—Eocene Yarlung suture zone tectonics, characterized by alternating episodes of contraction and extension, can be explained by cycles of slab rollback, breakoff, and shallow underthrusting—suggesting that subduction dynamics controlled deformation.

  20. A Wrench fault system and nappe emplacement in Southern Kenya and Northern Tanzania.- A key area for Pan-African continental collision in East Africa?

    NASA Astrophysics Data System (ADS)

    Bauernhofer, A.; Wallbrecher, E.; Hauzenberger, C.; Fritz, H.; Loizenbauer, J.; Hoinkes, G.; Muhongo, S.; Mathu, E.

    2003-04-01

    In the Voi Area of Southern Kenya, the granulite facies rocks of the Taita Hills and the Tsavo East National Park (Galana River) can be divided into three structural domains: The Galana-East unit consists of an intercalation of flat lying metapelites and marbles of continental margin origin. These metasediments can be traced further east to the Umba Steppe (Between Mombasa and Tanga). Galana-West consists of a N-S oriented wrench fault zone with vertical foliation planes and horizontal stretching lineation. Numerous shear sense indicators always show sinistral shear sense. Amphibolites of MORB affinity are involved in this wrench fault zone. To the west, this zone is bordered by calc-alkaline metatonalites of the Sagala Hills. The westernmost unit consists of the Taita Hills. They form an imbricated pile of southwestward thrusted nappe sheets containing metapelites, marbles, and ultramafics. The Taita Hills may be explained as part of an accretionary wedge. Southwestward nappe thrusting is also the prominent structure in the Pare and Usambara Mountains of Northern Tanzania. The following model may may explain these observations: The Southern Kenya -- Northern Tanzania section of the Mozambique Belt is the result of continental collision tectonics. Remnants of an island arc and of an accretionary wedge that occur at least in the Voi area may be part of a former subduction zone. An oceanic domain between an eastern passive continental margin and a western terrane, now represented by the Tanzanian granulite belt has been closed incorporating island arc and accretionary wedge material. Oblique convergence of two continental blocks is suggested from wrench tectonics. The age of convergent tectonics is 530 -- 580 Ma, dated by Sm-Nd garnet-whole rock analysis. This is interpreted as the age of peak metamorphism.

  1. Raising Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, T.M.; Yin, An; Copeland, P.

    1992-03-27

    Thermochronologic, sedimentologic, oceanographic, and paleoclimatic studies suggest that rapid uplift and unroofing of southern Tibet began about 20 million years ago and that the present elevation of much of the Tibetan plateau was attained by about 8 million years ago. Hypotheses advanced to explain the tectonic evolution of the India-Asia collision, which began about 40 to 50 million years ago, predict the timing and rates of crustal thickening of the southern margin of Asia. However, these models do not predict the prominently enhanced early Miocene denudation and uplift that are manifested in a variety of geological records. A model involvingmore » continental extrusion, development of a crustal-scale thrust ramp of the Main Central Thrust beneath the Gangdese belt, and lithospheric delamination provides a history consistent with these observations.« less

  2. Tectonic and metamorphic discontinuities in the Greater Himalayan Sequence in Central Himalaya: in-sequence shearing by accretion from the Indian plate

    NASA Astrophysics Data System (ADS)

    Carosi, Rodolfo

    2016-04-01

    The Greater Himalayan Sequence (GHS) is the main metamorphic unit of the Himalayas, stretching for over 2400 km, bounded to the South by the Main Central Thrust (MCT) and to the North by the South Tibetan Detachment (STD) whose contemporanous activity controlled its exhumation between 23 and 17 Ma (Godin et al., 2006). Several shear zones and/or faults have been recognized within the GHS, usually regarded as out of sequence thrusts. Recent investigations, using a multitechnique approach, allowed to recognize a tectonic and metamorphic discontinuity, localized in the mid GHS, with a top-to-the SW sense of shear (Higher Himalayan Discontinuity: HHD) (Carosi et al., 2010; Montomoli et al., 2013). U-(Th)-Pb in situ monazite ages provide temporal constraint of the acitivity of the HHD from ~ 27-25 Ma to 18-17 Ma. Data on the P and T evolution testify that this shear zone affected the tectono-metamorphic evolution of the belt and different P and T conditions have been recorded in the hanging-wall and footwall of the HHD. The HHD is a regional tectonic feature running for more than 700 km, dividing the GHS in two different portions (Iaccarino et al., 2015; Montomoli et al., 2015). The occurrence of even more structurally higher contractional shear zone in the GHS (above the HHD): the Kalopani shear zone (Kali Gandaki valley, Central Nepal), active from ~ 41 to 30 Ma (U-Th-Pb on monazite) points out to a more complex deformation pattern in the GHS characterized by in sequence shearing. The actual proposed models of exhumation of the GHS, based exclusively on the MCT and STD activities, are not able to explain the occurrence of the HHD and other in-sequence shear zones. Any model of the tectonic and metamorphic evolution of the GHS should account for the occurrence of the tectonic and metamorphic discontinuities within the GHS and its consequences on the metamorphic paths and on the assembly of Himalayan belt. References Godin L., Grujic D., Law, R. D. & Searle, M. P. 2006. Geol. Soc. London Sp. Publ., 268, 1-23. Carosi R., Montomoli C., Rubatto D. & Visonà D. 2010. Tectonics, 29, TC4029. Iaccarino S., Montomoli C., Carosi R., Massonne H-J., Langone A., Visonà D. 2015. Lithos, 231, 103-121. Montomoli C., Iaccarino S., Carosi R., Langone A. & Visonà D. 2013. Tectonophysics 608, 1349-1370, doi:10.1016/j.tecto.2013.06.006. Montomoli C., Carosi R., Iaccarino S. 2015. Geol. Soc. London Sp. Publ., 412, 25-41.

  3. CRUSTAL TECTONICS AND SEISMICITY OF THE MIDDLE EAST

    NASA Astrophysics Data System (ADS)

    Ghalib, H. A.; Gritto, R.; Sibol, M. S.; Herrmann, R. B.; Aleqabi, G. I.; Caron, P. F.; Wagner, R. A.; Ali, B. S.; Ali, A. A.

    2009-12-01

    The Arabian plate describes a geological entity and a dynamic system that has been in continuous interaction with the African plate to the west and south and the Eurasian plate to the north and east. The western and southern boundaries are distinguished by see floor spreading along the Gulf of Aden and Red Sea and transform faulting along the Dead Sea, whereas the northern and eastern boundaries are portrayed by compressional suture zones under thrusting the Turkish and Iranian plateaus. Despite this favorable juxtaposition of continental land masses and the plethora of national seismic networks in every country of the Middle East, the majority of published research on the Arabian plate and surrounding tectonic blocks still depends primarily on global seismographic stations and occasional local networks. Since 2005, we deployed a number of seismic stations, and more recently a five elements array, in close proximity to the northeastern boundary of the Arabian plate. The primary objective of the effort is to better understand the regional seismicity and seismotectonics of the Arabian plate and surrounding regions. To date over a terabyte of high quality 100 sps continuous three-component broadband data have been collected and being analyzed to derive models representative of the greater Middle East tectonic setting. This goal is, in part, achieved by estimating local and regional seismic velocity models using receiver function and surface wave dispersion analyses, and by using these models to obtain accurate hypocenter locations and event focal mechanisms. The resulting events distribution reveals a distinct picture of the interaction between the seismicity and tectonics of the region. The highest seismicity rate seems to be confined to the active northern section of the Zagros thrust zone, while it decreases towards the southern end, before the intensity increases again in the Bandar Abbas region. Spatial distribution of the events and stations provide thorough coverage of all the tectonic provinces in the region. Phases including Pn, Pg, Sn, Lg, as well as LR are clearly observed on recorded seismograms. Blockage or attenuation of some of the crustal body waves is observed along propagation paths crossing the Zagros-Bitlis zone. These findings are also in support of earlier tectonic models that suggest the existence of multiple parallel listric faults splitting off the main Zagros fault zone in east-west direction. Surface- and body wave results in support of these findings will be presented. Our initial structural models of the crust beneath north-eastern Iraq depict a thickness of 40-50 km in the foothills, which increases to 45-55 km beneath the Zagros-Bitlis zone.

  4. Seismotectonic features of the African plate: the possible dislocation of a continent

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The African continent is made of seismically active structures with active deformation in between main substratum shields considered as stable continental interiors. Seismically active regions are primarily located along rift zones, thrust and fold mountain belts, transform faults and volcanic fields. The active tectonic structures generated large and destructive earthquakes in the past with significant damage and economic losses in Africa. Although some regions of the continent show a low-level of seismic activity, several large earthquakes (with M > 7) have occurred in the past. The presence of major active faults that generate destructive earthquakes is among the most important geological and geophysical hazards for the continent. National and International scientific projects dealing with the seismic hazards assessment are increasing in seismically active regions in Africa. The UNESCO-SIDA/IGCP (Project 601 http://eost.u-strasbg.fr/~igcp601/) support the preparation and implementation of the "Seismotectonic Map of Africa". Therefore, new seismotectonic data with the regional analysis of earthquake hazards became necessary as a basis for a mitigation of the earthquake damage. A database in historical and instrumental seismicity, active tectonics, stress tensor distribution, earthquake geology and paleoseismology, active deformation, earthquake geodesy (GPS) and gravity, crustal structure studies, magnetic and structural segmentation, volcanic fields, collision tectonics and rifting processes is prepared to constrain the geodynamic evolution of the continent. Taking into account the geological, tectonic and geophysical characteristics, we define six seismotectonic provinces that characterize the crustal deformation. With the previously identified Somalia tectonic block, the seismotectonic and geophysical framework of the continent reveal the existence of the Cameroon volcanic line, the South African tectonic block with transform faulting and Cape folding system, the Libyan rifting and Maghreb thrusting. Although bearing a relatively slow deformation with regards to the East Africa Rift System, the Nubia plate previously considered as a homogeneous tectonic block appears to be dislocating progressively also forming a system of microplates. A synthesis of earthquake studies and regional deformation exposed in a seismotectonic map hitherto serves as a basis for the seismic hazard evaluations and the reduction of seismic risks. * IGCP/SIDA: International Geoscience Program/Swedish International Cooperation Authority http://www.unesco.org/science/IGCP IGCP-601 Working Group: Paulina Amponsah (Ghana Atomic Energy Commission), Atalay Ayele (Addis Ababa University, Ethiopia), Bekoa Ateba (Inst. of Geol. and Min. Res., Buea, Cameroon), Abdelhakim Ayadi (CRAAG, Algeria), Abdunnur Bensuleman (University of Tripoli, Libya), Damien Delvaux (Royal Museum for Central Africa, Tervuren, Belgium), Mohamed El Gabry (National Research Institute of Geophysics, Cairo, Egypt), Rui-Manuel Fernandes (Universidade da Beira Interior, Portugal), Mustapha Meghraoui (IPG Strasbourg, France), Vunganai Midzi & Magda Roos (Council for Geoscience, Pretoria, South Africa), and Youssef Timoulali (CNRST, Rabat, Morocco).

  5. Cenozoic exhumation and tectonic evolution of the Qimen Tagh Range, northern Tibetan Plateau: Insights from the heavy mineral compositions, detrital zircon U-Pb ages and seismic interpretations

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wu, C.; Wang, J.; Zhou, T.; Zhang, C.; Li, J.

    2017-12-01

    The Qaidam Basin is the largest intermountain basin within the Tibetan Plateau. The Cenozoic sedimentary flling characteristics of the basin was significantly influenced by the surrounding tectonic belt, such as the Altyn Tagh Range to the north-west and Qimen Tagh Range to the south. The tectonic evolution of the Qimen Tagh Range and the structural relationship between the Qaidam Basin and Qimen Tagh Range remain controversial. To address these issues, we analyzed thousands of heavy mineral data, 720 detrital zircon ages and seismic data of the Qaidam Basin. Based on the regional geological framework and our kinematic analyses, the Cenozoic tectonic evolution of the Qimen Tagh Range can be divided into two stages. From the Early Eocene to the Middle Miocene, the Devonian (400-360 Ma) and Permian to Triassic (300-200 Ma) zircons which were sourced from the Qimen Tagh Range and the heavy mineral assemblage of zircon-leucoxene-garnet-sphene on the north flank of the Qimen Tagh Range indicated that the Qimen Tagh Range has been exhumed before the Eocene and acted as the primary provenance of the Qaidam Basin. The Kunbei fault system (i.e. the Kunbei, Arlar and Hongliuquan faults) in the southwest of the Qaidam Basin, which can be seen as a natural study window of the Qimen Tagh Range, was characterized by left-lateral strike-slip faults and weak south-dipping thrust faults based on the seismic sections. This strike-slip motion was generated by the uplift of the Tibetan Plateau caused by the onset of the Indian-Eurasian collision. Since the Middle Miocene, the primary mineral assemblages along the northern flank of the Qimen Tagh Range changed from the zircon-leucoxene-garnet-sphene assemblage to the epidote-hornblende-garnet-leucoxene assemblage. Simultaneously, the Kunbei fault system underwent intense south-dipping thrusting, and a nearly 2.2-km uplift can be observed in the hanging wall of the Arlar fault. We attributed these variations to the rapid uplift event of the Qimen Tagh Range. The intense tectonic activity is the far-feld effect of the full collision that occurred between the Indian-Eurasian plates.This work was financially supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (2017ZX05008-001).

  6. Comparisons between a high resolution discrete element model and analogue model

    NASA Astrophysics Data System (ADS)

    LI, C. S.; Yin, H.; WU, C.; Zhang, J.

    2017-12-01

    A two-dimensional discrete element model (DEM) with high resolution is constructed to simulate the evolution of thrust wedge and an analogue model (AM) experiment is constructed to compare with the DEM results. This efficient parallel DEM program is written in the C language, and it is useful to solve the complex geological problems. More detailed about fold and thrust belts of DEM can be identified with the help of strain field. With non-rotating and non-tensile assumption, dynamic evolution of DEM is highly consistent with AM. Simulations in different scale can compare with each other by conversion formulas in DEM. Our results show that: (1) The overall evolution of DEM and AM is broadly similar. (2) Shortening is accommodated by in-sequence forward propagation of thrusts. The surface slope of the thrust wedge is within the stable field predicted by critical taper theory. (3) Details of thrust spacing, dip angle and number of thrusts vary between DEM and AM for the shortening experiment, but the characteristics of thrusts are similar on the whole. (4) Dip angles of the forward thrusts increased from foreland (ca. 30°) to the mobile wall (ca. 80°) (5) With shortening, both models had not the obvious volume loss. Instead, the volume basic remained unchanged in the whole extrusion processes. (6) Almost all high strain values are within fold-and-thrust belts in DEM, which allows a direct comparison between the fault zone identified on the DEM deformation field and that in the strain field. (7) The first fault initiates at deep depths and propagate down toward the surface. For the maximal volumetric strain focused on the décollement near the mobile wall, strengthening the material and making it for brittle. (8) With non-tensile particles for DEM, contraction is broadly distributed throughout the model and dilation is hardly any, which also leads to a higher efficient computation. (9) High resolution DEM can to first order successfully reproduce structures observed in AM. The comparisons serve to highlight robust features in tectonic modelling of thrust wedges. This approach is very utility in modelling large displacement, complex deformation of analogue and geological materials.

  7. Localized Flow of Frictional Or Creeping Materials In A Lower Flat Thrust To Ramp Transition

    NASA Astrophysics Data System (ADS)

    Maillot, B.; Leroy, Y.

    The passage of rock through zones of localized shear deformation in the form of back- thrusts or kink planes is common in fold and thrust belts. The stationary flow through these two types of hinges is examined for the particular case of a lower flat to ramp transition of a fault-bend fold. The simple shear transformation resulting in strain lo- calization is studied both analytically and numerically. The overall equilibrium of the hanging wall, accounting for friction over the ramp, constrains the shear and normal forces acting on the hinge boundaries. For frictional materials, the localization oc- curs in the form of a velocity discontinuity, defining the backthrust, with a dip which is shown not to bissect ramp angle nor to conserve the thrust nappe thickness, if a criteria based on a minimization of the total dissipation is considered. For creeping materials, the strain localization as a kink plane is shown to require a destabilizing deformation mechanism, selected here to be flexural slip. The rotation of the stress tensor due to the gradient in pressure, the thicknening and thinning of the creeping material, the rate and amount of flexural slip through the hinge are analyzed to define potential tectonic markers.

  8. An evaporite-bearing accretionary complex in the northern front of the Betic-Rif orogen

    NASA Astrophysics Data System (ADS)

    Pérez-Valera, Fernando; Sánchez-Gómez, Mario; Pérez-López, Alberto; Pérez-Valera, Luis Alfonso

    2017-06-01

    The Guadalquivir Accretionary Complex forms a largely oblique prism at the northern edge of the Betic-Rif orogen, where Miocene sediments plus allochthonous evaporite-bearing units were accreted during the displacement of the Alborán Domain toward the west. Traditional interpretations end the tectonic structuring of the Betic Cordillera at the present topographic front, beyond which gravitational and/or diapiric processes would predominate. However, this study shows pervasive tectonic deformation in the outer prism with coherent oblique shortening kinematics, which is achieved through an alternation of roughly N-S arcuate thrust systems connected by E-W transfer fault zones. These structures accord well with the geophysical models that propose westward rollback subduction. The main stage of tectonic activity occurred in the early-middle Miocene, but deformation lasted until the Quaternary with the same kinematics. Evaporite rocks played a leading role in the deformation as evidenced by the suite of ductile structures in gypsum distributed throughout the area. S- and L- gypsum tectonites, scaly clay fabrics, and brittle fabrics coexist and consistently indicate westward motion (top to 290°), with subordinate N-S contraction almost perpendicular to the transfer zones. This work reveals ductile tectonic fabrics in gypsum as a valuable tool to elucidate the structure and deformational history of complex tectonic mélanges involving evaporites above the décollement level of accretionary wedges.

  9. Intrinsic And Extrinsic Controls On Unsteady Deformation Rates, Northern Apennine Mountains, Italy

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Gunderson, K. L.; Pazzaglia, F. J.; Kodama, K. P.

    2017-12-01

    The slip rates of faults in the Northern Apennine Mountains were unsteady at 104-105 year timescales during the Neogene and Quaternary. Fault slip rates were recovered from growth strata and uplifted fluvial terraces associated with the Salsomaggiore, Quatto Castella, and Castevetro fault-related folds, sampled along the Stirone, Enza, and Panaro Rivers, respectively. The forelimb stratigraphy of each anticline was dated using rock magnetic-based cyclostratigraphy, which varies with Milankovitch periodicity, multispecies biostratigraphy, magnetostratigraphy, OSL luminescence dating, TCN burial dating, and radiocarbon dating of uplifted and folded fluvial terraces. Fault slip magnitudes were constrained with trishear forward models. We observed decoupled deformation and sediment accumulation rates at each structure. From 3.5Ma deformation of a thick and thin-skinned thrusts was temporally variable and controlled by intrinsic rock processes, whereas, the more regional Pede-Apenninic thrust fault, a thick-skinned thrust underlying the mountain front, was likely activated because of extrinsic forcing from foreland basin sedimentation rate accelerations since 1.4Ma. We found that reconstructed slip rate variability increased as the time resolution increased. The reconstructed slip history of the thin-skinned thrust faults was characterized relatively long, slow fold growth and associated fault slip, punctuated by shorter, more rapid periods limb rotation, and slip on the underlying thrust fault timed asynchronously. Thrust fault slip rates slip rates were ≤ 0.1 to 6 mm/yr at these intermediate timescales. The variability of slip rates on the thrusts is likely related to strain partitioning neighboring faults within the orogenic wedge. The studied structures slowed down at 1Ma when there was a switch to slower synchronous fault slip coincident with orogenic wedge thickening due to the emplacement of the out of sequence Pene-Apenninic thrust fault that was emplaced at 1.4±0.7 mm/yr. Both tectonic control and climate controlled variability on syntectonic sedimentation was observed in the growth sections.

  10. A model for the origin of Himalayan anatexis and inverted metamorphism

    NASA Astrophysics Data System (ADS)

    Harrison, T. Mark; Grove, Marty; Lovera, Oscar M.; Catlos, E. J.

    1998-11-01

    The origin of the paired granite belts and inverted metamorphic sequences of the Himalaya has generally been ascribed to development of the Main Central Thrust (MCT). Although a variety of models have been proposed that link early Miocene anatexis with inverted metamorphism, recent dating studies indicate that recrystallization of elements of the MCT footwall occurred in the central Himalaya as recently as ˜6 Ma. The recognition that hanging wall magmatism and footwall metamorphism are not spatially and temporally related renders unnecessary the need for exceptional physical conditions to explain generation of the High Himalayan leucogranites and North Himalayan granites, which differ in age, petrogenesis, and emplacement style. We suggest that their origin is linked to shear heating on a continuously active thrust that cuts through Indian supracrustal rocks that had previously experienced low degrees of partial melting. Numerical simulations assuming a shear stress of 30 MPa indicate that continuous slip on the Himalayan decollement beginning at 25 Ma could trigger partial melting reactions leading to formation of the High Himalayan granite chain between 25 and 20 Ma and the North Himalayan belt between 17 and 8 Ma. The ramp-flat geometry we apply to model the Himalayan thrust system requires that the presently exposed rocks of the hanging wall resided at middle crustal levels above the decollement throughout the early and middle Miocene. Late Miocene, out-of-sequence thrusting within the broad shear zone beneath the MCT provides a mechanism to bring these rocks to the surface in their present location (i.e., well to the north of the present tectonic front) and has the additional benefit of explaining how the inverted metamorphic sequences formed beneath the MCT. We envision that formation of the MCT Zone involved successive accretion of tectonic slivers of the Lesser Himalayan Formations to the hanging wall and incorporate these effects into the model. The model predicts continued anatexis up to 400 km north of the Himalayan range, consistent with the timing and geochemistry of leucogranites exhumed on the flank of a south Tibetan rift.

  11. Structural evolution of Halaban Area, Eastern Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Amri, Yousef; Kassem1, Osama M. K.

    2017-04-01

    Neoproterozoic basement complex comprises a metamorphic/igneous suite (Abt schist and sheared granitoids) with syn-accretionary transpressive structures, unconformably overlain by a post-amalgamation volcanosedimentary sequence. This study aims to attempt to exposed post-accretionary thrusting and thrust-related structures at Halaban area, Eastern Arabian Shield. The Rf/ϕ and Fry methods are utilized on quartz and feldspar porphyroclasts, as well as on mafic crystals, such as hornblende and biotite, in eighteen samples. The X/Z axial ratios range from 1.12 to 4.99 for Rf/ϕ method and from 1.65 to 4.00 for Fry method. The direction of finite strain for the long axes displays clustering along the WNW trend (occasionally N) with slight plunging. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It indicates that the contacts between various lithological units in the Halaban area were formed under brittle to semi-ductile deformation conditions. The penetrative subhorizontal foliation was concurrent with thrusting and shows nearly the same attitudes of tectonic contacts with the overlying nappes. Keywords: Finite strain analysis, volcanosedimentary sequence, Halaban area, Eastern Arabian Shield, Saudi Arabia.

  12. Contractional deformation of porous sandstone: Insights from the Aztec Sandstone, SE Nevada, USA

    NASA Astrophysics Data System (ADS)

    Fossen, Haakon; Zuluaga, Luisa F.; Ballas, Gregory; Soliva, Roger; Rotevatn, Atle

    2015-05-01

    Contractional deformation of highly porous sandstones is poorly explored, as compared to extensional deformation of such sedimentary rocks. In this work we explore the highly porous Aztec Sandstone in the footwall to the Muddy Mountain thrust in SE Nevada, which contains several types of deformation bands in the Buffington tectonic window: 1) Distributed centimeter-thick shear-enhanced compaction bands (SECBs) and 2) rare pure compaction bands (PCBs) in the most porous parts of the sandstone, cut by 3) thin cataclastic shear-dominated bands (CSBs) with local slip surfaces. Geometric and kinematic analysis of the SECBs, the PCBs and most of the CSBs shows that they formed during ∼E-W (∼100) shortening, consistent with thrusting related to the Cretaceous to early Paleogene Sevier orogeny of the North American Cordilleran thrust system. Based on stress path modeling, we suggest that the compactional bands (PCBs and SECBs) formed during contraction at relatively shallow burial depths, before or at early stages of emplacement of the Muddy Mountains thrust sheet. The younger cataclastic shear bands (CSBs, category 3), also related to E-W Sevier thrusting, are thinner and show larger shear offsets and thus more intense cataclasis, consistent with the initiation of cataclastic shear bands in somewhat less porous materials. Observations made in this work support earlier suggestions that contraction lead to more distributed band populations than what is commonly found in the extensional regime, and that shear-enhanced compaction bands are widespread only where porosity (and permeability) is high.

  13. Ordovician and Silurian Phi Kappa and Trail Creek formations, Pioneer Mountains, central Idaho; stratigraphic and structural revisions, and new data on graptolite faunas

    USGS Publications Warehouse

    Dover, James H.; Berry, William B.N.; Ross, Reuben James

    1980-01-01

    Recent geologic mapping in the northern Pioneer Mountains combined with the identification of graptolites from 116 new collections indicate that the Ordovician and Silurian Phi Kappa and Trail Creek Formations occur in a series of thrust-bounded slices within a broad zone of imbricate thrust faulting. Though confirming a deformational style first reported in a 1963 study by Michael Churkin, our data suggest that the complexity and regional extent of the thrust zone were not previously recognized. Most previously published sections of the Phi Kappa and Trail Creek Formations were measured across unrecognized thrust faults and therefore include not only structural repetitions of graptolitic Ordovician and Silurian rocks but also other tectonically juxtaposed lithostratigraphic units of diverse ages as well. Because of this discovery, the need to reconsider the stratigraphic validity of these formations and their lithology, nomenclature, structural distribution, facies relations, and graptolite faunas has arisen. The Phi Kappa Formation in most thrust slices has internal stratigraphic continuity despite the intensity of deformation to which it was subjected. As revised herein, the Phi Kappa Formation is restricted to a structurally repeated succession of predominantly black, carbonaceous, graptolitic argillite and shale. Some limy, light-gray-weathering shale occurs in the middle part of the section, and fine-grained locally pebbly quartzite is present at the base. The basal quartzite is here named the Basin Gulch Quartzite Member of the Phi Kappa. The Phi Kappa redefined on a lithologic basis represents the span of Ordovician time from W. B. N. Berry's graptolite zones 2-4 through 15 and also includes approximately 17 m of lithologically identical shale of Early and Middle Silurian age at the top. The lower contact of the formation as revised is tectonic. The Phi Kappa is gradationally overlain by the Trail Creek Formation as restricted herein. Most of the coarser clastic rocks reported in previously measured sections of the Phi Kappa, as well as the sequence along Phi Kappa Creek from which the name originates, are excluded from the Phi Kappa as revised and are reassigned to two structural plates of Mississippian Copper Basin Formation; other strata now excluded from the formation are reassigned to the Trail Creek Formation and to an unnamed Silurian and Devonian unit. As redefined, the Phi Kappa Formation is only about 240 m thick, compared with the 3,860 m originally estimated, and it occupies only about 25 percent of the outcrop area previously mapped in 1930 by H. G. Westgate and C. P. Ross. Despite this drastic reduction in thickness and the exclusion of the rocks along Phi Kappa Creek, the name Phi Kappa is retained because of widely accepted prior usage to denote the Ordovician graptolitic shale facies of central Idaho, and because the Phi Kappa Formation as revised is present in thrust slices on Phi Kappa Mountain, at the head of Phi Kappa Creek. The lithic and faunal consistency of this unit throughout the area precludes the necessity for major facies telescoping along individual faults within the outcrop belt. However, tens of kilometers of tectonic shortening seems required to juxtapose the imbricated Phi Kappa shale facies with the Middle Ordovician part of the carbonate and quartzite shale sequence of east central Idaho. The shelf rocks are exposed in the Wildhorse structural window of the northeastern Pioneer Mountains, and attain a thickness of at least 1,500 m throughout the region north and east of the Pioneer Mountains. The Phi Kappa is in direct thrust contact on intensely deformed medium- to high-grade metamorphic equivalents of the same shelf sequence in the Pioneer window at the south end of the Phi Kappa-Trail Creek outcrop belt. Along East Pass, Big Lake, and Pine Creeks, north of the Pioneer Mountains, some rocks previously mapped as Ramshorn Slate are lithologically and faunally equivalent to the P

  14. Deformation Styles Along the Southern Alaska Margin Constrained by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.

    2009-12-01

    The present-day deformation observed in southcentral and southeast Alaska and the adjacent region of Canada is controlled by two main factors: ~ 50 mm/yr relative motion between the Pacific plate and North America and the Yakutat block’s collision with and accretion to southern Alaska. Over 45 mm/yr of NW-SE directed convergence from the collision is currently accommodated within the St. Elias orogen. The Fairweather, St. Elias, and Chugach ranges show the spectacular consequences of the relative tectonic motions, but the details of the plate interactions have not been well understood. Here we present GPS data from a network of over 170 campaign sites across the region. We use the data to constrain block models and forward models that characterize the nature and extent of the tectonic deformation along the Pacific-Yakutat-North America boundary. Tectonics in southeast Alaska can be described by block motion, with the Pacific plate bounding the region to the west. The fastest block motions occur along the coastal regions. The Yakutat block has a velocity of 51 ± 2.7 mm/yr towards N22 ± 2.5 deg W relative to North America. This velocity has a magnitude almost identical to that of the Pacific plate, but the azimuth is more westerly. The northeastern edge of the Yaktuat block is deforming, represented in our model by two small blocks outboard of the Fairweather fault. East of that fault, the Fairweather block rotates clockwise relative to North America, resulting in transpression along the Duke River and Eastern Denali faults. There is a clear transfer of strain from the coastal region hundreds of kilometers eastward into the Northern Cordillera block, confirming earlier suggestions that the effects of the Yakutat collision are far-reaching along its eastern margin. In contrast, deformation along the leading edge of the Yakutat collision is relatively narrowly focused within the southern half of the St. Elias orogen. The current deformation front of the Yakutat block with southern Alaska is in the vicinity of Icy Bay, where strain rates approach -1 microstrain/yr. The Malaspina thrust likely forms the northern boundary of the Yakutat block. Between Icy Bay and the Mt. St. Elias area, the tectonics cannot easily be described by block motion. The GPS data require the relative convergence to be partitioned onto multiple N-NW dipping thrust faults, resulting in a 50-70-km wide zone of deformation. This zone continues around the western side of Icy Bay into the Yakataga fold and thrust belt. North of the Mt. St. Elias area and the Bagley ice valley, roughly 100 km from the deformation front, GPS velocities are consistent with predictions of the motion of the southern Alaska block.

  15. Spatial variation of present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: Geodynamic implications for central Mediterranean

    NASA Astrophysics Data System (ADS)

    Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed

    2015-06-01

    We compiled 123 focal mechanisms from various sources for Tunisia and adjacent regions up to Sicily, to image the current stress field in the Maghrebides chain (from Tunisia to Sicily) and its foreland. Stress inversion of all the available data provides a first-order stress field with a N150°E horizontal compression (SHmax) and a transpressional tectonic regime, but the obtained stress tensor poorly fit to the data set. We separated them into regional subsets (boxes) in function of their geographical proximity, kinematic regime, homogeneity of kinematic orientations, and tectonic setting. Their respective inversion evidences second- and third-order spatial variations in tectonic regime and horizontal stress directions. The stress field gradually changes from compression in the Maghrebides thrust belt to transpression and strike slip in the Atlassic and Pelagian foreland, respectively, where preexisting NW-SE to E-W deep faults system are reactivated. This spatial variation of the sismotectonic stress field and tectonic regime is consistent with the neotectonic stress field determined by others from fault slip data. The major Slab Transfer Edge Propagator faults (i.e., North-South Axis-Hammamet relay and Malte Escarpment), which laterally delimit the subducting slabs, play an active role in second- and third-order lateral variations of the tectonic regime and stress field orientations over the Tunisian/Sicilian domain. The past and current tectonic deformations and kinematics of the central Mediterranean are subordinately guided by the plate convergence (i.e., Africa-Eurasia), controlled or influenced by lateral slab migration/segmentation and by deep dynamics such as lithosphere-mantle interaction.

  16. Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting

    USGS Publications Warehouse

    Fuis, G.S.; Moore, Thomas E.; Plafker, G.; Brocher, T.M.; Fisher, M.A.; Mooney, W.D.; Nokleberg, W.J.; Page, R.A.; Beaudoin, B.C.; Christensen, N.I.; Levander, A.R.; Lutter, W.J.; Saltus, R.W.; Ruppert, N.A.

    2008-01-01

    We investigate the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980s and early 1990s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted as remnants of the extinct Kula (or Resurrection) plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by large-scale duplex structures that overlie a tectonic wedge of North Slope crust and mantle. There, the Moho has been depressed to nearly 50 km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula (or Resurrection) plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two regions include flat-slab subduction and an orogenic-float model. In the Neogene, the tectonics of the accreting Yakutat terrane have differed across a newly interpreted tear in the subducting Pacific oceanic lithosphere. East of the tear, Pacific oceanic lithosphere subducts steeply and alone beneath the Wrangell volcanoes, because the overlying Yakutat terrane has been left behind as underplated rocks beneath the rising St. Elias Range, in the coastal region. West of the tear, the Yakutat terrane and Pacific oceanic lithosphere subduct together at a gentle angle, and this thickened package inhibits volcanism. ?? 2008 The Geological Society of America.

  17. Role of Fluids in Mechanics of Overthrust Faulting on Titan

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Radebaugh, J.; Harris, R. A.; Christiansen, E. H.

    2013-12-01

    Since Cassini has unveiled Titan's surface, its mountains have been commonly associated with contractional tectonism. However, in order to form contractional structures on icy satellites, relatively large stresses are required. The stress required to form contractional structures on Ganymede and Europa is 3-8 times that required for extensional features. Sources of such stresses probably do not exist for most icy satellites. Therefore, a paradox has emerged, wherein no stress source is known that is large enough to produce the contractional structures observed on Titan. A possible solution for the strength paradox is inspired by Hubbert and Rubey (1959) who demonstrated how high fluid pressures reduce the normal stress along a fault plane, therefore significantly reducing frictional resistance to thrusting. Since liquid hydrocarbons have been identified on Titan's surface and may flow in the subsurface, we speculate that fluid pressures associated with liquid hydrocarbons in the subsurface significantly reduce the shear strength of the icy crust and enable contractional structures to form without the requiring large stresses. We use critical wedge theory, which is a mechanism for driving fold-and-thrust belt formation, to test if the slope angles of mountains and crustal conditions with estimated fluid pressures favor the formation of fold-thrust belts on Titan. We evaluated 6 mountain belts with available Cassini SARTopo data using critical wedge calculations. The slopes of 10 traces from valley floors to summits are between 0.4 and 2.5 degrees. We use the measured slopes with varying friction coefficients and fluid pressures to calculate the range of dip angles. The results yielded 840 dip angle values, 689 (82%) of which were in a reasonable range, and consistent with fold belt formation in critical wedge settings. We conclude that crustal liquids have played a key role in Titan's tectonic history. Our results highlight the significance of fluids in planetary lithospheres and have implications for tectonics on all solid bodies that may have fluid in their lithospheres, now or in the past. Reference: Hubbert, M. K. & Rubey, W. W. Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull. 70, 2, 115-166 (1959).

  18. Peculiar Active-Tectonic Landscape Within the Sanctuary of Zeus at Mt. Lykaion (Peloponnese, Greece)

    NASA Astrophysics Data System (ADS)

    Davis, G. H.

    2008-12-01

    The Sanctuary of Zeus (Mt. Lykaion) lies in the Peloponnese within the Pindos fold and thrust belt. It is the object of investigation of the Mt. Lykaion Excavation and Survey (http://lykaionexcavation.org/). Mt. Lykaion is a thrust klippe, on the summit of which is an upper sanctuary marked by an ash altar, temenos, and column bases. Earliest objects recovered from the ash altar go back to 3000 BCE, leading Dr. David Romano (University of Pennsylvania), a principal leader of the project, to conclude that worship of divinities on the summit is ancient. Detailed structural geological mapping reveals one dimension of the "power" of the site. Crisscrossing the upper sanctuary are scree bands that mark the traces of active normal faults, which are expressions of tectonic stretching of the Aegean region. The scree bands, composed of cinder-block-sized limestone blocks, range up to 10 m in outcrop breadth, 100 m in length, and 5 m in thickness. Though discontinuous, most of the scree bands lie precisely on the traces of through-going faults, which cut and displace the sedimentary formations of the Pindos group. Some cut the thrust fault, whose elliptical trace defines the Lykaion klippe. What makes the scree bands of this active-tectonic landscape "peculiar" is that there are no cliffs from which the scree descends. Rather, the bands of scree occur along flanks of smooth, rounded hillslopes and ridges. The scree bands coincide with modest steps in the topography, ranging from tens of centimeters to several tens of meters. The specific bedrock formation where the bands are best developed is an Upper Cretaceous limestone whose average platy-bedding thickness (approximately 20 cm) matches closely the average joint spacing. The limestone has little mechanical integrity. It cannot support itself as a scarp footwall and instead collapses into a pile of scree, whose upper-surface inclination conforms to a stable angle of repose. Evidence of the contemporary nature of this faulting includes a scree band that nearly completely covers stone structures built by shepherds. Though the scree bands conceal surface ruptures, it is expected that trenching will determine that the scree cover may have preserved beneath it some expressions of surface rupture, and perhaps fault surfaces themselves.

  19. Geologic map and structural analysis of the Victoria quadrangle (H2) of Mercury based on NASA MESSENGER images

    NASA Astrophysics Data System (ADS)

    Galluzzi, V.; Di Achille, G.; Ferranti, L.; Rothery, D. A.; Palumbo, P.

    The first stratigraphic and geologic study of Mercury was released by Trask & Guest (1975) followed by Spudis & Guest (1988, and references therein), whose work was based on the images taken by Mariner 10 covering 42% of the total surface of Mercury. The planet has been officially divided into fifteen quadrangles: 2 polar, 5 equatorial and 8 at midlatitudes. Quadrangle H2 (= Hermes sheet n.2), named ``Victoria'' (20oN - 65oN Lon.; 270oE - 0o Lat.), was partially mapped by McGill & King (1983), though a wide area (˜64%) remained unmapped due to the lack of imagery. Following the terrain units recognized and described by the above authors, we have produced a geologic map of the entire quadrangle using MESSENGER (MErcury Surface, Space ENvironment, GEochemistry and Ranging) images. The images taken by the Mercury Dual Imaging System (MDIS) Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) allowed us to map geologic and tectonic features in much greater detail than the previously published map (mapping scale range between 1:300k and 1:600k). We classified craters larger than 20 km using three relative age classes, which are a simplification of the past five degradation classes defined by McCauley et al. (1981). Victoria quadrangle is characterized by a localized N-S thrust array constituted by Victoria Rupes, Endeavour Rupes and Antoniadi Dorsum to the East and by a more diffuse system of NE-SW oriented fault arrays to the West: the two systems seem to be separated by a tectonic bulge. The Victoria-Endeavour-Antoniadi system has been interpreted as a fold-and-thrust belt by Byrne et al. (2014) and a previous study made on craters cross-cut by its thrusts reveals fault dips of 15-20o and a near dip slip motion (Galluzzi et al., 2015). This geologic map has the aim to build a regional model of its structural framework. Deciphering the geological setting of this quadrangle will bring important insights for understanding the tectonic evolution of the whole planet. Moreover, the results obtained with this study can help in the future targeting choices of the BepiColombo SIMBIOSYS instruments.

  20. Fore-arc Deformation in the Paola Basin Segment (Offshore Western Calabria) of the Tyrrhenian-Ionian Subduction System

    NASA Astrophysics Data System (ADS)

    Pepe, F.; Corradino, M.; Nicolich, R.; Barreca, G.; Bertotti, G.; Ferranti, L.; Monaco, C.

    2017-12-01

    The 3D stratigraphic architecture and Late Neogene to Recent tectonic evolution of the Paola Basin (offshore western Calabria), a segment in the fore-arc of the Tyrrhenian-Ionian subduction system, is reconstructed by using a grid of high-penetration reflection seismics. Oligocene to Messinian deposits are interpreted all along the profile. They tend to fossilize preexisting topography and reach the largest thicknesses between (fault controlled) basement highs. Plio-Quaternary deposits are found over the entire area and display variations in thickness and tectonic style. They are thicken up to 4.5 km in the depocenter of the basin, and decrease both in the east and west termination of the lines. The Paola Basin can be partitioned into two sectors with different tectonic deformation, separated by a NNW-SSE elongated area that coincides with the basin depocenter. Tectonic features associated with strike-slip restraining and releasing bends are widely spread over the western sector of the basin. Overall, they form an approximately NS-trending and geomorphically prominent ridge separating the Paola Basin from the Marsili abyssal plain. A high-angle, NNE-trending, normal fault system develops on the south-west tip of the basin, where the faults offset the Messinian horizon of ca. 500 m. Data suggest that limited vertical slip occurs along reverse faults detected at the border and inside the sedimentary infilling of the Paola Basin, reaching thickness of more than 3.8s two way travel time. The reflection sequence pattern can be interpreted as a result of the infilling of the thrust-top basin related to a prograding system, located between a growth ramp-anticline to the west and a culmination of basement-thrust sheets to the East. We propose that the Paola Basin developed near the northern edge of the Ionian slab where tearing of the lithosphere is expected. Also, the strike-slip fault system is a kinematic consequence of obliquely convergent subduction settings, where interplate strain is partitioned into arc-parallel strike-slip zones within the fore-arc, arc or back-arc region.

  1. The influence of tectonic inheritance on crustal extension style following failed subduction of continental crust: applications to metamorphic core complexes in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.

    2017-12-01

    The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.

  2. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences active folding of the Rajang Group fold-thrust belt to present and these events reactivated old major faults and minor related dislocations. From geomorphic analysis associated with sedimentary record, we posit that the terrain could have undergone high uplift rates since 5 Ma or multi-phased uplift with periodic intermittent pulses of high and low uplift rates.

  3. Geometry of a large-scale low-angle mid-crustal thrust (Woodroffe Thrust, Central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Mancktelow, Neil S.; Hawemann, Friedrich; Pennacchioni, Giorgio; Camacho, Alfredo

    2015-04-01

    Young orogens, such as the Alps, mainly expose the upper part of the continental crust and it is not possible to follow large-scale thrusts (e.g. the Glarus Thrust) to great depth in order to study their changing rheological behavior. This knowledge, however, is crucial for determining the overall kinematic and dynamic response during collision, as middle to lower crustal rocks represent the major part of the total crustal section. Information from deeper parts of the continental crust can only be obtained directly by investigating regions where these levels are now exhumed. The Musgrave Ranges in Central Australia is a very well exposed, semi-desert area, in which numerous large-scale shear zones developed during the Petermann Orogeny around 550 Ma. The most prominent structure is the ˜400 km long E-W trending Woodroffe Thrust, which placed ˜1.2 Ga granulites onto similarly-aged amphibolite and granulite facies gneisses along a generally south-dipping thrust plane with a top-to-north shear sense. Geothermobarometric calculations on the associated mylonites established that the structure developed under mid-crustal conditions (500-650°C, 0.8-1 GPa). Regional P/T variations in the direction of thrusting are small, but show trends consistent with the south-dipping orientation of the thrust plane, which predicts deeper levels and a higher metamorphic grade in the south than in the north. They imply a very low gradient of only around 3°C/km for a distance of some 30 km in the movement direction of the thrust. Combined with a geothermal gradient on the order of 20°C/km, calculated from four separate P/T estimates from the hanging wall and footwall, this regional gradient indicates that the Woodroffe Thrust was originally shallow-dipping at an average angle of only around 9°. This suggests that upper crustal brittle thrusts do not necessarily steepen into the middle to lower crust, but can define very shallow-dipping, large-scale planar features, with dimensions in the order of hundreds of kilometres. Such a geometry would require the rocks to be weak, but field observations (e.g. large volumes of syn-tectonic pseudotachylyte) argue for strong behaviour, involving alternating fast (seismic) fracturing and slow (aseismic) creep.

  4. Polyphasic taxonomy, a consensus approach to bacterial systematics.

    PubMed Central

    Vandamme, P; Pot, B; Gillis, M; de Vos, P; Kersters, K; Swings, J

    1996-01-01

    Over the last 25 years, a much broader range of taxonomic studies of bacteria has gradually replaced the former reliance upon morphological, physiological, and biochemical characterization. This polyphasic taxonomy takes into account all available phenotypic and genotypic data and integrates them in a consensus type of classification, framed in a general phylogeny derived from 16S rRNA sequence analysis. In some cases, the consensus classification is a compromise containing a minimum of contradictions. It is thought that the more parameters that will become available in the future, the more polyphasic classification will gain stability. In this review, the practice of polyphasic taxonomy is discussed for four groups of bacteria chosen for their relevance, complexity, or both: the genera Xanthomonas and Campylobacter, the lactic acid bacteria, and the family Comamonadaceae. An evaluation of our present insights, the conclusions derived from it, and the perspectives of polyphasic taxonomy are discussed, emphasizing the keystone role of the species. Taxonomists did not succeed in standardizing species delimitation by using percent DNA hybridization values. Together with the absence of another "gold standard" for species definition, this has an enormous repercussion on bacterial taxonomy. This problem is faced in polyphasic taxonomy, which does not depend on a theory, a hypothesis, or a set of rules, presenting a pragmatic approach to a consensus type of taxonomy, integrating all available data maximally. In the future, polyphasic taxonomy will have to cope with (i) enormous amounts of data, (ii) large numbers of strains, and (iii) data fusion (data aggregation), which will demand efficient and centralized data storage. In the future, taxonomic studies will require collaborative efforts by specialized laboratories even more than now is the case. Whether these future developments will guarantee a more stable consensus classification remains an open question. PMID:8801440

  5. Foreshock occurrence before large earthquakes

    USGS Publications Warehouse

    Reasenberg, P.A.

    1999-01-01

    Rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured in two worldwide catalogs over ???20-year intervals. The overall rates observed are similar to ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering based on patterns of small and moderate aftershocks in California. The aftershock model was extended to the case of moderate foreshocks preceding large mainshocks. Overall, the observed worldwide foreshock rates exceed the extended California generic model by a factor of ???2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events, a large majority, composed of events located in shallow subduction zones, had a high foreshock rate, while a minority, located in continental thrust belts, had a low rate. These differences may explain why previous surveys have found low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggests the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich. If this is so, then the California generic model may significantly underestimate the conditional probability for a very large (M ??? 8) earthquake following a potential (M ??? 7) foreshock in Cascadia. The magnitude differences among the identified foreshock-mainshock pairs in the Harvard catalog are consistent with a uniform distribution over the range of observation.

  6. Stress transfer among en echelon and opposing thrusts and tear faults: Triggering caused by the 2003 Mw = 6.9 Zemmouri, Algeria, earthquake

    USGS Publications Warehouse

    Lin, J.; Stein, R.S.; Meghraoui, M.; Toda, S.; Ayadi, A.; Dorbath, C.; Belabbes, S.

    2011-01-01

    The essential features of stress interaction among earthquakes on en echelon thrusts and tear faults were investigated, first through idealized examples and then by study of thrust faulting in Algeria. We calculated coseismic stress changes caused by the 2003 Mw = 6.9 Zemmouri earthquake, finding that a large majority of the Zemmouri afterslip sites were brought several bars closer to Coulomb failure by the coseismic stresses, while the majority of aftershock nodal planes were brought closer to failure by an average of ~2 bars. Further, we calculated that the shallow portions of the adjacent Thenia tear fault, which sustained ~0.25 m slip, were brought >2 bars closer to failure. We calculated that the Coulomb stress increased by 1.5 bars on the deeper portions of the adjacent Boumerdes thrust, which lies just 10–20 km from the city of Algiers; both the Boumerdes and Thenia faults were illuminated by aftershocks. Over the next 6 years, the entire south dipping thrust system extending 80 km to the southwest experienced an increased rate of seismicity. The stress also increased by 0.4 bar on the east Sahel thrust fault west of the Zemmouri rupture. Algiers suffered large damaging earthquakes in A.D. 1365 and 1716 and is today home to 3 million people. If these shocks occurred on the east Sahel fault and if it has a ~2 mm/yr tectonic loading rate, then enough loading has accumulated to produce a Mw = 6.6–6.9 shock today. Thus, these potentially lethal faults need better understanding of their slip rate and earthquake history.

  7. Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran.

    NASA Astrophysics Data System (ADS)

    Collignon, Marine; Yamato, Philippe; Castelltort, Sébastien; Kaus, Boris

    2016-04-01

    Mountain building and landscape evolution are controlled by the interactions between river dynamics and tectonic forces. Such interactions have been largely studied but a quantitative evaluation of tectonic/geomorphic feedbacks remains required for understanding sediments routing within orogens and fold-and-thrust belts. Here, we employ numerical simulations to assess the conditions of uplift and river incision necessary to deflect an antecedent drainage network during the growth of one or several folds. We propose that a partitioning of the river network into internal (endorheic) and longitudinal drainage arises as a result of lithological differences within the deforming crustal sedimentary cover. We show with examples from the Zagros Fold Belt (ZFB) that drainage patterns can be linked to the incision ratio R between successive lithological layers, corresponding to the ratio between their relative erodibilities or incision coefficients. Transverse drainage networks develop for uplift rates smaller than 0.8 mm.yr-1 and -10 < R < 10. Intermediate drainage network are obtained for uplift rates up to 2 mm.yr-1 and incision ratios of 20. Parallel drainage networks and formation of sedimentary basins occur for large values of incision ratio (R >20) and uplift rates between 1 and 2 mm.yr-1. These results have implications for predicting the distribution of sediment depocenters in fold-and-thrust belts, which can be of direct economic interest for hydrocarbon exploration.

  8. Coseismic gravitational potential energy changes induced by global earthquakes during 1976 to 2016

    NASA Astrophysics Data System (ADS)

    Xu, C.; Chao, B. F.

    2017-12-01

    We compute the coseismic change in the gravitational potential energy Eg using the spherical-Earth elastic dislocation theory and either the fault model treated as a point source or the finite fault model. The rate of the accumulative coseismic Eg loss produced by historical earthquakes from 1976 to 2016 (about 4, 2000 events) using the GCMT catalogue are estimated to be on the order of -2.1×1020 J/a, or -6.7 TW (1 TW = 1012 watt), amounting to 15% in the total terrestrial heat flow. The energy loss is dominated by the thrust-faulting, especially the mega-thrust earthquakes such as the 2004 Sumatra earthquake (Mw 9.0) and the 2011 Tohoku-Oki earthquake (Mw 9.1). It's notable that the very deep-focus earthquakes, the 1994 Bolivia earthquake (Mw 8.2) and the 2013 Okhotsk earthquake (Mw 8.3), produced significant overall coseismic Eg gain according to our calculation. The accumulative coseismic Eg is mainly released in the mantle with a decrease tendency, and the core of the Earth also lost the coseismic Eg but with a relatively smaller magnitude. By contrast, the crust of the Earth gains Eg cumulatively because of the coseismic deformations. We further investigate the tectonic signature in these coseismic crustal gravitational potential energy changes in the complex tectonic zone, such as Taiwan region and the northeastern margin of Tibetan Plateau.

  9. Contemporary seismicity in and around the Yakima Fold and Thrust Belt in eastern Washington

    USGS Publications Warehouse

    Gomberg, J.; Sherrod, B.; Trautman, M.; Burns, E.; Snyder, Diane

    2012-01-01

    We examined characteristics of routinely cataloged seismicity from 1970 to the present in and around the Yakima fold‐and‐thrust belt (YFTB) in eastern Washington to determine if the characteristics of contemporary seismicity provide clues about regional‐scale active tectonics or about more localized, near‐surface processes. We employed new structural and hydrologic models of the Columbia River basalts (CRB) and found that one‐third to one‐half of the cataloged earthquakes occur within the CRB and that these CRB earthquakes exhibit significantly more clustered, and swarmlike, behavior than those outside. These results and inferences from published studies led us to hypothesize that clustered seismicity is likely associated with hydrologic changes in the CRB, which hosts the regional aquifer system. While some general features of the regional groundwater system support this hypothesis, seismicity patterns and mapped long‐term changes in groundwater levels and present‐day irrigation neither support nor refute it. Regional tectonic processes and crustal‐scale structures likely influence the distribution of earthquakes both outside and within the CRB as well. We based this inference on qualitatively assessed alignments between the dominant northwest trends in the geologic structure and the seismicity generally and between specific faults and characteristics of the 2009 Wooded Island swarm and aseismic slip, which is the only cluster studied in detail and the most vigorous since regional monitoring began.

  10. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Dong, Shuwen; Cawood, Peter A.; Zhao, Guochun; Johnston, Stephen T.; Zhang, Yueqiao; Xin, Yujia

    2018-05-01

    In the Mesozoic, South China was situated along the convergent margin between the Asian and Pacific plates, providing an excellent laboratory to understand the interactions between deformation, sedimentation and magmatism in a retroarc environment. The crustal architecture of northwest South China is displayed along the ∼600-km-long SINOPROBE deep seismic reflection profiles and reveals from east to west: (1) highly folded and truncated reflectors in the upper crust of the Yangtze Fold Zone, which correspond to thin- and thick-skinned thrust systems, and document large-scale intraplate structural imbrication and shortening; (2) a crustal-scale flat-ramp-flat structure, termed the Main Yangtze decollement, which forms a weak, viscous layer to accommodate strain decoupling and material transport in the thin- and thick-skinned systems; and (3) nearly flat-lying reflectors in the Sichuan Basin, which support interpretation of the basin as a weakly deformed depocentre. The Yangtze Fold Zone and the Sichuan Basin represent a retro-arc foreland basin system that is >800 km away from the continental-margin magmatic arc. We suggest that tectonic processes across the arc and retro-arc systems, including arc magma flare-up, basin sedimentation, retroarc thrust propagation, lithosphere underthrusting, root foundering, and extension-related magmatism were interrelated and governed mass transfer. Age data and geological relations link the tectonic processes to evolving geodynamics of the subducting Paleo-Pacific plate.

  11. Tectonics and kinematics of a foreland folded belt influenced by salt, arctic Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, J.C.

    1996-12-31

    The Ordovician (upper Arenig-Llanvirn) Bay Fiord Formation is one of three widespread evaporite units known to have profoundly influenced the style of contractional tectonics within the Innuitian orogen of Arctic Canada. In the western Arctic Islands, the salt-bearing Bay Fiord Formation has accommodated buckling and mostly subsurface thrusting in the west-trending Parry Islands foldbelt. A characteristic feature of this belt is a stratigraphic succession more than 10 km thick featuring three rigid and widespread sedimentary layers and two intervening ductile layers (lower salt and upper shale). The ductile strata have migrated to anticlinal welts during buckling. Other features of themore » foldbelt include (1) an extreme length of individual upright folds (up to 330 km), (2) extreme foldbelt width (up to 11%), (5) a shallow dipping salt decollement system (0.1{degrees}-0.6{degrees}) that has also been folded in the hinterland and later extended, and (6) a complete absence of halokinetic piercing diapirs. The progression from simple thrust-fold structure on the foldbelt periphery to complex in the interior provides a viable kinematic model for this and other contractional salt provinces. One feature of this model is a single massive triangle zone structure (passive roof duplex) that may envelop the entire 200-km width of the foldbelt and underlie an area exceeding 52,000 km{sup 2}.« less

  12. Large-Scale Crustal-Block-Extrusion During Late Alpine Collision.

    PubMed

    Herwegh, Marco; Berger, Alfons; Baumberger, Roland; Wehrens, Philip; Kissling, Edi

    2017-03-24

    The crustal-scale geometry of the European Alps has been explained by a classical subduction-scenario comprising thrust-and-fold-related compressional wedge tectonics and isostatic rebound. However, massive blocks of crystalline basement (External Crystalline Massifs) vertically disrupt the upper-crustal wedge. In the case of the Aar massif, top basement vertically rises for >12 km and peak metamorphic temperatures increase along an orogen-perpendicular direction from 250 °C-450 °C over horizontal distances of only <15 km (Innertkirchen-Grimselpass), suggesting exhumation of midcrustal rocks with increasing uplift component along steep vertical shear zones. Here we demonstrate that delamination of European lower crust during lithosphere mantle rollback migrates northward in time. Simultaneously, the Aar massif as giant upper crustal block extrudes by buoyancy forces, while substantial volumes of lower crust accumulate underneath. Buoyancy-driven deformation generates dense networks of steep reverse faults as major structures interconnected by secondary branches with normal fault component, dissecting the entire crust up to the surface. Owing to rollback fading, the component of vertical motion reduces and is replaced by a late stage of orogenic compression as manifest by north-directed thrusting. Buoyancy-driven vertical tectonics and modest late shortening, combined with surface erosion, result in typical topographic and metamorphic gradients, which might represent general indicators for final stages of continent-continent collisions.

  13. Transpressional Structure in Chiayi Area, Taiwan: Insight from the 2017 ML5.1 Zhongpu Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Feng, K. F.; Huang, H. H.

    2017-12-01

    The Chiayi area is located at the deformation front of active fold-and-thrust belt of Taiwan, where the fault system is composed primarily of a series of north-south-trending east-dipping thrusts and also an east-west-trending strike-slip fault (Meishan Fault, MSF) with right-lateral faulting. On 24th May 2017, a ML 5.1 earthquake occurred at Zhongpu, Chiayi (namely Zhongpu earthquake), however, shows a left-lateral strike-slip faulting distinct from the known structure in the area. The distribution of the reported aftershocks is difficult to distinguish the actual fault plane. To determine the fault plane of this abnormal earthquake and investigate its structural relationships to the regional tectonics, we relocate the earthquake sequence and estimate the rupture directivity of the mainshock by using the 3-D double difference hypocenter relocation method (Lin, 2013) and the 3-D directivity moment tensor inversion method (DMT, Huang et al., 2017, submitted). The DMT results show that the rupture directivity of the Zhongpu earthquake is west- and down-ward along the east-west fault plane, which also agrees with east-west-distributed aftershocks after relocation. As a result, the Zhongpu earthquake reveals an undiscovered east-west-trending structure which is sub-parallel with the MSF but with opposite faulting direction, exhibiting a complex transpressional tectonic regime in the Chiayi area.

  14. Drainage basin and topographic analysis of a tropical landscape: Insights into surface and tectonic processes in northern Borneo

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad

    2016-07-01

    We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.

  15. Structural development of an Archean Orogen, Western Point Lake, Northwest Territories

    NASA Astrophysics Data System (ADS)

    Kusky, Timothy M.

    1991-08-01

    The Point Lake orogen in the central Archean Slave Province of northwestern Canada preserves more than 10 km of structural relief through an eroded antiformal thrust stack and deeper anastomosing midcrustal mylonites. Fault restoration along a 25 km long transect requires a minimum of 69 km slip and 53 km horizontal shortening. In the western part of the orogen the basal decollement places mafic plutonic/volcanic rocks over an ancient tonalitic gneiss complex. Ten kilometers to the east in the Keskarrah Bay area, slices of gneiss unroofed on brittle thrusts shed molasse into several submerged basins. Conglomerates and associated thinly bedded sedimentary rocks are interpreted as channel, levee, and overbank facies of this thrust-related sedimentary fan system. The synorogenic erosion surface at the base of the conglomerate truncates premetamorphic or early metamorphic thrust faults formed during foreland propagation, while other thrusts related to hinterland-progressing imbrication displace this unconformity. Tightening of synorogenic depositional troughs resulted in the conglomerates' present localization in synclines to the west of associated thrust faults and steepening of structural dips. Eastern parts of the orogen consist of isoclinally folded graywackes composed largely of Mutti and Ricci-Lucchi turbidite facies B, C, and D, interpreted as submarine fan deposits eroded from a distant volcanic arc. Thrust faults in the metasedimentary terrane include highly disrupted slate horizons with meter-scale duplex structures, and recrystallized calcmylonites exhibiting sheath folds and boudin trains with very large interboudin distances. The sequence of fabric development and the overall geometry of this metasedimentary terrane strongly resembles younger forearc accretionary prisms. Conditions of deformation along the thrusts parallel the regional metamorphic zonation: amphibolite facies in the basal decollement through greenschist facies shear zones to cataclastic crush zones in the region of emergent thrusts in Keskarrah Bay. Depth differences can account for only half of the metamorphic gradient; thermal profiles which increased downwards in obducted greenstone belts and synthrusting plutonism explains other high metamorphic gradients. A tectonic model involving the collision of an accretionary prism with a continental margin best explains the structural and sedimentological evolution of the orogen.

  16. The influence of topographic stresses on faulting, emphasizing the 2008 Wenchuan, China earthquake rupture

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.; Zhang, G.

    2013-12-01

    The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip distribution, considering several published fault models. These models differ primarily in slip magnitude and planar vs. listric fault geometry at depth. Preliminary results indicate that topographic stresses are generally resistive to tectonic deformation, especially above ~10 km depth, where the faults are steep in all models. Down-dip topographic shear stresses on the fault are normal sense where the faults dip steeply, and reach 20 MPa on the fault beneath the Pengguan massif. Reverse-sense shear up to ~15 MPa is present on gently-dipping thrust flats at depth on listric fault models. Strike-slip shear stresses are sinistral on the steep, upper portions of faults but may be dextral on thrust flats. Topographic normal stress on the faults reaches ~80 MPa on thrust ramps and may be higher on flats. Coseismic slip magnitude is negatively correlated with topographic normal and down-dip shear stresses. The spatial patterns of topographic stresses and slip suggest that topographic stresses have significantly suppressed slip in certain areas: slip maxima occur in areas of locally lower topographic stresses, while areas of higher down-dip shear and normal stress show less slip than adjacent regions.

  17. Pennsylvanian-Permian tectonism in the Great Basin: The Dry Mountain trough and related basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, W.S.; Spinosa, C.; Gallegos, D.M.

    1991-02-01

    Pennsylvanian-Permian tectonism affected the continental margin of western North America from the Yukon to the Mojave Desert. Specific signatures of this tectonism include local angular unconformities, regional disconformities, renewed outpouring of clastic debris from a reactivated Antler and related highlands, and development of deeper water basins with anoxic sediments deposited below wave base. The basins formed include Ishbel trough (Canada), the Wood River basin (Idaho), Cassia basin, Ferguson trough, Dry Mountain trough (all Nevada), and unnamed basins in Death Valley-Mojave Desert region. The Dry Mountain trough (DMT) was initiated during early Wolfcampian and received up to 1,200 m of sedimentmore » by the late Leonardian. The lower contact is a regional unconformity with the Ely Limestone, or locally with the Diamond Peak or Vinini formations. Thus, following a period of localized regional uplift that destroyed the Ely basin, portions of the uplifted and exposed shelf subsided creating the Dry Mountain trough. Evidence suggesting a tectonic origin for the DMT includes (1) high subsidence rates (60-140 m/m.y.); (2) renewed influx of coarse clastic debris from the Antler highlands: (3) possible pre-Early Permian folding, thrusting, and tilting within the highlands; and (4) differential subsidence within the Dry Mountain trough, suggesting the existence of independent fault blocks.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocharova, N.Yu.; Scotese, C.R.; Pristavakina, E.I.

    A digital geographic database for the former USSR was compiled using published geologic and geodynamic maps and the unpublished suture map of Lev Zonenshain (1991). The database includes more than 900 tectonic features: strike-slip faults, sutures, thrusts, fossil and active rifts, fossil and active subduction zones, boundaries of the major and minor Precambrian blocks, ophiolites, and various volcanic complexes. The attributes of each structural unit include type of structure, name, age, tectonic setting and geographical coordinates. Paleozoic and Early Mesozoic reconstructions of the former USSR and adjacent regions were constructed using this tectonic database together with paleomagnetic data and themore » motions of continent over fixed hot spots. Global apparent polar wander paths in European and Siberian coordinates were calculated back to Cambrian time, using the paleomagnetic pole summaries of Van der Voo (1992) and Khramov (1992) and the global plate tectonic model of the Paleomap Project (Scotese and Becker, 1992). Trajectories of intraplate volcanics in South Siberia, Mongolia, Scandinavia and data on the White Mountain plutons and Karoo flood basalts were also taken into account. Using new data, the authors recalculated the stage and finite poles for the rotation of the Siberia and Europe with respect to the hot spot reference frame for the time interval 160 to 450 Ma.« less

  19. Neogene Tectonics of Part of the Junction of Cyprus and Hellenic Arcs in the Eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Küçük, H. M.; Dondurur, D.; ćifçi, G.; Gürçay, S.; Hall, J.; Yaltırak, C.; Aksu, A. E.

    2012-04-01

    The junction between the Hellenic and Cyprus Arcs is one of the tectonically most active regions of the eastern Mediterranean. This junction developed in association with convergence between the African and Eurasian Plates, and the re-organization of the smaller Aegean-Anatolian and Arabian Microplates. Recent studies have shown that the predominant Miocene deformation process in the eastern Mediterranean is compressional tectonism. However, many studies have also shown that the strain is partitioned in the Pliocene-Quaternary and the area displays regions dominated by compression, strike slip and extensional tectonism. The junction between the Hellenic and Cyprus Arcs exhibits complex morphological features including submarine mountains, rises, ridges and trenches. Approximately 600 km of high resolution 72-channel seismic profiles were collected from the junction of Cyprus and Hellenic Arcs using a 450 m long 6.25 m hydrophone spacing streamer and a seven gun array with a 200 cubic inch total volume. This project was part of the joint scientific venture between Dokuz Eylül University (Turkey) and Memorial University of Newfoundland (Canada), and was funded by TÜBITAK and NSERC. The study area includes the southwestern Antalya Basin and the Anaxagoras Mountain of the larger Anaximander Mountains. The multichannel data were processed both at Dokuz Eylül and Memorial University of Newfoundland, using the Landmark Graphics ProMAX software, with automatic gain control, short-gap deconvolution, velocity analysis, normal move-out correction, stack, filter (typically 50-200 Hz bandpass), f-k time migration, and adjacent trace sum. Despite the fact that the source volume was modest, reflections are imaged to 2-3 s two-way time below seabed, even in 2 km water depth. The processed seismic reflection profiles show that there are three distinct sedimentary units, separated by two prominent markers: the M-reflector separates the Pliocene-Quaternary from the underlying Messinian evaporite successions, and the N-reflector separates the Messinian evaporite successions from the pre-Messinian Miocene sediments. Interpretation of the data clearly shows that the Miocene and Pliocene-Quaternary tectonic frameworks of the Anaxagoras Mountain are dominated by thrust faults. These major faults in turn, control all of the sedimentary structures observed over the submarine mountain. These thrusts display E-W trending map traces and show southerly vergence. The seismic profiles across the southwestern margin of the Antalya Basin, immediately north of the Anaxagoras Mountain show the presence of numerous upright anticlines and their intervening synclines. These structures are interpreted as salt-cored anticlines. Although mud volcanoes and diapiric structures have also been observed in the area, the normal-move-out velocities suggest that these structures are indeed cored by evaporites. The western margin of the Anaxagoras Mountain is delineated by a profound lineation which separates it from the Anaximander Mountains in the west. In the seismic reflection profiles, this lineation appears to be controlled by NE-SW-trending and mainly west-verging thrusts. The tip points of these thrusts lie at the depositional surface, and their trajectories can be traced well below 4-5 seconds. It is speculated that this prominent and somewhat arcuate boundary defines a crustal scale structure that links the Anaximander Mountains to the Antalya Basin. If so, it might have a sinistral strike slip component, possibly associated with the clockwise rotation of the Anaxagoras Mountain. The acoustic basement is located at approximately 5-6 s in the seismic reflection profiles from the Antalya Basin, and is interpreted to include Miocene-Oligocene sediments. A short seismic profile from the eastern side of Finike basin shows that Pliocene-Quaternary thickness of Finike Basin is more than in the Antalya Basin. The fact that no unequivocal evaporite successions are observed in the Finike Basin is puzzling and requires that the Finike Basin either remained above the depositional surface during the Messinian or was isolated from the eastern Mediterranean Sea.

  20. Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Song, T.-R.A.; Ma, K.-F.; Wald, D.J.

    2001-01-01

    We report on the fault complexity of the large (Mw = 7.6) Chi-Chi earthquake obtained by inverting densely and well-distributed static measurements consisting of 119 GPS and 23 doubly integrated strong motion records. We show that the slip of the Chi-Chi earthquake was concentrated on the surface of a "wedge shaped" block. The inferred geometric complexity explains the difference between the strike of the fault plane determined by long period seismic data and surface break observations. When combined with other geophysical and geological observations, the result provides a unique snapshot of tectonic deformation taking place in the form of very large (>10m) displacements of a massive wedge-shaped crustal block which may relate to the changeover from over-thrusting to subducting motion between the Philippine Sea and the Eurasian plates.

  1. Mining problems caused by tectonic stress in Illinois basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.J.

    1991-08-01

    The Illinois basin coalfield is subject to a contemporary tectonic stress field in which the principal compressive stress axis ({sigma}1) is horizontal and strikes N60{degree}E to east-west. This stress is responsible for widespread development of kind zones and directional roof failures in mine headings driven perpendicular to {sigma}1. Also, small thrust faults perpendicular to {sigma}1 and joints parallel to {sigma}1 weaken the mine roof and occasionally admit water and gas to workings, depending upon geologic setting. The direction of magnitude of stress have been identified by a variety of techniques that can be applied both prior to mining and duringmore » development. Mining experience shows that the best method of minimizing stress-related problems is to drive mine headings at about 45 to {sigma}1.« less

  2. Influence of soil development on the geomorphic evolution of landscapes: An example from the Transverse Ranges of California

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; McFadden, L. D.; Matti, J.; Powell, R.

    2002-03-01

    Soil development can significantly influence the topographic evolution of a tectonically deforming mountain piedmont. Faults and folds associated with the North Frontal thrust system deform piedmont sediments of variable compositions along the north flank of the San Bernardino Mountains. The topographic expressions of folds with similar structural characteristics diverge appreciably, primarily as a function of differences in sediment composition and associated soil development. Soils with petrocalcic horizons in limestone- rich deposits are resistant to erosion, and anticlinal folds form prominent ridges. Folds forming in granite-derived deposits with argillic soil horizons are eroded and/or buried and are therefore topographically less pronounced. We propose that these landform contrasts can be explained by differences in soil-controlled hydrologic and erosion characteristics of deposits without calling upon changes in tectonic style along the mountain front.

  3. Ar/Ar geochronology in the western Tianshan (northwestern China): from Carboniferous (ultra)high-pressure metamorphism and thrusting to Permian strike-slip deformation and fluid ingress

    NASA Astrophysics Data System (ADS)

    de Jong, K.; Wang, B.; Ruffet, G.; Shu, L. S.; Faure, M.

    2012-04-01

    The Tianshan belt (northwestern China) is a major tectonic element of the southern Central Asian Orogenic Belt that contains a number of ophiolitic mélanges and (ultra)high-pressure metamorphic belts formed after closure of oceanic and back-arc basins that resulted in terrane collisions. Deciphering its tectonic evolution is thus crucial for understanding the amalgamation of Central Asia. We produce robust 40Ar/39Ar laser-probe evidence that the Tianshan is a Late Palaeozoic (ultra)high-pressure metamorphic collision belt, not a Triassic one, as suggested by some SHRIMP zircon ages in recent literature. Instead of trying to date the peak pressure conditions we focused on 40Ar/39Ar analysis of white mica formed during retrograde recrystallisation when the (ultra)high-pressure metamorphic rocks of the Changawuzi-Kekesu complex were exhumed. Exhumation was coeval with their northward thrusting over the southern margin of the Yili terrane, the easternmost element of the Kazakhstan composite super-terrane, which produced main phase tectonic structures. The Yili terrane comprises a Proterozoic basement covered by metasediments, intruded by Early Carboniferous granites when it formed part of a continental margin arc. During the Permian deformation was partitioned in vertical brittle-ductile strike-slip fault zones that reactivated these suture zones and in which bimodal magmatism was concentrated. We also investigate the effects of these events on the isotopic ages of mica. 40Ar/39Ar laser-probe dating of white mica reveals that the strongest retrogressed blueschists immediately above the basal thrust fault of the Changawuzi-Kekesu belt gave the youngest plateau age of 316 ± 2 Ma (1σ). White mica in greenschist-facies metamorphic quartzite from the ductilely deformed metasedimentary cover of the Yili terrane's crystalline basement, taken at about 1 km below the thrust contact with the overlying Changawuzi-Kekesu belt, yielded a plateau age of 323 ± 1 Ma (1σ). Elsewhere, such metasediments yielded plateau ages (1σ) of 253 ± 1 (muscovite) and 252 ± 1 (biotite) Ma, whereas biotite from an undeformed ca. 340 Ma-old granite intruding the Yili terrane's southern margin gave a 263 ± 1 Ma plateau age (1σ). The 263-252-Ma-old samples were taken between 2 and 5 km across strike from the Permian Qingbulak-Nalati strike-slip fault, and within the 15-20 km wide zone with steeply dipping tectonic fabrics used by intruding Permian granites, and associated mineralisations. We interpret these Permian ages by recrystallisation of the mica by (late magmatic?) fluid flow channeled into these steep zones. Laser-probe dating of mylonite whole-rock samples from the North Tianshan - Main Tianshan strike-slip fault zone yielded 40Ar/39Ar spectra with step ages in the 255-285 Ma range, which date the movement on this ductile shear zone. The picture is emerging that a convective fluid system partly driven by magmatic heat, existed in a strongly fractured and weakened crust with an elevated heat flow, leading to regional-scale isotope resetting. We suggest that surprisingly young isotopic ages for early orogenic (ultra)high-pressure metamorphism are similarly due to fluid-mediated recrystallisation, leading to the erroneous view that the Tianshan is a Triassic orogenic belt.

  4. The Alpine nappe stack in western Austria: a crustal-scale cross section

    NASA Astrophysics Data System (ADS)

    Pomella, Hannah; Ortner, Hugo; Zerlauth, Michael; Fügenschuh, Bernhard

    2015-04-01

    Based on an N-S-oriented crustal-scale cross section running east of the Rhine Valley in Vorarlberg, western Austria, we address the Alpine nappe stack and discuss the boundary between Central and Eastern Alps. For our cross section, we used surface geology, drillings and reinterpreted seismic lines, together with published sections. The general architecture of the examined area can be described as a typical foreland fold-and-thrust belt, comprising the tectonic units of the Subalpine Molasse, (Ultra-)Helvetic, Penninic and Austroalpine nappes. These units overthrusted the autochthonous Molasse along the south-dipping listric Alpine basal thrust. The European Basement, together with its autochthonous cover, dips gently towards the south and is dissected by normal faults and trough structures. The seismic data clearly show an offset not only of the top of the European Basement, but also of the Mesozoic cover and the Lower Marine Molasse. This indicates an activity of the structures as normal faults after the sedimentation of the Lower Marine Molasse. The Subalpine Molasse is multiply stacked, forming a triangle zone at the boundary with the foreland Molasse. The shortening within the Subalpine Molasse amounts to approximately 45 km (~67 %), as deduced from our cross section with the Lower Marine Molasse as a reference. The hinterland-dipping duplex structure of the Helvetic nappes is deduced from surface and borehole data. There are at least two Helvetic nappes needed to fill the available space between the Molasse below and the Northpenninic above. This is in line with the westerly located NRP20-East transect (Schmid et al., Tectonics 15(5):1047-1048, 1996; Schmid et al., The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle, 2004), where the two Helvetic nappes are separated by the Säntis thrust. Yet in contrast to the Helvetic nappes in the NRP20-East transect, both of our Helvetic nappes comprise Cretaceous and Jurassic strata. This change is explained by an eastward down-stepping of the Säntis thrust along a pre-existing, approximately N-S striking lateral ramp bounding an inverted Jurassic graben structure below the Rhine Valley. This causes the Säntis thrust to detach the base Cretaceous west of the Rhine Valley and the base Jurassic units east of it. This graben-controlled change in detachment level leads to the formation of quite different nappe stacks on either side of the Rhine Valley and a "fault-controlled" appearance of the boundary between the Central and Eastern Alps.

  5. The Pinjaur dun (intermontane longitudinal valley) and associated active mountain fronts, NW Himalaya: Tectonic geomorphology and morphotectonic evolution

    NASA Astrophysics Data System (ADS)

    Singh, Vimal; Tandon, S. K.

    2008-12-01

    The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the intermontane valley. Surface profile analysis helped in deciphering the growth history of the fault bend fold structures of the outermost Siwalik hills. The effects of tectonic activity on the proximal part of the Indo-Gangetic plains are interpreted from the remarkable river deflections that are aligned linearly over tens of kilometers in a zone about 10 km south of the HFT. Based on these integrated structural and tectonic geomorphological approaches, a morphotectonic evolutionary model of the dun has been proposed. This model highlights the role of uplift and growth history of the fault bend fold structures of the outermost Siwalik hills on (i) the depositional landforms and drainage development of the Pinjaur dun, and (ii) valley development of the outermost Siwalik hills. Importantly, this study postulates the formation of an incipient mountain front that is evolving ahead of the HFT and the outermost Siwalik hills in the Indo-Gangetic plains.

  6. Holocene deformation offshore Ventura basin, CA, constrained by new high-resolution geophysical data

    NASA Astrophysics Data System (ADS)

    Perea, H.; Ucarkus, G.; Driscoll, N. W.; Kent, G. M.; Levy, Y.; Rockwell, T. K.

    2017-12-01

    The Transverse Ranges (Southern California, USA) accommodate the contraction resulting from a regional restraining bend in the San Andreas Fault to form a thrust-and-fold belt system. The southern boundary of this system corresponds to the E-W trending Ventura basin, which is filled by more than 5 km of Pleistocene sediment and is shortening at about 10 mm/yr as inferred from geodetic data. Although the different thrust and folds are fairly well known in the onshore areas of the basin, there is still uncertainty about their continuation in the offshore. The analysis of new high-resolution (SIO CHIRP) and existing (USGS sparker and chirp) seismic data has allowed us to characterize better the active geological structures in the offshore. In the dataset, we have identified different latest Quaternary seismostratigraphic units and horizons, with the most regionally recognized being a transgressive surface (LGTS) associated to the Last Glacial maximum and subsequent sea level rise. A series of E-W regional folds related to thrust faults have deformed the LGTS producing highs and depressions. The correlation of these structures between profiles shows that they are elongated and parallel between them and continue to the coastline. In addition, considering their trend and kinematics, we have been able to tie them with the main onshore active thrusts and folds. Above the LGTS we have identified progradational and agradational units that are related to global sea level rise, which exhibit less deformation (folding and faulting) than the lower units and horizons. However, we have recognized some specific fold growth sequences above LGTS associated with the activity of different thrust-related anticlines. Accordingly, we have identified between 3 and 5 tectonic deformation events (e.g., earthquakes) associated to thrust fault activity. These results may help us to determine the deformation history for the offshore Ventura basin and the potentiality of the thrust faults that may be tsunamigenic, and compare our observations to the onshore results.

  7. Deep Landslides in flysch formations

    NASA Astrophysics Data System (ADS)

    Marinos, Vassilis

    2017-04-01

    Flysch, linked with the tectonic development of an area, has suffered from compressional forces being highly deformed by thrust faults and folds, containing thus often tectonically pre-sheared zones of various size. These geological characteristics may produce weak to very weak rock masses which may present instability and landslides in both mountain and local slope scale. The paper mainly discusses the "mountain" scale phenomena. The size of these masses can reach hundreds of meters in both depth and width on the valley sides. A brief presentation of the flysch formation is presented. A typology is presented with 11 types of flysch, depending on the persistence and participation or not of the strong members (as sandstones) against the weak ones (as siltstones, shales) and the degree and scale of tectonic disturbance. These rock mass types are connected with the landslide mechanism. In all cases the tectonic conditions of a broader area are responsible and the establishment of the tectonic-paleogeographic model is necessary before the conceptual study and design of any major infrastructure work and the choice of its alignment or location. Given the size of such instability areas remedial measures are in most cases not feasible and the realignment or relocation from the initial plans are often the only solution. Cases from highways and pipelines in Greek and Albanian territory are presented. A large number of information from lab tests, geotechnical classifications and back analyses collected from a wide variety of flysch formations is presented and discussed.

  8. Thick-skinned tectonics closing the Rifian Corridor

    NASA Astrophysics Data System (ADS)

    Capella, Walter; Matenco, Liviu; Dmitrieva, Evelina; Roest, Wilmer M. J.; Hessels, Suzanne; Hssain, Mohamed; Chakor-Alami, Abdelwahid; Sierro, Francisco J.; Krijgsman, Wout

    2017-07-01

    Tectonic processes in the Gibraltar region are associated with Africa-Iberia convergence and the formation of the Betic-Rif orogenic system. The Late Miocene shortening recorded in the Rif orogen resulted in gradual shallowing and eventual closure of the Rifian Corridor, a narrow marine gateway connecting the Atlantic Ocean with the Mediterranean Sea. This closure is associated with paleoenvironmental changes that ultimately led to the Mediterranean Messinian Salinity Crisis. Here we present a structural analysis based on a combination of field kinematic data and interpretation of reflection seismic lines acquired for petroleum exploration to understand the deformational phases associated with the closure of the Rifian Corridor. We show the succession of three Late Miocene to present day events, an initial thin-skinned nappe thrusting, followed by regional subsidence and continued by thick-skinned contraction. The transition from in sequence thin-skinned tectonics during subduction to thick-skinned contraction during continental collision resulted in significant acceleration of tectonic uplift and associated exhumation. This is related to a change in the regional deformation linked to plate convergence, but possibly also coupled with deep lithospheric or dynamic topography processes. Such a mechanism is also common for other Mediterranean orogens during late stages of slab retreat, where accelerated tectonics resulted in rapid sedimentation and associated basins evolution. We conclude that the thick-skinned contraction in the Rif orogeny initiated in the late Tortonian, has created a cumulative uplift in the order of 1 km, and provided high enough uplift rates to close the Rifian Corridor.

  9. Formation of cratonic lithosphere during the initiation of plate tectonics

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Beall, A.; Cooper, C. M.

    2017-12-01

    The Earth's oldest near-surface material, the cratonic crust, is typically underlain by unusually thick Archean lithosphere (<300 km). This cratonic lithosphere likely thickened in a high compressional stress environment. Mantle convection in the hotter Archean Earth would have imparted relatively low stresses on the lithosphere, whether or not tectonics was operating, so a high stress signal from the early Earth is paradoxical. We propose that a rapid transition, from a stagnant lid Earth to the onset of plate tectonics, generated the high stresses required to thicken the cratonic lithosphere. Numerical calculations are used to demonstrate that an existing buoyant and strong layer, representing harzburgite and felsic crust, can thicken and stabilize during the lid-breaking event. The peak compressional stress experienced by lithosphere is 3-4 higher than for the stagnant lid or mobile lid regimes immediately before and after. It is plausible that the cratonic lithosphere has still not returned to this high stress-state, explaining its stability. The lid-breaking thickening event reproduces craton features previously attributed to subduction: thrust structures, assembled crustal fragments and transport of basaltic upper crust to depths required to generate felsic melt. Palaeoarchean `pre-tectonic' structures can also survive the lid-breaking event, acting as strong crustal rafts. Together, the results indicate that the signature of a catastrophic switch, from a stagnant lid Earth to the initiation of plate tectonics, has been captured and preserved in the unusual characteristics of cratonic crust and lithosphere.

  10. Role of extensional structures on the location of folds and thrusts during tectonic inversion (northern Iberian Chain, Spain)

    NASA Astrophysics Data System (ADS)

    Cortés, Angel L.; Liesa, Carlos L.; Soria, Ana R.; Meléndez, Alfonso

    1999-03-01

    The Aguilón Subbasin (NE Spain) was originated daring the Late Jurassic-Early Cretaceous rifting due to the action of large normal faults, probably inherited from Late Variscan fracturing. WNW-ESE normal faults limit two major troughs filled by continental deposits (Valanginian to Early Barremian). NE-SW faults control the location of subsidiary depocenters within these troughs. These basins were weakly inverted during the Tertiary with folds and thrusts striking E-W to WNW-ESE involving the Mesozoic-Tertiary cover with a maximum estimated shortening of about 12 %. Tertiary compression did not produce the total inversion of the Mesozoic basin but extensional structures are responsible for the location of major Tertiary folds. Shortening of the cover during the Tertiary involved both reactivation of some normal faults and development of folds and thrusts nucleated on basement extensional steps. The inversion style depends mainly on the occurrence and geometry of normal faults limiting the basin. Steep normal faults were not reactivated but acted as buttresses to the cover translation. Around these faults, affecting both basement and cover, folds and thrusts were nucleated due to the stress rise in front of major faults. Within the cover, the buttressing against normal faults consists of folding and faulting implying little shortening without development of ceavage or other evidence of internal deformation.

  11. Subduction- and exhumation-related structures in the Cycladic Blueschists: Insights from south Evia Island (Aegean region, Greece)

    NASA Astrophysics Data System (ADS)

    Xypolias, P.; Iliopoulos, I.; Chatzaras, V.; Kokkalas, S.

    2012-04-01

    Detailed geological mapping, structural investigation and amphibole chemistry analyses in southern Evia (Aegean Sea, Greece) allow us to place new constraints on the internal structural architecture and tectonic evolution of the Cycladic Blueschists. We show that the early deformation history was related to ESE directed thrusting resulting in the stacking of the Styra and Ochi nappes, which constitute the Cycladic Blueschist unit in Evia. These early thrust movements initiated just before and proceeded at peak conditions of the Eocene high-pressure metamorphism. Subsequent constrictional deformation gave rise to E-W trending upright folding accomplished at the early exhumation stage. The main ductile-stage exhumation occurred during a single deformation phase associated with the decompression of blueschist rocks from the stability field of crossite to that of actinolite. This phase was characterized by localization of ductile deformation into a series of major, tens of meters thick, ENE directed shear zones, which cut up-section in their transport direction and restack the early thrust and fold sequence, locally bringing the structurally lower Styra nappe over the higher Ochi nappe. It is suggested that these zones operated as thrusts rather than normal sense shear zones as has been previously argued and were possibly formed during the Oligocene ENE-ward extrusion of the blueschists. Brittle-ductile NE dipping normal faulting of post-early Miocene age was probably responsible for the final exhumation of rocks.

  12. Active deformation and seismicity in the Southern Alps (Italy): The Montello hill as a case study

    NASA Astrophysics Data System (ADS)

    Danesi, Stefania; Pondrelli, Silvia; Salimbeni, Simone; Cavaliere, Adriano; Serpelloni, Enrico; Danecek, Peter; Lovati, Sara; Massa, Marco

    2015-06-01

    The Montello anticline is a morphotectonic feature of the east pede-mountain of the South Alpine Chain in northern Italy, which lies ca. 40 km northwest of Venice, Italy. The purpose of this study is to characterize the present-day crustal deformation and seismotectonics of the Montello area through multi-parametric geophysical observations. We used new data obtained from the installation of a temporary network of 12 seismic stations and 6 GPS sites. The GPS observations indicate that there is ~ 1 mm/yr shortening across the Montello thrust. Sites located north of the Montello thrust front deviate from the ~ NNW-ward Adria-Eurasia convergence direction, as they are constrained by a relative rotation pole in northwestern Italy that has a NNE-ward motion trend. Over 18 months, seismographic recordings allowed us to locate 142 local seismic events with Ml 0.5-3.5 with good reliability (rms < 0.5). After cross-correlation analysis, we classified 42 of these events into six clusters, with cross-correlation thresholds > 0.80. The source focal solutions indicate that: (i) there is thrusting seismic activity on the basal, sub-horizontal, portion of the Montello structure; and (ii) strike-slip source kinematics prevail on the western edge of the Montello hill. Our observations on the source mechanisms and the measured crustal deformation confirm that the Montello thrust is tectonically active.

  13. How to build a model illustrating sea-floor spreading and subduction

    USGS Publications Warehouse

    Lahr, J.C.

    1999-01-01

    This report describes how to build a model of the outer 300 km (180 miles) of the Earth that can be used to develop a better understanding of the principal features of plate tectonics, including sea-floor spreading, the pattern of magnetic stripes frozen into the sea floor, transform faulting, thrust faulting, subduction, and volcanism. In addition to a paper copy of this report, the materials required are a cardboard shoebox, glue, scissors, straight edge, and safety razor blade.

  14. Geologic and Fossil Locality Maps of the West-Central Part of the Howard Pass Quadrangle and Part of the Adjacent Misheguk Mountain Quadrangle, Western Brooks Range, Alaska

    USGS Publications Warehouse

    Dover, James H.; Tailleur, Irvin L.; Dumoulin, Julie A.

    2004-01-01

    The map depicts the field distribution and contact relations between stratigraphic units, the tectonic relations between major stratigraphic sequences, and the detailed internal structure of these sequences. The stratigraphic sequences formed in a variety of continental margin depositional environments, and subsequently underwent a complexde formational history of imbricate thrust faulting and folding. A compilation of micro and macro fossil identifications is included in this data set.

  15. Mantle-derived peridotites in southwestern Oregon: relation to plate tectonics.

    PubMed

    Medaris, L G; Dott, R H

    1970-09-04

    A group of peridotites in southwestern Oregon contains high-pressure mineral assemblages reflecting recrystallization at high temperatures (1100 degrees to 1200 degrees C) over a range of pressure decreasing from 19 to 5 kilobars. It is proposed that the peridotites represent upper-mantle material brought from depth along the ancestral Gorda-Juan de Fuca ridge system, transported eastward by the spreading Gorda lithosphere plate, and then emplaced by thrust-faulting in the western margin of the Cordillera during late Mesozoic time.

  16. The structural hinge of a chain-foreland basin: Quaternary activity of the Pede-Apennine Thrust front (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Benvenuti, Marco; Bonini, Marco; Carnicelli, Stefano; Piccardi, Luigi; Sani, Federico

    2018-01-01

    The Pede-Apennine margin (Northern Italy) is a major WNW-ESE-trending morpho-structural element that delimits the Po Plain to the southwest and consists of a system of southwest dipping thrusts, generally referred to as Pede-Apennine Thrust (PAT). The leading edge of the chain lies further north-east and is buried beneath the Plio-Quaternary marine and fluvial deposits of the Po Plain. Whereas the buried external thrust fronts are obvious active structures (as demonstrated by the 2012 Emilia earthquakes; e.g. Burrato et al., 2012), ongoing activity of the PAT is debated. Using a multidisciplinary approach that integrates structural, seismic, sedimentological and pedological field data, we describe the recent activity of the PAT structures in a sector of the Pede-Apennine margin between the Panaro and the Enza Rivers (Emilia-Romagna). We found that the PAT is emergent or sub-emergent and deforms Middle Pleistocene deposits. We also infer a more recent tectonic phase ( 60-80 ka) by Optically Stimulated Luminescence (OSL) dating of soil profiles that have been deformed by a recent reactivation of the PAT. Furthermore, we show evidence that the PAT and its external splay thrusts strongly influenced the drainage pattern, causing fluvial diversions and forcing paleo-rivers to develop roughly parallel to the margin. Finally, numerical Trishear modelling has been used to calculate deformation rates for the PAT along two transects. Extrapolated slip rates vary between 0.68 and 0.79 mm·yr- 1 for about the last 1.2-0.8 million years.

  17. Seismicity and the nature of plate movement along the Himalayan arc, Northeast India and Arakan-Yoma: a review

    NASA Astrophysics Data System (ADS)

    Verma, R. K.; Kumar, G. V. R. Krishna

    1987-03-01

    The Himalaya together with Arakan-Yoma form a well defined seismic belt to the north and east of the Indian Peninsula. The Seismicity along this belt is attributed mostly to collision between the Indian and the Eurasian plates. However, the exact nature of activity along the major thrusts and faults is not well understood. The seismicity along the entire Himalaya and Northern Burma has been studied in detail. It has been found that besides the Main Boundary Fault and the Main Central Thrust several transverse features are also very active. Some of these behave like steeply dipping fracture zones. Along the Arakan-Yoma most of the seismicity appears to be due to subduction of the Indian lithosphere to the east. Analysis of focal mechanism solutions for the Himalaya shows that although thrust movements are predominant, normal and strike-slip faulting is taking place along some of the transverse features. In addition to thrusting, strike-slip faulting is also taking place along the Arakan-Yoma. Orientation of P-axes for all thrust solutions show a sharp change from predominantly east-west along the Burmese arc to N-S and NE-SW along the Himalaya. The direction further changes to NW-SE along the Baluchistan arc. It appears that the Indian lithosphere is under compression from practically all sides. The present day seismicity of Northeast India and Northern Burma can be explained in terms of a plate tectonics model after Nandy (1976). No simple model appears to be applicable for the entire Himalaya.

  18. The Seismotectonics of the Po Plain (Northern Italy): Tectonic Diversity in a Blind Faulting Domain

    NASA Astrophysics Data System (ADS)

    Vannoli, Paola; Burrato, Pierfrancesco; Valensise, Gianluca

    2015-05-01

    We present a systematic and updated overview of a seismotectonic model for the Po Plain (northern Italy). This flat and apparently quiet tectonic domain is, in fact, rather active as it comprises the shortened foreland and foredeep of both the Southern Alps and the Northern Apennines. Assessing its seismic hazard is crucial due to the concentration of population, industrial activities, and critical infrastructures, but it is also complicated because (a) the region is geologically very diverse, and (b) nearly all potential seismogenic faults are buried beneath a thick blanket of Pliocene-Pleistocene sediments, and thus can be investigated only indirectly. Identifying and parameterizing the potential seismogenic faults of the Po Plain requires proper consideration of their depth, geometry, kinematics, earthquake potential and location with respect to the two confronting orogens. To this end, we subdivided them into four main, homogeneous groups. Over the past 15 years we developed new strategies for coping with this diversity, resorting to different data and modeling approaches as required by each individual fault group. The most significant faults occur beneath the thrust fronts of the Ferrara-Romagna and Emilia arcs, which correspond to the most advanced and buried portions of the Northern Apennines and were the locus of the destructive May 2012 earthquake sequence. The largest known Po Plain earthquake, however, occurred on an elusive reactivated fault cutting the Alpine foreland south of Verona. Significant earthquakes are expected to be generated also by a set of transverse structures segmenting the thrust system, and by the deeper ramps of the Apennines thrusts. The new dataset is intended to be included in the next version of the Database of Individual Seismogenic Sources (DISS; http://diss.rm.ingv.it/diss/, version 3.2.0, developed and maintained by INGV) to improve completeness of potential sources for seismic hazard assessment.

  19. Faulting and erosion in the Argentine Precordillera during changes in subduction regime: Reconciling bedrock cooling and detrital records

    NASA Astrophysics Data System (ADS)

    Fosdick, Julie C.; Carrapa, Barbara; Ortíz, Gustavo

    2015-12-01

    The Argentine Precordillera is an archetypal retroarc fold-and-thrust belt that records tectonics associated with changing subduction regimes. The interactions between exhumation and faulting in the Precordillera were investigated using apatite and zircon (U-Th-Sm)/He and apatite fission track thermochronometry from the Precordillera and adjacent geologic domains. Inverse modeling of thermal histories constrains eastward in-sequence rock cooling associated with deformation and erosion from 18 to 2 Ma across the Central Precordillera tracking thrusting during this time. The youngest AHe ages (5-2 Ma) and highest erosion rates are located in the eastern and western extremities of the Precordillera and indicate that recent denudation is concentrated at its structural boundaries. Moreover, synchronous rapid Pliocene cooling of the Frontal Cordillera, Eastern Precordillera, and Sierra del Valle Fértil was coeval with initiation of basement-involved faulting in the foreland. Detrital zircon U-Pb geochronology from the ca. 16-8.1 Ma Bermejo foreland basin strata suggests fluvial connectivity westward beyond the Frontal Cordillera to the Main Cordillera and Coast Range followed by an important shift in sediment provenance at ca. 10 Ma. At this time, we suggest that a substantial decrease in Permo-Triassic igneous sources in the Frontal Cordillera and concurrent increase in recycled zircons signatures of Paleozoic strata are best explained by uplift and erosion of the Precordillera during widening of the thrust-belt. Bedrock thermochronology and modeling indicate a 2-6 Myr lag time between faulting-related cooling in the hinterland and the detrital record of deformation in the foreland basin, suggesting that for tectonically active semi-arid settings, bedrock cooling may be more sensitive to onset of faulting. We suggest that high erosion rates in the Frontal Cordillera and Eastern Precordillera are associated with increased interplate coupling during shallowing of the subducting Nazca plate that may concentrate stress along weak structural boundaries of the Precordillera.

  20. Rapid Ice Mass Loss: Does It Have an Influence on Earthquake Occurrence in Southern Alaska?

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne M.

    2008-01-01

    The glaciers of southern Alaska are extensive, and many of them have undergone gigatons of ice wastage on time scales on the order of the seismic cycle. Since the ice loss occurs directly above a shallow main thrust zone associated with subduction of the Pacific-Yakutat plate beneath continental Alaska, the region between the Malaspina and Bering Glaciers is an excellent test site for evaluating the importance of recent ice wastage on earthquake faulting potential. We demonstrate the influence of cumulative glacial mass loss following the 1899 Yakataga earthquake (M=8.1) by using a two dimensional finite element model with a simple representation of ice fluctuations to calculate the incremental stresses and change in the fault stability margin (FSM) along the main thrust zone (MTZ) and on the surface. Along the MTZ, our results indicate a decrease in FSM between 1899 and the 1979 St. Elias earthquake (M=7.4) of 0.2 - 1.2 MPa over an 80 km region between the coast and the 1979 aftershock zone; at the surface, the estimated FSM was larger but more localized to the lower reaches of glacial ablation zones. The ice-induced stresses were large enough, in theory, to promote the occurrence of shallow thrust earthquakes. To empirically test the influence of short-term ice fluctuations on fault stability, we compared the seismic rate from a reference background time period (1988-1992) against other time periods (1993-2006) with variable ice or tectonic change characteristics. We found that the frequency of small tectonic events in the Icy Bay region increased in 2002-2006 relative to the background seismic rate. We hypothesize that this was due to a significant increase in the rate of ice wastage in 2002-2006 instead of the M=7.9, 2002 Denali earthquake, located more than 100km away.

  1. Linkage between mantle and crustal structures and its bearing on inherited structures in northwestern Scotland

    USGS Publications Warehouse

    Snyder, D.B.; England, R.W.; McBride, J.H.

    1997-01-01

    Deep seismic reflection profiles in Scotland reveal mantle structures beneath a crust with a polyphase tectonic history that resulted in several generations of structures. Continuum mechanics suggests that coeval mantle and crustal structures must be kinematically linked. Inherited structures imply relative ages for the reflectors, ages that can be placed into the context of the geological history of the near-surface rocks of northern Scotland. Thus, some mantle reflectors are assigned Triassic ages related to the opening of the West Orkney and related marginal basins of the Atlantic Ocean. Other mantle reflectors are cut by late Caledonian structures associated with the Great Glen Fault Zone and therefore older than c. 400 Ma. Many of these structures also track the late Precambrian margin of Laurentia and may be related to either the opening (900-600 Ma) or closing (500-400 Ma) of the Iapetus Ocean. Some reflective structures may also be attributed to 1800-1700 Ma Laxfordian deformation that was part of a global-scale orogenic belt.

  2. Lithologic and structural mapping of the Abiete-Toko gold district in southern Cameroon, using Landsat 7 ETM+/SRTM

    NASA Astrophysics Data System (ADS)

    Binam Mandeng, Eugène Pascal; Bondjè Bidjeck, Louise Marie; Takodjou Wambo, Jonas Didero; Taku, Agbor; Bineli Betsi, Thierry; Solange Ipan, Antoinette; Tchami Nfada, Lionel; Bitom Dieudonné, Lucien

    2018-03-01

    The geology of the Abiete-Toko gold district in South Cameroon is investigated using a combination of Landsat 7 ETM+/SRTM image processing techniques, conventional geologic field mapping and geostatistical analysis. The satellite images were treated using Principal Component Analysis and Sobel filters to separate the background noise from lithotectonic structures which were matched with field data. The results show that this area has been affected by a polyphase deformation represented by S1 foliation, Sc1 schistosity, L1 lineation, S2 foliation, F2 folds, and F3 shear zones and faults. A detailed analysis of all the structures led to the identification of two major networks of dextral and sinistral shear zones oriented WNW-ESE and NE-SW, respectively. These results may serve in mining prospection, especially in the search for tectonically controlled primary mineralization and so may significantly guide the exploration of primary gold mineralization in the Abiete-Toko area subjected to years of artisanal gold mining.

  3. High-resolution onshore-offshore morpho-bathymetric records of modern chalk and granitic shore platforms in NW France

    NASA Astrophysics Data System (ADS)

    Duperret, Anne; Raimbault, Céline; Le Gall, Bernard; Authemayou, Christine; van Vliet-Lanoë, Brigitte; Regard, Vincent; Dromelet, Elsa; Vandycke, Sara

    2016-07-01

    Modern shore platforms developed on rocky coasts are key areas for understanding coastal erosion processes during the Holocene. This contribution offers a detailed picture of two contrasted shore-platform systems, based on new high-resolution shallow-water bathymetry, further coupled with aerial LiDAR topography. Merged land-sea digital elevation models were achieved on two distinct types of rocky coasts along the eastern English Channel in France (Picardy and Upper-Normandy: PUN) and in a NE Atlantic area (SW Brittany: SWB) in NW France. About the PUN case, submarine steps, identified as paleo-shorelines, parallel the actual coastline. Coastal erosive processes appear to be continuous and regular through time, since mid-Holocene at least. In SWB, there is a discrepancy between contemporary coastline orientation and a continuous step extending from inland to offshore, identified as a paleo-shoreline. This illustrates a polyphased and inherited shore platform edification, mainly controlled by tectonic processes.

  4. Apatite Fission-Track Analysis of the Middle Jurassic Todos Santos Formation from Chiapas, Mexico.

    NASA Astrophysics Data System (ADS)

    Abdullin, Fanis; Solé, Jesús; Shchepetilnikova, Valentina; Solari, Luigi; Ortega-Obregón, Carlos

    2014-05-01

    The Sierra de Chiapas (SCH), located in the south of Mexico, is a complex geological province that can be divided on four different lithological or tectonic areas: (1) the Chiapas Massif Complex (CMC); (2) the Central Depression; (3) the Strike-slip Fault Province, and (4) the Chiapas Fold-and-thrust Belt. The CMC mostly consists of Permian granitoids and meta-granitoids, and represents the basement of the SCH. During the Jurassic period red beds and salt were deposited on this territory, related to the main pulse of rifting and opening of the Gulf of Mexico. Most of the Cretaceous stratigraphy contains limestones and dolomites deposited on a marine platform setting during the postrift stage of the Gulf of Mexico rift. During the Cenozoic Era took place the major clastic sedimentation along the SCH. According the published low-temperature geochronology data (Witt et al., 2012), SCH has three main phases of thermo-tectonic history: (1) slow exhumation between 35 and 25 Ma, that affected mainly the basement (CMC) and is probably related to the migration of the Chortís block; (2) fast exhumation during the Middle-Late Miocene caused by strike-slip deformation that affects almost all Chiapas territory; (3) period of rapid cooling from 6 to 5 Ma, that affects the Chiapas Fold-and-thrust Belt, coincident with the landward migration of the Caribbean-North America plate boundaries. The two last events were the most significant on the formation of the present-day topography of the SCH. However, the stratigraphy of the SCH shows traces of the existence of earlier tectonic events. This study presents preliminary results of apatite fission-track (AFT) dating of sandstones from the Todos Santos Formation (Middle Jurassic). The analyses are performed with in situ uranium determination using LA-ICP-MS (e.g., Hasebe et al., 2004). The AFT data indicate that this Formation has suffered high-grade diagenesis (probably over 150 ºC) and the obtained cooling ages, about 70-60 Ma, correspond to a Late Cretaceous event. This tectonic event is contemporaneous with a startup of the Laramide Orogeny occurred in North America. The constructed time-temperature paths show the rapid cooling during the Middle-Late Miocene (15-10 Ma), like other published data. References: Hasebe et al. (2004) Chemical Geology, 207, 135-145 Witt et al. (2012) Tectonics, 31, TC6001, doi:10.1029/2012TC003141

  5. The Penokean orogeny in the Lake Superior region

    USGS Publications Warehouse

    Schulz, K.J.; Cannon, W.F.

    2007-01-01

    The Penokean orogeny began at about 1880 Ma when an oceanic arc, now the Pembine-Wausau terrane, collided with the southern margin of the Archean Superior craton marking the end of a period of south-directed subduction. The docking of the buoyant craton to the arc resulted in a subduction jump to the south and development of back-arc extension both in the initial arc and adjacent craton margin to the north. A belt of volcanogenic massive sulfide deposits formed in the extending back-arc rift within the arc. Synchronous extension and subsidence of the Superior craton resulted in a broad shallow sea characterized by volcanic grabens (Menominee Group in northern Michigan). The classic Lake Superior banded iron-formations, including those in the Marquette, Gogebic, Mesabi and Gunflint Iron Ranges, formed in that sea. The newly established subduction zone caused continued arc volcanism until about 1850 Ma when a fragment of Archean crust, now the basement of the Marshfield terrane, arrived at the subduction zone. The convergence of Archean blocks of the Superior and Marshfield cratons resulted in the major contractional phase of the Penokean orogeny. Rocks of the Pembine-Wausau arc were thrust northward onto the Superior craton causing subsidence of a foreland basin in which sedimentation began at about 1850 Ma in the south (Baraga Group rocks) and 1835 Ma in the north (Rove and Virginia Formations). A thick succession of arc-derived turbidites constitutes most of the foreland basin-fill along with lesser volcanic rocks. In the southern fold and thrust belt tectonic thickening resulted in high-grade metamorphism of the sediments by 1830 Ma. At this same time, a suite of post-tectonic plutons intruded the deformed sedimentary sequence and accreted arc terranes marking the end of the Penokean orogeny. The Penokean orogen was strongly overprinted by younger tectonic and thermal events, some of which were previously ascribed to the Penokean. Principal among these was a period of vertical faulting in the Archean basement and overlying Paleoproterozoic strata. This deformation is now known to have post-dated the terminal Penokean plutons by at least several tens of millions of years. Evidence of the Penokean orogen is now largely confined to the Lake Superior region. Comparisons with more recent orogens formed by similar plate tectonic processes implies that significant parts of a once more extensive Penokean orogen have been removed or overprinted by younger tectonic events. ?? 2007 Elsevier B.V. All rights reserved.

  6. Study of cataclastic deformation in compressive tectonic regime of a sandstone from south central Pyrenees, Spain: Timing of deformation bands occurrence during burial history and comparison with geomechanical models.

    NASA Astrophysics Data System (ADS)

    Robert, Romain; Robion, Philippe; David, Christian; Souloumiac, Pauline; Saillet, Elodie

    2017-04-01

    In high porosity sandstone lithologies, deformation bands (DBs) are characterized by changes in micro-structural characteristics inducing a localized change in the petrophysical properties of the rock. These DBs, which are generally tabular structures from millimeters to few centimeters thick, can be used at the field scale to decipher extensional or compactional tectonic regime. However, numerous parameters in addition to the tectonic regime may affect development of DBs, and particularly the evolution of porosity during burial history. The aim of this work is to understand the relationship between the DBs occurrence in tectonic shortening regime and the timing of grain cementation that occurs during burial for an analogue to siliciclastic reservoir. For that purpose, we have focused our analysis on the Aren syn-tectonic sandstone formation, maastrichtian in age, localized on the front of the Boixols thrust, on the southern side of the Sant Corneli anticline, in the south central Pyrenees (Spain). The outcrops are localized in the Tremp-Graus basin, all along a 30 km East-West trend where 10 different sites, in which deformation bands are observable, have been investigated and sampled. The structural geometry of the basin is constrained with 3 serial N-S oriented cross sections showing an increase of the shortening from West to East. Our field work strategy was to, 1) measure the orientation of the DBs in each site, 2) take cores both within the DBs and the host rock to conduct systematic thin section investigations, and 3) take oriented cores in order to study the magnetic fabric giving informations on the internal deformation linked to a set of deformation band and regional N-S shortening. Field data show a minimum of two sets of DBs on each site with variation of orientations and densities. These DBs are perpendicular to the strata which prove their early occurrence, recording the initial stages of local deformation and evolution of the Boixols fold and thrust. At the microstructures scale, DBs are characterized by grain crushing with hertzian fractures associated with pore collapse. All these evidences allow us to define these structures as compaction bands. Further microscopical investigation, grain size distribution and initial porosity are determined by image analysis. These data are confronted to geomechanical models in order to investigate the relationship between the occurrences of DBs in the burial history and the diagenesis of the rock during the compressive event.

  7. Active out-of-sequence thrust faulting in the central Nepalese Himalaya.

    PubMed

    Wobus, Cameron; Heimsath, Arjun; Whipple, Kelin; Hodges, Kip

    2005-04-21

    Recent convergence between India and Eurasia is commonly assumed to be accommodated mainly along a single fault--the Main Himalayan Thrust (MHT)--which reaches the surface in the Siwalik Hills of southern Nepal. Although this model is consistent with geodetic, geomorphic and microseismic data, an alternative model incorporating slip on more northerly surface faults has been proposed to be consistent with these data as well. Here we present in situ cosmogenic 10Be data indicating a fourfold increase in millennial timescale erosion rates occurring over a distance of less than 2 km in central Nepal, delineating for the first time an active thrust fault nearly 100 km north of the surface expression of the MHT. These data challenge the view that rock uplift gradients in central Nepal reflect only passive transport over a ramp in the MHT. Instead, when combined with previously reported 40Ar-39Ar data, our results indicate persistent exhumation above deep-seated, surface-breaking structures at the foot of the high Himalaya. These results suggest that strong dynamic interactions between climate, erosion and tectonics have maintained a locus of active deformation well to the north of the Himalayan deformation front.

  8. Earthquake swarm of Himachal Pradesh in northwest Himalaya and its seismotectonic implications

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh; Prasath, R. Arun; Paul, Ajay; Kumar, Naresh

    2018-02-01

    On the 27th of August 2016, a seismic swarm activity consisting of 58 earthquakes (1.5 ≤ ML ≤ 4.4), which occurred in Rampur area of the Kullu-Rampur Tectonic window of Himachal Pradesh in Northwest Himalaya. The epicenters of these events are located at the northern front of the Berinag Thrust in its hanging wall. To better understand the seismotectonics of this region, we analyzed the spectral source parameters and source mechanism of this swam activity. Spectral analysis shows the low stress drop values (from 0.05 to 28.9 bars), suggesting that the upper crust has low strength to withstand accumulated strain energy in this region. The Moment Tensor solutions of 12 earthquakes (≥2.7ML) obtained by waveform inversion yield the shallow centroid depths between 5 and 10 km. All these events are of dominantly thrust fault mechanism having an average dip angle of ∼30°. The P-axes and the maximum horizontal compressive stresses are NE-SW oriented; the relative motion of the Indian Plate. The present study reveals that the swarm activity in the Himachal region of NW Himalaya is related to the out-of-sequence thrusting or the Lesser Himalayan Duplex system.

  9. Flexural subsidence and basement tectonics of the Cretaceous Western Interior basin, United States

    NASA Astrophysics Data System (ADS)

    Pang, Ming; Nummedal, Dag

    1995-02-01

    The flexural subsidence history recorded in Cenomanian to early Campanian (97 to 80 Ma) strata in the Cretaceous U.S. Western Interior basin was studied with two-dimensional flexural backstripping techniques. Results indicate that the flexural subsidence resulting from thrust loading was superimposed on epeirogenic subsidence in the foreland basin. The flexural component exhibits significant spatial and temporal variations along both the strike and dip relative to the Sevier thrust belt. The greatest cumulative subsidence occurred in southwestern Wyoming and northern Utah. Concurrent subsidence in northwestern Montana and southern Utah was insignificant. Temporal trends in subsidence also show a distinct regional pattern. From the Cenomanian to late Turonian (97 to 90 Ma), subsidence rates were high in Utah and much lower in Wyoming and Montana. In contrast, during the Coniacian and Santonian (90 to 85 Ma) subsidence accelerated rapidly in Wyoming, increased slightly in Montana, and decreased in Utah. We suggest that these spatially and temporally varying subsidence patterns reflect the interplay of several geodynamic factors, including: (1) temporal and spatial variation in emplacement of the thrust loads, (2) segmentation of the basement into adjacent blocks with different rheological properties, (3) reactivation of basement fault trends, and (4) regional dynamic topographic effects.

  10. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148more » km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.« less

  11. The structural geometry and development of the central Appalachian fold-and thrust belt across the Pennsylvania salient: The effects of syntectonic loading

    NASA Astrophysics Data System (ADS)

    Evans, Mark

    2017-04-01

    The Pennsylvania salient is a classic arcuate fold-and-thrust belt that was deformed during the Late Paleozoic Alleghenian orogeny. 38 regional cross-sections with an along-strike spacing of 5 to 10 km were constructed, and show that the structural geometry varies significantly from the 030°-striking southwestern segment to 060°-striking northeastern segment. The primary competent lithotectonic unit is the 2 to 3 km thick Cambro-Ordovician carbonate sequence which is detached along a Cambrian clastic unit. The 5 to 7 km thick preserved Upper Paleozoic sequence is less homogeneous, and locally exhibits significant internal deformation. In the southwest part of the salient, the hinterland part of the fold belt is defined by a series of imbricated Cambro-Ordovician carbonate horses with leading-edge fault-propagation style folds that have a structural amplitude of 5 to 7 km. In the central part of the fold belt, the Broadtop synclinorium exhibits little to no imbrication of the Cambro-Ordovician unit, while in the western part of the belt toward the foreland, two additional carbonate horses with leading-edge fault-propagation style folds comprise the Wills Mt. anticlinorium. In the central and eastern parts of the salient, the structural geometry toward the foreland is defined by a duplex with 4 -5 imbricate horses of Cambro-Ordovician carbonates that transitions to an antiformal stack of two to three carbonate thrust sheets comprising the Nittany anticlinorium. Toward the hinterland, the Cambro-Ordovician carbonate sequence is faulted into broadly-spaced fault-related folds, and includes the regionally continuous (>160 km) Jacks Mt. - Berwick anticline that spans both limbs of the salient. Upon retrodeformation of the cross sections, the 060°-striking northeastern segment restoration path curves 25°-30° to the east, while the 030°-striking southwestern segment curves 20°-25° to the south. The major fault underlying the presently curved Jacks Mt. - Berwick anticline structure, as well as those structures toward the hinterland, restore to a nearly straight fault traces oriented 045°-050°. The relatively straight restored faults require a rigid indenter colliding from the southeast to impose the curvature to the salient. The regional variation in structural style and ramp spacing may be related to the distribution of Late Carboniferous to Permian syn-tectonic loads during thrusting. Paleo-overburden thicknesses were determined from fluid inclusion microthermometry data of CH4±CO2 and aqueous fluid inclusions from syn-tectonic veins. In general, on the retrodeformed sections, restored overburdens are typically less above anticlinoria (<1.5 to 4.0 km), while much larger (4.3 to 6.1 km) above synclinoria. This suggests that syn-tectonic loading in the synclinoria due to sedimentation and/or overthrusting increased pore-fluid pressure enabling forelandward transport. Areas with less syntectonic overburden were prone to develop high-amplitude fold structures.

  12. The tectonometamorphic evolution of the Apuseni Mountains (Romania): Geodynamic constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens

    NASA Astrophysics Data System (ADS)

    Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard

    2015-04-01

    New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites) and the Neotethys subduction during Late Cretaceous times.

  13. Structural Mapping of Paterae and Mountains on Io: Implications for Crustal Stresses and Feature Evolution

    NASA Astrophysics Data System (ADS)

    Ahern, A.; Radebaugh, J.; Christiansen, E. H.; Harris, R. A.

    2015-12-01

    Paterae and mountains are some of the most distinguishing and well-distributed surface features on Io, and they reveal the role of tectonism in Io's crust. Paterae, similar to calderas, are volcano-tectonic collapse features that often have straight margins. Io's mountains are some of the highest in the solar system and contain linear features that reveal crustal stresses. Paterae and mountains are often found adjacent to one another, suggesting possible genetic relationships. We have produced twelve detailed regional structural maps from high-resolution images of relevant features, where available, as well as a global structural map from the Io Global Color Mosaic. The regional structural maps identify features such as fractures, lineations, folds, faults, and mass wasting scarps, which are then interpreted in the context of global and regional stress regimes. A total of 1048 structural lineations have been identified globally. Preliminary analyses of major thrust and normal fault orientations are dominantly 90° offset from each other, suggesting the maximum contractional stresses leading to large mountain formation are not a direct result of tidal extension. Rather, these results corroborate the model of volcanic loading of the crust and global shortening, leading to thrust faulting and uplift of coherent crustal blocks. Several paterae, such as Hi'iaka and Tohil, are found adjacent to mountains inside extensional basins where lava has migrated up normal faults to erupt onto patera floors. Over time, mass wasting and volcanic resurfacing can change mountains from young, steep, and angular peaks to older, gentler, and more rounded hills. Mass wasting scarps make up 53% of all features identified. The structural maps highlight the significant effect of mass wasting on Io's surface, the evolution of mountains through time, the role of tectonics in the formation of paterae, and the formation of mountains through global contraction due to volcanism.

  14. Postglacial rebound and fault instability in Fennoscandia

    NASA Astrophysics Data System (ADS)

    Wu, Patrick; Johnston, Paul; Lambeck, Kurt

    1999-12-01

    The best available rebound model is used to investigate the role that postglacial rebound plays in triggering seismicity in Fennoscandia. The salient features of the model include tectonic stress due to spreading at the North Atlantic Ridge, overburden pressure, gravitationally self-consistent ocean loading, and the realistic deglaciation history and compressible earth model which best fits the sea-level and ice data in Fennoscandia. The model predicts the spatio-temporal evolution of the state of stress, the magnitude of fault instability, the timing of the onset of this instability, and the mode of failure of lateglacial and postglacial seismicity. The consistency of the predictions with the observations suggests that postglacial rebound is probably the cause of the large postglacial thrust faults observed in Fennoscandia. The model also predicts a uniform stress field and instability in central Fennoscandia for the present, with thrust faulting as the predicted mode of failure. However, the lack of spatial correlation of the present seismicity with the region of uplift, and the existence of strike-slip and normal modes of current seismicity are inconsistent with this model. Further unmodelled factors such as the presence of high-angle faults in the central region of uplift along the Baltic coast would be required in order to explain the pattern of seismicity today in terms of postglacial rebound stress. The sensitivity of the model predictions to the effects of compressibility, tectonic stress, viscosity and ice model is also investigated. For sites outside the ice margin, it is found that the mode of failure is sensitive to the presence of tectonic stress and that the onset timing is also dependent on compressibility. For sites within the ice margin, the effect of Earth rheology is shown to be small. However, ice load history is shown to have larger effects on the onset time of earthquakes and the magnitude of fault instability.

  15. Structural evolution and tectonic style of the Tunisian central Atlas; role of inherited faults in compressive tectonics (Ghoualguia anticline)

    NASA Astrophysics Data System (ADS)

    Briki, Haithem; Ahmadi, Riadh; Smida, Rabiaa; Rekhiss, Farhat

    2018-04-01

    Geological mapping, field cross sections, structural analyses and new subsurface data were used to characterize the geometry and tectonic setting of the Ghoualguia structure, which is an E-W-trending anticline located between the Kalaa Khasba and Rouhia troughs of the central Tunisian Atlas. The results show an important NE-SW extensional phase during the Mesozoic, as demonstrated by synsedimentary normal faults (NW-SE and E-W) and thickness variations. In the Aouled Mdoua area, the absence of Paleocene-Eocene rocks indicates that the eastern and western parts of the Ghoualguia structure were separated by high topography. In addition, the angular unconformity observed between the Upper Cretaceous unit (Abiod Fm.) and the upper Eocene series (Souar Fm.) provide evidence of a tilted-block structure delineated by North-South faults. A major compressional phase during the middle to late Miocene created various detachment levels that originated mainly in the Triassic and Cretaceous deposits. Faults were reactivated as thrust and strike-slip faults, creating fault-related fold structures. In the core of the Ghoualguia fold, an original S-dipping normal fault underwent reverse movement as a back thrust. Fault-slip data indicate that the area records a major NE-SW extensional phase that took place during the late Miocene and Pliocene. A balanced cross section provides insight into the existence of two main detachment levels rooted in the Triassic (depth ± 6 km) and the lower Cretaceous (depth ± 2.5 km). The balanced cross section highlights a shortening of about 2.5 km along cross section and 1.5 km in the central part of the Ghoualguia anticline. This work underlines the predominant role of the inherited Mesozoic structures during the evolution of the Atlassic range and their influence on the geometry of the central Tunisian atlas.

  16. Mechanical development of folded chert beds in Monterey Formation, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, D.; Snyder, W.S.

    1988-03-01

    Small-scale folds in the upper siliceous facies of the Miocene Monterey Formation, at Lions Head, California (Santa Maria basin) are of tectonic origin. Folding is well developed in the chert-dominated zones and dies out rapidly in the adjacent siliceous mudstones. A tectonic origin is evidenced by the dominantly brittle deformation of the competent chert layers. Mechanically, the folds formed through a complex interrelationship between fracture and flexural slip. Opal-CT and quartz-chert layers display brittle fractures and rotated fracture blocks that responded to shortening. Thrusting of the chert layers is common in folds where fold propagation was impeded. Dilation breccia andmore » void space occur in the hinges and reflect room problems during development of these disharmonic folds. Subsequent diagenesis has partially healed the fractures and slip surfaces, creating the erroneous appearance that ductile deformation was an important factor in the formation of the folds.« less

  17. The Valencia trough and the origin of the western Mediterranean basins

    NASA Astrophysics Data System (ADS)

    Vegas, R.

    1992-03-01

    Evolutionary models for the Valencia trough must be necessarily related to the Neogene-Present geodynamics of the western Mediterranean basins. All these basins occupy new space created in the wake of the westward translation of the Alboran block and the counter-clockwise rotation of the Corso-Sardinian block. This escape-tectonics, microplate dispersal, model can account for the co-existence and progressive migration of compressional and extensional strain fields within the Africa-Europe broad zone of convergence. In this escape-tectonics model, the Valencia trough has resulted in a complex evolution which includes: (1) latest Oligocene-Early Miocene rifting along the Catalan-Valencian margin due to the opening of the Gulf of Lions; (2) almost simultaneous, Early Miocene, transpressive thrusting in the Balearic margin related to the initiation of displacement of the Alboran block; and (3) Late Miocene generalized extension as a consequence of the opening of the South Balearic basin.

  18. Earthquakes, gravity, and the origin of the Bali Basin: An example of a Nascent Continental Fold-and-Thrust Belt

    NASA Astrophysics Data System (ADS)

    McCaffrey, Robert; Nabelek, John

    1987-01-01

    We infer from the bathymetry and gravity field and from the source mechanisms and depths of the eight largest earthquakes in the Bali region that the Bali Basin is a downwarp in the crust of the Sunda Shelf produced and maintained by thrusting along the Flores back arc thrust zone. Earthquake source mechanisms and focal depths are inferred from the inversion of long-period P and SH waves for all events and short-period P waves for two of the events. Centroidal depths that give the best fit to the seismograms range from 10 to 18 km, but uncertainties in depth allow a range from 7 to 24 km. The P wave nodal planes that dip south at 13° to 35° (±7°) strike roughly parallel to the volcanic arc and are consistent with thrusting of crust of the Bali Basin beneath it. The positions of the earthquakes with respect to crustal features inferred from seismic and gravity data suggest that the earthquakes occur in the basement along the western end of the Flores thrust zone. The slip direction for the back arc thrust zone inferred from the orientation of the earthquake slip vectors indicates that the thrusting in the Bali Basin is probably part of the overall plate convergence, as it roughly coincides with the convergence direction between the Sunda arc and the Indian Ocean plate. Summation of seismic moments of earthquakes between 1960 and 1985 suggests a minimum rate of convergence across the thrust zone of 4 ± 2 mm/a. The presence of back arc thrusting suggests that some coupling between the Indian Ocean plate and the Sunda arc occurs but mechanisms such as continental collision or a shallow subduction of the Indian Ocean plate probably can be ruled out. The present tectonic setting and structure of the Bali Basin is comparable to the early forelands of the Andes or western North America in that a fold-and-thrust belt is forming on the continental side of an arc-trench system at which oceanic lithosphere is being subducted. The Bali Basin is flanked by the Tertiary Java Basin to the west and the oceanic Flores Basin to the east and thus provides an actualistic setting for the development of a fold-and-thrust belt in which structure and timing of deformation can change significantly along strike on the scale a few hundred kilometers.

  19. Active Fault Mapping of Naga-Disang Thrust (Belt of Schuppen) for Assessing Future Earthquake Hazards in NE India

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    2014-12-01

    We observe the geodynamic appraisal of Naga-Disang Thrust North East India. The Disang thrust extends NE-SW over a length of 480 km and it defines the eastern margin of Neogene basin. It branches out from Haflong-Naga thrust and in the NE at Bulbulia in the right bank of Noa Dihing River, it is terminated by Mishmi thrust, which extends into Myanmar as 'Sagaing fault,which dip generally towards SE. It extends between Dauki fault in the SW and Mishmi thrust in the NE. When the SW end of 'Belt of Schuppen' moved upwards and towards east along the Dauki fault, the NE end moved downwards and towards west along the Mishmi thrust, causing its 'S' shaped bending. The SRTM generated DEM is used to map the topographic expression of the schuppen belt, where these thrusts are significantly marked by topographic break. Satellite imagery map also shows presence lineaments supporting the post tectonic activities along Naga-Disang Thrusts. The southern part of 'Belt of Schuppen' extends along the sheared western limb of southerly plunging Kohima synform, a part of Indo Burma Ranges (IBR) and it is seismically active.The crustal velocity at SE of Schuppen is 39.90 mm/yr with a azimuth of 70.780 at Lumami, 38.84 mm/yr (Azimuth 54.09) at Senapati and 36.85 mm/yr (Azimuth 54.09) at Imphal. The crustal velocity at NW of Schuppen belt is 52.67 mm/yr (Azimuth 57.66) near Dhauki Fault in Meghalaya. It becomes 43.60 mm/yr (Azimuth76.50) - 44.25 (Azimuth 73.27) at Tiding and Kamlang Nagar around Mishmi thrust. The presence of Schuppen is marked by a change in high crustal velocity from Indian plate to low crustal velocity in Mishmi Suture as well as Indo Burma Ranges. The difference in crustal velocities results in building up of strain along the Schuppen which may trigger a large earthquake in the NE India in future. The belt of schuppean seems to be seismically active, however, the enough number of large earthquakes are not recorded. These observations are significant on Naga-Disang Thrusts to reveal a possible seismic gap in NE India observed from two great earthquakes in the region viz. 1897 (Shillong 8.7M) and 1950 (Arunachal-China 8.7M), which is required to be investigated.

  20. Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean)

    USGS Publications Warehouse

    Granja, Bruna J.L.; Muñoz-Martín, A.; ten Brink, Uri S.; Carbó-Gorosabel, Andrés; Llanes, Estrada P.; Martín-Dávila, J.; Cordoba-Barba, D.; Catalan, Morollon M.

    2010-01-01

    The Muertos Trough in the northeast Caribbean has been interpreted as a subduction zone from seismicity, leading to infer a possible reversal subduction polarity. However, the distribution of the seismicity is very diffuse and makes definition of the plate geometry difficult. In addition, the compressive deformational features observed in the upper crust and sandbox kinematic modeling do not necessarily suggest a subduction process. We tested the hypothesized subduction of the Caribbean plate's interior beneath the eastern Greater Antilles island arc using gravity modeling. Gravity models simulating a subduction process yield a regional mass deficit beneath the island arc independently of the geometry and depth of the subducted slab used in the models. This mass deficit results from sinking of the less dense Caribbean slab beneath the lithospheric mantle replacing denser mantle materials and suggests that there is not a subducted Caribbean plateau beneath the island arc. The geologically more realistic gravity model which would explain the N-S shortening observed in the upper crust requires an overthrusted Caribbean slab extending at least 60 km northward from the deformation front, a progressive increase in the thrusting angle from 8?? to 30?? reaching a maximum depth of 22 km beneath the insular slope. This new tectonic model for the Muertos Margin, defined as a retroarc thrusting, will help to assess the seismic and tsunami hazard in the region. The use of gravity modeling has provided targets for future wide-angle seismic surveys in the Muertos Margin. ?? 2010 Springer Science+Business Media B.V.

  1. Middle Micoene sandstone reservoirs of the Penal/Barrackpore field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, B.L.

    1991-03-01

    The Penal/Barrackpore field was discovered in 1938 and is located in the southern subbasin of onshore Trinidad. The accumulation is one of a series of northeast-southwest trending en echelon middle Miocene anticlinal structures that was later accentuated by late Pliocene transpressional folding. Relative movement of the South American and Caribbean plates climaxed in the middle Miocene compressive tectonic event and produced an imbricate pattern of southward-facing basement-involved thrusts. Further compressive interaction between the plates in the late Pliocene produced a transpressive tectonic episode forming northwest-southeast oriented transcurrent faults, tear faults, basement thrust faults, lystric normal faults, and detached simple foldsmore » with infrequent diapiric cores. The middle Miocene Herrera and Karamat turbiditic sandstones are the primary reservoir rock in the subsurface anticline of the Penal/Barrackpore field. These turbidites were sourced from the north and deposited within the marls and clays of the Cipero Formation. Miocene and Pliocene deltaics and turbidites succeed the Cipero Formation vertically, lapping into preexisting Miocene highs. The late Pliocene transpression also coincides with the onset of oil migration along faults, diapirs, and unconformities from the Cretaceous Naparima Hill source. The Lengua Formation and the upper Forest clays are considered effective seals. Hydrocarbon trapping is structurally and stratigraphically controlled, with structure being the dominant trapping mechanism. Ultimate recoverable reserves for the field are estimated at 127.9 MMBo and 628.8 bcf. The field is presently owned and operated by the Trinidad and Tobago Oil Company Limited (TRINTOC).« less

  2. Constraining the strength of megathrusts from fault geometries and application to the Alpine collision zone

    NASA Astrophysics Data System (ADS)

    Dielforder, Armin

    2017-09-01

    Using Coulomb wedge solutions, we show that the effective strength of megathrusts (μb‧) can be determined from the geometry of out-of-sequence thrusts cutting through an accretionary or orogenic wedge. The method is first tested on central Chilean margin for which it yields a frictional strength of μb‧ = 0.053 (+ 0.043 / - 0.024). The inferred value agrees well with previous strength estimates and with the tectonic response of the central Chilean wedge to 2010 Mw 8.8 Maule earthquake. We then use the approach to constrain the strength of the collision megathrust of the central European Alps ∼30-20 million years ago. We find that the collision megathrust had a strength of μb‧ = 0.065 (+ 0.035 / - 0.026), which is similarly low than the strength of subduction megathrusts. The result is integrated into a static force balance model to examine potential implications of a weak megathrust for the Alpine orogeny. The model results suggest that the Alpine megathrust supported a mean maximum elevation of ∼2,000 m and that growth of the wedge up to this elevation supported a switch from contractional to extensional tectonics in the interior of the Alps around 20 Ma. Finally, using the example of the Himalayas, we show how the strength of megathrusts may be also derived from the geometry of crustal ramps, which provides a valuable alternative if details on out-of-sequence thrusts are missing.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakely, R. J.; Sherrod, B. L.; Weaver, C. S.

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site, Washington. Epicenters were concentrated in a 2 km 2 area near Wooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Groupmore » (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Finally, although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.« less

  4. An alternative model for the development of the allochthonous southern Appalachian Piedmont.

    USGS Publications Warehouse

    Zen, E.-A.

    1981-01-01

    The recent deep-seismic-reflection data across the S Appalachian Piedmont require rethinking of the tectonic relations in that area. Some of the traditional tectonic-lithostratigraphic belts of the Piedmont may be 'doubly allochthonous', that is, they may be terranes that are exotic mutually and with respect to the N American craton. These terranes may have been brought to the edge of the craton by plate-tectonic processes, in a manner similar to that proposed for the post-Triassic 'Wrangellia' in southeastern Alaska, and then obducted onto the craton as traditional thrust allochthons. If this idea is correct, then there is no compelling need for an intercontinental suture in the lower crust under the exposed southern Appalachian Piedmont; however, multiple sutures may obtain under the Coastal Plain overlap or farther off shore. The location of the Paleozoic Iapetus Ocean may also be off the present shore. The tectonic units now exposed in the Appalachian Piedmont not only may not be continuous with those of the N Appalachian region that have been considered by many authors to be the same on a cylindrical model but could have had different geologic origins. The nature of the ultramafic rocks spatially associated with the Kings Mountain belt and the Raleigh and Kiokee belts, as well as the paleomagnetic orientations of rocks of the various Piedmont belts, may provide useful tests for this microplate model.-Author

  5. Extension in Mona Passage, Northeast Caribbean

    USGS Publications Warehouse

    Chaytor, J.D.; ten Brink, Uri S.

    2010-01-01

    As shown by the recent Mw 7.0 Haiti earthquake, intra-arc deformation, which accompanies the subduction process, can present seismic and tsunami hazards to nearby islands. Spatially-limited diffuse tectonic deformation within the Northeast Caribbean Plate Boundary Zone likely led to the development of the submerged Mona Passage between Puerto Rico and the Dominican Republic. GPS geodetic data and a moderate to high level of seismicity indicate that extension within the region is ongoing. Newly-collected high-resolution multibeam bathymetry and multi-channel seismic reflection profiles and previously-collected samples are used here to determine the tectonic evolution of the Mona Passage intra-arc region. The passage is floored almost completely by Oligocene-Pliocene carbonate platform strata, which have undergone submarine and subaerial erosion. Structurally, the passage is characterized by W- to NNW-trending normal faults that offset the entire thickness of the Oligo-Pliocene carbonate platform rocks. The orientation of these faults is compatible with the NE-oriented extension vector observed in GPS data. Fault geometry best fits an oblique extension model rather than previously proposed single-phase, poly-phase, bending-moment, or rotation extension models. The intersection of these generally NW-trending faults in Mona Passage with the N-S oriented faults of Mona Canyon may reflect differing responses of the brittle upper-crust, along an arc-forearc rheological boundary, to oblique subduction along the Puerto Rico trench. Several faults within the passage, if ruptured completely, are long enough to generate earthquakes with magnitudes on the order of Mw 6.5-7. ?? 2010.

  6. Coulomb stress transfer and tectonic loading preceding the 2002 Denali fault earthquake

    USGS Publications Warehouse

    Bufe, Charles G.

    2006-01-01

    Pre-2002 tectonic loading and Coulomb stress transfer are modeled along the rupture zone of the M 7.9 Denali fault earthquake (DFE) and on adjacent segments of the right-lateral Denali–Totschunda fault system in central Alaska, using a three-dimensional boundary-element program. The segments modeled closely follow, for about 95°, the arc of a circle of radius 375 km centered on an inferred asperity near the northeastern end of the intersection of the Patton Bay fault with the Alaskan megathrust under Prince William Sound. The loading model includes slip of 6 mm/yr below 12 km along the fault system, consistent with rotation of the Wrangell block about the asperity at a rate of about 1°/m.y. as well as slip of the Pacific plate at 5 cm/yr at depth along the Fairweather–Queen Charlotte transform fault system and on the Alaska megathrust. The model is consistent with most available pre-2002 Global Positioning System (GPS) displacement rate data. Coulomb stresses induced on the Denali–Totschunda fault system (locked above 12 km) by slip at depth and by transfer from the M 9.2 Prince William Sound earthquake of 1964 dominated the changing Coulomb stress distribution along the fault. The combination of loading (∼70–85%) and coseismic stress transfer from the great 1964 earthquake (∼15–30%) were the principal post-1900 stress factors building toward strike-slip failure of the northern Denali and Totschunda segments in the M 7.9 earthquake of November 2002. Postseismic stresses transferred from the 1964 earthquake may also have been a significant factor. The M 7.2–7.4 Delta River earthquake of 1912 (Carver et al., 2004) may have delayed or advanced the timing of the DFE, depending on the details and location of its rupture. The initial subevent of the 2002 DFE earthquake was on the 40-km Susitna Glacier thrust fault at the western end of the Denali fault rupture. The Coulomb stress transferred from the 1964 earthquake moved the Susitna Glacier thrust fault uniformly away from thrust failure by about 100 kPa. The initiation of the Denali fault earthquake was advanced by transfer of 30–50 kPa of positive Coulomb stress to the Susitna Glacier fault (Anderson and Ji, 2003) by the nearby M 6.7 Nenana Mountain foreshock of 23 October 2002. The regional tectonic loading model used here suggests that the Semidi (Alaska Peninsula) segment of the megathrust that ruptured in 1938 (M 8.2) may be reloaded and approaching failure.

  7. New Insights into Tectonics of the Saint Elias, Alaska, Region Based on Local Seismicity and Tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.

    2013-12-01

    Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.

  8. Out-of-Sequence Thrust in the Higher Himalaya- a Review & Possible Genesis

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Koyi, H. A.; Talbot, C. J.

    2009-04-01

    An out-of-sequence thrust (OOST) has been established inside the Higher Himalaya by previous workers more frequently from Nepal- and Bhutan Himalaya. The OOST lies between the South Tibetan Detachment System-Upper (STDSU) and the South Tibetan Detachment System-Lower (STDSL). The thrust has been recognized as the Kakhtang Thrust in Bhutan (Grujic et al., 2002 and references therein); Khumbu Thrust (Searle, 1999), Modi Khola Shear Zone (Hodges et al., 1996), Kalopani Shear Zone (Vannay and Hodges, 1999), Toijem Shear Zone in Nepal (Carosi et al., 2007), Chaura Thrust (Jain et al., 2000)- also designated as the Sarahan Thrust (Chambers et al., 2008) in the western Indian Himalaya in Sutlej section, Zimithang Thrust in the eastern Indian Himalaya (Yin et al., 2006), as ‘physiographic transition' in Marsyandi valley, Nepal (Burbank et al., 2003). We note that considering the upper strand of the Main Central Thrust (the MCTU) as the lower boundary of the Higher Himalaya, the physiographic transition has also been referred to lie in the Lesser Himalaya.The period of activity of the OOST was 22.5-18.5 Ma (Hodges et al., 1996), 14-10 Ma (Grujic et al., 2002), 4.9-1.5 Ma (Jain et al., 2000), and from Late Pliocene to even Holocene Period (Burbank, 2005). The out-of-sequence thrusting was followed after the initiation of channel flow at ~ 15 Ma in the Higher Himalaya with a maximum delay of ~ 13 Ma. However, in the Bhutan Himalaya, the thrusting continued along with the extensional ductile shearing in the STDSU at 11-10 Ma (Hollister and Grujic, 2006). The OOST in the Higher Himalaya lies inside the zone of the top-to-SW sense of ductile shearing. The OOST, at Kakhtang, Toijem, and Chaura are ductile shear zones with a top-to-SW sense of shearing. The OOST merges with the MCT and the Main Himalayan Thrust (MHT) at a depth of 30 km or more and either runs 200-300 km beneath the Tibetan plateau (Grujic et al., 2002; Hollister and Grujic, 2006). The hanging wall side of the OOST is more dominant with migmatites and leucogranites (Searle, 1999; Yin et al., 2006; Carosi et al., 2007; Grujic et al., 2002; Hollister and Grujic, 2006), but the footwall side does contain these rocks (Hodges et al., 1996; Chambers et al., 2008). The thickness of the OOST are 50 m (Carosi et al., 2007), >150 m (Yin et al., 2006), 3-6 km (Searle, 1999) and ~ 1.5 km (Vannay and Hodges, 1996). A number of hypotheses have been put forward to explain the genesis of the OOST. These are (i) a disparity in erosion rates triggered mainly by a spatial variation in the intensity of rainfall (Wobus et al., 2005). (ii) The lower boundary of the channel flow extrusion defined the OOST (Hollister and Grujic, 2006). (iii) As a result of a heterogeneous velocity profile of channel flow extrusion across lithologic discontinuity (Carosi et al., 2007). The granitic melt at depth in some way led to this thrusting (Swapp and Hollister, 1991). Had channel flow been the extrusion mechanism of the Higher Himalaya, the genesis of the OOST might somehow be related to this extrusion. In this work, a channel flow box was prepared and polydimethylsiloxane was used as the model material. A channel flow was generated in the horizontal channel and was allowed to extrude through an inclined channel similar to the Higher Himalaya (Mukherjee, 2007). In different considerations, the walls of the Higher Himalaya are parallel and diverging-up. A late formed blind thrust plane forms at the corner joining the inclined and the horizontal wall and crops to the surface much later to the initiation of channel flow. On the basis of its late arrival to the surface than the channel flow and its relative position in the model Higher Himalaya, the thrust is comparable with the OOST. This means that (i) climatic factors nor lithologic discontinuity were a trigger to the OOST; and (ii) the OOST is a delayed product of channel flow that initiated at a sub-horizontal channel below the Tibetan plateau and extrude the Higher Himalaya. References. Burbank, D.W., 2005. Cracking the Himalaya. Nature 434, 963-964. Burbank, D.W., Blythe, A.E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., Barros, A., Ojha, T.P., 2003. Decoupling of erosion and precipitation in the Himalayas. Nature 426, 652-654. Carosi, R., Montomili, C., Visonà, D., 2007. A structural transect in the lower Dolpo: insights in the tectonic evolution of Western Nepal. Journal of Asian Earth Sciences 29, 407-423. Chambers J.A., Argles, T.W., Horstwood, M.S.A., Harris, N.B.W., Parrish, R.R., Ahmad, T., 2008. Tectonic implications of Palaeoproterozoic anatexis and Late Miocene metamorphism in the Lesser Himalayan Sequence, Sutlej valley, NW India. Journal of the Geological Society, London 165, 725-737. Godin, L., Grujic, D., Law, R.D. and Searle, M.P., 2006. Channel flow, extrusion and extrusion in continental collision zones: an introduction. In: R.D. Law and M.P. Searle (Editors) Channel Flow, Extrusion and Extrusion in Continental Collision Zones. Geological Society of London Special Publication 268, 1-23. Grujic, D., Casey, M., Davidson, C., 1996. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260, 21-43. Grujic, D., Hollister, L.S., Parrish, R.R., 2002. Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth Planetary Science Letters 198, 177-191. Harris, N., 2007. Channel flow and the Himalayan-Tibetan orogen: a critical review. Journal of Geological Society, London 164, 511-523. Hollister, L.S. and Grujic, D., 2006. Himalaya Tiber Plateau. Pulsed channel flow in Bhutan. In: R.D. Law, M.P. Searle and L. Godin (Editors). Channel flow, Ductile Extrusion and Extrusion in Continental Collision Zones. Geological Society of London Special Publication 268, pp. 415-423. Jain, A.K., Kumar, D., Singh, S., Kumar, A., Lal, N., 2000. Timing, quantification and tectonic modelling of Pliocene-Quaternary movements in the NW Himalaya: evidences from fission track dating. Earth Planetary Science Letters 179, 437-451. Mukherjee, S. 2007. Geodynamics, deformation and mathematical analysis of metamorphic belts of the NW Himalaya. Unpublished Ph.D. thesis. Indian Institute of Technology Roorkee. pp. 1-267. Searle, M.P., 1999. Extensional and compressional faults in the Everest-Lhotse massif, Khumbu Himalaya, Nepal. Journal of Geological Society, London, 156, 227-240. Swapp, S.M., Hollister, L.S., 1991. Inverted metamorphism within the Tibetan slab of Bhutan: evidence for a tectonically transported heat source. Canadian Mineralogist 29, 1019-1041. Vannay, J-C., Hodges, K.V., 1996. Tectonomorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal. Journal of Metamorphic Geology 14, 635-656. Wobus, C., Heimsath, A., Whipple, K., Hodges, K., 2005. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434, 1008-1011. Yin, A., Dubey, C.S., Kelty, T.K., Gehrels, G.E., Chou, C.Y., Grove, M., Lovera, O., 2006. Structural evolution of the Arunachal Himalaya and implications for asymmetric development Himalayan orogen. Current Science 90, 195-206.

  9. Hydrocarbon gas seeps of the convergent Hikurangi margin, North Island, New Zealand

    USGS Publications Warehouse

    Kvenvolden, K.A.; Pettinga, J.R.

    1989-01-01

    Two hydrocarbon gas seeps, located about 13 km apart, have distinctive molecular and isotopic compositions. These seeps occur within separate tectonic melange units of narrow parallel trending and structurally complex zones with incorporated upper Cretaceous and Palaeogene passive continental margin deposits which are now compressively deformed and imbricated along the convergent Hikurangi margin of North Island, New Zealand. At Brookby Station within the Coastal High, the seeping hydrocarbon gas has a methane/ethane ratio of 48 and ??13C and ??D values of methane of -45.7 and -188???, respectively (relative to the PDB and SMOW standards). Within the complex core of the Elsthorpe Anticline at Campbell Station seep, gas has a methane/ethane ratio of about 12000, and the methane has ??13C and ??D values of -37.4 and -170???, respectively. The source of the gases cannot be positively identified, but the gases probably originate from the thermal decomposition of organic matter in tectonically disturbed upper Cretaceous and/or lower Tertiary sedimentary rocks of passive margin affinity and reach the surface by migration along thrust faults associated with tectonic melange. The geochemical differences between the two gases may result from differences in burial depths of similar source sediment. ?? 1989.

  10. Possible detachment zone in Precambrian rocks of Kanjamalai Hills, Cauvery Suture Zone, Southern India: Implications to accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Mohanty, D. P.; Chetty, T. R. K.

    2014-07-01

    Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction-accretion-collision tectonic history of the Neoproterozoic Gondwana suture.

  11. Longer aftershocks duration in extensional tectonic settings.

    PubMed

    Valerio, E; Tizzani, P; Carminati, E; Doglioni, C

    2017-11-27

    Aftershocks number decay through time, depending on several parameters peculiar to each seismogenic regions, including mainshock magnitude, crustal rheology, and stress changes along the fault. However, the exact role of these parameters in controlling the duration of the aftershock sequence is still unknown. Here, using two methodologies, we show that the tectonic setting primarily controls the duration of aftershocks. On average and for a given mainshock magnitude (1) aftershock sequences are longer and (2) the number of earthquakes is greater in extensional tectonic settings than in contractional ones. We interpret this difference as related to the different type of energy dissipated during earthquakes. In detail, (1) a joint effect of gravitational forces and pure elastic stress release governs extensional earthquakes, whereas (2) pure elastic stress release controls contractional earthquakes. Accordingly, normal faults operate in favour of gravity, preserving inertia for a longer period and seismicity lasts until gravitational equilibrium is reached. Vice versa, thrusts act against gravity, exhaust their inertia faster and the elastic energy dissipation is buffered by the gravitational force. Hence, for seismic sequences of comparable magnitude and rheological parameters, aftershocks last longer in extensional settings because gravity favours the collapse of the hangingwall volumes.

  12. Thrust-ridge paleodepositional model for the Upper Freeport coal bed and associated clastic facies, Upper Potomac coal field, Appalachian Basin, U.S.A.

    USGS Publications Warehouse

    Belt, Edward S.; Lyons, P.C.

    1990-01-01

    Two differential depositional sequences are recognized within a 37-m-thick lowermost section of the Conemaugh Group of Late Pennsylvanian (Westphalian D) age in the southern part of the Upper Potomac coal field (panhandle of Maryland and adjacent West Virginia). The first sequence is dominated by the Upper Freeport coal bed and zone (UF); the UF consists of a complex of interfingered thick coal beds and mudrocks. The UF underlies the entire 500 km2 study area (approximately 40 km in a NE-SW direction). The second sequence is dominated by medium- to coarse-grained sandstone and pebbly sandstone. They were deposited in channel belts that cut into and interfingered laterally with mudrock and fine- to medium-grained sandstone facies of floodbasin and crevasse-lobe origin. Thin lenticular coals occur in the second sequence. Nowhere in the study area does coarse-grained sandstone similar to the sandstone of the channel belts of the second sequence occur within the UF. However, 20 km north of the study area, coarse channel belts are found that are apparently synchronous with the UF (Lyons et al., 1984). The southeastern margin of the study are is bounded by the Allegheny Front. Between it and the North Mountain thrust (75 km to the southeast), lie at least eight other thrusts of unknown extent (Wilson, 1887). All these thrusts are oriented northwest; Devonian and older strata are exposed at the surface between the Allegheny Front and the North Mountain thrust. A blind-thrust ridge model is proposed to explain the relation of the two markedly depositional sequences to the thrusts that lie to the southeast of the Upper Potomac coal field. This model indicates that thrust ridges diverted coarse clastics from entering the swamp during a period when the thick Upper Freeport peat accumulated. Anticlinal thrust ridges and associated depressions are envisioned to have developed parallel to the Appalachian orogen during Middle and early Late Pennsylvanian time. A blind thrust developed from one of the outboard ridges, and it was thrust farther outboard ahead of the main body of the orogen. Sediment derived from the orogen was diverted into a sediment trap inboard of the ridge (Fig. 1). The ridge prevented sediment from entering the main peat-forming swamp. Sediment shed from the orogen accumulated in the sediment trap was carried out of the ends of the trap by steams that occupied the shear zone at the ends of the blind-thrust ridge (Fig. 1). Remnants of blind-thrust ridges occurs in the Sequatchie Valley thrust and the Pine Mountain thrust of the southern Appalachians. The extent, parallel to the orogen, of the thick areally extensive UF coal is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastics that entered the main basin from the east. Further tectonism caused the thrust plane to emerge to the surface of the blind-thrust ridge. Peat accumulation was then terminated by the rapid erosion of the blind-thrust ridge and by the release of trapped sediment behind it. The peat was buried by sediments from streams from closely spaced channel belts] with intervening floodbasins. The model was implications for widespread peat (coal) deposits that developed in tropical regions, a few hundred kilometers inland from the sea during Pennsylvanian time (Belt and Lyons, 1989). ?? 1990.

  13. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    NASA Astrophysics Data System (ADS)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  14. The Lamu Basin deepwater fold-and-thrust belt: An example of a margin-scale, gravity-driven thrust belt along the continental passive margin of East Africa

    NASA Astrophysics Data System (ADS)

    Cruciani, Francesco; Barchi, Massimiliano R.

    2016-03-01

    In recent decades, advances in seismic processing and acquisition of new data sets have revealed the presence of many deepwater fold-and-thrust belts (DW-FTBs), often developing along continental passive margins. These kinds of tectonic features have been intensively studied, due to their substantial interest. This work presents a regional-scale study of the poorly explored Lamu Basin DW-FTB, a margin-scale, gravity-driven system extending for more than 450 km along the continental passive margin of Kenya and southern Somalia (East Africa). A 2-D seismic data set was analyzed, consisting of both recently acquired high-quality data and old reprocessed seismic profiles, for the first detailed structural and stratigraphic interpretation of this DW-FTB. The system originated over an Early to mid-Cretaceous shale detachment due to a mainly gravity-spreading mechanism. Analysis of synkinematic strata indicates that the DW-FTB was active from the Late Cretaceous to the Early Miocene, but almost all of the deformation occurred before the Late Paleocene. The fold-and-thrust system displays a marked N-S variation in width, the northern portion being more than 150 km wide and the southern portion only a few dozen kilometers wide; this along-strike variation is thought to be related to the complex tectonosedimentary evolution of the continental margin at the Somalia-Kenya boundary, also reflected in the present-day bathymetry. Locally, a series of volcanic edifices stopped the basinward propagation of the DW-FTB. A landward change in the dominant structural style, from asymmetric imbricate thrust sheets to pseudo-symmetric detachment folds, is generally observed, related to the landward thickening of the detached shales.

  15. The crustal structure of the eastern Fennoscandian Shield and central part of the East-European platform based on seismic, regional geophysic and geological data

    NASA Astrophysics Data System (ADS)

    Mints, M. V.; Berzin, R. G.; Babayants, P. S.; Konilov, A. N.; Suleimanov, A. K.; Zamozhniaya, N. G.; Zlobin, V. L.

    2003-04-01

    The 1-EU and 4B CDP transects worked out during 1998-2002 years by "Spetsgeophyzica", together with previously developed CDP profiles, have crossed most of the main tectonic units of the eastern Fennoscandian Shield and central part of the East-European platform. They provide seismic images of the Early Precambrian crust and upper mantle from the surface to about 80 km depth (25 s). The Neoarchaean granite-greenstone complexes of the Karelia craton along the 4B profile form a series of the tectonic slices descending eastward, some of which can be traced to the Moho. The Palaeoproterozoic structures presented by two main types: (1) volcano-sedimentary (VS) and (2) granulite-gneiss (GN) belts. The Pechenga-Varzuga VS belt has been identified as overthrust-underthrust southward-dipping package. Tectonic slices formed by the Palaeoproterozoic VS belts alternating with slices of the Neoarchaean granite-gneisses form the imbricated crustal unit that extends along the eastern margin of the Neoarchaean Karelia craton. The slices dip steeply northeastward flattening and partially juxtaposing at 20 km depth at the 1-EU cross-section. This level, which can be understood as the surface of main detachment, ascends westward. An imbrication and related thickening of the crust was caused by displacement of crustal slices in western and southwestern directions because of the Palaeoproterozoic collision event. The Palaeoproterozoic Onega unit comprising VS assemblages originated in a setting of the rifted passive margin forms the northwestward displaced thrust nappe complex. It is considered initially belonging to the southern edge of the Svecofennian passive margin. The Lapland GN belt has been transected by the Polar and EGGI profiles. Both cross-sections demonstrated that it constitutes thick composite crustal-scale tectonic slice. According to geophysical data, the continuation of the Lapland GN belt beneath the platform cover of the East European Craton forms an extended arch-shaped system of the belts approximately 2000 km long. In the vicinity of Moscow the thrust-nappe structure of these belts was recently recognized from reflection seismic profiling along 1-EU profile. The work has been developed in frames of the MPR RF Program and The SVEKALAPKO project and supported by the RFBR, grant No.00-05-64241.

  16. Structural Evolution of a Crustal Scale Tectonic Boundary in the 1 Ga Sveconorwegian Orogen, SW Sweden.

    NASA Astrophysics Data System (ADS)

    Pinan-Llamas, A.; Möller, C.; Andersson, J.

    2016-12-01

    We present new structural data to document Sveconorwegian deformational structures preserved in rocks of the Idefjorden Terrane (IT), the Eastern Segment (ES) and a formerly deep-seated tectonic boundary between them, the Mylonite Zone (MZ), in SW Sweden. We aim to integrate structural, petrologic and geochronological data to reconstruct a model for the Sveconorwegian deformation. The SE-vergent MZ is a crustal scale thrust that juxtaposed the allochtonous IT in the hanging wall against the eclogite-bearing ES in the footwall during the Sveconorwegian orogeny. In the research area, rocks of the IT are characterized by a roughly N-S striking tectonic banding that dips shallowly to the W and contains west or WNW-plunging stretching lineations. This gneissic banding is folded by asymmetric and overturned S- or SW-verging similar folds, which in highly strained areas become isoclinal and recumbent. In sections parallel to the lineation, most kinematic indicators are consistent with a top-down-to-the-west sense of shear, i.e. accommodating E-W extension. At the terrane boundary (MZ), ultramylonites and sheath folds are locally present. Immediately east of the MZ, rocks of the ES show a NW-SE to NE-SW striking tectonic banding (Sc) containing shallowly W- and SW-plunging stretching lineations. Sc locally preserves kinematic indicators and intrafolial folds (F1) that we relate to a first Sveconorwegian deformation phase D1. D1 fabrics were folded by asymmetric NE-SW to E-W trending F2 similar folds that are SE- to S-verging. In highly strained areas, these folds are isoclinal and recumbent. The main stretching lineation is sub-parallel to F2 fold axes. In sections subparallel to the lineation, kinematic indicators show a top-down-to-the-west or southwest sense of shear, including extensional shear bands that are overprinting F2 folds. Upright open F3 folds affect earlier fabrics. While D1 fabrics likely resulted from foreland-directed (east-vergent) thrusting that juxtaposed an eclogite-bearing terrane with eclogite-free units in the ES, D2 fabrics (shear-related folds and subsequent shear bands) may be related to E-W or NW-SE extensional or transtensional deformation after the main contractional phases of the orogeny. F3 folds might have resulted from accommodation during protracted E-W extension.

  17. The Tyrrhenian stage geodinamic evolution of Apenninic-Maghrebian orogen (Southern Apennines and Sicily)

    NASA Astrophysics Data System (ADS)

    Lentini, F.; Carbone, S.; Barreca, G.

    2009-04-01

    In the Central Mediterranean region the foreland domains are represented by two continental blocks, the Apulian Block to the north and the Pelagian Block to the south, respectively belonging to the Adria and to the Africa plates. They are separated since Permo-Triassic times by the oceanic crust of the Ionian Sea. The Apenninic-Maghrebian orogen is located between two oceanic crusts: the old Ionian crust, at present time subducting beneath the Calabrian Arc, and the new crust of the opening Tyrrhenian Sea. The orogenic belt is represented by a multilayer allochthonous edifice, composed of the Calabride Chain (CC) tectonically overlying the Apenninic-Maghrebian Chain (AMC), which in turn overthrust onto the Upper Miocene and Pliocene top-levels of a deep seated thrust system, originating by the deformation of the innermost carbonates of the Pelagian/Apulian blocks (External Thrust System: ETS). The AMC tectonic units derive from the orogenic transport during Oligo-Miocene times of sedimentary sequences deposited in palaeogeographical domains located between the Europe and the Afro-Adriatic plates. These units are composed of Meso-Cenozoic shallow-water carbonate successions detached from a continental type crust sector, the Panormide/Apenninic Block, recognizable by means of seismic lines shot in the Tyrrhenian offshore of Southern Apennines and Northern Sicily. The Meso-Cenozoic basinal units, that compose the AMC, can be distinguished into two main groups of sequences, originally located on oceanic crusts separated by the Panormide/Apenninic Block: the external ones (Ionides) related to an original basin belonging to branches of the Ionian Palaeobasin involved in the orogenesis, and the internal ones ascribed to the Alpine Tethys (Sicilide Units). The terrigenous deposits of the basinal sequences belonging to the Ionides are represented by Tertiary foreland/foredeep deposits, whose relationships with the substratum are occasionally preserved, although large detachments occurred with further forward transport, which generated repeated slices with an apparent increase to the original thickness. . The Alpine Tethydes are composed of sedimentary sequences, which were deposited in the Alpine Tethys, and originally were located between the European and the Panormide/Apenninic Block. They are represented by allochthonous far travelled tectonic units, resting on both the Panormide/Apenninic Platforms and the Ionides. The Calabride Chain originated by the delamination of the European margin. This roof thrust system includes nappes of Hercynian basement with remains of the original Meso-Cenozoic covers deformed during the Paleogene and sutured by the Late Oligocene-Early Burdigalian Capo d'Orlando Flysch. The geological, geophysical data and the volcanological characters permit to restore the palaeogeography and the geodynamic evolution, and allow to recognize three orogenic stages: the Eo-Alpine, originated during Cretaceous-Eocene times, evident in the western Calabria, in the Tyrrhenian basin and the Alpine Corsica; the Balearic stage (Late Oligocene-Early Miocene), in which the Corsica-Sardinia block rotated and collided with the Adria-Africa margins with thrusting of the Alpine Tethydes over Panormide/Apenninic platforms; and the Tyrrhenian stage (Middle Miocene to Present), when the onset of the Tyrrhenian back-arc basin occurred and after the closure of the interposed Palaeoionian branches the Ionides were tectonically transported onto the foreland blocks. The CROP crustal sections allow to distinguish thickness and distribution of the crusts in this area of the Mediterranean Sea, and their clear influence on geodynamic evolution of the Tyrrhenian stage. They confirm that both the foreland blocks extend below the orogenic belt, reaching the Tyrrhenian margins, with a gradual thinning and a transition to a Palaeo-Ionian slab, probably not active at present time, from which the Ionides detached and overrode the ETS. The seismogeological data indicate the presence of the Panormide/Apenninic blocks, that took part in the closure of the branches of the Palaeo-Ionian Sea interposed between the Panormide/Apenninic crust and the Pelagian/Apulian Blocks. At the present time the Panormide/Apenninic blocks are colliding with the foreland blocks. Such a collisional stage along the Tyrrhenian coast of north-western Sicily and the contemporaneous active subduction processes below the Calabrian Arc produce the NW-SE oriented South Tyrrhenian System. This system drives the transfer of the orogenic front towards areas characterized by still subducting oceanic crust of the Ionian sector. In particular it consists of predominantly NW-SE oriented right lateral faults system with antithetical NE-SW and coeval associated N-S normal faults and south-verging thrusts. All these structures are compatible with an unique cinematic framework dominated by transcurrent tectonics. Geological mapping carried out in the on-shore areas of Sicily, integrated with stratigraphical and structural analysis, permit to recognize some main structures in connection with the geodynamic evolution of the Tyrrhenian stage and allow to propose an updated structural model of this area.

  18. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China)

    NASA Astrophysics Data System (ADS)

    Yan, Dan-Ping; Zhou, Mei-Fu; Song, Hong-Lin; Wang, Xin-Wen; Malpas, John

    2003-01-01

    In the Yangtze Block (South China), a well-developed Mesozoic thrust system extends through the Xuefeng and Wuling mountains in the southeast to the Sichuan basin in the northwest. The system comprises both thin- and thick-skinned thrust units separated by a boundary detachment fault, the Dayin fault. To the northwest, the thin-skinned belt is characterized by either chevron anticlines and box synclines to the northwest or chevron synclines to the southeast. The former structural style displays narrow exposures for the cores of anticlines and wider exposures for the cores of synclines. Thrust detachments occur along Silurian (Fs) and Lower Cambrian (Fc) strata and are dominantly associated with the anticlines. To the southeast, this style of deformation passes gradually into one characterized by chevron synclines with associated principal detachment faults along Silurian (Fs), Cambrian (Fc) and Lower Sinian (Fz) strata. There are, however, numerous secondary back thrusts. Therefore, the thin-skinned belt is like the Valley and Ridge Province of the North American Applachian Mountains. The thick-skinned belt structurally overlies the thin-skinned belt and is characterized by a number of klippen including the Xuefeng and Wuling nappes. It is thus comparable to the Blue Ridge Province of Appalachia. The structural pattern of this thrust system in South China can be explained by a model involving detachment faulting along various stratigraphic layers at different stages of its evolution. The system was developed through a northwest stepwise progression of deformation with the earliest delamination along Lower Sinian strata (Fz). Analyses of balanced geological cross-sections yield about 18.1-21% (total 88 km) shortening for the thin-skinned unit and at least this amount of shortening for the thick-skinned unit. The compressional deformation from southeast to northwest during Late Jurassic to Cretaceous time occurred after the westward progressive collision of the Yangtze Block with the North China Block and suggests that the orogenic event was intracontinental in nature.

  19. Comparison of fault-related folding algorithms to restore a fold-and-thrust-belt

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Tanner, David

    2017-04-01

    Fault-related folding means the contemporaneous evolution of folds as a consequence of fault movement. It is a common deformation process in the upper crust that occurs worldwide in accretionary wedges, fold-and-thrust belts, and intra-plate settings, in either strike-slip, compressional, or extensional regimes. Over the last 30 years different algorithms have been developed to simulate the kinematic evolution of fault-related folds. All these models of fault-related folding include similar simplifications and limitations and use the same kinematic behaviour throughout the model (Brandes & Tanner, 2014). We used a natural example of fault-related folding from the Limón fold-and-thrust belt in eastern Costa Rica to test two different algorithms and to compare the resulting geometries. A thrust fault and its hanging-wall anticline were restored using both the trishear method (Allmendinger, 1998; Zehnder & Allmendinger, 2000) and the fault-parallel flow approach (Ziesch et al. 2014); both methods are widely used in academia and industry. The resulting hanging-wall folds above the thrust fault are restored in substantially different fashions. This is largely a function of the propagation-to-slip ratio of the thrust, which controls the geometry of the related anticline. Understanding the controlling factors for anticline evolution is important for the evaluation of potential hydrocarbon reservoirs and the characterization of fault processes. References: Allmendinger, R.W., 1998. Inverse and forward numerical modeling of trishear fault propagation folds. Tectonics, 17, 640-656. Brandes, C., Tanner, D.C. 2014. Fault-related folding: a review of kinematic models and their application. Earth Science Reviews, 138, 352-370. Zehnder, A.T., Allmendinger, R.W., 2000. Velocity field for the trishear model. Journal of Structural Geology, 22, 1009-1014. Ziesch, J., Tanner, D.C., Krawczyk, C.M. 2014. Strain associated with the fault-parallel flow algorithm during kinematic fault displacement. Mathematical Geosciences, 46(1), 59-73.

  20. Discussion Starter: The Case for Duplexing without Channel Flow During the Development and Emplacement of the Himalayan Middle Crust

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; He, D.; Yu, H.

    2015-12-01

    This presentation and another presentation led by Dawn Kellett will preface a ten-minute open discussion on how the Himalayan middle crust was developed and emplaced. Current hypotheses are transitioning from a set including wedge extrusion, channel flow with focused denudation, and tectonic wedging to a revised dichotomy: models with intense upper plate out-of-sequence activity (i.e., tunneling of channel flow, and critical taper wedge behavior) versus models in which the upper plate mainly records basal accretion of horses (i.e., duplexing). Critical taper and duplexing offer a simple contrast that can be illustrated via food analogies. If a wedge is critical, it churns internally like a pile of CheeriosTM cereal pushed up an inclined plane. Stacking of a duplex acts like a deli meat-slicing machine: slice after slice is cut from the intact block to a stack of slices, but neither the block (~down-going plate) nor the stack (~upper plate) features much internal deformation. Thus critical taper and channel tunneling models predict much processing via out-of-sequence deformation, whereas duplexing predicts in-sequence thrusting. The two concepts may be considered end-members. Recent work shows that the Himalayan middle crust has been assembled along a series of mainly southwards-younging thrust faults. The thrust faults separate 1-5 km thick panels that experienced similar metamorphic cycles during different time periods. Out-of-sequence deformation is rare, with its apparent significance enhanced because of the high throw-to-heave ratio of out-of-sequence thrusting. Flattening fabrics developed prior to thrusting have been interpreted to record either (1) southwards channel tunneling across the upper plate, or (2) fabric development during metamorphism of the down-going plate. We will argue that the thrust faults dominantly represent in-sequence duplexing, and therefore conclude that the Himalaya and analogous hot orogens behave like other accretionary orogens.

  1. Distributed deformation in the Zagros fold-and-thrust belt: insights from geomorphology

    NASA Astrophysics Data System (ADS)

    Obaid, Ahmed; Allen, Mark

    2017-04-01

    The Zagros fold-and-thrust belt is part of the active Arabia-Eurasia collision zone, and is an excellent region to study the interactions of tectonics and landscape. In this work we present results of a geomorphic analysis covering the entire range, coupled with more detailed analysis of the Kirkuk Embayment, Iraq. This particular region is a low elevation, low relief region of the Zagros, important for the enormous oil and gas reserves held in late Cenozoic anticlinal traps. Constraints from published earthquake focal mechanisms and hydrocarbon industry sub-surface data are combined with original fieldwork observations in northern Iraq, to produce a new regional cross-section and structural interpretation for the Kirkuk Embayment. We find that overall late Cenozoic shortening across the Embayment is on the order of 5%, representing only a few km. This deformation takes place on a series of anticlines, which are interpreted as overlying steep, planar, basement thrusts. These thrusts are further interpreted as reactivated normal faults, on the basis of (rare) published seismic data. The regional earthquake record confirms the basement involvement, although detachments within the sedimentary succession are also important, especially within the Middle Miocene Fat'ha Formation. Overall, the Zagros is sometimes represented as having a few major thrusts each persistent for 100s of km along the strike of the range. However, these faults are very rarely associated with major structural relief and/or surface fault ruptures during earthquakes. We have analysed the hypsometry of the range and find only gradational changes in the hypsometric integral of drainage basins across strike. This contrasts with regions such as the eastern Tibetan Plateau, where published analysis has revealed abrupt changes, correlating with the surface traces of active thrusts. Our interpretation is that the hypsometry of the Zagros reflects distributed deformation on numerous smaller faults, rather than major uplift on a small number of laterally continuous nappes.

  2. Tabletop Tectonics: Diverse Mountain Ranges Using Flour and Graphite

    NASA Astrophysics Data System (ADS)

    Davis, D. M.

    2006-12-01

    It has been recognized for some time that the frontal deformation zones where plates converge (foreland fold- and-thrust belts on continents and accretionary wedges at subduction zones) involve shortening over a decoupling layer, or decollement. A simple but successful way of explaining many aspects of their behavior is called the critical Coulomb wedge model, which regards these contractional wedges as analogous to the wedge-shaped mass of soil accreted in front of a bulldozer, or the wedge of snow that piles up in front of a snow plow. The shape and deformation history of the accreted wedge of soil or snow will depend upon the frictional strength of the material being plowed up and the surface over which it is being plowed. The same is true of `bulldozer' wedges consisting of many km thick piles of sediment at convergent plate margins. Using flour (or powdered milk), sandpaper, graphite, transparency sheets, and athletic field marker chalk, manipulated with sieves, brushes, pastry bags and blocks and sheets of wood, it is possible to demonstrate a wide variety of processes and tectonic styles observed at convergent plate boundaries. Model fold-and-thrust belts that behave like natural examples with a decollement that is strong (e.g., in rock without high pore fluid pressure) or weak (e.g., in a salt horizon or with elevated pore fluid pressure) can be generated simply by placing wither sandpaper or graphite beneath the flour that is pushed across the tabletop using a block of wood (the strong basement and hiterland rocks behind the fold-thrust belt). Depending upon the strength of the decollement, the cross-sectional taper of the deforming wedge will be thin or broad, the internal deformation mild or intense, and the structures either close to symmetric or strongly forward-vergent, just as at the analogous natural fold-thrust belts. Including a horizontal sheet of wood or Plexiglas in front of the pushing block allows generation of an accretionary wedge, outer-are high, and forearc basin, just as over a subduction zone. Any dark material emplaced (a pastry bag works well) atop the experiment before deformation in the form of football-field `hash marks' every 10 cm allows for easy calculation of strain distribution at any time during or after the experiment. Finally, the entire orogen can be excavated using a plastic photocopier transparency sheet. If the original set-up included occasional thin layers of red and blue field marker chalk within sedimentary column (the rest of which consists of white flour or powdered milk), excavation reveals (quite colorfully) many internal details of the fold-thrust belts that have been generated.

  3. Prograde evolution of the Scottish Caledonides and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle T.; Thigpen, J. Ryan; Law, Richard D.

    2015-05-01

    Recent thermometric analyses of samples collected in thrust-parallel structural transects across the Scandian (435-415 Ma) orogenic wedge in northwest Scotland provide a comprehensive characterization of the synorogenic retro-wedge thermal architecture. However, the paucity of petrologically-important metamorphic mineral phases (e.g., staurolite, Al-silicates) has limited investigation of pressure-temperature (P-T) histories, which hinders our ability to examine the nature of orogen-scale kinematic and thermal coupling. New data collected along a foreland-to-hinterland transect from the Moine to the Naver thrust sheets provides additional constraints for characterizing the prograde metamorphic evolution. In addition, we characterized Ti diffusion profiles in quartz inclusions in garnet to constrain duration of metamorphic heating. These results are used to develop coupled kinematic-thermal models of Scandian orogenic evolution. Early garnet core growth conditions are constrained by isopleth intersections, with peak P-T estimates determined by conventional exchange and net transfer thermobarometry and thermodynamic calculations. Most samples follow normal prograde heating and burial profiles, with peak conditions of 450 °C and 5.0 kbar in the immediate hanging wall to the Moine thrust, increasing in temperature and pressure to 733 °C and 9.5 kbar in the immediate hanging wall to the Naver thrust. These normal prograde pressure trajectories are interpreted to reflect burial of incipient thrust sheets beneath the overriding wedge at the leading edge of the orogen. Prograde heating coeval with burial is interpreted to result from surface-directed isotherm perturbation due to thrust-related advection in the overriding wedge. One exception to this is a sample from the top of the Moine thrust sheet, where prograde heating occurs during decompression (540 °C and 8.1 kbar to 590 °C and 7.0 kbar). In this case, the short lag times between motion on the Moine and Ben Hope thrusts may have limited advectionary heating until after exhumation associated with motion on the underlying Moine thrust was underway. Ti diffusion profiles in quartz inclusions in garnet suggest the near-peak thermal evolution of these rocks occurred over very short time scales (< 200,000 years). While most of the garnets are inferred to be Scandian in age, we document evidence for pre-Scandian garnet cores in structurally higher (more hinterland positioned) samples that must have grown under higher temperatures. In the hanging wall of the Moine thrust, high grossular garnets with estimated formation conditions > 9 kbar are probably of detrital origin.

  4. Tectonic evolution of the Anadyr Basin, northeastern Eurasia, and its petroleum resource potential

    NASA Astrophysics Data System (ADS)

    Antipov, M. P.; Bondarenko, G. E.; Bordovskaya, T. O.; Shipilov, E. V.

    2009-09-01

    The published data on the sedimentation conditions, structure, and tectonic evolution of the Anadyr Basin in the Mesozoic and Cenozoic are reviewed. These data are re-examined in the context of modern tectonic concepts concerning the evolution of the northwestern Circum-Pacific Belt. The re-examination allows us not only to specify the regional geology and tectonic history, but also to forecast of the petroleum resource potential of the sedimentary cover based on a new concept. The sedimentary cover formation in the Anadyr Basin is inseparably linked with the regional tectonic evolution. The considered portion of the Chukchi Peninsula developed in the Late Mesozoic at the junction of the ocean-type South Anyui Basin, the Asian continental margin, and convergent zones of various ages extending along the Asia-Pacific interface. Strike-slip faulting and pulses of extension dominated in the Cenozoic largely in connection with oroclinal bending of structural elements pertaining to northeastern Eurasia and northwestern North America against the background of accretion of terranes along the zone of convergence with the Pacific oceanic plates. Three main stages are recognized in the formation of the sedimentary cover in the Anadyr Basin. (1) The lower portion of the cover was formed in the Late Cretaceous-Early Eocene under conditions of alternating settings of passive and active continental margins. The Cenomanian-lower Eocene transitional sedimentary complex is located largely in the southern Anadyr Basin (Main River and Lagoonal troughs). (2) In the middle Eocene and Oligocene, sedimentation proceeded against the background of extension and rifting in the northern part of the paleobasin and compression in its southern part. The compression was caused by northward migration of the foredeep in front of the accretionary Koryak Orogen. The maximum thickness of the Eocene-Oligocene sedimentary complex is noted mainly in the southern part of the basin and in the Central and East Anadyr troughs. (3) The middle Miocene resumption of sedimentation was largely related to strike-slip faulting and rifting. In the Miocene to Quaternary, sedimentation was the most intense in the central and northern parts of the Anadyr Basin, as well as in local strike-slip fault-line depressions of the Central Trough. Geological and geophysical data corroborate thrusting in the southern Anadyr Basin. The amplitude of thrusting over the Main River Trough reaches a few tens of kilometers. The vertical thickness of the tectonically screened Paleogene and Neogene rocks in the southern Main River Trough exceeds 10 km. The quantitative forecast of hydrocarbon emigration from Cretaceous and Paleogene source rocks testifies to the disbalance between hydrocarbons emigrated and accumulated in traps of petroleum fields discovered in the Anadyr Basin. The southern portion of the Anadyr Basin is the most promising for the discovery of new petroleum fields in the Upper Cretaceous, Eocene, and Upper Oligocene-Miocene porous and fracture-porous reservoir rocks in subthrust structural and lithological traps.

  5. Reactivation of pre-existing mechanical anisotropies during polyphase tectonic evolution: slip tendency analysis as a tool to constrain mechanical properties of rocks

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Bistacchi, Andrea; Massironi, Matteo; Zampieri, Dario; Di Toro, Giulio

    2017-04-01

    Intracontinental deformation within the upper crust is accommodated by nucleation of new faults (generally satisfying the Anderson's theory of faulting) or brittle reactivation of pre-existing anisotropies when certain conditions are met. How prone to reactivation an existing mechanical anisotropy or discontinuity is, depends on its mechanical strength compared to that of the intact rock and on its orientation with respect to the regional stress field. In this study, we consider how different rock types (i.e. anisotropic vs. isotropic) are deformed during a well-constrained brittle polyphase tectonic evolution to derive the mechanical strength of pre-existing anisotropies and discontinuities (i.e. metamorphic foliations and inherited faults/fractures). The analysis has been carried out in the Eastern Sierras Pampeanas of Central Argentina. These are a series of basement ranges of the Andean foreland, which show compelling evidence of a long-lasting brittle deformation history from the Early Carboniferous to Present time, with three main deformational events (Early Triassic to Early Jurassic NE-SW extension, Early Cretaceous NW-SE extension and Miocene to Present ENE-WNW compression). The study area includes both isotropic granitic bodies and anisotropic phyllosilicate-bearing rocks (gneisses and phyllites). In this environment, each deformation phase causes significant reactivation of the inherited structures and rheological anisotropies, or alternatively formation of neo-formed Andersonian faults, thus providing a multidirectional probing of mechanical properties of these rocks. A meso- and micro-structural analysis of brittle reactivation of metamorphic foliation or inherited faults/fractures revealed that different rock types present remarkable differences in the style of deformation (i.e., phyllite foliation is reactivated during the last compressional phase and cut by newly-formed Andersonian faults/fractures during the first two extensional regimes; instead, gneiss foliation is pervasively reactivated during all the tectonic phases). Considering these observations, we applied a Slip Tendency analysis to estimate the upper and lower bounds to the friction coefficient for slip along the foliations (μs) and along pre-existing faults/fractures (μf). If an hypothetical condition with simultaneous failure on the inherited mechanical discontinuity (foliation or pre-existing fault/fracture) and new Andersonian faults is assumed, the ratio between μsor μf and μ0(the average friction coefficient for intact isotropic rocks) can be calculated as μs (or μf) = NTs ṡ μ0(where NTs represents the normalized slip tendency of the analyzed discontinuity). When just reactivation of foliation/faults/fractures is observed (i.e. no newly-formed Andersonian faults are recognised), an upper bound to μsand μfcan be estimated as μs (or μf) < NTs ṡ μ0. By contrast, the lower bound to μsand μfcan be obtained as μs (or μf) > NTs ṡ μ0, when the mechanical anisotropies are not reactivated and new Andersonian faults nucleate. Applying the above analysis to multiple deformation phases and rock types, we were able to approximatively estimate μs < 0.4 (gneisses) and 0.1 < μs < 0.2 (phyllites) and μf ≈ 0.4 (phyllites) and 0.3 (gneisses).

  6. Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers

    PubMed Central

    Zanchi, Marta G.; Pauly, John M.; Scott, Greig C.

    2010-01-01

    A modified Cartesian feedback method called “frequency-offset Cartesian feedback” and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems. In this method, the reference input and feedback signals are down-converted and compared at a low intermediate frequency (IF) instead of at DC. The polyphase difference amplifiers create a complex control bandwidth centered at this low IF, which is typically offset from DC by 200–1500 kHz. Consequently, the loop gain peak does not overlap DC where voltage offsets, drift, and local oscillator leakage create errors. Moreover, quadrature mismatch errors are significantly attenuated in the control bandwidth. Since the polyphase amplifiers selectively amplify the complex signals characterized by a +90° phase relationship representing positive frequency signals, the control system operates somewhat like single sideband (SSB) modulation. However, the approach still allows the same modulation bandwidth control as classic Cartesian feedback. In this paper, the behavior of the polyphase difference amplifier is described through both the results of simulations, based on a theoretical analysis of their architecture, and experiments. We then describe our first printed circuit board prototype of a frequency-offset Cartesian feedback transmitter and its performance in open and closed loop configuration. This approach should be especially useful in magnetic resonance imaging transmit array systems. PMID:20814450

  7. Active tectonic of the Medlicott Wadia Thrust (Western Himalaya) inferred from morphotectonic analysis

    NASA Astrophysics Data System (ADS)

    Vignon, V.; Mugnier, J. L.; Replumaz, A.; Vassallo, R.; Ramakrishnan, R.; Srivastava, P.; Malik, M. M.; Jouanne, F.; Carcaillet, J.

    2010-12-01

    We study the main emergence of the Main Himalayan Thrust (MHT), in the western Himalaya. The MHT is the active Indian/Asian plate boundary and is responsible for M > 8 shallow earthquakes. Its main emergence in west Himalaya occurred along the Medlicott Wadia Thrust (MWT) responsible for the 2005 M 7.6 Balakot earthquake in Pakistan. In the Riasi area, two major rivers, the Chenab and the Anji, have built large fluvial terraces across the MWT. We have mapped the geometry of the terraces and the elevation of the tectonic scarps using kinematic GPS, total station measurements and satellite imagery. The terraces have been dated combining several methods: cosmogenic-nuclide dating (10Be) on boulders constituting the terrace treads, and Optically Stimulated Luminescence (OSL) on fine-grained deposit layers. At the hanging wall of the fault, the Palaeozoic limestone bedrock is deeply incised by Chenab River that formed a series of stepped strath terraces from the present river level up to 350 m above it. We have mapped and measured the relative height of 8 terraces and of their alluvial cover. To estimate the incision rate of the hanging wall, we dated 3 terraces, situated respectively 375 m, 250m and 100m above the present day river bed. The highest terrace has a minimum exposure age of 28 ka. This yield a maximum incision rate of 1,3 cm/yr over the last 28 ka. At the foot wall of the fault, we have mapped 6 terraces deposited above tertiary foreland basin sediment (Siwalik). The most extended terrace, on which the Riasi city is built, forms the top of a more than 40 m thick aggradation sedimentary body, deposited between 16 and 14 ka. A tributary inflowing stream (Nodda River) deposited a steep alluvial fan above the active fault. Nodda River incised since ~4 ka its own deposits and provides a natural trench, revealing three splays of the Riasi thrust. Along the northern splay, Precambrian limestones are thrust over Quaternary sediments. This splay is sealed by Chenab and Nodda deposits and the last motion occurred in a syn-sedimentary context between 35-39 ka. Colluvial wedges related to ~few-meters-displacement paleoearthquakes are preserved within the sedimentary pile. The second splay cuts through the alluvial fan, leading to a scarp that increases towards East reaching more than 37-m-high. The southern splay folds the alluvial fan into a fault-cored anticline, leading to a 34-m-high scarp. These two fault segments are the most recent active structures of the MHT. With a total vertical displacement of ~70 m of a surface dated at around 14 ka the long term slip rate can be estimated between 4.5 and 9 mm/yr. This work confirms that the Medlicott Wadia Thrust is one of the main emergences of the Main Himalayan Thrust in western Himalaya and suggests that it is more active in the Riasi area than in the Balakot area. Considering a 5 centuries seismic gap on a >70 km segment, and a faulting behaviour able to generate several meters co-seismic movement, we may expect a major event in the next few decades in the Riasi region.

  8. Structural model of the eastern Achara-Trialeti fold and thrust belt using seismic reflection profiles

    NASA Astrophysics Data System (ADS)

    Alania, Victor; Chabukiani, Alexander; Enukidze, Onise; Razmadze, Alexander; Sosson, Marc; Tsereteli, Nino; Varazanashvili, Otar

    2017-04-01

    Our study focused on the structural geometry at the eastern Achara-Trialeti fold and thrust belt (ATFTB) located at the retro-wedge of the Lesser Caucasus orogen (Alania et al., 2016a). Our interpretation has integrated seismic reflection profiles, several oil-wells, and the surface geology data to reveal structural characteristics of the eastern ATFTB. Fault-related folding theories were used to seismic interpretation (Shaw et al., 2004). Seismic reflection data reveal the presence of basement structural wedge, south-vergent backthrust, north-vergent forethrust and some structural wedges (or duplex). The rocks are involved in the deformation range from Paleozoic basement rocks to Tertiary strata. Building of thick-skinned structures of eastern Achara-Trialeti was formed by basement wedges propagated from south to north along detachment horizons within the cover generating thin-skinned structures. The kinematic evolution of the south-vergent backthrust zone with respect to the northward propagating structural wedge (or duplexes). The main style of deformation within the backthrust belt is a series of fault-propagation folds. Frontal part of eastern ATFTB are represent by triangle zone (Alania et al., 2016b; Sosson et al., 2016). A detailed study was done for Tbilisi area: seismic refection profiles, serial balanced cross-sections, and earthquakes reveal the presence of an active blind thrust fault beneath Tbilisi. 2 & 3-D structural models show that 2002 Mw 4.5 Tbilisi earthquake related to a north-vergent blind thrust. Empirical relations between blind fault rupture area and magnitude suggest that these fault segments could generate earthquakes of Mw 6.5. The growth fault-propagation fold has been observed near Tbilisi in the frontal part of eastern ATFTB. Seismic reflection profile through Ormoiani syncline shows that south-vergent growth fault-propagation fold related to out-of-the-syncline thrust. The outcrop of fault-propagation fold shown the geometry of the hangingwall structure with the syn-folding growth stratal sequence. Pre-growth Oligocene strata are overlain by Late (?) Quaternary alluvial fan gravels, sands and clays. Growth unconformity of back-limb showing flat clays unconformably on top of Oligocene sandstone and shale beds. The growth strata geometry of growth fold is related to the progressive limb-rotation model (Hardy & Poblet, 1994). References Alania, V., et al., 2016a. Structure of the eastern Achara-Trialeti fold and thrust belt using seismic reflection profiles: implication for tectonic model of the Lesser Caucasus orogen. 35TH International Geological Congress (IGC), 27 August - 4 September, 2016, Cape Town, South Africa. Alania, V., et al., 2016b. Growth structures, piggyback basins and growth strata of Georgian part of Kura foreland fold and thrust belt: implication for Late Alpine kinematic evolution. Geological Society, London, Special Publications no. 428, doi:10.1144/SP428.5. Hardy, S., and J. Poblet, 1994. Geometric and numerical model of progressive limb rotation in detachment folds: Geology, v. 22, p. 371-374. Shaw, J., Connors, C. & J. Suppe, 2005. Seismic interpretation of contractional fault-related folds. AAPG Studies in Geology 53, 156 pp. Sosson, M., et al., 2016. The Eastern Black Sea-Caucasus region during Cretaceous: new evidence to constrain its tectonic evolution. Compte-Rendus Geosciences, v. 348, Issue 1, p. 23-32.

  9. Ice Surface Morphology and Flow on Malaspina Glacier, Alaska: Implications for Regional Tectonics in the Saint Elias Orogen

    NASA Technical Reports Server (NTRS)

    Cotton, Michelle M.; Bruhn, Ronald L.; Sauber, Jeanne; Burgess, Evan; Forster, Richard R.

    2014-01-01

    The Saint Elias Mountains in southern Alaska are located at a structural syntaxis where the coastal thrust and fold belt of the Fairweather plate boundary intersects thrust faults and folds generated by collision of the Yakutat Terrane. The axial trace of this syntaxis extends southeastward out of the Saint Elias Mountains and beneath Malaspina Glacier where it is hidden from view and cannot be mapped using conventional methods. Here we examine the surface morphology and flow patterns of Malaspina Glacier to infer characteristics of the bedrock topography and organization of the syntaxis. Faults and folds beneath the eastern part of the glacier trend northwest and reflect dextral transpression near the terminus of the Fairweather fault system. Those beneath the western part of the glacier trend northeast and accommodate folding and thrust faulting during collision and accretion of the Yakutat Terrane. Mapping the location and geometry of the structural syntaxis provides important constraints on spatial variations in seismicity, fault kinematics, and crustal shortening beneath Malaspina Glacier, as well as the position of the collisional deformation front within the Yakutat Terrane. We also speculate that the geometrical complexity of intersecting faults within the syntaxis formed a barrier to rupture propagation during two regional Mw 8.1earthquakes in September 1899.

  10. Mesozoic intracontinental underthrust in the SE margin of the North China Block: Insights from the Xu-Huai thrust-and-fold belt

    NASA Astrophysics Data System (ADS)

    Shu, Liangshu; Yin, Hongwei; Faure, Michel; Chen, Yan

    2017-06-01

    The Xu-Huai thrust-and-fold belt, located in the southeastern margin of the North China Block, consists mainly of thrust and folded pre-Mesozoic strata. Its geodynamic evolution and tectonic setting are topics of long debate. This paper provides new evidence from geological mapping, structural analysis, and making balance cross-sections, with restoration of cross-sections. Results suggest that this belt was subjected to two-phase deformation, including an early-phase regional-scale NW-ward thrust and fold, and a late-phase extension followed by the emplacement of dioritic, monzodioritic porphyrites dated at 131-135 Ma and locally strike-slip shearing. According to the mapping, field observations and drill-hole data, three structural units were distinguished, namely, (1) the pre-Neoproterozoic crystalline basement in the eastern segment, (2) the nappe unit or the thrust-and-fold zone in the central segment, which is composed of Neoproterozoic to Ordovician carbonate rocks and Carboniferous-Permian coal-bearing rocks, about 2600 m thick, and (3) the western frontal zone. A major decollement fault has also been identified in the base of the nappe unit, on which dozen-meter to km-scale thrust-and-fold bodies were commonly developed. All pre-Mesozoic depositional sequences were involved into a widespread thrust and fold event. Six uncompetent-rock layers with biostratigraphic ages (Nanjing University, 1996) have been recognized, and each uncompetent-rock layer occurred mainly in the top of the footwall, playing an important role in the development of the Xu-Huai thrust-and-fold belt. Geometry of the major decollement fault suggests that the nappe unit of this belt was rooted in its eastern side, near the Tan-Lu Fault Zone. Two geological cross-sections were chosen for structural balancing and restoration. From the balanced cross-sections, ramp-flat and imbricated faults as well as fault-related folds were identified. A shortening of 20.6-29.6 km was obtained from restoration of balanced sections, corresponding to a shortening rate of 43.6-46.4%. This shortening deformation was likely related to the SE-ward intracontinental underthrust of the North China Block beneath the South China Block during the Mesozoic.

  11. Neotectonics and structure of the Himalayan deformation front in the Kashmir Himalaya, India: Implication in defining what controls a blind thrust front in an active fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Gavillot, Y. G.; Meigs, A.; Yule, J. D.; Rittenour, T. M.; Malik, M. O. A.

    2014-12-01

    Active tectonics of a deformation front constrains the kinematic evolution and structural interaction between the fold-thrust belt and most-recently accreted foreland basin. In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline (SMA), and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the SMA hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and three yield OSL ages of 53 ka, 33 ka, and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Muree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggest that rock uplift rates across the SMA range between 2.0-1.8 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rate across the SMA ranges between 4.4-3.8 mm/yr since ~53 ka. Of that rate, ~1 mm/yr is likely absorbed by minor faulting in the near field of the fold axis. Given that Himalaya-India convergence is ~18.8-11 mm/yr, internal faults north of the deformation front, such as the Riasi thrust absorbs more of the Himalayan shortening than does the HFT in Kashmir. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled by pre-existing basin architecture in Kashmir, in which the thick succession of foreland strata Murree-Siwalik (8-9 km) overlie a deepened basal décollement. Blind thrusting reflects some combination of layer-parallel shortening, high stratigraphic overburden, relative youth of the HFT, and/or sustained low shortening rate on 10^5 yrs to longer timescales.

  12. Shallow Geological Structures Triggered During the Mw6.4 Meinong Earthquake and Their Significance in Accommodating Long-term Shortening Across the Foothills of Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Le Beon, M.; Suppe, J.; Huang, M. H.; Huang, S. T.; Ulum, H. H. M.; Ching, K. E.; Hsieh, Y. H.

    2017-12-01

    The 2016 Mw6.4 Meinong earthquake generated up to 10 cm surface displacement located 10-35 km W of the epicenter and monitored by InSAR and GPS. In addition to coseismic deformation related to the deep earthquake source, InSAR revealed three sharp surface displacement gradients that suggest slip triggering on shallow structures. To characterize these shallow structures, we build two EW regional balanced cross-sections, based on surface geology, subsurface data, and coseismic and interseismic geodetic data. From the Coastal Plain to the eastern edge of the coseismic deformation area, we propose a series of three active W-dipping back-thrusts: the Houchiali fault, the Napalin-Pitou back-thrust, and the Lungchuan back-thrust. They all root on the 3.5-4.0 km deep Tainan detachment located near the base of the 3-km-thick Plio-Pleistocene Gutingkeng mudstone. Further east, the detachment would ramp down to a 7-km-deep detachment, allowing the E-dipping Lungchuan thrust and Pingxi thrust to bring Miocene formations to the surface. Another ramp from 7 to 11-km depth, is expected further east to bring the slate belt to the surface. Coseismic surface deformation measurements suggest that, in addition to the deeper (15-20 km) main rupture plane, mostly the 4-7-km deep ramp, the Lungchuan back-thrust, and the Tainan detachment slipped aseismically during or right after the earthquake. Preliminary restorations show that the E-dipping Lungchuan thrust and Pingxi thrust consumed >10 km shortening each, while evidence for present-day tectonic activity remains to be found. By contrast, structures located west of the 4-7-km deep ramp accommodated all together <10 km shortening since 450 ka ago or less based on published nannostratigraphy, and they show numerous evidence of Late Quaternary and present-day activity. The restorations also allow connecting the 11-km-depth detachment to a main detachment level evidenced from a velocity inversion in the local tomography. By contrast, the epicenters of the Meinong event and earlier events of similar magnitude seem to locate at the transition between the crustal basement and the sedimentary cover.

  13. Hinterland tectonics and drainage evolution recorded by foreland basin archives: the Neogene Siwaliks of the Himalaya

    NASA Astrophysics Data System (ADS)

    Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze

    2014-05-01

    Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward propagation of the main faults. The evolution of the sedimentary provenance can be explained by overall forward propagation of deformation in the Himalayan fold-thrust belt. In both the eastern and western syntaxes, it also shows stability of the major drainage systems of the Yarlung-Brahmaputra and Indus, respectively, suggesting that hinterland river incision kept pace with uplift of the syntaxes during the Neogene. Drainage reorganization may take place in the foreland basin because of thin-skinned tectonics but did not significantly affect sediment routing and the contribution of different sources of the upper catchment to the overall sediment budget. In contrast, major rivers in the Central Himalaya (such as the Kali Gandaki or the Karnali) could have been affected by changes in their upper catchment.

  14. Evolution Of Quaternary Stream Fan Deposits At The Confluences Of Turung Khola And Bembung Khola Of Middle Teesta Basin In Sikkim-Darjeeling Himalaya,India: A Tectonic - Climate Response

    NASA Astrophysics Data System (ADS)

    Lukram, I. M.

    2007-12-01

    Tributary fan deposits are well preserved on either side of the Teesta river in the non-glaciated middle part of the Himalayan valley lying in a tectonic region bounded by the MCT and MBT. The lithofacies characteristics and assemblage patterns of these deposits bear testimony to the effects of tectonic and climatic activities on the sedimentation process in the basin. Two tributary streams, with small catchments namely Turung Khola and Bembung Khola are important in this context. Three major fan lobes (F2, F1, and F0) are preserved at Turung Khola. In contrast, two fan lobes (F1,F0) are preserved at the confluence of the Bembung Khola. Terraces, floodplains, channel bars, chute bars are associated geomorphic features in this part of the Teesta basin. Landslides cover an area of 7% and 15% in the catchment of Turung Khola and Bembung Khola, respectively. Dense forest covers 24% and 12%; open forest covers 30% and 29 %; and scrubby vegetation covers 39% and 49% of the Turung Khola and Bembung Khola, respectively. The landslides mainly occur along the margins of the dense forest where they are active in every rainy season. Tributary longitudinal profiles and Hack profiles indicate a relationship between the knick points and high SL-Index values, where fault /thrust intersections are present. Active landslides and scarps are close to the major fault/thrust planes. Sediment characteristics of these fan deposits suggest that four types of depositional flows viz. debris flows, hyperconcentrated flows, sheet flows and channel flows laid down these sequences. The channel flow deposits are dominant (32%-54 %) in the fan sequence of the Turung Khola followed by sheet flow deposits (28.5%), hyperconcentrated flow deposits (26%) and debris flow deposits (12%), respectively. Hyperconcentrated flow deposits are dominant (44%) in the F1 sequence, whereas the active channel fanlobe is dominant (80%) in the channel flow deposits. The rest of the active channel sequence is composed of sheet flow deposits (20%). On the other hand, the major part (52%) of the F1 fanlobe of Bembung Khola is built up of debris flow deposits and F0 fanlobe is composed of channel flow deposits and flood sediment. From the above analysis, an evolutionary model of the deposition and incision at the tributary stream fan confluence is proposed. The insetting of the younger fan lobes into older fan lobe surfaces is an evidence of tectonic uplift in the region. The landform and their depositional pattern are a responds to link tectonic- climatic process systems; some depositional lithofacies assemblages are responses to climatic events.

  15. Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review

    NASA Astrophysics Data System (ADS)

    Morley, C. K.; King, R.; Hillis, R.; Tingay, M.; Backe, G.

    2011-01-01

    Deepwater fold and thrust belts (DWFTBs) are classified into near-field stress-driven Type 1 systems confined to the sedimentary section, and Type 2 systems deformed by either far-field stresses alone, or mixed near- and far-field stresses. DWFTBs can occur at all stages of the Wilson cycle up to early stage continent continent collision. Type 1 systems have either weak shale or salt detachments, they occur predominantly on passive margins but can also be found in convergent-related areas such as the Mediterranean and N. Borneo. Examples include the Niger and Nile deltas, the west coast of Africa, and the Gulf of Mexico. Type 2 systems are subdivided on a tectonic setting basis into continent convergence zones and active margin DWFTBs. Continent convergence zones cover DWFTBs developed during continent-arc or continent-continent collision, and those in a deepwater intracontinental setting (e.g. W. Sulawesi, Makassar Straits). Active margins include accretionary prisms and transform margins. The greatest variability in DWFTB structural style occurs between salt and shale detachments, and not between tectonic settings. Changes in fold amplitude and wavelength appear to be more related to thickness of the sedimentary section than to DWFTB type. In comparison with shale, salt detachment DWFTBS display a lower critical wedge taper, more detachment folds, long and episodic duration of deformation and more variation in vergence. Structures unique to salt include canopies and nappes. Accretionary prisms also standout from other DWFTBs due to their relatively long, continuous duration, rapid offshore propagation of the thrust front, and large amount of shortening. In terms of petroleum systems, many similar issues affect all DWFTBs, these include: the oceanward decrease in heat flow, offshore increase in age of mature source rock, and causes of trap failure (e.g. leaky oblique and frontal thrust faults, breach of top seal by fluid pipes). One major difference between Type 1 and Type 2 systems is reservoir rock. High quality, continent-derived, quartz-rich sandstones are generally prevalent in Type 1 systems. More diagenetically reactive minerals derived from igneous and ophiolitic sources are commonly present in Type 2 systems, or many are simply poor in well-developed turbidite sandstone units. However, some Type 2 systems, particularly those adjacent to active orogenic belts are partially sourced by high quality continent-derived sandstones (e.g. NW Borneo, S. Caspian Sea, Columbus Basin). In some cases very high rates of deposition in accretionary prisms adjacent to orogenic belts, coupled with uplift due to collision, results in accretionary prism related fold belts that pass laterally from sub-aerial to deepwater conditions (e.g. S. Caspian Sea, Indo-Burma Ranges). The six major hydrocarbon producing regions of DWFTBs worldwide (Gulf of Mexico, Niger Delta, NW Borneo, Brazil, West Africa, S. Caspian Sea) stand out as differing from most other DWFTBs in certain fundamental ways, particularly the very large volume of sediment deposited in the basins, and/or the great thickness and extent of salt or overpressured shale sdetachments.

  16. The first direct dating of Main Central Thrust phyllonite demonstrates exhumation of the Greater Himalayan Crystalline had already taken place

    NASA Astrophysics Data System (ADS)

    Rajabi, Sareh; Forster, Marnie; Ahmad, Talat; Lister, Gordon

    2017-04-01

    Here we report the results of step-heating experiments that allow the first direct dating of the timing of movement on the Himalayan Main Central Thrust (MCT). Timing of MCT operation has, until now, been inferred based on specific tectonic models, or with data not directly attributable to MCT movement, e.g., the debatable assertion that leucogranite formation is invariably related to crustal shortening, and therefore that the MCT must already have been in operation. However the tectonic evolution may have been more complex, e.g., at times involving horizontal extension. In any case, many different thrust systems operated during India-Asia convergence, and the MCT is only one of them. It is time to move away from models and to bring geology back into the equation. Here we apply 40Ar/39Ar geochronology to directly date highly strained, phyllonitized, muscovite in the MCT above the Kullu-Rampur tectonic window (NW Indian Himalaya), showing that the timing of the shear movement lasted from 15-9 Ma. We show that these ages have been preserved because the white mica was sufficiently retentive of argon to be able to inhibit its diffusional loss at the temperatures and pressures in question. Arrhenius data from ultra-high-vacuum diffusion experiments show that deformation occurred below the closure temperature of this muscovite, for moderate cooling rates. Furthermore, we demonstrate that microscopic shear bands associated with MCT operation overprinted an earlier decussate mica growth. This decussate growth had taken place prior to ˜ 18 Ma. The decussate microstructure, together with foam textures in the host deformed quartzite, demonstrate that low deviatoric stress conditions applied during a prior period of static annealing under middle- to upper-greenschist facies conditions. In this region, therefore, the Greater Himalayan Crystalline had therefore already been significantly exhumed prior to the onset of MCT operation. The foam textures in quartzite and the decussate intergrowths of mica match in age and character the effects of the Oligo-Miocene metamorphic event that had widespread effects across this region, coeval with the operation of extensional ductile shear zones and faults of the South Tibetan Detachment (STD) system. This means that regional exhumation of the crystalline series most-likely occurred as the result of extreme extension during STD time. The MCT at this location is a relatively late structure that overprinted STD fabrics and microstructures at least five million years after the main exhumation of the crystalline series. It is widely agreed that the MCT had a pivotal role in the evolution and exhumation of the Greater Himalaya crystalline sequences. This aspect is central to models involving fold-nappes, channel flow, and wedge extrusion. All of these models imply that the crystalline core of the Himalaya was exhumed as the result of it being thrust southward by the MCT. However, there is no evidence that this is the case, and these data allow rebuttal of such models, at least in terms of the structures currently defined as representing the MCT in NW India.

  17. Karstic slope "breathing": morpho-structural influence and hazard implications

    NASA Astrophysics Data System (ADS)

    Devoti, Roberto; Falcucci, Emanuela; Gori, Stefano; Eliana Poli, Maria; Zanferrari, Adriano; Braitenberg, Carla; Fabris, Paolo; Grillo, Barbara; Zuliani, David

    2016-04-01

    The study refers to the active slope deformation detected by GPS and tiltmeter stations in the Cansiglio karstic plateau located in the western Carnic Prealps (NE Italy). The observed transient deformation clearly correlates with the rainfall, so that the southernmost border of the Plateau reacts instantly to heavy rains displaying a "back and forth" deformation up to a few centimeters wide, with different time constants, demonstrating a response to different catchment volumes. We carried out a field survey along the southern Cansiglio slope, to achieve structural characterization of the relief and to verify the possible relation between structural features and the peculiar geomorphological setting dominated by widespread karstic features. The Cansiglio plateau develops on the frontal ramp anticline of the Cansiglio thrust, an about ENE-WSW trending, SSE-verging, low angle thrust, belonging to the Neogene-Quaternary front of the eastern Southern Alps. The Cansiglio thrust outcrops at the base of the Cansiglio plateau, where it overlaps the Mesozoic carbonates on the Miocene-Quaternary terrigenous succession. All along its length cataclastic limestone largely outcrop. The Cansiglio thrust is bordered by two transfer zones probably inherited from the Mesozoic paleogeography: the Caneva fault in the west and the Col Longone fault in the east. The carbonatic massif is also characterized by a series of about northward steeply dipping reverse minor faults and a set of subvertical joints parallel to the axes of the Cansiglio anticline. Other NNW-SSE and NNE-SSW conjugate faults and fractures perpendicular to the Cansiglio southern slope are also identified. This structural setting affect pervasively the whole slope and may determine centimetre- to metre-scale rock prisms. Interestingly, along the topmost portion of the slope, some dolines and swallow holes show an incipient coalescence, that trends parallel to the massif front and to the deformation zones related to the reverse fault. Such a dolines alignment forms a ridge parallel elongated trench, about 4 km long, which is a typical morpho-structural feature of slopes undergoing large scale gravitational instability (deep seated gravitational slope deformations). The trench is interrupted towards the NE by several coalescent and slide scarps. Such geomorphic evidence testifies to the occurrence of landslides events (mainly rockslides and rock falls) that sourced from the top portion of the slope, as local collapses of the sector affected by the trench. Our observations, as a whole, suggest that morpho-structural framework of the Cansiglio south-eastern slope is highly influenced by tectonic features related to the complex tectonic deformation. The structural setting is locally favoring the nucleation of karstic landforms (dolines, swallow holes and ipokarstic features). Moreover, the presence of widespread tectonic features lead gravitational instability affecting the slope, linked to the high local relief of the mountain front, may trigger collapse of sectors of the slope in rock falls phenomena. In this perspective, therefore, the continuous "back and forth" movements of the slope observed by GPS time series analysis induced by rainfall may progressively weaken the slope and render it prone to landsliding.

  18. Fault dating in the Canadian Rocky Mountains: Evidence for late Cretaceous and early Eocene orogenic pulses

    USGS Publications Warehouse

    van der Pluijm, B.A.; Vrolijk, P.J.; Pevear, D.R.; Hall, C.M.; Solum, J.

    2006-01-01

    Fault rocks from the classic Rocky Mountain foreland fold-and-thrust belt in south-western Canada were dated by Ar analysis of clay grain-size fractions. Using X-ray diffraction quantification of the detrital and authigenic component of each fraction, these determinations give ages for individual faults in the area (illite age analysis). The resulting ages cluster around 72 and 52 Ma (here called the Rundle and McConnell pulses, respectively), challenging the traditional view of gradual forward progression of faulting and thrust-belt history of the area. The recognition of spatially and temporally restricted deformation episodes offers field support for theoretical models of critically stressed wedges, which result in geologically reasonable strain rates for the area. In addition to regional considerations, this study highlights the potential of direct dating of shallow fault rocks for our understanding of upper-crustal kinematics and regional tectonic analysis of ancient orogens. ?? 2006 Geological Society of America.

  19. Seismicity and active tectonics of the Andes and the origin of the Altiplano

    NASA Technical Reports Server (NTRS)

    Molnar, P.

    1982-01-01

    Large earthquakes and active deformation on the Andes were studied. Earthquakes on the east side of the Andes were generally found to reflect east-west crustal shortening. These earthquakes seem to occur throughout the crust and do not reflect a detachment and low angle thrusting of the sedimentary cover onto the Brazilian shield. Instead they imply deformation of the basement. The rate of shortening is compatible with construction of the Andes by crustal shortening since the late Cretaceous, and the surface geology, at least qualitatively, is considered to reflect this process. Andean margins are considered to be a result of crustal shortening. The crustal shortening in the sub-Andes occurs concurrently with normal faulting at high elevations in parts of the Andes. The normal faulting is associated with the buoyancy of the thick crust. Crustal shortening thickens the crust and work is done against gravity. When the crustal thickness and elevation reach limiting values, the range grows laterally by further thrusting on the margins.

  20. Soil gas radon-thoron monitoring in Dharamsala area of north-west Himalayas, India using solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kumar, Arvind; Walia, Vivek; Kumar, Jitender; Gupta, Vikash; Yang, Tsanyao Frank; Singh, Surinder; Bajwa, Bikramjit Singh

    2013-10-01

    The study described here is based on the measurements of soil gas radon-thoron concentrations performed at Dharamsala region of north-west (NW) Himalayas, India. The study area is tectonically and environmentally significant and shows the features of ductile shear zone due to the presence of distinct thrust planes. Solid state nuclear track detectors (LR-115 films) have been used for the soil gas radon-thoron monitoring. Twenty five radon-thoron discriminators with LR-115 films were installed in the borehole of about 50 cm in the study areas. The recorded radon concentration varies from 1593 to 13570 Bq/m3 with an average value of 5292 Bq/m3. The recorded thoron concentration varies from 223 to 2920 Bq/m3 with an average value of 901 Bq/m3. The anomalous value of radon-thoron has been observed near to the faults like main boundary thrust (MBT and MBT2) as well as neotectonic lineaments in the region.

  1. Breccia dikes from the Beaverhead Impact structure, southwest Montana

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Hougen, S. B.; Hargraves, R. B.

    1992-01-01

    While shatter cones are generally accepted as indicators of meteorite impact, older petrologic features are not widely recognized in the geologic community. Breccia dikes are one such feature. They are found in many large impact structures occurring over an area at least as extensively as shatter cones. Breccia dikes will survive moderate degrees of metamorphism and tectonism, unlike many other microscopic features (shocked quartz grains, high-pressure polymorphs, etc.) and even large-scale features such as annular or bowl-shaped topographic features. Thus, they are important diagnostic criteria, especially for large, poorly preserved impact structures. The Beaverhead Impact structure is a recently discovered, deeply eroded impact structure in southwestern Montana. The remains of the structure are delineated by the occurrence of shatter cones, found in an area greater than 200 sq km, occurring within the Cabin thrust plate, part of the Cretaceous Sevier fold and thrust system. The distribution of shatter cones is further truncated by Tertiary normal faults. The present remains represent an allochthonous fragment of a larger structure.

  2. Extensional tectonics during the igneous emplacement of the mafic-ultramafic rocks of the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Dewit, M. J.

    1986-01-01

    The simatic rocks (Onverwacht Group) of the Barberton greenstone belt are part of the Jamestown ophiolite complex. This ophiolite, together with its thick sedimentary cover occupies a complex thrust belt. Field studies have identified two types of early faults which are entirely confined to the simatic rocks and are deformed by the later thrusts and associated folds. The first type of fault (F1a) is regional and always occurs in the simatic rocks along and parallel to the lower contacts of the ophiolite-related cherts (Middle Marker and equivalent layers). These fault zones have previously been referred to both as flaser-banded gneisses and as weathering horizons. In general the zones range between 1-30m in thickness. Displacements along these zones are difficult to estimate, but may be in the order of 1-100 km. The structures indicate that the faults formed close to horizontal, during extensional shear and were therefore low angle normal faults. F1a zones overlap in age with the formation of the ophiolite complex. The second type of faults (F1b) are vertical brittle-ductile shear zones, which crosscut the complex at variable angles and cannot always be traced from plutonic to overlying extrusive (pillowed) simatic rocks. F1b zones are also apparently of penecontemporaneous origin with the intrusive-extrusive igneous processs. F1b zones may either represent transform fault-type activity or represent root zones (steepened extensions) of F1a zones. Both fault types indicate extensive deformation in the rocks of the greenstone belt prior to compressional overthrust tectonics.

  3. Influence of pre-tectonic carbonate facies architecture on deformation patterns of syntectonic turbidites, an example from the central Mexican fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Vásquez Serrano, Alberto; Tolson, Gustavo; Fitz Diaz, Elisa; Chávez Cabello, Gabriel

    2018-04-01

    The Mexican fold-thrust belt in central México excellently exposes relatively well preserved syntectonic deposits that overlay rocks with lateral lithostratigraphic changes across the belt. We consider the deformational effects of these changes by investigating the geometry, kinematics and strain distribution within syntectonic turbidites, which are deposited on top of Albian-Cenomanian shallow and deep water carbonate layers. Field observations and detailed structural analysis at different stratigraphic and structural levels of the Late Cretaceous syntectonic formation are compared with the deformation as a function of lithological and structural variations in the underlying carbonate units, to better understand the effect of these lithostratigraphic variations on deformation, kinematics, strain distribution and propagation of deformation. From our kinematic analyses, we conclude that the syntectonic strata are pervasively affected by folding in all areas and that deformation partitioning localized shear zones at the boundaries of this unit, particularly along the contact with massive carbonates. At the boundaries with massive platformal carbonates, the turbidites are strongly deformed by isoclinal folding with a pervasive sub-horizontal axial plane cleavage and 70-60% shortening. In contrast, contacts with thinly-bedded carbonate layers (basinal facies), do not show strain localization, and have horizontal shortening of 50-40% that is accommodated by buckle folds with a less pervasive, steeply dipping cleavage. The mechanical properties variations in the underlying pre-tectonic units as a function of changes in lithostratigraphy fundamentally control the deformation in the overlying syntectonic strata, which is an effect that could be expected to occur in any deformed sedimentary sequence with such variations.

  4. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  5. Kinematics of the mosquito terrane, Coldfoot Area, Alaska: Keys to Brooks Range tectonics: Final report, Project No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, T.A.; Coney, P.J.

    1988-04-01

    Within the large-scale geometry of the Brooks Range, the Angayucham terrane occurs as a vast overthrust sheet. From the north flank of the Ruby terrane it underlies the Koyukuk basin and stretches north as the roof thrust to the various nappe terranes of the Brooks Range. The tectonic relationship of the Ruby terrane to the south flank of the Brooks Range lies largely obscured beneath the Angayucham in the eastern apex of the Koyukuk basin. The Mosquito terrane occurs as a window through the Angayucham at this juncture. The composition and structures of the Mosquito terrane reveal that is themore » result of shear along a sub-horizontal step or flange within the prominent, through-going dextral strike-slip fault system which cuts across the eastern Koyukuk basin and southeastern Brooks Range. Units of the Mosquito were derived from both the Angayucham and Ruby terranes. A consistent tectonic fabric imposed upon them is kinematically linked to the strike-slip system and indicates a northeasterly direction of transport across the terrane. The presence of Ruby-correlative units within the Mosquito suggests the Ruby underlies the Angayucham and that it is in contact with terrances of the southern Brooks Range at that structural level along high-angle strike-slip faults. These relationships demonstrate that an episode of dextral transpression is the latest in the history of terrane accretion and tectonic evolution of the Brooks Range. 35 refs.« less

  6. Comparative Tectonics of Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.; Collins, G. C.; Prockter, L. M.; Head, J. W.

    2000-10-01

    Europa and Ganymede are sibling satellites with tectonic similarities and differences. Ganymede's ancient dark terrain is crossed by furrows, probably related to ancient large impacts, and has been normal faulted to various degrees. Bright grooved is pervasively deformed at multiple scales and is locally highly strained, consistent with normal faulting of an ice-rich lithosphere above a ductile asthenosphere, along with minor horizontal shear. Little evidence has been identified for compressional structures. The relative roles of tectonism and icy cryovolcanism in creating bright grooved terrain is an outstanding issue. Some ridge and trough structures within Europa's bands show tectonic similarities to Ganymede's grooved terrain, specifically sawtooth structures resembling normal fault blocks. Small-scale troughs are consistent with widened tension fractures. Shearing has produced transtensional and transpressional structures in Europan bands. Large-scale folds are recognized on Europa, with synclinal small-scale ridges and scarps probably representing folds and/or thrust blocks. Europa's ubiquitous double ridges may have originated as warm ice upwelled along tidally heated fracture zones. The morphological variety of ridges and troughs on Europa imply that care must be taken in inferring their origin. The relative youth of Europa's surface means that the satellite has preserved near-pristine morphologies of many structures, though sputter erosion could have altered the morphology of older topography. Moderate-resolution imaging has revealed lesser apparent diversity in Ganymede's ridge and trough types. Galileo's 28th orbit has brought new 20 m/pixel imaging of Ganymede, allowing direct comparison to Europa's small-scale structures.

  7. Vertical and Horizontal Analysis of Crustal Structure of Southeastern Mediterranean and the Egyptian Coastal Zone, from Bouguer and Satellite Mission Data

    NASA Astrophysics Data System (ADS)

    Saleh, Salah

    2016-07-01

    The present Tectonic system of Southeastern Mediterranean is driven by the collision of the African and Eurasian plates, the Arabian Eurasian convergence and the displacement of the Anatolian Aegean microplate, which generally represents the characteristic of lithospheric structure of the region. In the scope of this study, Bouguer and the satellite gravity (satellite altimetry) anomalies of southeastern Mediterranean and North Eastern part of Egypt were used for investigating the lithospheric structures. Second order trend analyses were applied firstly to Bouguer and satellite altimetry data for examining the characteristic of the anomaly. Later, the vertical and horizontal derivatives applications were applied to the same data. Generally, the purpose of the applying derivative methods is determining the vertical and horizontal borders of the structure. According to the results of derivatives maps, the study area could mainly divided into important four tectonic subzones depending on basement and Moho depth maps. These subzones are distributed from south to the north as: Nile delta-northern Sinai zone, north Egyptian coastal zone, Levantine basin zone and northern thrusting (Cyprus and its surroundings) zone. These zones are separated from each other by horizontal tectonic boundaries and/or near-vertical faults that display the block-faulting tectonic style of this belt. Finally, the gravity studies were evaluated together with the seismic activity of the region. Consequently, the geodynamical structure of the region is examined with the previous studies done in the region. Thus, the current study indicates that satellite gravity mission data is a valuable source of data in understanding the tectonic boundary behavior of the studied region and that satellite gravity data is an important modern source of data in the geodynamical studies.

  8. Tertiary plate tectonics and high-pressure metamorphism in New Caledonia

    USGS Publications Warehouse

    Brothers, R.N.; Blake, M.C.

    1973-01-01

    The sialic basement of New Caledonia is a Permian-Jurassic greywacke sequence which was folded and metamorphosed to prehnite-pumpellyite or low-grade greenschist facies by the Late Jurassic. Succeeding Cretaceous-Eocene sediments unconformably overlie this basement and extend outwards onto oceanic crust. Tertiary tectonism occurred in three distinct phases. 1. (1) During the Late Eocene a nappe of peridotite was obducted onto southern New Caledonia from northeast to southwest, but without causing significant metamorphism in the underlying sialic rocks. 2. (2) Oligocene compressive thrust tectonics in the northern part of the island accompanied a major east-west subduction zone, at least 30 km wide, which is identified by an imbricate system of tectonically intruded melanges and by development of lawsonite-bearing assemblages in adjacent country rocks; this high-pressure mineralogy constituted a primary metamorphism for the Cretaceous-Eocene sedimentary pile, but was overprinted on the Mesozoic prehnite-pumpellyite metagreywackes. 3. (3) Post-Oligocene transcurrent faulting along a northwest-southeast line (the sillon) parallel to the west coast caused at least 150 km of dextral offset of the southwest frontal margin of the Eocene ultramafic nappe. At the present time, the tectonics of the southwest Pacific are related to a series of opposite facing subduction (Benioff) zones connected by transform faults extending from New Britain-Solomon Islands south through the New Hebrides to New Zealand and marking the boundary between the Australian and Pacific plates. Available geologic data from this region suggest that a similar geometry existed during the Tertiary and that the microcontinents of New Guinea, New Caledonia and New Zealand all lay along the former plate boundary which has since migrated north and east by a complex process of sea-floor spreading behind the active island arcs. ?? 1973.

  9. Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  10. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    USGS Publications Warehouse

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.

  11. Along-strike structural variation and thermokinematic development of the Cenozoic Bitlis-Zagros fold-thrust belt, Turkey and Iraqi Kurdistan

    NASA Astrophysics Data System (ADS)

    Barber, Douglas E.; Stockli, Daniel F.; Koshnaw, Renas I.; Tamar-Agha, Mazin Y.; Yilmaz, Ismail O.

    2016-04-01

    The Bitlis-Zagros orogen in northern Iraq is a principal element of the Arabia-Eurasia continent collision and is characterized by the lateral intersection of two structural domains: the NW-SE trending Zagros proper system of Iran and the E-W trending Bitlis fold-thrust belt of Turkey and Syria. While these components in northern Iraq share a similar stratigraphic framework, they exhibit along-strike variations in the width and style of tectonic zones, fold morphology and trends, and structural inheritance. However, the distinctions of the Bitlis and Zagros segments remains poorly understood in terms of timing and deformation kinematics as well as first-order controls on fold-thrust development. Structural and stratigraphic study and seismic data combined with low-T thermochronometry provide the basis for reconstructions of the Bitlis-Zagros fold-thrust belt in southeastern Turkey and northern Iraq to elucidate the kinematic and temporal relationship of these two systems. Balanced cross-sections were constructed and incrementally restored to quantify the deformational evolution and use as input for thermokinematic models (FETKIN) to generate thermochronometric ages along the topographic surface of each cross-section line. The forward modeled thermochronometric ages from were then compared to new and previously published apatite and zircon (U-Th)/He and fission-track ages from southeastern Turkey and northern Iraq to test the validity of the timing, rate, and fault-motion geometry associated with each reconstruction. The results of these balanced theromokinematic restorations integrated with constraints from syn-tectonic sedimentation suggest that the Zagros belt between Erbil and Suleimaniyah was affected by an initial phase of Late Cretaceous exhumation related to the Proto-Zagros collision. During the main Zagros phase, deformation advanced rapidly and in-sequence from the Main Zagros Fault to the thin-skinned frontal thrusts (Kirkuk, Shakal, Qamar) from middle to latest Miocene times, followed by out-of-sequence development of the Mountain Front Flexure (Qaradagh anticline) by ~5 Ma. In contrast, initial exhumation in the northern Bitlis belt occurred by mid-Eocene time, followed by collisional deformation that propagated southward into northern Iraqi Kurdistan during the middle to late Miocene. Plio-Pleistocene deformation was partitioned into out-of-sequence reactivation of the Ora thrust along the Iraq-Turkey border, concurrent with development of the Sinjar and Abdulaziz inversion structures at the edge of the Bitlis deformation front. Overall, these data suggest the Bitlis and Zagros trends evolved relatively independently during Cretaceous and early Cenozoic times, resulting in very different structural and stratigraphic inheritance, before being affected contemporaneously by major phase of in-sequence shortening during middle to latest Miocene and out-of-sequence deformation since the Pliocene. Limited seismic sections corroborate the notion that the structural style and trend of the Bitlis fold belt is dominated by inverted Mesozoic extensional faults, whereas the Zagros structures are interpreted mostly as fault-propagation folds above a Triassic décollement. These pre-existing heterogeneities in the Bitlis contributed to the lower shortening estimates, variable anticline orientation, and irregular fold spacing and the fundamentally different orientations of the Zagros-Bitlis belt in Iraqi Kurdistan and Turkey.

  12. A geologic history of the north-central Appalachians, part 3. The Alleghany orogeny

    USGS Publications Warehouse

    Faill, R.T.

    1998-01-01

    The north-central Appalachians occupy a critical position within the 3000+ km-long Appalachian orogen, lying southwest of the boundary between the central and northern Appalachians (CNAB). The one-billion-year-long history of tectonic activity in eastern Laurentia includes the creation and evolution of the Appalachian orogen during the Paleozoic and the Mesozoic transformation of the orogen into a passive margin during Pangea's disassembly. A most important ingredient in the evolution of the orogen was the Alleghany orogeny, which was driven by the convergence and collision between Laurentia (Laurussia) and West Gondwana (Africa). The Alleghany orogeny in the central and southern Appalachians was a de??collement tectonism that involved a larger part of eastern Laurentia than had the previous three orogenies. The fundamental element was a very low-angle thrust (de??collement) that originated in mid-crustal levels east of the presently-exposed Appalachians and rose westwardly to progressively higher levels in the upper crust and the supra-crustal Paleozoic section. Alleghany deformation was widely developed in the hanging-wall block (allochthon), primarily in the form of thrust faults and fold-and-thrust structures, both of which splayed upward from the basal de??collement. The youngest manifestations of the Alleghany orogeny were northeast-trending strike-slip faults and dextral shear zones in the Piedmont. In the north-central Appalachians, the exposed allochthon consists of two parts: the sedimentary externides (Appalachian Plateau and Valley and Ridge provinces) and the crystalline externides (Reading Prong, Blue Ridge belt, and Piedmont province). Long, thrust-cored anticlines predominate in the sedimentary externides. A widespread layer-parallel shortening preceded the folding; it is largely coaxial with the folding but extends considerably farther to the northwest toward the craton. It is hypothesized that the folding developed in reverse order, sequentially from the northwest to the southeast The crystalline externides are dominated by low-angle thrust faults and upright folds trending east-northeast The first-order Valley and Ridge folds on the northwest side acted as a buttress and diverted the crystalline externides rocks north-northwestwardly, onto the topographic low area over the Anthracite region. This thrusting of the crystalline externides caused anthracitization of the coals within the Pennsylvanian rocks there. Metamorphism and magmatism were significant events during the earlier phase of the Alleghany orogeny in the southern Appalachians. Whatever magmatism and medium-to high-grade metamorphism developed in the north-central Appalachians are in the covered internides to the southeast. The Alleghany orogeny of the north-central Appalachians occurred during the Early Permian. Erosion of anticlinal crests probably began as the folds grew, with accumulation of this locally-derived sediment in the intervening synclines. A regional alluvial plain coalesced above the partially-eroded externides structures as erosion of the pre-Alleghany highland and the Alleghany hinterland mountains continued to the southeast, spreading sediment to the northwest. This erosion and northwest transport probably persisted, with diminishing intensity, throughout the remainder of the Permian and into the Mesozoic, and changed only with the beginning of crustal extension during the Late Triassic.

  13. Quaternary deformation of the Mushi thrust-related fold, northeastern margin of the Pamir

    NASA Astrophysics Data System (ADS)

    Li, T.; Chen, J.; Huang, D. M.; Thompson, J.; Xiao, P. W.; Yuan, D. Z.; Burbank, D. W.

    2010-12-01

    The Pamir salient defines the northwestern end of the Himalayan-Tibetan orogen and has overthrust the Tajik-Tarim basin to the north by ~300km along a late Cenozoic, south-dipping intracontinental subduction zone (Burtman and Molnar, 1993). The Quaternary deformation of the salient are concentrated on the outer margins: the sinistral Darvaz fault on the northwestern margin, the Trans-Alai thrust on the north margin and the northeast margin. The GPS-based plate tectonic model indicates the convergence rate is of 8-12mm/a in an N-S direction, nearly 1/4 of that between the Indian plate and the Eurasian plate (DeMets et al., 1990; Reigber et al., 2001; Yang et al., 2008). Previous studies focused on the northwestern margin and the north margin revel their spatial distribution, temporal evolution and kinematic patterns (Burtman and Molnar, 1993; Strecker et al., 1995; Arrowsmith and Strecker, 1999; Coutand et al., 2002). Deformed strata and GPS data indicate Quaternary deformations on the northeastern margin are concentrated on the PFT (the Pamir Front Thrust), the foreland thrust system generated by the latest advancing migration of the Pamir salient, whose kinematic patterns are still poor understood. Integrated by the Mushi thrust and the Mushi anticline, the Mushi thrust-related fold located at eastern end of the PFT. Simple structure, well outcrops and evident deformed terraces make it an excellent place to recognize deformation characters and kinematic patterns of the PFT. The Mushi thrust is north-vergent, roughly parallel with the anticline axis, and west part forming several subparallel fault scarps on the terrace surface and east part buried under the late-Quaternary deposits. The Mushi thrust is north-plunging, with a gentle south limb and a steep north limb. Combining field mapping data and neighboring seismic reflection profiles, following the cross-section balance principle, we can confine the Mushi thrust-related fold is a fault propagation fold evaluating from a detachment fold, the total shortening is ~0.7km, and the total uplift is ~1.5km. The shortening of the Mushi thrust-related fold is absorbed by strata folding and slipping along the thrust surface. According to the offset and the age of the terrace surface near the dam of the Kashi power station, the shortening rate of the Mushi thrust is ~0.7mm/a. On the basis of terraces deformation analysis, the Mushi anticline grows through limb rotation in late-Quaternary, and the minimum shortening rate is ~0.6mm/a. Then the total shortening rate is ~1.3mm/a. Although the growth strata cannot be found in the field work, the comfortable contacts between the Atushi formation and the Xiyu formation at both limbs indicate the growth inception of the Mushi thrust-related fold later than the base age of the Xiyu formation, which is ~1.6Ma (Chen et al., 2007). If the shortening rate is constant during growth of the thrust-related fold, the growth inception should be earlier than 0.5-0.6Ma.

  14. Coseismic fold scarp associated with historic earthquakes upon the Yoro active blind thrust, the Nobi-Ise fault zone, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Mueller, K.; Togo, M.

    2004-12-01

    We present structural models constrained by tectonic geomorphology, surface geologic mapping, shallow borehole transects and a high-resolution S-wave seismic reflection profile to define the kinematic evolution of a coseismic fold scarp along the Nobi-Ise fault zone (NIFZ). The NIFZ is an active intraplate fault system in central Japan, and consists of a 110-km-long array of active, east-verging reverse faults. Fold scarps along the Yoro fault are interpreted as produced during a large historic blind-thrust earthquake. The Yoro Mountains form the stripped core of the largest structure in the NIFZ and expose Triassic-Jurassic basement that are thrust eastward over a 2-km-thick sequence of Pliocene-Pleistocene strata deposited in the Nobi basin. This basement-cored fold is underlain by an active blind thrust that is expressed as late Holocene fold scarps along its eastern flank. Drilling investigations across the fold scarp at a site near Shizu identified at least three episodes of active folding associated with large earthquakes on the Yoro fault. Radiocarbon ages constrain the latest event as having occurred in a period that contains historical evidence for a large earthquake in A.D. 1586. A high resolution, S-wave seismic reflection profile at the same site shows that the topographic fold scarp coincides with the projected surface trace of the synclinal axis, across which the buried, early Holocene to historic sedimentary units are folded. This is interpreted to indicate that the structure accommodated coseismic fault-propagation folding during the A.D. 1586 blind thrust earthquake. Flexural-slip folding associated with secondary bedding-parallel thrusts may also deform late Holocene strata and act to consume slip on the primary blind thrust across the synclinal axial surfaces. The best-fitting trishear model for folded ca. 13 ka gravels deposited across the forelimb requires a 28\\deg east-dipping thrust fault. This solution suggests that a 4.2 mm/yr of slip rate has been accommodated on the Yoro fault during the late Holocene, with an average vertical rate of 1.9 mm/yr. This is consistent with longer-term slip rates calculated by a structural relief across a ca. 7.3 ka volcanic ash horizon (1.6 mm/yr), and ca. 110 ka innerbay clays (1.3 mm/yr) deposited across the forelimb. Our trishear model is thus able to account for the bulk of the folding history accommodated at shorter millennial timescales, suggesting that this technique may be used to adequately define slip rates on blind thrust faults.

  15. The grand tour of the Ruby-East Humboldt metamorphic core complex, northeastern Nevada: Part 1 - Introduction & road log

    USGS Publications Warehouse

    Snoke, A.W.; Howard, K.A.; McGrew, A.J.; Burton, B.R.; Barnes, C.G.; Peters, M.T.; Wright, J.E.

    1997-01-01

    The purpose of this geological excursion is to provide an overview of the multiphase developmental history of the Ruby Mountains and East Humboldt Range, northeastern Nevada. Although these mountain ranges are commonly cited as a classic example of a Cordilleran metamorphic core complex developed through large-magnitude, mid-Tertiary crustal extension, a preceding polyphase Mesozoic contractional history is also well preserved in the ranges. An early phase of this history involved Late Jurassic two-mica granitic magmatism, high-temperature but relatively low-pressure metamorphism, and polyphase deformation in the central Ruby Mountains. In the northern Ruby Mountains and East Humboldt Range, a Late Cretaceous history of crustal shortening, metamorphism, and magmatism is manifested by fold-nappes (involving Archean basement rocks in the northern East Humboldt Range), widespread migmatization, injection of monzogranitic and leucogranitic magmas, all coupled with sillimanite-grade metamorphism. Following Late Cretaceous contraction, a protracted extensional deformation partially overprinted these areas during the Cenozoic. This extensional history may have begun as early as the Late Cretaceous or as late as the mid-Eocene. Late Eocene and Oligocene magmatism occurred at various levels in the crust yielding mafic to felsic orthogneisses in the deep crust, a composite granitic pluton in the upper crust, and volcanic rocks at the surface. Movement along a west-rooted, extensional shear zone in the Oligocene and early Miocene led to core-complex exhumation. The shear zone produced mylonitic rocks about 1 km thick at deep crustal levels, and an overprint of brittle detachment faulting at shallower levels as unroofing proceeded. Megabreccias and other synextensional sedimentary deposits are locally preserved in a tilted, upper Eocene through Miocene stratigraphic sequence. Neogene magmatism included the emplacement of basalt dikes and eruption of rhyolitic rocks. Subsequent Basin and Range normal faulting, as young as Holocene, records continued tectonic extension.

  16. Detachments in Shale: Controlling Characteristics on Fold-Thrust Belt Style

    NASA Astrophysics Data System (ADS)

    Hansberry, Rowan; King, Ros; Collins, Alan; Morley, Chris

    2013-04-01

    Fold-thrust belts occur across multiple tectonic settings where thin-skinned deformation is accommodated by one or more detachment zones, both basal and within the fold-thrust belt. These fold-thrust belts exhibit considerable variation in structural style and vergence depending on the characteristics (e.g. strength, thickness, and lithology) and number of detachment zones. Shale as a detachment lithology is intrinsically weaker than more competent silts and sands; however, it can be further weakened by high pore pressures, reducing resistance to sliding and; high temperatures, altering the rheology of the detachment. Despite the implications for petroleum exploration and natural hazard assessment the precise nature by which detachments in shale control and are involved in deformation in fold-thrust belts is poorly understood. Present-day active basal detachment zones are usually located in inaccessible submarine regions. Therefore, this project employs field observations and sample analysis of ancient, exhumed analogues to document the nature of shale detachments (e.g. thickness, lithology, dip and dip direction, deformational temperature and thrust propagation rates) at field sites in Thailand, Norway and New Zealand. X-ray diffraction analysis of illite crystallinity and oxygen stable isotopes analysis are used as a proxy for deformational temperature whilst electron-backscatter diffraction analysis is used to constrain microstructural deformational patterns. K-Ar dating of synkinematic clay fault gouges is being applied to date the final stages of activity on individual faults with a view to constraining thrust activation sequences. It is not possible to directly measure palaeo-data for some key detachment parameters, such as pore pressure and coefficients of friction. However, the use of critical taper wedge theory has been used to successfully infer internal and basal coefficients of friction and depth-normalized pore pressure within a wedge and at its base (e.g. Platt, 1986; Bilotti and Shaw, 2005; Morley, 2007). Therefore, through a mixture of field observations, sample analysis and theoretical analysis it will be possible to determine a full range of shale detachment parameters and their impact on the structural style of fold-thrust belts across a variety of settings. Recent work in Muak Lek, central Thailand has focused on a structural investigation of fold-thrust belt deformation of a passive margin sequence as a result of continent-continent collision during the Triassic Indosinian Orogeny. Exceptional outcropping of the detachment lithology is accessible in the Siam City Cement quarry allowing construction of sections detailing the deformational style across the detachment itself. The detachment forms complex, 3-dimensional duplex-like structures creating egg-carton geometries enveloping foliation surfaces in the zones of most intense strain. Up section strain decreases to discrete thrust imbricates of decametre scale. Samples of limestone and secondary calcite were collected through the sections for oxygen stable isotopes analysis which show a distinct pattern of isotopic fractionation across the main thrust and into the detachment. Results from this study give insights into the nature of shale detachments and the control on fold-thrust belt development.

  17. Tectono-Thermal History Modeling and Reservoir Simulation Study of the Nenana Basin, Central Alaska: Implications for Regional Tectonics and Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Dixit, Nilesh C.

    Central Interior Alaska is an active tectonic deformation zone highlighted by the complex interactions of active strike-slip fault systems with thrust faults and folds of the Alaska Range fold-and-thrust belt. This region includes the Nenana basin and the adjacent Tanana basin, both of which have significant Tertiary coal-bearing formations and are also promising areas (particularly the Nenana basin) with respect to hydrocarbon exploration and geologic carbon sequestration. I investigate the modern-day crustal architecture of the Nenana and Tanana basins using seismic reflection, aeromagnetic and gravity anomaly data and demonstrate that the basement of both basins shows strong crustal heterogeneity. The Nenana basin is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Flats fault zone. The Tanana basin has a fundamentally different geometry and is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. NE-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. Seismic refection data, well data, fracture data and apatite fission track data further constrain the tectonic evolution and thermal history of the Nenana basin. The Nenana basin experienced four distinct tectonic phases since Late Paleocene time. The basin initiated as a narrow half-graben structure in Late Paleocene with accumulation of greater than 6000 feet of sediments. The basin was then uplifted, resulting in the removal of up to 5000 feet of Late Paleocene sediments in Eocene to Oligocene time. During Middle to Late Miocene time, left lateral strike-slip faulting was superimposed on the existing half-graben system. Transtensional deformation of the basin began in the Pliocene. At present, Miocene and older strata are exposed to temperatures > 60°C in the deeper parts of the Nenana basin. Coals have significant capacity for sequestering anthropogenic CO 2 emissions and offer the benefit of enhanced coal bed methane production that can offset the costs associated with the sequestration processes. In order to do a preliminary assessment of the CO2 sequestration and coal bed methane production potential of the Nenana basin, I used available surface and subsurface data to build and simulate a reservoir model of subbituminous Healy Creek Formation coals. The petroleum exploration data were also used to estimate the state of subsurface stresses that are critical in modeling the orientation, distribution and flow behavior of natural coal fractures in the basin. The effect of uncertainties within major coal parameters on the total CO2 sequestration and coal bed methane capacity estimates were evaluated through a series of sensitivity analyses, experimental design methods and fluid flow simulations. Results suggest that the mature, unmineable Healy Creek Formation coals of the Nenana basin can sequester up to 0.41 TCF of CO2 while producing up to 0.36 TCF of CH4 at the end of 44-year forecast. However, these volumes are estimates and they are also sensitive to the well type, pattern and cap rock lithology. I used a similar workflow to evaluate the state of in situ stress in the northeastern North Slope province of Alaska. The results show two distinct stress regimes across the northeastern North Slope. The eastern Barrow Arch exhibits both strike-slip and normal stress regimes. Along the northeastern Brooks Range thrust front, an active thrust-fault regime is present at depths up to 6000 ft but changes to a strike-slip stress regime at depths greater than 6000 ft.

  18. Neotectonics and seismicity of a slowly deforming segment of the Adria-Europe convergence zone - the northern Dinarides fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Herak, Marijan; Tomljenović, Bruno; Herak, Davorka; Matej, Srebrenka

    2014-05-01

    With GPS-derived shortening rates of c. 3-5 mm/a, the Adria-Europe convergence zone across the fold-and-thrust belt of the Dinarides (Balkan Peninsula) is a slowly deforming plate boundary by global standards. We have analysed the active tectonics and instrumental seismicity of the northernmost segment of this fold-and-thrust belt at its border to the Pannonian Basin. This area hosts a Maastrichtian collisional suture formed by closure of Mesozoic fragments of the Neotethys, overprinted by Miocene back-arc extension, which led to the exhumation of greenschist- to amphibolite-grade rocks in several core complexes. Geological, geomorphological and reflection seismic data provide evidence for a compressive or transpressive reactivation of extensional faults after about 5 Ma. The study area represents the seismically most active region of the Dinarides apart from the Adriatic Sea coast and the area around Zagreb. The strongest instrumentally recorded earthquake (27 October 1969) affected the city of Banja Luka (northern Bosnia and Herzegovina). Fault plane solutions for the main shock (ML 6.4) and its largest foreshock (ML 6.0) indicate reverse faulting along ESE-WNW-striking nodal planes and generally N-S trending pressure axes. The spatial distribution of epicentres and focal depths, analyses of the macroseismic field and fault-plane solutions for several smaller events suggest on-going shortening in the internal Dinarides. Our results therefore imply that current Adria-Europe convergence is widely distributed across c. 300 km, rendering the entire Dinarides fold-and-thrust belt a slowly deforming plate boundary.

  19. Formation of fold and thrust belts on Venus due to horizontal shortening of a laterally heterogeneous lithosphere

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Parmentier, E. M.; Neumann, G. A.

    1994-01-01

    An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise.

  20. Formation of fold and thrust belts on Venus due to horizontal shortening of a laterally heterogeneous lithosphere

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Parmentier, E. M.; Neumann, G. A.

    1994-03-01

    An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise.

  1. Neotectonic inversion of the Hindu Kush-Pamir mountain region

    USGS Publications Warehouse

    Ruleman, C.A.

    2011-01-01

    The Hindu Kush-Pamir region of southern Asia is one of Earth's most rapidly deforming regions and it is poorly understood. This study develops a kinematic model based on active faulting in this part of the Trans-Himalayan orogenic belt. Previous studies have described north-verging thrust faults and some strike-slip faults, reflected in the northward-convex geomorphologic and structural grain of the Pamir Mountains. However, this structural analysis suggests that contemporary tectonics are changing the style of deformation from north-verging thrusts formed during the initial contraction of the Himalayan orogeny to south-verging thrusts and a series of northwest-trending, dextral strike-slip faults in the modern transpressional regime. These northwest-trending fault zones are linked to the major right-lateral Karakoram fault, located to the east, as synthetic, conjugate shears that form a right-stepping en echelon pattern. Northwest-trending lineaments with dextral displacements extend continuously westward across the Hindu Kush-Pamir region indicating a pattern of systematic shearing of multiple blocks to the northwest as the deformation effects from Indian plate collision expands to the north-northwest. Locally, east-northeast- and northwest-trending faults display sinistral and dextral displacement, respectively, yielding conjugate shear pairs developed in a northwest-southeast compressional stress field. Geodetic measurements and focal mechanisms from historical seismicity support these surficial, tectono-morphic observations. The conjugate shear pairs may be structurally linked subsidiary faults and co-seismically slip during single large magnitude (> M7) earthquakes that occur on major south-verging thrust faults. This kinematic model provides a potential context for prehistoric, historic, and future patterns of faulting and earthquakes.

  2. New insights into Late Quaternary slip rate of the thrust fault zone, northern margin of the Qilian Shan, NE Tibet

    NASA Astrophysics Data System (ADS)

    Hai-bo, Y.; Yang, X., Sr.; LI, A.; Huang, X.; Huang, W.

    2017-12-01

    The India-Eurasian plate collision caused widespread Cenozoic crustal deformation within the Tibetan Plateau and on its margins. Ongoing post-collisional convergence formed multi-row NWW-trending folded mountain ranges and basins pattern in the northeastern Tibet. Late Quaternary tectonic deformation and quantitative slip rate estimates around the Qilian Shan and the Hexi corridor foreland basin are critical to understanding crustal deformation process of the Tibetan plateau and assessing regional seismic hazards. The Fodongmo-Hongyazi fault (FHF) is a major thrust at the Northeastern Tibet, bounding the Qilian Shan. It is accommodating the crustal shortening across this region and has produced strong historical earthquake. Until now the slip rate has been poorly constrained limiting our understanding of its role in the accommodation of deformation across this region. In this work, faulted terraces at the Hongshuiba River and Fengle River sites on the western and middle segments of the FHF were mapped with satellite imagery and field observations. Chronological constraints are placed on the ages of displaced river terraces at these sites using terrestrial cosmogenic nuclide (TCN) exposure dating. These ages combined with offsets measured from SPOT 6 DEM's yield average vertical slip rates of 1.3±0.1mm/yr for the western segment since 207 ka and 0.9±0.1 mm/yr since 46 ka for the middle segment. These data suggest that the FHF accommodates 15-20% of the total shortening across the Qilian Shan (5.5-7 mm/yr). In addition, comparisons of our data with published slip rates along the Northern Qilian Thrust Fault Zone show that the fastest tectonic uplift occurs along the western portion of the Northern Qilian Shan. This is consistent with estimates deduced from geomorphology. The western portion of the Qilian Shan is mainly controlled by compressional deformation produced by the northward movement of the Northeastern Tibetan Plateau, while the eastern Qilian Shan is mainly controlled by the eastward extrusion of material along the left-lateral Haiyuan strike-slip Fault.

  3. Active stress from earthquake focal mechanisms along the Padan-Adriatic side of the Northern Apennines (Italy), with considerations on stress magnitudes and pore-fluid pressures

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Bracone, Vito

    2009-10-01

    The active tectonic regime along the outer Northern Apennines (Padan-Adriatic area) is a matter of debate. We analyse the active tectonic regime by systematically inverting earthquake focal mechanisms in terms of their driving stress field, comparing two different stress inversion methods. Earthquakes within the area often deviate from Andersonian conditions, being characterized by reverse or transpressional slip on high-angle faults even if the regime is almost purely thrust faulting (e.g. Reggio Emilia 1996 and Faenza 2000 earthquakes). We analyse the stress conditions at faulting for the Reggio Emilia and Faenza earthquakes in order to infer the stress magnitudes and the possible role of fluid pressures. The stress analysis defines a consistent pattern of sub-horizontal active deviatoric compression arranged nearly perpendicular to the eastern front of the Padan-Adriatic fold-and-thrust system, independent of the stress inversion method used. The results are consistent with active compression operating within the Padan-Adriatic belt. The stress field is thrust faulting (sub-vertical σ3), except for the Cesena-Forlì and Ancona areas, where a strike-slip regime (sub-vertical or steeply-plunging σ2) operates. The strike-slip regimes are interpreted as being caused by the superposition of local tensional stresses due to oroclinal bending (i.e. rotations of the belt about vertical axes) on the regional compressional stress field. Kinematic complexities characterize the 1996 Reggio Emilia seismic sequence. The distribution of these complexities is not random, suggesting that they are due to local variations of the regional stress field within the unfaulted rocks surrounding the coseismic rupture. The stress conditions at faulting for the Reggio Emilia 1996 and Faenza 2000 earthquakes, coupled with the observation that seismicity in the Padan-Adriatic area often occurs in swarms, suggest that high pore-fluid pressures (Pf ≥ 70% of the lithostatic load) operate within the compressed crust. The estimated stress difference ( σ1- σ3) is ≤ 460-560 MPa at 15-20 km depth.

  4. Transpressional regime in southern Arabian Shield: Insights from Wadi Yiba Area, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Zakaria; El-Shafei, Mohamed; Kattu, Ghazi; Matsah, Mohammed

    2013-10-01

    Detailed field-structural mapping of Neoproterozoic basement rocks exposed in the Wadi Yiba area, southern Arabian Shield, Saudi Arabia illustrates an important episode of late Neoproterozoic transpression in the southern part of the Arabian-Nubian Shield (ANS). This area is dominated by five main basement lithologies: gneisses, metavolcanics, Ablah Group (meta-clastic and marble units) and syn- and post-tectonic granitoids. These rocks were affected by three phases of deformation (D1-D3). D1 formed tight to isoclinal and intrafolial folds (F1), penetrative foliation (S1), and mineral lineation (L1), which resulted from early E-W (to ENE-WSW) shortening. D2 deformation overprinted D1 structures and was dominated by transpression and top-to-the-W (-WSW) thrusting as shortening progressed. Stretching lineation trajectories, S-C foliations, asymmetric shear fabrics and related mylonitic foliation, and flat-ramp and duplex geometries further indicate the inferred transport direction. The N- to NNW-orientation of both “in-sequence piggy-back thrusts” and axial planes of minor and major F2 thrust-related overturned folds also indicates the same D2 compressional stress trajectories. The Wadi Yiba Shear Zone (WYSZ) formed during D2 deformation. It is one of several N-S trending brittle-ductile Late Neoproterozoic shear zones in the southern part of the ANS. Shear sense indicators reveal that shearing during D2 regional-scale transpression was dextral and is consistent with the mega-scale sigmoidal patterns recognized on Landsat images. The shearing led to the formation of the WYSZ and consequent F2 shear zone-related folds, as well as other unmappable shear zones in the deformed rocks. Emplacement of the syn-tectonic granitoids is likely to have occurred during D2 transpression and occupied space created during thrust propagation. D1 and D2 structures are locally overprinted by mesoscopic- to macroscopic-scale D3 structures (F3 folds, and L3 crenulation lineations and kink bands). F3 folds are frequently open and have steep to subvertical axial planes and axes that plunge ENE to ESE. This deformation may reflect progressive convergence between East and West Gondwana.

  5. Exhumation rates in the Gran Paradiso Massif (Western Alps) constrained by in situ U-Th-Pb dating of accessory phases (monazite, allanite and xenotime)

    NASA Astrophysics Data System (ADS)

    Manzotti, Paola; Bosse, Valérie; Pitra, Pavel; Robyr, Martin; Schiavi, Federica; Ballèvre, Michel

    2018-03-01

    Exhumation rates for high-pressure metamorphic rocks need to be carefully estimated to decipher tectonic processes in subduction/collision belts. In the Gran Paradiso Massif (Western Alps), the Money Unit crops out as a tectonic window below the Gran Paradiso Unit. According to previous studies, the Gran Paradiso and Money Units reached peak pressure conditions at 18 to 20 kbar, 480-520 °C and 17 to 18 kbar, 500-550 °C, respectively. This yields a maximum difference of 9 to 10 km in the subduction depth reached by these two units during the Alpine history. Thrusting of the Gran Paradiso Unit over the Money Unit led to the simultaneous development of the main foliation under the same metamorphic conditions ( 12.5 to 14.5 kbar and 530-560 °C) in both units. The thrust contact was subsequently folded and then both units were exhumed together. The relative timing of the growth and dissolution of the accessory phases was assessed by combining thermodynamic modelling with inclusion, textural and chemical (major and trace element) data from both major and accessory phases. The age of monazite constrained the high-pressure metamorphism in both the Gran Paradiso Unit and the Money Unit at 41.5 ± 0.3 and 42.0 ± 0.6 Ma, respectively. Allanite replacing monazite in the matrix has been dated at 32.7 ± 4.2 Ma. The late growth of xenotime associated with the crystallization of biotite pseudomorphs at the expense of garnet (at about 10 kbar) was dated at 32.3 ± 1.0 Ma. Our petrochronological data indicate about 10 m.y. between the peak pressure conditions and the crystallization of xenotime leading to an exhumation rate of the order of 2.2-5 mm/year. The new ages allow to better constrain the timing of the displacement of the thrust defining the lower boundary of the extruding wedge of eclogite-facies rocks.

  6. Plate Tectonics at 3.8-3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland.

    PubMed

    Komiya; Maruyama; Masuda; Nohda; Hayashi; Okamoto

    1999-09-01

    A 1&rcolon;5000 scale mapping was performed in the Isukasia area of the ca. 3.8-Ga Isua supracrustal belt, southern West Greenland. The mapped area is divided into three units bounded by low-angle thrusts: the Northern, Middle, and Southern Units. The Southern Unit, the best exposed, is composed of 14 subunits (horses) with similar lithostratigraphy, bound by layer-parallel thrusts. Duplex structures are widespread in the Isua belt and vary in scale from a few meters to kilometers. Duplexing proceeded from south to north and is well documented in the relationship between link- and roof-thrusts. The reconstructed lithostratigraphy of each horse reveals a simple pattern, in ascending order, of greenstone with low-K tholeiitic composition with or without pillow lava structures, chert/banded iron-formation, and turbidites. The cherts and underlying low-K tholeiites do not contain continent- or arc-derived material. The lithostratigraphy is quite similar to Phanerozoic "oceanic plate stratigraphy," except for the abundance of mafic material in the turbidites. The evidence of duplex structures and oceanic plate stratigraphy indicates that the Isua supracrustal belt is the oldest accretionary complex in the world. The dominantly mafic turbidite composition suggests that the accretionary complex was formed in an intraoceanic environment comparable to the present-day western Pacific Ocean. The duplex polarity suggests that an older accretionary complex should occur to the south of the Isua complex. Moreover, the presence of seawater (documented by a thick, pillow, lava unit at the bottom of oceanic plate stratigraphy) indicates that the surface temperature was less than ca. 100 degrees C in the Early Archean. The oceanic geotherm for the Early Archean lithosphere as a function of age was calculated based on a model of transient half-space cooling at given parameters of surface and mantle temperatures of 100 degrees and 1450 degrees C, respectively, suggesting that the Archean oceanic lithosphere was rigid. These conclusions-rigidity and lateral plate movement-support the idea that the modern style of plate tectonics was in operation only 0.7-0.8 G.yr. after the formation of the Earth.

  7. Miocene crustal extension following thrust tectonic in the Lower Sebtides units (internal Rif, Ceuta Peninsula, Spain): Implication for the geodynamic evolution of the Alboran domain

    NASA Astrophysics Data System (ADS)

    Homonnay, Emmanuelle; Corsini, Michel; Lardeaux, Jean-Marc; Romagny, Adrien; Münch, Philippe; Bosch, Delphine; Cenki-Tok, Bénédicte; Ouazzani-Touhami, Mohamed

    2018-01-01

    In Western Mediterranean, the Rif belt in Morocco is part of the Gibraltar Arc built during the Tertiary in the framework of Eurasia-Africa convergence. The structural and metamorphic evolution of the internal units of this belt as well as their timing, crucial to constrain the geodynamic evolution of the Alboran Sea, is still largely debated. Our study on the Ceuta Peninsula (Northern Rif) provides new structural, petrological and geochronological data (U-Th-Pb, Ar-Ar), which allow to precise the tectono-metamorphic evolution of the Lower Sebtides metamorphic units with: (1) a syn-metamorphic thrusting event developed under granulite facies conditions (7-10 kbar and 780-820 °C). A major thrust zone, the Ceuta Shear Zone, drove the emplacement of metapelites and peridotitic lenses from the Ceuta Upper Unit over the orthogneisses of the Monte Hacho Lower Unit. This compressional event ended during the Upper Oligocene. (2) an extensional event developed at the boundary between amphibolite and greenschist facies conditions (400-550 °C and 1-3 kbar). During this event, the Ceuta Shear Zone has been reactivated as a normal fault. Normal ductile shear zones contributed to the final exhumation of the metamorphic units during the Early Miocene. We propose that the compressional event is related to the formation of an orogenic wedge located in the upper plate, in a backward position, of the subduction zone driving the geodynamic evolution of the Alboran domain. In this context, the episode of lithospheric thinning could be related to the opening of the Alboran basin in a back-arc position. Furthermore, unlike the previous models proposed for the Rif belt, the tectonic coupling between mantle peridotites and crustal metamorphic rocks occurred in Ceuta Peninsula at a depth of 20-30 km under high temperature conditions, before the extensional event, and thus cannot be related to the back-arc extension. 1, BSE image of monazite. 2, CL image of monazite showing a thin rim zonation. 3, BSE image of zircon. 4, CL image of zircon showing zonation.

  8. A polyphase filter for many-core architectures

    NASA Astrophysics Data System (ADS)

    Adámek, K.; Novotný, J.; Armour, W.

    2016-07-01

    In this article we discuss our implementation of a polyphase filter for real-time data processing in radio astronomy. The polyphase filter is a standard tool in digital signal processing and as such a well established algorithm. We describe in detail our implementation of the polyphase filter algorithm and its behaviour on three generations of NVIDIA GPU cards (Fermi, Kepler, Maxwell), on the Intel Xeon CPU and Xeon Phi (Knights Corner) platforms. All of our implementations aim to exploit the potential for data reuse that the algorithm offers. Our GPU implementations explore two different methods for achieving this, the first makes use of L1/Texture cache, the second uses shared memory. We discuss the usability of each of our implementations along with their behaviours. We measure performance in execution time, which is a critical factor for real-time systems, we also present results in terms of bandwidth (GB/s), compute (GFLOP/s/s) and type conversions (GTc/s). We include a presentation of our results in terms of the sample rate which can be processed in real-time by a chosen platform, which more intuitively describes the expected performance in a signal processing setting. Our findings show that, for the GPUs considered, the performance of our polyphase filter when using lower precision input data is limited by type conversions rather than device bandwidth. We compare these results to an implementation on the Xeon Phi. We show that our Xeon Phi implementation has a performance that is 1.5 × to 1.92 × greater than our CPU implementation, however is not insufficient to compete with the performance of GPUs. We conclude with a comparison of our best performing code to two other implementations of the polyphase filter, showing that our implementation is faster in nearly all cases. This work forms part of the Astro-Accelerate project, a many-core accelerated real-time data processing library for digital signal processing of time-domain radio astronomy data.

  9. Geologic map of the Bailey 30' x 60' quadrangle, North-Central Colorado

    USGS Publications Warehouse

    Ruleman, Chester A.; Bohannon, Robert G.; Bryant, Bruce; Shroba, Ralph R.; Premo, Wayne R.

    2011-01-01

    The Bailey, Colo. 1:100,000-scale quadrangle lies within two physiographic and geologic provinces in central Colorado: 1) the Front Range and 2) South Park. Most of the Front Range is composed of Proterozoic rocks ranging in age from 1,790 Ma to 1,074 Ma. Along the eastern flanks and within the Denver Basin, sedimentary rocks ranging from Pennsylvanian to Cretaceous are deformed and steeply tilted to the east. Upper Cretaceous through Paleocene rocks were deposited in the foreland (that is, the Front Range eastern flank) and hinterland (that is, South Park) of this thrust and reverse fault system developed during the Late Cretaceous to Paleocene Laramide orogeny. Within South Park, rocks range in age from Pennsylvanian to Miocene with Quaternary deposits indicating tectonic subsidence of the basin. These rocks record five major geologic episodes: 1) the Paleozoic Anasazi uplift that formed the Ancestral Rockies, 2) the Late Cretaceous to Paleocene Laramide orogeny, 3) widespread Eocene to Oligocene volcanism, 4) Oligocene-Quaternary tectonics, and 5) Quaternary glacial episodes.

  10. Offshore S. Cuba -- Quaternary lobsters and Eocene reefs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebora, M.

    When Cuba is mentioned, the first image that comes to an explorationist's mind is one of complex imbricated thrust sheets, fractured carbonate reservoirs, volcanics and ophiolitic, and heavy and high sulfur oil. It is now known that this stimulating'' scenario does not apply to the whole of Cuba but only to the northern and central part where plate collisions and robust wrench tectonics exacted their toll on sediments and hydrocarbons alike. Seismic data recently acquired by Taurus Petroleum off the southern coast of Cuba reveal a rather different scenario: Mesozoic sediments several thousands of meters thick, deformed by moderate wrenchmore » tectonics into low-relief flower structures, and overlain by a variety of Paleogene shelf edge reefs, atolls, and banks that look as if reproduced from the pages of AAPG's Memoir 57. The whole is topped by Oligocene and Miocene evaporites, shales, and carbonates. The paper describes the southern shelf area, exploration in Cuba, reefs, oil and gas shows, source rocks, reservoir rocks, seals, and potential reserves.« less

  11. Edge-Driven Block Rotations Interpreted From New GPS Results: Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Wallace, L.

    2001-12-01

    An ongoing discussion in plate tectonics involves whether microplate motions are driven by plate edge forces or by flow at the base of the lithosphere. We present results from a GPS network of 40 sites spanning much of the mainland of Papua New Guinea (PNG). Most of the sites are concentrated in the region of the active Finisterre arc-continent collision and have been observed on multiple campaigns from 1993-2001. Significant portions of the Ramu-Markham fault are locked, which has implications for seismic hazard assessment in the Markham Valley region. Additionally, we find that out-of-sequence thrusting is important in emplacement of the Finisterre arc terrane onto the PNG mainland. Site velocities derived from these GPS data have helped to delineate the major tectonic blocks in the region. We model site velocities by simultaneously dealing with rigid block rotation and elastic strain. We find that the mainland of PNG consists of four distinct tectonic plates: the Australian, South Bismarck and Woodlark plates (in agreement with previous studies), and a previously unrecognized New Guinea Highlands plate. The relative rotation poles for at least two of these plate pairs plot on their respective boundaries, indicating that microplate motion in PNG may be dominantly edge-driven, as predicted for this region by Schouten and Benes (1993).

  12. Pacing of deep marine sedimentation in the middle Eocene synorogenic Ainsa Basin, Spanish Pyrenees: deconvolving a 6myr record of tectonic and climate controls

    NASA Astrophysics Data System (ADS)

    Mac Niocaill, C.; Cantalejo, B.; Pickering, K. T.; Grant, M.; Johansen, K.

    2016-12-01

    The Middle Eocene thrust-top Ainsa Basin of Northern Spain preserves world-class exposures of deep-marine submarine fan and related deposits. Detailed paleomagnetic, micropaleontologic, and time-series analysis enable us to deconvolve, for the first time in any ancient deep-marine basin worldwide, both the pacing on deposition of the fine-grained interfan sediments and the main sandbodies (submarine fans) through the history of the deep-marine basin. Our magnetostratigraphy and faunal constraints provide a chronological framework for sedimentation in the basin. We use time-series analysis of a range of geochemical and sedimentologic data to identify likely climatic signals in the sedimentary archive. This has enabled us to test the likely importance of climate versus tectonics in controlling deposition. We show that the fine-grained interfan sedimentation preserves a dominant Milankovitch-like cyclicity, whereas the sandbodies (fans) reflect a complex interplay of controls such as tectonics and climate in the sediment source area, including shallow-marine staging areas for sediment redeposition into deeper water. These results not only provide critical information about the timing of substantial coarse clastic delivery into the Ainsa Basin but also give constraints on sediment flux over a 6 Myr window.

  13. Active Deformation of the Northern Cordillera Observed with GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Freymueller, J.; Mazzotti, S.

    2017-12-01

    The Northern Cordillera, which encompasses western Canada and eastern Alaska, is a complex tectonic puzzle. Past terrane accretions, the present collision of the Yakutat block, large-scale plate motions, and past and present glacier change have created a tectonic landscape that includes a major transform system, most of the highest peaks in North America, and far-flung ongoing distributed deformation. We present an updated GPS velocity field as well as a new integrated tectonic block model for the region. The style of deformation varies through the region. Surrounding the Yakutat collision, the model includes a number of small blocks that indicate rotations to the east, north, and west as material moves away from the collisional front. These small blocks also show evidence of internal deformation. Farther from the collisional front, blocks are larger and appear to behave more rigidly. In the south, northwestward motion resulting in a prominent band of coastal shear extends from Vancouver Island to Glacier Bay. In the Arctic, small southeastward motions in Alaska transition to easterly motion in Canada that extends to the Mackenize Mountains near the Cordillera-craton boundary. A number of faults and fault systems accommodate relative Pacific-North America plate motion in the region, although the significant majority is along the Fairweather-Queen Charlotte transform system and the St. Elias fold-and-thrust belt. Along the Fairweather-Queen Charlotte system, the motion is dominantly dextral with increasing oblique transpression to the south corresponding to a change in margin trend. At the northern end of the transform system, motion is distributed onto multiple faults. Roughly 75% of the Fairweather motion is transferred west into the St. Elias fold-and-thrust belt, which accommodates 30 mm/yr of convergence. The remaining 25% is transferred north towards the dextral Denali-Totschunda system. The eastern Denali fault presently plays a minor role in accommodating relative plate motion, with 2-3 mm/yr of transpression. Based on a sequence of earthquakes in May 2017, this motion may be distributed along multiple fault strands.

  14. The Orosirian-Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço Range, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Rolim, Vassily Khoury; Rosière, Carlos A.; Santos, João Orestes Schneider; McNaughton, Neal J.

    2016-01-01

    The Serra da Serpentina and the Serra de São José groups are two distinct banded iron formation-bearing metasedimentary sequences along the eastern border of the southern Espinhaço Range that were deposited on the boundary between the Orosirian and Statherian periods. The Serra da Serpentina Group (SSG) has an Orosirian maximum depositional age (youngest detrital zircon grain age = 1990 ± 16 Ma) and consists of fine clastic metasediments at the base and chemical sediments, including banded iron formations (BIFs), on the top, corresponding to the Meloso and Serra do Sapo formations, respectively, and correlating with the pre-Espinhaço Costa Sena Group. The SSG represents sedimentary deposition on an epicontinental-epeiric, slow downwarping sag basin with little tectonic activity. The younger Serra de São José Group (SJG) is separated from the older SSG by an erosional unconformity and was deposited in a tectonically active continental rift-basin in the early stages of the opening of the Espinhaço Trough. The Serra do São José sediments stretch along the north-south axis of the rift and comprise a complete cycle of transgressive sedimentary deposits, which were subdivided, from base to top, into the Lapão, Itapanhoacanga, Jacém and Canjica formations. The Itapanhoacanga Formation has a maximum depositional age of 1666 ± 32 Ma (Statherian), which coincides with the maximum depositional age (i.e., 1683 ± 11 Ma) of the São João da Chapada Formation, one of the Espinhaço Supergroup's basal units. The Serra de São José Rift and the Espinhaço Rift likely represent the same system, with basal units that are facies variations of the same sequence. The supracrustal rocks have undergone two stages of deformation during the west-verging Brasiliano orogeny that affected the eastern margin of the São Francisco Craton and generated a regional-scale, foreland N-S trending fold-thrust belt, which partially involved the crystalline basement. Thrust faults have segmented the terrain into a large number of tectonic blocks, where the stratigraphic sequence was nevertheless well preserved.

  15. Ophiolitic detritus in Kimmeridgian resedimented limestones and its provenance from an eroded obducted ophiolitic nappe stack south of the Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Gawlick, Hans-Jürgen; Aubrecht, Roman; Schlagintweit, Felix; Missoni, Sigrid; Plašienka, Dušan

    2015-12-01

    The causes for the Middle to Late Jurassic tectonic processes in the Northern Calcareous Alps are still controversially discussed. There are several contrasting models for these processes, formerly designated "Jurassic gravitational tectonics". Whereas in the Dinarides or the Western Carpathians Jurassic ophiolite obduction and a Jurassic mountain building process with nappe thrusting is widely accepted, equivalent processes are still questioned for the Eastern Alps. For the Northern Calcareous Alps, an Early Cretaceous nappe thrusting process is widely favoured instead of a Jurassic one, obviously all other Jurassic features are nearly identical in the Northern Calcareous Alps, the Western Carpathians and the Dinarides. In contrast, the Jurassic basin evolutionary processes, as best documented in the Northern Calcareous Alps, were in recent times adopted to explain the Jurassic tectonic processes in the Carpathians and Dinarides. Whereas in the Western Carpathians Neotethys oceanic material is incorporated in the mélanges and in the Dinarides huge ophiolite nappes are preserved above the Jurassic basin fills and mélanges, Jurassic ophiolites or ophiolitic remains are not clearly documented in the Northern Calcareous Alps. Here we present chrome spinel analyses of ophiolitic detritic material from Kimmeridgian allodapic limestones in the central Northern Calcareous Alps. The Kimmeridgian age is proven by the occurrence of the benthic foraminifera Protopeneroplis striata and Labyrinthina mirabilis, the dasycladalean algae Salpingoporella pygmea, and the alga incertae sedis Pseudolithocodium carpathicum. From the geochemical composition the analysed spinels are pleonastes and show a dominance of Al-chromites (Fe3+-Cr3+-Al3+ diagram). In the Mg/(Mg+ Fe2+) vs. Cr/(Cr+ Al) diagram they can be classified as type II ophiolites and in the TiO2 vs. Al2O3 diagram they plot into the SSZ peridotite field. All together this points to a harzburgite provenance of the analysed spinels as known from the Jurassic suprasubduction ophiolites well preserved in the Dinarides/Albanides. These data clearly indicate Late Jurassic erosion of obducted ophiolites before their final sealing by the Late Jurassic-earliest Cretaceous carbonate platform pattern.

  16. Isotopic perspectives on the western Himalayan syntaxis

    NASA Astrophysics Data System (ADS)

    Argles, T. W.; Foster, G. L.; Whittington, A. G.; George, M. T.

    2003-04-01

    The western syntaxis has been characterised as a structural and metamorphic anomaly within the Himalaya, resulting from extreme Neogene exhumation and associated partial melting. However, an integration of detailed fieldwork with whole-rock isotopic data indicates that all the major tectonic units observed along the arc of the orogen also occur in the syntaxis. Most of the rocks exposed by the extreme exhumation have very different characteristics to their correlatives in the rest of the Himalayan mountain belt, because they represent very different crustal levels. The generally higher metamorphic grade of most syntaxial units obscures their affinities, while high strain throughout the syntaxis also conspires to mask the major tectonic faults that form boundaries to the units in the rest of the orogen. The Lesser Himalayan affinity of the gneissic core of the Nanga Parbat massif has been revealed previously using Nd isotopes. This study confirms the distinction between Lesser (E(Nd) = -20 to -29) and High (E(Nd) = -12 to -19) Himalayan rocks, but further subdivides those units with a High Himalayan Nd signature using Sr isotopic data. Some low-grade schists within the syntaxis have a relatively low 87Sr/86Sr ratio (<0.720) that distinguishes them from the High Himalayan rocks, and suggests they are metamorphic equivalents of the Tethyan sediments exposed in the main Himalayan orogen. The tectonic contact between the Lesser and High Himalayan units in the central Himalaya is the Main Central Thrust, a zone characterised by inverted metamorphism and high strain, but in the uniformly high-strain syntaxis this thrust is difficult to locate except by isotopic signatures. Extensive thermobarometric studies in the syntaxis, however, show two things. The first is the varying intensity of Neogene metamorphic overprint, whose strength is closely related to the degree of deformation (and rheology). The second is a zone of distinctly lower temperature mineral assemblages related to extensional (top-to-the-north) fabrics that straddles the boundary between the High Himalayan gneisses and the Tethyan metasediments. This extensional zone occupies the same structural position in the syntaxis as the South Tibetan Detachment System does in the central Himalaya.

  17. Chapter 32: Geology and petroleum potential of the Arctic Alaska petroleum province

    USGS Publications Warehouse

    Bird, K.J.; Houseknecht, D.W.

    2011-01-01

    The Arctic Alaska petroleum province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald Arch orogenic belt and south of the northern (outboard) margin of the Beaufort Rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America with total known resources (cumulative production plus proved reserves) of c. 28 BBOE. The province constitutes a significant part of a displaced continental fragment, the Arctic Alaska microplate, that was probably rifted from the Canadian Arctic margin during formation of the Canada Basin. Petroleum prospective rocks in the province, mostly Mississippian and younger, record a sequential geological evolution through passive margin, rift and foreland basin tectonic stages. Significant petroleum source and reservoir rocks were formed during each tectonic stage but it was the foreland basin stage that provided the necessary burial heating to generate petroleum from the source rocks. The lion's share of known petroleum resources in the province occur in combination structural-stratigraphic traps formed as a consequence of rifting and located along the rift shoulder. Since the discovery of the super-giant Prudhoe Bay accumulation in one of these traps in the late 1960s, exploration activity preferentially focused on these types of traps. More recent activity, however, has emphasized the potential for stratigraphic traps and the prospect of a natural gas pipeline in this region has spurred renewed interest in structural traps. For assessment purposes, the province is divided into a Platform assessment unit (AU), comprising the Beaufort Rift shoulder and its relatively undeformed flanks, and a Fold-and-Thrust Belt AU, comprising the deformed area north of the Brooks Range and Herald Arch tectonic belt. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil (BBO) and 122 trillion cubic feet (TCF) of nonassociated gas in the Platform AU and 2 BBO and 59 TCF of nonassociated gas in the Fold-and-Thrust Belt AU. ?? 2011 The Geological Society of London.

  18. Wrinkle Ridges and Pit Craters

    NASA Image and Video Library

    2016-10-19

    Tectonic stresses highly modified this area of Ganges Catena, north of Valles Marineris. The long, skinny ridges (called "wrinkle ridges") are evidence of compressional stresses in Mars' crust that created a crack (fault) where one side was pushed on top of the other side, also known as a thrust fault. As shown by cross-cutting relationships, however, extensional stresses have more recently pulled the crust of Mars apart in this region. (HiRISE imaged this area in 2-by-2 binning mode, so a pixel represents a 50 x 50 square centimeter.) http://photojournal.jpl.nasa.gov/catalog/PIA21112

  19. Continental Evolution Involving Subduction Underplating and Synchronous Foreland Thrusting: Evidence from the Trans-Alaska Crustal Transect

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Moore, T. E.; Plafker, G.; Brocher, T. M.; Fisher, M. A.; Mooney, W. D.; Nokleberg, W. J.; Page, R. A.; Beaudoin, B. C.; Christensen, N. I.; Levander, A.; Lutter, W. J.; Saltus, R. W.; Ruppert, N. A.

    2010-12-01

    We investigated the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980’s and early 1990’s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted to be remnants of the extinct Kula (or Resurrection) Plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by north-vergent, crustal-scale duplexes that overlie a ramp on autochthonous North Slope crust. There, Moho has been depressed to nearly 50-km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula- (or Resurrection-) Plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two widely separated regions include “flat-slab” subduction and an “orogenic-float” model. In the Neogene, the collision of the Yakutat terrane (YAK), in southern Alaska, correlates with renewed compression in northeast Alaska and northwest Canada, in a fashion somewhat similar to the tectonics in the Paleogene. The Yakutat terrane, riding atop the subducting Pacific oceanic lithosphere (POL), spans a newly interpreted tear in the POL. East of the tear, POL is interpreted to subduct steeply and alone beneath the Wrangell arc volcanoes because the overlying YAK has been left behind as tectonically underplated rocks beneath the rising St. Elias Range in the coastal region. West of the tear, the YAK and POL are interpreted to subduct together at a gentle angle (a few degrees from 0 to 400 km from the trench), and this thickened package inhibits arc volcanism.

  20. Late Quaternary river channel migrations of the Kura River in Transcaucasia - tectonic versus climatic causes

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik

    2015-04-01

    Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold glacial periods with intensive sediment supply and strong vertical sedimentation of tributaries originating from a westerly direction. Thus, the middle course of the Kura River shows a dynamic equilibrium between competing tectonic and climatic processes.

  1. Relation between relief and crustal structure in the Cantabrian Mountains (Spain) using DEM-GIS analysis

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, Sergio; Rodríguez-Rodríguez, Laura; Ballesteros, Daniel; María Díaz-Díaz, Luis; Valenzuela, Pablo; López-Fernández, Carlos; José Domínguez-Cuesta, María; Meléndez, Mónica; Jiménez-Sánchez, Montserrat; Fernández-Viejo, Gabriela

    2017-04-01

    The Cantabrian Mountains show a linear E-W trend parallel to the northern coast of Iberia peninsula, from the Pyrenees to Galicia, where it looses its trend and linearity. The western end of the linear segment of the orogen coincides with a change in the style of structures, accommodating the N-S shortening during the convergence between Europe and Iberia plates. We study the relief of the 230 km-long segment of the linear range between the Cantabria and Galicia re- gions, up to 2,650 m altitude. The bulk trend of the orogeny is controlled by the orientation of alpine thrusts that accommodate the shortening in relation to plate convergence. The Alpine Orogeny produced crustal thickening and the present day topography. Crustal thickness varies from 30 km in Eastern Cantabrian Mountains to 45-55 km at the Middle part of these mountains. The collision between European and African plates localized in northern Iberia from the Eocene to Oligocene and later migrated to southern Iberia during the Miocene. No major tectonic convergence was accommodated in the Cantabrians Mountains since the Oligocene, entering the orogen an erosional phase since then. The GIS-analysis present here, using 5 and 25 m-resolution DEMs by the Spanish National Geographical Institute, aims to identify the major features and to characterize the overall relief of the Cantabrians Mountains. In our preliminary approach, we present swath profiles, major river basins, watershed, longitudinal profiles of major rivers and hypsometric curves from selected areas that cover the studied orogen segment. Major tectonic structures control the location and orientation of the main watershed of the mountain range, but also the orientation of some local watersheds, e.g. associated to the Llanera thrust or the Ventaniella (strike-slip) fault. An unexpected result is that the average altitude along the water divide is 1,500 m, regardless of the large differences in crustal thickness along the study area. Most longitudinal river profiles running south to north lack knick points in relation to relief forming tectonic structures, indicative of the predominance of fluvial erosional system postdating tectonics. An emerged coastal wave-cut platform dipping gently towards the West, a slight increase in maximum mountain altitude to the east and slight increase in river incision also towards the East may indicate that a gradient in erosion and in up-lifting exists increasing from West to East. This is consistent with an overall increase of crustal thickness along this direction.

  2. Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic palaeogeographical evolution

    NASA Astrophysics Data System (ADS)

    Poisson, André; Vrielynck, Bruno; Wernli, Roland; Negri, Alessandra; Bassetti, Maria-Angela; Büyükmeriç, Yesim; Özer, Sacit; Guillou, Hervé; Kavak, Kaan S.; Temiz, Haluk; Orszag-Sperber, Fabienne

    2016-01-01

    We present here a reappraisal of the tectonic setting, stratigraphy and palaeogeography of the central part of the Sivas Basin from Palaeocene to late Miocene. The Sivas Basin is located in the collision zone between the Pontides (southern Eurasia) and Anatolia (a continental block rifted from Gondwana). The basin overlies ophiolites that were obducted onto Anatolia from Tethys to the north. The Central Anatolian Crystalline Complex (CACC) experienced similar ophiolite obduction during Campanian time, followed by exhumation and thrusting onto previously emplaced units during Maastrichtian time. To the east, crustal extension related to exhumation of the CACC created grabens during the early Tertiary, including the Sivas Basin. The Sivas Basin underwent several tectonic events during Paleogene-Neogene. The basin fill varies, with several sub-basins, each being characterised by a distinctive sequence, especially during Oligocene and Miocene. Evaporite deposition in the central part of the basin during early Oligocene was followed by mid-late Oligocene fluvio-lacustrine deposition. The weight of overlying fluvial sediments triggered salt tectonics and salt diapir formation. Lacustrine layers that are interbedded within the fluviatile sediments have locally yielded charophytes of late Oligocene age. Emergent areas including the pre-existing Sivas Basin and neighbouring areas were then flooded from the east by a shallow sea, giving rise to a range of open-marine sub-basins, coralgal reef barriers and subsiding, restricted-marine sub-basins. Utilising new data from foraminifera, molluscs, corals and nannoplankton, the age of the marine transgression is reassessed as Aquitanian. Specifically, age-diagnostic nannoplankton assemblages of classical type occur at the base of the transgressive sequence. However, classical stratigraphic markers have not been found within the planktic foraminiferal assemblages, even in the open-marine settings. In the restricted-marine sediments, there are rich planktic foraminiferal assemblages of classical type but these are of little use in stratigraphy. In contrast, the gastropod fauna indicate a Burdigalian age. Sediment reworking in the restricted-marine environments precludes stratigraphic determination. In such environments, micro- and nano-organisms experienced atypical developmental conditions. The small benthic foraminifera and associated ostracod assemblages are good indicators of salinity which varied considerably within the restricted-marine sub-basins. Some of the corals within the coralgal reefs barriers are also dated as Aquitanian. A combination of the salt tectonics and the late Miocene north-westward-verging thrusting created the present basin complexity.

  3. The Qartaba Structure: An Active Backthrust In Central Mt-Lebanon.

    NASA Astrophysics Data System (ADS)

    Elias, Ata Richard

    2016-04-01

    The Qartaba structure in central Mt-Lebanon is a 15x5km box fold running parallel to the restraining bend of the sinsitral Yammouneh Fault, the main fault of the central segment of the Dead Sea Transform. The Qartaba structure has long been described as a "horst" and associated with Mesozoic normal faulting. However, the Qartaba anticline is suitably oriented with the direction of maximum compression along the restraining bend. Jurassic carbonate rocks form the core of this anticline culminating at ~1953m asl to the east, of the highest structural elevation of the Mt-Lebanon range indicating important tectonic uplift rate. The fold is asymmetric. The western limb is steep and bordered by the Lebanese Flexure, a prominent continuous monocline of Upper Jurassic to Mid Cretaceous rocks, running along the western flank of Mt-Lebanon. The eastern limb of the anticline has a very steep dip, and forms a 200m high cliff well marked in the topography. Its Jurassic layers are almost vertical and end up overhanging Lower Cretaceous beds. Our study suggest that the Qartaba structure is a growing anticline, built by active thrusting over a west dipping thrust fault that cuts the surface at the base of the eastern limb of the anticline. The fault plane can be seen dipping 30-35 degrees to the west. At depth, this thrust is likely to connect with the blind thrust ramp of the Mt-Lebanon Flexure. The Qartaba backthrust with a dip to the west, is opposite to the general vergence of similar structures in the area. On some of the segments of the steep cliff forming the faulted eastern limb, a fresh scarp with smooth and polished surfaces bearing vertical slickensides can be followed over ~700m along the base of the cliff. It corresponds with the location of the thrust fault tip. Talus accumulation over the steep eastern limb covers most of the cliff base, and may be masking further extent of this scarp. We interpret this scarp as the freeface of a co-seismic rupture on the underlying Qartaba backthrust. Moreover a first paleoseismic trench was opened in the loose deposits that cover the base of the eastern limb, over a topographic slope break aligned with the direction of the backthrust. The preliminary results clearly show tectonic deformation structures in C14 dated Holocene sediments, compatible with the general compressive style of the backthrust. This new interpretation of the Qartaba structure has important, implications on the geological interpretation of the area. The Qartaba backthrust is clearly an active structure that is capable of generating Mw~6.4 earthquakes in central Lebanon, significantly adding to the seismic hazard of the area. Moreover, the different interpretations of the geology of this area for petroleum prospects studies should be reviewed in the light of these new results.

  4. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early Triassic time, and marine sediment deposited on the subsiding continental shelf overlapped the previously deformed Permian rocks. Renewed contractional deformation, probably in the Middle Triassic, is interpreted to be associated with emplacement of the Golconda allochthon onto the margin of the continent. This event, which is identified with certainty in the Sierra Nevada, also may have significantly affected rocks in the White and Inyo Mountains to the east. Subduction and arc magmatism that created most of the Sierra Nevada batholith began in the Late Triassic and lasted through the remainder of the Mesozoic. During this time, the East Sierran thrust system (ESTS) developed as a narrow zone of intense, predominantly E-vergent contractional deformation along the eastern margin of the growing batholith. Activity on the ESTS took place over an extended part of Mesozoic time, both before and after intrusion of voluminous Middle Jurassic plutons, and is interpreted to have been mechanically linked to emplacement of the batholith. Deformation on the ESTS and magmatism in the Sierra Nevada both ended prior to the close of the Cretaceous.

  5. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  6. New insights into seismic faulting during the 2008 Mw7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, H.; Si, J.; Sun, Z.; Pei, J.; Lei, Z.; He, X.

    2017-12-01

    The WFSD project was implemented promptly after the 2008 Mw 7.9 Wenchuan earthquake. A series of research results on the seismogenic structure, fault deformation, sliding mechanism and fault healing have been obtained, which provide new insights into seismic faulting and mechanisms of the Wenchuan earthquake. The WFSD-1 and -2 drilling core profiles reveal that the Longmen Shan thrust belt is composed of multiple thrust sheets. The 2008 Wenchuan earthquake took place in such tectonic setting with strong horizontal shortening. The two ruptured faults have different deformation mechanisms. The Yingxiu-Beichuan fault (YBF) is a stick-slip fault characterized by fault gouge with high magnetic susceptibility, Guanxian-Anxian fault (GAF) with creeping features and characterized by fault gouge with low magnetic susceptibility. Two PSZs were found in WFSD-1 and -2 cores in the southern segment of YBF. The upper PSZ1 is a low-angle thrust fault characterized by coseisimc graphitization with an extremely low frictional coefficient. The lower PSZ2 is an oblique dextral-slip thrust fault characterized by frictional melt lubrication. In the northern segment of YBF, the PSZ in WFSD-4S cores shows a high-angle thrust feature with fresh melt as well. Therefore, the oblique dextral-slip thrust faulting with frictional melt lubrication is the main faulting of Wenchuan earthquake. Fresh melt with quenching texture was formed in Wenchuan earthquake implying vigorous fluid circulation occurred during the earthquake, which quenched high-temperature melt, hamper the aftermost fault slip and welding seismic fault. Therefore, fluids in the fault zone not only promotes fault weakening, but also suppress slipping in theWenchuan earthquake. The YBF has an extremely high hydraulic diffusivity (2.4×10-2 m2s-1), implying a vigorous fluid circulation in the Wenchuan fault zone. the permeability of YBF has reduced 70% after the shock, reflecting a rapid healing for the YBF. However, the water level has not changed in the WFSD-3 borehole drilled through GAF, indicating an unchanged permeability. These results are of great significance to understanding the seismogenic mechanisms and earthquake cycle for the Wenchuan earthquake.

  7. Neogene-Quaternary evolution of the offshore sector of the Southern Apennines accretionary wedge, Gulf of Taranto, Italy

    NASA Astrophysics Data System (ADS)

    Teofilo, G.; Antoncecchi, I.; Caputo, R.

    2018-07-01

    Southern Apennines represent a collisional orogenic belt whose compressional regime is commonly assumed to have ceased during Middle Quaternary. On the other hand, to the south the Calabria Arc is still characterized by subduction and the principal aim of the present research is to shed some light on the space and time transition from the ceased collision to the active subduction. Accordingly, we investigated the offshore sector of the Southern Apennines accretionary wedge, corresponding to the Taranto Gulf. To gain insights into the offshore accretionary wedge, we reconstructed a 3D geological and tectonic model by interpreting a grid of 40 seismic reflection lines (1100 km, 80 intersections), within an area of ca. 104 km2, calibrated with 17 wells. The geometric and chronological constraints allow documenting a systematic Messinian-Quaternary thrust migration from internal towards external sectors of the wedge. The migrating deformational process was essentially associated with a leading-imbricate thrust system with a general NE-younging direction, where we could recognize and distinguish some major advancing phases characterized by alternating fast thrust propagation events and strain accumulation periods within the wedge. This process is well emphasized by the jump of the foredeep and piggy-back basins. The NE-wards wedge migration was also associated with a lithospheric-scale flexural folding that generated a set of normal faults striking parallel to the coeval thrusts, likely reactivating optimally oriented structures inherited from Mesozoic events. Finally, a persisting thrust activity up to the latest Quaternary and possibly up to Present in correspondence of the externalmost sector of the accretionary wedge has been documented and explained in terms of strain partitioning in the frame of a recent oblique convergence. The results of this research have possible implications for the seismic hazard assessment of the broader region which is possibly greater than previously assumed.

  8. Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range: Implications for large terrestrial and Martian volcanic edifices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borgia, A.; Burr, J.; Montero, W.

    1990-08-30

    Long sublinear ridges and related scarps located at the base of large volcanic structures are frequently interpreted as normal faults associated with extensional regional stress. In contrast, the ridges bordering the Central Costa Rica volcanic range (CCRVR) are the topographic expression of hanging wall asymmetric angular anticlines overlying low-angle thrust faults at the base of the range. These faults formed by gravitational failure and slumping of the flanks of the range due to the weight of the volcanic edifices and were perhaps triggered by the intrusion of magma over the past 20,000 years. These anticlines are hypothesized to occur alongmore » the base of the volcano, where the thrust faults ramp up toward the sea bottom. Ridges and scarps between 2,000 and 5,000 m below sea level are interpreted as the topographic expression of these folds. The authors further suggest that the scarps of the CCRVR and valid scaled terrestrial analogs of the perimeter scarp of the Martian volcano Olympus Mons. They suggest that the crust below Olympus Mons has failed under the load of the volcano, triggering the radial slumping of the flanks of the volcano on basal thrusts. The thrusting would have, in turn, formed the anticlinal ridges and scarps that surround the edifice. The thrust faults may extend all the way to the base of the Martian crust (about 40 km), and they may have been active until almost the end of the volcanic activity. They suggest that gravitational failure and slumping of the flanks of volcanoes is a process common to most large volcanic edifices. In the CCRVR this slumping of the flanks is a slow intermittent process, but it could evolve to rapid massive avalanching leading to catastrophic eruptions. Thus monitoring of uplift and displacement of the folds related to the slump tectonics could become an additional effective method for mitigating volcanic hazards.« less

  9. Balanced sections and the propagation of décollement: A Jura perspective

    NASA Astrophysics Data System (ADS)

    Laubscher, Hans

    2003-12-01

    The propagation of thrusting is an important problem in tectonics that is usually approached by forward (kinematical) modeling of balanced sections. Although modeling techniques are similar in most foreland fold-thrust belts, it turns out that in the Jura, there are modeling problems that require modifications of widely used techniques. In particular, attention is called to the role of model constraints that complement the set of observational constraints in order to fully define the model. In the eastern Jura, such model constraints may be inferred from the regional geology, which shows a peculiar noncoaxial relation between thrusts and subsequent folds. This relation implies changes in the direction of translation and the mode of deformation in the course of the propagation of décollement. These changes are conjectured to be the result of a change in partial decoupling between the thin-skinned fold-thrust system (nappe) and the obliquely subducted foreland. As a particularly instructive case in point, a cross section through the Weissenstein range is discussed. A two-step forward (kinematical) model is proposed that uses both local observational constraints as well as model constraints inferred from regional data. As a first step, a fault bend fold is generated in the hanging wall of a thrust of 1500 m shortening. As a second step, this structure is transferred by flexural slip into the actual fold observed at the surface. This requires an additional 1600 m of shortening and leads to folding of the original thrust. Thereafter, the footwall is deformed so as to respect the constraint that this deformation must fit into the space defined by the folded thrust as the upper boundary and the décollement surface as the lower boundary, and that, in addition, should be confined to the area immediately below the fold. In modeling the footwall deformation a mix of balancing methods is used: fault propagation folds for the competent intervals of the stratigraphic column and area balancing for the incompetent ones. Further propagation of décollement into the foreland is made possible by the folding process, which is dominated by a sort of kinking and which is the main contribution to structural elevation and hence to producing a sort of critical taper of the moving thin-skinned wedge.

  10. Geometry and Kinematics of the Lamu Basin Deep-Water Fold-and-Thrust Belt (East Africa)

    NASA Astrophysics Data System (ADS)

    Barchi, Massimiliano R.; Cruciani, Francesco; Porreca, Massimiliano

    2016-04-01

    Even if most thin-skinned fold-and-thrust belt are generated at convergent plate boundaries, in the last decades advances in seismic exploration and acquisition of large datasets have shown that they are also notably widespread along continental passive margins, driven by gravity processes in deep-water areas. In this study a composite set of modern and vintage reprocessed seismic reflection profiles is used to investigate the internal structure and kinematic evolution of the Lamu Basin Deep-Water Fold-and-Trust Belt (DW-FTB). The Lamu Basin is an example of giant-scale, gravity driven compressional belt developed in Late Cretaceous-Early Tertiary along a still poorly explored sector of the East-African continental margin, at the Kenya-Somalia border. The compressional domain extends longitudinally for more than 450 km, is up to 180 km wide and shows remarkable structural complexity both along strike and along dip. The external part is dominated by ocean-verging imbricate thrusts, above a gently landward-dipping basal detachment. The internal part is characterised by almost symmetrical detachment folds and double verging structures, sustaining bowl-shaped syn-tectonic basins. Here the basal detachment surface is almost flat. The mean fold wavelength displays a progressive landward increase, from 2.5 km, at the toe of the belt, to about 10 km. This structural variability is thought to be related to the lateral variation of the section under shortening and particularly to the different thickness of the Early Cretaceous shaly unit involved in the deformations, increasing landward from about 400 m to more than 1 km. Through the sequential restoration of regional cross-sections, we evaluated that the northern portion of the thrust belt experienced a shortening of almost 50 km (corresponding to 20%), with a shortening rate (during the Late Cretaceous-Paleocene main event) of about 3.5 mm/yr. Under many respects, the dimensions and internal structure of this thrust belt are comparable to that of analogue-scaled structures, developed at convergent plate boundaries, e.g. the foreland fold-and-trust belts. However, its kinematic evolution shows some peculiar characters: shortening seems largely synchronous across the whole thrust belt and the maximum shortening is achieved in its frontal part (toe thrust), diminishing landward.

  11. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study area lasted until recently. Those young tectonic activities are too young to be explained by mascon loading hypothesis. Tectonism induced by global cooling or orbital evolution are possible origins for the young horizontal compression. However, they cannot explain the recent extension. Our study area is located in PKT region where the heat-producing elements are more abundant than surrounding areas. Therefore, regional cooling would be a reasonable explanation for the young extensional tectonics. References Ono, T., A. Kumamoto, H. Nakagawa, Y. Yamaguchi, S. Oshigami, A. Yamaji, T. Kobayashi, Y. Kasahara, and H. Oya, 2009, Science, 323, 909--912. Solomon, S.C. and Head, J.W., 1980, Rev. Geophys., 18, 107--141. Trask, N.J., 1971, Geological Survey Research, U.S. Geol. Surv. Prof. Pap. 750-D, D138--D144. Watters, T.R., M.S. Robinson, M.E. Banks, T. Tran, and B.W. Denevi, 2012, Nature Geosci., 5, 181--185.

  12. Contributions of gravity and field data on the structural scheme updating of the Tellian domain and its foreland (Nefza-Bizerte region, northern Tunisia)

    NASA Astrophysics Data System (ADS)

    Essid, El Mabrouk; Kadri, Ali; Balti, Hadhemi; Gasmi, Mohamed; Zargouni, Fouad

    2018-03-01

    The Nefza-Bizerte region, eastern part of the Tunisian Alpine chain, covers the thrust sheets domain called the Tell and its Atlassic foreland. The deep structures under the Tellian thrust sheets are not enough explored. The structural interpretation of magmatic rocks, Triassic outcrops and the depressions are still a subject of discussion. In this work, we intend to investigate deep faults and their eventual role in magmatism and Triassic salt setting up and to explain the depression genesis. Analysis of the Bouguer anomaly map and its derivatives reveals the main gravity lineaments, organized in major NE- and NW-trending systems. The NE-trending system, dipping towards the NW, is the main component of the structural scheme and has controlled the tectonic evolution of this area. After the immobilization of the Tellian thrust sheets during the uppermost Langhian, the Tell and its Atlassic foreland were affected by the Tortonian compressive event with a NW-trending maximum horizontal stress. The reverse kinematics of the NE-trending deep-seated faults created at their front continental environments filled later by post-nappes Neogene deposits. After the early Pleistocene, a NNW-directed compressional stress regime deformed the post-nappes Neogene series and generated NW-trending grabens. This coexistence of compression-extension continues until present day.

  13. Active tectonics around the Yakutat indentor: New geomorphological constraints on the eastern Denali, Totschunda and Duke River Faults

    NASA Astrophysics Data System (ADS)

    Marechal, Anaïs; Ritz, Jean-François; Ferry, Matthieu; Mazzotti, Stephane; Blard, Pierre-Henri; Braucher, Régis; Saint-Carlier, Dimitri

    2018-01-01

    The Yakutat collision in SE Alaska - SW Yukon is an outstanding example of indentor tectonics. The impinging Yakutat block strongly controls the pattern of deformation inland. However, the relationship between this collision system and inherited tectonic structures such as the Denali, Totschunda, and Duke River Faults remains debated. A detailed geomorphological analysis, based on high-resolution imagery, digital elevation models, field observations, and cosmogenic nuclide dating, allow us to estimate new slip rates along these active structures. Our results show a vertical motion of 0.9 ± 0.3 mm/yr along the whole eastern Denali Fault, while the dextral component of the fault tapers to less than 1 mm/yr ∼80 km south of the Denali-Totschunda junction. In contrast, the Totschunda Fault accommodates 14.6 ± 2.7 mm/yr of right-lateral strike-slip along its central section ∼100 km south of the junction. Further south, preliminary observations suggest a slip rate comprised between 3.5 and 6.5 mm/yr along the westernmost part of the Duke River thrust fault. Our results highlight the complex partitioning of deformation inland of the Yakutat collision, where the role and slip rate of the main faults vary significantly over distances of ∼100 km or less. We propose a schematic model of present-day tectonics that suggests ongoing partitioning and reorganization of deformation between major inherited structures, relay zones, and regions of distributed deformation, in response to the radial stress and strain pattern around the Yakutat collision eastern syntaxis.

  14. Quantifying 10Be-derived Erosion Rates from the Min Shan in the Eastern Margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, H.; Moon, S.; Harrison, M.; Yin, A.

    2017-12-01

    Spatial and temporal variations of long-term erosion rates can provide fundamental insights into the topographic and tectonic development of Eastern Tibet. Previous studies have quantified erosion rates at thousand to million-year-timescales in the central and northern Longmen Shan region with a view of understanding the locally complex tectonic interactions. However, it is still unclear how the magnitude, rate, and style of tectonic deformation vary across the eastern margin of the Tibetan Plateau. In this study, we examine the erosional history and topographic development of the Min Shan, located north of the Longmen Shan and west of Sichuan basin. Over a distance of 50 km, elevations increase from 500 m in Sichuan Basin to a peak of 5600 m in the west. The eastern portion of our study area is a foreland thrust belt with relatively flat topography, while the western portion contains deformed silicic sedimentary strata with steep slopes and a topographic relief of >2000 m. In this study, we use cosmogenic 10Be from river sands to measure thousand-year-timescale erosion rates of 12 catchments across the Min Shan. We then compare these rates with published million-year-timescale exhumation rates from apatite and zircon (U-Th)/He and apatite and zircon fission track thermochronometers. These data should lead us to a better understanding of the spatial and temporal variations of deformation throughout the eastern Tibetan margin and help discern the relative effects of climate and tectonics in forming Himlayan landscapes.

  15. Model of formation of Ishtar Terra, Venus

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Vergely, P.; Masson, Ph.

    1996-08-01

    For more than a decade, the radar mapping of Venus' surface has revealed that it results from a complex volcanic and tectonic history, especially in the northern latitudes. Ishtar Terra (0°E-62°E) consists of a high plateau, Lakshmi Planum, surrounded by highlands, Freyja Montes to the north and Maxwell Montes to the east. The latter is the highest relief of Venus, standing more than 10 km in elevation. The high resolution of Magellan radar images (120-300 m) allows us to interpret them in terms of tectonics and propose a model of formation for the central part of Ishtar Terra. The detailed tectonic interpretations are based on detailed structural and geologic cartography. The geologic history of Ishtar Terra resulted from two distinct, opposite tectonic stages with an important, transitional volcanic activity. First, Lakshmi Planum, the oldest part of Ishtar Terra is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. Then the plateau is partially covered by fluid lava flows that may be similar to Deccan traps, in India. Second, after the extensional deformation of Lakshmi Planum and its volcanic activity, Freyja and Maxwell Montes formed by WSW-ENE horizontal crustal shortening. The latter produced a series of NNW-SSE parallel, sinuous, folds and imbricated structures that overlapped Lakshmi Planum westward. So these mountain belts have the same structural characteristics as terrestrial fold-and-thrust belts. These mountain belts also display evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trend, especially in Maxwell Montes.

  16. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    USGS Publications Warehouse

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  17. An improved design method based on polyphase components for digital FIR filters

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Kuldeep, B.; Singh, G. K.; Lee, Heung No

    2017-11-01

    This paper presents an efficient design of digital finite impulse response (FIR) filter, based on polyphase components and swarm optimisation techniques (SOTs). For this purpose, the design problem is formulated as mean square error between the actual response and ideal response in frequency domain using polyphase components of a prototype filter. To achieve more precise frequency response at some specified frequency, fractional derivative constraints (FDCs) have been applied, and optimal FDCs are computed using SOTs such as cuckoo search and modified cuckoo search algorithms. A comparative study of well-proved swarm optimisation, called particle swarm optimisation and artificial bee colony algorithm is made. The excellence of proposed method is evaluated using several important attributes of a filter. Comparative study evidences the excellence of proposed method for effective design of FIR filter.

  18. Integrating facies and structural analyses with subsidence history in a Jurassic-Cretaceous intraplatform basin: Outcome for paleogeography of the Panormide Southern Tethyan margin (NW Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio

    2016-06-01

    We illustrate the tectono-sedimentary evolution of a Jurassic-Cretaceous intraplatform basin in a fold and thrust belt present setting (Cala Rossa basin). Detailed stratigraphy and facies analysis of Upper Triassic-Eocene successions outcropping in the Palermo Mts (NW Sicily), integrated with structural analysis, restoration and basin analysis, led to recognize and describe into the intraplatform basin the proximal and distal depositional areas respect to the bordered carbonate platform sectors. Carbonate platform was characterized by a rimmed reef growing with progradational trends towards the basin, as suggested by the several reworked shallow-water materials interlayered into the deep-water succession. More, the occurrence of thick resedimented breccia levels into the deep-water succession suggests the time and the characters of synsedimentary tectonics occurred during the Late Jurassic. The study sections, involved in the building processes of the Sicilian fold and thrust belt, were restored in order to obtain the original width of the Cala Rossa basin, useful to reconstruct the original geometries and opening mechanisms of the basin. Basin analysis allowed reconstructing the subsidence history of three sectors with different paleobathymetry, evidencing the role exerted by tectonics in the evolution of the narrow Cala Rossa basin. In our interpretation, a transtensional dextral Lower Jurassic fault system, WNW-ESE (present-day) oriented, has activated a wedge shaped pull-apart basin. In the frame of the geodynamic evolution of the Southern Tethyan rifted continental margin, the Cala Rossa basin could have been affected by Jurassic transtensional faults related to the lateral westward motion of Africa relative to Europe.

  19. Volcanic arc emplacement onto the southernmost Appalachian Laurentian shelf: Characteristics and constraints

    USGS Publications Warehouse

    Tull, J.F.; Barineau, C.I.; Mueller, P.A.; Wooden, J.L.

    2007-01-01

    In the southernmost Appalachians, the Hillabee Greenstone, an Ordovician volcanic arc fragment, lies directly atop the outermost Laurentian Devonian-earliest Mississippian(?) shelf sequence at the structural top of the greenschist facies Talladega belt, the frontal metamorphic allochthon along this orogenic segment. The Hillabee Greenstone was emplaced between latest Devonian and middle Mississippian time. It and the uppermost Laurentian section were later repeated together within a series of map-scale imbricate slices of a postmetamorphic, dextral, transpressional, Alleghanian thrust duplex system that placed the high-grade eastern Blue Ridge allochthon atop the Talladega belt. Geochemical and geochronologic (U-Pb zircon) studies indicate that the Hillabee Greenstone's interstratified tholeiitic metabasalt and calc-alkaline metadacite/rhyolite formed within an extensional setting on continental crust ca. 460-470 Ma. Palinspastic reconstructions of the southern Appalachian Ordovician margin place the Hillabee Greenstone outboard of the present position of the Pine Mountain terrane and suggest links to Ordovician plutonism in the overlying eastern Blue Ridge, and possibly to widespread K-bentonite deposits within Ordovician platform units. The tectonic evolution of the Hillabee Greenstone exhibits many unusual and intriguing features, including: (1) premetamorphic emplacement along a basal cryptic thrust, which is remarkably concordant to both hanging wall and footwall sequences across its entire extent (>230 km), (2) formation, transport, and emplacement of the arc fragment accompanied by minimal deformation of the Hillabee Greenstone and underlying outer-margin shelf rocks, (3) emplacement temporally coincident with the adjacent collision of the younger, tectonically independent Ouachita volcanic arc with southeastern Laurentia. These features highlight strong contrasts in the Ordovician-Taconian evolution of the southern and northern parts of the Appalachian orogen. ?? 2007 Geological Society of America.

  20. Structure of crust and upper mantle beneath NW Himalayas, Pamir and Hindukush by multi-scale double-difference seismic tomography

    NASA Astrophysics Data System (ADS)

    Bhatti, Zahid Imran; Zhao, Junmeng; Khan, Nangyal Ghani; Shah, Syed Tallataf Hussain

    2018-08-01

    The India-Asia collision and subsequent subduction initiated the evolution of major tectonic features in the Western Syntaxis. The complex tectonic structure and shallow to deep seismicity have attracted geoscientists over the past two decades. The present research is based on a 3D tomographic inversion of P-wave arrival time data to constrain the crustal and upper mantle structure beneath the NW Himalayas and Pamir-Hindukush region using the Double-difference tomography. We utilized a very large multi-scale dataset comprising 19,080 earthquakes recorded at 397 local and regional seismic stations from 1950 to 2017. The northward dipping seismic zone coinciding with the low velocity anomaly suggests the subduction of the Indian lower crust beneath the Hindukush. The extent of the northward advancing Indian slab increases from east to west in this region. We observed no signs of northward subduction of the Indian plate under the Hindukush beyond 71°E longitude. The Indian plate overturns due south after interacting with the Asian plate beneath the southern Pamir, which correlates with the counter-clockwise rotation of the Indian plate. The Asian plate is also imaged as a southward subducting seismic zone beneath the southern Pamir. In the NW Himalayas, the northward subducting Indian plate appears as a gently dipping low velocity anomaly beneath the Karakoram Block. The stresses caused by the collision and subduction along the Shyok Suture and Indus Suture are translated to the south. The crustal scale seismicity and high velocity anomalies indicate an intense deformation in the crust, which is manifested by syntaxial bends and thrust faults to the south of the Main Mantle Thrust.

Top