Science.gov

Sample records for polyphenolic anticancer bioactivity

  1. Polyphenols from wolfberry and their bioactivities.

    PubMed

    Zhou, Zheng-Qun; Xiao, Jia; Fan, Hong-Xia; Yu, Yang; He, Rong-Rong; Feng, Xiao-Lin; Kurihara, Hiroshi; So, Kwok-Fai; Yao, Xin-Sheng; Gao, Hao

    2017-01-01

    Nine new phenylpropanoids, one new coumarin, and 43 known polyphenols were isolated from wolfberry. Their structures were determined by spectroscopic analyses, chemical methods, and comparison of NMR data. Polyphenols, an important type of natural products, are notable constituents in wolfberry. 53 polyphenols, including 28 phenylpropanoids, four coumarins, eight lignans, five flavonoids, three isoflavonoids, two chlorogenic acid derivatives, and three other constituents, were identified from wolfberry. Lignans and isoflavonoids were firstly reported from wolfberry. 22 known polyphenols were the first isolates from the genus Lycium. This research presents a systematic study on wolfberry polyphenols, including their bioactivities. All these compounds exhibited oxygen radical absorbance capacity (ORAC), and some compounds displayed DPPH radical scavenging activity. One compound had acetylcholinesterase inhibitory activity. The discovery of new polyphenols and their bioactivities is beneficial for understanding the scientific basis of the effects of wolfberry.

  2. Anticancer Efficacy of Polyphenols and Their Combinations

    PubMed Central

    Niedzwiecki, Aleksandra; Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias

    2016-01-01

    Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB) demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP)-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract) with vitamin C, amino acids and other micronutrients (EPQ) demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM) also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion, angiogenesis

  3. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    NASA Astrophysics Data System (ADS)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  4. Mangiferin: a promising anticancer bioactive.

    PubMed

    Khurana, Rajneet K; Kaur, Ranjot; Lohan, Shikha; Singh, Kamalinder K; Singh, Bhupinder

    2016-05-01

    Of late, several biologically active antioxidants from natural products have been investigated by the researchers in order to combat the root cause of carcinogenesis, in other words, oxidative stress. Mangiferin, a therapeutically active C-glucosylated xanthone, is extracted from pulp, peel, seed, bark and leaf of Mangifera indica. These polyphenols of mangiferin exhibit antioxidant properties and tend to decrease the oxygen-free radicals, thereby reducing the DNA damage. Indeed, its capability to modulate several key inflammatory pathways undoubtedly helps in stalling the progression of carcinogenesis. The current review article emphasizes an updated account on the patents published on the chemopreventive action of mangiferin, apoptosis induction made on various cancer cells, along with proposed antioxidative activities and patent mapping of other important therapeutic properties. Considering it as promising polyphenol, this paper would also summarize the diverse molecular targets of mangiferin.

  5. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment

    PubMed Central

    Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Frajese, Giovanni Vanni; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2015-01-01

    Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer. PMID:25918934

  6. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment.

    PubMed

    Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Frajese, Giovanni Vanni; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2015-04-24

    Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer.

  7. Anticancer activities of artemisinin and its bioactive derivatives.

    PubMed

    Firestone, Gary L; Sundar, Shyam N

    2009-10-30

    Artemisinin, a sesquiterpene lactone derived from the sweet wormwood plant Artemisia annua, and its bioactive derivatives exhibit potent anticancer effects in a variety of human cancer cell model systems. The pleiotropic response in cancer cells includes growth inhibition by cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. These effects of artemisinin and its derivatives result from perturbations of many cellular signalling pathways. This review provides a comprehensive discussion of these cellular responses, and considers the ramifications for the potential development of artemisinin-based compounds in anticancer therapeutic and preventative strategies.

  8. Ethnopharmacological and bioactivity guided investigation of five TCM anticancer herbs.

    PubMed

    Meng, Qiu-Xia; Roubin, Rebecca H; Hanrahan, Jane R

    2013-06-21

    Five herbs, Curcuma longa L. (CL), Scutellaria baicalensis Georgi (SBC), Scutellaria barbata D. Don (SBB), Hedyotis diffusa Willd. (HD) and Solanum nigrum L. (SN), are often prescribed in the polyherbal formulas for cancer treatment by traditional Chinese medicine (TCM) practitioners. The purpose of the present study was to identify important anticancer herbs used in TCM and carry out bioactivity-directed fractionation and isolation (BDFI) using six cancer cell lines as well as peripheral blood mononuclear cells (PBMCs), to identify constituents with anticancer activity but devoid of toxic effects against healthy immune cells. Of 243 document anticancer TCM treatments, 199 anticancer TCM herbs were ranked by the number of literature reports for each herb. Five herbs were identified from the top 50 ranked herbs by at least two out of three TCM practitioners as frequently used in the TCM treatment of cancer. BDFI using MTS assay was applied to determine the active anticancer extracts, fractions, and finally discrete compounds. Five herbs were selected for study of their anticancer activities. The extracts of Curcuma longa L., Scutellaria barbata D. Don, and Hedyotis diffusa showed antiproliferative activity to various extents, extracts of Scutellaria baicalensis Georgi and Solanum nigrum L. showed little anticancer activity. Seven out of the 21 fractions obtained from Hedyotis diffusa Willd. showed anticancer activity. One new compound, ethyl 13(2) (S)-hydroxy-chlorophyllide a(1), along with 10 known compounds, i.e. 2-methyl-3-methoxyanthraquinone (2), 2-hydroxymethylanthraquinone(3), 2-hydroxy-3-methylanthraquinone(4), 2-hydroxymethy-1-hydroxyanthraquinone(5), 1-methoxy-2-hydroxyanthraquinone(6), 2-hydroxy-3-methyl-1-methoxyanthraquinone (7), oleanolic acid (8), ursolic acid (9), stigmasterol (10) and docosanoic acid (11), were isolated and identified. Compounds 2-6, 8 and 9 dose-dependently inhibited the cell viability of cancer cells within a concentration range

  9. Anti-Cancer Activity of Maize Bioactive Peptides

    PubMed Central

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-01-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derivative food products has been associated with a reduced risk of various types of cancer. The main biomolecules in cereals include proteins, peptides, and amino acids, all of which are present in different quantities within the grain. Some of these peptides possess nutraceutical properties and exert biological effects that promote health and prevent cancer. In this review, we report the current status and advances in knowledge regarding the bioactive properties of maize peptides, such as antioxidant, antihypertensive, hepatoprotective, and anti-tumor activities. We also highlight the potential biological mechanisms through which maize bioactive peptides exert anti-cancer activity. Finally, we analyze and emphasize the potential applications of maize peptides. PMID:28680876

  10. Anti-Cancer Activity of Maize Bioactive Peptides.

    PubMed

    Díaz-Gómez, Jorge L; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E; García-Lara, Silverio

    2017-01-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derivative food products has been associated with a reduced risk of various types of cancer. The main biomolecules in cereals include proteins, peptides, and amino acids, all of which are present in different quantities within the grain. Some of these peptides possess nutraceutical properties and exert biological effects that promote health and prevent cancer. In this review, we report the current status and advances in knowledge regarding the bioactive properties of maize peptides, such as antioxidant, antihypertensive, hepatoprotective, and anti-tumor activities. We also highlight the potential biological mechanisms through which maize bioactive peptides exert anti-cancer activity. Finally, we analyze and emphasize the potential applications of maize peptides.

  11. [Mechanisms of plant polyphenols anti-cancer effects. I. Blockade of carcinogenesis initiation].

    PubMed

    Zinov'eva, V N; Spasov, A A

    2012-01-01

    Mechanisms of anti-cancer effects of polyphenols, found in fruits, vegetables, spices and representing parts of daily nutrition, have been considered. These compounds may be the basis for development of cancer preventive preparations. They can block carcinogenesis initiation by inactivation of exogenous or endogenous genotoxic molecules including reactive oxygen species. Another mechanism consists in inhibition of activity and synthesis of carcinogen-metabolizing enzymes. Plant polyphenols also induce expression of antioxidant and detoxification enzymes genes.

  12. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics

    PubMed Central

    Cao, Jianhua; Han, Jie; Xiao, Hao; Qiao, Jinping; Han, Mei

    2016-01-01

    Multidrug resistance and various adverse side effects have long been major problems in cancer chemotherapy. Recently, chemotherapy has gradually transitioned from mono-substance therapy to multidrug therapy. As a result, the drug cocktail strategy has gained more recognition and wider use. It is believed that properly-formulated drug combinations have greater therapeutic efficacy than single drugs. Tea is a popular beverage consumed by cancer patients and the general public for its perceived health benefits. The major bioactive molecules in green tea are catechins, a class of flavanols. The combination of green tea extract or green tea catechins and anticancer compounds has been paid more attention in cancer treatment. Previous studies demonstrated that the combination of chemotherapeutic drugs and green tea extract or tea polyphenols could synergistically enhance treatment efficacy and reduce the adverse side effects of anticancer drugs in cancer patients. In this review, we summarize the experimental evidence regarding the effects of green tea-derived polyphenols in conjunction with chemotherapeutic drugs on anti-tumor activity, toxicology, and pharmacokinetics. We believe that the combination of multidrug cancer treatment with green tea catechins may improve treatment efficacy and diminish negative side effects. PMID:27983622

  13. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics.

    PubMed

    Cao, Jianhua; Han, Jie; Xiao, Hao; Qiao, Jinping; Han, Mei

    2016-12-14

    Multidrug resistance and various adverse side effects have long been major problems in cancer chemotherapy. Recently, chemotherapy has gradually transitioned from mono-substance therapy to multidrug therapy. As a result, the drug cocktail strategy has gained more recognition and wider use. It is believed that properly-formulated drug combinations have greater therapeutic efficacy than single drugs. Tea is a popular beverage consumed by cancer patients and the general public for its perceived health benefits. The major bioactive molecules in green tea are catechins, a class of flavanols. The combination of green tea extract or green tea catechins and anticancer compounds has been paid more attention in cancer treatment. Previous studies demonstrated that the combination of chemotherapeutic drugs and green tea extract or tea polyphenols could synergistically enhance treatment efficacy and reduce the adverse side effects of anticancer drugs in cancer patients. In this review, we summarize the experimental evidence regarding the effects of green tea-derived polyphenols in conjunction with chemotherapeutic drugs on anti-tumor activity, toxicology, and pharmacokinetics. We believe that the combination of multidrug cancer treatment with green tea catechins may improve treatment efficacy and diminish negative side effects.

  14. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability.

    PubMed

    Kawabata, Kyuichi; Mukai, Rie; Ishisaka, Akari

    2015-05-01

    The physiological functions and bioavailability of flavonoids have been widely investigated since their bioactivities were identified about 80 years ago. Quercetin is a typical flavonoid ubiquitously contained in vegetables and fruits with several biological effects demonstrated in vitro and in vivo including antioxidative, anti-inflammatory, anticancer, and antidiabetic activities. After the ingestion of vegetables and fruits, quercetin glycosides are metabolized, absorbed, and circulated as types of conjugates in the blood. Thereafter, quercetin-3-O-β-D-glucuronide (Q3GA), a major metabolite of quercetin, is distributed throughout the body where it may exert beneficial functions in target tissues. Hydrophilic Q3GA has been found to be deconjugated into hydrophobic quercetin aglycone at injured sites which, in turn, may improve the pathological conditions. This review presents updated information on the biological aspects and mechanisms of action of quercetin and its related polyphenols. In particular, new insights into their beneficial health effects on the brain, blood vessels, muscle, and intestine will be discussed.

  15. Dietary polyphenols as antioxidants and anticancer agents: more questions than answers.

    PubMed

    Hu, Miao-Lin

    2011-01-01

    High intake of fruit and vegetables is believed to be beneficial to human health. Fruit, vegetables and some beverages, such as tea and coffee, are particularly rich in dietary polyphenols. Various studies have suggested (but not proven) that dietary polyphenols may protect against cardiovasucalar diseases, neurodegenerative diseases and some forms of cancer. Dietary polyphenols may exert their anticancer effects through several possible mechanisms, such as removal of carcinogenic agents, modulation of cancer cell signaling and antioxidant enzymatic activities, and induction of apoptosis as well as cell cycle arrest. Some of these effects may be related, at least partly, to their antioxidant activities. In recent years, a new concept of the antioxidant effects of dietary polyphenols has emerged, i.e., direct scavenging activity toward reactive species and indirect antioxidant activity; the latter activity is thought to arise primarily via the activation of nuclear factor-erythroid-2-related factor 2 which stimulates the activities of antioxidant enzymes such as glutathione peroxidase (GPx), glutathione S-transferase, catalase, NAD(P)H: quinone oxidoreductase-1 (NQO1), and/or phase II enzymes. The direct antioxidant activity of dietary polyphenols in vivo is probably limited because of their low concentrations in vivo, except in the gastrointestinal tract where they are present in high concentrations. Paradoxically, the pro-oxidant effect of dietary polyphenols may contribute to the activation of antioxidant enzymes and protective proteins in cultured cells and animal models because of the adaptation of cells and tissues to mild/moderate oxidative stress. Despite a plethora of in vitro studies on dietary polyphenols, many questions remain to be answered, such as: (1) How relevant are the direct and indirect antioxidant activities of dietary polyphenols in vivo? (2) How important are these activities in the anticancer effects of dietary polyphenols? (3) Do the pro

  16. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols.

    PubMed

    Moore, Jessy; Yousef, Michael; Tsiani, Evangelia

    2016-11-17

    Cancer cells display enhanced growth rates and a resistance to apoptosis. The ability of cancer cells to evade homeostasis and proliferate uncontrollably while avoiding programmed cell death/apoptosis is acquired through mutations to key signaling molecules, which regulate pathways involved in cell proliferation and survival. Compounds of plant origin, including food components, have attracted scientific attention for use as agents for cancer prevention and treatment. The exploration into natural products offers great opportunity to evaluate new anticancer agents as well as understand novel and potentially relevant mechanisms of action. Rosemary extract has been reported to have antioxidant, anti-inflammatory, antidiabetic and anticancer properties. Rosemary extract contains many polyphenols with carnosic acid and rosmarinic acid found in highest concentrations. The present review summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of rosemary extract and the rosemary extract polyphenols carnosic acid and rosmarinic acid, and their effects on key signaling molecules.

  17. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols

    PubMed Central

    Moore, Jessy; Yousef, Michael; Tsiani, Evangelia

    2016-01-01

    Cancer cells display enhanced growth rates and a resistance to apoptosis. The ability of cancer cells to evade homeostasis and proliferate uncontrollably while avoiding programmed cell death/apoptosis is acquired through mutations to key signaling molecules, which regulate pathways involved in cell proliferation and survival. Compounds of plant origin, including food components, have attracted scientific attention for use as agents for cancer prevention and treatment. The exploration into natural products offers great opportunity to evaluate new anticancer agents as well as understand novel and potentially relevant mechanisms of action. Rosemary extract has been reported to have antioxidant, anti-inflammatory, antidiabetic and anticancer properties. Rosemary extract contains many polyphenols with carnosic acid and rosmarinic acid found in highest concentrations. The present review summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of rosemary extract and the rosemary extract polyphenols carnosic acid and rosmarinic acid, and their effects on key signaling molecules. PMID:27869665

  18. Thiol modification by bioactivated polyphenols and its potential role in skin inflammation.

    PubMed

    Nakamura, Yoshimasa; Ishii, Takeshi; Abe, Naomi; Murata, Yoshiyuki

    2014-01-01

    In the present study, we evaluated the modifying behavior of simple phenolic compounds on the sulfhydryl groups of glutathione and proteins. The catechol-type polyphenols, including protocatechuic acid, but neither the monophenols nor O-methylated catechol, can modify the sulfhydryl groups in a phenol oxidase-dependent manner. The possible involvement of polyphenol bioactivation in the enhancement of skin inflammation was also suggested.

  19. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    PubMed Central

    Abdal Dayem, Ahmed; Choi, Hye Yeon; Yang, Gwang-Mo; Kim, Kyeongseok; Saha, Subbroto Kumar; Cho, Ssang-Goo

    2016-01-01

    The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs) via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer. PMID:27657126

  20. Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties.

    PubMed

    Bonferoni, Maria Cristina; Rossi, Silvia; Sandri, Giuseppina; Ferrari, Franca

    2017-10-01

    Polyphenols have been extensively studied for their relevant anticancer activity. Quite often however their instability, extensive metabolization, low bioavailability and poor solubility limit their application in cancer prevention and therapy. Formulation in nanoparticles has been widely proposed as a means to overcome these limits, maximize localization and specific activity at tumor site. The present review is intended as an update of literature regarding nanoparticulate carriers aimed to deliver polyphenols to the cancer site. Three molecules were chosen, all of which were hydrophobic and poorly soluble, representative of different polyphenol classes: quercetin (QT) among the flavonoid group, curcumin (CUR) as representative of curcuminoids, and resveratrol (RSV) among the stilbenes. In particular, nanoparticulate systems suitable for poorly soluble drugs will be described and attention will be paid to characteristics designed to improve tumor targeting, specific delivery and interaction with tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antagonism by bioactive polyphenols against inflammation: a systematic view.

    PubMed

    Chu, Arthur J

    2014-02-01

    Through pattern recognition receptors, infections and tissue injuries drive innate immune cells to trigger inflammation with elevated cytokines, chemokines, growth factors, and other mediators. Inflammation resolves upon removal of pathogenic signals and the presence of pro-resolving conditions including combating adaptive immunity. Failure of resolution progresses into chronic inflammation, manifesting as detrimental disease development known as inflammatory diseases including cardiovascular diseases, diabetes, obesity, cancers, etc. Inflammation typically involves activations of many intracellular signaling pathways such as PI3K/AkT/mTORC1, PI3K/AkT/IKK(JNK), Ras/Raf/MEK/ERK, JAK/STAT, etc.; these pathways could in turn mediate the upregulations of proinflammatory transcription factors (e.g., NFκB, activator protein 1 (AP-1), HIF, signal transducer and activator of transcription (STAT), etc.). Furthermore, the resulting FOXO inactivation ensures inflammatory proceeding. This review provides a systematic view that polyphenols target multiple inflammatory components and reinforce anti-inflammatory mechanisms by antioxidant potentials, AMPK activation, PI3K/AkT inhibition, IKK/JNK inhibition, mTORC1 inhibition, JAK/STAT inhibition, TLR suppression, and ACE inhibition. As a result, polyphenols readily lead to NFκB, AP-1, HIF, and STAT inactivations with reduced proinflammatory mediator generation. In conclusion, polyphenols sustain resolution of inflammation and antagonize against proinflammation, which is readily consistent with diverse anti-inflammatory actions. The promoted, restored, and maintained tissue homeostasis beyond its anti-inflammatory effects also extends to diverse health benefits for disease preventions and interventions.

  2. Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla).

    PubMed

    Ma, Jun; Luo, Xiao-Dong; Protiva, Petr; Yang, Hui; Ma, Cuiying; Basile, Margaret J; Weinstein, I Bernard; Kennelly, Edward J

    2003-07-01

    Activity-guided fractionation of a methanol extract from the fruit of Manilkara zapota cv. Tikal resulted in the isolation of two new antioxidants, methyl 4-O-galloylchlorogenate (1) and 4-O-galloylchlorogenic acid (2), along with eight known polyphenolic antioxidants, namely, methyl chlorogenate (3), dihydromyricetin (4), quercitrin (5), myricitrin (6), (+)-catechin (7), (-)-epicatechin (8), (+)-gallocatechin (9), and gallic acid (10). Of the 10 polyphenols, 1 showed the highest antioxidant activity (IC(50) = 12.9 microM) in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assay and displayed cytotoxicity in the HCT-116 and SW-480 human colon cancer cell lines with IC(50) values of 190 and 160 microM, respectively. Compound 2 showed high antioxidant activity (IC(50) = 23.5 microM) in the DPPH free-radical assay and displayed cytotoxicity in the HCT-116 and SW-480 human colon cancer cell lines with IC(50) values of 154 and 134 microM, respectively.

  3. A review on anticancer potential of bioactive heterocycle quinoline.

    PubMed

    Afzal, Obaid; Kumar, Suresh; Haider, Md Rafi; Ali, Md Rahmat; Kumar, Rajiv; Jaggi, Manu; Bawa, Sandhya

    2015-06-05

    The advent of Camptothecin added a new dimension in the field anticancer drug development containing quinoline motif. Quinoline scaffold plays an important role in anticancer drug development as their derivatives have shown excellent results through different mechanism of action such as growth inhibitors by cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. The anti-cancer potential of several of these derivatives have been demonstrated on various cancer cell lines. In this review we have compiled and discussed specifically the anticancer potential of quinoline derivatives, which could provide a low-height flying bird's eye view of the quinoline derived compounds to a medicinal chemist for a comprehensive and target oriented information for development of clinically viable anticancer drugs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Vermicomposting grape marc yields high quality organic biofertiliser and bioactive polyphenols.

    PubMed

    Domínguez, Jorge; Martínez-Cordeiro, Hugo; Álvarez-Casas, Marta; Lores, Marta

    2014-12-01

    Grape is the largest fruit crop in the world, and most (80%) of the harvested fruit is used to make wine. The main by-product of the wine industry is called grape marc, which consists of the stalks, skin, pulp and seeds that remain after pressing the grapes. The aim of this study was to evaluate whether grape marc could be processed by vermicomposting on an industrial scale to yield both a high-quality organic, polyphenol-free fertiliser and grape seeds (as a source of bioactive polyphenols). Vermicomposting reduced the biomass of grape marc substantially (by 58%), mainly as a result of the loss of volatile solids. After 2 weeks, the process yielded a nutrient-rich, microbiologically active and stabilised peat-like material that was easily separated from the seeds by sieving. Although the polyphenol content of the seeds was considerably reduced, this disadvantage was outweighed by the ease of separation of the seeds. Separation of the seeds also eliminated the polyphenol-associated phytotoxicity from the vermicompost. The seeds still contained useful amounts of polyphenols, which could be directly extracted for use in the pharmaceutical, cosmetic and food industries. The procedure described is effective, simple and economical, and could easily be scaled up for industrial application. © The Author(s) 2014.

  5. Bioconversion of tea polyphenols to bioactive theabrownins by Aspergillus fumigatus.

    PubMed

    Wang, Qiuping; Gong, Jiashun; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2014-12-01

    Theabrownins (TB) are water-soluble phenolic compounds associated with the various health benefits of Pu-erh tea, a post-fermented Chinese dark tea. This work reports on the production of theabrownins from infusions of sun-dried green tea leaves using a pure culture of Aspergillus fumigatus isolated from a solid-state Pu-erh tea fermentation. A theabrownins yield of 158 g kg(-1) sun-dried green tea leaves was obtained in 6 days at 45 °C in an aerobic fermentation. In a 2 l fermenter, the yield of theabrownins was 151 g kg(-1) sun-dried green tea leaves in 48 h of aerobic culture (45 °C, 1 vvm aeration rate, 250 rpm agitation speed). Extracellular polyphenol oxidase and peroxidase of A. fumigatus contributed to this bioconversion. Repeated batch fermentation process was used for producing theabrownins but was less productive than the batch process.

  6. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    NASA Astrophysics Data System (ADS)

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-10-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin–Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.

  7. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process.

    PubMed

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-10-27

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.

  8. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    PubMed Central

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-01-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin–Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry. PMID:27786308

  9. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles.

    PubMed

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.

  10. In situ label-free imaging for visualizing the biotransformation of a bioactive polyphenol

    PubMed Central

    Kim, Yoon Hee; Fujimura, Yoshinori; Hagihara, Takatoki; Sasaki, Masako; Yukihira, Daichi; Nagao, Tatsuhiko; Miura, Daisuke; Yamaguchi, Shinichi; Saito, Kazunori; Tanaka, Hiroshi; Wariishi, Hiroyuki; Yamada, Koji; Tachibana, Hirofumi

    2013-01-01

    Although understanding the high-resolution spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmacological effects, there has been no analytical technique that can easily detect the naïve molecular localization in mammalian tissues. We herein present a novel in situ label-free imaging technique for visualizing bioactive small molecules, using a polyphenol. We established a 1,5-diaminonaphthalene (1,5-DAN)-based matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) technique for visualizing epigallocatechin-3-O-gallate (EGCG), the major bioactive green tea polyphenol, within mammalian tissue micro-regions after oral dosing. Furthermore, the combination of this label-free MALDI-MSI method and a standard-independent metabolite identification method, an isotopic fine structure analysis using ultrahigh-resolution mass spectrometer, allows for the visualization of spatially-resolved biotransformation based on simultaneous mapping of EGCG and its phase II metabolites. Although this approach has limitations of the detection sensitivity, it will overcome the drawbacks associated with conventional molecular imaging techniques, and could contribute to biological discovery. PMID:24076623

  11. Polyphenolic characterisation and bioactivity of an Oxalis pes-caprae L. leaf extract.

    PubMed

    Gaspar, Marisa C; Fonseca, Diogo A; Antunes, Manuel J; Frigerio, Christian; Gomes, Nelson G M; Vieira, M; Santos, Armanda E; Cruz, Maria T; Cotrim, Maria D; Campos, Maria G

    2017-06-18

    The present work is focused on the characterisation of the polyphenolic content of an Oxalis pes-caprae L. leaf extract and on the evaluation of its bioactivity with particular interest on its vascular activity and antioxidant potential. The polyphenolic content was characterised by HPLC-DAD and LC-MS/MS. The vascular activity was evaluated according to the influence on the serotonergic and adrenergic systems of the human internal mammary artery (HIMA). Antioxidant and neuroprotective studies were also conducted. Several luteolin and apigenin derivatives were identified as main constituents of the extract, which did not present any contractile effect nor had any effect on the serotonergic system of HIMA. However, it showed antagonistic effect on the adrenergic system, inhibiting the contraction to noradrenaline (reduction of 58.44% of maximum contraction). The extract showed antioxidant activity and standardised luteolin and apigenin derivatives showed neuroprotective potential, particularly homoorientin.

  12. The latest review on the polyphenols and their bioactivities of Chinese Morus plants.

    PubMed

    Yang, Yan; Tan, Yong-Xia; Chen, Ruo-Yun; Kang, Jie

    2014-01-01

    The mulberry tree (Morus alba) plays a key role in agriculture, and its different parts have been used as popular Traditional Chinese Medicines for thousands of years. There are 16 species belonging to the Morus genus. Among them, 11 species distribute in China, most of which have been used as the substitutes of M. alba in local provinces. This review summarizes the structural characters of polyphenols, the main components in Morus, including Diels-Alder-type adducts, flavonoids, 2-arylbenzofurans, and stilbenes, and also their related bioactivities in the last 10 years.

  13. Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities.

    PubMed

    Kumar, Ankit; Kumar Singh, Umesh; Chaudhary, Anurag

    2013-05-01

    Honokiol (3,5-di-(2-propenyl)-1,1-biphenyl-2,2-diol) is a natural bioactive neolignan isolated from the genus Magnolia. In recent studies, honokiol has been observed to have anti-angiogenic, anticancer, anti-inflammatory, neuroprotective and GABA-modulating properties in vitro and in preclinical models. Honokiol and its analogs target multiple signaling pathways including NF-κB, STAT3, EGFR, mTOR and caspase-mediated common pathway, which regulate cancer initiation and progression. Honokiol and its targets of action may be helpful in the development of effective analogs and targeted cancer therapy. In this review, recent data describing the molecular targets of honokiol and its analogs with anticancer and some other bioactivities are discussed.

  14. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles

    PubMed Central

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802

  15. High efficient anti-cancer drug delivery systems using tea polyphenols reduced and functionalized graphene oxide.

    PubMed

    Wang, Xiaoqian; Hao, Liying; Zhang, Chaoliang; Chen, Jiao; Zhang, Ping

    2017-03-01

    Targeted drug delivery is urgently needed for cancer therapy, and green synthesis is important for the biomedical use of drug delivery systems in the human body. In this work, we report two targeted delivery systems for anticancer drugs based on tea polyphenol functionalized and reduced graphene oxide (TPGs). The obtained TPGs demonstrated an efficient doxorubicin loading capacity as high as 3.430 × 10(6 )mg g(-1) and 3.932 × 10(4 )mg g(-1), and exhibited pH-triggered release. Furthermore, the kinetic models, adsorption isotherms, and possible loading mechanisms were investigated in details. Compared to TPG1 and free doxorubicin, TPG2 is biocompatible to normal cells even at high concentrations and promotes tumor cells death by delivering the doxorubicin mainly to the nuclei. These results were confirmed using cell viability tests and confocal laser microscopy. Moreover, apoptosis tests showed that the mechanism of cancer cell death induced by TPG1 and TPG2 might follow the similar mechanisms. Taken together, these results demonstrate that TPGs provide a multifunctional drug delivery system with a greater loading capacity and pH-sensitive drug release for enhanced cancer therapy. The high drug payload capability and enhanced antitumor efficacy demonstrate that we developed systems are promising for various biomedical applications and cancer therapy.

  16. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links.

    PubMed

    Burton-Freeman, Britt M; Sandhu, Amandeep K; Edirisinghe, Indika

    2016-01-01

    Diet is an essential factor that affects the risk of modern-day metabolic diseases, including cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease. The potential ability of certain foods and their bioactive compounds to reverse or prevent the progression of the pathogenic processes that underlie these diseases has attracted research attention. Red raspberries (Rubus idaeus L.) are unique berries with a rich history and nutrient and bioactive composition. They possess several essential micronutrients, dietary fibers, and polyphenolic components, especially ellagitannins and anthocyanins, the latter of which give them their distinctive red coloring. In vitro and in vivo studies have revealed various mechanisms through which anthocyanins and ellagitannins (via ellagic acid or their urolithin metabolites) and red raspberry extracts (or the entire fruit) could reduce the risk of or reverse metabolically associated pathophysiologies. To our knowledge, few studies in humans are available for evaluation. We review and summarize the available literature that assesses the health-promoting potential of red raspberries and select components in modulating metabolic disease risk, especially cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease-all of which share critical metabolic, oxidative, and inflammatory links. The body of research is growing and supports a potential role for red raspberries in reducing the risk of metabolically based chronic diseases. © 2016 American Society for Nutrition.

  17. Arabinogalactan present in the mountain celery seed extract potentiated hypolipidemic bioactivity of coexisting polyphenols in hamsters.

    PubMed

    Lin, Li-Yun; Ker, Yaw-Bee; Chang, Chi-Huan; Chen, Kuan-Chou; Peng, Robert Y

    2011-03-01

    Previously, we showed the essential oils (EO) of the mountain celery [Cryptotaenia japonica Hass (Umbelliferae)] seeds (MCS) to be a prominent hypolipidemic agent. We hypothesized the aqueous extract (AE) of its seeds could also exhibit a comparable nutritional effect. Experiments were carried out for compositional analysis, antioxidant assay, and hypolipidaemic assay with AE in hamsters. AE contained soluble arabinogalactan (AGal) with molecular weight (MW) 878 kDa. AE also was enriched in polyphenolics and flavonoids, reaching 30.4 and 2.20 mg/100 g, respectively. AGal consisted of eight monosaccharides (in mols %), galactose (28.75), arabinose (24.84), glucose (17.91), mannose (6.93), ribose (6.03), fucose (5.83), xylose (5.30), and rhamnose (4.41), with average MW 878 kDa. In vitro, AE showed potent ferrous chelating and DPPH scavenging effects but only moderate H₂O₂ scavenging capability. In hamsters, AE exhibited promising hypolipidemic bioactivity, in particular, the HDL-C and hepatic unsaturated fatty acid (UFA) biosynthesis regarding oleic, linoleic, and arachidonic acids. The presence of AGal enhanced the hypolipidemic and antioxidative bioactivity of MCS. MCS is feasibly beneficial to the hepatic de novo UFA synthesis and the hypolipidemics as evidenced by hamster model.

  18. Influence of olive leaf processing on the bioaccessibility of bioactive polyphenols.

    PubMed

    Ahmad-Qasem, Margarita H; Cánovas, Jaime; Barrajón-Catalán, Enrique; Carreres, José E; Micol, Vicente; García-Pérez, José V

    2014-07-02

    Olive leaves are rich in bioactive compounds, which are beneficial for humans. The objective of this work was to assess the influence of processing conditions (drying and extraction) of olive leaves on the extract's bioaccessibility. Thus, extracts obtained from dried olive leaves (hot air drying at 70 and 120 °C or freeze-drying) by means of conventional or ultrasound-assisted extraction were subjected to in vitro digestion. Antioxidant capacity, total phenolic content, and HPLC-DAD/MS/MS analysis were carried out during digestion. The dehydration treatment used for the olive leaves did not have a meaningful influence on bioaccessibility. The digestion process significantly (p<0.05) affected the composition of the extracts. Oleuropein and verbascoside were quite resistant to gastric digestion but were largely degraded in the intestinal phase. Nevertheless, luteolin-7-O-glucoside was the most stable polyphenol during the in vitro simulation (43% bioaccessibility). Therefore, this compound may be taken into consideration in further studies that focus on the bioactivity of olive leaf extracts.

  19. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links12

    PubMed Central

    Burton-Freeman, Britt M; Sandhu, Amandeep K; Edirisinghe, Indika

    2016-01-01

    Diet is an essential factor that affects the risk of modern-day metabolic diseases, including cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease. The potential ability of certain foods and their bioactive compounds to reverse or prevent the progression of the pathogenic processes that underlie these diseases has attracted research attention. Red raspberries (Rubus idaeus L.) are unique berries with a rich history and nutrient and bioactive composition. They possess several essential micronutrients, dietary fibers, and polyphenolic components, especially ellagitannins and anthocyanins, the latter of which give them their distinctive red coloring. In vitro and in vivo studies have revealed various mechanisms through which anthocyanins and ellagitannins (via ellagic acid or their urolithin metabolites) and red raspberry extracts (or the entire fruit) could reduce the risk of or reverse metabolically associated pathophysiologies. To our knowledge, few studies in humans are available for evaluation. We review and summarize the available literature that assesses the health-promoting potential of red raspberries and select components in modulating metabolic disease risk, especially cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease—all of which share critical metabolic, oxidative, and inflammatory links. The body of research is growing and supports a potential role for red raspberries in reducing the risk of metabolically based chronic diseases. PMID:26773014

  20. Surface functionalization of bioactive glasses with natural molecules of biological significance, part II: Grafting of polyphenols extracted from grape skin

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Polyphenols, as one of the most important family of phytochemicals protective substances from grape fruit, possess various biological activities and health-promoting benefits, for example: inhibition of some degenerative diseases, cardiovascular diseases and certain types of cancers, reduction of plasma oxidative stress and slowing aging. The combination of polyphenols and biomaterials may have good potential to reach good bioavailability and controlled release, as well as to give biological signaling properties to the biomaterial surfaces. In this research, conventional solvent extraction was developed for obtaining polyphenols from dry grape skins. The Folin&Ciocalteu method was used to determine the amount of total polyphenols in the extracts. Surface functionalization of two bioactive glasses (SCNA and CEL2) was performed by grafting the extracted polyphenols on their surfaces. The effectiveness of the functionalization was tested by UV spectroscopy, which analyzes the amount of polyphenols in the uptake solution (before and after functionalization) and on solid samples, and XPS, which analyzes the presence of phenols on the material surface.

  1. Potent Anticancer Effects of Bioactive Mushroom Extracts (Phellinus linteus) on a Variety of Human Cancer Cells

    PubMed Central

    Konno, Sensuke; Chu, Kevin; Feuer, Nicholas; Phillips, John; Choudhury, Muhammad

    2015-01-01

    Background Although several therapeutic options are currently available for patients with various cancers, the outcomes are often disappointing and a more effective modality needs to be promptly established. We have been exploring an alternative approach using natural agents and two bioactive mushroom extracts isolated from Phellinus linteus (PL), namely PL-ES and PL-I-ES, were of our interest. As anticancer effects of similar extracts have been reported in several cancers, we investigated whether PL-ES and PL-I-ES might have such anticancer activities on a variety of human cancer cells in vitro. Methods Ten different types of human cancer cell lines, including three metastatic prostate, bladder, kidney, lung, breast, stomach, liver, and brain cancer cells, were employed and tested with PL-ES or PL-I-ES. Cell growth/viability, exertion of oxidative stress, and induction of apoptosis were assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay, lipid peroxidation (LPO) assay, and specific enzymatic assay, respectively. Results PL-ES (100 µg/mL) exhibited potent anticancer activity, resulting in a significant (40-80%) growth reduction in all 10 cancer cells at 72 hours. PL-I-ES (100 µg/mL) was effective on only four cancer cells but its higher concentration at 250 µg/mL led to a significant (25-90%) growth reduction in seven cancer cells. LPO assays indicated that such a significant growth reduction by PL-ES (100 µg/mL) or PL-I-ES (100 or 250 µg/mL) could result from cell death due to a cytotoxic effect of oxidative stress (through free radicals). Moreover, enzymatic assays for caspase-3 (Csp-3) and caspase-9 (Csp-9), the pro-apoptotic regulators, showed that both enzymes were significantly activated by PL-ES or PL-I-ES, indicating that cell death due to oxidative stress was more likely associated with apoptosis. Conclusions The present study shows that both PL-ES and PL-I-ES indeed have anticancer effects on a variety of cancer

  2. Potent Anticancer Effects of Bioactive Mushroom Extracts (Phellinus linteus) on a Variety of Human Cancer Cells.

    PubMed

    Konno, Sensuke; Chu, Kevin; Feuer, Nicholas; Phillips, John; Choudhury, Muhammad

    2015-02-01

    Although several therapeutic options are currently available for patients with various cancers, the outcomes are often disappointing and a more effective modality needs to be promptly established. We have been exploring an alternative approach using natural agents and two bioactive mushroom extracts isolated from Phellinus linteus (PL), namely PL-ES and PL-I-ES, were of our interest. As anticancer effects of similar extracts have been reported in several cancers, we investigated whether PL-ES and PL-I-ES might have such anticancer activities on a variety of human cancer cells in vitro. Ten different types of human cancer cell lines, including three metastatic prostate, bladder, kidney, lung, breast, stomach, liver, and brain cancer cells, were employed and tested with PL-ES or PL-I-ES. Cell growth/viability, exertion of oxidative stress, and induction of apoptosis were assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay, lipid peroxidation (LPO) assay, and specific enzymatic assay, respectively. PL-ES (100 µg/mL) exhibited potent anticancer activity, resulting in a significant (40-80%) growth reduction in all 10 cancer cells at 72 hours. PL-I-ES (100 µg/mL) was effective on only four cancer cells but its higher concentration at 250 µg/mL led to a significant (25-90%) growth reduction in seven cancer cells. LPO assays indicated that such a significant growth reduction by PL-ES (100 µg/mL) or PL-I-ES (100 or 250 µg/mL) could result from cell death due to a cytotoxic effect of oxidative stress (through free radicals). Moreover, enzymatic assays for caspase-3 (Csp-3) and caspase-9 (Csp-9), the pro-apoptotic regulators, showed that both enzymes were significantly activated by PL-ES or PL-I-ES, indicating that cell death due to oxidative stress was more likely associated with apoptosis. The present study shows that both PL-ES and PL-I-ES indeed have anticancer effects on a variety of cancer cells, although PL-ES appears to be more

  3. The Anticancer Properties of Herba Epimedii and Its Main Bioactive Componentsicariin and Icariside II

    PubMed Central

    Chen, Meixia; Wu, Jinfeng; Luo, Qingli; Mo, Shuming; Lyu, Yubao; Wei, Ying; Dong, Jingcheng

    2016-01-01

    Cancer is one of the leading causes of deaths worldwide. Compounds derived from traditional Chinese medicines have been an important source of anticancer drugs and adjuvant agents to potentiate the efficacy of chemotherapeutic drugs and improve the side effects of chemotherapy. Herba Epimedii is one of most popular herbs used in China traditionally for the treatment of multiple diseases, including osteoporosis, sexual dysfunction, hypertension and common inflammatory diseases. Studies show Herba Epimedii also possesses anticancer activity. Flavonol glycosides icariin and icariside II are the main bioactive components of Herba Epimedii. They have been found to possess anticancer activities against various human cancer cell lines in vitro and mouse tumor models in vivo via their effects on multiple biological pathways, including cell cycle regulation, apoptosis, angiogenesis, and metastasis, and a variety of signaling pathways including JAK2-STAT3, MAPK-ERK, and PI3k-Akt-mTOR. The review is aimed to provide an overview of the current research results supporting their therapeutic effects and to highlight the molecular targets and action mechanisms. PMID:27649234

  4. Synthesis and biological evaluation of Germanium(IV)-polyphenol complexes as potential anti-cancer agents.

    PubMed

    Pi, Jiang; Zeng, Jing; Luo, Jian-Jun; Yang, Pei-Hui; Cai, Ji-Ye

    2013-05-15

    Germanium (Ge) is considered to play a key role in the pharmacological effects of some medicinal plants. Here, two new Ge(IV)-polyphenol complexes were synthesized and measured for their potential biological activities. The results indicated that these Ge(IV)-polyphenol complexes possessed great anti-oxidative activities, both showing stronger hydroxyl scavenging effects than their corresponding ligands. We also demonstrated the strong intercalating abilities of Ge(IV)-polyphenol complexes into calf thymus-DNA molecules. In addition, these two Ge(IV)-polyphenol complexes showed strong proliferative inhibition effect on HepG2 cancer cells. Moreover, the morphological changes in HepG2 cells induced by Ge(IV)-polyphenol complexes were detected by atomic force microscopy. All these results collectively suggested that Ge(IV)-polyphenol complexes could be served as promising pharmacologically active substances against cancer treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals.

    PubMed

    Suarez-Jimenez, Guadalupe-Miroslava; Burgos-Hernandez, Armando; Ezquerra-Brauer, Josafat-Marina

    2012-05-01

    Biologically active compounds with different modes of action, such as, antiproliferative, antioxidant, antimicrotubule, have been isolated from marine sources, specifically algae and cyanobacteria. Recently research has been focused on peptides from marine animal sources, since they have been found as secondary metabolites from sponges, ascidians, tunicates, and mollusks. The structural characteristics of these peptides include various unusual amino acid residues which may be responsible for their bioactivity. Moreover, protein hydrolysates formed by the enzymatic digestion of aquatic and marine by-products are an important source of bioactive peptides. Purified peptides from these sources have been shown to have antioxidant activity and cytotoxic effect on several human cancer cell lines such as HeLa, AGS, and DLD-1. These characteristics imply that the use of peptides from marine sources has potential for the prevention and treatment of cancer, and that they might also be useful as molecular models in anticancer drug research. This review focuses on the latest studies and critical research in this field, and evidences the immense potential of marine animals as bioactive peptide sources.

  6. Bioactive Peptides and Depsipeptides with Anticancer Potential: Sources from Marine Animals

    PubMed Central

    Suarez-Jimenez, Guadalupe-Miroslava; Burgos-Hernandez, Armando; Ezquerra-Brauer, Josafat-Marina

    2012-01-01

    Biologically active compounds with different modes of action, such as, antiproliferative, antioxidant, antimicrotubule, have been isolated from marine sources, specifically algae and cyanobacteria. Recently research has been focused on peptides from marine animal sources, since they have been found as secondary metabolites from sponges, ascidians, tunicates, and mollusks. The structural characteristics of these peptides include various unusual amino acid residues which may be responsible for their bioactivity. Moreover, protein hydrolysates formed by the enzymatic digestion of aquatic and marine by-products are an important source of bioactive peptides. Purified peptides from these sources have been shown to have antioxidant activity and cytotoxic effect on several human cancer cell lines such as HeLa, AGS, and DLD-1. These characteristics imply that the use of peptides from marine sources has potential for the prevention and treatment of cancer, and that they might also be useful as molecular models in anticancer drug research. This review focuses on the latest studies and critical research in this field, and evidences the immense potential of marine animals as bioactive peptide sources. PMID:22822350

  7. Safety of a Bioactive Polyphenol Dietary Supplement in Pediatric Subjects with Acute Diarrhoea

    PubMed Central

    Sarker, Shafiqul A.; Sultana, Shamima; Pietroni, Mark; Dover, Arthur

    2015-01-01

    The hematological and clinical chemistry profile for children aged 6 months to 5 years with acute diarrhoea was measured in a double blind clinical trial. Subjects were randomized to the study group (N = 44) given a bioactive polyphenol dietary supplement in oral rehydration solution (ORS) or to the control group (N = 41) given distilled water as a placebo in ORS twice daily for up to 4 days. All subjects received 10 mg zinc daily for the 4 days in the study. Venous blood was collected for complete blood count, electrolytes, liver function, and creatinine upon enrollment (baseline) and at the end of 4 days (end of study); mean values were compared by 95% confidence intervals. Overall, blood factors measured either remained the same over the 4 days or increased or decreased at the same levels between the two groups during the study period. All values were within accepted ranges for paediatric subjects except serum AST (SGOT), where the mean value of the study group approached the upper bound of the range on day 4 but was comparable to the value of the control group. Consumption of this supplement twice daily for 4 days is safe for children and infants. PMID:26435718

  8. Biological Activities of Polyphenols from Grapes

    PubMed Central

    Xia, En-Qin; Deng, Gui-Fang; Guo, Ya-Jun; Li, Hua-Bin

    2010-01-01

    The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included. PMID:20386657

  9. Evaluation of bioactive components and antioxidant and anticancer properties of citrus wastes generated during bioethanol production.

    PubMed

    Im, Soon Jae; Kim, Jae-Hoon; Kim, Min Young

    2014-04-01

    In the bioethanol production process employing citrus peels, a large amount of enzymatic hydrolyzed residues is generated as waste material. The bioactive compounds, and antioxidant and anticancer activities of these residues were investigated in the present study. Hydrolyzed citrus residues exhibited similar antioxidant activity as the unhydrolyzed control, which was positively correlated to the contents of total phenols, flavonoids and total carotenoid. Some flavonoids (naringin, naringenin, hesperetin and neohesperidin) and two high value co-products (D-limonene and galacturonic acid) were detected only in hydrolyzed residues. In addition, hydrolyzed residues showed antiproliferative activity and sub-G1 arrest in human melanoma A375 and colon cancer HCT116 cells. These results provide an alternative use for hydrolyzed citrus residues in the functional food, cosmetic and pharmaceutical industries.

  10. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E.

    2017-02-01

    The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules - showing reducing ability to directly obtain in situ metallic silver - and silver nanoparticles was investigated by means of UV-vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  11. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits.

    PubMed

    Opara, Elizabeth I; Chohan, Magali

    2014-10-22

    Herbs and spices have been used for both culinary and medicinal purposes for centuries. Over the last decade, research into their role as contributors of dietary polyphenols, known to possess a number of properties associated with reducing the risk of developing chronic non-communicable diseases, has increased. However, bearing in mind how these foods are consumed, normally in small quantities and in combination with other foods, it is unclear what their true benefit is from a health perspective. The aim of this review is to use the literature to discuss how preparative and digestive processes, bioavailability and interactions between foods may influence the bioactive properties of these foods, and whether or not polyphenols are responsible for these properties. Furthermore, this review aims to highlight the challenges that need to be addressed so as to determine the true benefits of these foods and the mechanisms of action that underpin their purported efficacy.

  12. Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits

    PubMed Central

    Opara, Elizabeth I.; Chohan, Magali

    2014-01-01

    Herbs and spices have been used for both culinary and medicinal purposes for centuries. Over the last decade, research into their role as contributors of dietary polyphenols, known to possess a number of properties associated with reducing the risk of developing chronic non-communicable diseases, has increased. However, bearing in mind how these foods are consumed, normally in small quantities and in combination with other foods, it is unclear what their true benefit is from a health perspective. The aim of this review is to use the literature to discuss how preparative and digestive processes, bioavailability and interactions between foods may influence the bioactive properties of these foods, and whether or not polyphenols are responsible for these properties. Furthermore, this review aims to highlight the challenges that need to be addressed so as to determine the true benefits of these foods and the mechanisms of action that underpin their purported efficacy. PMID:25340982

  13. Impact of various factors on pharmacokinetics of bioactive polyphenols: an overview.

    PubMed

    Rubió, Laura; Macià, Alba; Motilva, Maria-José

    2014-01-01

    Several epidemiological studies throughout the years have suggested that polyphenols from fruits and vegetables promote health and reduce the risk of certain chronic and neurodegenerative diseases. Yet, it has been proved to be extremely difficult to quantitatively establish the benefit afforded by polyphenols, principally due to the limited understanding of the extent of its absorption and metabolic fate. Pharmacokinetics includes the study of the mechanisms of absorption and distribution of an ingested polyphenol, its chemical changes in the body (e.g. by metabolic enzymes), and the effects and routes of excretion of the metabolites. In recent years, there have been major advances in our knowledge of polyphenol absorption and metabolism, and it is apparent that most classes of polyphenols are sufficiently absorbed to have the potential to exert biological effects. The pharmacokinetics of polyphenols includes the same steps as those for orally ingested drugs (LADME) and faces some of the same challenges, including transporters and enzymes. However, unraveling the bioavailability of polyphenols is even more challenging than with drugs, since many other factors, such as the variety in the chemical structure, the food matrix and the gut microbiota, can affect bioavailability of polyphenols during digestion. This review focuses on the most relevant factors that influence polyphenol pharmacokinetics, and also on the most recent technological strategies developed to overcome the poor bioavailability of phenolic compounds and thus increase their potential for greater health benefits.

  14. Antihyperlipidemic bioactivity of Alpinia officinarum (Hance) Farw Zingiberaceae can be attributed to the coexistance of curcumin, polyphenolics, dietary fibers and phytosterols.

    PubMed

    Lin, Li-Yun; Peng, Chiung-Chi; Yeh, Xian-Yü; Huang, Bor-Yü; Wang, Hui-Er; Chen, Kuan-Chou; Peng, Robert Y

    2015-05-01

    Rhizoma A. officinarum (Hance) Farw, synonymously is called rhizoma galangae or smaller galangal (hereafter abbreviated as AO). Numerous studies reported that AO possesses anti-inflammatory, anticancer, chemoprotective, antibacterial, antifungal and diuretic properties. To understand whether AO exhibits antihyperlipidemic bioactivity and what is the mechanism of action, we performed chemical and animal studies using hamsters (age: 4 weeks, body weight: 45 ± 4 g). The grouping of the animals was as follows: control, high fat (HF) diet, HF + AO2%, HF + AO4%, HF + AO6%, HF + AO8% and HF + AO10%. AO contained curcumin 5.67 mg g(-1) (on wet basis), crude fiber 1.3% ± 0.0%, soluble diet fiber 92 ± 2 mg g(-1), insoluble diet fiber 502 ± 5 mg g(-1), and phytosterols 63.9 ± 1.6 mg/100 g. Its methanolic extract consisted of high polyphenolics 4927.8 ± 101.1 mgGAE/100 g and flavonoids 593.2 ± 22.2 mgQE/100 g. The enlarged organs, including liver, kidney, and spleen, which were elicited by HF were completely alleviated by AO supplement diets. Levels of serum cholesterol, triglyceride, LDL-C, HDL-C and LDL-C/HDL-C ratio for the control originally were 138 ± 6, 98 ± 4, 40 ± 5, 168 ± 7 mg dL(-1) and 0.24, which were elevated by HF to 319 ± 12, 223 ± 13, 108 ± 11, 194 ± 6 mg dL(-1) and 0.05, and alleviated completely by HF + AO8% and HF + AO10%. In vitro, AO extracts showed potent DPPH free radical-scavenging and superoxide anion scavenging capabilities. In vivo, AO (at dose ≥8%) dose-dependently alleviated levels of superoxide dismutase, catalase, GSH, and MDA to 117 ± 6.9 U mL(-1), 32.9 ± 3.7 U mL(-1), 7.0 ± 1.7 μmol mL(-1) and 1.8 ± 0.4 nmol L(-1), respectively, exhibiting the remarkable antioxidative and antihyperlipidemic effects of AO. Conclusively, we are the first to report the occurrence of curcumin in rhizoma A. officinarum. Curcumin synergistically elicits promising anti-dyslipidemic bioactivity with coexisting total polyphenolics, dietary fibers

  15. Investigation of the Key Pharmacological Activities of Ficus racemosa and Analysis of Its Major Bioactive Polyphenols by HPLC-DAD

    PubMed Central

    Sumi, Salma Akter; Siraj, Md. Afjalus; Hossain, Amir; Mia, Md. Sagir; Afrin, Seagufta

    2016-01-01

    Objective. Oxidative stress leads to numerous physiological disorders including infectious diseases, inflammation, and cancer. The present study was carried out to investigate antioxidant, antibacterial, and cytotoxic activity of methanol crude extract of leaves and fruits of the Ficus racemosa (LCME and FCME, resp.) and to analyse its major bioactive polyphenols by HPLC-DAD. Methods. Antioxidant capacity of the extracts was evaluated by DPPH free radical scavenging, reducing power, total phenolic, total flavonoid, total tannin content assay, superoxide radical, hydroxyl radical, and hydrogen peroxide scavenging assay. Identification and quantification of bioactive polyphenols were done by HPLC-DAD method. Antibacterial activity was tested by “disc diffusion” method. Brine shrimp lethality assay was carried out to check the cytotoxic potential. Result. Both LCME and FCME showed DPPH scavenging ability and concentration dependent reducing power activity. They had phenolic content, flavonoid content, and tannin content. Both the extracts showed superoxide radical scavenging ability, hydroxyl radical scavenging ability, and hydrogen peroxide scavenging ability. HPLC analysis of LCME and FCME indicated the presence of significant amount of gallic acid along with other phenolic constituents. Conclusion. Significant amount of gallic acid along with other phenolic constituents might have played an important role in the observed antioxidant, antibacterial, and cytotoxic activity. PMID:28105059

  16. Quantum-SAR extension of the spectral-SAR algorithm: application to polyphenolic anticancer bioactivity.

    PubMed

    Putz, Mihai V; Putz, Ana-Maria; Lazea, Marius; Ienciu, Luciana; Chiriac, Adrian

    2009-03-01

    Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) "wave" and "conversion factor" in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein.

  17. Quantum-SAR Extension of the Spectral-SAR Algorithm. Application to Polyphenolic Anticancer Bioactivity

    PubMed Central

    Putz, Mihai V.; Putz, Ana-Maria; Lazea, Marius; Ienciu, Luciana; Chiriac, Adrian

    2009-01-01

    Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) “wave” and “conversion factor” in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein. PMID:19399244

  18. The occurrence and bioactivity of polyphenols in Tunisian olive products and by-products: a review.

    PubMed

    Taamalli, Amani; Arráez-Román, David; Zarrouk, Mokhtar; Valverde, Javier; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2012-04-01

    Polyphenols have become a subject of intense research because of their perceived beneficial effects on health due to their anticarcinogenic, antiatherogenic, anti-inflammatory, and antimicrobial activities. It is well known that olives and their derivatives are rich in phenolic substances with pharmaceutical properties, some of which exert important antioxidant effects. The characterization and quantification of their polyphenol composition is one of the first steps to be taken in any evaluation of the putative contribution of the olive to human health. This review is concerned with polyphenols in Tunisian olive (Olea europaea L.) products (fruit and oil) and some by-products (leaves and olive-mill wastewater) with an emphasis on the analytical methods used, as well as the biological activities described in recent years.

  19. Phytochemical Analysis and Anti-cancer Investigation of Boswellia serrata Bioactive Constituents In Vitro.

    PubMed

    Ahmed, Hanaa H; Abd-Rabou, Ahmed A; Hassan, Amal Z; Kotob, Soheir E

    2015-01-01

    Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography- mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate β-boswellic acid and identification of the pure compound was done using UV, mass spectra, 1H NMR and 13C NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and β-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the

  20. Total polyphenols and bioactivity of seeds and sprouts in several legumes.

    PubMed

    Chon, Sang-Uk

    2013-01-01

    , ascorbate peroxidase (APX) and peroxidase (POX) activities were highest in cowpea sprouts and catalase (CAT) and superoxide dismutase (SOD) activities in soybean sprouts. During sprouting in mungbean, TP and TF levels significantly increased and improved free radical scavenging, tyrosinase inhibition, anticancer, and ADH (alcohol dehydrogenase) activities, showing higher contents and activities in sprouts than in seeds. Sprouting of seeds is known to increase the nutritive value such as phenolics and flavonoids and the health qualities of foods in a natural way. Phasic bioactive responses from dry seeds to 7-day-old seedlings of cowpea showed differential growth, contents of TP and TF, antioxidant activity and antioxidant enzyme activity. Plant length and weight of cowpea sprouts were significantly increased until 7 days after seeding. TP content, however, was highest in dry seed (DS) extracts of cowpea (63.9 mg kg(1)), followed by imbibed seed (IS) (56.8 mg kg(1)) and 1-day-old sprout (1DOS) (46.4 mg kg(1)) extracts, and significantly reduced with increase of sprout age (p < 0.05). DPPH free radical scavenging activity was higher in DS or IS than in cowpea sprouts. APX, POX, and POX activities were highest in 7DOS and lowest in DS. SOD activity was lowest in DS and much higher in additional sprouting days.

  1. Anti-Inflammatory and Antioxidant Activity of Acalypha hispida Leaf and Analysis of its Major Bioactive Polyphenols by HPLC

    PubMed Central

    Siraj, Md. Afjalus; Shilpi, Jamil A.; Hossain, Md. Golam; Uddin, Shaikh Jamal; Islam, Md. Khirul; Jahan, Ismet Ara; Hossain, Hemayet

    2016-01-01

    Purpose: Inflammation and oxidative stress can lead to different chronic diseases including cancer and atherosclerosis. Many medicinal plants have the potential to show as anti-inflammatory activity. Present investigation was performed to investigate anti-inflammatory, antioxidant activity, and quantification of selected bioactive plant polyphenols of the ethanol (EAH) and aqueous (AAH) extracts of Acalypha hispida (Euphorbiaceae) leaves. Methods: Anti-inflammatory activity was evaluated by carragenan and histamine induced rat paw edema models while antioxidant capacity was evaluated by DPPH free radical scavenging, Fe+2 chelating ability, reducing power, NO scavenging, total phenolic and total flavonoid content assay. Identification and quantification of bioactive polyphenols was done by HPLC. Results: At the doses of 200 and 400 mg/kg, both EAH and AAH showed statistically significant inhibition of paw volume in the anti-inflammatory activity test. Both the extracts showed DPPH scavenging (IC50: 14 and 17 µg/ml, respectively), Fe+2 ion chelating (IC50: 40 and 46 µg/ml, respectively), NO scavenging activity (65.49 and 60.66% inhibition at 100 µg/ml), and concentration dependent reducing power ability. For EAH and AAH, flavonoid content was 126.30 and 149.72 mg QE/g dry extract, while phenolic content was 130.51 and 173.80 mg GAE/g dry extract, respectively. HPLC analysis of EAH and AAH indicated the presence of high content of ellagic acid along with other phenolic constituents. Conclusion: High content of ellagic acid along with other phenolic constituents might have played an important role in the observed anti-inflammatory and antioxidant activity. PMID:27478793

  2. Bioactive polyphenols from muscadine grape and blackcurrant stably concentrated onto protein-rich matrices for topical applications.

    PubMed

    Plundrich, N; Grace, M H; Raskin, I; Ann Lila, M

    2013-08-01

    Natural botanical agents that are antimicrobial, or that modulate skin hyperpigmentation via tyrosinase inhibition, are increasingly sought in the cosmetic industry. In this study, an efficient tactic is demonstrated for concentrating and stabilizing skin-beneficial bioactive compounds from muscadine grape and blackcurrant juice or muscadine pomace, into hemp flour (HF), hemp protein isolate (HPI) and soy protein isolate (SPI) matrices suitable for cosmetic applications. Anthocyanins were most efficiently captured from blackcurrant juice into HF (8.39 mg g(-1) ). HPI most effectively captured total phenolics from muscadine pomace (72.32 and 77.32 mg g(-1) from Noble and Carlos, respectively), while the three matrices incorporated highest levels of ellagic acid, gallic acid, and PAC B1 from Noble muscadine grape juice. The enriched matrices demonstrated effective in vitro inhibition of tyrosinase (up to 57.29% for blackcurrant juice-HPI matrix), and in general, juice sources provided greater inhibition on L-dopamine oxidation by tyrosinase than pomace sources. The polyphenol-enriched matrices effectively inhibited microbial proliferation in a screening assay against Staphylococcus aureus bacteria, whereas untreated HF, HPI or SPI did not inhibit bacterial growth. The technology of combining and stably concentrating phytoactive polyphenols with proteins has potential use for cosmetic topical applications. © 2013 John Wiley & Sons Ltd.

  3. A comprehensive database and analysis framework to incorporate multiscale data types and enable integrated analysis of bioactive polyphenols.

    PubMed

    Pasinetti, Giulio M; Ho, Lap; Cheng, Haoxiang; Wang, Jun; Simon, James E; Wu, Qing-Li; Zhao, Danyue; Carry, Eileen; Ferruzzi, Mario G; Faith, Jeremiah; Valcarcel, Breanna; Hao, Ke

    2017-06-30

    The development of a given botanical preparation for eventual clinical application requires extensive, detailed characterizations of the chemical composition, as well as the biological availability, biological activity and safety profiles of the botanical. These issues are typically addressed using diverse experimental protocols and model systems. Based on this consideration, in this study we established a comprehensive database and analysis framework for the collection, collation and integrative analysis of diverse, multiscale data sets. Using this framework, we conducted an integrative analysis of heterogeneous data from in vivo and in vitro investigation of a complex bioactive dietary polyphenol-rich preparation (BDPP) and built an integrated network linking datasets generated from this multitude of diverse experimental paradigms. We established a comprehensive database and analysis framework as well as a systematic and logical means to catalogue and collate the diverse array of information gathered, which is securely stored and added to in a standardized manner to enable fast query. We demonstrated the utility of the database in: (1) a statistical ranking scheme to prioritize response to treatments and (2) in depth reconstruction of functionality studies. By examination of these datasets, the system allows analytical querying of heterogeneous data and the access of information related to interactions, mechanism of actions, functions, etc., which ultimately provide a global overview of complex biological responses. Collectively, we present an integrative analysis framework that leads to novel insights on the biological activities of a complex botanical such as BDPP that is based on data-driven characterizations of interactions between BDPP-derived phenolic metabolites, their mechanisms of action, as well as synergism and/or potential cancellation of biological functions. Out integrative analytical approach provides novel means for a systematic integrative

  4. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    PubMed

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  5. Anticancer, antioxidant potential and profiling of polyphenolic compounds of Wrightia tinctoria Roxb. (R.Br.) bark

    PubMed Central

    Fatima, Nishat; Ahmad, Mohammad Kaleem; Ansari, Jamal Akhtar; Ali, Zulfiqar; Khan, Abdul Rahman; Mahdi, Abbas Ali

    2016-01-01

    Wrightia tinctoria Roxb. (R.Br.) is an Ayurvedic remedy, ethnomedically used in the treatment of various ailments. The present work was carried out to evaluate the anticancer and antioxidant activity as well as total phenolic and phytochemical contents of W. tinctoria bark methanolic extract (WTBM) by high-performance liquid chromatography (HPLC)-diode array detector. Antiproliferative activity of WTBM was evaluated against MDA-MB-231 and MCF-7 cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation, and Hoechst staining. In addition, the antioxidant potential was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and 2,2- azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical cation decolorization assay. Total phenolic content was assessed by Folin–Ciocalteu method. The results demonstrated that WTBM exhibited significant antiproliferative effect against MDA-MB-231 (IC50 = 88.9 ± 1.27 μg/ml) and MCF-7 (IC50 = 45.71 ± 7.74 μg/ml) cancer cells in time- and dose-dependent manner. WTBM significantly suppresses colony formation and induces apoptosis in both MDA-MB-231 and MCF-7 cells as evident by morphological assessment, clonogenic assay, and Hoechst staining. The total phenolic content of WTBM was found to be 30.3 gallic acid equivalent mg/g dry weight of bark extract while IC50 value for DPPH and ABTS radical scavenging activity was 72.2 ± 2.8 μg/ml and 45.16 ± 1.95 μg/ml, respectively. HPLC analysis showed the presence of gallic acid, rutin, and quercetin in WTBM. These findings demonstrated that WTBM significantly inhibited proliferation of breast cancer cells and induced apoptosis, suggesting the potential chemopreventive activity of W. tinctoria bark. PMID:27833897

  6. Anticancer Properties of Phyllanthus emblica (Indian Gooseberry)

    PubMed Central

    Zhao, Tiejun; Sun, Qiang; Marques, Maud; Witcher, Michael

    2015-01-01

    There is a wealth of information emanating from both in vitro and in vivo studies indicating fruit extract of the Phyllanthus emblica tree, commonly referred to as Indian Gooseberries, has potent anticancer properties. The bioactivity in this extract is thought to be principally mediated by polyphenols, especially tannins and flavonoids. It remains unclear how polyphenols from Phyllanthus emblica can incorporate both cancer-preventative and antitumor properties. The antioxidant function of Phyllanthus emblica can account for some of the anticancer activity, but clearly other mechanisms are equally important. Herein, we provide a brief overview of the evidence supporting anticancer activity of Indian Gooseberry extracts, suggest possible mechanisms for these actions, and provide future directions that might be taken to translate these findings clinically. PMID:26180601

  7. Anticancer Properties of Phyllanthus emblica (Indian Gooseberry).

    PubMed

    Zhao, Tiejun; Sun, Qiang; Marques, Maud; Witcher, Michael

    2015-01-01

    There is a wealth of information emanating from both in vitro and in vivo studies indicating fruit extract of the Phyllanthus emblica tree, commonly referred to as Indian Gooseberries, has potent anticancer properties. The bioactivity in this extract is thought to be principally mediated by polyphenols, especially tannins and flavonoids. It remains unclear how polyphenols from Phyllanthus emblica can incorporate both cancer-preventative and antitumor properties. The antioxidant function of Phyllanthus emblica can account for some of the anticancer activity, but clearly other mechanisms are equally important. Herein, we provide a brief overview of the evidence supporting anticancer activity of Indian Gooseberry extracts, suggest possible mechanisms for these actions, and provide future directions that might be taken to translate these findings clinically.

  8. Humudifucol and Bioactive Prenylated Polyphenols from Hops (Humulus lupulus cv. "Cascade").

    PubMed

    Forino, Martino; Pace, Simona; Chianese, Giuseppina; Santagostini, Laura; Werner, Markus; Weinigel, Christina; Rummler, Silke; Fico, Gelsomina; Werz, Oliver; Taglialatela-Scafati, Orazio

    2016-03-25

    Humulus lupulus (hop plant) has long been used in traditional medicine as a sedative and antimicrobial agent. More recently, attention has been devoted to the phytoestrogenic activity of the plant extracts as well as to the anti-inflammatory and chemopreventive properties of the prenylated chalcones present. In this study, an Italian sample of H. lupulus cv. "Cascade" has been investigated and three new compounds [4-hydroxycolupulone (6), humudifucol (7) and cascadone (8)] have been purified and identified by means of NMR spectroscopy along with four known metabolites. Notably, humudifucol (7) is the first prenylated dimeric phlorotannin discovered in nature. Because structurally related phloroglucinols from natural sources were found previously to inhibit microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), the isolated compounds were evaluated for their bioactivity against these pro-inflammatory target proteins. The prenylated chalcone xanthohumol inhibited both enzymes at low μM concentrations.

  9. Antioxidant, Antinociceptive and CNS Activities of Viscum orientale and High Sensitive Quantification of Bioactive Polyphenols by UPLC

    PubMed Central

    Khatun, Amina; Rahman, Mahmudur; Rahman, Md. Mahfizur; Hossain, Hemayet; Jahan, Ismet A.; Nesa, Mst. Luthfun

    2016-01-01

    Viscum orientale Willd. (Loranthaceae) has long been used in traditional medicine to treat pain, neuropharmacological disorders and various forms of tumor but not yet been reported. The aim of this study is to rationalize the traditional medicinal use of this plant by evaluating the methanol extract of V. orientale leaves (MEVOL) for anti-nociceptive, CNS depressant and antioxidant activities and to quantify the bioactive polyphenols present in this plant. Five polyphenolic compounds namely gallic acid, vanillic acid, caffeic acid, ellagic acid, and quercetin (17.54, 8.99, 99.61, 4523.31, and 100.15 mg/100 g of dry weight, respectively) have been identified in MEVOL using Ultra Performance Liquid Chromatography. Qualitative antioxidant activity determined by Thin Layer Chromatography indicated the presence of antioxidants. In quantitative antioxidant test using 2,2-diphenyl 1-picrylhydrazyl, MEVOL exhibited strong free antioxidant activity in a dose dependant manner (IC50 = 6.63 μg/ml) compared with ascorbic acid (IC50 = 1.91 μg/ml) and butylatedhydroxyanisole (IC50 = 2.27 μg/ml) controls. Total phenolic content determined using Folin Ciocaltu reagent was found to be 73.4 mg gallic acid equivalent/g of extract, while flavonoid content estimated using aluminum chloride colorimetric method was 170.7 mg quercetin equivalent/g of extract. Anti-nociceptive activity of MEVOL measured using acetic acid and formalin induced pain models in mice was significant (p < 0.001). MEVOL showed 65.6 and 88.8% writhing inhibition at 300 and 500 mg/kg body weight, respectively, comparing with standard diclofenac-Na (75.2% inhibition) at 25 mg/kg body weight in acetic acid induced pain model. In formalin induced pain model, paw licking was inhibited 45.93 and 56.4% in early phase and 55.66 and 72.64% in late phase at 300 and 500 mg/kg body weight, respectively, while diclofenac-Na inhibited 60.47 and 61.32% in early and late phase at 10 mg/kg body weight, respectively. In

  10. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds.

    PubMed

    Hu, Yichen; Zhang, Jinming; Zou, Liang; Fu, Chaomei; Li, Peng; Zhao, Gang

    2017-06-01

    Chenopodium quinoa, a promising nutraceutical cereal, has attracted increasing research interest, yet its polysaccharides remains to get few systematic studies. In this study, we employed orthogonal experimental design to optimize the ultrasound-assisted extraction process for highest yield of C. quinoa polysaccharides. A novel C. quinoa polysaccharide (CQP) fraction with high content and low molecular weight (8852Da) was subsequently purified by column chromatography, constituted by galacturonic acid and glucose monosaccharides. The purified CQP exhibited significantly antioxidant effect against DPPH(+) and ABTS(+), with even higher efficiency than some other reported polysaccharides. Moreover, CQP could promote the RAW264.7 macrophage proliferation, while suppress the nitri oxide production on inflammatory RAW264.7 macrophage in a dose- and time-dependent manner. In view of the pathological correlation of free radical, inflammation and carcinogenesis, the anticancer effect of CQP was further investigated on human liver cancer SMMC 7721 and breast cancer MCF-7 cells. Interestingly, CQP displayed cytotoxicity against cancer cells, while none proliferation inhibition on normal cells. These results suggest that the bioactive polysaccharide from C. quinoa provided the promising potential as a natural antioxidant, immune-regulating and anticancer candidate for food and even drug application.

  11. Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds

    PubMed Central

    Costa, Margarida; Garcia, Mónica; Costa-Rodrigues, João; Costa, Maria Sofia; Ribeiro, Maria João; Fernandes, Maria Helena; Barros, Piedade; Barreiro, Aldo; Vasconcelos, Vitor; Martins, Rosário

    2013-01-01

    The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria. PMID:24384871

  12. Natural polyphenols: Influence on membrane transporters

    PubMed Central

    Hussain, Saad Abdulrahman; Sulaiman, Amal Ajaweed; Alhaddad, Hasan; Alhadidi, Qasim

    2016-01-01

    Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. PMID:27069731

  13. Assessment of bioactive metabolites and hypolipidemic effect of polyphenolic-rich red cabbage extract.

    PubMed

    Cruz, Alice Buss; Pitz, Heloísa da Silva; Veber, Bruno; Bini, Larissa Alida; Maraschin, Marcelo; Zeni, Ana Lúcia Bertarello

    2016-12-01

    Cardiovascular disease is the leading cause of death worldwide and the consumption of red cabbage (Brassica oleracea var. capitata f. rubra DC. - Brassicaceae) has been linked with the reduction risk of chronic diseases. The present study assesses the bioactive metabolites and hypolipidemic effect of red cabbage on rats. The content of total phenols, flavonoids, anthocyanins, carotenoids, ascorbic acid and antioxidant capacity were assessed, while individual phenolic acids and flavonoids were detected using reverse phase-high performance liquid chromatography (HPLC) analysis. Acute hypolipidemic activity of aqueous extract of red cabbage (RC - 125, 250 and 500 mg/kg) was investigated using a Triton WR-1339 (400 mg/kg) induced hyperlipidemic Wistar rats compared to fenofibrate (65 mg/kg). The HPLC analysis of extracts revealed eight phenolic acids, gallic, protocatechuic, p-hydroxybenzoic, m-coumaric, syringic, caffeic, cinnamic, dicaffeoylquinic and three flavonoids, epicatechin, epigallocatechin, gallocatechin. Furthermore, the aqueous extract showed higher amounts of total phenolics (116.00 mg/g), flavonoids (161.32 μg/g) and, antioxidant activity (87.19%) than the hydromethanolic (89.33 mg/g, 123.34 μg/g and 75.07%), respectively. The RC significantly (p < 0.001) ameliorated the levels of cholesterol, triglycerides and lipoproteins alterations in hyperlipidemic rats without toxicity. Herein, the RC presented the higher amounts of phenolics and flavonoids comparing with the hydromethanolic extract. Additionally, the RC showed as the majority compounds, dicaffeoylquinic and cinnamic acids, and the flavonoids epicatechin and gallocatechin. Furthermore, the RC demonstrated a beneficial effect against hypercholesterolemia and hypertriglyceridemia, demonstrating its potential therapeutic effect on these risk factors of cardiovascular diseases.

  14. Grape Polyphenols' Effects in Human Cardiovascular Diseases and Diabetes.

    PubMed

    Rasines-Perea, Zuriñe; Teissedre, Pierre-Louis

    2017-01-01

    The consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals, has increased due to consumers' interest in the relevance of food composition for human health. Considerable recent interest has focused on bioactive phenolic compounds in grape, as they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, anti-ageing and antimicrobial properties. Observational studies indicate that the intake of polyphenol-rich foods improves vascular health, thereby significantly reducing the risk of hypertension, and cardiovascular disease (CVD). Other researchers have described the benefits of a grape polyphenol-rich diet for other types of maladies such as diabetes mellitus. This is a comprehensive review on the consumption of polyphenolic grape compounds, concerning their potential benefits for human health in the treatment of cardiovascular diseases and diabetes.

  15. Determination of polyphenols in three Capsicum annuum L. (bell pepper) varieties using high-performance liquid chromatography-tandem mass spectrometry: their contribution to overall antioxidant and anticancer activity.

    PubMed

    Jeong, Won Y; Jin, Jong S; Cho, Young A; Lee, Jung H; Park, Semin; Jeong, Sung W; Kim, Yun-Hi; Lim, Chae-Shin; Abd El-Aty, A M; Kim, Gon-Sup; Lee, Soo J; Shim, Jae-Han; Shin, Sung C

    2011-11-01

    A mixture of polyphenol components was isolated from the fruits of C. annuum L. cv. Cupra, C. annuum L. cv. Orange glory, and C. annuum L. cv. ST4712 (CLST), via 70% methanol extraction followed by column chromatography over silica gel. The polyphenol components of the mixture were analyzed via HPLC-MS/MS and compared with the reported data. Three cinnamic acid derivatives and five flavonoid components in the fruits of the three varieties were identified for the first time in this study. The antioxidant activity and anticancer effect of the polyphenol mixtures of the three fruits were determined. The antioxidant and anticancer activities of CLST were substantially higher than those of C. annuum L. cv. Cupra and C. annuum L. cv. Orange glory. The high activities of CLST were attributed to the much higher concentration of quercetin derivatives in CLST.

  16. Bioactivity guided isolation of anticancer constituents from leaves of Alnus sieboldiana (Betulaceae).

    PubMed

    Ludwiczuk, A; Saha, A; Kuzuhara, T; Asakawa, Y

    2011-04-15

    The leaves of the Japanese Alnus sieboldiana have been extracted with n-hexane and then with methanol. A bioactivity-guided approach based on MTT assay for growth inhibition and quantitative real-time PCR for TNF-α inhibitory activity was taken to identify the active compounds in EtOAc soluble fraction of the methanol extract. From this active fraction, seven compounds have been isolated and four compounds (pinosylvin, galangin, quercetin and methyl gallate) have been examined for their dose-response effect on the viability of A549 cells and on TNF-α inhibitory activity. Based on MTT assay, all of the four examined compounds inhibit growth of human lung cancer cells. Among four tested compounds only galangin (3,5,7-trihydroxyflavone) significantly inhibited TNF-α gene expression in A549 cells (IC₅₀ = 94 μM). Taken together, this finding suggests that galangin may be useful in cancer prevention.

  17. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC.

    PubMed

    Ben Salem, Maryem; Affes, Hanen; Athmouni, Khaled; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir

    2017-01-01

    Objective. Artichoke (Cynara scolymus L.) was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods. Artichoke Leaves Extracts (ALE) were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr) model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results. It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%), ABTS (538.75 mmol), FRAP assay (542.62 umol), and β-carotene bleaching (70.74%) compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo). Conclusion. ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties.

  18. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC

    PubMed Central

    Ben Salem, Maryem; Athmouni, Khaled; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir

    2017-01-01

    Objective. Artichoke (Cynara scolymus L.) was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods. Artichoke Leaves Extracts (ALE) were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr) model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results. It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%), ABTS (538.75 mmol), FRAP assay (542.62 umol), and β-carotene bleaching (70.74%) compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo). Conclusion. ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties. PMID:28539965

  19. New bioactive silver(I) complexes: Synthesis, characterization, anticancer, antibacterial and anticarbonic anhydrase II activities

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ummuhan O.; Ozbek, Neslihan; Genc, Zuhal Karagoz; İlbiz, Firdevs; Gündüzalp, Ayla Balaban

    2017-06-01

    Silver(I) complexes of alkyl sulfonic acide hydrazides were newly synthesized as homologous series. Methanesulfonic acide hydrazide (L1), ethanesulfonic acide hydrazide (L2), propanesulfonic acide hydrazide (L3) and butanesulfonic acide hydrazide (L4) were used for complexation with Ag(I) ions. The silver complexes obtained in the mol ratio of 1:2 have the structural formula as Ag(L1)2NO3 (I), Ag(L2)2NO3 (II), Ag(L3)2NO3(III), (Ag(L4)2NO3 (IV). The Ag(I) complexes exhibit distorted linear two-fold coordination in [AgL2]+ cations with uncoordinated nitrates. Ligands are chelated with silver(I) ions through unsubstituted primary nitrogen in hydrazide group. Ag(I) complexes were characterized by using elemental analysis, spectroscopic methods (FT-IR, LC-MS), magnetic susceptibility and conductivity measurements. Silver(I) complexes were optimized using PBEPBE/LanL2DZ/DEF2SV basic set performed by DFT method with the Gaussian 09 program package. The geometrical parameters, frontier molecular orbitals (HOMOs and LUMOs) and molecular electrostatic potential (MEP) mapped surfaces of the optimized geometries were also determined by this quantum set. The anticancer activities of silver(I) complexes on MCF-7 human breast cancer cell line were investigated by comparing IC50 values. The antibacterial activities of complexes were studied against Gram positive bacteria; S. aureus ATCC 6538, B. subtilis ATCC 6633, B. cereus NRRL-B-3711, E. faecalis ATCC 29212 and Gram negative bacteria; E. coli ATCC 11230, P. aeruginosa ATCC 15442, K. pneumonia ATCC 70063 by using disc diffusion method. The inhibition activities of Ag(I) complexes on carbonic anhydrase II enzyme (hCA II) were also investigated by comparing IC50 and Ki values. The biological activity screening shows that Ag(I) complex of butanesulfonicacidehydrazide (IV) has the highest activity against tested breast cancer cell lines MCF-7, Gram positive/Gram negative bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  20. Evaluation of Bioactive Compounds, Pharmaceutical Quality, and Anticancer Activity of Curry Leaf (Murraya koenigii L.)

    PubMed Central

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Rahmat, Asmah; Devarajan, Thiyagu

    2014-01-01

    In this study, we investigated some bioactive compounds and pharmaceutical qualities of curry leaf (Murraya koenigii L.) extracts from three different locations in Malaysia. The highest TF and total phenolic (TP) contents were observed in the extracts from Kelantan (3.771 and 14.371 mg/g DW), followed by Selangor (3.146 and 12.272 mg/g DW) and Johor (2.801 and 12.02 mg/g DW), respectively. High quercetin (0.350 mg/g DW), catechin (0.325 mg/g DW), epicatechin (0.678 mg/g DW), naringin (0.203 mg/g DW), and myricetin (0.703 mg/g DW) levels were observed in the extracts from Kelantan, while the highest rutin content (0.082 mg/g DW) was detected in the leaves from Selangor. The curry leaf extract from Kelantan exhibited higher concentration of gallic acid (0.933 mg/g DW) than that from Selangor (0.904 mg/g DW) and Johor (0.813 mg/g DW). Among the studied samples, the ones from Kelantan exhibited the highest radical scavenging activity (DPPH, 66.41%) and ferric reduction activity potential (FRAP, 644.25 μm of Fe(II)/g) followed by those from Selangor (60.237% and 598.37 μm of Fe(II)/g) and Johor (50.76% and 563.42 μm of Fe(II)/g), respectively. A preliminary screening showed that the curry leaf extracts from all the locations exhibited significant anticarcinogenic effects inhibiting the growth of breast cancer cell line (MDA-MB-231) and maximum inhibition of MDA-MB-231 cell was observed with the curry leaf extract from Kelantan. Based on these results, it is concluded that Malaysian curry leaf collected from the North (Kelantan) might be potential source of potent natural antioxidant and beneficial chemopreventive agents. PMID:24693327

  1. The Quest for a Simple Bioactive Analog of Paclitaxel as a Potential Anticancer Agent

    PubMed Central

    2015-01-01

    Conspectus Paclitaxel (PTX), introduced into the clinic in 1991, has revealed itself as an effective antimicrotubule drug for treatment of a range of otherwise intractable cancers. Along with docetaxel (DTX) and in combination with other agents such as cisplatin, it has proven to be a first-line therapy. Unfortunately, PTX and DTX carry severe liabilities such as debilitating side effects, rapid onset of resistance, and rather complex molecular structures offering substantial challenges to ease of synthetic manipulation. Consequently, the past 15 years has witnessed many efforts to synthesize and test highly modified analogs based on intuitive structural similarity relationships with the PTX molecular skeleton, as well as efforts to mimic the conformational profile of the ligand observed in the macromolecular tubulin–PTX complex. Highly successful improvements in potency, up to 50-fold increases in IC50, have been achieved by constructing bridges between distal centers in PTX that imitate the conformer of the electron crystallographic binding pose. Much less successful have been numerous attempts to truncate PTX by replacing the baccatin core with simpler moieties to achieve PTX-like potencies and applying a wide range of flexible synthesis-based chemistries. Reported efforts, characterized by a fascinating array of baccatin substitutes, have failed to surpass the bioactivities of PTX in both microtubule disassembly assays and cytotoxicity measurements against a range of cell types. Most of the structures retain the main elements of the PTX C13 side chain, while seeking a smaller rigid bicycle as a baccatin replacement adorned with substituents to mimic the C2 benzoyl moiety and the oxetane ring. We surmise that past studies have been handicapped by solubility and membrane permeability issues, but primarily by the existence of an expansive taxane binding pocket and the discrepancy in molecular size between PTX and the pruned analogs. A number of these molecules

  2. Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention

    PubMed Central

    Stefanska, B; Karlic, H; Varga, F; Fabianowska-Majewska, K; Haslberger, AG

    2012-01-01

    The hallmarks of carcinogenesis are aberrations in gene expression and protein function caused by both genetic and epigenetic modifications. Epigenetics refers to the changes in gene expression programming that alter the phenotype in the absence of a change in DNA sequence. Epigenetic modifications, which include amongst others DNA methylation, covalent modifications of histone tails and regulation by non-coding RNAs, play a significant role in normal development and genome stability. The changes are dynamic and serve as an adaptation mechanism to a wide variety of environmental and social factors including diet. A number of studies have provided evidence that some natural bioactive compounds found in food and herbs can modulate gene expression by targeting different elements of the epigenetic machinery. Nutrients that are components of one-carbon metabolism, such as folate, riboflavin, pyridoxine, cobalamin, choline, betaine and methionine, affect DNA methylation by regulating the levels of S-adenosyl-L-methionine, a methyl group donor, and S-adenosyl-L-homocysteine, which is an inhibitor of enzymes catalyzing the DNA methylation reaction. Other natural compounds target histone modifications and levels of non-coding RNAs such as vitamin D, which recruits histone acetylases, or resveratrol, which activates the deacetylase sirtuin and regulates oncogenic and tumour suppressor micro-RNAs. As epigenetic abnormalities have been shown to be both causative and contributing factors in different health conditions including cancer, natural compounds that are direct or indirect regulators of the epigenome constitute an excellent approach in cancer prevention and potentially in anti-cancer therapy. PMID:22536923

  3. Identification of epicatechin as one of the key bioactive constituents of polyphenol-enriched extracts that demonstrate an anti-allergic effect in a murine model of food allergy.

    PubMed

    Singh, Anurag; Demont, Audrey; Actis-Goretta, Lucas; Holvoet, Sébastien; Lévêques, Antoine; Lepage, Melissa; Nutten, Sophie; Mercenier, Annick

    2014-08-14

    Polyphenols are naturally derived bioactive compounds with numerous reported health benefits. We have previously reported on the beneficial effect of a polyphenol-enriched apple extract in a murine model of food allergy. The objectives of the present study were to elucidate the class of bioactive polyphenols that exhibit a beneficial anti-allergic effect and to assess whether the protective effect matches the in vivo bioavailable metabolite concentrations. Female BALB/c mice were sensitised to ovalbumin (OVA) following the protocol of a well-established murine model of food allergy. They were fed diets containing polyphenol-enriched extracts or purified epicatechin for 8 d after the last sensitisation. The sensitised mice were orally challenged with OVA after the intervention. The allergy symptoms, in addition to allergen-specific serum Ig concentrations and gene expression profiles in the intestine, of the control and treated mice were compared. Plasma samples were collected to compare the concentrations of bioavailable epicatechin metabolites in the treatment groups. Polyphenol-enriched fruit extracts containing epicatechin exhibited a significant anti-allergic effect in vivo. This effect was unambiguously attributed to epicatechin, as oral administration of this purified polyphenol to sensitised mice by inclusion in their diet modulated allergy symptoms in a dose-dependent manner. Immune parameters were also affected by the administration of epicatechin. Bioavailability measurements in plasma indicated that the attenuation of allergy symptoms could be due to the higher concentrations of bioavailable epicatechin metabolites. In conclusion, epicatechin is a key bioactive polyphenol that has the ability to modulate allergy outcomes in sensitised mice.

  4. Synergistic effects and related bioactive mechanisms of Potentilla fruticosa Linn. leaves combined with green tea polyphenols studied with microbial test system (MTS).

    PubMed

    Liu, Ze-Hua; Luo, Zi-Wen; Li, Deng-Wu; Wang, Dong-Mei; Ji, Xia

    2017-06-12

    Previous research found Potentilla fruticosa leaf extracts (PFE) combined with green tea polyphenols (GTP) showed obvious synergistic effects based on chemical mechanisms. This study further confirmed the synergy of PFE + GTP viewed from bioactivities using the microbial test system (MTS). The MTS antioxidant activity results showed the combination of PFE + GTP exhibited synergistic effect and the ratio 3:1 showed the strongest synergy, which were in accordance with the results in H2O2 production rate. The combination of PFE + GTP promoted CAT and SOD enzyme activity and their gene expression especially at the ratio 3:1. Therefore, the synergism of PFE + GTP may be due to the promotion of CAT and SOD genes expression which enhanced the CAT and SOD enzyme activities. These results confirmed the synergy of PFE + GTP and could provide theoretical basis to produce a compounded tea made of a mixture of leaves from Potentilla species.

  5. African eggplant (Solanum anguivi Lam.) fruit with bioactive polyphenolic compounds exerts in vitro antioxidant properties and inhibits Ca(2+)-induced mitochondrial swelling.

    PubMed

    Elekofehinti, Olusola Olalekan; Kamdem, Jean Paul; Bolingon, Aline Augusti; Athayde, Margareth Linde; Lopes, Seeger Rodrigo; Waczuk, Emily Pansera; Kade, Ige Joseph; Adanlawo, Isaac Gbadura; Rocha, Joao Batista Teixeira

    2013-10-01

    To evaluate the antioxidant and radical scavenging activities of Solanum anguivi fruit (SAG) and its possible effect on mitochondrial permeability transition pore as well as mitochondrial membrane potential (ΔΨm) isolated from rat liver. Antioxidant activity of SAG was assayed by using 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power, iron chelation and ability to inhibit lipid peroxidation in both liver and brain homogenate of rats. Also, the effect of SAG on mitochondrial membrane potential and mitochondrial swelling were determined. Identification and quantification of bioactive polyphenolics was done by HPLC-DAD. SAG exhibited potent and concentration dependent free radical-scavenging activity (IC50/DPPH=275.03±7.8 μg/mL). Reductive and iron chelation abilities also increase with increase in SAG concentration. SAG also inhibited peroxidation of cerebral and hepatic lipids subjected to iron oxidative assault. SAG protected against Ca(2+) (110 μmol/L)-induced mitochondrial swelling and maintained the ΔΨm. HPLC analysis revealed the presence of gallic acid [(17.54±0.04) mg/g], chlorogenic acid (21.90±0.02 mg/g), caffeic acid (16.64±0.01 mg/g), rutin [(14.71±0.03) mg/g] and quercetin [(7.39±0.05) mg/g]. These effects could be attributed to the bioactive polyphenolic compounds present in the extract. Our results suggest that SAG extract is a potential source of natural antioxidants that may be used not only in pharmaceutical and food industry but also in the treatment of diseases associated with oxidative stress. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  6. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach.

    PubMed

    Fernando, I P Shanura; Kim, Misook; Son, Kwang-Tae; Jeong, Yoonhwa; Jeon, You-Jin

    2016-07-01

    Polyphenolic compounds isolated from marine algae exhibit a broad spectrum of beneficial biological properties, including antioxidant, anticancer, antimicrobial, anti-inflammatory, and antidiabetic activities, along with several other bioactivities centered on their antioxidant properties. Consequently, polyphenolic compounds are increasingly being investigated for their potential use in food, cosmetic, and pharmaceutical applications. The antioxidant activities of these compounds have been explored widely through experimental studies. Nonetheless, a theoretical understanding of the structural and electronic properties could broaden research perspectives, leading to the identification and synthesis of efficient structural analogs with prophylactic uses. This review briefly summarizes the current state of knowledge regarding antioxidant polyphenolic compounds in marine algae with an attempt to describe the structure-activity relationship.

  7. Dietary polyphenols: Antioxidants or not?

    PubMed

    Croft, Kevin D

    2016-04-01

    Population studies have shown a strong association between dietary intake of polyphenols and reduced risk of cardiovascular disease. These associations have been confirmed to some extent by intervention studies which have shown improvements in vascular function and blood pressure with certain polyphenols or food extracts rich in polyphenols. The mechanisms involved in the bioactivity of dietary polyphenols is still under active investigation. It is unlikely that polyphenols act as antioxidants in vivo. Evidence suggests that dietary polyphenols or their metabolites act as signalling molecules and can increase nitric oxide bioavailability and induce protective enzymes. This review will outline some of the key issues in dietary polyphenol research that suggest mechanistic insights into the action of these bioactive compounds. There are a number of issues that remain to be resolved in bridging the gap between observational studies and intervention trials using food extracts or pure polyphenol compounds.

  8. Structural simplification of bioactive natural products with multicomponent synthesis. 4. 4H-pyrano-[2,3-b]naphthoquinones with anticancer activity.

    PubMed

    Magedov, Igor V; Kireev, Artem S; Jenkins, Aaron R; Evdokimov, Nikolai M; Lima, Dustin T; Tongwa, Paul; Altig, Jeff; Steelant, Wim F A; Van slambrouck, Severine; Antipin, Mikhail Yu; Kornienko, Alexander

    2012-08-15

    4H-Pyrano-[2,3-b]naphthoquinone is a structural motif commonly found in natural products manifesting anticancer activities. As part of a program aimed at structural simplification of bioactive natural products utilizing multicomponent synthetic processes, we developed a compound library based on this heterocyclic scaffold. We found that several library members displayed low micromolar antiproliferative activity and induced apoptosis in human cancer cells. Selected compounds showed promising activity against cancer cell lines resistant to proapoptotic stimuli, demonstrating their potential in treating cancers with dismal prognoses.

  9. Structural simplification of bioactive natural products with multicomponent synthesis. 4. 4H-Pyrano-[2,3-b]naphthoquinones with anticancer activity

    PubMed Central

    Magedov, Igor V.; Kireev, Artem S.; Jenkins, Aaron R.; Evdokimov, Nikolai M.; Lima, Dustin T.; Tongwa, Paul; Altig, Jeff; Steelant, Wim F. A.; Van slambrouck, Severine; Antipin, Mikhail Yu.; Kornienko, Alexander

    2012-01-01

    4H-Pyrano-[2,3-b]naphthoquinone is a structural motif commonly found in natural products manifesting anticancer activities. As part of a program aimed at structural simplification of bioactive natural products utilizing multicomponent synthetic processes, we developed a compound library based on this heterocyclic scaffold. We found that several library members displayed low micromolar antiproliferative activity and induced apoptosis in human cancer cells. Selected compounds showed promising activity against cancer cell lines resistant to proapoptotic stimuli, demonstrating their potential in treating cancers with dismal prognoses. PMID:22819765

  10. Impact of high pressure processing on color, bioactive compounds, polyphenol oxidase activity, and microbiological attributes of pumpkin purée.

    PubMed

    González-Cebrino, Francisco; Durán, Rocío; Delgado-Adámez, Jonathan; Contador, Rebeca; Bernabé, Rosario Ramírez

    2016-04-01

    Physicochemical parameters, bioactive compounds' content (carotenoids and total phenols), total antioxidant activity, and enzymatic activity of polyphenol oxidase (PPO) were evaluated after high pressure processing (HPP) on a pumpkin purée (cv. 'Butternut'). Three pressure levels (400, 500, and 600 MPa) were combined with three holding times (200, 400, and 600 s). The applied treatments reduced the levels of total aerobic mesophilic (TAM), total psychrophilic and psychrotrophic bacteria (TPP), and molds and yeasts (M&Y). All applied treatments did not affect enzymatic activity of PPO. Pressure level increased CIE L* values, which could enhance the lightness perception of high pressure (HP)-treated purées. No differences were found between the untreated and HP-treated purées regarding total phenols and carotenoids content (lutein, α-carotene, and β-carotene) and total antioxidant activity. HPP did not affect most quality parameters and maintained the levels of bioactive compounds. However, it did not achieve the complete inhibition of PPO, which could reduce the shelf-life of the pumpkin purée. © The Author(s) 2015.

  11. Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach.

    PubMed

    Tang, Fen; Xie, Yixi; Cao, Hui; Yang, Hua; Chen, Xiaoqing; Xiao, Jianbo

    2017-03-15

    Fetal bovine serum (FBS) is a universal growth supplement of cell and tissue culture media. Herein, the influences of FBS on the stability and antioxidant activity of 21 resveratrol analogues were investigated using a polyphenol-protein interaction approach. The structure-stability relationships of resveratrol analogues in FBS showed a clear decrease in the stability of hydroxylated resveratrol analogues in the order: resorcinol-type>pyrogallol-type>catechol-type. The glycosylation and methoxylation of resveratrol analogues enhanced their stability. A linear relationship between the stability of resveratrol analogues in FBS and the affinity of resveratrol analogues-FBS interaction was found. The oxidation process is not the only factor governing the stability of resveratrol analogues in FBS. These results facilitated the insightful investigation of the role of polyphenol-protein interactions in serum, thereby providing some fundamental clues for future clinical research and pharmacological studies on natural small molecules.

  12. Bioactivities and Health Benefits of Mushrooms Mainly from China.

    PubMed

    Zhang, Jiao-Jiao; Li, Ya; Zhou, Tong; Xu, Dong-Ping; Zhang, Pei; Li, Sha; Li, Hua-Bin

    2016-07-20

    Many mushrooms have been used as foods and medicines for a long time. Mushrooms contain polyphenols, polysaccharides, vitamins and minerals. Studies show that mushrooms possess various bioactivities, such as antioxidant, anti-inflammatory, anticancer, immunomodulatory, antimicrobial, hepatoprotective, and antidiabetic properties, therefore, mushrooms have attracted increasing attention in recent years, and could be developed into functional food or medicines for prevention and treatment of several chronic diseases, such as cancer, cardiovascular diseases, diabetes mellitus and neurodegenerative diseases. The present review summarizes the bioactivities and health benefits of mushrooms, and could be useful for full utilization of mushrooms.

  13. Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles.

    PubMed

    Sorice, Angela; Siano, Francesco; Capone, Francesca; Guerriero, Eliana; Picariello, Gianluca; Budillon, Alfredo; Ciliberto, Gennaro; Paolucci, Marina; Costantini, Susan; Volpe, Maria Grazia

    2016-10-21

    In this study, a hydroalcoholic chestnut shell extract was characterized and tested on six different human cell lines. Gallic, ellagic, and syringic acids were the most abundant non-condensed compounds in the chestnut extract, as determined by high performance liquid chromatography (HPLC). Tannins were mainly represented by condensed monomeric units of epigallocatechin and catechin/epicatechin. After 48 h of treatment, only the human hepatoblastoma HepG2 cells reached an inhibition corresponding to IC50 with an increase of apoptosis and mitochondrial depolarization. The cytokinome evaluation before and after treatment revealed that the vascular endothelial growth factor (VEGF) and the tumor necrosis factor (TNF)-α decreased after the treatment, suggesting a potential anti-angiogenic and anti-inflammatory effect of this extract. Moreover, the metabolome evaluation by ¹H-NMR evidenced that the polyphenols extracted from chestnut shell (PECS) treatment affected the levels of some amino acids and other metabolites. Overall, these data highlight the effects of biomolecules on cell proliferation, apoptosis, cell cycle and mitochondrial depolarization, and on cytokinomics and metabolomics profiles.

  14. Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases-Promises, Perspectives, and Pitfalls.

    PubMed

    Kaulmann, Anouk; Bohn, Torsten

    2016-01-01

    Inflammatory bowel diseases (IBDs) are characterized by autoimmune and inflammation-related complications of the large intestine (ulcerative colitis) and additional parts of the digestive tract (Crohn's disease). Complications include pain, diarrhoea, chronic inflammation, and cancer. IBD prevalence has increased during the past decades, especially in Westernized countries, being as high as 1%. As prognosis is poor and medication often ineffective or causing side effects, additional preventive/adjuvant strategies are sought. A possible approach is via diets rich in protective constituents. Polyphenols, the most abundant phytochemicals, have been associated with anti-inflammatory, antioxidant, immunomodulatory, and apoptotic properties. Locally reducing oxidative stress, they can further act on cellular targets, altering gene expression related to inflammation, including NF-κB, Nrf-2, Jak/STAT, and MAPKs, suppressing downstream cytokine formation (e.g., IL-8, IL-1β, and TNF-α), and boosting the bodies' own antioxidant status (HO-1, SOD, and GPx). Moreover, they may promote, as prebiotics, healthy microbiota (e.g., Bifidobacteria, Akkermansia), short-chain fatty acid formation, and reduced gut permeability/improved tight junction stability. However, potential adverse effects such as acting as prooxidants, or perturbations of efflux transporters and phase I/II metabolizing enzymes, with increased uptake of undesired xenobiotics, should also be considered. In this review, we summarize current knowledge around preventive and arbitrary actions of polyphenols targeting IBD.

  15. Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases—Promises, Perspectives, and Pitfalls

    PubMed Central

    Kaulmann, Anouk

    2016-01-01

    Inflammatory bowel diseases (IBDs) are characterized by autoimmune and inflammation-related complications of the large intestine (ulcerative colitis) and additional parts of the digestive tract (Crohn's disease). Complications include pain, diarrhoea, chronic inflammation, and cancer. IBD prevalence has increased during the past decades, especially in Westernized countries, being as high as 1%. As prognosis is poor and medication often ineffective or causing side effects, additional preventive/adjuvant strategies are sought. A possible approach is via diets rich in protective constituents. Polyphenols, the most abundant phytochemicals, have been associated with anti-inflammatory, antioxidant, immunomodulatory, and apoptotic properties. Locally reducing oxidative stress, they can further act on cellular targets, altering gene expression related to inflammation, including NF-κB, Nrf-2, Jak/STAT, and MAPKs, suppressing downstream cytokine formation (e.g., IL-8, IL-1β, and TNF-α), and boosting the bodies' own antioxidant status (HO-1, SOD, and GPx). Moreover, they may promote, as prebiotics, healthy microbiota (e.g., Bifidobacteria, Akkermansia), short-chain fatty acid formation, and reduced gut permeability/improved tight junction stability. However, potential adverse effects such as acting as prooxidants, or perturbations of efflux transporters and phase I/II metabolizing enzymes, with increased uptake of undesired xenobiotics, should also be considered. In this review, we summarize current knowledge around preventive and arbitrary actions of polyphenols targeting IBD. PMID:27478535

  16. Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies

    PubMed Central

    Mileo, Anna Maria; Miccadei, Stefania

    2016-01-01

    Cancer onset and progression have been linked to oxidative stress by increasing DNA mutations or inducing DNA damage, genome instability, and cell proliferation and therefore antioxidant agents could interfere with carcinogenesis. It is well known that conventional radio-/chemotherapies influence tumour outcome through ROS modulation. Since these antitumour treatments have important side effects, the challenge is to develop new anticancer therapeutic strategies more effective and less toxic for patients. To this purpose, many natural polyphenols have emerged as very promising anticancer bioactive compounds. Beside their well-known antioxidant activities, several polyphenols target epigenetic processes involved in cancer development through the modulation of oxidative stress. An alternative strategy to the cytotoxic treatment is an approach leading to cytostasis through the induction of therapy-induced senescence. Many anticancer polyphenols cause cellular growth arrest through the induction of a ROS-dependent premature senescence and are considered promising antitumour therapeutic tools. Furthermore, one of the most innovative and interesting topics is the evaluation of efficacy of prooxidant therapies on cancer stem cells (CSCs). Several ROS inducers-polyphenols can impact CSCs metabolisms and self-renewal related pathways. Natural polyphenol roles, mainly in chemoprevention and cancer therapies, are described and discussed in the light of the current literature data. PMID:26649142

  17. Unique bioactive polyphenolic profile of guava (Psidium guajava) budding leaf tea is related to plant biochemistry of budding leaves in early dawn.

    PubMed

    Chang, Chi-Huang; Hsieh, Chiu-Lan; Wang, Hui-Er; Peng, Chiung-Chi; Chyau, Charng-Cherng; Peng, Robert Y

    2013-03-15

    Guava leaf tea (GLT), exhibiting a diversity of medicinal bioactivities, has become a popularly consumed daily beverage. To improve the product quality, a new process was recommended to the Ser-Tou Farmers' Association (SFA), who began field production in 2005. The new process comprised simplified steps: one bud-two leaves were plucked at 3:00-6:00 am, in the early dawn period, followed by withering at ambient temperature (25-28 °C), rolling at 50 °C for 50-70 min, with or without fermentation, then drying at 45-50 °C for 70-90 min, and finally sorted. The product manufactured by this new process (named herein GLTSF) exhibited higher contents (in mg g(-1), based on dry ethyl acetate fraction/methanolic extract) of polyphenolics (417.9 ± 12.3) and flavonoids (452.5 ± 32.3) containing a compositional profile much simpler than previously found: total quercetins (190.3 ± 9.1), total myricetin (3.3 ± 0.9), total catechins (36.4 ± 5.3), gallic acid (8.8 ± 0.6), ellagic acid (39.1 ± 6.4) and tannins (2.5 ± 9.1). We have successfully developed a new process for manufacturing GLTSF with a unique polyphenolic profile. Such characteristic compositional distribution can be ascribed to the right harvesting hour in the early dawn and appropriate treatment process at low temperature, avoiding direct sunlight. © 2012 Society of Chemical Industry.

  18. Apple polyphenol phloretin potentiates the anticancer actions of paclitaxel through induction of apoptosis in human hep G2 cells.

    PubMed

    Yang, Kuo-Ching; Tsai, Chia-Yi; Wang, Ying-Jan; Wei, Po-Li; Lee, Chia-Hwa; Chen, Jui-Hao; Wu, Chih-Hsiung; Ho, Yuan-Soon

    2009-05-01

    Phloretin (Ph), which can be obtained from apples, apple juice, and cider, is a known inhibitor of the type II glucose transporter (GLUT2). In this study, real-time PCR analysis of laser-capture microdissected (LCM) human hepatoma cells showed elevated expression (>5-fold) of GLUT2 mRNA in comparison with nonmalignant hepatocytes. In vitro and in vivo studies were performed to assess Ph antitumor activity when combined with paclitaxel (PTX) for treatment of human liver cancer cells. Inhibition of GLUT2 by Ph potentiated the anticancer effects of PTX, resensitizing human liver cancer cells to drugs. These results demonstrate that 50-150 microM Ph significantly potentiates DNA laddering induced in Hep G2 cells by 10 nM PTX. Activity assays showed that caspases 3, 8, and 9 are involved in this apoptosis. The antitumor therapeutic efficacy of Ph (10 mg/kg body weight) was determined in cells of the SCID mouse model that were treated in parallel with PTX (1 mg/kg body weight). The Hep G2-xenografted tumor volume was reduced more than fivefold in the Ph + PTX-treated mice compared to the PTX-treated group. These results suggest that Ph may be useful for cancer chemotherapy and chemoprevention.

  19. Anticancer potential of the histone deacetylase inhibitor-like effects of flavones, a subclass of polyphenolic compounds: a review.

    PubMed

    Singh, Prabhat; Tomar, Raghuvir Singh; Rath, Srikanta Kumar

    2015-11-01

    Cancer is characterized by the uncontrolled division of cells, followed by their invasion to other tissues. These kinds of cellular abnormalities arise as a result of the accumulation of genetic mutations or epigenetic alterations. Targeting genetic mutations by drugs is a conventional treatment approach. Nowadays, the development and use of epigenetic drugs are burgeoning, owing to the advancements in epigenetic research. The therapeutic intervention of cancer development by histone deacetylase inhibitors (HDACIs) holds promise for helping to control the disease, but their nonspecific functions impose certain side effects. Therefore, the search for more HDACIs becomes essential. Plentiful literature on the versatility of dietary components including flavones, a class of the flavonoid group, has already established these compounds to be better anticancer agents. The present review focuses on the significance of flavones with regard to their HDACI-mimicking effects as suggested by the recent evidences. The review also proposes an in-depth screening of flavones in future studies, in the hope that flavones may provide a better alternative to synthetic HDACIs.

  20. Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion.

    PubMed

    Burgos-Edwards, Alberto; Jiménez-Aspee, Felipe; Thomas-Valdés, Samanta; Schmeda-Hirschmann, Guillermo; Theoduloz, Cristina

    2017-12-15

    The wild Chilean currants Ribes magellanicum and R. punctatum are a good source of polyphenolic compounds. The effect of simulated gastrointestinal digestion (GID) on phenolic content, composition and antioxidant capacity was determined. The inhibitory activity of the non-digested and digested samples towards metabolic syndrome-associated enzymes (α-amylase, α-glucosidase and lipase) was evaluated. The total phenolic (TP) and flavonoid contents (TF) decreased by about 50% at the end of the in vitro GID. Main anthocyanins and hydroxycinnamic acids were strongly affected by this process, with a loss of about 80%. A decrease in the antioxidant activity was observed throughout the digestion steps, which was correlated with the reduction in the TP and TF content. After the in vitro GID of the samples, only the inhibition of α-glucosidase was preserved. Our results show that the simulated GID modified the health-promoting properties of the studied currants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Polyphenols from Wine Lees as a Novel Functional Bioactive Compound in the Protection Against Oxidative Stress and Hyperlipidaemia

    PubMed Central

    Landeka, Irena; Jurčević; Dora, Mirna; Guberović, Iva; Petras, Marija; Rimac, Suzana; Brnčić

    2017-01-01

    Summary The study examines the potential of wine industry by-product, the lees, as a rich mixture of natural polyphenols, and its physiological potential to reduce postprandial metabolic and oxidative stress caused by a cholesterol-rich diet in in vivo model. Chemical analysis of wine lees showed that their total solid content was 94.2%. Wine lees contained total phenols, total nonflavonoids and total flavonoids expressed in mg of gallic acid equivalents per 100 g of dry mass: 2316.6±37.9, 1332.5±51.1 and 984.1±28.2, respectively. The content of total anthocyanins expressed in mg of cyanidin-3-glucoside equivalents per 100 g of dry mass was 383.1±21.6. Antioxidant capacity of wine lees determined by the DPPH and FRAP methods and expressed in mM of Trolox equivalents per 100 g was 259.8±1.8 and 45.7±1.05, respectively. The experiment lasted 60 days using C57BL/6 mice divided in four groups: group 1 was fed normal diet and used as control, group 2 was fed normal diet with added wine lees, group 3 was fed high-cholesterol diet (HCD), i.e. normal diet with the addition of sunflower oil, and group 4 was fed HCD with wine lees. HCD increased serum total cholesterol (TC) by 2.3-fold, triacylglycerol (TAG) by 1.5-fold, low-density lipoprotein (LDL) by 3.5-fold and liver malondialdehyde (MDA) by 50%, and reduced liver superoxide dismutase (SOD) by 50%, catalase (CAT) by 30% and glutathione (GSH) by 17.5% compared to control. Conversely, treatment with HCD and wine lees reduced TC and LDL up to 1.4 times more than with HCD only, with depletion of lipid peroxidation (MDA) and restoration of SOD and CAT activities in liver, approximating values of the control. HDL levels were unaffected in any group. Serum transaminase activity showed no hepatotoxic properties in the treatment with lees alone. In the proposed model, wine lees as a rich polyphenol source could be a basis for functional food products without alcohol. PMID:28559739

  2. Polyphenols and aging.

    PubMed

    Queen, Brannon L; Tollefsbol, Trygve O

    2010-02-01

    Age-associated changes within an individual are inherently complex and occur at multiple levels of organismal function. The overall decline in function of various tissues is known to play a key role in both aging and the complex etiology of certain age-associated diseases such as Alzheimer's disease (AD) and cancer. Continuing research highlights the dynamic capacity of polyphenols to protect against age-associated disorders through a variety of important mechanisms. Numerous lines of evidence suggest that dietary polyphenols such as resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin have the capacity to mitigate age-associated cellular damage induced via metabolic production of reactive oxygen species (ROS). However, recently acquired evidence also demonstrates a likely role for these polyphenols as anticancer agents capable of preventing formation of new vasculature in neoplastic tissues. Polyphenols have also been shown to possess other anticancer properties such as specific cell-signaling actions that may stimulate the activity of the regulatory protein SIRT1. Additionally, polyphenolic compounds have demonstrated their inhibitory effects against chronic vascular inflammation associated with atherosclerosis. These increasingly well-documented results have begun to provide a basis for considering the use of polyphenols in the development of novel therapies for certain human diseases. And while the mechanisms by which these effects occur are yet to be fully understood, it is evident that further investigation may yield a potential use for polyphenols as pharmacological interventions against specific age-associated diseases.

  3. Polyphenols and Aging

    PubMed Central

    Queen, Brannon L.; Tollefsbol, Trygve O.

    2010-01-01

    Age-associated changes within an individual are inherently complex and occur at multiple levels of organismal function. The overall decline in function of various tissues is known to play a key role in both aging and the complex etiology of certain age-associated diseases such as Alzheimer’s disease (AD) and cancer. Continuing research highlights the dynamic capacity of polyphenols to protect against age-associated disorders through a variety of important mechanisms. Numerous lines of evidence suggest that dietary polyphenols such as resveratrol, (−)-epigallocatechin-3-gallate (EGCG), and curcumin have the capacity to mitigate age-associated cellular damage induced via metabolic production of reactive oxygen species (ROS). However, recently acquired evidence also demonstrates a likely role for these polyphenols as anticancer agents capable of preventing formation of new vasculature in neoplastic tissues. Polyphenols have also been shown to possess other anticancer properties such as specific cell-signaling actions that may stimulate the activity of the regulatory protein SIRT1. Additionally, polyphenolic compounds have demonstrated their inhibitory effects against chronic vascular inflammation associated with atherosclerosis. These increasingly well-documented results have begun to provide a basis for considering the use of polyphenols in the development of novel therapies for certain human diseases. And while the mechanisms by which these effects occur are yet to be fully understood, it is evident that further investigation may yield a potential use for polyphenols as pharmacological interventions against specific age-associated diseases. PMID:20298168

  4. Scaffold-hopping of bioactive flavonoids: Discovery of aryl-pyridopyrimidinones as potent anticancer agents that inhibit catalytic role of topoisomerase IIα.

    PubMed

    Priyadarshani, Garima; Amrutkar, Suyog; Nayak, Anmada; Banerjee, Uttam C; Kundu, Chanakya N; Guchhait, Sankar K

    2016-10-21

    A strategy of scaffold-hopping of bioactive natural products, flavones and isoflavones, leading to target-based discovery of potent anticancer agents has been reported for the first time. Scaffold-hopped flavones, 2-aryl-4H-pyrido[1,2-a]pyrimidin-4-ones and the scaffold-hopped isoflavones, 3-aryl-pyrido[1,2-a]pyrimidin-4-ones were synthesized via Pd-catalyzed activation-arylation methods. Most of the compounds were found to exhibit pronounced human topoisomerase IIα (hTopoIIα) inhibitory activities and several compounds were found to be more potent than etoposide (a hTopoIIα-inhibiting anticancer drug). These classes of compounds were found to be hTopoIIα-selective catalytic inhibitors while not interfering with topoisomerase I and interacted with DNA plausibly in groove domain. Cytotoxicities against various cancer cells, low toxicity in normal cells, and apoptotic effects were observed. Interestingly, compared to parent flavones/isoflavones, their scaffold-hopped analogs bearing alike functionalities showed significant/enhanced hTopoIIα-inhibitory and cytotoxic properties, indicating the importance of a natural product-based scaffold-hopping strategy in the drug discovery.

  5. Synergistic anticancer efficacy of Bendamustine Hydrochloride loaded bioactive Hydroxyapatite nanoparticles: In-vitro, ex-vivo and in-vivo evaluation.

    PubMed

    Thomas, Shindu C; Sharma, Harshita; Rawat, Purnima; Verma, Anita K; Leekha, Ankita; Kumar, Vijay; Tyagi, Aakriti; Gurjar, Bahadur S; Iqbal, Zeenat; Talegaonkar, Sushama

    2016-10-01

    The present work evaluates the synergistic anticancer efficacy of bioactive Hydroxyapatite (HA) nanoparticles (HA NPs) loaded with Bendamustine HCl. Hydroxyapatite is a material with an excellent biological compatibility, a well-known fact which was also supported by the results of the Hemolytic studies and a high IC50 value observed in the MTT assay. HA NPs were prepared by the chemical precipitation method and loaded with the drug via physical adsorption. In-vitro release study was performed, which confirmed the sustained release of the drug from the drug loaded HA NPs. MTT assay, Cell Uptake and FACS studies on JURKAT E6.1 cell line and in-vivo pharmacokinetic studies in Wistar rats revealed that the drug loaded HA NPs could be easily internalized by the cells and release drug in a sustained manner. The drug loaded HA NPs showed cytotoxicity similar to the drug solution at 1/10th of the drug content, which indicates a possible synergism between the activity of the anticancer drug and calcium ions derived from the carrier. An increase in intracellular Ca(2+) ions is reported to induce apoptosis in cells. Tumor regression study in Balb/c mice Ehrlich's ascites model presented a similar synergistic efficacy. The drug solution was able to decrease the tumor volume by half, while the drug loaded HA NPs reduced the tumor size by 6 times.

  6. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines.

    PubMed

    Pollio, Antonino; Zarrelli, Armando; Romanucci, Valeria; Di Mauro, Alfredo; Barra, Federica; Pinto, Gabriele; Crescenzi, Elvira; Roscetto, Emanuela; Palumbo, Giuseppe

    2016-03-23

    The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1-11, 19) and eight polyphenols derivatives (12-18, 20), while in J. communis extract, eight flavonoids (21-28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.

  7. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    PubMed Central

    Boss, Anna; Bishop, Karen S.; Marlow, Gareth; Barnett, Matthew P. G.; Ferguson, Lynnette R.

    2016-01-01

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217

  8. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.

    PubMed

    Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R

    2016-08-19

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  9. Investigations of vibrational spectra and bioactivity of novel anticancer drug N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Sudhi, Geethu; Rajina, S. R.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Jaiswal-Nagar, D.; Binoy, J.

    2017-10-01

    The bioactivity of compounds is mainly dependent on molecular structure and the present work aims to explore the bonding features responsible for biological activity of novel anticancer drug N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid ethyl ester (FNGABEE). In the present study, we investigate the molecular structural properties of newly synthesized title compound through experimental and quantum chemical studies. The detailed vibrational analysis has been performed using FT IR and FT Raman spectrum, aided by DFT computed geometry, vibrational spectrum, Eigen vector distribution and PED, at B3LYP/6-311 ++G(d,p) level. The resonance structure of naphthalene, different from that of benzene, revealed by molecular structure has been investigated using Csbnd C and Cdbnd C stretching modes. The proton transfer in amide has been analyzed to obtain spectral distinction between different carbonyl and Csbnd N groups which point to the reactive sites responsible for binding with DNA and bovine serum albumin (BSA). The spectral distinction between eclipsed and staggered form of ferrocene has been analyzed. The molecular docking of FNGABEE with BSA and DNA has been performed to find the strength of binding and the moieties responsible for the interactions. The experimental binding studies of FNGABEE with BSA and DNA has been performed using UV absorption spectroscopy and fluorometric assay, to find the nature and strength of binding.

  10. Dietary factors affecting polyphenol bioavailability.

    PubMed

    Bohn, Torsten

    2014-07-01

    While many epidemiological studies have associated the consumption of polyphenols within fruits and vegetables with a decreased risk of developing several chronic diseases, intervention studies have generally not confirmed these beneficial effects. The reasons for this discrepancy are not fully understood but include potential differences in dosing, interaction with the food matrix, and differences in polyphenol bioavailability. In addition to endogenous factors such as microbiota and digestive enzymes, the food matrix can also considerably affect bioaccessibility, uptake, and further metabolism of polyphenols. While dietary fiber (such as hemicellulose), divalent minerals, and viscous and protein-rich meals are likely to cause detrimental effects on polyphenol bioaccessibility, digestible carbohydrates, dietary lipids (especially for hydrophobic polyphenols, e.g., curcumin), and additional antioxidants may enhance polyphenol availability. Following epithelial uptake, polyphenols such as flavonoids may reduce phase II metabolism and excretion, enhancing polyphenol bioavailability. Furthermore, polyphenols may act synergistically due to their influence on efflux transporters such as p-glycoprotein. In order to understand polyphenol bioactivity, increased knowledge of the factors affecting polyphenol bioavailability, including dietary factors, is paramount.

  11. Novel epigallocatechin gallate analogs as potential anticancer agents: a patent review (2009 – present)

    PubMed Central

    Landis-Piwowar, Kristin; Chen, Di; Foldes, Robert; Chan, Tak-Hang; Dou, Qing Ping

    2013-01-01

    Introduction Over the past three years numerous patents and patent applications have been published relating to scientific advances in the use of the green tea polyphenol epigallocatechin gallate (EGCG) (the most abundant, and bioactive compound in green tea) and its analogs as anticancer agents. EGCG affects multiple molecular targets involved in cancer cell proliferation and survival; however, polyphenolic catechins, such as EGCG, generally exhibit poor oral bioavailability. Since the anticancer activity of polyphenols largely depends on their susceptibility to biotransformation reactions, numerous EGCG derivatives, analogs and prodrugs have been designed to improve the stability, bioavailability and anticancer potency of the native compound. Areas covered This review focuses on the applications of EGCG and its analogs, derivatives and prodrugs in the prevention and treatment of human cancers. A comprehensive description of patents related to EGCG and its derivatives, analogs and prodrugs and their uses as anticancer agents is included. Expert opinion EGCG targets multiple essential survival proteins and pathways in human cancer cells. Because it is unstable physiologically, numerous alterations to the EGCG molecule have been patented, either to improve the integrity of the native compound or to generate a more stable yet similarly efficacious molecule. EGCG and its derivatives, analogs and prodrugs could be developed into future drugs for chemoprevention, chemosensitization, radiosensitization and/or cancer interception. PMID:23230990

  12. Molecular docking of the anticancer bioactive compound proceraside with macromolecules involved in the cell cycle and DNA replication.

    PubMed

    Gurung, A B; Ali, M A; Bhattacharjee, A; AbulFarah, M; Al-Hemaid, F; Abou-Tarboush, F M; Al-Anazi, K M; Al-Anazi, F S M; Lee, J

    2016-05-09

    The bioactive compounds proceraside A, frugoside and calotropin, which were extracted from the root bark of Calotropis procera (Aiton) W.T. Aiton (family Asclepiadaceae), were recently reported to inhibit the growth of inhibition against various human cancer cell lines in vitro. However, their modes of action have not been clearly defined. Therefore, we attempted an in silico approach to gain insights into their binding modes against the following selected molecular targets: CDK-2, CDK-6, topoisomerase I, BCL-2, VEGFR-2, telomere: G-quadruplex, and topoisomerase II. These targets were selected based on their key roles in cancer progression via the regulation of the cell cycle and DNA replication. Molecular-docking analyses revealed that proceraside A was the best docked ligand against all the targets, with the exception of telomere-G: quadruplex. Furthermore, it displayed the lowest binding energies and inhibition constants, and critical hydrogen bonds and hydrophobic interactions with the targets were also revealed. The present study may aid in the identification of possible targets for proceraside A, and might provide a plausible explanation for its proven anti-tumor activities. Moreover, the result of this study may further guide structure-activity relationship studies used to generate more potent target-specific inhibitors.

  13. Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts.

    PubMed

    Apostolou, Anna; Stagos, Dimitrios; Galitsiou, Elissavet; Spyrou, Argiris; Haroutounian, Serko; Portesis, Nikolaos; Trizoglou, Ioanna; Wallace Hayes, A; Tsatsakis, Aristides M; Kouretas, Dimitrios

    2013-11-01

    Grape extracts and wine have been studied widely due to their beneficial effects on human health. However, there are only few studies from grape stems extracts. Therefore, the main objective of the present study was the assessment in stem extracts from Greek Vitis vinifera varieties of the total polyphenolic content (TPC), the identification of the polyphenols present in them, and the evaluation of their antioxidant activity, protection against ROS-induced DNA damage and inhibition of liver (HepG2) and cervical (HeLa) cancer cell growth. The range of the TPC in grape stem extracts was from 345 to 584 mg GAE/g dry weight. Moreover, stem extracts contained different classes of polyphenols as flavonols, flavanols, procyanidins, phenolic acids and stilbenes. In DPPH and ABTS assays, the IC50 values of the stem extracts had an average of 7.8 ± 2.8 and 5.4 ± 2.6 μg/mL respectively. Also, all stem extracts inhibited OH- and ROO-induced DNA damage dose dependent with average IC50 values of 478 ± 217 and 1.15 ± 0.85 μg/mL respectively. Furthermore, stem extracts inhibited at low concentrations the growth of HepG2 and HeLa cancer cells with average IC50 values of 50 ± 12 and 32 ± 16 μg/mL respectively. The above activities of grape stem extracts were comparable to those of seed extracts.

  14. Polyphenols as antimicrobial agents.

    PubMed

    Daglia, Maria

    2012-04-01

    Polyphenols are secondary metabolites produced by higher plants, which play multiple essential roles in plant physiology and have potential healthy properties on human organism, mainly as antioxidants, anti-allergic, anti-inflammatory, anticancer, antihypertensive, and antimicrobial agents. In the present review the antibacterial, antiviral, and antifungal activities of the most active polyphenol classes are reported, highlighting, where investigated, the mechanisms of action and the structure-activity relationship. Moreover, considering that the microbial resistance has become an increasing global problem, and there is a compulsory need to find out new potent antimicrobial agents as accessories to antibiotic therapy, the synergistic effect of polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms is discussed.

  15. Anticancer properties of Monascus metabolites.

    PubMed

    Yang, Tao; Liu, Junwen; Luo, Feijun; Lin, Qinlu; Rosol, Thomas J; Deng, Xiyun

    2014-08-01

    This review provides up-to-date information on the anticancer properties of Monascus-fermented products. Topics covered include clinical evidence for the anticancer potential of Monascus metabolites, bioactive Monascus components with anticancer potential, mechanisms of the anticancer effects of Monascus metabolites, and existing problems as well as future perspectives. With the advancement of related fields, the development of novel anticancer Monascus food products and/or pharmaceuticals will be possible with the ultimate goal of decreasing the incidence and mortality of malignancies in humans.

  16. The metabolome of [2-14C](−)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives

    PubMed Central

    Ottaviani, Javier I.; Borges, Gina; Momma, Tony Y.; Spencer, Jeremy P. E.; Keen, Carl L.; Crozier, Alan; Schroeter, Hagen

    2016-01-01

    Diet is a major life style factor affecting human health, thus emphasizing the need for evidence-based dietary guidelines for primary disease prevention. While current recommendations promote intake of fruit and vegetables, we have limited understanding of plant-derived bioactive food constituents other than those representing the small number of essential nutrients and minerals. This limited understanding can be attributed to some extent to a lack of fundamental data describing the absorption, distribution, metabolism and excretion (ADME) of bioactive compounds. Consequently, we selected the flavanol (−)-epicatechin (EC) as an example of a widely studied bioactive food constituent and investigated the ADME of [2-14C](−)-epicatechin (300 μCi, 60 mg) in humans (n = 8). We demonstrated that 82 ± 5% of ingested EC was absorbed. We also established pharmacokinetic profiles and identified and quantified >20 different metabolites. The gut microbiome proved to be a key driver of EC metabolism. Furthermore, we noted striking species-dependent differences in the metabolism of EC, an insight with significant consequences for investigating the mechanisms of action underlying the beneficial effects of EC. These differences need to be considered when assessing the safety of EC intake in humans. We also identified a potential biomarker for the objective assessment of EC intake that could help to strengthen epidemiological investigations. PMID:27363516

  17. Polyphenol-rich extract of Salvia chinensis exhibits anticancer activity in different cancer cell lines, and induces cell cycle arrest at the G0/G1-phase, apoptosis and loss of mitochondrial membrane potential in pancreatic cancer cells

    PubMed Central

    ZHAO, QUAN; HUO, XUE-CHEN; SUN, FU-DONG; DONG, RUI-QIAN

    2015-01-01

    Pancreatic cancer (PC) is one of the most aggressive types of human malignancy, which has an overall 5-year survival rate of <2%. PC is the fourth most common cause of cancer-associated mortality in the western world. At present, there is almost no effective treatment available for the treatment of PC. The aim of the present study was to evaluate the anticancer potential of a polyphenol enriched extract obtained from Salvia chinensis, a Chinese medicinal plant. An MTT assay was used to evaluate the cell viability of five cancer cell lines and one normal cell line. In addition, the effects of the extract on apoptotic induction, cell cycle phase distribution, DNA damage and loss of mitochondrial membrane potential (ΛΨm) were evaluated in MiapaCa-2 human PC cells. The effects of the extract on cell cycle phase distribution and ΛΨm were assessed by flow cytometry, using propidium iodide and rhodamine-123 DNA-binding fluorescent dyes, respectively. Fluorescence microscopy, using 4′,6-diamidino-2-phenylindole as a staining agent, was performed in order to detect the morphological changes of the MiapaCa-2 cancer cells and the presence of apoptotic bodies following treatment with the extract. The results of the present study demonstrated that the polyphenol-rich extract from S. chinensis induced potent cytotoxicity in the MCF-7 human breast cancer cells, A549 human lung cancer cells, HCT-116 and COLO 205 human colon cancer cells, and MiapaCa-2 human PC cells. The COLO 205 and MCF-7 cancer cell lines were the most susceptible to treatment with the extract, which exhibited increased rate of growth inhibition. Fluorescence microscopy revealed characteristic morphological features of apoptosis and detected the appearance of apoptotic bodies following treatment with the extract in the PC cells. Flow cytometric analysis demonstrated that the extract induced G0/G1 cell cycle arrest in a dose-dependent manner. In addition, treatment with the extract induced a significant and

  18. Fatty acids, coumarins and polyphenolic compounds of Ficus carica L. cv. Dottato: variation of bioactive compounds and biological activity of aerial parts.

    PubMed

    Marrelli, Mariangela; Statti, Giancarlo A; Tundis, Rosa; Menichini, Francesco; Conforti, Filomena

    2014-01-01

    Leaves, bark and woody part of Ficus carica L. cultivar Dottato collected in different months were examined to assess their chemical composition, antioxidant activity and phototoxicity on C32 human melanoma cells after UVA irradiation. The phytochemical investigation revealed different composition in the coumarin, fatty acid, polyphenol and flavonoid content. The second harvest of leaves and the first harvest of the bark possessed the highest antiradical activity with IC50 values of 64.00 ± 0.59 and 67.00 ± 1.09 μg/mL, respectively. Harvest III of leaves showed the best inhibition of lipid peroxidation (IC50 = 1.48 ± 0.04 μg/mL). Leaf samples of F. carica showed also the best antiproliferative activity in comparison with bark and woody part of F. carica.

  19. Interactions between plasma proteins and naturally occurring polyphenols.

    PubMed

    Li, Min; Hagerman, Ann E

    2013-05-01

    The plant natural products known as polyphenols are found at micronutrient levels in fruits, vegetables, and plant-based beverages such as wine, tea, coffee and cocoa. Consumption of a fruit- and vegetable-rich diet, the "Mediterranean diet", has been epidemiologically related to health benefits especially for chronic diseases including diabetes, cardiovascular disease, and Alzheimer's disease. The abundance of polyphenols in plant-rich diets, and the potent bioactivities of polyphenols, provide indirect evidence for a role for polyphenols in maintaining good health. However, molecular mechanisms for therapeutic or preventative activity have not been demonstrated in vivo. We summarize the chemical classes of natural polyphenols, their bioactivities and bioavailability and metabolism. Because many polyphenols bind protein, we focus on the potential of protein binding to mediate the health-related effects of polyphenols. We discuss interactions with plasma proteins as the first target organ past the digestive tract for these orally-ingested compounds.

  20. Synthesis of (-)-arctigenin derivatives and their anticancer activity.

    PubMed

    Gui-Rong, Chen; Li-Ping, Cai; De-Qiang, Dou; Ting-Guo, Kang; Hong-Fu, Li; Fu-Rui, Li; Ning, Jiang

    2012-01-01

    The natural dibenzylbutyrolactone type lignanolide (-)-arctigenin, which was prepared from fructus arctii, showed obvious anticancer activity. The synthesis of four new (-)-arctigenin derivatives and their anticancer bioactivities were examined. The structures of the four new synthetic derivatives were elucidated.

  1. Sloth hair as a novel source of fungi with potent anti-parasitic, anti-cancer and anti-bacterial bioactivity.

    PubMed

    Higginbotham, Sarah; Wong, Weng Ruh; Linington, Roger G; Spadafora, Carmenza; Iturrado, Liliana; Arnold, A Elizabeth

    2014-01-01

    The extraordinary biological diversity of tropical forests harbors a rich chemical diversity with enormous potential as a source of novel bioactive compounds. Of particular interest are new environments for microbial discovery. Sloths--arboreal mammals commonly found in the lowland forests of Panama--carry a wide variety of micro- and macro-organisms on their coarse outer hair. Here we report for the first time the isolation of diverse and bioactive strains of fungi from sloth hair, and their taxonomic placement. Eighty-four isolates of fungi were obtained in culture from the surface of hair that was collected from living three-toed sloths (Bradypus variegatus, Bradypodidae) in Soberanía National Park, Republic of Panama. Phylogenetic analyses revealed a diverse group of Ascomycota belonging to 28 distinct operational taxonomic units (OTUs), several of which are divergent from previously known taxa. Seventy-four isolates were cultivated in liquid broth and crude extracts were tested for bioactivity in vitro. We found a broad range of activities against strains of the parasites that cause malaria (Plasmodium falciparum) and Chagas disease (Trypanosoma cruzi), and against the human breast cancer cell line MCF-7. Fifty fungal extracts were tested for antibacterial activity in a new antibiotic profile screen called BioMAP; of these, 20 were active against at least one bacterial strain, and one had an unusual pattern of bioactivity against Gram-negative bacteria that suggests a potentially new mode of action. Together our results reveal the importance of exploring novel environments for bioactive fungi, and demonstrate for the first time the taxonomic composition and bioactivity of fungi from sloth hair.

  2. Sloth Hair as a Novel Source of Fungi with Potent Anti-Parasitic, Anti-Cancer and Anti-Bacterial Bioactivity

    PubMed Central

    Higginbotham, Sarah; Wong, Weng Ruh; Linington, Roger G.; Spadafora, Carmenza; Iturrado, Liliana; Arnold, A. Elizabeth

    2014-01-01

    The extraordinary biological diversity of tropical forests harbors a rich chemical diversity with enormous potential as a source of novel bioactive compounds. Of particular interest are new environments for microbial discovery. Sloths – arboreal mammals commonly found in the lowland forests of Panama – carry a wide variety of micro- and macro-organisms on their coarse outer hair. Here we report for the first time the isolation of diverse and bioactive strains of fungi from sloth hair, and their taxonomic placement. Eighty-four isolates of fungi were obtained in culture from the surface of hair that was collected from living three-toed sloths (Bradypus variegatus, Bradypodidae) in Soberanía National Park, Republic of Panama. Phylogenetic analyses revealed a diverse group of Ascomycota belonging to 28 distinct operational taxonomic units (OTUs), several of which are divergent from previously known taxa. Seventy-four isolates were cultivated in liquid broth and crude extracts were tested for bioactivity in vitro. We found a broad range of activities against strains of the parasites that cause malaria (Plasmodium falciparum) and Chagas disease (Trypanosoma cruzi), and against the human breast cancer cell line MCF-7. Fifty fungal extracts were tested for antibacterial activity in a new antibiotic profile screen called BioMAP; of these, 20 were active against at least one bacterial strain, and one had an unusual pattern of bioactivity against Gram-negative bacteria that suggests a potentially new mode of action. Together our results reveal the importance of exploring novel environments for bioactive fungi, and demonstrate for the first time the taxonomic composition and bioactivity of fungi from sloth hair. PMID:24454729

  3. Bioactive Polyphenols from the Methanol Extract of Cnicus arvensis (L.) Roth Demonstrated Antinociceptive and Central Nervous System Depressant Activities in Mice.

    PubMed

    Rahman, Mahmudur; Khatun, Amina; Nesa, Mst Luthfun; Hossain, Hemayet; Jahan, Ismet Ara

    2015-01-01

    Cnicus arvensis is used by many ethnic groups for inflammation, pain, and other ailments. In this study, reducing sugar, carbohydrate, alkaloid, steroid, tannin, flavonoid, and saponin groups were identified using standard chromogenic method. In high-performance liquid chromatography, vanillic acid and epicatechin were identified in the extract. Antinociceptive test by acetic acid induced writhing inhibition resulted 43.17 and 95.08% inhibition for 100 and 200 mg/kg body weight, comparing with standard diclofenac Na with 74.86% inhibition for 25 mg/kg body weight. In formalin induced paw licking test for antinociceptive activity, the extract inhibited 69.87 and 75.55% licking for 150 and 300 mg/kg body weight comparing with the inhibition (68.56%) of diclofenac Na for 10 mg/kg body weight at first phase. At late phase, the extract showed 73.12 and 87.46% licking comparing with licking inhibition (71.69%) by diclofenac Na at the same dose. In open field test for CNS depressant activity, the extract showed depression of locomotor activity for 150 and 300 mg/kg body weight comparing with diazepam for 10 mg/kg body weight. All results were statistically significant (P < 0.01). The identified polyphenols are reputed for antinociceptive and CNS depressant activity. The present findings support the use of this plant in pain.

  4. Bioactive Polyphenols from the Methanol Extract of Cnicus arvensis (L.) Roth Demonstrated Antinociceptive and Central Nervous System Depressant Activities in Mice

    PubMed Central

    Nesa, Mst. Luthfun; Jahan, Ismet Ara

    2015-01-01

    Cnicus arvensis is used by many ethnic groups for inflammation, pain, and other ailments. In this study, reducing sugar, carbohydrate, alkaloid, steroid, tannin, flavonoid, and saponin groups were identified using standard chromogenic method. In high-performance liquid chromatography, vanillic acid and epicatechin were identified in the extract. Antinociceptive test by acetic acid induced writhing inhibition resulted 43.17 and 95.08% inhibition for 100 and 200 mg/kg body weight, comparing with standard diclofenac Na with 74.86% inhibition for 25 mg/kg body weight. In formalin induced paw licking test for antinociceptive activity, the extract inhibited 69.87 and 75.55% licking for 150 and 300 mg/kg body weight comparing with the inhibition (68.56%) of diclofenac Na for 10 mg/kg body weight at first phase. At late phase, the extract showed 73.12 and 87.46% licking comparing with licking inhibition (71.69%) by diclofenac Na at the same dose. In open field test for CNS depressant activity, the extract showed depression of locomotor activity for 150 and 300 mg/kg body weight comparing with diazepam for 10 mg/kg body weight. All results were statistically significant (P < 0.01). The identified polyphenols are reputed for antinociceptive and CNS depressant activity. The present findings support the use of this plant in pain. PMID:25648520

  5. Chemoprevention of Breast Cancer by Dietary Polyphenols.

    PubMed

    Mocanu, Maria-Magdalena; Nagy, Péter; Szöllősi, János

    2015-12-17

    The review will discuss in detail the effects of polyphenols on breast cancer, including both the advantages and disadvantages of the applications of these natural compounds. First, we focus on the characterization of the main classes of polyphenols and then on in vitro and in vivo experiments carried out in breast cancer models. Since the therapeutic effects of the administration of a single type of polyphenol might be limited because of the reduced bioavailability of these drugs, investigations on combination of several polyphenols or polyphenols with conventional therapy will also be discussed. In addition, we present recent data focusing on clinical trials with polyphenols and new approaches with nanoparticles in breast cancer. Besides the clinical and translational findings this review systematically summarizes our current knowledge about the molecular mechanisms of anti-cancer effects of polyphenols, which are related to apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways and epigenetic mechanisms. At the same time the effects of polyphenols on primary tumor, metastasis and angiogenesis in breast cancer are discussed. The increasing enthusiasm regarding the combination of polyphenols and conventional therapy in breast cancer might lead to additional efforts to motivate further research in this field.

  6. Chromium and Polyphenols from Cinnamon and Insulin Sensitivity

    USDA-ARS?s Scientific Manuscript database

    Factors that improve insulin sensitivity usually lead to improvements in risk factors associated with the metabolic syndrome, diabetes, and cardiovascular diseases. Naturally occurring bioactive compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in ...

  7. A Review of Polyphenolics in Oak Woods

    PubMed Central

    Zhang, Bo; Cai, Jian; Duan, Chang-Qing; Reeves, Malcolm J.; He, Fei

    2015-01-01

    Polyphenolics, which are ubiquitous in plants, currently are among the most studied phytochemicals because of their perceptible chemical properties and antioxidant activity. Oak barrels and their alternatives, which are widely used in winemaking nowadays, contribute polyphenolics to wines and are thought to play crucial roles in the development of wines during aging. This study summarizes the detailed information of polyphenolics in oak woods and their products by examining their structures and discussing their chemical reactions during wine aging. This paper evaluates the most recent developments in polyphenolic chemistry by summarizing their extraction, separation, and their identification by the use of chromatographic and spectral techniques. In addition, this paper also introduces polyphenol bioactive ingredients in other plant foods. PMID:25826529

  8. Isolation of Bioactive Phenazine-1-Carboxamide from the Soil Bacterium Pantoea agglomerans and Study of Its Anticancer Potency on Different Cancer Cell Lines.

    PubMed

    Ali, Hayssam M; El-Shikh, Mohamed S; Salem, Mohamed Z M; M, Muzaheed

    2016-09-01

    The study was designed to investigate the anticancer effect of phenazine-1-carboxamide (PCN) isolated from the bacterium Pantoea agglomerans naturally present in soil. PCN showed cytotoxicity in a dose-dependent manner, and inhibitory concentrations on the cancer cell lines A549, HeLa, and SW480 were between 32 and 40 μM. Significantly increased concentrations of lactate dehydrogenase were found with increasing concentrations of PCN, which resulted in increased destruction of the cancer cell membrane. A significantly increased p53 level was accompanied by the increased production of cytochrome c protein in all cancer cell lines studied. This condition in cells leads to the overexpression of caspase 3 and Bcl-2 family proteins. Upregulation and downregulation of proapoptotic and antiproapoptotic proteins were analyzed for their messenger RNA and protein expression. The activation of caspases and their cleavage compounds paves the way for the complete apoptosis process in cancer cells. We conclude that P. agglomerans-derived PCN acts as an effective anticancer drug or compound.

  9. Study of anticancer activities of muscadine grape phenolics in vitro.

    PubMed

    Yi, Weiguang; Fischer, Joan; Akoh, Casimir C

    2005-11-02

    Muscadine grapes have unique aroma and flavor characteristics. Although a few studies reported high polyphenols content of muscadine grapes, little research has been conducted to evaluate the phenolic compounds bioactivities in any muscadine grape cultivar. The objective of this study was to evaluate the effect of phenolic compounds in muscadine grapes on cancer cell viability and apoptosis. Four cultivars of muscadine (Carlos, Ison, Noble, and Supreme) were assessed in this study. Phenolic compounds were extracted from muscadine skins and further separated into phenolic acids, tannins, flavonols, and anthocyanins using HLB cartridge and LH20 column. Some individual phenolic acids and flavonoids were identified by HPLC. Anthocyanin fractions were more than 90% pure. The effect of different fractions on the viability and apoptosis of two colon cancer cell lines (HT-29 and Caco-2) was evaluated. A 50% inhibition of cancer cell population growth for the two cell lines was observed at concentrations of 1-7 mg/mL for crude extracts. The phenolic acid fractions showed a 50% inhibition at the level of 0.5-3 mg/mL. The greatest inhibitory activity was found in the anthocyanin fraction, with a 50% inhibition at concentrations of approximately 200 microg/mL in HT-29 and 100-300 microg/mL in Caco-2. Anthocyanin fractions also resulted in 2-4 times increase in DNA fragmentation, indicating the induction of apoptosis. These findings suggest that polyphenols from muscadine grapes may have anticancer properties.

  10. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition.

    PubMed

    Etxeberria, Usune; Fernández-Quintela, Alfredo; Milagro, Fermín I; Aguirre, Leixuri; Martínez, J Alfredo; Portillo, María P

    2013-10-09

    Gut microbiota plays a key role in host physiology and metabolism. Indeed, the relevance of a well-balanced gut microbiota composition to an individual's health status is essential for the person's well-being. Currently, investigations are focused on analyzing the effects of pre- and probiotics as new therapeutic tools to counteract the disruption of intestinal bacterial balance occurring in several diseases. Polyphenols exert a wide range of beneficial health effects. However, although specific attention has been paid in recent years to the function of this "biological entity" in the metabolism of polyphenols, less is known about the modulatory capacity of these bioactive compounds on gut microbiota composition. This review provides an overview of the latest investigations carried out with pure polyphenols, extracts rich in polyphenols, and polyphenol-rich dietary sources (such as cocoa, tea, wine, soy products, and fruits) and critically discusses the consequences to gut microbiota composition which are produced.

  11. Conformational stability, spectroscopic and computational studies, HOMO-LUMO, NBO, ESP analysis, thermodynamic parameters of natural bioactive compound with anticancer potential of 2-(hydroxymethyl)anthraquinone.

    PubMed

    Balachandran, V; Karpagam, V; Revathi, B; Kavimani, M; Ilango, G

    2015-11-05

    Natural product drugs play a dominant role in pharmaceutical care. Nature is an attractive source of new therapeutic candidate compounds as a tremendous chemical diversity is found in millions of species of plants, animals, marine organism and micro-organism. A antifungal activity against important opportunist micro-organism and against those involved in superficial mycosis, all from nosocomial origin. The acute in vitro cytotoxicity evaluation of each anthraquinone (AQ) isolated from these bioactive extracts, on a mammalian eukaryotic cell line (Vero cells), allowed us to establish the non-cytotoxic concentration range, which was used to evaluate the anti-microbial effect. A comprehensive ab initio calculation using the DFT/6-31+G(d) level theory showed that 2-(hydroxymethyl)anthraquinone can exist in four possible conformations, which can interchange through the OH group on the five-membered ring. Density functional theory calculations were used to predict the vibrational frequencies and to help in normal mode, assignments. Furthermore, a natural bond orbital analysis was performed describing each hydrogen bond as donor accepter interaction. The Fourier transform infrared spectra (4000-400 cm(-1)) and the Fourier transform Raman spectra (3500-100 cm(-1)) of the HMA in the solid space have been recorded. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The calculated ESP contour map shows the electrophilic and nucleophilic region of the molecule.

  12. Cocoa Polyphenols and Inflammatory Markers of Cardiovascular Disease

    PubMed Central

    Khan, Nasiruddin; Khymenets, Olha; Urpí-Sardà, Mireia; Tulipani, Sara; Garcia-Aloy, Mar; Monagas, María; Mora-Cubillos, Ximena; Llorach, Rafael; Andres-Lacueva, Cristina

    2014-01-01

    Epidemiological studies have demonstrated the beneficial effect of plant-derived food intake in reducing the risk of cardiovascular disease (CVD). The potential bioactivity of cocoa and its polyphenolic components in modulating cardiovascular health is now being studied worldwide and continues to grow at a rapid pace. In fact, the high polyphenol content of cocoa is of particular interest from the nutritional and pharmacological viewpoints. Cocoa polyphenols are shown to possess a range of cardiovascular-protective properties, and can play a meaningful role through modulating different inflammatory markers involved in atherosclerosis. Accumulated evidence on related anti-inflammatory effects of cocoa polyphenols is summarized in the present review. PMID:24566441

  13. Low-dimensional compounds containing bioactive ligands. V: Synthesis and characterization of novel anticancer Pd(II) ionic compounds with quinolin-8-ol halogen derivatives.

    PubMed

    Vranec, Peter; Potočňák, Ivan; Sabolová, Danica; Farkasová, Veronika; Ipóthová, Zuzana; Pisarčíková, Jana; Paulíková, Helena

    2014-02-01

    Three novel palladium(II) complexes, NH2(CH3)2[PdCl2(CQ)] (1) (CQ=5-chloro-7-iodo-quinolin-8-ol), NH2(CH3)2[PdCl2(dClQ)] (2) (dClQ=5,7-dichloro-quinolin-8-ol) and NH2(CH3)2[PdCl2(dBrQ)] (3) (dBrQ=5,7-dibromo-quinolin-8-ol) have been prepared and characterized. Their structures contain square-planar [PdCl2(XQ)](-) complex anions in which deprotonated XQ ligands are coordinated to the Pd atoms via the pyridine nitrogen and the phenolato oxygen atoms, other two cis-positions are occupied by two chlorido ligands. Negative charges of these anions are balanced by uncoordinated dimethylammonium cations. Coordination of the XQ ligands to Pd(II) atom was confirmed by the differences in the stretching ν(OH) and ν(CN) vibrations in the IR spectra of ligands and prepared complexes while bands of aliphatic CH and NH stretching vibrations observed in the spectra of 1-3 confirm the presence of dimethylammonium cations in the complexes. The binding of complexes 1-3 to calf thymus DNA was investigated using UV-visible and fluorescence emission spectrophotometry. The fluorescence spectral results indicate that the complexes can bind to DNA through an intercalative mode. The Stern-Volmer quenching constants obtained from the linear quenching plot are in the 1.04 × 10(4) to 4.35 × 10(4) M(-1) range. The complexes exhibit significant anticancer activity tested on A2780 cells and cisplatin resistant cell line A2780/CP.

  14. Polyphenol profiles of apple juices.

    PubMed

    Kahle, Kathrin; Kraus, Michael; Richling, Elke

    2005-08-01

    Focusing on 17 constituents, the polyphenol profiles of juices freshly made from various dessert (n = 4) and cider apple cultivars (n = 7) as well as commercially available apple juices (n = 24) were investigated using high-performance liquid chromatography-photodiode array detection (HPLC-DAD) and (HPLC)-electrospray ionization-tandem mass spectrometry (ESI(neg)-MS/MS) analyses. Significant differences in the total polyphenol content as well as the profiles of the apple cultivars under study were observed. For dessert apples the total polyphenol content ranged from 154 to 178 mg/L, whereas for 'old' German cider apple cultivars 261-970 mg/L were determined. Boskoop showed the highest (970 mg/L) and Granny Smith the lowest (154 mg/L) polyphenol content of the freshly prepared samples under study. Hydroxycinnamic acids, with chlorogenic acid as dominating constituent, ranged from 57 to 68 mg/L as well as from 134-593 mg/L in juices made from dessert apples and that from cider apples, respectively. Dessert apple juices showed lower contents of dihydrochalcones (10-35 mg/L) and flavan-3-ols (50-95 mg/L) compared to that of cider apples (34-171 mg/L and 70-393 mg/L, respectively). Quercetin and its derivatives were found from 0.4-4 mg/L and 0.4-27 mg/L in juices made from dessert apples and that of cider apples, respectively. Compared with freshly made juices, lower contents of polyphenols were determined in the commercial samples under study. Amounts ranging from 110-459 mg/L, dominated by chlorogenic acid with concentrations from 53-217 mg/L, were determined. Information about cultivar-typical apple polyphenol content and profile is important for bioactivity studies and, consequently, essential for the development of consumer-relevant products with particular nutritional functionalities.

  15. Impacts of selected dietary polyphenols on caramelization in model systems.

    PubMed

    Zhang, Xinchen; Chen, Feng; Wang, Mingfu

    2013-12-15

    This study investigated the impacts of six dietary polyphenols (phloretin, naringenin, quercetin, epicatechin, chlorogenic acid and rosmarinic acid) on fructose caramelization in thermal model systems at either neutral or alkaline pH. These polyphenols were found to increase the browning intensity and antioxidant capacity of caramel. The chemical reactions in the system of sugar and polyphenol, which include formation of polyphenol-sugar adducts, were found to be partially responsible for the formation of brown pigments and heat-induced antioxidants based on instrumental analysis. In addition, rosmarinic acid was demonstrated to significantly inhibit the formation of 5-hydroxymethylfurfural (HMF). Thus this research added to the efforts of controlling caramelization by dietary polyphenols under thermal condition, and provided some evidence to propose dietary polyphenols as functional ingredients to modify the caramel colour and bioactivity as well as to lower the amount of heat-induced contaminants such as 5-hydroxymethylfurfural (HMF). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities.

    PubMed

    Kemperman, R A; Bolca, S; Roger, L C; Vaughan, E E

    2010-11-01

    Polyphenols, ubiquitously present in the food we consume, may modify the gut microbial composition and/or activity, and moreover, may be converted by the colonic microbiota to bioactive compounds that influence host health. The polyphenol content of fruit and vegetables and derived products is implicated in some of the health benefits bestowed on eating fruit and vegetables. Elucidating the mechanisms behind polyphenol metabolism is an important step in understanding their health effects. Yet, this is no trivial assignment due to the diversity encountered in both polyphenols and the gut microbial composition, which is further confounded by the interactions with the host. Only a limited number of studies have investigated the impact of dietary polyphenols on the complex human gut microbiota and these were mainly focused on single polyphenol molecules and selected bacterial populations. Our knowledge of gut microbial genes and pathways for polyphenol bioconversion and interactions is poor. Application of specific in vitro or in vivo models mimicking the human gut environment is required to analyse these diverse interactions. A particular benefit can now be gained from next-generation analytical tools such as metagenomics and metatranscriptomics allowing a wider, more holistic approach to the analysis of polyphenol metabolism. Understanding the polyphenol-gut microbiota interactions and gut microbial bioconversion capacity will facilitate studies on bioavailability of polyphenols in the host, provide more insight into the health effects of polyphenols and potentially open avenues for modulation of polyphenol bioactivity for host health.

  17. Beta-conglycinins among sources of bioactives in soybean hydrolysates that inhibited leukemia cells in vitro

    USDA-ARS?s Scientific Manuscript database

    Soybean is a complex matrix containing several potentially bioactive components. The objective was to build a statistical model to predict the anticancer potential of soybean based on the composition of bioactive components in soybean hydrolysates produced by simulated gastrointestinal digestion. ...

  18. Natural Polyphenols for Prevention and Treatment of Cancer.

    PubMed

    Zhou, Yue; Zheng, Jie; Li, Ya; Xu, Dong-Ping; Li, Sha; Chen, Yu-Ming; Li, Hua-Bin

    2016-08-22

    There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.

  19. Natural Polyphenols for Prevention and Treatment of Cancer

    PubMed Central

    Zhou, Yue; Zheng, Jie; Li, Ya; Xu, Dong-Ping; Li, Sha; Chen, Yu-Ming; Li, Hua-Bin

    2016-01-01

    There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years. PMID:27556486

  20. Designing food structure and composition to enhance nutraceutical bioactivity to support cancer inhibition.

    PubMed

    McClements, David Julian; Xiao, Hang

    2017-10-01

    Many types of bioactive molecules found in foods ("nutraceuticals") have been shown to exert anticancer activities, including curcumin, resveratrol, polyphenols, sulforaphane, anthocyanins, genistein, quercetin and lycopene. The potential health benefits of nutraceuticals are often not realized because of their poor water solubility, chemical instability, adverse taste profile, and low oral bioavailability. Carefully designed food matrices are being developed to overcome these problems. Nutraceuticals can be isolated from their natural environment, and then incorporated into functional foods, often with the help of delivery systems (such as emulsions, nanoemulsions, liposomes, biopolymer nanoparticles, and microgels). Alternatively, the stability and bioavailability of nutraceuticals can be improved by leaving them in their natural environment, but ingesting them with a specially designed "excipient food". The structure and composition of an excipient food is controlled so as to enhance the bioaccessibilty, stability, and absorption of the nutraceuticals in the gastrointestinal tract. This review article provides an overview of some of the most important anticancer nutraceuticals found in foods, then highlights the main factors impacting their bioaccessibility, absorption and transformation. Finally, it describes different types of delivery systems and excipient systems that can be used to improve the overall bioavailability of anticancer nutraceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Role of peptide primary sequence in polyphenol-protein recognition: an example with neurotensin.

    PubMed

    Richard, T; Vitrac, X; Merillon, J M; Monti, J P

    2005-11-30

    Polyphenols are known for their impact on health and one of their major properties is the formation of complexes with proteins. To investigate the involvement of polyphenol-protein complexes in health, the interactions between bioactive polyphenols and neurotensin were examined by structural NMR and molecular modeling. Neurotensin is a linear bioactive tridecapeptide and polyphenols seem to affect the NT metabolism. We studied the polyphenols resveratrol and its glucoside the piceid in order to observe the possible role of glucose group and the penta-O-galloyl-D-glucopyranose (PGG). NMR data and molecular modeling showed that interaction occurred with the three polyphenols involving hydrophobic stacking and hydrogen bonds. Moreover, the peptide primary sequence plays a role in the specificity of complex formation.

  2. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review.

    PubMed

    Sanjeewa, Kalu Kapuge Asanka; Kim, Eun-A; Son, Kwang-Tae; Jeon, You-Jin

    2016-09-01

    Currently, natural ingredients are becoming more attractive for the industries such as functional food, nutraceuticals, cosmeceutical and pharmaceutical industries as people starting to believe naturally occurring compounds are safer to humans than artificial compounds. Seaweeds are one of the most interesting organisms found in oceans around the earth, which are carrying great ecological importance and contribute to increase the biodiversity of ecosystems where they were originated and habitat. Within last few decades, discovery of secondary metabolites with biological activities from seaweeds has been significantly increased. Further, the unique secondary metabolites isolated from seaweeds including polysaccharides, carotenoids and polyphenols possess range of bioactive properties that make them potential ingredient for many industrial applications. Among those groups of compounds phlorotannins isolated from brown seaweeds have shown interesting bioactive properties including anti-cancer, anti-inflammation, anti-oxidant, anti-allergic, anti-wrinkling and hair growth promotion properties. Moreover, these properties associated with phlorotannins make them an ideal compounds to use as a functional ingredient in cosmeceutical products. Up to now no report has been reviewed about discuss properties of phlorotannins related to the cosmeceutical application. In the present review primary attention is given to the collect scientific data published about bioactive properties of brown algal phlorotannins related to the cosmeceutical industry.

  3. Gut metabotypes govern health effects of dietary polyphenols.

    PubMed

    Bolca, Selin; Van de Wiele, Tom; Possemiers, Sam

    2013-04-01

    Polyphenols are thought to be responsible for some of the health effects conferred by a diet rich in fruit and vegetables. Both the formation of bioactive polyphenol-derived metabolites and the modulation of colonic microbiota contribute to these health benefits. Therefore, one cannot infer biological responses from dietary intake records without considering polyphenol-microbiota interactions. However, the latter are complex and subject to large interindividual variability, leading to different polyphenol-metabolizing phenotypes or 'metabotypes'. Based on accurate measurements of intake, exposure and effect on carefully selected samples, the physiological relevance of dietary polyphenols can be evaluated for each metabotype. Ultimately, this will lead to predictive modeling and the development of (personalized) functional foods and other nutraceuticals with maximized health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Polyphenols and health: what compounds are involved?

    PubMed

    Del Rio, D; Costa, L G; Lean, M E J; Crozier, A

    2010-01-01

    On the basis of prospective, cross-sectional and intervention studies linking polyphenols to human health, several experimental papers in the literature have tried to evaluate the molecular mechanisms involved in their bioactivity. Polyphenols are reported to in vitro inhibit cancer cell proliferation, reduce vascularisation, protect neurons, stimulate vasodilation and improve insulin secretion, but are often studied as aglycones or as sugar conjugates and at non-physiological concentration. However, it is now well established that polyphenols undergo substantial metabolism after being ingested by humans in dietary relevant amount and that concentrations of plasma metabolites after a normal dietary intake rarely exceed nmol/L. This viewpoint intends to highlight that uncritical judgements made on the basis of the published literature, particularly about toxicity and bioactivity, may sometimes have been misled and misleading and to conclude that i) bioavailability values reported in the literature for phenolic compounds should be strongly reconsidered in the light of the large number of newly identified circulating and excreted metabolites, with particular attention to colonic ring-fission products which are obviously contributing much more than expected to the percentage of their absorption; ii) it is phenolic metabolites, formed in the small intestine and hepatic cells, and low molecular weight catabolic products of the colonic microflora to travel around the human body in the circulatory system or reach body tissues to elicit bioactive effects. Understanding these compounds certainly carries interest for drug-discovery but also for dietary prevention of disease.

  5. Polyphenols and Sunburn

    PubMed Central

    Saric, Suzana; Sivamani, Raja K.

    2016-01-01

    Polyphenols are antioxidant molecules found in many foods such as green tea, chocolate, grape seeds, and wine. Polyphenols have antioxidant, anti-inflammatory, and antineoplastic properties. Growing evidence suggests that polyphenols may be used for the prevention of sunburns as polyphenols decrease the damaging effects of ultraviolet A (UVA) and ultraviolet B (UVB) radiation on the skin. This review was conducted to examine the evidence for use of topically and orally ingested polyphenols in prevention of sunburns. The PubMed database was searched for studies that examined polyphenols and its effects on sunburns. Of the 27 studies found, 15 met the inclusion criteria. Seven studies were conducted on human subjects and eight on animals (mice and rats). Eleven studies evaluated the effects of topical polyphenols, two studies examined ingested polyphenols, and two studies examined both topical and ingested polyphenols. Polyphenol sources included the following plant origins: green tea, white tea, cocoa, Romanian propolis (RP), Calluna vulgaris (Cv), grape seeds, honeybush, and Lepidium meyenii (maca). Eight studies examined green tea. Overall, based on the studies, there is evidence that polyphenols in both oral and topical form may provide protection from UV damage and sunburn, and thus are beneficial to skin health. However, current studies are limited and further research is necessary to evaluate the efficacy, mechanism of action, and potential side effects of various forms and concentrations of polyphenols. PMID:27618035

  6. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-08-29

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed.

  7. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update

    PubMed Central

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C.; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods—including fruits, vegetables, tea, wine, as well as other dietary supplements—and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  8. Dietary Polyphenols in Prevention and Treatment of Prostate Cancer

    PubMed Central

    Lall, Rahul K.; Syed, Deeba N.; Adhami, Vaqar M.; Khan, Mohammad Imran; Mukhtar, Hasan

    2015-01-01

    Prostate cancer is the most prevalent disease affecting males in many Western countries, with an estimated 29,480 deaths in 2014 in the US alone. Incidence rates for prostate cancer deaths have been decreasing since the early 1990s in men of all races/ethnicities, though they remain about 60% higher in African Americans than in any other group. The relationship between dietary polyphenols and the prevention of prostate cancer has been examined previously. Although results are sometimes inconsistent and variable, there is a general agreement that polyphenols hold great promise for the future management of prostate cancer. Various dietary components, including polyphenols, have been shown to possess anti-cancer properties. Generally considered as non-toxic, dietary polyphenols act as key modulators of signaling pathways and are therefore considered ideal chemopreventive agents. Besides possessing various anti-tumor properties, dietary polyphenols also contribute to epigenetic changes associated with the fate of cancer cells and have emerged as potential drugs for therapeutic intervention. Polyphenols have also been shown to affect post-translational modifications and microRNA expressions. This article provides a systematic review of the health benefits of selected dietary polyphenols in prostate cancer, especially focusing on the subclasses of polyphenols, which have a great effect on disease prevention and treatment. PMID:25654230

  9. Dietary polyphenols and type 2 diabetes: current insights and future perspectives.

    PubMed

    Xiao, J B; Högger, P

    2015-01-01

    Significant evidence suggests that polyphenol-rich diets have the ability to protect against diabetes. Since several previous reviews focused on the nutrition and health effects including type 2 diabetes of polyphenols in 2007-2008, a number of related original publications have been pulished in this field. This review summarizes important advances related to influence of dietary polyphenols and polyphenol-rich diets on preventing and managing type 2 diabetes, as well as diabetes-mediated changes in bioactivities of dietary polyphenols. It appears that anthocyanins or anthocyanin-rich food intake is related to the risk of type 2 diabetes, but there is no association for other polyphenol subclasses. It is discussed that procyanidins are more active when administered individually than when mixed with food. The benefits of dietary polyphenols for type 2 diabetes can be summarized as: protection of pancreatic β-cells against glucose toxicity, anti-inflammatory and antioxidant effects, inhibition of α-amylases or α- glucosidases and thus decrease of starch digestion, and inhibition of advanced glycation end products formation. Moreover, type 2 diabetes also significantly influences the benefits of dietary polyphenols, although there are very limited studies have been conducted so far. How type 2 diabetes impacts the pharmacology of dietary polyphenols is not well understood. Comprehension of type 2 diabetes-mediated changes in pharmacokinetics and bioactivity of dietary polyphenols might lead to improve the benefits of these phytochemicals and subsequent clinical outcomes for type 2 diabetics.

  10. EGCG, GREEN TEA POLYPHENOLS AND THEIR SYNTHETIC ANALOGS AND PRODRUGS FOR HUMAN CANCER PREVENTION AND TREATMENT

    PubMed Central

    Chen, Di; Wan, Sheng Biao; Yang, Huanjie; Yuan, Jian; Chan, Tak Hang; Dou, Q. Ping

    2012-01-01

    Cancer-preventive effects of tea polyphenols, especially epigallocatechin-3-gallate (EGCG), have been demonstrated by epidemiological, preclinical, and clinical studies. Green tea polyphenols such as EGCG have the potential to affect multiple biological pathways, including gene expression, growth factor-mediated pathways, the mitogen-activated protein kinase-dependent pathway, and the ubiquitin/proteasome degradation pathway. Therefore, identification of the molecular targets of EGCG should greatly facilitate a better understanding of the mechanisms underlying its anticancer and cancer-preventive activities. Performing structure–activity relationship (SAR) studies could also greatly enhance the discovery of novel tea polyphenol analogs as potential anticancer and cancer-preventive agents. In this chapter, we review the relevant literature as it relates to the effects of natural and synthetic green tea polyphenols and EGCG analogs on human cancer cells and their potential molecular targets as well as their antitumor effects. We also discuss the implications of green tea polyphenols in cancer prevention. PMID:21404918

  11. Anti-Cancer Effects of Green Tea by Either Anti- or Pro- Oxidative Mechanisms.

    PubMed

    Hayakawa, Sumio; Saito, Kieko; Miyoshi, Noriyuki; Ohishi, Tomokazu; Oishi, Yumiko; Miyoshi, Mamoru; Nakamura, Yoriyuki

    2016-01-01

    Tea derived from the leaves and buds of Camellia sinensis (Theaceae) is consumed worldwide. Green tea contains various components with specific health-promoting effects, and is believed to exert protective effects against diseases including cancer, diabetes and hepatitis, as well as obesity. Of the various tea components, the polyphenol catechins have been the subject of extensive investigation and among the catechins, (-)-epigallocatechin gallate has the strongest bioactivity in most cases. Our research group has postulated that hepatocyte nuclear factor-4α, sterol regulatory element-binding proteins, and tumor necrosis factor-α are targets of green tea constituents including (-)-epigallocatechin gallate for their anti-diabetes, anti-obesity, and anti-hepatitis effects, respectively. Published papers were reviewed to determine whether the observed changes in these factors can be correlated with anti-cancer effects of green tea. Two major action mechanisms of (-)-epigallocatechin gallate have been proposed; one associated with its anti-oxidative properties and the other with its pro-oxidative activity. When reactive oxygen species are assumed to be involved, our findings that (-)-epigallocatechin gallate down- regulated hepatocyte nuclear factor-4α, sterol regulatory element-binding proteins, and tumor necrosis factor-α may explain the anti-cancer effect of green tea as well. However, further studies are required to elucidate which determinant directs (-)-epigallocatechin gallate action as an anti-oxidant or a pro-oxidant for favorable activity.

  12. Assessment of Olea europaea L. fruit extracts: Phytochemical characterization and anticancer pathway investigation.

    PubMed

    Maalej, Amina; Bouallagui, Zouhaier; Hadrich, Fatma; Isoda, Hiroko; Sayadi, Sami

    2017-03-27

    Olea europaea L. has been widely used as an advantageous rich source of bioactive compounds of high economic value leading to its use in pharmaceutical, cosmetic, and agriculture industries. Ethanolic extracts of olive fruits from three different cultivars (OFE) were studied for their phytochemical contents and were investigated for antioxidant activities and anticancer potential. Major polyphenols detected in these extracts were tyrosol, hydroxytyrosol, oleuropein, rutin, quercetin and glucoside forms of luteolin and apigenin. All these compounds have shown to significantly contribute to the antioxidant activity of OFE, which was evaluated by DPPH and ABTS assays. Proliferation of hepatic and colon cancer cells, HepG2 and Caco-2, were shown to be sensitive to OFE with IC50 less than 1.6mg/ml for all tested extracts. Moreover, flow cytometry analysis showed that OFE induced cell cycle arrest in the S-phase within both HepG2 and Caco-2 cells. This has triggered a cell death mechanism as shown by DNA fragmentation, expression of p53 and phosphorylation level of Akt and Erk proteins. Interestingly, these extracts could be further used as a potential source of natural compounds with both antioxidant and anticancer effects.

  13. Polyphenols and antioxidant capacity: Rice versus other common cereal grains

    USDA-ARS?s Scientific Manuscript database

    The consumption of whole cereal grains has been strongly recommended by many governmental and non-profit health organizations based on epidemiological studies associating whole-grain consumption with reduced incidences of chronic diseases. Bioactive phytochemicals, such as polyphenolic compounds, ri...

  14. New insights into seaweed polyphenols on glucose homeostasis.

    PubMed

    Murugan, Amarchand Chordia; Karim, Md Rezaul; Yusoff, Mashitah Binti Mohd; Tan, Suat Hian; Asras, Mohd Fazli Bin Farida; Rashid, Shah Samiur

    2015-08-01

    Polyphenol-rich marine macroalgae are gaining dietary importance due to their influence over diabetes mellitus and the role as a vital source of high-value nutraceuticals. Their assorted beneficial effects on human health include competitive inhibition of digestive enzymes, varying the activity of hepatic glucose-metabolizing enzymes, lowering the plasma glucose levels, and lipid peroxidation, delaying the aging process. In this paper, we review the health beneficial effects of polyphenols and phlorotannins from brown seaweeds with special emphasis on their inhibitory effects on carbohydrate-metabolizing enzymes. A survey of literature from databases such as Sciencedirect, Scopus, Pubmed, Springerlink, and Google Scholar from the year 1973 to 2013 was done to bring together the information relating to drug discovery from brown seaweeds as a source for diabetes treatment. Over the past two decades, 20 different bioactive polyphenols/phlorotannins have been isolated and studied from 10 different brown algae. Discussion of the positive effect on the inhibition of enzymes metabolizing carbohydrates in both in vitro and in vivo experiments are included. Despite the recent advancements in isolating bioactive compounds from seaweeds with potential health benefit or pharmaceutical behavior, studies on the polyphenol effectiveness on glucose homeostasis in human beings are very few in response to their functional characterization. Added research in this area is required to confirm the close connection of polyphenol rich seaweed-based diet consumption with glucose homeostasis and the exciting possibility of prescribing polyphenols to treat the diabetes pandemic.

  15. Major Australian tropical fruits biodiversity: bioactive compounds and their bioactivities.

    PubMed

    Pierson, Jean T; Dietzgen, Ralf G; Shaw, Paul N; Roberts-Thomson, Sarah J; Monteith, Gregory R; Gidley, Michael J

    2012-03-01

    The plant kingdom harbours many diverse bioactive molecules of pharmacological relevance. Temperate fruits and vegetables have been highly studied in this regard, but there have been fewer studies of fruits and vegetables from the tropics. As global consumers demand and are prepared to pay for new appealing and exotic foods, tropical fruits are now being more intensively investigated. Polyphenols and major classes of compounds like flavonoids or carotenoids are ubiquitously present in these fruits, as they are in the temperate ones, but particular classes of compounds are unique to tropical fruits and other plant parts. Bioactivity studies of compounds specific to tropical fruit plants may lead to new drug discoveries, while the synergistic action of the wide range of diverse compounds contained in plant extracts underlies nutritional and health properties of tropical fruits and vegetables. The evidence for in vitro and animal bioactivities is a strong indicator of the pharmacological promise shown in tropical fruit plant biodiversity. In this review, we will discuss both the occurrence of potential bioactive compounds isolated and identified from a selection of tropical fruit plants of importance in Australia, as well as recent studies of bioactivity associated with such fruits and other fruit plant parts.

  16. Targeting the Epigenome with Bioactive Food Components for Cancer Prevention

    PubMed Central

    Ong, Thomas Prates; Moreno, Fernando Salvador; Ross, Sharon Ann

    2012-01-01

    Epigenetic processes participate in cancer development and likely influence cancer prevention. Global DNA hypomethylation, gene promoter hypermethylation and aberrant histone post-translational modifications are hallmarks of neoplastic cells which have been associated with genomic instability and altered gene expression. Because epigenetic deregulation occurs early in carcinogenesis and is potentially reversible, intervention strategies targeting the epigenome have been proposed for cancer prevention. Bioactive food components (BFCs) with anticancer potential, including folate, polyphenols, selenium, retinoids, fatty acids, isothiocyanates and allyl compounds, influence DNA methylation and histone modification processes. Such activities have been shown to affect the expression of genes involved in cell proliferation, death and differentiation that are frequently altered in cancer. Although the epigenome represents a promising target for cancer prevention with BFCs, few studies have addressed the influence of dietary components on these mechanisms in vivo, particularly on the phenotype of humans, and thus the exact mechanisms whereby diet mediates an effect on cancer prevention remains unclear. Primary factors that should be elucidated include the effective doses and dose timing of BFCs to attain epigenetic effects. Because diet-epigenome interactions are likely to occur in utero, the impact of early-life nutrition on cancer risk programming should be further investigated. PMID:22353664

  17. Targeting the epigenome with bioactive food components for cancer prevention.

    PubMed

    Ong, Thomas Prates; Moreno, Fernando Salvador; Ross, Sharon Ann

    2011-01-01

    Epigenetic processes participate in cancer development and likely influence cancer prevention. Global DNA hypomethylation, gene promoter hypermethylation and aberrant histone post-translational modifications are hallmarks of neoplastic cells which have been associated with genomic instability and altered gene expression. Because epigenetic deregulation occurs early in carcinogenesis and is potentially reversible, intervention strategies targeting the epigenome have been proposed for cancer prevention. Bioactive food components (BFCs) with anticancer potential, including folate, polyphenols, selenium, retinoids, fatty acids, isothiocyanates and allyl compounds, influence DNA methylation and histone modification processes. Such activities have been shown to affect the expression of genes involved in cell proliferation, death and differentiation that are frequently altered in cancer. Although the epigenome represents a promising target for cancer prevention with BFCs, few studies have addressed the influence of dietary components on these mechanisms in vivo, particularly on the phenotype of humans, and thus the exact mechanisms whereby diet mediates an effect on cancer prevention remains unclear. Primary factors that should be elucidated include the effective doses and dose timing of BFCs to attain epigenetic effects. Because diet-epigenome interactions are likely to occur in utero, the impact of early-life nutrition on cancer risk programming should be further investigated.

  18. Selected attributes of polyphenols in targeting oxidative stress in cancer.

    PubMed

    Stepanic, Visnja; Gasparovic, Ana Cipak; Troselj, Koraljka Gall; Amic, Dragan; Zarkovic, Neven

    2015-01-01

    Various plant polyphenols have been recognized as redox active molecules. This review discusses some aspects of polyphenols' modes of redox action, corresponding structure-activity relationships and their potential to be applied as adjuvants to conventional cytostatic drugs. Polyphenols' antioxidative capacity has been discussed as the basis for targeting oxidative stress and, consequently, for their chemopreventive and anti-inflammatory activities, which may alleviate side-effects on normal cells arising from oxidative stress caused by cytostatics. Some polyphenols may scavenge various free radicals directly, and some of them are found to suppress free radical production through inhibiting NADPH oxidases and xanthine oxidase. Additionally, polyphenols may increase antioxidative defense in normal cells by increasing the activity of NRF2, transcription factor for many protective proteins. The activation of the NRF2-mediated signaling pathways in cancer cells results in chemoresistance. Luteolin, apigenin and chrysin reduce NRF2 expression and increase the chemosensitivity of cancer cells to cytostatic drugs. Their common 5,7-dihydroxy-4H-chromen-4-one moiety, may represent a starting pharmacophore model for designing novel, non-toxic compounds for overcoming chemoresistance. However, prooxidative activity of some polyphenols (quercetin, EGCG) may also provide a basis for their use as chemotherapeutic adjuvants since they may enhance cytotoxic effects of cytostatics selectively on cancer cells. However, considerable caution is needed in applying polyphenols to anticancer therapy, since their effects greatly depend on the applied dose, the cell type, exposure time and environmental conditions.

  19. The impact of polyphenols on Bifidobacterium growth.

    PubMed

    Gwiazdowska, Daniela; Juś, Krzysztof; Jasnowska-Małecka, Joanna; Kluczyńska, Katarzyna

    2015-01-01

    Polyphenols are a common group of plant based bioactive compounds, that can affect human health because of their antioxidant and antimicrobial properties as well as free-radical scavenging activity. An increasing interest is observed in the interaction between polyphenols and microbiota occurring in food and the human gut. The aim of the work presented here, was to evaluate the effect of some polyphenolic compounds on the growth of two strains of Bifidobacterium: B. adolescentis and B. bifidum. The influence of some flavonoids: naringinin, hesperidin, rutin, quercetin as well as phenolic acids: gallic, caffeic, p-coumaric, ferulic, chlorogenic, vanillic and sinapic was determined by a 96-well microtiter plate assay. In the experiments the effect of three different concentrations of polyphenols: 2, 20 and 100 µg/ml on the growth of Bifidobacterium strains was investigated. All tested compounds influenced the growth of the examined bacteria. Both stimulatory and inhibitory effects were observed in comparison to the positive control. The strongest impact on the growth of bifidobacteria was observed during the first hours of incubation. The constant inhibitory effect was observed for hesperidin and quercetin addition and was dose-dependent. B. bifidum showed a stronger dependence on phenolic acids content in the medium than B. adolescentis during the first hours of incubation.

  20. Extraction and analysis of polyphenols: recent trends.

    PubMed

    Ajila, C M; Brar, S K; Verma, M; Tyagi, R D; Godbout, S; Valéro, J R

    2011-09-01

    In recent years, there has been an increasing interest in diets rich in fruits and vegetables and this is mostly due to their presumed role in the prevention of various degenerative diseases, such as cancer and cardiovascular diseases. This is mainly due to the presence of bioactive compounds, such as polyphenols, carotenoids, among others. Polyphenols are one of the main classes of secondary metabolites derived from plants offering several health benefits resulting in their use as functional foods. Prior to the use of these polyphenols in specific applications, such as food, pharmaceutical, and the cosmetic industries, they need to be extracted from the natural matrices, then analyzed and characterized. The development of an efficient procedure for the extraction, proper analysis, and characterization of phenolic compounds from different sources is a challenging task due to the structural diversity of phenolic compounds, a complex matrix, and their interaction with other cellular components. In this light, this review discusses different methods of extraction, analysis, and the structural characterization of polyphenolic compounds.

  1. Efficient sorption of polyphenols to soybean flour enables natural fortification of foods.

    PubMed

    Roopchand, Diana E; Grace, Mary H; Kuhn, Peter; Cheng, Diana M; Plundrich, Nathalie; Poulev, Alexander; Howell, Amy; Fridlender, Bertold; Lila, Mary Ann; Raskin, Ilya

    2012-04-15

    The present study demonstrated that defatted soybean flour (DSF) can sorb polyphenols from blueberry and cranberry juices while separating them from sugars. Depending on DSF concentration and juice dilution, the concentration of blueberry anthocyanins and total polyphenols sorbed to DSF ranged from 2 - 22 mg/g and 10 - 95 mg/g, respectively while the concentration of anthocyanins and proanthocyanidins in cranberry polyphenol-enriched DSF ranged from 2.5 - 17 mg/g and 21 - 101 mg/g, respectively. Blueberry polyphenols present in one serving of fresh blueberries (73g) were delivered in just 1.4 g of blueberry polyphenol-enriched DSF. Similarly, one gram of cranberry polyphenol-enriched DSF delivered the amount of proanthocyanidins available in three 240 ml servings of cranberry juice cocktail. The concentration of blueberry anthocyanins and total polyphenols eluted from DSF remained constant after 22 weeks of incubation at 37°C, demonstrating the high stability of the polyphenol-DSF matrix. LC-MS analysis of eluates confirmed DSF retained major cranberry and blueberry polyphenols remained intact. Blueberry polyphenol-enriched DSF exhibited significant hypoglycemic activities in C57bl/6J mice, and cranberry polyphenol-enriched DSF showed anti-microbial and anti-UTI activities in vitro, confirming its efficacy. The described sorption process provides a means to create protein-rich food ingredients containing concentrated plant bioactives without excess sugars, fats and water that can be incorporated in a variety of scientifically validated functional foods and dietary supplements.

  2. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence

    PubMed Central

    Merino, Jordi; Fitó, Montse

    2017-01-01

    Dietary polyphenols come mainly from plant-based foods including fruits, vegetables, whole grains, coffee, tea, and nuts. Polyphenols may influence glycemia and type 2 diabetes (T2D) through different mechanisms, such as promoting the uptake of glucose in tissues, and therefore improving insulin sensitivity. This review aims to summarize the evidence from clinical trials and observational prospective studies linking dietary polyphenols to prediabetes and T2D, with a focus on polyphenol-rich foods characteristic of the Mediterranean diet. We aimed to describe the metabolic biomarkers related to polyphenol intake and genotype-polyphenol interactions modulating the effects on T2D. Intakes of polyphenols, especially flavan-3-ols, and their food sources have demonstrated beneficial effects on insulin resistance and other cardiometabolic risk factors. Several prospective studies have shown inverse associations between polyphenol intake and T2D. The Mediterranean diet and its key components, olive oil, nuts, and red wine, have been inversely associated with insulin resistance and T2D. To some extent, these associations may be attributed to the high amount of polyphenols and bioactive compounds in typical foods conforming this traditional dietary pattern. Few studies have suggested that genetic predisposition can modulate the relationship between polyphenols and T2D risk. In conclusion, the intake of polyphenols may be beneficial for both insulin resistance and T2D risk.

  3. Bioactivities and Health Benefits of Wild Fruits

    PubMed Central

    Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin

    2016-01-01

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits. PMID:27527154

  4. Bioactivities and Health Benefits of Wild Fruits.

    PubMed

    Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin

    2016-08-04

    Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits.

  5. Anticancer Properties of Capsaicin Against Human Cancer.

    PubMed

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities.

  6. Polyphenols as Modulators of Aquaporin Family in Health and Disease

    PubMed Central

    Fiorentini, Diana; Zambonin, Laura; Vieceli Dalla Sega, Francesco; Hrelia, Silvana

    2015-01-01

    Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy. PMID:26346093

  7. Polyphenols as Modulators of Aquaporin Family in Health and Disease.

    PubMed

    Fiorentini, Diana; Zambonin, Laura; Dalla Sega, Francesco Vieceli; Hrelia, Silvana

    2015-01-01

    Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  8. Bioactive Peptides

    PubMed Central

    Daliri, Eric Banan-Mwine; Oh, Deog H.; Lee, Byong H.

    2017-01-01

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development. PMID:28445415

  9. Bioactive Peptides.

    PubMed

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  10. Anticancer chemotherapy

    SciTech Connect

    Weller, R.E.

    1988-10-01

    Despite troubled beginnings, anticancer chemotherapy has made significant contribution to the control of cancer in man, particularly within the last two decades. Early conceptual observations awakened the scientific community to the potentials of cancer chemotherapy. There are now more than 50 agents that are active in causing regression of clinical cancer. Chemotherapy's major conceptual contributions are two-fold. First, there is now proof that patients with overt metastatic disease can be cured, and second, to provide a strategy for control of occult metastases. In man, chemotherapy has resulted in normal life expectancy for some patients who have several types of metastatic cancers, including choriocarcinoma, Burkitt's lymphomas, Wilm's tumor, acute lymphocytic leukemia, Hodgkins disease, diffuse histiocytic lymphoma and others. Anticancer chemotherapy in Veterinary medicine has evolved from the use of single agents, which produce only limited remissions, to the concept of combination chemotherapy. Three basic principles underline the design of combination chemotherapy protocols; the fraction of tumor cell killed by one drug is independent of the fraction killed by another drug; drugs with different mechanisms of action should be chosen so that the antitumor effects will be additive; and since different classes of drugs have different toxicities the toxic effects will not be additive.

  11. Polyphenols and Glycemic Control

    PubMed Central

    Kim, Yoona; Keogh, Jennifer B.; Clifton, Peter M.

    2016-01-01

    Growing evidence from animal studies supports the anti-diabetic properties of some dietary polyphenols, suggesting that dietary polyphenols could be one dietary therapy for the prevention and management of Type 2 diabetes. This review aims to address the potential mechanisms of action of dietary polyphenols in the regulation of glucose homeostasis and insulin sensitivity based on in vitro and in vivo studies, and to provide a comprehensive overview of the anti-diabetic effects of commonly consumed dietary polyphenols including polyphenol-rich mixed diets, tea and coffee, chocolate and cocoa, cinnamon, grape, pomegranate, red wine, berries and olive oil, with a focus on human clinical trials. Dietary polyphenols may inhibit α-amylase and α-glucosidase, inhibit glucose absorption in the intestine by sodium-dependent glucose transporter 1 (SGLT1), stimulate insulin secretion and reduce hepatic glucose output. Polyphenols may also enhance insulin-dependent glucose uptake, activate 5′ adenosine monophosphate-activated protein kinase (AMPK), modify the microbiome and have anti-inflammatory effects. However, human epidemiological and intervention studies have shown inconsistent results. Further intervention studies are essential to clarify the conflicting findings and confirm or refute the anti-diabetic effects of dietary polyphenols. PMID:26742071

  12. Polyphenols and Glycemic Control.

    PubMed

    Kim, Yoona; Keogh, Jennifer B; Clifton, Peter M

    2016-01-05

    Growing evidence from animal studies supports the anti-diabetic properties of some dietary polyphenols, suggesting that dietary polyphenols could be one dietary therapy for the prevention and management of Type 2 diabetes. This review aims to address the potential mechanisms of action of dietary polyphenols in the regulation of glucose homeostasis and insulin sensitivity based on in vitro and in vivo studies, and to provide a comprehensive overview of the anti-diabetic effects of commonly consumed dietary polyphenols including polyphenol-rich mixed diets, tea and coffee, chocolate and cocoa, cinnamon, grape, pomegranate, red wine, berries and olive oil, with a focus on human clinical trials. Dietary polyphenols may inhibit α-amylase and α-glucosidase, inhibit glucose absorption in the intestine by sodium-dependent glucose transporter 1 (SGLT1), stimulate insulin secretion and reduce hepatic glucose output. Polyphenols may also enhance insulin-dependent glucose uptake, activate 5' adenosine monophosphate-activated protein kinase (AMPK), modify the microbiome and have anti-inflammatory effects. However, human epidemiological and intervention studies have shown inconsistent results. Further intervention studies are essential to clarify the conflicting findings and confirm or refute the anti-diabetic effects of dietary polyphenols.

  13. Bromophenols in Marine Algae and Their Bioactivities

    PubMed Central

    Liu, Ming; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals. PMID:21822416

  14. Polyphenols delivery by polymeric materials: challenges in cancer treatment.

    PubMed

    Vittorio, Orazio; Curcio, Manuela; Cojoc, Monica; Goya, Gerardo F; Hampel, Silke; Iemma, Francesca; Dubrovska, Anna; Cirillo, Giuseppe

    2017-11-01

    Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.

  15. Differential protective effects of red wine polyphenol extracts (RWEs) on colon carcinogenesis.

    PubMed

    Mazué, Frédéric; Delmas, Dominique; Murillo, Genoveva; Saleiro, Diana; Limagne, Emeric; Latruffe, Norbert

    2014-04-01

    Various epidemiological studies have shown that a regular and moderate consumption of red wine is correlated with a decreased relative risk of developing coronary heart disease and cancer. These health benefits are commonly attributed to high contents of polyphenols, particularly resveratrol, representing important sources of antioxidants. However, resveratrol does not seem to be the only bioactive compound present in the wine which contains numerous other polyphenols. The present study investigates the efficiency of red wine extracts (RWEs), containing different polyphenols, on colon cancer cell proliferation in vitro and on colonic aberrant crypt foci (ACF) in vivo. Proliferation, cell cycle analysis and incidence of ACF were monitored to examine the effects of RWEs. RWEs derived from a long vinification process exhibit superior anti-proliferative activity in colon cancer cells and prevent the appearance of ACF in mice. Interestingly, quercetin and resveratrol, representing two major bio-active polyphenols, exhibit synergistic anti-proliferative effects. These data suggest that the efficacy of RWEs on colon carcinogenesis may depend on the polyphenolic content, synergistic interaction of bio-active polyphenols and modulation of cellular uptake of polyphenols.

  16. Resources and Biological Activities of Natural Polyphenols

    PubMed Central

    Li, An-Na; Li, Sha; Zhang, Yu-Jie; Xu, Xiang-Rong; Chen, Yu-Ming; Li, Hua-Bin

    2014-01-01

    The oxidative stress imposed by reactive oxygen species (ROS) plays an important role in many chronic and degenerative diseases. As an important category of phytochemicals, phenolic compounds universally exist in plants, and have been considered to have high antioxidant ability and free radical scavenging capacity, with the mechanism of inhibiting the enzymes responsible for ROS production and reducing highly oxidized ROS. Therefore, phenolic compounds have attracted increasing attention as potential agents for preventing and treating many oxidative stress-related diseases, such as cardiovascular diseases, cancer, ageing, diabetes mellitus and neurodegenerative diseases. This review summarizes current knowledge of natural polyphenols, including resource, bioactivities, bioavailability and potential toxicity. PMID:25533011

  17. Resources and biological activities of natural polyphenols.

    PubMed

    Li, An-Na; Li, Sha; Zhang, Yu-Jie; Xu, Xiang-Rong; Chen, Yu-Ming; Li, Hua-Bin

    2014-12-22

    The oxidative stress imposed by reactive oxygen species (ROS) plays an important role in many chronic and degenerative diseases. As an important category of phytochemicals, phenolic compounds universally exist in plants, and have been considered to have high antioxidant ability and free radical scavenging capacity, with the mechanism of inhibiting the enzymes responsible for ROS production and reducing highly oxidized ROS. Therefore, phenolic compounds have attracted increasing attention as potential agents for preventing and treating many oxidative stress-related diseases, such as cardiovascular diseases, cancer, ageing, diabetes mellitus and neurodegenerative diseases. This review summarizes current knowledge of natural polyphenols, including resource, bioactivities, bioavailability and potential toxicity.

  18. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer.

    PubMed

    Khushnud, Tasnima; Mousa, Shaker A

    2013-09-01

    Polyphenols are natural compounds found in plants, fruits, chocolate, and beverages such as tea and wine. To date, the majority of polyphenol research shows them to have anticancer activity in cell lines and animal models. Some human clinical trials also indicate possible anticancer benefits are associated with polyphenols. A problem with polyphenols is their short half-life and low bioavailability; thus the use of nanoparticles to enhance their delivery is a new research field. A Pubmed search was conducted to find in vitro, in vivo, and human clinical trials done within the past 10 years involving the use of polyphenols against different cancer types, and for studies done within the past 5 years on the use of nanoparticles to enhance polyphenol delivery. Based on the studies found, it is observed that polyphenols may be a potential alternative or additive therapy against cancer, and the use of nanoparticles to enhance their delivery to tumors is a promising approach. However, further human clinical trials are necessary to better understand the use of polyphenols as well as their nanoparticle-mediated delivery.

  19. A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases.

    PubMed

    Martin, Derek A; Bolling, Bradley W

    2015-06-01

    Crohn's disease and ulcerative colitis presently have no cure and are treated with anti-inflammatory drugs or monoclonal antibodies targeting pro-inflammatory cytokines. A variety of rodent models have been used to model chronic and acute colitis. Dietary polyphenols in foods and botanicals are of considerable interest for prevention and treatment of colitis. Many dietary polyphenols have been utilized for prevention of colitis in rodent models. Berries, green tea polyphenols, curcumin, and stilbenes have been the most extensively tested polyphenols in rodent models of colitis. The majority of polyphenols tested have inhibited colitis in rodents, but increasing doses of EGCG and green tea, isoflavones, flaxseed, and α-mangostin have exacerbated colitis. Few studies have examined combination of polyphenols or other bioactives for inhibition of colitis. Translating polyphenol doses used in rodent models of colitis to human equivalent doses reveals that supplemental doses are most likely required to inhibit colitis from a single polyphenol treatment. The ability to translate polyphenol treatments in rodent models is likely to be limited by species differences in xenobiotic metabolism and microbiota. Given these limitations, data from polyphenols in rodent models suggests merit for pursuing additional clinical studies for prevention of colitis.

  20. Structure-dependent interactions of polyphenols with a biomimetic membrane system.

    PubMed

    Phan, Huong T T; Yoda, Tsuyoshi; Chahal, Bindu; Morita, Masamune; Takagi, Masahiro; Vestergaard, Mun'delanji C

    2014-10-01

    Polyphenols are naturally-occurring compounds, reported to be biologically active, and through their interactions with cell membranes. Although association of the polyphenols with the bilayer has been reported, the detailed mechanism of interaction is not yet well elucidated. We report on spatio-temporal real-time membrane dynamics observed in the presence of polyphenols. Two distinct membrane dynamics, corresponding to the two classes of polyphenols used, were observed. Flavonoids (epi-gallocatechin-3-gallate, gallocatechin, theaflavin and theaflavin-3-gallate) caused lipid membrane aggregation and rigidification. As simple structural modification through opening of the aromatic C-ring into an olefin bond, present in trans-stilbenes (resveratrol and picead), completely changed the membrane properties, increasing fluidity and inducing fluctuation. There were differences in the membrane transformations within the same class of polyphenols. Structure-dependent classification of membrane dynamics may contribute to a better understanding of the physicochemical mechanism involved in the bioactivity of polyphenols. In general, an increase in the number of hydrophilic side chains (galloyl, hydroxyl, glucoside, gallate) increased the reactivity of the polyphenols. Most notable was the difference observed through a simple addition of the gallate group. Unraveling the importance of these polyphenols, at a functional group level further opens the key to tailored design of bioactive compounds as potential drug candidates.

  1. Multifaceted ability of naturally occurring polyphenols against metastatic cancer.

    PubMed

    Zhou, Qingyu; Bennett, Lunawati L; Zhou, Shufeng

    2016-04-01

    Although cancer metastases are known to be the main cause of cancer-related deaths, truly effective antimetastatic therapeutics remain scarce in clinical practice. Naturally occurring polyphenols are the most abundant antioxidants in human diets. Many of them possess chemopreventive and chemotherapeutic properties against various types of cancer. Recent advances in understanding the molecular pathways that mediate cancer development and progression have led to an increase of interest in preclinical investigations on the mechanisms underlying anticancer activity of polyphenols. In particular, an increasing number of preclinical studies using cultured cells and animal models have demonstrated the inhibitory effects of polyphenols on tumour cell invasion and metastasis, thereby highlighting the potential of polyphenols against metastatic cancer. This review specifically addresses growing evidence of the capability of polyphenols to impair the invasion and migration of tumour cells through a diverse set of mechanisms, including downregulation of expression of matrix metalloproteinases, modulation of regulators of epithelial-mesenchymal transition, interference with Met signalling, inhibition of nuclear factor-kappa B mediated transcription, and so on. Given that metastasis occurs through a multistep process in which each step is regulated by a complex network of signalling pathways, the multi-function and multi-target characteristics of polyphenols render those promising candidates for effective adjuvant therapy against metastatic cancer.

  2. Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wu, Shuxian; Wu, Cuichen; Qiu, Liping; Zhu, Guizhi; Cui, Cheng; Liu, Yuan; Hou, Weijia; Wang, Yanyue; Zhang, Liqin; Teng, I.-Ting; Yang, Huang-Hao; Tan, Weihong

    2016-04-01

    The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles, termed MSN@polyphenol. The polyphenol coatings not only improved colloidal stability and prevented premature drug leakage, but also provided a scaffold for immobilization of targeting moieties, such as aptamers. Both immobilization of targeting aptamers and synthesis of polyphenol coating are easily accomplished without the aid of any other organic reagents. Importantly, the polyphenol coating (EGCg) used in this study could be biodegraded by acidic pH and intracellular glutathione, resulting in the release of trapped anticancer drugs. Based on confocal fluorescence microscopy and cytotoxicity experiments, drug-loaded and polyphenol-coated MSNs were shown to possess highly efficient internalization and an apparent cytotoxic effect on target cancer, but not control, cells. Our results suggest that these highly biocompatible and biodegradable polyphenol-coated MSNs are promising vectors for controlled-release biomedical applications and cancer therapy.The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles

  3. Dentin Biomodification Potential Depends on Polyphenol Source

    PubMed Central

    Aguiar, T.R.; Vidal, C.M.P.; Phansalkar, R.S.; Todorova, I.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F.; Bedran-Russo, A.K.

    2014-01-01

    Although proanthocyanidins (PACs) modify dentin, the effectiveness of different PAC sources and the correlation with their specific chemical composition are still unknown. This study describes the chemical profiling of natural PAC-rich extracts from 7 plants using ultra high pressure/performance liquid chromatography (UHPLC) to determine the overall composition of these extracts and, in parallel, comprehensively evaluate their effect on dentin properties. The total polyphenol content of the extracts was determined (as gallic acid equivalents) using Folin-Ciocalteau assays. Dentin biomodification was assessed by the modulus of elasticity, mass change, and resistance to enzymatic biodegradation. Extracts with a high polyphenol and PAC content from Vitis vinifera, Theobroma cacao, Camellia sinensis, and Pinus massoniana induced a significant increase in modulus of elasticity and mass. The UHPLC analysis showed the presence of multiple types of polyphenols, ranging from simple phenolic acids to oligomeric PACs and highly condensed tannins. Protective effect against enzymatic degradation was observed for all experimental groups; however, statistically significant differences were observed between plant extracts. The findings provide clear evidence that the dentin bioactivities of PACs are source dependent, resulting from a combination of concentration and specific chemical constitution of the complex PAC mixtures. PMID:24574140

  4. Cyclodextrins as encapsulation agents for plant bioactive compounds.

    PubMed

    Pinho, Eva; Grootveld, Martin; Soares, Graça; Henriques, Mariana

    2014-01-30

    Plants possess a wide range of molecules capable of improve healing: fibre, vitamins, phytosterols, and further sulphur-containing compounds, carotenoids, organic acid anions and polyphenolics. However, they require an adequate level of protection from the environmental conditions to prevent losing their structural integrity and bioactivity. Cyclodextrins are cyclic oligosaccharides arising from the degradation of starch, which can be a viable option as encapsulation technique. Cyclodextrins are inexpensive, friendly to humans, and also capable of improving the biological, chemical and physical properties of bioactive molecules. Therefore, the aim of this review is to highlight the use of cyclodextrins as encapsulating agents for bioactive plant molecules in the pharmaceutical field.

  5. Separation of polyphenols and arecoline from areca nut (Areca catechu L.) by solvent extraction, its antioxidant activity, and identification of polyphenols.

    PubMed

    Chavan, Yogita V; Singhal, Rekha S

    2013-08-15

    Areca nut (Areca catechu L.) or betel nut, a commercial cash crop, is a rich source of polyphenols but also contains toxic alkaloids, mainly arecoline. Separation of these bioactive polyphenols from toxic constituents could propel the safe and beneficial use of betel nut; also it will help arecanut processing industries to produce arecoline-free products. With the aim to develop an effective method for maximum extraction of polyphenols with minimum arecoline, several factors such as nature of the solvent, pH (2-10), substrate concentration (6-14 %) and extraction time (30-150 min) under shaking conditions were evaluated. Qualitative analysis was done using spectrophotometry and high-performance liquid chromatography (HPLC). Maximum extraction of polyphenols (407.47 mg GAE g(-1)), total tannin and its antioxidant activity with minimum arecoline (1.73 mg g(-1) of sample) was achieved by using 80% acetone at pH 4 for 90 min with 10% w/v substrate under shaking conditions. Solvent extraction under optimized parameters gave maximum polyphenols with minimum extraction of arecoline, and highest ratio of polyphenols to arecoline. HPLC and liquid chromatography-mass spectrometry results confirmed the presence of catechin and epicatechin in the extract, which suggests its potential as a source of bioactives. © 2013 Society of Chemical Industry.

  6. CancerHSP: anticancer herbs database of systems pharmacology.

    PubMed

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-15

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  7. CancerHSP: anticancer herbs database of systems pharmacology

    PubMed Central

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-01-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php. PMID:26074488

  8. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  9. Hybrid Compounds as Multitarget Directed Anticancer Agents.

    PubMed

    Kucuksayan, Ertan; Ozben, Tomris

    2017-01-01

    Cancer is a multifactorial disease including interactions of complex genetic and environmental factors. Clinical efficacy of anticancer chemotherapies is hampered by various factors including multidrug resistance (MDR). There is a strong need to discover more potent novel cancer drugs to kill cancer cells selectively. The recent new strategy for cancer treatment involves the design and synthesis of hybrid compounds as multitargeted anticancer agents. In this review, we focus on studies using hybrid compounds which were designed and synthesized from two or more different bioactive moieties conjugating them into a single hybrid drug. Hybrid compounds having more than a single target have been considered as more efficient and potent anticancer agents, since it is almost impossible to destroy cancer cells with a single target. Hybrid compounds overcome many disadvantages of single cancer drugs such as low solubility, adverse effects, and multi drug resistance. We have compiled the data of recent studies using the new hybrid anticancer drugs in cancer treatment. Thus, the design, synthesis and clinical trials of new hybrid compounds should be continued and supported in future. Results of recent studies have proved that they have a great potential to be used as novel anticancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Bioactive glasses as accelerators of apatite bioactivity.

    PubMed

    Vallet-Regí, M; Rámila, A; Padilla, S; Muñoz, B

    2003-09-01

    Synthetic carbonatehydroxyapatite is the ceramic closest to the mineral component of human bone and seems, therefore, the optimum material to use in osseous implants. However, in vitro assays performed to determine its bioactivity have shown no positive results after 2 months of assay. With the aim of improving this bioactivity, a new biphasic material was synthesized composed mainly of synthetic carbonatehydroxyapatite and only 5% of a sol-gel bioactive glass. In vitro assays were assessed to determine the bioactive behavior of this new material and revealed that the addition of a minimal amount of bioactive glass is enough to induce bioactivity on synthetic carbonatehydroxyapatites.

  11. Phytochemical composition and anticancer activity of germinated wheat

    USDA-ARS?s Scientific Manuscript database

    Seed germination is a natural method to increase bioactive components that have beneficial effects on human health. Germinated wheat flour samples of a hard red wheat cultivar (Rampart) were prepared after germination of three and five days and investigated for phytochemical composition and anticanc...

  12. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties.

    PubMed

    Noratto, Giuliana D; Bertoldi, Michele C; Krenek, Kimberley; Talcott, Stephen T; Stringheta, Paulo C; Mertens-Talcott, Susanne U

    2010-04-14

    Many polyphenolics contained in mango have shown anticancer activity. The objective of this study was to compare the anticancer properties of polyphenolic extracts from several mango varieties (Francis, Kent, Ataulfo, Tommy Atkins, and Haden) in cancer cell lines, including Molt-4 leukemia, A-549 lung, MDA-MB-231 breast, LnCap prostate, and SW-480 colon cancer cells and the noncancer colon cell line CCD-18Co. Cell lines were incubated with Ataulfo and Haden extracts, selected on the basis of their superior antioxidant capacity compared to the other varieties, where SW-480 and MOLT-4 were statistically equally most sensitive to both cultivars followed by MDA-MB-231, A-549, and LnCap in order of decreasing efficacy as determined by cell counting. The efficacy of extracts from all mango varieties in the inhibition of cell growth was tested in SW-480 colon carcinoma cells, where Ataulfo and Haden demonstrated superior efficacy, followed by Kent, Francis, and Tommy Atkins. At 5 mg of GAE/L, Ataulfo inhibited the growth of colon SW-480 cancer cells by approximately 72% while the growth of noncancer colonic myofibroblast CCD-18Co cells was not inhibited. The growth inhibition exerted by Ataulfo and Haden polyphenolics in SW-480 was associated with an increased mRNA expression of pro-apoptotic biomarkers and cell cycle regulators, cell cycle arrest, and a decrease in the generation of reactive oxygen species. Overall, polyphenolics from several mango varieties exerted anticancer effects, where compounds from Haden and Ataulfo mango varieties possessed superior chemopreventive activity.

  13. Unraveling the Anticancer Effect of Curcumin and Resveratrol

    PubMed Central

    Pavan, Aline Renata; da Silva, Gabriel Dalio Bernardes; Jornada, Daniela Hartmann; Chiba, Diego Eidy; Fernandes, Guilherme Felipe dos Santos; Man Chin, Chung; dos Santos, Jean Leandro

    2016-01-01

    Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs. PMID:27834913

  14. Unraveling the Anticancer Effect of Curcumin and Resveratrol.

    PubMed

    Pavan, Aline Renata; Silva, Gabriel Dalio Bernardes da; Jornada, Daniela Hartmann; Chiba, Diego Eidy; Fernandes, Guilherme Felipe Dos Santos; Man Chin, Chung; Dos Santos, Jean Leandro

    2016-11-10

    Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs.

  15. Potential anti-cancer activity of 7-O-pentyl quercetin: Efficient, membrane-targeted kinase inhibition and pro-oxidant effect.

    PubMed

    Sassi, Nicola; Mattarei, Andrea; Espina, Virginia; Liotta, Lance; Zoratti, Mario; Paradisi, Cristina; Biasutto, Lucia

    2017-10-01

    Quercetin is a redox-active plant-derived flavonoid with potential anticancer effects, stemming largely from its interaction with a number of proteins, and in particular from inhibition of pro-life kinases. To improve efficacy, we reasoned that a local increase in concentration of the compound at the level of cell membranes would result in a more efficient interaction with membrane-associated signaling kinases. We report here the synthesis of all five isomeric quercetin derivatives in which an n-pentyl group was linked via an ether bond to each hydroxyl of the flavonoid kernel. This strategy proved effective in directing quercetin to cellular membranes, and revealed a remarkable dependence of the derivatives' bioactivity on the specific site of functionalization. The isomer bearing the pentyl group in position 7, Q-7P, turned out to be the most effective and promising derivative, selectively inducing apoptosis in tumoral and fast-growing cells, while sparing slow-growing, non-tumoral ones. Cytotoxicity for tumoral cells was strongly enhanced compared to quercetin itself. Q-7P induced massive ROS production, which however accounted only partially for cell death. Alterations in the levels of various signaling phospho-proteins were observed in a proteomics screen. An important contribution seems to come from inhibition of the PI3K/Akt pathway. This work opens new perspectives in developing membrane-associating, polyphenol-based anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Vascular action of polyphenols.

    PubMed

    Ghosh, Dilip; Scheepens, Arjan

    2009-03-01

    Dietary patterns are widely recognised as contributors to cardiovascular and cerebrovascular disease. Endothelial function, the elastic properties of large arteries and the magnitude and timing of wave reflections are important determinants of cardiovascular performance. Several epidemiological studies suggest that the regular consumption of foods and beverages rich in flavonoids is associated with a reduction in the risk of several pathological conditions ranging from hypertension to coronary heart disease, stroke and dementia. The impairment of endothelial function is directly related to ageing and an association between decreased cerebral perfusion and dementia has been shown to exist. Cerebral blood flow (CBF) must be maintained to ensure a constant delivery of oxygen and glucose as well as the removal of waste products. Increasing blood flow is one potential way for improving brain function and the prospect for increasing CBF with dietary polyphenols is extremely promising. The major polyphenols shown to have some of these effects in humans are primarily from cocoa, wine, grape seed, berries, tea, tomatoes (polyphenolics and nonpolyphenolics), soy and pomegranate. There has been a significant paradigm shift in polyphenol research during the last decade. This review summarises our current knowledge in this area and points the way for the development of new types of functional foods targeted to brain health through improving vascular health.

  17. Polyphenols, Inflammation, and Cardiovascular Disease

    PubMed Central

    Tangney, Christy; Rasmussen, Heather E.

    2013-01-01

    Polyphenols are compounds found in foods such as tea, coffee, cocoa, olive oil, and red wine and have been studied to determine if their intake may modify cardiovascular disease (CVD) risk. Historically, biologic actions of polyphenols have been attributed to antioxidant activities, but recent evidence suggests that immunomodulatory and vasodilatory properties of polyphenols may also contribute to CVD risk reduction. These properties will be discussed, and recent epidemiological evidence and intervention trials will be reviewed. Further identification of polyphenols in foods and accurate assessment of exposures through measurement of biomarkers (i.e., polyphenol metabolites) could provide the needed impetus to examine the impact of polyphenol-rich foods on CVD intermediate outcomes (especially those signifying chronic inflammation) and hard endpoints among high risk patients. Although we have mechanistic insight into how polyphenols may function in CVD risk reduction, further research is needed before definitive recommendations for consumption can be made. PMID:23512608

  18. Polyphenols from the mangosteen (Garcinia mangostana) fruit for breast and prostate cancer

    PubMed Central

    Li, Gongbo; Thomas, Stacey; Johnson, Jeremy J.

    2013-01-01

    The mangosteen (Garcinia mangostana) is a tropical fruit native to Southeast Asia and has long been reported to contain multiple health promoting properties. This fruit is an abundant source of xanthones, a class of polyphenolic compounds with a distinctive tricyclic aromatic ring system and is largely responsible for its biological activities including anti-cancer activity. Herein we describe the anti-cancer activity and mechanisms of mangosteen polyphenolic xanthones including α-Mangostin against breast cancer and prostate cancer. So far, extracts and individual xanthones have been found to induce apoptosis and inhibit proliferation on cancer cells in vitro and in vivo. Based on the reported findings there is clear evidence that these polyphenols target multiple signaling pathways involved in cell cycle modulation and apoptosis. Further work is required to understand its potential for health promotion and potential drug discovery for prostate and breast cancer chemoprevention. PMID:23805102

  19. Interactions of gut microbiota with dietary polyphenols and consequences to human health.

    PubMed

    Tomás-Barberán, Francisco A; Selma, María V; Espín, Juan C

    2016-11-01

    Dietary (poly)phenolic compounds have received attention over the last 20 years as antioxidants with preventive properties against chronic diseases. However, the evidence of these effects in clinical trials is weak, mainly because of a considerable interindividual variability. Polyphenols bioavailability is low, and gut microbiota metabolize them into simpler metabolites. As gut microbiota vary among individuals, such interindividual variability should be considered as a moderating factor in clinical trials. In this review, we show evidence of interactions with gut microbiota that help understanding polyphenols' health effects. Recent studies indicate that dietary polyphenols are relevant in the modulation of gut microbiota and that these microorganisms convert polyphenols into active and bioavailable metabolites; hence, variations in gut microbiota can affect polyphenol activity. The results show that study participants' stratification by their polyphenol-metabolizing phenotypes would be necessary for clinical trials as specific metabotypes produce the bioactive metabolites responsible for the health effects. Metabotypes can also reflect the gut microbiota composition and metabolic status, and could be biomarkers of the potential polyphenol health effects mediated through gut microbiota.

  20. Efficient sorption of polyphenols to soybean flour enables natural fortification of foods

    PubMed Central

    Roopchand, Diana E.; Grace, Mary H.; Kuhn, Peter; Cheng, Diana M.; Plundrich, Nathalie; Poulev, Alexander; Howell, Amy; Fridlender, Bertold; Lila, Mary Ann; Raskin, Ilya

    2013-01-01

    The present study demonstrated that defatted soybean flour (DSF) can sorb polyphenols from blueberry and cranberry juices while separating them from sugars. Depending on DSF concentration and juice dilution, the concentration of blueberry anthocyanins and total polyphenols sorbed to DSF ranged from 2 – 22 mg/g and 10 – 95 mg/g, respectively while the concentration of anthocyanins and proanthocyanidins in cranberry polyphenol-enriched DSF ranged from 2.5 – 17 mg/g and 21 – 101 mg/g, respectively. Blueberry polyphenols present in one serving of fresh blueberries (73g) were delivered in just 1.4 g of blueberry polyphenol-enriched DSF. Similarly, one gram of cranberry polyphenol-enriched DSF delivered the amount of proanthocyanidins available in three 240 ml servings of cranberry juice cocktail. The concentration of blueberry anthocyanins and total polyphenols eluted from DSF remained constant after 22 weeks of incubation at 37°C, demonstrating the high stability of the polyphenol-DSF matrix. LC-MS analysis of eluates confirmed DSF retained major cranberry and blueberry polyphenols remained intact. Blueberry polyphenol-enriched DSF exhibited significant hypoglycemic activities in C57bl/6J mice, and cranberry polyphenol-enriched DSF showed anti-microbial and anti-UTI activities in vitro, confirming its efficacy. The described sorption process provides a means to create protein-rich food ingredients containing concentrated plant bioactives without excess sugars, fats and water that can be incorporated in a variety of scientifically validated functional foods and dietary supplements. PMID:23950619

  1. Anticancer activity of Carica papaya: a review.

    PubMed

    Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K

    2013-01-01

    Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Anthocyanidins and polyphenols in five brassica species microgreens: analysis by UHPLC-PDA-ESI/HRMS/MSn

    USDA-ARS?s Scientific Manuscript database

    Brassica vegetables are known to contain relatively high concentrations of bioactive compounds associated with human health. A comprehensive profiling of polyphenols from five Brassica species microgreens was conducted using ultra high-performance liquid chromatography photo diode array high-resolu...

  3. Plant polyphenols to enhance the nutritional and sensory properties of chocolates.

    PubMed

    Sim, Shaun Y J; Ng, Jun Wei; Ng, Wai Kiong; Forde, Ciarán G; Henry, Christiani Jeyakumar

    2016-06-01

    A relatively unexplored method to enhance the sensory and nutritional properties of chocolate is to use plant polyphenols. In this study, a low cost agricultural waste product - mangosteen (Garcinia mangostana Linn.) pericarp - was added as powder in graded amounts (1%, 2% and 3%w/w) to dark and compound chocolates during the mixing stage and evaluated. The particle size distributions of the chocolates were mostly within 30 μm and the chocolates displayed a homogeneous morphology. The polyphenols (procyanidins and xanthones) in mangosteen pericarp powder were also stable to simulated chocolate processing. The 3% pericarp powder concentration significantly expanded the bioactive profile and total phenolic content (13% in dark chocolates and 50% in compound chocolates) compared to their plain counterparts without affecting sensory qualities. Such low cost plant polyphenols could enhance the bioactive and flavor profile of chocolates, especially in low cocoa content compound chocolates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Polyphenols excreted in urine as biomarkers of total polyphenol intake.

    PubMed

    Medina-Remón, Alexander; Tresserra-Rimbau, Anna; Arranz, Sara; Estruch, Ramón; Lamuela-Raventos, Rosa M

    2012-11-01

    Nutritional biomarkers have several advantages in acquiring data for epidemiological and clinical studies over traditional dietary assessment tools, such as food frequency questionnaires. While food frequency questionnaires constitute a subjective methodology, biomarkers can provide a less biased and more accurate measure of specific nutritional intake. A precise estimation of polyphenol consumption requires blood or urine sample biomarkers, although their association is usually highly complex. This article reviews recent research on urinary polyphenols as potential biomarkers of polyphenol intake, focusing on clinical and epidemiological studies. We also report a potentially useful methodology to assess total polyphenols in urine samples, which allows a rapid, simultaneous determination of total phenols in a large number of samples. This methodology can be applied in studies evaluating the utility of urinary polyphenols as markers of polyphenol intake, bioavailability and accumulation in the body.

  5. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas*

    PubMed Central

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-01-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  6. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.

    PubMed

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-04-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance.

  7. Bioactive Proteins and Peptides from Soybeans.

    PubMed

    Agyei, Dominic

    2015-01-01

    Dietary proteins from soybeans have been shown to offer health benefits in vivo and/or in vitro either as intact proteins or in partially digested forms also called bioactive peptides. Upon oral administration and absorption, soy-derived bioactive peptides may induce several physiological responses such as antioxidative, antimicrobial, antihypertensive, anticancer and immunomodulatory effects. There has therefore been a mounting research interest in the therapeutic potential of soy protein hydrolysates and their subsequent incorporation in functional foods and 'Food for Specified Health Uses' (FOSHU) related products where their biological activities may assist in the promotion of good health or in the control and prevention of diseases. This mini review discusses relevant patents and gives an overview on bioactive proteins and peptides obtainable from soybeans. Processes for the production and formulation of these peptides are given, together with specific examples of their therapeutic potential and possible areas of application.

  8. Green tea polyphenol sensing

    PubMed Central

    TACHIBANA, Hirofumi

    2011-01-01

    Green tea polyphenols have emerged over the past two decades as an important dietary factor for health promotion. There is considerable evidence that tea polyphenols, in particular (−)-epigallocatechin-3-gallate (EGCG) inhibit carcinogenesis. However, the mechanisms for the cancer-preventive activity of EGCG are not completely characterized and many features remain to be elucidated. Recently we have identified a cell-surface EGCG receptor and the relating molecules that confer EGCG responsiveness to many cancer cells at physiological concentrations. Here, we review some of the reported mechanisms for the cancer chemopreventive action of EGCG and provide an overview of several molecules that sense and manage the physiological functions of EGCG. PMID:21422740

  9. [Polyphenols in brewing (author's transl)].

    PubMed

    Knorr, F

    1978-05-29

    Analytical methods for the determination of polyphenols of malt, barley, hop, wort, and beer are described. Malt or barley tannins has hitherto not received as much study as hop tannin. Polyphenols or tannins are classified. Studies on non-biological hazes are discussed in relation to the haze problem in brewing. The leucoanthocyanins of malt differ from those of hops in ability to form hazes. Subfractionation of polyphenol concentrates on sephadex columns allows isolation of individual tannins.

  10. Supramolecular Nanostructures Formed by Anticancer Drug Assembly

    PubMed Central

    Cheetham, Andrew G.; Zhang, Pengcheng; Lin, Yi-an; Lock, Lye Lin; Cui, Honggang

    2013-01-01

    We report here a supramolecular strategy to directly assemble the small molecular hydrophobic anticancer drug camptothecin (CPT) into discrete, stable, well-defined nanostructures with a high and quantitative drug loading. Depending on the number of CPTs in the molecular design, the resulting nanostructures can be either nanofibers or nanotubes, and have a fixed CPT loading content ranging from 23% to 38%. We found that formation of nanostructures provides protection for both the CPT drug and the biodegradable linker from the external environment and thus offers a mechanism for controlled release of CPT. Under tumor-relevant conditions, these drug nanostructures can release the bioactive form of CPT and show in vitro efficacy against a number of cancer cell lines. This strategy can be extended to construct nanostructures of other types of anticancer drugs, and thus presents new opportunities for the development of self-delivering drugs for cancer therapeutics. PMID:23379791

  11. Dietary polyphenol-derived protection against neurotoxic β-amyloid protein: from molecular to clinical.

    PubMed

    Smid, Scott D; Maag, Jesper L; Musgrave, Ian F

    2012-12-01

    Polyphenolic compounds derived mainly from plant products have demonstrated neuroprotective properties in a number of experimental settings. Such protective effects have often been ascribed to antioxidant capacity, but specific augmentation of other cellular defences and direct interactions with neurotoxic proteins have also been demonstrated. With an emphasis on neurodegenerative conditions, such as Alzheimer's disease, we highlight recent findings on the neuroprotection ascribed to bioactive polyphenols capable of directly interfering with the Alzheimer's disease hallmark toxic β-amyloid protein (Aβ), thereby inhibiting fibril and aggregate formation. This includes compounds such as the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) and the phytoalexin resveratrol. Targeted studies on the biomolecular interactions between dietary polyphenolics and Aβ have not only improved our understanding of the pathogenic role of β-amyloid, but also offer fundamentally novel treatment options for Alzheimer's disease and potentially other amyloidoses.

  12. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMS(n.).

    PubMed

    Sun, Jianghao; Xiao, Zhenlei; Lin, Long-Ze; Lester, Gene E; Wang, Qin; Harnly, James M; Chen, Pei

    2013-11-20

    Brassica vegetables are known to contain relatively high concentrations of bioactive compounds associated with human health. A comprehensive profiling of polyphenols from five Brassica species microgreens was conducted using ultrahigh-performance liquid chromatography photodiode array high-resolution multistage mass spectrometry (UHPLC-PDA-ESI/HRMS(n)). A total of 164 polyphenols including 30 anthocyanins, 105 flavonol glycosides, and 29 hydroxycinnamic acid and hydroxybenzoic acid derivatives were putatively identified.The putative identifications were based on UHPLC-HRMS(n) analysis using retention times, elution orders, UV-vis and high-resolution mass spectra, and an in-house polyphenol database as well as literature comparisons. This study showed that these five Brassica species microgreens could be considered as good sources of food polyphenols.

  13. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications.

    PubMed

    Hu, Qiaobin; Luo, Yangchao

    2016-10-20

    Chitosan, the only positively charged polysaccharide in the world, is very attractive for food, medicinal and pharmaceutical applications because of its promising properties, including non-toxicity, superb biodegradability, high biocompatibility, abundant availability and low cost. In order to overcome the poor water solubility and widen the applications of chitosan, various polyphenol-chitosan conjugates have been synthesized in recent years. The present review focuses on the chitosan-based conjugates formed using different polyphenols, including gallic acid, caffeic acid, ferulic acid, salicylic acid, catechin, and EGGE, etc. Three major synthesis techniques, namely, activated ester-mediated modification, enzyme-mediated strategy, and free radical induced grafting approach are introduced in detail. In addition, the new physicochemical and biological properties of polyphenol-chitosan conjugates are introduced, including water solubility, thermo stability, in vitro and in vivo antioxidant activity, antimicrobial and anticancer activity. Furthermore, the novel applications of each conjugate are discussed in detail. Lastly, the challenges and prospective areas of study related to polyphenol-chitosan are summarized.

  14. Lead Phytochemicals for Anticancer Drug Development

    PubMed Central

    Singh, Sukhdev; Sharma, Bhupender; Kanwar, Shamsher S.; Kumar, Ashok

    2016-01-01

    Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function in vitro and in vivo. This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed. PMID:27877185

  15. Lead Phytochemicals for Anticancer Drug Development.

    PubMed

    Singh, Sukhdev; Sharma, Bhupender; Kanwar, Shamsher S; Kumar, Ashok

    2016-01-01

    Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function in vitro and in vivo. This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed.

  16. Characterization, Preparation, and Purification of Marine Bioactive Peptides

    PubMed Central

    Wang, Xueqin; Yu, Huahua; Xing, Ronge

    2017-01-01

    Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides. PMID:28761878

  17. Anticancer Drugs from Marine Flora: An Overview

    PubMed Central

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease. PMID:21461373

  18. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  19. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties

    PubMed Central

    Miguélez, Elisa M.; Villar, Claudio J.

    2015-01-01

    Polyphenolic compounds are plant nutraceuticals showing a huge structural diversity, including chlorogenic acids, hydrolyzable tannins, and flavonoids (flavonols, flavanones, flavan-3-ols, anthocyanidins, isoflavones, and flavones). Most of them occur as glycosylated derivatives in plants and foods. In order to become bioactive at human body, these polyphenols must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. After elimination of sugar tailoring (generating the corresponding aglycons) and diverse hydroxyl moieties, as well as further backbone reorganizations, the final absorbed compounds enter the portal vein circulation towards liver (where other enzymatic transformations take place) and from there to other organs, including behind the digestive tract or via blood towards urine excretion. During this transit along diverse tissues and organs, they are able to carry out strong antiviral, antibacterial, and antiparasitic activities. This paper revises and discusses these antimicrobial activities of dietary polyphenols and their relevance for human health, shedding light on the importance of polyphenols structure recognition by specific enzymes produced by intestinal microbial taxa. PMID:25802870

  20. Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins.

    PubMed

    Diamanti, Amalia C; Igoumenidis, Panagiotis E; Mourtzinos, Ioannis; Yannakopoulou, Konstantina; Karathanos, Vaios T

    2017-01-01

    Pomegranate is a source of bioactive phytochemicals. The objective of this study was the derivation of a sustainable method to exploit the whole fruit, both edible and non-edible parts, as a source of polyphenols. Pomegranate peel contains a 10-fold higher phenolic content than the pulp. The fruit was freeze-dried and the resulting dry matter was extracted with solid-liquid percolation equipment using non-toxic and eco-friendly extraction solvents: either deionized water or aqueous solutions of cyclodextrins. Cyclodextrins (CDs) are known molecular encapsulators and our results prove enhancement of the extraction of pomegranate polyphenols by 20%. In order to examine the formation of inclusion complexes between CD's and polyphenols of the extract, polyphenols were isolated using solid-phase extraction. NMR studies with the purified extracts and the individual CDs confirmed inclusion complex formation in water. Pomegranate liquid extracts may be used as raw materials for several end-users in the food, cosmetic and pharmaceutical industries.

  1. Tea polyphenols, their biological effects and potential molecular targets.

    PubMed

    Chen, D; Milacic, V; Chen, M S; Wan, S B; Lam, W H; Huo, C; Landis-Piwowar, K R; Cui, Q C; Wali, A; Chan, T H; Dou, Q P

    2008-04-01

    Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.

  2. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil

    PubMed Central

    Menendez, Javier A.; Joven, Jorge; Aragonès, Gerard; Barrajón-Catalán, Enrique; Beltrán-Debón, Raúl; Borrás-Linares, Isabel; Camps, Jordi; Corominas-Faja, Bruna; Cufí, Sílvia; Fernández-Arroyo, Salvador; Garcia-Heredia, Anabel; Hernández-Aguilera, Anna; Herranz-López, María; Jiménez-Sánchez, Cecilia; López-Bonet, Eugeni; Lozano-Sánchez, Jesús; Luciano-Mateo, Fedra; Martin-Castillo, Begoña; Martin-Paredero, Vicente; Pérez-Sánchez, Almudena; Oliveras-Ferraros, Cristina; Riera-Borrull, Marta; Rodríguez-Gallego, Esther; Quirantes-Piné, Rosa; Rull, Anna; Tomás-Menor, Laura; Vazquez-Martin, Alejandro; Alonso-Villaverde, Carlos; Micol, Vicente; Segura-Carretero, Antonio

    2013-01-01

    Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the “defective design” of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the “xenohormesis hypothesis,” which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of

  3. In Vitro Studies on Phytochemical Content, Antioxidant, Anticancer, Immunomodulatory, and Antigenotoxic Activities of Lemon, Grapefruit, and Mandarin Citrus Peels.

    PubMed

    Diab, Kawthar Ae

    2016-01-01

    In recent years, there has been considerable research on recycling of agroindustrial waste for production of bioactive compounds. The food processing industry produces large amounts of citrus peels that may be an inexpensive source of useful agents. The present work aimed to explore the phytochemical content, antioxidant, anticancer, antiproliferation, and antigenotxic activities of lemon, grapefruit, and mandarin peels. Peels were extracted using 98% ethanol and the three crude extracts were assessed for their total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity using DPPH (1, 1diphenyl2picrylhydrazyl). Their cytotoxic and mitogenic proliferation activities were also studied in human leukemia HL60 cells and mouse splenocytes by CCK8 assay. In addition, genotoxic/ antigenotoxic activity was explored in mouse splenocytes using chromosomal aberrations (CAs) assay. Lemon peels had the highest of TPC followed by grapefruit and mandarin. In contrast, mandarin peels contained the highest of TFC followed by lemon and grapefruit peels. Among the extracts, lemon peel possessed the strongest antioxidant activity as indicated by the highest DPPH radical scavenging, the lowest effective concentration 50% (EC50= 42.97 ?g extract/ mL), and the highest Trolox equivalent antioxidant capacity (TEAC=0.157). Mandarin peel exhibited moderate cytotoxic activity (IC50 = 77.8 ?g/mL) against HL60 cells, whereas grapefruit and lemon peels were ineffective antileukemia. Further, citrus peels possessed immunostimulation activity via augmentation of proliferation of mouse splenocytes (Tlymphocytes). Citrus extracts exerted noncytotoxic, and antigenotoxic activities through remarkable reduction of CAs induced by cisplatin in mouse splenocytes for 24 h. The phytochemical constituents of the citrus peels may exert biological activities including anticancer, immunostimulation and antigenotoxic potential.

  4. The Extraction, Anticancer Effect, Bioavailability, and Nanotechnology of Baicalin

    PubMed Central

    Moore, Ondrea A.; Gao, Ying; Chen, Allen Y.; Brittain, Ross; Chen, Yi Charlie

    2016-01-01

    The dried root of Baikal skullcap (Scutellaria baicalensis) has been historically and widely used in traditional Eastern medicine. Modern science proved that baicalin is the major bioactive responsible for the physiological activity of Baikal skullcap. Baicalin, a flavonoid found in several species in the genus Scutellaria, has been regarded as a potent anticancer agent. In this review, we present the main extraction methods, anticancer activity and bioavailability of baicalin. Besides, the utilization of nanotechnology to improve the bioavailability of baicalin is also mentioned. PMID:27790646

  5. The Antibacterial Activity of Date Syrup Polyphenols against S. aureus and E. coli

    PubMed Central

    Taleb, Hajer; Maddocks, Sarah E.; Morris, R. Keith; Kanekanian, Ara D.

    2016-01-01

    Plant-derived products such as date syrup (DS) have demonstrated antibacterial activity and can inhibit bacteria through numerous different mechanisms, which may be attributed to bioactive compounds including plant-derived phenolic molecules. DS is rich in polyphenols and this study hypothesized that DS polyphenols demonstrate inherent antimicrobial activity, which cause oxidative damage. This investigation revealed that DS has a high content of total polyphenols (605 mg/100 g), and is rich in tannins (357 mg/100 g), flavonoids (40.5 mg/100 g), and flavanols (31.7 mg/100 g) that are known potent antioxidants. Furthermore, DS, and polyphenols extracted from DS, the most abundant bioactive constituent of DS are bacteriostatic to both Gram positive and Gram negative Escherichia coli and Staphylococcus aureus, respectively. It has further been shown that the extracted polyphenols independently suppress the growth of bacteria at minimum inhibitory concentration (MIC) of 30 and 20 mg/mL for E. coli and S. aureus, and have observed that DS behaves as a prooxidant by generating hydrogen peroxide that mediates bacterial growth inhibition as a result of oxidative stress. At sub-lethal MIC concentrations DS demonstrated antioxidative activity by reducing hydrogen peroxide, and at lethal concentrations DS demonstrated prooxidant activity that inhibited the growth of E. coli and S. aureus. The high sugar content naturally present in DS did not significantly contribute to this effect. These findings highlight that DS’s antimicrobial activity is mediated through hydrogen peroxide generation in inducing oxidative stress in bacteria. PMID:26952177

  6. (-)-Arctigenin as a lead compound for anticancer agent.

    PubMed

    Chen, Gui-Rong; Li, Hong-Fu; Dou, De-Qiang; Xu, Yu-Bin; Jiang, Hong-Shuai; Li, Fu-Rui; Kang, Ting-Guo

    2013-01-01

    (-)-Arctigenin, an important active constituent of the traditional Chinese herb Fructus Arctii, was found to exhibit various bioactivities, so it can be used as a good lead compound for further structure modification in order to find a safer and more potent medicine. (-)-Arctigenin derivatives 1-5 of (-)-arctingen were obtained by modifying with ammonolysis at the lactone ring and sulphonylation at C (6') and C (6″) and O-demethylation at CH3O-C (3'), CH3O-C (3″) and CH3O-C (4″), and their anticancer bioactivities were examined.

  7. Anticancer drugs during pregnancy.

    PubMed

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs.

  8. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content.

    PubMed

    Rothwell, Joseph A; Perez-Jimenez, Jara; Neveu, Vanessa; Medina-Remón, Alexander; M'hiri, Nouha; García-Lobato, Paula; Manach, Claudine; Knox, Craig; Eisner, Roman; Wishart, David S; Scalbert, Augustin

    2013-01-01

    Polyphenols are a major class of bioactive phytochemicals whose consumption may play a role in the prevention of a number of chronic diseases such as cardiovascular diseases, type II diabetes and cancers. Phenol-Explorer, launched in 2009, is the only freely available web-based database on the content of polyphenols in food and their in vivo metabolism and pharmacokinetics. Here we report the third release of the database (Phenol-Explorer 3.0), which adds data on the effects of food processing on polyphenol contents in foods. Data on >100 foods, covering 161 polyphenols or groups of polyphenols before and after processing, were collected from 129 peer-reviewed publications and entered into new tables linked to the existing relational design. The effect of processing on polyphenol content is expressed in the form of retention factor coefficients, or the proportion of a given polyphenol retained after processing, adjusted for change in water content. The result is the first database on the effects of food processing on polyphenol content and, following the model initially defined for Phenol-Explorer, all data may be traced back to original sources. The new update will allow polyphenol scientists to more accurately estimate polyphenol exposure from dietary surveys.

  9. Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities

    PubMed Central

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum–palladium bimetallic nanoparticles (Pt–PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2–5 nm, while PdNPs and Pt–PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88%±1.73% elemental Pt and 68.96%±1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm−1, attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm−1, associated with C–H stretching, N–H bending in primary amines, N–O stretching in nitro group, and C–C stretch, respectively. Anticancer activity against HeLa cells showed that Pt–PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt–PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals. PMID:26719690

  10. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.

    PubMed

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.

  11. Recent Researches in Metal Supramolecular Complexes as Anticancer Agents.

    PubMed

    Zhou, Cheng-He; Zhang, Yi-Yi; Yan, Cong-Yan; Wan, Kun; Gan, Lin-Ling; Shi, Yuan

    2010-04-12

    The research and development of metal supramolecular complexes as anticancer supramolecular drugs, which are aggregates mainly formed by one or more inorganic metal compounds with one or more either inorganic or organic molecules in general via coordination bonds, has been a quite rapidly developing, increasingly active and newly rising highlight interdisciplinary field. Numerous efforts have been directed toward metal supramolecular complexes as potential anticancer agents and the unprecedented progress has been made. This has opened up a wholly new and infinite space to create novel metal-based bioactive supermolecules. More importantly, metal-based complex supermolecules as potential anticancer agents with wide potential applications have become highlight topics in recent years, and are becoming increasingly useful and important in preventing and treating cancer diseases. In view of the rapid progress in metal complex anticancer supermolecules with rich variation of structural types, this work systematically reviewed the recent research and development of the whole range of metal-based supramolecular complexes as anticancer agents mainly in 2009. The perspectives of the foreseeable future and potential application of metal supramolecular complexes in cancer therapy were also presented. It is hoped that this review will serve as a stimulant for new thoughts in the quest for rational designs of more active and less toxic metal supramolecular complex anticancer drugs.

  12. Recent researches in metal supramolecular complexes as anticancer agents.

    PubMed

    Zhou, Cheng-He; Zhang, Yi-Yi; Yan, Cong-Yan; Wan, Kun; Gan, Lin-Ling; Shi, Yuan

    2010-06-01

    The research and development of metal supramolecular complexes as anticancer supramolecular drugs, which are aggregates mainly formed by one or more inorganic metal compounds with one or more either inorganic or organic molecules in general via coordination bonds, has been a quite rapidly developing, increasingly active and newly rising highlight interdisciplinary field. Numerous efforts have been directed toward metal supramolecular complexes as potential anticancer agents and the unprecedented progress has been made. This has opened up a wholly new and infinite space to create novel metal-based bioactive supermolecules. More importantly, metal-based complex supermolecules as potential anticancer agents with wide potential applications have become highlight topics in recent years, and are becoming increasingly useful and important in preventing and treating cancer diseases. In view of the rapid progress in metal complex anticancer supermolecules with rich variation of structural types, this work systematically reviewed the recent research and development of the whole range of metal-based supramolecular complexes as anticancer agents mainly in 2009. The perspectives of the foreseeable future and potential application of metal supramolecular complexes in cancer therapy were also presented. It is hoped that this review will serve as a stimulant for new thoughts in the quest for rational designs of more active and less toxic metal supramolecular complex anticancer drugs.

  13. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review.

    PubMed

    Amiot, M J; Riva, C; Vinet, A

    2016-07-01

    Dietary polyphenols constitute a large family of bioactive substances potential beneficial effect on metabolic syndrome (MetS). This review summarizes the results of clinical studies on patients with MetS involving the chronic supplementation of a polyphenol-rich diet, foods, extracts or with single phenolics on the features of MetS (obesity, dyslipidemia, blood pressure and glycaemia) and associated complications (oxidative stress and inflammation). Polyphenols were shown to be efficient, especially at higher doses, and there were no specific foods or extracts able to alleviate all the features of MetS. Green tea, however, significantly reduced body mass index and waist circumference and improved lipid metabolism. Cocoa supplementation reduced blood pressure and blood glucose. Soy isoflavones, citrus products, hesperidin and quercetin improved lipid metabolism, whereas cinnamon reduced blood glucose. In numerous clinical studies, antioxidative and anti-inflammatory effects were not significant after polyphenol supplementation in patients with MetS. However, some trials pointed towards an improvement of endothelial function in patients supplemented with cocoa, anthocyanin-rich berries, hesperidin or resveratrol. Therefore, diets rich in polyphenols, such as the Mediterranean diet, which promote the consumption of diverse polyphenol-rich products could be an effective nutritional strategy to improve the health of patients with MetS. © 2016 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity.

  14. Systematic analysis of the polyphenol metabolome using the Phenol‐Explorer database

    PubMed Central

    Rothwell, Joseph A.; Urpi‐Sarda, Mireia; Boto‐Ordoñez, Maria; Llorach, Rafael; Farran‐Codina, Andreu; Barupal, Dinesh Kumar; Neveu, Vanessa; Manach, Claudine; Andres‐Lacueva, Cristina

    2016-01-01

    Scope The Phenol‐Explorer web database details 383 polyphenol metabolites identified in human and animal biofluids from 221 publications. Here, we exploit these data to characterize and visualize the polyphenol metabolome, the set of all metabolites derived from phenolic food components. Methods and results Qualitative and quantitative data on 383 polyphenol metabolites as described in 424 human and animal intervention studies were systematically analyzed. Of these metabolites, 301 were identified without prior enzymatic hydrolysis of biofluids, and included glucuronide and sulfate esters, glycosides, aglycones, and O‐methyl ethers. Around one‐third of these compounds are also known as food constituents and corresponded to polyphenols absorbed without further metabolism. Many ring‐cleavage metabolites formed by gut microbiota were noted, mostly derived from hydroxycinnamates, flavanols, and flavonols. Median maximum plasma concentrations (C max) of all human metabolites were 0.09 and 0.32 μM when consumed from foods or dietary supplements, respectively. Median time to reach maximum plasma concentration in humans (T max) was 2.18 h. Conclusion These data show the complexity of the polyphenol metabolome and the need to take into account biotransformations to understand in vivo bioactivities and the role of dietary polyphenols in health and disease. PMID:26310602

  15. Effects of the polyphenol content on the anti-diabetic activity of Cinnamomum zeylanicum extracts.

    PubMed

    IM, Krishnakumar; Issac, Abin; NM, Johannah; Ninan, Eapen; Maliakel, Balu; Kuttan, Ramadassan

    2014-09-01

    Cinnamomum zeylanicum is a popular kitchen spice widely investigated for insulin potentiating effects. Though a group of water soluble polyphenols belonging to the oligomeric procyanidins has been identified as the bioactive principle, the lack of systematic information on the effect of the polyphenol content on safety and anti-diabetic efficacy remains as a major limitation for the development of optimized and standardized cinnamon extracts for functional use. In the present paper, water soluble extracts of Cinnamomum zeylanicum containing 45 and 75% gallic acid equivalents (GAE) of polyphenol content were prepared by a novel process and characterized by tandem mass spectrometry. The polyphenol enhanced extracts were shown to be safe and offered better antioxidant potential, hypoglycemic effect, hypolipidimic effect, and significant decrease in other biochemical parameters as compared to the standard aqueous extract containing 15% GAE, when administered to streptozotocin-induced diabetic rats at 200 mg per kg b.w. for 30 days. The efficacy of polyphenol extracts in lowering blood glucose levels and ameliorating oxidative stress was further demonstrated in humans by administrating 'procynZ-45' containing 45% GAE polyphenols at a relatively low dosage of (125 mg × 2) per day for 30 days to 15 volunteers who had elevated fasting blood glucose levels; but not involved in any medication.

  16. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis.

    PubMed

    Sochor, Jiri; Jurikova, Tunde; Pohanka, Miroslav; Skutkova, Helena; Baron, Mojmir; Tomaskova, Lenka; Balla, Stefan; Klejdus, Borivoj; Pokluda, Robert; Mlcek, Jiri; Trojakova, Zuzana; Saloun, Jan

    2014-05-21

    The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis). A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC-UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD) that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity) during one growing season.

  17. Optimization of Process Parameters and Kinetic Model of Enzymatic Extraction of Polyphenols from Lonicerae Flos

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Bi, Yongguang; Huang, Xiaojun; Huang, Mengqian

    2016-01-01

    Objective: To optimize and verify the cellulase extraction of polyphenols from honeysuckle and provide a reference for enzymatic extracting polyphenols from honeysuckle. Materials and Methods: The uniform design was used According to Fick's first law and kinetic model, fitting analysis of the dynamic process of enzymatic extracting polyphenols was conducted. Results: The optimum enzymatic extraction parameters for polyphenols from honeysuckle are found to be 80% (v/v) of alcohol, 35:1 (mL/g) of liquid-solid ratio, 80°C of extraction temperature, 8.5 of pH, 6.0 mg of enzyme levels, and 130 min of extraction time. Under the optimal conditions, the extraction rate of polyphenols was 3.03%. The kinetic experiments indicated kinetic equation had a good linear relationship with t even under the conditions of different levels of enzyme and temperature, which means fitting curve tallies well with the experimental values. Conclusion: The results of quantification showed that the results provide a reference for enzymatic extracting polyphenols from honeysuckle. SUMMARY Lonicerae flos (Lonicera japonica Thunb.) is a material of traditional Chinese medicine and healthy drinks, of which active compounds mainly is polyphenols. At present, plant polyphenols are the hotspots centents of food, cosmetic and medicine, because it has strong bioactivity. Several traditional methods are available for the extraction of plant polyphenols including impregnation, solvent extraction, ultrasonic extraction, hot-water extraction, alkaline dilute alcohol or alkaline water extraction, microwave extraction and Supercritical CO2 extraction. But now, an increasing number of research on using cellulase to extract active ingredients from plants. Enzymatic method is widely used for enzyme have excellent properties of high reaction efficiency and specificity, moderate reaction conditions, shorter extraction time and easier to control, less damage to the active ingredient. At present, the enzymatic

  18. Cardioprotective effects of the polyphenol hydroxytyrosol from olive oil.

    PubMed

    Tejada, Silvia; Pinya, Samuel; Del Mar Bibiloni, Maria; Tur, Josep A; Pons, Antoni; Sureda, Antoni

    2016-10-05

    The Mediterranean diet includes olive oil as its primary source of fat. This diet is frequently associated to longevity and a lower incidence of chronic diseases thanks to its biological activities and health effects. Apart from oleic acid, olive oil contains many bioactive components including polyphenols that have been reported to exert antioxidant and anti-inflammatory activities. Polyphenols may for the most part be responsible for the protective effects against cardiovascular diseases associated with olive oil. Hydroxytyrosol is one of the major phenolic compounds in olive oil and has demonstrated strong radical-scavenging properties. Several studies have been performed in order to look further into the effects of the polyphenol hydroxytyrosol in relation to cardiovascular events and illnesses in animal trials and in vitro. However, no clinical trials have focused on the specific action of hydroxytyrosol and cardiovascular diseases, although some are being undertaken to look at olive oil or olive leaf extract properties. In this review, the available literature on hydroxytyrosol effects as a cardioprotective agent is reported and discussed. Moreover, we also discuss the chemistry, nutritional aspects and bioavailability of hydroxytyrosol.

  19. Tribenzyltin carboxylates as anticancer drug candidates: Effect on the cytotoxicity, motility and invasiveness of breast cancer cell lines.

    PubMed

    Anasamy, Theebaa; Thy, Chun Keng; Lo, Kong Mun; Chee, Chin Fei; Yeap, Swee Keong; Kamalidehghan, Behnam; Chung, Lip Yong

    2017-01-05

    This study seeks to investigate the relationship between the structural modification and bioactivity of a series of tribenzyltin complexes with different ligands and substitutions. Complexation with the N,N-diisopropylcarbamothioylsulfanylacetate or isonicotinate ligands enhanced the anticancer properties of tribenzyltin compounds via delayed cancer cell-cycle progression, caspase-dependent apoptosis induction, and significant reduction in cell motility, migration and invasion. Halogenation of the benzyl ring improved the anticancer effects of the tribenzyltin compounds with the N,N-diisopropylcarbamothioylsulfanylacetate ligand. These compounds also demonstrated far greater anticancer effects and selectivity than cisplatin and doxorubicin, which provides a rationale for their further development as anticancer agents.

  20. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins--a pilot study.

    PubMed

    Rusanov, Krasimir; Garo, Eliane; Rusanova, Mila; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika

    2014-11-01

    The production of rose oil from rose flowers by water steam distillation leaves a water fraction of the distillate as main part of the waste. Therefore, the rose oil distillation wastewater represents a serious environmental problem due to the high content of polyphenols which are difficult to decompose and have to be considered as biopollutants when discarded into the drainage system and rivers. On the other hand, natural polyphenols are valuable compounds with useful properties as bioactive substances. Until now there is no established practice for processing of rose oil distillation wastewater and utilization of contained substances. Thus, it was the aim of this study to develop a strategy to separate this wastewater into a polyphenol depleted water fraction and a polyphenol enriched fraction which could be developed into innovative value-added products. In a first step, the phytochemical profile of rose oil distillation wastewater was determined. Its HPLC-PDA-MS analysis revealed the presence of flavan-3-ols, flavanones, flavonols and flavones. In a second step, the development of a stepwise concentration of rose oil distillation wastewater was performed. The concentration process includes a filtration process to eliminate suspended solids in the wastewater, followed by adsorption of the contained phenolic compounds onto adsorption resins (XAD and SP). Finally, desorption of the polyphenol fraction from the resin matrix was achieved using ethanol and/or aqueous ethanol. The result of the process was a wastewater low in soluble organic compounds and an enriched polyphenol fraction (RF20 SP-207). The profile of this fraction was similar to that of rose oil distillation wastewater and showed the presence of flavonols such as quercetin and kaempferol glycosides as major metabolites. These compounds were isolated from the enriched polyphenol fraction and their structures confirmed by NMR. In summary, a pilot medium scale system was developed using adsorption resins

  1. Molecular Characterization, Antioxidant and Protein Solubility-Related Properties of Polyphenolic Compounds from Walnut (Juglans regia).

    PubMed

    Labuckas, Diana; Maestri, Damián; Lamarque, Alicia

    2016-05-01

    Aqueous ethanol extraction of partially defatted walnut flours provides a simple and reliable method to obtain extracts with high content of polyphenolic compounds. These were characterized by means of HPLC-ESI-MS/MS analytical techniques and molecular parameters. Considering the whole set of polyphenolic compounds identified, a high average number of phenolic-OH groups was found. Although these represent potential hydrogen-atom transfer sites, which are associated with high free-radical scavenging capacity, results show that such a property could be strongly limited by the low lipophilicity of polyphenols affecting the accessibility of these molecules to lipid substrates. Variations in pH values were found to change the ionization behavior of phenolic compounds. These changes, however, had minor effects on walnut protein solubility-related properties. The results obtained in this study highlight the importance of molecular characterization of walnut phenolic compounds in order to assess better their bioactive properties.

  2. Stability of Polyphenols Epigallocatechin Gallate and Pentagalloyl Glucose in a Simulated Digestive System

    PubMed Central

    Krook, Melanie A.; Hagerman, Ann E.

    2012-01-01

    Polyphenols found in foods and beverages are under intense scrutiny for their potential beneficial effects on human health. We examined the stability of two bioactive polyphenols, epigallocatechin-O-gallate (EGCg) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG), in a model digestive system at low oxygen tension with and without added digestive components and foods. Both compounds were stable at pH values of 5–6 and below, indicating gastric stability. Both compounds decomposed at pH 7.0. PGG was stabilized in a model system containing pepsin, pancreatin, bile and lipase, and/or baby food, but was not stabilized by dry cereal. EGCg was not stabilized by the addition of any biomolecule. The effects of polyphenols on human health should be evaluated in the context of their stability in the digestive tract with and without added digestive components and/or food. PMID:23028206

  3. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber.

    PubMed

    Tuohy, Kieran M; Conterno, Lorenza; Gasperotti, Mattia; Viola, Roberto

    2012-09-12

    Whole plant foods, including fruit, vegetables, and whole grain cereals, protect against chronic human diseases such as heart disease and cancer, with fiber and polyphenols thought to contribute significantly. These bioactive food components interact with the gut microbiota, with gut bacteria modifying polyphenol bioavailability and activity, and with fiber, constituting the main energy source for colonic fermentation. This paper discusses the consequences of increasing the consumption of whole plant foods on the gut microbiota and subsequent implications for human health. In humans, whole grain cereals can modify fecal bacterial profiles, increasing relative numbers of bifidobacteria and lactobacilli. Polyphenol-rich chocolate and certain fruits have also been shown to increase fecal bifidobacteria. The recent FLAVURS study provides novel information on the impact of high fruit and vegetable diets on the gut microbiota. Increasing whole plant food consumption appears to up-regulate beneficial commensal bacteria and may contribute toward the health effects of these foods.

  4. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity.

    PubMed

    Shabalala, S; Muller, C J F; Louw, J; Johnson, R

    2017-07-01

    Doxorubicin is a highly effective, first line chemotherapeutic agent used in the management of hematological and solid tumors. The effective use of doxorubicin in cancer therapy has been severely limited owing to its well-documented cardiotoxic side effect. Oxidative stress, lipid peroxidation, apoptosis as well as dysregulation of autophagy, has been implicated as a major contributor associated with doxorubicin-induced cardiotoxicity. Increased oxidative stress and lipid peroxidation are known to enhance the production of reactive oxygen species, while autophagy has been reported to protect the cell from stress stimuli or, alternatively, contribute to cell death. Nonetheless, to date, no single chemical synthesized drug is available to prevent the harmful action of doxorubicin without reducing its anti-cancer efficacy. Therefore, the search for an effective and safe antagonist of doxorubicin-induced cardiotoxicity remains a challenge. In recent years, there has been much interest in the role plant-derived polyphenols play in the regulation of oxidative stress and autophagy. Therefore, the present review renders a concise overview of the mechanism associated with doxorubicin-induced cardiotoxicity as well as giving insight into the role plant-derived phytochemical play as a possible adjunctive therapy against the development of doxorubicin-induced cardiotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cimetidine: an anticancer drug?

    PubMed

    Kubecova, Martina; Kolostova, Katarina; Pinterova, Daniela; Kacprzak, Grzegorz; Bobek, Vladimir

    2011-04-18

    Cimetidine, H(2) receptor antagonists, is commonly prescribed for gastric and duodenal ulcer disease. Additionally, cimetidine has been shown to have anticancer effects. This review describes the mechanism of antitumor action of cimetidine including its ability to interfere with tumor cell adhesion, angiogenesis and proliferation; its effect on the immune system; as well as inhibition of postoperative immunosuppression. Its anticancer effect is also compared to that of the other H(2) receptor antagonists as well as outcomes of cimetidine in clinical studies in cancer patients.

  6. Bioactivation of particles

    DOEpatents

    Pinaud, Fabien; King, David; Weiss, Shimon

    2011-08-16

    Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

  7. Health benefits of walnut polyphenols: An exploration beyond their lipid profile.

    PubMed

    Sánchez-González, Claudia; Ciudad, Carlos J; Noé, Véronique; Izquierdo-Pulido, Maria

    2017-11-02

    Walnuts are commonly found in our diet and have been recognized for their nutritious properties for a long time. Traditionally, walnuts have been known for their lipid profile, which has been linked to a wide array of biological properties and health-promoting effects. In addition to essential fatty acids, walnuts contain a variety of other bioactive compounds, such as vitamin E and polyphenols. Among common foods and beverages, walnuts represent one of the most important sources of polyphenols, hence their effect over human health warrants attention. The main polyphenol in walnuts is pedunculagin, an ellagitannin. After consumption, ellagitannins are hydrolyzed to release ellagic acid, which is converted by gut microflora to urolithin A and other derivatives such as urolithins B, C, and D. Ellagitannins possess well known antioxidant and anti-inflammatory bioactivity, and several studies have assessed the potential role of ellagitannins against disease initiation and progression, including cancer, cardiovascular, and neurodegenerative diseases. The purpose of this review is to summarize current available information relating to the potential effect of walnut polyphenols in health maintenance and disease prevention.

  8. Polyphenolic composition and antioxidant activity of the under-utilised Prunus mahaleb L. fruit.

    PubMed

    Blando, Federica; Albano, Clara; Liu, Yazheng; Nicoletti, Isabella; Corradini, Danilo; Tommasi, Noemi; Gerardi, Carmela; Mita, Giovanni; Kitts, David D

    2016-06-01

    The identification of novel plant-based functional foods or nutraceutical ingredients that possess bioactive properties with antioxidant function has recently become important to the food, nutraceutical and cosmetic industries. This study evaluates the polyphenolic composition, identifies bioactive compounds and assays the total antioxidant capacity of Prunus mahaleb L. fruits collected from different populations and sampling years in the countryside around Bari (Apulia Region, Italy). We identified nine polyphenolic compounds including major anthocyanins, coumaric acid derivatives and flavonols from P. mahaleb fruits. The anthocyanin content (in some populations > 5 g kg(-1) fresh weight; FW) in the fruit was comparable to that reported for so-called superfruits such as bilberries, chokeberries and blackcurrants. Coumaric acid derivatives comprised a large portion of the total polyphenolic content in the P. mahaleb fruits. Antioxidant activities, assessed using ORAC and TEAC assays, measured up to 150 and 45 mmol Trolox equivalents kg(-1) FW, respectively. Therefore antioxidant capacity of P. mahaleb fruits is relatively high and comparable to that of superfruit varieties that are often used in commercial nutraceutical products. Our findings suggest that mahaleb fruit (currently not consumed fresh or used in other ways) could serve as a source of bioactive compounds and therefore find interest from the functional food and nutraceutical industries, as a natural food colorant and antioxidant ingredient in the formulation of functional foods. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Proximate and polyphenolic characterization of cranberry pomace

    USDA-ARS?s Scientific Manuscript database

    The proximate composition and identification and quantification of polyphenolic compounds in dried cranberry pomace were determined. Proximate analysis was conducted based on AOAC methods for moisture, protein, fat, and ash. Total carbohydrates were determined by the difference method. Polyphenolic ...

  10. Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals

    PubMed Central

    Rothwell, Joseph A.; Urpi-Sarda, Mireia; Boto-Ordoñez, Maria; Knox, Craig; Llorach, Rafael; Eisner, Roman; Cruz, Joseph; Neveu, Vanessa; Wishart, David; Manach, Claudine; Andres-Lacueva, Cristina; Scalbert, Augustin

    2012-01-01

    Phenol-Explorer, launched in 2009, is the only comprehensive web-based database on the content in foods of polyphenols, a major class of food bioactives that receive considerable attention due to their role in the prevention of diseases. Polyphenols are rarely absorbed and excreted in their ingested forms, but extensively metabolized in the body, and until now, no database has allowed the recall of identities and concentrations of polyphenol metabolites in biofluids after the consumption of polyphenol-rich sources. Knowledge of these metabolites is essential in the planning of experiments whose aim is to elucidate the effects of polyphenols on health. Release 2.0 is the first major update of the database, allowing the rapid retrieval of data on the biotransformations and pharmacokinetics of dietary polyphenols. Data on 375 polyphenol metabolites identified in urine and plasma were collected from 236 peer-reviewed publications on polyphenol metabolism in humans and experimental animals and added to the database by means of an extended relational design. Pharmacokinetic parameters have been collected and can be retrieved in both tabular and graphical form. The web interface has been enhanced and now allows the filtering of information according to various criteria. Phenol-Explorer 2.0, which will be periodically updated, should prove to be an even more useful and capable resource for polyphenol scientists because bioactivities and health effects of polyphenols are dependent on the nature and concentrations of metabolites reaching the target tissues. The Phenol-Explorer database is publicly available and can be found online at http://www.phenol-explorer.eu. Database URL: http://www.phenol-explorer.eu PMID:22879444

  11. Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals.

    PubMed

    Rothwell, Joseph A; Urpi-Sarda, Mireia; Boto-Ordoñez, Maria; Knox, Craig; Llorach, Rafael; Eisner, Roman; Cruz, Joseph; Neveu, Vanessa; Wishart, David; Manach, Claudine; Andres-Lacueva, Cristina; Scalbert, Augustin

    2012-01-01

    Phenol-Explorer, launched in 2009, is the only comprehensive web-based database on the content in foods of polyphenols, a major class of food bioactives that receive considerable attention due to their role in the prevention of diseases. Polyphenols are rarely absorbed and excreted in their ingested forms, but extensively metabolized in the body, and until now, no database has allowed the recall of identities and concentrations of polyphenol metabolites in biofluids after the consumption of polyphenol-rich sources. Knowledge of these metabolites is essential in the planning of experiments whose aim is to elucidate the effects of polyphenols on health. Release 2.0 is the first major update of the database, allowing the rapid retrieval of data on the biotransformations and pharmacokinetics of dietary polyphenols. Data on 375 polyphenol metabolites identified in urine and plasma were collected from 236 peer-reviewed publications on polyphenol metabolism in humans and experimental animals and added to the database by means of an extended relational design. Pharmacokinetic parameters have been collected and can be retrieved in both tabular and graphical form. The web interface has been enhanced and now allows the filtering of information according to various criteria. Phenol-Explorer 2.0, which will be periodically updated, should prove to be an even more useful and capable resource for polyphenol scientists because bioactivities and health effects of polyphenols are dependent on the nature and concentrations of metabolites reaching the target tissues. The Phenol-Explorer database is publicly available and can be found online at http://www.phenol-explorer.eu. Database URL: http://www.phenol-explorer.eu.

  12. Interrelation of antioxidant, anticancer and antilieshmania effects of some selected Egyptian plants and their phenolic constituents.

    PubMed

    Abdel-Hady, Nevein M; Dawoud, Gouda T M; El-Hela, Atef A; Morsy, Tosson A

    2011-12-01

    Medicinal plants are the most potential resource of new therapeutic agents. They are diverse, largely productive, biologically active and chemically unique; among their constituents "polyphenol compounds group" one of the main determinant factors in evaluating the pharmacological potentials i.e. polyphenols display an array of pharmacological properties such as antioxidant, immunostimulant, antitumor and antiparasitic effects. Cancer is a dreadful human disease, increasing with changing life style, nutrition and global warming while current available anticancer drugs cause serious side effects in most instances. Several reports suggested the relationship between antioxidant, anticancer and antiparasitic effects; they suggested that they act indirectly through promoting host resistance, restabilizing body equilibrim and conditioning body tissues in addition to their direct effect on certain parasites involved in cancer etiology. This work was conducted for estimation of total phenolic, flavonoids, phenylethanoid glycoside and iridoid content of twenty-three selected Egyptian plants as well as screening of their anticancer, antioxidant and antileishmanial effects, the overall gained results for suggest that the most suitable medicinal plant used as anticancer and antioxidant is Petrea volubilis L. which contain adequate mixture of total phenolic compounds 88.7 mg% and flavonoids 50.80 mg% and also suggest that flavonoid compounds are the category of phenolic compounds possess significant antioxidant and anticancer effects while the antilieshamnia screening revealed that Thymus decussatus Benth. extract exhibited the highest effect due to the presence of flavonoids and iridoids in adequate combination where iridoid compounds 201 mg% and flavonoid content was 128 mg%.

  13. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds.

    PubMed

    Chen, Ling; Zhang, Qiao-Yan; Jia, Min; Ming, Qian-Liang; Yue, Wei; Rahman, Khalid; Qin, Lu-Ping; Han, Ting

    2016-05-01

    Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.

  14. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes

    PubMed Central

    Mattera, Rosanna; Benvenuto, Monica; Giganti, Maria Gabriella; Tresoldi, Ilaria; Pluchinotta, Francesca Romana; Bergante, Sonia; Tettamanti, Guido; Masuelli, Laura; Manzari, Vittorio; Modesti, Andrea; Bei, Roberto

    2017-01-01

    Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress. PMID:28531112

  15. Kefir: a powerful probiotics with anticancer properties.

    PubMed

    Sharifi, Mohammadreza; Moridnia, Abbas; Mortazavi, Deniz; Salehi, Mahsa; Bagheri, Marzieh; Sheikhi, Abdolkarim

    2017-09-27

    Probiotics and fermented milk products have attracted the attention of scientists from various fields, such as health care, industry and pharmacy. In recent years, reports have shown that dietary probiotics such as kefir have a great potential for cancer prevention and treatment. Kefir is fermented milk with Caucasian and Tibet origin, made from the incubation of kefir grains with raw milk or water. Kefir grains are a mixture of yeast and bacteria, living in a symbiotic association. Antibacterial, antifungal, anti-allergic and anti-inflammatory effects are some of the health beneficial properties of kefir grains. Furthermore, it is suggested that some of the bioactive compounds of kefir such as polysaccharides and peptides have great potential for inhibition of proliferation and induction of apoptosis in tumor cells. Many studies revealed that kefir acts on different cancers such as colorectal cancer, malignant T lymphocytes, breast cancer and lung carcinoma. In this review, we have focused on anticancer properties of kefir.

  16. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    PubMed

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  17. Recent advances on tea polyphenols

    PubMed Central

    Kanwar, Jyoti; Taskeen, Mujtaba; Mohammad, Imthiyaz; Huo, Congde; Chan, Tak Hang; Dou, Qing Ping

    2012-01-01

    Over the past decade many scientific and medical studies have focused on green tea for its long-purported health benefits. There is convincing evidence that tea is a cup of life. It has multiple preventive and therapeutic effects. This review thus focuses on the recent advances of tea polyphenols and their applications in the prevention and treatment of human cancers. Of the various polyphenols in tea, (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant, and active compound studied in tea research. EGCG inhibits several molecular targets to inhibit cancer initiation and modulates several essential survival pathways to block cancer progression. Herein, we describe the various mechanisms of action of EGCG and also discuss previous and current ongoing clinical trials of EGCG and green tea polyphenols in different cancer types. PMID:22201858

  18. Bioactivity of grape chemicals for human health.

    PubMed

    Iriti, Marcello; Faoro, Franco

    2009-05-01

    Grapevine (Vitis vinifera) products, grape and grape juice, represent a valuable source of bioactive phytochemicals, synthesized by three secondary metabolic pathways (phenylpropanoid, isoprenoid and alkaloid biosynthetic routes) and stored in different plant tissues. In the last decades, compelling evidence suggested that regular consumption of these products may contribute to reducing the incidence of chronic illnesses, such as cancer, cardiovascular diseases, ischemic stroke, neurodegenerative disorders and aging, in a context of the Mediterranean dietary tradition. The health benefits arising from grape product intake can be ascribed to the potpourri of biologically active chemicals occurring in grapes. Among them, the recently discovered presence of melatonin adds a new element to the already complex grape chemistry. Melatonin, and its possible synergistic action with the great variety of polyphenols, contributes to further explaining the observed health benefits associated with regular grape product consumption.

  19. Differential modulation of the genotoxicity of food carcinogens by naturally occurring monomeric and dimeric polyphenolics.

    PubMed

    Catterall, F; Souquet, J M; Cheynier, V; de Pascual-Teresa, S; Santos-Buelga, C; Clifford, M N; Ioannides, C

    2000-01-01

    Naturally occurring dimeric polyphenolics and their gallate esters were isolated from grape seeds, almond fruits, and apple skin, and their ability to modulate the mutagenicity of food carcinogens was studied in the Ames test, and compared to that of the monomeric green tea flavonols, (+)-catechin and (-)-epicatechin. Neither the monomeric nor the dimeric polyphenols and their galloylated derivatives influenced the mutagenic activity elicited by the indirectly acting food carcinogens benzo[a]pyrene and 2-amino-3-methylimidazo-[4,5-f]quinoline (IQ), in the presence of a hepatic activation system derived from Aroclor 1254-treated rats; the only exception was the B7 dimer, which, at concentrations above 1 microM, suppressed the mutagenicity of IQ. None of the polyphenolics modulated the mutagenic activity elicited by the directly acting carcinogen N'-methyl-N'-nitro-nitrosoguanidine (MNNG). In contrast, all the dimeric polyphenols and the galloylated metabolites, at concentrations over 1 microM, potentiated the mutagenic activity induced by the indirectly acting carcinogen N-nitrosopyrrolidine, in the presence of an activation system derived from isoniazid-treated rats. In conclusion, dimeric polyphenols and galloylated derivatives of plant origin are unlikely to influence the initiation stage of the carcinogenicity of chemicals through mechanisms that involve inhibition of their cytochrome P450-mediated bioactivation or scavenging of the reactive, genotoxic intermediates. Copyright 2000 Wiley-Liss, Inc.

  20. Bioavailability of multiple components following acute ingestion of a polyphenol-rich juice drink.

    PubMed

    Borges, Gina; Mullen, William; Mullan, Adam; Lean, Michael E J; Roberts, Susan A; Crozier, Alan

    2010-07-01

    A healthy diet involves eating fruit and vegetables on a daily basis, the benefits of which are in part linked to the ingestion of bioactive compounds including polyphenols. As a convenient means of delivering additional polyphenols to the diet, a polyphenol-rich (P-R) juice drink was prepared and the bioavailability of its diverse spectrum of constituents investigated. Ten human volunteers followed a low-flavonoid diet for 2 days before drinking 350 mL of the P-R beverage. Plasma and urine were collected for 24 h and analyzed by HPLC-PDA-MS. The plasma pharmacokinetics and recoveries of urinary metabolites of flavan-3-ols, flavanones, dihydrochalcones and 5-O-caffeoylquinic acid, both in terms of their identity and quantity, were, in most instances, not markedly different to those reported in other feeding studies with green tea, orange juice, apple cider and coffee. This indicates that the combination of polyphenolic compounds in the P-R beverage are absorbed and excreted to a similar extent whether fed individually or together in a single beverage. It is concluded that the P-R beverage can deliver the intended blend of bioavailable polyphenols, which would normally require consumption of several different plant-derived foods.

  1. Polyphenol content, in vitro bioaccesibility and antioxidant capacity of widely consumed beverages.

    PubMed

    Baeza, Gema; Sarriá, Beatriz; Bravo, Laura; Mateos, Raquel

    2017-08-03

    Beverages prepared from antioxidant rich plants are sources of polyphenols, which bioactivity depends on bioaccesibility in the gastrointestinal tract. This work evaluated the polyphenol content and antioxidant capacity of widely consumed beverages such as chamomile tea, yerba mate, a coffee blend (65% roasted:35% green), and coffee-like substitutes such as chicory, malt and a soluble cereal mixture. Additionally, the bioaccesibility of the two beverages with the highest antioxidant capacity was evaluated using an in vitro digestion model. Total phenolic contents ranged from 11.15 mg/200 mL in chamomile tea up to 154.53 mg/200 mL in mate or 215.05 mg/200 mL in the blend. These results correlated with the antioxidant capacity analysed by FRAP, ORAC and ABTS methods. Yerba mate and the coffee blend showed an average polyphenol recovery after in vitro gastrointestinal digestion of 57% and 78%, respectively. Although both beverages showed similar phenolic composition, polyphenols in coffee were more stable than in yerba mate. Alkaline pH in the intestinal digestion stage was responsible for the observed reduction in polyphenol stability. Regular consumption of the studied beverages provides considerable amounts of antioxidants which are relatively stable after simulated digestion, and thus have the potential to prevent oxidative stress-related disorders. This article is protected by copyright. All rights reserved.

  2. Stability of dietary polyphenols under the cell culture conditions: avoiding erroneous conclusions.

    PubMed

    Xiao, Jianbo; Högger, Petra

    2015-02-11

    Most data of bioactivity from dietary polyphenols have been derived from in vitro cell culture experiments. In this context, little attention is paid to potential artifacts due to chemical instability of these natural antioxidants. An early degradation time ((C)T10) and half-degradation time ((C)T50) were defined to characterize the stability of 53 natural antioxidants incubated in Dulbecco's modified Eagle's medium (DMEM) at 37 °C. The degree of hydroxylation of flavones and flavonols significantly influenced the stability in order resorcinol-type > catechol-type > pyrogallol-type, with the pyrogallol-type being least stable. In contrast, any glycosylation of polyphenols obviously enhanced their stability. However, the glycosylation was less important compared to the substitution pattern of the nucleus rings. Methoxylation of flavonoids with more than three hydroxyl groups typically improved their stability as did the hydrogenation of the C2═C3 double bond of flavonoids to corresponding flavanoids. There was no significant correlation between the antioxidant potential of polyphenols and their stability. Notably, the polyphenols were clearly more stable in human plasma than in DMEM, which may be caused by polyphenol-protein interactions. It is strongly suggested to carry out stability tests in parallel with cell culture experiments for dietary antioxidants with catechol or pyrogallol structures and pyrogallol-type glycosides in order to avoid artifacts.

  3. Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger.

    PubMed

    Sepúlveda, Leonardo; de la Cruz, Reynaldo; Buenrostro, José Juan; Ascacio-Valdés, Juan Alberto; Aguilera-Carbó, Antonio Francisco; Prado, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal Noé

    2016-01-01

    Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Bioactive compounds and antioxidant activity of wolfberry infusion

    PubMed Central

    Sun, Yujing; Rukeya, Japaer; Tao, Wenyang; Sun, Peilong; Ye, Xingqian

    2017-01-01

    An infusion of the wolfberry (Lycium barbarum L.) is a traditional Asian herbal tea. This is the most commonly consumed form of dried wolfberry worldwide, yet little scientific information on wolfberry infusions is available. We investigated the effects of making infusions with hot water on the color, the content of bioactive compounds (polysaccharides, polyphenols, flavonoids and carotenoids) and the antioxidant ability of wolfberry infusions. The contents of bioactive compounds and the antioxidant activity of a wolfberry infusion increased with increased infusion temperature and time. Total polysaccharides content (TPOC), total polyphenols (TPC), total flavonoids (TFC) and total carotenoids contents (TCC) were important for determining the antioxidant capacity of wolfberry infusions with the contribution to antioxidant activity in the order TPC > TFC > TCC > TPOC. Hierarchical cluster analysis indicated preparation conditions of 100 °C for 1~3 h, 90 °C for 2~3 h and 80 °C for 2.5~3 h were equivalent as regards the value of TPC, TPOC, TFC, TCC, FRAP, DPPH and ABTS. The results of this study suggest the length of time of making a wolfberry infusion in actual real life practice is too short and different dietary habits associated with the intake of wolfberry infusion might provide the same bioactive nutrients. PMID:28102295

  5. Bioactive compounds and antioxidant potential fruit of Ximenia americana L.

    PubMed

    Almeida, Maria Lucilania Bezerra; Freitas, Wallace Edelky de Souza; de Morais, Patrícia Lígia Dantas; Sarmento, José Dárcio Abrantes; Alves, Ricardo Elesbão

    2016-02-01

    The caatinga ecoregion in northeast Brazil presents a wide variety in plant species. However, the potential of these species as a source of energy, carbohydrates, vitamins, minerals and bioactive properties beneficial to health is still unknown. Among these species we can find the wild plum (Ximenia americana). Due to its various phytotherapeutic properties and absence of studies on the chemical composition of the fruit this article aimed to evaluate the bioactive compounds and antioxidant potential of the X. americana in different stages of maturation. The fruits of X. americana showed considerable amounts of bioactive compounds, as well as antioxidant activity and antioxidant enzymes. The fruits at green maturity stage showed higher content of yellow flavonoids (22.07 mg/100g), anthocyanins (1.92 mg/100 g), polyphenols (3051.62 mg/100 g), starch (4.22%), antioxidant activity (489.40 g fruit/g DPPH and 198.77 μmol Trolox/g) and activity of antioxidant enzymes; the antioxidant activity allocated to the fruit was shown to be related to the contents of extractable polyphenols, yellow flavonoids, total anthocyanins and antioxidant enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery.

    PubMed

    Ping, Yuan; Guo, Junling; Ejima, Hirotaka; Chen, Xi; Richardson, Joseph J; Sun, Huanli; Caruso, Frank

    2015-05-06

    A new class of pH-responsive capsules based on metal-phenolic networks (MPNs) for anticancer drug loading, delivery and release is reported. The fabrication of drug-loaded MPN capsules, which is based on the formation of coordination complexes between natural polyphenols and metal ions over a drug-coated template, represents a rapid strategy to engineer robust and versatile drug delivery carriers.

  7. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts.

    PubMed

    Kidd, Parris M

    2009-09-01

    Plant-derived polyphenols are increasingly receiving attention as dietary supplements for the homeostatic management of inflammation, to support detoxication, and for anticancer, weight loss, and other benefits. Their pro-homeostatic effects on genes, transcription factors, enzymes, and cell signaling pathways are being intensively explored, but the poor bioavailability of some polyphenols likely contributes to poor clinical trial outcomes. This review covers four polyphenol preparations with poor bioavailability and their complexation into phytosomes to bypass this problem. Silybin and the other silymarin flavonolignans from milk thistle conserve tissue glutathione, are liver-protective, and have anticancer potential. Curcumin and its related diphenolic curcuminoids have potent antioxidant, anti-inflammatory, and anti-carcinogenic properties. The green tea flavan-3-ol catechins have antioxidant, anti-inflammatory, cardio- and neuro-protective effects, and anti-carcinogenic benefits, with fat oxidation effects coupled to weight loss. The complex grape seed proanthocyanidin mix (including catechin and epicatechin monomers and oligomers) counters oxidative stress and protects the circulatory system. For each of these preparations, conversion into phytosomes has improved efficacy without compromising safety. The phytosome technology creates intermolecular bonding between individual polyphenol molecules and one or more molecules of the phospholipid, phosphatidylcholine (PC). Molecular imaging suggests that PC molecule(s) enwrap each polyphenol; upon oral intake the amphipathic PC molecules likely usher the polyphenol through the intestinal epithelial cell outer membrane, subsequently accessing the bloodstream. PC itself has proven clinical efficacy that contributes to phytosome in vivo actions. As a molecular delivery vehicle, phytosome technology substantially improves the clinical applicabilities of polyphenols and other poorly absorbed plant medicinals.

  8. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): a systematic review.

    PubMed

    Chen, Xiuping; Guo, Jiajie; Bao, Jiaolin; Lu, Jinjian; Wang, Yitao

    2014-07-01

    Salvia miltiorrhiza Bunge (Danshen in Chinese) is a classical Huoxue Huayu (a traditional Chinese medical term means promoting blood circulation and removing blood stasis) herb with 1000 years of clinical application. It mainly contains two groups of ingredients: the hydrophilic phenolic acids and the lipophilic tanshinones. Both groups have demonstrated multiple bioactivities, such as antioxidative stress, antiplatelet aggregation, anti-inflammation, among others. Recent data have demonstrated that its lipophilic compounds, especially the tanshinones, show potent anticancer activities both in vitro and in vivo. The anticancer effects of the hydrophilic phenolic acids have also been reported. Furthermore, tanshinones provide structural skeletons for chemical modifications, allowing for a series of derivatives of interests. This review provides a systematic summary of the anticancer profile and the underlying mechanisms of the bioactive compounds isolated from Danshen with special emphasis on tanshinones, aiming to bring new insights for further research and development of this ancient herb.

  9. Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties.

    PubMed

    Barrajón-Catalán, Enrique; Herranz-López, María; Joven, Jorge; Segura-Carretero, Antonio; Alonso-Villaverde, Carlos; Menéndez, Javier A; Micol, Vicente

    2014-01-01

    The use of plant-derived polyphenols for the management of diseases has been under debate in the last decades. Most studies have focused on the specific effects of polyphenols on particular targets, while ignoring their pleiotropic character. The multitargeted character of polyphenols, a plausible consequence of their molecular promiscuity, may suppose an opportunity to fight multifactorial diseases. Therefore, a wider perspective is urgently needed to elucidate whether their rational use as bioactive food components may be valid for the management of diseases. In this chapter, we discuss the most likely targets of polyphenols that may account for their salutary effects from a global perspective. Among these targets, the modulation of signalling and energy-sensitive pathways, oxidative stress and inflammation-related processes, mitochondrial functionality, epigenetic machinery, histone acetylation and membrane-dependent processes play central roles in polyphenols' mechanisms of action.Sufficient evidence on polyphenols has accumulated for them to be considered a serious option for the management of non-communicable diseases, such as cancer and obesity, as well as infectious diseases. The remaining unresolved issues that must be seriously addressed are their bioavailability, metabolite detection, specific molecular targets, interactions and toxicity. The Xenohormesis hypothesis, which postulates that polyphenols are the product of plant evolutive adaptation to stress and conferee their resistance to mammals, offers a reasonable explanation to justify the beneficial and non-toxic effects of plant mixtures, but do not fully meet expectations. Hence, future research must be supported by the use of complex polypharmacology approaches and synergic studies focused on the understanding of the pleiotropic effects of polyphenols. Revisiting polyphenol mechanisms of action with the help of these techniques may allow for the improvement of human health and wellness by using

  10. Anticancer activity of selected Colocasia gigantia fractions.

    PubMed

    Pornprasertpol, Apichai; Sereemaspun, Amornpun; Sooklert, Kanidta; Satirapipatkul, Chutimon; Sukrong, Suchada

    2015-01-01

    The objective of this study is to investigate the anticancer potential of the extract of Colocasia gigantea C. gigantea), a plant member of the Araceae family. In the present study, we investigated the cytotoxic activity of C. gigantea extract on cervical cancer (Hela) and human white blood cells (WBC) in vitro. The authors then identified the bioactive ingredients that demonstrated cytotoxicity on tested cells and evaluated those bioactive ingredients using the bioassay-guided fractionation method. The results showed that not all parts of C. gigantea promote cytotoxic activity. The dichloromethane leaf fraction showed significant cell proliferation effect on Hela cells, but not on WBCs. Only the n-hexane tuber fraction (Fr. 1T) exhibited significant cytotoxicity on Hela cells (IC50 = 585 μg/ml) and encouraged WBC cell proliferation. From GC-Mass spectrometry, 4,22-Stigmastadiene-3-one, Diazoprogesterone, 9-Octadecenoic acid (Z)-, hexyl ester and Oleic Acid were the components of Fr 1T that demonstrated cytotoxic potential. In conclusion, C. gigantea's Fr 1T shows potential for cervical cancer treatment.

  11. Sesterterpenoids with Anticancer Activity

    PubMed Central

    Evidente, Antonio; Kornienko, Alexander; Lefranc, Florence; Cimmino, Alessio; Dasari, Ramesh; Evidente, Marco; Mathieu, Véronique; Kiss, Robert

    2016-01-01

    Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review. PMID:26295461

  12. Green tea and anticancer perspectives: updates from last decade.

    PubMed

    Butt, Masood Sadiq; Ahmad, Rabia Shabir; Sultan, M Tauseef; Qayyum, Mir M Nasir; Naz, Ambreen

    2015-01-01

    Green tea is the most widely consumed beverage besides water and has attained significant attention owing to health benefits against array of maladies, e.g., obesity, diabetes mellitus, cardiovascular disorders, and cancer insurgence. The major bioactive molecules are epigallocatechin-3-gallate, epicatechin, epicatechin-3-gallate, epigallocatechin, etc. The anticarcinogenic and antimutagenic activities of green tea were highlighted some years ago. Several cohort studies and controlled randomized trials suggested the inverse association of green tea consumption and cancer prevalence. Cell culture and animal studies depicted the mechanisms of green tea to control cancer insurgence, i.e., induction of apoptosis to control cell growth arrest, altered expression of cell-cycle regulatory proteins, activation of killer caspases, and suppression of nuclear factor kappa-B activation. It acts as carcinoma blocker by modulating the signal transduction pathways involved in cell proliferation, transformation, inflammation, and metastasis. However, results generated from some research interventions conducted in different groups like smokers and nonsmokers, etc. contradicted with aforementioned anticancer perspectives. In this review paper, anticancer perspectives of green tea and its components have been described. Recent findings and literature have been surfed and arguments are presented to clarify the ambiguities regarding anticancer perspectives of green tea and its component especially against colon, skin, lung, prostate, and breast cancer. The heading of discussion and future trends is limelight of the manuscript. The compiled manuscript provides new avenues for researchers to be explored in relation to green tea and its bioactive components.

  13. Neuroprotective Role of Natural Polyphenols.

    PubMed

    Spagnuolo, Carmela; Napolitano, Marianna; Tedesco, Idolo; Moccia, Stefania; Milito, Alfonsina; Russo, Gian Luigi

    2016-01-01

    Neurodegenerative diseases cause a progressive functional alteration of neuronal systems, resulting in a state of dementia which is considered one of the most common psychiatric disorders of the elderly. Dementia implies an irreversible impairment of intellect that increases with age causing alteration of memory, language and behavioral problems. The most common form, which occurs in more than half of all cases, is Alzheimer's disease, characterized by accumulation of amyloid plaques and neurofibrillary tangles. Neuroinflammation and oxidative stresses have been considered as a hallmark of Alzheimer disease, playing a crucial role in neurotoxicity. For this reason, an adequate antioxidant strategy may improve the treatment of neurodegenerative diseases and dementia. Several studies support the neuroprotective abilities of polyphenolic compounds resulting in neuronal protection against injury induced by neurotoxins, ability to suppress neuroinflammation and the potential to promote memory, learning and cognitive functions. We critically reviewed here the therapeutic potential of pure herbal compounds (e.g., green tea polyphenol (-)- epigallocatechin-3-gallate, resveratrol, curcumin, quercetin and others) and extracts enriched in polyphenols showing the most promising neuroprotective effects. We are also presenting data on the ability of an extract derived from elderberry, Sambucus nigra, possessing elevated polyphenolic content and antioxidant capacity to protect neuronal cells against oxidizing agents.

  14. Polyphenols in preventing endothelial dysfunction.

    PubMed

    Biegańska-Hensoldt, Sylwia; Rosołowska-Huszcz, Danuta

    2017-03-27

    One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions. Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS) and increased production of nitric oxide (NO) and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules - sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  15. Polyphenols and Prostate Cancer Chemoprevention

    DTIC Science & Technology

    2005-03-01

    prostate chemoprevention are the soy isoflavone , genistein, and the tea catechin, (-)- epigallocatechin-3-gallate (EGCG). Another polyphenol that has...resveratrol in female rats , where the low doses did not exert chemopreventive effects, we concentrated on determining if single exposure to the proposed

  16. Functional significance of bioactive peptides derived from soybean.

    PubMed

    Singh, Brij Pal; Vij, Shilpa; Hati, Subrota

    2014-04-01

    Biologically active peptides play an important role in metabolic regulation and modulation. Several studies have shown that during gastrointestinal digestion, food processing and microbial proteolysis of various animals and plant proteins, small peptides can be released which possess biofunctional properties. These peptides are to prove potential health-enhancing nutraceutical for food and pharmaceutical applications. The beneficial health effects of bioactive peptides may be several like antihypertensive, antioxidative, antiobesity, immunomodulatory, antidiabetic, hypocholesterolemic and anticancer. Soybeans, one of the most abundant plant sources of dietary protein, contain 36-56% of protein. Recent studies showed that soy milk, an aqueous extract of soybean, and its fermented product have great biological properties and are a good source of bioactive peptides. This review focuses on bioactive peptides derived from soybean; we illustrate their production and biofunctional attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Edible berries: bioactive components and their effect on human health.

    PubMed

    Nile, Shivraj Hariram; Park, Se Won

    2014-02-01

    The importance of food consumption in relation to human health has increased consumer attention in nutraceutical components and foods, especially fruits and vegetables. Berries are a rich source of a wide variety of non-nutritive, nutritive, and bioactive compounds such as flavonoids, phenolics, anthocyanins, phenolic acids, stilbenes, and tannins, as well as nutritive compounds such as sugars, essential oils, carotenoids, vitamins, and minerals. Bioactive compounds from berries have potent antioxidant, anticancer, antimutagenic, antimicrobial, anti-inflammatory, and antineurodegenerative properties, both in vitro and in vivo. The following is a comprehensive and critical review on nutritional and non-nutritional bioactive compounds of berries including their absorption, metabolism, and biological activity in relation to their potential effect on human health.

  18. Unique metabolites protect earthworms against plant polyphenols

    PubMed Central

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A. John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J.; McPhail, David; Takáts, Zoltán; Bundy, Jacob G.

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term ‘drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  19. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-08-04

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide.

  20. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L.

    PubMed

    Lee, Jong Won; Lee, Jeong Hyun; Yu, In Ho; Gorinstein, Shela; Bae, Jong Hyang; Ku, Yang Gyu

    2014-06-01

    The aim of this investigation was to find a proper harvesting period and establishing fern number, which effects the spear yield, bioactive compounds and antioxidant activities of Asparagus officinalis L. Spears were harvested at 2, 4, and 6 weeks after sprouting. Control for comparison was used without harvest. Spears and total yield increased with prolonged spear harvest period. In harvest of 6 weeks long optimum spear yield was the highest and fern numbers were 5 ~ 8. Bioactive compounds (polyphenols, flavonoids, flavanols, tannins and ascorbic acid) and the levels of antioxidant activities by ferric-reducing/antioxidant power (FRAP) and cupric reducing antioxidant capacity (CUPRAC) assays in asparagus ethanol extracts significantly differed in the investigated samples and were the highest at 6 weeks harvest period (P < 0.05). The first and the second segments from the tip significantly increased with the increase of catalase (CAT). It was interesting to investigate in vitro how human serum albumin (HSA) interacts with polyphenols extracted from investigated vegetables. Therefore the functional properties of asparagus were studied by the interaction of polyphenol ethanol extracts with HSA, using 3D- FL. In conclusion, antioxidant status (bioactive compounds, binding and antioxidant activities) improved with the harvesting period and the first segment from spear tip. Appropriate harvesting is effective for higher asparagus yield and its bioactivity.

  1. MULTITARGETED THERAPY OF CANCER BY GREEN TEA POLYPHENOLS

    PubMed Central

    Khan, Naghma; Mukhtar, Hasan

    2010-01-01

    Tea ranks second only to water as a major component of fluid intake worldwide and has been considered a health-promoting beverage since ancient times. For the past two decades, we and others have been investigating the potential cancer preventive and therapeutic effects of green tea and its polyphenolic mixture termed GTP. It has become clear that much of these effects of GTP are mediated by its most abundant catechin, epigallocatechin gallate (EGCG). Large amount of encouraging data from in vitro and animal models have emerged making clear that green tea is a nature's gift molecule endowed with anticancer effects. Epidemiological and geographical observations suggest that these laboratory data may be applicable to human population. Clinical trials of GTP, especially in prostate cancer patients have yielded encouraging results. This article briefly reviews properties of GTP, especially EGCG with reference to multitargeted therapy of cancer. PMID:18501505

  2. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting.

    PubMed

    Hečimović, Ivana; Belščak-Cvitanović, Ana; Horžić, Dunja; Komes, Draženka

    2011-12-01

    The bioactive composition of coffee, as one of the most popular beverages in the world, has attracted interest as a potential source of beneficial bioactive compounds, especially polyphenols and caffeine. Since the content of these compounds is affected by the processing conditions, the objective of this study was to determine the content of polyphenolic compounds and caffeine in four different coffee varieties: Minas and Cioccolatato (Coffea arabica), and Cherry and Vietnam (Coffea canephora syn. Coffea robusta), roasted by three varying degrees (light, medium and dark). The content of the polyphenolic compounds and the antioxidant capacity of coffees were determined using UV/Vis spectrophotometric methods, while the content of chlorogenic acid derivatives was determined using HPLC analysis. The caffeine content was determined by means of two spectrophotometric methods, as well as HPLC analysis. Additionally, raw caffeine was also obtained by an isolation procedure with chloroform. Cherry coffee, a variety of C. canephora exhibited the highest overall content of total phenols (42.37mg GAE/g), followed by Minas coffee, while Cioccolatato contained the lowest TPC (33.12mg GAE/g). Cherry coffee also exhibited the highest content of individual classes of polyphenols (flavan-3-ols, procyanidins and tannins), while the highest content of chlorogenic acid (CQA) derivatives was determined in Minas and Cioccolatato coffees (C. arabica). The highest content of total and individual polyphenolic compounds was determined in coffees roasted in both light and medium roasting conditions, which was also observed for the content of CQA derivatives and antioxidant capacity of roasted coffees. The highest caffeine content in the coffee samples was determined by employing the HPLC analysis (0.06-2.55%). Light roasted Cherry coffee contained the highest overall content of caffeine among all coffees, which exhibited a decrease with intensified roasting.

  3. Matrix solid-phase dispersion as a tool for phytochemical and bioactivities characterisation: Crataegus oxyacantha L._A case study.

    PubMed

    Benabderrahmane, Wassila; Lores, Marta; Lamas, Juan Pablo; Benayache, Samir

    2017-05-15

    The use of a matrix solid-phase dispersion (MSPD) process to extract polyphenols from hawthorn (Crataegus oxyacantha L.) a deciduous shrub with an expected rich phytochemical profile, has been evaluated. MSPD extracts of fruits and leaves have an outstanding content of polyphenols, although the particular phenolic profile is solvent dependent. The extracts were analysed by HPLC-DAD for the accurate identification of the major bioactive polyphenols, some of which have never been described for this species. MSPD has proven to be a good alternative to the classic methods of obtaining natural extracts, fast and with low consumption of organic solvents, therefore, environmentally friendly. The bioactivities can be considered also very remarkable, revealing extracts with high levels of antioxidant activity.

  4. Effects of UV-B radiation levels on concentrations of phytosterol, ergothioneine, and polyphenolic compounds in mushroom powder used as dietary supplements

    USDA-ARS?s Scientific Manuscript database

    Compositional changes of powder dietary supplement made from mushrooms previously exposed to different levels of UV-B irradiation were evaluated for the bioactive naturally occurring mushroom anti-oxidant, ergothioneine, other natural polyphenolic anti-oxidants: e.g. flavonoids, lignans, and others,...

  5. Plasma Pharmacokinetics of Polyphenols in a Traditional Japanese Medicine, Jumihaidokuto, Which Suppresses Propionibacterium acnes-Induced Dermatitis in Rats.

    PubMed

    Matsumoto, Takashi; Matsubara, Yousuke; Mizuhara, Yasuharu; Sekiguchi, Kyoji; Koseki, Junichi; Tsuchiya, Kazuaki; Nishimura, Hiroaki; Watanabe, Junko; Kaneko, Atsushi; Maemura, Kazuya; Hattori, Tomohisa; Kase, Yoshio

    2015-09-30

    Most orally administered polyphenols are metabolized, with very little absorbed as aglycones and/or unchanged forms. Metabolic and pharmacokinetic studies are therefore necessary to understand the pharmacological mechanisms of polyphenols. Jumihaidokuto (JHT), a traditional Japanese medicine, has been used for treatment of skin diseases including inflammatory acne. Because JHT contains various types of bioactive polyphenols, our aim was to clarify the metabolism and pharmacokinetics of the polyphenols in JHT and identify active metabolites contributing to its antidermatitis effects. Orally administered JHT inhibited the increase in ear thickness in rats induced by intradermal injection of Propionibacterium acnes. Quantification by LC-MS/MS indicated that JHT contains various types of flavonoids and is also rich in hydrolysable tannins, such as 1,2,3,4,6-penta-O-galloyl glucose. Pharmacokinetic and antioxidant analyses showed that some flavonoid conjugates, such as genistein 7-O-glucuronide and liquiritigenin 7-O-glucuronide, appeared in rat plasma and had an activity to inhibit hydrogen peroxide-dependent oxidation. Furthermore, 4-O-methylgallic acid, a metabolite of Gallic acid, appeared in rat plasma and inhibited the nitric oxide reaction. JHT has numerous polyphenols; it inhibited dermatitis probably via the antioxidant effect of its metabolites. Our study is beneficial for understanding in vivo actions of orally administered polyphenol drugs.

  6. Bioactive Peptide of Marine Origin for the Prevention and Treatment of Non-Communicable Diseases

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2017-01-01

    Non-communicable diseases (NCD) are the leading cause of death and disability worldwide. The four main leading causes of NCD are cardiovascular diseases, cancers, respiratory diseases and diabetes. Recognizing the devastating impact of NCD, novel prevention and treatment strategies are extensively sought. Marine organisms are considered as an important source of bioactive peptides that can exert biological functions to prevent and treatment of NCD. Recent pharmacological investigations reported cardio protective, anticancer, antioxidative, anti-diabetic, and anti-obesity effects of marine-derived bioactive peptides. Moreover, there is available evidence supporting the utilization of marine organisms and its bioactive peptides to alleviate NCD. Marine-derived bioactive peptides are alternative sources for synthetic ingredients that can contribute to a consumer’s well-being, as a part of nutraceuticals and functional foods. This contribution focus on the bioactive peptides derived from marine organisms and elaborates its possible prevention and therapeutic roles in NCD. PMID:28282929

  7. Bioactive Peptide of Marine Origin for the Prevention and Treatment of Non-Communicable Diseases.

    PubMed

    Pangestuti, Ratih; Kim, Se-Kwon

    2017-03-09

    Non-communicable diseases (NCD) are the leading cause of death and disability worldwide. The four main leading causes of NCD are cardiovascular diseases, cancers, respiratory diseases and diabetes. Recognizing the devastating impact of NCD, novel prevention and treatment strategies are extensively sought. Marine organisms are considered as an important source of bioactive peptides that can exert biological functions to prevent and treatment of NCD. Recent pharmacological investigations reported cardio protective, anticancer, antioxidative, anti-diabetic, and anti-obesity effects of marine-derived bioactive peptides. Moreover, there is available evidence supporting the utilization of marine organisms and its bioactive peptides to alleviate NCD. Marine-derived bioactive peptides are alternative sources for synthetic ingredients that can contribute to a consumer's well-being, as a part of nutraceuticals and functional foods. This contribution focus on the bioactive peptides derived from marine organisms and elaborates its possible prevention and therapeutic roles in NCD.

  8. Green tea and tea polyphenols in cancer prevention.

    PubMed

    Chen, Di; Daniel, Kenyon G; Kuhn, Deborah J; Kazi, Aslamuzzaman; Bhuiyan, Mohammad; Li, Lianhai; Wang, Zhigang; Wan, Sheng Biao; Lam, Wai Har; Chan, Tak Hang; Dou, Q Ping

    2004-09-01

    The cancer-preventive effects of green tea and its main constituent (-)-epigallocatechin gallate [(-)-EGCG] are widely supported by results from epidemiological, cell culture, animal and clinical studies in the recent decade. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols affect several signal transduction pathways, including growth factor-mediated, the mitogen-activated protein kinase (MAPK)-dependent, and ubiquitin/proteasome degradation pathways. Epidemiological studies have suggested that the consumption of green tea lowers the risk of cancer. Various animal studies have revealed that treatment by green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Phase I and II clinical trials were carried out recently to explore the anticancer effects of green tea in patients with cancer. At this time, more mechanistic research, animal studies, and clinical trials are necessary to further evaluate the role of green tea in cancer prevention.

  9. Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion.

    PubMed

    De Ancos, Begoña; Cilla, Antonio; Barberá, Reyes; Sánchez-Moreno, Concepción; Cano, M Pilar

    2017-06-15

    Polyphenols, ascorbic acid content and antioxidant activity of two sweet oranges (Navel-N and Cara Cara-CC) and mandarin (Clementine-M) as well as their bioaccessibilities were evaluated in pulps and compared to those in fresh juice. Thus, pulps of oranges and mandarins displayed higher hesperidin (HES), narirutin (NAR), total flavonoids (TF), total phenols (TP) and antioxidant activity (AAC) than their corresponding juices. Also, CC products presented higher bioactive compounds content than N ones. Bioaccessibility of bioactive compounds and AAC were higher in pulps of both oranges and mandarin than in their corresponding juices. Oranges (N and CC) pulps and juices presented higher bioaccessibilities than mandarin ones. The postharvest storage of mandarin at 12°C during 5weeks not only produced a significant increase of the bioactive compounds but also an increase of their bioaccessibility. The bioaccessibility of Citrus bioactive compounds is necessary for calculating more accurately their daily intake amount.

  10. Botanical, Phytochemical, and Anticancer Properties of the Eucalyptus Species.

    PubMed

    Vuong, Quan V; Chalmers, Anita C; Jyoti Bhuyan, Deep; Bowyer, Michael C; Scarlett, Christopher J

    2015-06-01

    The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies.

  11. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  12. Anti-cancer activities of ω-6 polyunsaturated fatty acids.

    PubMed

    Xu, Yi; Qian, Steven Y

    2014-01-01

    The ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are two major families of PUFAs present as essential cellular components which possess diverse bioactivities. The ω-3s, mainly found in seafood, are associated with many beneficial effects on human health, while the ω-6s are more abundant in our daily diet and could be implicated in many pathological processes including cancer development. Increasing evidence suggests that the adverse effects of ω-6s may be largely attributed to arachidonic acid (AA, a downstream ω-6) and the metabolite prostaglandin E2 (PGE2) that stems from its cyclooxygenase (COX)-catalyzed lipid peroxidation. On the other hand, two of AA's upstream ω-6s, γ-linolenic acid (GLA) and dihomo-γ-linolenic acid (DGLA), are shown to possess certain anti-cancer activities, including inducing cell apoptosis and inhibiting cell proliferation. In this paper, we review the documented anti-cancer activities of ω-6 PUFAs, including the recent findings regarding the anti-cancer effects of free radical-mediated DGLA peroxidation. The possible mechanisms and applications of DGLA (and other ω-6s) in inducing anti-cancer activity are also discussed. Considering the wide availability of ω-6s in our daily diet, the study of the potential beneficial effect of ω-6 PUFAs may guide us to develop an ω-6-based diet care strategy for cancer prevention and treatment.

  13. Review of anticancer mechanisms of isoquercitin

    PubMed Central

    Orfali, Guilherme di Camillo; Duarte, Ana Carolina; Bonadio, Vivien; Martinez, Natalia Peres; de Araújo, Maria Elisa Melo Branco; Priviero, Fernanda Bruschi Marinho; Carvalho, Patricia Oliveira; Priolli, Denise Gonçalves

    2016-01-01

    This review was based on a literature search of PubMed and Scielo databases using the keywords “quercetin, rutin, isoquercitrin, isoquercitin (IQ), quercetin-3-glucoside, bioavailability, flavonols and favonoids, and cancer” and combinations of all the words. We collected relevant scientific publications from 1990 to 2015 about the absorption, bioavailability, chemoprevention activity, and treatment effects as well as the underlying anticancer mechanisms of isoquercitin. Flavonoids are a group of polyphenolic compounds widely distributed throughout the plant kingdom. The subclass of flavonols receives special attention owing to their health benefits. The main components of this class are quercetin, rutin, and IQ, which is a flavonoid and although mostly found as a glycoside, is an aglycone (lacks a glycoside side chain). This compound presents similar therapeutic profiles to quercetin but with superior bioavailability, resulting in increased efficacy compared to the aglycone form. IQ has therapeutic applications owing to its wide range of pharmacological effects including antioxidant, antiproliferative, anti-inflammatory, anti-hypertensive, and anti-diabetic. The protective effects of IQ in cancer may be due to actions on lipid peroxidation. In addition, the antitumor effect of IQ and its underlying mechanism are related to interactions with Wnt signaling pathway, mixed-lineage protein kinase 3, mitogen-activated protein kinase, apoptotic pathways, as well proinflammatory protein signaling. This review contributed to clarifying the mechanisms of absorption, metabolism, and actions of IQ and isoquercitrin in cancer. PMID:27081641

  14. Regulation of Dendritic Cell Function by Dietary Polyphenols.

    PubMed

    del Cornò, Manuela; Scazzocchio, Beatrice; Masella, Roberta; Gessani, Sandra

    2016-01-01

    Marked changes in socioeconomic status, cultural traditions, population growth, and agriculture have been affecting diets worldwide. Nutrition is known to play a pivotal role in the pathogenesis of several chronic diseases, and the use of bioactive food compounds at pharmacologic doses is emerging as a preventive and/or therapeutic approach to target metabolic dysregulations occurring in aging, obesity-related chronic diseases, and cancer. Only recently have data on the effects of specific nutrients or food on the immune system become available, and studies regarding the human immune system are still in their infancy. Beyond providing essential nutrients, diet can actively influence the immune system. Understanding how diet and nutritional status influence the innate and adaptive arms of our immune system represents an area of scientific need, opportunity, and challenge. The insights gleaned should help to address several pressing global health problems. Recently, biologically active polyphenols, which are widespread constituents of fruit and vegetables, have gained importance as complex regulators of various cellular processes, critically involved in the maintenance of body homeostasis. This review outlines the potential effects of polyphenols on the function of dendritic cells (DCs), key players in the orchestration of the immune response. Their effects on different aspects of DC biology including differentiation, maturation, and DC capacity to shift immune response toward tolerance or immune activation will be outlined.

  15. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities

    PubMed Central

    Leouifoudi, Inass; Harnafi, Hicham; Zyad, Abdelmajid

    2015-01-01

    Natural polyphenols extracts have been usually associated with great bioactive properties. In this work, we investigated in vitro antioxidant and antimicrobial potential of the phenolic olive mill wastewater extracts (OWWE) and the olive cake extracts (OCE). Using the Folin Ciocalteux method, OWWE contained higher total phenol content compared to OCE (8.90 ± 0.728 g/L versus 0.95 ± 0.017 mg/g). The phenolic compounds identification was carried out with a performance liquid chromatograph coupled to tandem mass spectrometry equipment (HPLC-ESI-MS). With this method, a list of polyphenols from OWWE and OCE was obtained. The antioxidant activity was measured in aqueous (DPPH) and emulsion (BCBT) systems. Using the DPPH assay, the results show that OWWE was more active than OCE and interestingly the extracts originating from mountainous areas were more active than those produced from plain areas (EC50 = 12.1 ± 5.6 μg/mL; EC50 = 157.7 ± 34.9 μg/mL, resp.). However, when the antioxidant activity was reversed in the BCBT, OCE produced from plain area was more potent than mountainous OCE. Testing by the gel diffusion assay, all the tested extracts have showed significant spectrum antibacterial activity against Staphylococcus aureus, whereas the biophenols extracts showed more limited activity against Escherichia coli and Streptococcus faecalis. PMID:26693221

  16. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells.

    PubMed

    Torquato, Heron F V; Goettert, Márcia I; Justo, Giselle Z; Paredes-Gamero, Edgar J

    2017-04-01

    Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.

  17. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    PubMed

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Nettle (Urtica dioica L.) extracts as functional ingredients for production of chocolates with improved bioactive composition and sensory properties.

    PubMed

    Belščak-Cvitanović, Ana; Komes, Draženka; Durgo, Ksenija; Vojvodić, Aleksandra; Bušić, Arijana

    2015-12-01

    Pursuant to the tendencies of producing functional foods, attractive to a wide range of consumers, in this study chocolates enriched with freeze dried (FD) and concentrated (CE) nettle extracts were formulated, and their polyphenolic and antioxidant capacity stability evaluated during 12 months of storage. A simple aqueous extraction procedure of nettle was developed, and the defined extract evaluated for its cytotoxic and antioxidant/prooxidant activity on human colon cancer cell line (SW 480). An increase in total polyphenolic content, chlorogenic acid and flavonoid derivatives (originating from nettle extract) contents was achieved in enriched chocolates. Implementation of FD extract enabled higher increase of polyphenolic content in comparison to CE extract. During storage, fluctuations of polyphenolic content were observed, but the final bioactive parameters did not differ (or increased) from the initial ones. Nettle enriched chocolates exhibited more intense bitterness and astringency, while dark chocolates were preferred over milk and semisweet ones.

  19. Quinolones in the Search for New Anticancer Agents.

    PubMed

    Batalha, Pedro Netto; Vieira de Souza, Maria Cecília Bastos; Peña-Cabrera, Eduardo; Cruz, David Cruz; da Costa Santos Boechat, Fernanda

    2016-01-01

    Quinolones have a large bio-dynamicity. Although they are well known as antibacterials, another important activity has been investigated - quinolones are able to inhibit cancer cell proliferation. In view of the great versatility associated with the synthesis of quinolones, many researchers have spent time and resources on the development of new structurally diversified quinolone derivatives with the purpose of finding new possibilities for cancer treatment. In this review some of the most recent advances in the search for new quinolone anticancer agents are highlighted, with focus on naturally occurring substances, bioactive metal complexes, molecular hybrids, photosensitizers and heterocycle condensed quinolones.

  20. Cell-penetrating peptides: strategies for anticancer treatment.

    PubMed

    Raucher, Drazen; Ryu, Jung Su

    2015-09-01

    Cell-penetrating peptides (CPP) provide an efficient strategy for the intracellular delivery of bioactive molecules in various biomedical applications. This review focuses on recent advances in the use of CPPs to deliver anticancer therapeutics and imaging reagents to cancer cells, along with CPP contributions to novel tumor-targeting techniques. CPPs are now used extensively to deliver a variety of therapeutics, despite lacking cell specificity and having a short duration of action. Resolution of these shortcomings to enable increased cancer cell and/or tumor specificity could improve CPP-based drug delivery strategies, expand combined drug delivery possibilities, and strengthen future clinical applications of these peptides.

  1. Epigenetic targets of polyphenols in cancer.

    PubMed

    Yang, Pinglin; He, Xijing; Malhotra, Anshoo

    2014-01-01

    Interest in dietary polyphenols has recently increased greatly owing to their antioxidant capacity and their possible beneficial implications in various pathological states, including cancer. Polyphenols are a group of chemicals found in many fruits, vegetables, and plants and have the ability to remove free radicals from the body. In the last 2 decades, the numbers of reports on the potential health benefits of polyphenols have increased. This review provides the available scientific data that justify importance of polyphenols in correlation with epigenetics to fight against carcinogenesis. Epigenetics involves genetic control by mechanisms other than DNA sequence. These epigenetic mechanisms have ability to switch on or off various important genes influencing the process of cancer. Furthermore, due to the reversible nature of these epigenetic mechanisms, they are influenced by a variety of dietary polyphenols. This review focuses on the dietary polyphenols that significantly affect these epigenetic mechanisms to mitigate carcinogenesis.

  2. Melatonin Anticancer Effects: Review

    PubMed Central

    Di Bella, Giuseppe; Mascia, Fabrizio; Gualano, Luciano; Di Bella, Luigi

    2013-01-01

    Melatonin (N-acetyl-5-methoxytryptamine, MLT), the main hormone produced by the pineal gland, not only regulates circadian rhythm, but also has antioxidant, anti-ageing and immunomodulatory properties. MLT plays an important role in blood composition, medullary dynamics, platelet genesis, vessel endothelia, and in platelet aggregation, leukocyte formula regulation and hemoglobin synthesis. Its significant atoxic, apoptotic, oncostatic, angiogenetic, differentiating and antiproliferative properties against all solid and liquid tumors have also been documented. Thanks, in fact, to its considerable functional versatility, MLT can exert both direct and indirect anticancer effects in factorial synergy with other differentiating, antiproliferative, immunomodulating and trophic molecules that form part of the anticancer treatment formulated by Luigi Di Bella (Di Bella Method, DBM: somatostatin, retinoids, ascorbic acid, vitamin D3, prolactin inhibitors, chondroitin-sulfate). The interaction between MLT and the DBM molecules counters the multiple processes that characterize the neoplastic phenotype (induction, promotion, progression and/or dissemination, tumoral mutation). All these particular characteristics suggest the use of MLT in oncological diseases. PMID:23348932

  3. Effects of pulsed electric fields on the bioactive compound content and antioxidant capacity of tomato fruit.

    PubMed

    Vallverdú-Queralt, Anna; Oms-Oliu, Gemma; Odriozola-Serrano, Isabel; Lamuela-Raventos, Rosa María; Martín-Belloso, Olga; Elez-Martínez, Pedro

    2012-03-28

    The effect of moderate intensity pulsed electric fields (MIPEF) on the bioactive compounds (total polyphenol, lycopene, and vitamin C content) as well as on the antioxidant capacity of tomato fruit was studied. The MIPEF treatment conditions were optimized to obtain tomato fruit with a high content of bioactive compounds. Tomato fruits were subjected to different electric field strengths (from 0.4 to 2.0 kV/cm) and number of pulses (from 5 to 30) and then immediately refrigerated at 4 °C for 24 h. A concentration of bioactive compounds higher than that of untreated tomatoes was obtained in MIPEF-treated tomatoes. A 44% increase in total polyphenol content was achieved under 30 pulses at 1.2 kV/cm. The hydrophilic antioxidant capacity was also enhanced by 44% applying 18 pulses at 1.2 kV/cm, and the lipophilic antioxidant capacity was increased by 37% under 5 pulses at 1.2 kV/cm. The maximum overall level of bioactive compounds and antioxidant capacity in the treated tomatoes was obtained under 16 pulses at 1 kV/cm. Therefore, MIPEF treatments could be considered an effective method to enhance the bioactive compound content and antioxidant potential of tomatoes.

  4. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study.

    PubMed

    Rizzi, Federica; Conti, Costanza; Dogliotti, Elena; Terranegra, Annalisa; Salvi, Erika; Braga, Daniele; Ricca, Flavia; Lupoli, Sara; Mingione, Alessandra; Pivari, Francesca; Brasacchio, Caterina; Barcella, Matteo; Chittani, Martina; D'Avila, Francesca; Turiel, Maurizio; Lazzaroni, Monica; Soldati, Laura; Cusi, Daniele; Barlassina, Cristina

    2016-06-23

    Paraoxonase 1 (PON1) gene polymorphisms and polyphenols intake have been reported independently associated to lipid profile and susceptibility to atherosclerosis and cardiovascular disease. However, the interaction between these factors remains to be investigated. We performed an observational nutrigenetic study to examine whether the interaction between polyphenols and anthocyanins intake and PON1 genetic variants can modulate biomarkers of cardiovascular health in an Italian healthy population. We recruited 443 healthy volunteers who participated in the EC funded ATHENA project (AnThocyanin and polyphenols bioactive for Health Enhancement through Nutritional Advancement). Data collection included detailed demographic, clinical, dietary, lifestyle, biochemical and genetic data. Polyphenols and anthocyanins intake was measured by 24 h dietary recall repeated three times a year in order to get seasonal variations. We tested the interaction between 18 independent tagging SNPs in PON1 gene and polyphenols intake on HDL, LDL, cholesterol, triglycerides and atherogenic index of plasma. Without considering the genetic background, we could not observe significant differences in the lipid profile between high and low polyphenols and anthocyanins intake. Using a nutrigenetic approach, we identified protective genotypes in four independent polymorphisms that, at Bonferroni level (p ≤ 0.0028), present a significant association with increased HDL level under high polyphenols and anthocyanins intake, compared to risk genotypes (rs854549, Beta = 4.7 per C allele; rs854552, Beta = 5.6 per C allele; rs854571, Beta = 3.92 per T allele; rs854572, Beta = 3.94 per C allele). We highlight the protective role of genetic variants in PON1 towards cardiovascular risk under high polyphenols and anthocyanins consumption. PON1 variants could represent novel biomarkers to stratify individuals who might benefit from targeted dietary recommendation for health promotion and

  5. Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer.

    PubMed

    Santos, Isis S; Ponte, Bruno M; Boonme, Prapaporn; Silva, Amélia M; Souto, Eliana B

    2013-01-01

    The human population at large is exposed to many critical factors (e.g. bad food habits, chemical substances, and stress) leading to the development of serious diseases. Colon or colorectal cancer is one of the most prevalent types of cancer in many countries. Despite being a multi-factorial chronic disease, resulting from the interaction of multiple genetic and environmental factors, the critical factor is mostly a poor diet regimen. Therefore, an accumulation of constant mutations leads to a complex arrangement of events during tumor initiation, development and propagation. It is well known that many plants are rich in polyphenols with anti-oxidant, anti-atherogenic, anti-diabetic, anti-cancer, anti-viral, and anti-inflammatory properties. These compounds are secondary metabolites with the ability to donate electrons to free radicals through different mechanisms. In recent years, a large number of studies have attributed a protective effect to polyphenols and foods containing these compounds (e.g. plants, vegetables, cereals, tea, coffee or chocolate). Polyphenolic compounds have been described to inhibit cancer development and propagation, being used as chemopreventive agents. Some polyphenols reported a preventive action against colon cancer, e.g. curcumin, gallic acid, ellagic acid, and epigallocatechin-3-gallate. The present article focuses on the properties of these molecules as chemopreventive agents and the recent advances on their formulation in nanoparticulate systems for targeted therapy and increased bioavailability. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Polyphenolic extract isolated from Korean Lonicera japonica Thunb. induce G2/M cell cycle arrest and apoptosis in HepG2 cells: involvements of PI3K/Akt and MAPKs.

    PubMed

    Park, Hyeon-Soo; Park, Kwang-Il; Lee, Do-Hoon; Kang, Sang-Rim; Nagappan, Arulkumar; Kim, Jin-A; Kim, Eun Hee; Lee, Won Sup; Shin, Sung Chul; Hah, Young-Sool; Kim, Gon-Sup

    2012-07-01

    Lonicera japonica Thunb. (L. japonica T.) has been used in Korean traditional medicine for long time because of its anti-cancer and hepatic protective effect. In this study, we investigated polyphenolic extract in L. japonica T. using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) and its anti-cancer effect on hepatocarcinoma cells. Human HepG2 cell line was treated with various concentrations of polyphenolic extract. Apoptosis was detective by cell morphology, cell cycle analysis and immunoblot analysis. Polyphenolic extract inhibited cell proliferation at 48h in a dose-dependent manner. Polyphenolic extract affected HepG2 cell viability by inhibiting cell cycle progression at the G2/M transition and inducing apoptosis. Polyphenolic extract also decreased the expression of CDK1, CDC25C, cyclin B1, pro-caspases-3 and -9 and poly ADP ribose polymerase, and affected the levels of mitochondrial apoptotic-related proteins. The phosphorylation of extracellular signal-related kinase ½ (ERK 1/2), c-Jun N-terminal kinase (JNK), and p-38 mitogen-activated protein kinases (MAPKs) were increased in HepG2 cells treated with polyphenolic extract, whereas Akt was dephosphorylated. These results indicate that inhibition of PI3K/Akt and activation of MAPKs are pivotal in G2/M cell cycle arrest and apoptosis of human hepatocarcinoma cells mediated by polyphenolic extract. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Plant-derived bioactive compounds produced by endophytic fungi.

    PubMed

    Zhao, J; Shan, T; Mou, Y; Zhou, L

    2011-02-01

    Plant endophytic fungi are an important and novel resource of natural bioactive compounds with their potential applications in agriculture, medicine and food industry. In the past two decades, many valuable bioactive compounds with antimicrobial, insecticidal, cytotoxic, and anticancer activities have been successfully discovered from endophytic fungi. During the long period of co-evolution, a friendly relationship was formed between each endophyte and its host plant. Some endophytes have the ability to produce the same or similar bioactive compounds as those originated from their host plants. This review mainly deals with the research progress on endophytic fungi for producing plant-derived bioactive compounds such as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin, and diosgenin. The relations between endophytic fungi and their host plants, biological activities and action mechanisms of these compounds from endophytic fungi, some available strategies for efficiently promoting production of these bioactive compounds, as well as their potential applications in the future will also be discussed. It is beneficial for us to better understand and take advantage of plant endophytic fungi.

  8. Immense essence of excellence: marine microbial bioactive compounds.

    PubMed

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-10-15

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  9. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    PubMed Central

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

  10. Bioavailability of the Polyphenols: Status and Controversies

    PubMed Central

    D’Archivio, Massimo; Filesi, Carmelina; Varì, Rosaria; Scazzocchio, Beatrice; Masella, Roberta

    2010-01-01

    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed. PMID:20480022

  11. Anticancer substances of mushroom origin.

    PubMed

    Ivanova, T S; Krupodorova, T A; Barshteyn, V Y; Artamonova, A B; Shlyakhovenko, V A

    2014-06-01

    The present status of investigations about the anticancer activity which is inherent to medicinal mushrooms, as well as their biomedical potential and future prospects are discussed. Mushroom products and extracts possess promising immunomodulating and anticancer effects, so the main biologically active substances of mushrooms responsible for immunomodulation and direct cytoto-xicity toward cancer cell lines (including rarely mentioned groups of anticancer mushroom proteins), and the mechanisms of their antitumor action were analyzed. The existing to date clinical trials of mushroom substances are mentioned. Mushroom anticancer extracts, obtained by the different solvents, are outlined. Modern approaches of cancer treatment with implication of mushroom products, including DNA vaccinotherapy with mushroom immunomodulatory adjuvants, creation of prodrugs with mushroom lectins that can recognize glycoconjugates on the cancer cell surface, development of nanovectors etc. are discussed. The future prospects of mushroom anticancer substances application, including chemical modification of polysaccharides and terpenoids, gene engineering of proteins, and implementation of vaccines are reviewed.

  12. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature.

    PubMed

    Negi, Beena; Kumar, Deepak; Rawat, Diwan S

    2017-01-01

    In the search of bioactive molecules, nature has always been an important source and most of the drugs in clinic are either natural products or derived from natural products. The ocean has played significant role as thousands of molecules and their metabolites with different types of biological activity such as antimicrobial, anti-inflammatory, anti-malarial, antioxidant, anti HIV and anticancer activity have been isolated from marine organisms. In particular, marine peptides have attracted much attention due to their high specificity against cancer cell lines that may be attributed to the various unusual amino acid residues and their sequences in the peptide chain. This review aims to identify the various anticancer agents isolated from the marine system and their anticancer potential. We did literature search for the anticancer peptides isolated from the different types of microorganism found in the marine system. Total one eighty eight papers were reviewed concisely and most of the important information from these papers were extracted and kept in the present manuscript. This review gives details about the isolation, anticancer potential and mechanism of action of the anticancer peptides of the marine origin. Many of these molecules such as aplidine, dolastatin 10, didemnin B, kahalalide F, elisidepsin (PM02734) are in clinical trials for the treatment of various cancers. With the interdisciplinary and collaborative research and technical advancements we can search more promising and affordable anticancer drugs in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Carotenoid and polyphenol bioaccessibility and cellular uptake from plum and cabbage varieties.

    PubMed

    Kaulmann, Anouk; André, Christelle M; Schneider, Yves-Jacques; Hoffmann, Lucien; Bohn, Torsten

    2016-04-15

    Plum and cabbage are rich in carotenoids and polyphenols. However, their bioactivity depends on their release and intestinal uptake. Four varieties of Brassicaceae (Duchy, Scots Kale, Kale, Kalorama) and Prunus (Cherry Plum, Plum 620, Ersinger, Italian Plum) were studied; bioaccessibility following in vitro digestion, cellular uptake (Caco-2 vs. co-culture cell model: Caco-2:HT-29-MTX (90:10%) and colonic fermentation were determined for carotenoids/polyphenols; the influence of certain kitchen preparations was likewise studied. Carotenoids were non-significantly influenced by the latter, while for polyphenols, boiling and steaming significantly reduced total phenolics (p<0.05). Carotenoid bioaccessibility did not differ significantly between Prunus vs. Brassicaceae varieties, but xanthophyll was higher than carotene bioaccessibility (p<0.01). Polyphenol bioaccessibility was low (<10%), possibly compromised by the cream containing test meal. Total carotenoid cellular uptake varied between varieties (0.3-4.1%), being higher for carotenes (4.1%) than for xanthophylls (1.6%, p<0.01), and were higher for the co-culture cell model compared to Caco-2 cells (p<0.01). Total carotenoid recovery in the colonic fraction varied from 4% to 25%. Lower bioaccessibility of carotenes thus appeared to be somewhat counterbalanced by higher cellular uptake. The potential positive role of the mucus layer for cellular uptake and the fate of the colonic digesta deserve further attention in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction

    PubMed Central

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2016-01-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983

  15. Polyphenols and non-alcoholic fatty liver disease: impact and mechanisms.

    PubMed

    Rodriguez-Ramiro, I; Vauzour, D; Minihane, A M

    2016-02-01

    Non-alcoholic fatty liver disease (NAFLD) is considered to be the hepatic component of the metabolic syndrome and its prevalence is rapidly increasing due to its strong association with insulin resistance and obesity. At present, given that NAFLD is highly prevalent and therapies are limited, much attention is focused on identifying effective dietary strategies for the prevention and treatment of the disease. Polyphenols are a group of plant bioactive compounds whose regular consumption have been associated with a reduction in the risk of a number of metabolic disorders associated with NAFLD. Here we review the emerging and relatively consistent evidence from cell culture and rodent studies showing that select polyphenols positively modulate a variety of contributors to the NAFLD phenotype, through diverse and complementary mechanisms of action. In particular, the reduction of de novo lipogenesis (via sterol regulatory element-binding protein 1c) and increased fatty acid β-oxidation, presumably involving AMP-activated protein kinase activation, will be discussed. The indirect antioxidant and anti-inflammatory properties of polyphenols which have been reported to contribute to the amelioration of NAFLD will also be addressed. In addition to a direct study of the liver, rodent studies have provided insight into the impact of polyphenols on adipose tissue function and whole body insulin sensitivity, which are likely to in part modulate their impact on NAFLD development. Finally an overview of the limited data from clinical trials will be given along with a discussion of the dose extrapolation from animal studies to human subjects.

  16. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    PubMed

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction.

  17. Plant polyphenols as electron donors for erythrocyte plasma membrane redox system: validation through in silico approach

    PubMed Central

    2012-01-01

    Background The plasma membrane redox system (PMRS) has extensively been studied in erythrocytes. The PMRS plays an important role in maintaining plasma redox balance and provides a protective mechanism against oxidative stress. Earlier it was proposed that only NADH or NADPH provided reducing equivalents to PMRS; however, now it is acknowledged that some polyphenols also have the ability to donate reducing equivalents to PMRS. Methods Two different docking simulation softwares, Molegro Virtual Docker and Glide were used to study the interaction of certain plant polyphenols viz. quercetin, epigallocatechin gallate, catechin epicatechin and resveratrol with human erythroyte NADH-cytochrome b5 reductase, which is a component of PMRS and together with the identification of minimum pharmacophoric feature using Pharmagist. Results The derived common minimum pharmacophoric features show the presence of minimum bioactive component in all the selected polyphenols. Our results confirm wet lab findings which show that these polyphenols have the ability to interact and donate protons to the Human NADH-cytochrome b5 reductase. Conclusion With the help of these comparative results of docking simulation and pharmacophoric features, novel potent molecules can be designed with higher efficacy for activation of the PMRS system. PMID:22475026

  18. Studies on Modulation of Gut Microbiota by Wine Polyphenols: From Isolated Cultures to Omic Approaches.

    PubMed

    Dueñas, Montserrat; Cueva, Carolina; Muñoz-González, Irene; Jiménez-Girón, Ana; Sánchez-Patán, Fernando; Santos-Buelga, Celestino; Moreno-Arribas, M Victoria; Bartolomé, Begoña

    2015-01-05

    Moderate consumption of wine seems to produce positive health effects derived from the occurrence of bioactive polyphenols. The gut microbiota is involved in the metabolism of phenolic compounds, and these compounds and/or their metabolites may modulate gut microbiota through the stimulation of the growth of beneficial bacteria and the inhibition of pathogenic bacteria. The characterization of bacterial metabolites derived from polyphenols is essential in order to understand their effects, including microbial modulation, and therefore to associate dietary intake with particular health effects. This review aims to summarize the current information about the two-way "wine polyphenols-gut microbiota" interaction, from a perspective based on the experimental and analytical designs used. The availability of advanced methods for monitoring bacterial communities, along with the combination of in vitro and in vivo models, could help to assess the metabolism of polyphenols in the human body and to monitor total bacterial communities, and, therefore, to elucidate the implications of diet on the modulation of microbiota for delivering health benefits.

  19. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*

    PubMed Central

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-01-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955

  20. Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health

    PubMed Central

    Grootaert, Charlotte; Kamiloglu, Senem; Capanoglu, Esra; Van Camp, John

    2015-01-01

    Polyphenols are a diverse group of micronutrients from plant origin that may serve as antioxidants and that contribute to human health in general. More specifically, many research groups have investigated their protective effect against cardiovascular diseases in several animal studies and human trials. Yet, because of the excessive processing of the polyphenol structure by human cells and the residing intestinal microbial community, which results in a large variability between the test subjects, the exact mechanisms of their protective effects are still under investigation. To this end, simplified cell culture systems have been used to decrease the inter-individual variability in mechanistic studies. In this review, we will discuss the different cell culture models that have been used so far for polyphenol research in the context of cardiovascular diseases. We will also review the current trends in cell culture research, including co-culture methodologies. Finally, we will discuss the potential of these advanced models to screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and their metabolites. PMID:26569293

  1. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries

    PubMed Central

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-01-01

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs. PMID:28245627

  2. Quantification of polyphenols and pharmacological analysis of water and ethanol-based extracts of cultivated agarwood leaves.

    PubMed

    Ito, Tetsuro; Kakino, Mamoru; Tazawa, Shigemi; Watarai, Tatsuya; Oyama, Masayoshi; Maruyama, Hiroe; Araki, Yoko; Hara, Hideaki; Iinuma, Munekazu

    2012-01-01

    Mangiferin (3) and genkwanin 5-O-β-primeveroside (5) are the two major bioactive polyphenols with laxative property present in the extracts of agarwood (Aquilaria sinensis) leaves (AL). Here we developed an HPLC method to determine these bioactive components and four other major polyphenols in AL extracts and evaluated the pharmacological equivalence of organic and water extracts. Using mobile phase gradient conditions combined with UV detection at 330 nm, all six compounds were separated and we determined the relative extraction ratios of the six compounds present in A. sinensis extracts that were prepared under different conditions and compared the contents of the two laxative polyphenols present in the 60% ethanol extracts of A. sinensis and A. crassna. The polyphenols present in water extracts of 13 commercially cultivated A. crassna plants have also been analyzed. The laxative properties of 60% ethanol and four water extracts of A. crassna were evaluated by the frequency and weight of stools in loperamide-induced constipation model mice. The pharmacological equivalence of 60% ethanol extract and hot water (95°C) extract was identified in mice.

  3. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries.

    PubMed

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-02-26

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs.

  4. Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health.

    PubMed

    van Duynhoven, John; Vaughan, Elaine E; van Dorsten, Ferdi; Gomez-Roldan, Victoria; de Vos, Ric; Vervoort, Jacques; van der Hooft, Justin J J; Roger, Laure; Draijer, Richard; Jacobs, Doris M

    2013-12-01

    Epidemiologic studies have convincingly associated consumption of black tea with reduced cardiovascular risk. Research on the bioactive molecules has traditionally been focused on polyphenols, such as catechins. Black tea polyphenols (BTPs), however, mainly consist of high-molecular-weight species that predominantly persist in the colon. There, they can undergo a wide range of bioconversions by the resident colonic microbiota but can in turn also modulate gut microbial diversity. The impact of BTPs on colon microbial composition can now be assessed by microbiomics technologies. Novel metabolomics platforms coupled to de novo identification are currently available to cover the large diversity of BTP bioconversions by the gut microbiota. Nutrikinetic modeling has been proven to be critical for defining nutritional phenotypes related to gut microbial bioconversion capacity. The bioactivity of circulating metabolites has been studied only to a certain extent. Bioassays dedicated to specific aspects of gut and cardiovascular health have been used, although often at physiologically irrelevant concentrations and with limited coverage of relevant metabolite classes and their conjugated forms. Evidence for cardiovascular benefits of BTPs points toward antiinflammatory and blood pressure-lowering properties and improvement in platelet and endothelial function for specific microbial bioconversion products. Clearly, more work is needed to fill in existing knowledge gaps and to assess the in vitro and in vivo bioactivity of known and newly identified BTP metabolites. It is also of interest to assess how phenotypic variation in gut microbial BTP bioconversion capacity relates to gut and cardiovascular health predisposition.

  5. Anticancer mechanisms of cannabinoids

    PubMed Central

    Velasco, G.; Sánchez, C.; Guzmán, M.

    2016-01-01

    In addition to the well-known palliative effects of cannabinoids on some cancer-associated symptoms, a large body of evidence shows that these molecules can decrease tumour growth in animal models of cancer. They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals. In this review, we discuss the current understanding of cannabinoids as antitumour agents, focusing on recent discoveries about their molecular mechanisms of action, including resistance mechanisms and opportunities for their use in combination therapy. Those observations have already contributed to the foundation for the development of the first clinical studies that will analyze the safety and potential clinical benefit of cannabinoids as anticancer agents. PMID:27022311

  6. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention

    PubMed Central

    Martí, Raúl; Roselló, Salvador; Cebolla-Cornejo, Jaime

    2016-01-01

    A diet rich in vegetables has been associated with a reduced risk of many diseases related to aging and modern lifestyle. Over the past several decades, many researches have pointed out the direct relation between the intake of bioactive compounds present in tomato and a reduced risk of suffering different types of cancer. These bioactive constituents comprise phytochemicals such as carotenoids and polyphenols. The direct intake of these chemoprotective molecules seems to show higher efficiencies when they are ingested in its natural biological matrix than when they are ingested isolated or in dietary supplements. Consequently, there is a growing trend for improvement of the contents of these bioactive compounds in foods. The control of growing environment and processing conditions can ensure the maximum potential accumulation or moderate the loss of bioactive compounds, but the best results are obtained developing new varieties via plant breeding. The modification of single steps of metabolic pathways or their regulation via conventional breeding or genetic engineering has offered excellent results in crops such as tomato. In this review, we analyse the potential of tomato as source of the bioactive constituents with cancer-preventive properties and the result of modern breeding programs as a strategy to increase the levels of these compounds in the diet. PMID:27331820

  7. Protection against vascular endothelial dysfunction by polyphenols in sea buckthorn berries in rats with hyperlipidemia.

    PubMed

    Yang, Fang; Suo, Yourui; Chen, Dongli; Tong, Li

    2016-07-19

    Chronic hyperlipemia increases the incidence of vascular endothelial dysfunction and can even induce cardiovascular disease. Sea buckthorn contains a host of bioactives such as flavonoids and polyphenols that can prevent the development of cardiovascular disease. The current study isolated active ingredients, polyphenols, from sea buckthorn berries (SVP) and orally administered SVP at a dose of 7-28 mg/kg. This treatment significantly reduced serum lipids, it enhanced the activity of antioxidant enzymes, and it decreased the level of serum TNF-α and IL-6. SVP also alleviate vascular impairment by decreasing the expression of eNOS, ICAM-1, and LOX-1 mRNA and proteins in aortas of rats with hyperlipidemia. Based on these findings, SVP has antioxidant action and it protects endothelium.

  8. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents.

    PubMed

    Menendez, Javier A; Joven, Jorge; Aragonès, Gerard; Barrajón-Catalán, Enrique; Beltrán-Debón, Raúl; Borrás-Linares, Isabel; Camps, Jordi; Corominas-Faja, Bruna; Cufí, Sílvia; Fernández-Arroyo, Salvador; Garcia-Heredia, Anabel; Hernández-Aguilera, Anna; Herranz-López, María; Jiménez-Sánchez, Cecilia; López-Bonet, Eugeni; Lozano-Sánchez, Jesús; Luciano-Mateo, Fedra; Martin-Castillo, Begoña; Martin-Paredero, Vicente; Pérez-Sánchez, Almudena; Oliveras-Ferraros, Cristina; Riera-Borrull, Marta; Rodríguez-Gallego, Esther; Quirantes-Piné, Rosa; Rull, Anna; Tomás-Menor, Laura; Vazquez-Martin, Alejandro; Alonso-Villaverde, Carlos; Micol, Vicente; Segura-Carretero, Antonio

    2013-02-15

    Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal

  9. Dietary Sources and Bioactivities of Melatonin.

    PubMed

    Meng, Xiao; Li, Ya; Li, Sha; Zhou, Yue; Gan, Ren-You; Xu, Dong-Ping; Li, Hua-Bin

    2017-04-07

    Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action.

  10. Dietary Sources and Bioactivities of Melatonin

    PubMed Central

    Meng, Xiao; Li, Ya; Li, Sha; Zhou, Yue; Gan, Ren-You; Xu, Dong-Ping; Li, Hua-Bin

    2017-01-01

    Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action. PMID:28387721

  11. Exploring marine resources for bioactive compounds.

    PubMed

    Kiuru, Paula; DʼAuria, M Valeria; Muller, Christian D; Tammela, Päivi; Vuorela, Heikki; Yli-Kauhaluoma, Jari

    2014-09-01

    Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications.

  12. Optimized extraction of polyphenolic antioxidant compounds from Brazil nut (Bertholletia excelsa) cake and evaluation of the polyphenol profile by HPLC.

    PubMed

    Gomes, Suellen; Torres, Alexandre G

    2016-06-01

    The solid residue (cake) of pressed Brazil nut oil has high energy value and contains high levels of nutrients and bioactive compounds, such as polyphenols. However, little is known about these components in this by-product. Extraction is the first step in investigating the phenolic compounds in Brazil nut cake because extraction conditions might impact the yields of phenolic compounds and antioxidant capacity. The aim of this study was to select the best phenolic compound extraction conditions for Brazil nut cake by using factorial experimental design and to characterize the phenolic compounds in the extract. The optimal extraction of antioxidant phenolic compounds from Brazil nut cake was achieved under the following conditions: ethanol-water (40:60; v/v); 2.5 min homogenization; and 1 h extraction at 60 °C. The phenolic compound profile of the Brazil nut cake extract using the optimized extraction was determined by high-performance liquid chromatography with photodiode array detection. Six phenolic acids (gallic acid, protocatechuic acid, 2,4-dihydroxybenzoic acid, p-hydroxybenzoic acid, p-coumaric acid and sinapic acid) and one flavonoid ((+)-catechin) were identified, and the contents of the phenolic compounds varied from 70.0 to 421 mg kg(-1) . Knowledge of the potential bioactivity of Brazil nut cake identified in the present study might promote its use in the food industry. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. New bioactive lipids

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  14. New Bioactive Fatty Acids

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  15. New bioactive fatty acids

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  16. Electrostatic Control of Bioactivity

    SciTech Connect

    Goldberger, Joshua E.; Berns, Eric J.; Bitton, Ronit; Newcomb, Christina J.; Stupp, Samuel I.

    2012-03-15

    The power of independence: When exhibited on the surface of self-assembling peptide-amphiphile nanofibers, the hydrophobic laminin-derived IKVAV epitope induced nanofiber bundling through interdigitation with neighboring fibers and thus decreased the bioactivity of the resulting materials. The inclusion of charged amino acids in the peptide amphiphiles disrupted the tendency to bundle and led to significantly enhanced neurite outgrowth.

  17. Characterization of polyphenolic metabolites in grape hybrids

    USDA-ARS?s Scientific Manuscript database

    The composition and content of polyphenolic compounds in the berries of 48 hybrid grapes (Vitis) were characterized for two consecutive years. A total of 48 polyphenolic compounds including 28 anthocyanins, 2 hydroxybenzoic acids, 6 hydroxycinnamic derivatives, 6 flavonols and 6 flavanols were ident...

  18. Porous bioactive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a

  19. Polyphenols as cancer chemopreventive agents.

    PubMed

    Stoner, G D; Mukhtar, H

    1995-01-01

    This article summarizes available data on the chemopreventive efficacies of tea polyphenols, curcumin and ellagic acid in various model systems. Emphasis is placed upon the anticarcinogenic activity of these polyphenols and their proposed mechanism(s) of action. Tea is grown in about 30 countries and, next to water, is the most widely consumed beverage in the world. Tea is manufactured as either green, black, or oolong; black tea represents approximately 80% of tea products. Epidemiological studies, though inconclusive, suggest a protective effect of tea consumption on human cancer. Experimental studies of the antimutagenic and anticarcinogenic effects of tea have been conducted principally with green tea polyphenols (GTPs). GTPs exhibit antimutagenic activity in vitro, and they inhibit carcinogen-induced skin, lung, forestomach, esophagus, duodenum and colon tumors in rodents. In addition, GTPs inhibit TPA-induced skin tumor promotion in mice. Although several GTPs possess anticarcinogenic activity, the most active is (-)-epigallocatechin-3-gallate (EGCG), the major constituent in the GTP fraction. Several mechanisms appear to be responsible for the tumor-inhibitory properties of GTPs, including enhancement of antioxidant (glutathione peroxidase, catalase and quinone reductase) and phase II (glutathione-S-transferase) enzyme activities; inhibition of chemically induced lipid peroxidation; inhibition of irradiation- and TPA-induced epidermal ornithine decarboxylase (ODC) and cyclooxygenase activities; inhibition of protein kinase C and cellular proliferation; antiinflammatory activity; and enhancement of gap junction intercellular communication. Curcumin is the yellow coloring agent in the spice tumeric. It exhibits antimutagenic activity in the Ames Salmonella test and has anticarcinogenic activity, inhibiting chemically induced preneoplastic lesions in the breast and colon and neoplastic lesions in the skin, forestomach, duodenum and colon of rodents. In addition

  20. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds

    PubMed Central

    dos Santos, Mary de Fátima Guedes; Mamede, Rosa Virginia Soares; Rufino, Maria do Socorro Moura; de Brito, Edy Sousa; Alves, Ricardo Elesbão

    2015-01-01

    The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã) were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g−1), total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g−1), and anthocyanins in bacaba (80.76 mg·100g−1). As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC) (194.67 µM·Trolox·g−1), 2,2-diphenyl-1-picrylhydrazyl (DPPH) (47.46 g·pulp·g−1 DPPH), and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I) methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits. PMID:26783846

  1. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds.

    PubMed

    Dos Santos, Mary de Fátima Guedes; Mamede, Rosa Virginia Soares; Rufino, Maria do Socorro Moura; de Brito, Edy Sousa; Alves, Ricardo Elesbão

    2015-09-07

    The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã) were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g(-1)), total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g(-1)), and anthocyanins in bacaba (80.76 mg·100g(-1)). As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC) (194.67 µM·Trolox·g(-1)), 2,2-diphenyl-1-picrylhydrazyl (DPPH) (47.46 g·pulp·g(-1) DPPH), and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I) methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits.

  2. "Ziziphus jujuba": A red fruit with promising anticancer activities.

    PubMed

    Tahergorabi, Zoya; Abedini, Mohammad Reza; Mitra, Moodi; Fard, Mohammad Hassanpour; Beydokhti, Hossein

    2015-01-01

    Ziziphus jujuba Mill. (Z. jujuba) is a traditional herb with a long history of use for nutrition and the treatment of a broad spectrum of diseases. It grows mostly in South and East Asia, as well as in Australia and Europe. Mounting evidence shows the health benefits of Z. jujuba, including anticancer, anti-inflammation, antiobesity, antioxidant, and hepato- and gastrointestinal protective properties, which are due to its bioactive compounds. Chemotherapy, such as with cis-diamminedichloroplatinium (CDDP, cisplatin) and its derivatives, is widely used in cancer treatment. It is an effective treatment for human cancers, including ovarian cancer; however, drug resistance is a major obstacle to successful treatment. A better understanding of the mechanisms and strategies for overcoming chemoresistance can greatly improve therapeutic outcomes for patients. In this review article, the bioactive compounds present in Z. jujuba are explained. The high prevalence of many different cancers worldwide has recently attracted the attention of many researchers. This is why our research group focused on studying the anticancer activity of Z. jujuba as well as its impact on chemoresistance both in vivo and in vitro. We hope that these studies can lead to a promising future for cancer patients.

  3. Polyphenols as active ingredients for cosmetic products.

    PubMed

    Zillich, O V; Schweiggert-Weisz, U; Eisner, P; Kerscher, M

    2015-10-01

    Polyphenols are secondary plant metabolites with antioxidant, anti-inflammatory and anti-microbial activity. They are ubiquitously distributed in the plant kingdom; high amounts contain, for example, green tea and grape seeds. Polyphenolic extracts are attractive ingredients for cosmetics and pharmacy due to their beneficial biological properties. This review summarizes the effects of polyphenols in the context of anti-ageing activity. We have explored in vitro studies, which investigate antioxidant activity, inhibition of dermal proteases and photoprotective activity, mostly studied using dermal fibroblasts or epidermal keratinocytes cell lines. Possible negative effects of polyphenols were also discussed. Further, some physicochemical aspects, namely the possible interactions with emulsifiers and the influence of the cosmetic formulation on the skin delivery, were reported. Finally, few clinical studies, which cover the anti-ageing action of polyphenols on the skin after topical application, were reviewed.

  4. Bioavailability of Polyphenol Liposomes: A Challenge Ahead

    PubMed Central

    Mignet, Nathalie; Seguin, Johanne; Chabot, Guy G.

    2013-01-01

    Dietary polyphenols, including flavonoids, have long been recognized as a source of important molecules involved in the prevention of several diseases, including cancer. However, because of their poor bioavailability, polyphenols remain difficult to be employed clinically. Over the past few years, a renewed interest has been devoted to the use of liposomes as carriers aimed at increasing the bioavailability and, hence, the therapeutic benefits of polyphenols. In this paper, we review the causes of the poor bioavailability of polyphenols and concentrate on their liposomal formulations, which offer a means of improving their pharmacokinetics and pharmacodynamics. The problems linked to their development and their potential therapeutic advantages are reviewed. Future directions for liposomal polyphenol development are suggested. PMID:24300518

  5. Biological and therapeutic activities, and anticancer properties of curcumin

    PubMed Central

    PERRONE, DONATELLA; ARDITO, FATIMA; GIANNATEMPO, GIOVANNI; DIOGUARDI, MARIO; TROIANO, GIUSEPPE; LO RUSSO, LUCIO; DE LILLO, ALFREDO; LAINO, LUIGI; LO MUZIO, LORENZO

    2015-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis. PMID:26640527

  6. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan

    PubMed Central

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa

    2016-01-01

    Background Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Results Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. Conclusion The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses. PMID:27732590

  7. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan.

    PubMed

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa; Silva-Neto, Mário Alberto Cardoso

    2016-10-01

    Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.

  8. Stimulatory Agents Simultaneously Improving the Production and Antioxidant Activity of Polyphenols from Inonotus obliquus by Submerged Fermentation.

    PubMed

    Xu, Xiangqun; Shen, Mengwei; Quan, Lili

    2015-07-01

    Polyphenols are important secondary metabolites from the edible and medicinal mushroom Inonotus obliquus. Both the rarity of I. obliquus fruit body and the low efficiency of current method of submerged fermentation lead to a low yield of polyphenols. This study was aimed to determine the effect of applying stimulatory agents to liquid cultured I. obliquus on the simultaneous accumulation of exo-polyphenols (EPC) and endo-polyphenols (IPC). Linoleic acid was the most effective out of the 17 tested stimulatory agents, the majority of which increased the EPC and IPC production. The result was totally different from the stimulatory effect of Tween 80 for polysaccharide production in previous studies. The addition of 1.0 g/L linoleic acid on day 0 resulted in 7-, 14-, and 10-fold of increase (p < 0.05) in the production of EPC extracted by ethyl acetate (EA-EPC), EPC extracted by n-butyl alcohol (NB-EPC), and IPC, and significantly increased the production of ferulic acid, gallic acid, epicatechin-3-gallate (ECG), epigallocatechin-3-gallate (EGCG), phelligridin G, inoscavin B, and davallialactone. The EA-EPC, BA-EPC, and IPC from the linoleic acid-containing medium had significantly (p < 0.05) stronger scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH), which was attributed to the higher content of these bioactive polyphenols.

  9. Anti-Inflammatory Effects of Polyphenolic-Enriched Red Raspberry Extract in an Antigen Induced Arthritis Rat Model†

    PubMed Central

    Jean-Gilles, Dinorah; Li, Liya; Ma, Hang; Yuan, Tao; Chichester, Clinton O.; Seeram, Navindra P.

    2011-01-01

    The red raspberry (Rubus idaeus) fruit contains bioactive polyphenols including anthocyanins and ellagitannins with reported anti-inflammatory properties. Here we sought to investigate the cartilage protecting and anti-inflammatory effects of a polyphenolic-enriched red raspberry extract (RRE; standardized to total polyphenol, anthocyanin, and ellagitannin contents) using: 1) an in vitro bovine nasal explant cell culture model and, 2) an in vivo adjuvant-induced arthritis rat model. RRE contained 20% total polyphenols (as gallic acid equivalents), 5% anthocyanins (as cyanidin-3-glucoside equivalents) and 9.25% ellagitannins (as ellagic acid equivalents). In the in vitro studies, bovine nasal explants were stimulated with 10 ng/mL IL-1β to induce the release of proteoglycan and type II collagen. On treatment with RRE (50 μg/mL), there was a decrease in the rate of degradation of both proteoglycan and type II collagen. In the in vivo antigen-induced arthritis rat model, animals were gavaged daily with RRE (at doses of 30 and 120 mg/Kg, respectively) for 30 days after adjuvant injection (750 μg of Mycobacterium tuberculosis suspension in squalene). At the higher dose, animals treated with RRE had a lower incidence and severity of arthritis compared to control animals. Also, histological analyses revealed significant inhibition of inflammation, pannus formation, cartilage damage, and bone resorption by RRE. This study suggests that red raspberry polyphenols may afford cartilage protection and/or modulate the onset and severity of arthritis. PMID:22111586

  10. Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage

    PubMed Central

    Juarez-Enriquez, Edmundo; Salmerón, Ivan; Gutierrez-Mendez, Nestor; Ortega-Rivas, Enrique

    2016-01-01

    Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm2 and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake. PMID:28231106

  11. Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage.

    PubMed

    Juarez-Enriquez, Edmundo; Salmerón, Ivan; Gutierrez-Mendez, Nestor; Ortega-Rivas, Enrique

    2016-02-18

    Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm² and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake.

  12. A comparison of the anticarcinogenic properties of four red wine polyphenols.

    PubMed

    Soleas, George J; Grass, Linda; Josephy, P David; Goldberg, David M; Diamandis, Eleftherios P

    2002-03-01

    There has been growing interest in the analysis of certain polyphenols in wine, especially flavonoids, trihydroxystilbenes and phenolic acids, stimulated by intense research into their potential benefits to human health. One of their main properties in this regard is their antioxidant activity, which enables them to attenuate the development of atherosclerosis, inflammatory diseases, and cancer. A two stage CD-1 mouse skin cancer model using 9,10-dimethyl-1,2-benzanthracene (DMBA) as initiator and phorbol 12-myristate 13-acetate (TPA) as promoter was employed to compare the antitumorigenic activities of one polyphenol from each of four different classes: flavanols [(+)-catechin], stilbenes (trans-resveratrol), flavonols (quercetin) and hydroxybenzoic acids (gallic acid). Animals were treated with specific polyphenols at doses ranging from 0 to 25 micromoles (dissolved in 200 microL acetone), twice a week for eighteen weeks. The solution was applied topically to the shaved dorsal region of each animal. The relative potencies of the polyphenols were compared by evaluating the percentage inhibition of tumor formation in individual mice and the number of mice developing one or more tumors with the different dose schedules. Probit analysis revealed that quercetin was the most (ED(50)<1 micromole) and gallic acid the least effective (ED(50) 5-10 micromoles). (+)-Catechin and trans-resveratrol were intermediate, with ED(50) values of 5 and 6 micromoles, respectively. We have shown recently that trans-resveratrol is absorbed much more efficiently than (+)-catechin and quercetin in humans after oral consumption. Taking this and the relative concentrations in red wine into account, together with the present results, we conclude that trans-resveratrol may be the most effective anticancer polyphenol present in red wine as consumed po by healthy human subjects.

  13. Acupuncture as anticancer treatment?

    PubMed Central

    Kilian-Kita, Aneta; Püsküllüoglu, Mirosława; Krzemieniecki, Krzysztof

    2017-01-01

    The mystery of Traditional Chinese Medicine has been attracting people for years. Acupuncture, ranked among the most common services of Complementary and Alternative Medicine, has recently gained a lot of interest in the scientific world. Contemporary researchers have been continuously trying to shed light on its possible mechanism of action in human organism. Numerous studies pertaining to acupuncture’s application in cancer symptoms or treatment-related side effects management have already been published. Moreover, since the modern idea of acupuncture’s immunomodulating effect seems to be promising, scientists have propounded a concept of its potential application as part of direct anti-tumor therapy. In our previous study we summarized possible use of acupuncture in management of cancer symptoms and treatment-related ailments, such as chemotherapy-induced nausea and vomiting, pain, xerostomia, vasomotor symptoms, neutropenia, fatigue, anxiety, insomnia, lymphoedema after mastectomy and peripheral neuropathy. This article reviews the studies concerning acupuncture as a possible tool in modern anticancer treatment. PMID:28239282

  14. [Anticancer drug adherence].

    PubMed

    Despas, Fabien; Roche, Henri; Laurent, Guy

    2013-05-01

    A large number of anticancer drugs have been introduced during the two last decades with significant impact for survival, making cancer a chronic disease in a growing number of indications. However, these drugs are costly, induce adverse effects and their efficacy frequently depends on the dose. For all these reasons, adherence in cancer therapy is critical for an optimal benefit-risk ratio. Patient adherence remains virtually unexplored in many cancers, such as malignant blood diseases. When measured, adherence is poor, especially when the drug is administered as oral and prolonged therapy (hormonotherapy in breast cancer, imatinib). Physician nonadherence represents another form of drug misadministration; poorly documented, its mechanism remains obscure. Adherence may be measured by a panel of methods, each of them displaying limits and pitfalls, suggesting that several complementary methods should be used in the context of prospective studies. Risk factors are age, socio-educative profile, disease stage and physician profile. This review emphasizes some methods to prevent nonadherence. Finally, this review argues for prospective studies, which should integrate a social pharmacology approach, including medicine, psycho-sociology and economics.

  15. Phytosterols as anticancer compounds.

    PubMed

    Bradford, Peter G; Awad, Atif B

    2007-02-01

    Phytochemicals have been proposed to offer protection against a variety of chronic ailments including cardiovascular diseases, obesity, diabetes, and cancer. As for cancer protection, it has been estimated that diets rich in phytochemicals can significantly reduce cancer risk by as much as 20%. Phytosterols are specific phytochemicals that resemble cholesterol in structure but are found exclusively in plants. Phytosterols are absorbed from the diet in small but significant amounts. Epidemiological data suggest that the phytosterol content of the diet is associated with a reduction in common cancers including cancers of the colon, breast, and prostate. The means by which dietary phytosterols may be achieving these effects is becoming clearer from molecular studies with tumorigenic research models. Phytosterols affect host systems potentially enabling more robust antitumor responses, including the boosting of immune recognition of cancer, influencing hormonal dependent growth of endocrine tumors, and altering sterol biosynthesis. In addition, phytosterols have effects that directly inhibit tumor growth, including the slowing of cell cycle progression, the induction of apoptosis, and the inhibition of tumor metastasis. This review summarizes the current state of knowledge regarding the anticancer effects of phytosterols.

  16. Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins.

    PubMed

    Cai, Yuee; Zhang, Jinming; Chen, Nelson G; Shi, Zhi; Qiu, Jiange; He, Chengwei; Chen, Meiwan

    2016-12-22

    Tannins, polyphenols in medicinal plants, have been divided into two groups of hydrolysable and condensed tannins, including gallotannins, ellagitannins, and (-)-epigallocatechin-3-gallate (EGCG). Potent anticancer activities have been observed in tannins (especially EGCG) with multiple mechanisms, such as apoptosis, cell cycle arrest, and inhibition of invasion and metastases. Furthermore, the combinational effects of tannins and anticancer drugs have been demonstrated in this review, including chemoprotective, chemosensitive, and antagonizing effects accompanying with anticancer effect. However, the applications of tannins have been hindered due to their poor liposolubility, low bioavailability, off-taste, and shorter half-life time in human body, such as EGCG, gallic acid, and ellagic acid. To tackle these obstacles, novel drug delivery systems have been employed to deliver tannins with the aim of improving their applications, such as gelatin nanoparticles, micelles, nanogold, liposomes, and so on. In this review, the chemical characteristics, anticancer properties, and drug delivery systems of tannins were discussed with an attempt to provide a systemic reference to promote the development of tannins as anticancer agents.

  17. Development of polyphenolic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cheng, Huaitzung Andrew

    Polymeric nanoparticles have a wide range of applications, particularly as drug delivery and diagnostic agents, and tannins have been regarded as a promising building block for redox and pH responsive systems. Tannins are a class of naturally occurring polyphenols commonly produced by plants and are found in many of our consumables like teas, spices, fresh fruits, and vegetables. Many of the health benefits associated with these foods are a result of their high tannin contents and the many different types of tannins found in various plants have demonstrated therapeutic potentials for conditions ranging from cardiovascular disease and diabetes to ulcers and cancer. Diets rich in tannins have been associated with lower blood pressure in patients with hypertension. The plurality of phenols in tannins also makes them powerful antioxidants and as a result, there is a lot of interest in taking advantage of their self-assembling abilities to make redox and pH responsive drug delivery systems. However, the benefit of natural tannins is limited by their instability in physiological conditions. Furthermore, there is limited control over molecular weight and reactivity of the phenolic content of plant extracts. Herein we report the novel synthesis of pseudotannins with control over molecular weight and reactivity of phenolic moieties. These pseudotannins have can form nanoscale interpolymer complexes under physiological conditions and have demonstrated antioxidative potential. Furthermore, pseudotannin IPCs have been shown to be responsive to physiologically relevant oxidation as well as the ability to easily incorporate cell targeting peptides, fluorescent tags, and MRI contrast agents. The work presented here describes how pseudotannins would be ideally suited to minimally invasive techniques for diagnosing atherosclerotic plaques and targeting triple negative breast cancer. We demonstrate that pseudotannin can very easily and quickly form nanoscale particles that are small

  18. Sulfated polysaccharides as bioactive agents from marine algae.

    PubMed

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae.

  19. Bioactive compounds of sea cucumbers and their therapeutic effects

    NASA Astrophysics Data System (ADS)

    Shi, Shujuan; Feng, Wenjing; Hu, Song; Liang, Shixiu; An, Nina; Mao, Yongjun

    2016-05-01

    Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.

  20. Anticancer hybrids--a patent survey.

    PubMed

    Nepali, Kunal; Sharma, Sahil; Kumar, Dinesh; Budhiraja, Abhishek; Dhar, Kanaya L

    2014-01-01

    The molecular hybridization (MH) is a strategy of rational design of such ligands or prototypes based on the recognition of pharmacophoric sub-units in the molecular structure of two or more known bioactive derivatives which, through the adequate fusion of these sub-units, lead to the design of new hybrid architectures that maintain pre-selected characteristics of the original templates. The concept of molecular hybridization and the promises/challenges associated with these hybrid molecules along with recent advances on anticancer hybrids and critical discussions on the future aspects of the hybrid drugs have already been presented through a number of reports. However, this article presents the structures of potent hybrids reported during the last two decades along with a detailed account of the patent literature. Significant number of patents on the molecules designed through this valuable drug design technique clearly highlight the present focus of the researchers all around the globe towards hybrid molecules capable of amplifying the effect of individual functionalities through action on another bio target or to interact with multiple targets as one single molecule lowering the risk of drug-drug interactions and minimizing the drug resistance. This review article basically emphasizes the patent literature along with an overview of potent hybrid structures, their IC50 /GI50 values against the various cell lines employed. The present compilation can be utilized as a guide for the medicinal chemists focusing on this area of drug design.

  1. Mechanisms of Endothelial Protection by Natural Bioactive Compounds from Fruit and Vegetables.

    PubMed

    Monsalve, Bernardita; Concha-Meyer, Anibal; Palomo, Iván; Fuentes, Eduardo

    2017-05-01

    The endothelium is fundamental for the regulation of vascular tone and structure. Under disease conditions, including the presence of cardiovascular disease risk factors, the endothelium loses its protective role and becomes a proatherosclerotic structure. In this article we searched for strategies from PUBMED and Science Direct databases using the following key words: endothelium, natural bioactive compounds, polyphenols and cardiovascular diseases. The search was restricted to english language papers. Studies have identified the contribution of diet to the risk of developing cardiovascular diseases. In this context, high intakes of fruit and vegetables are associated with the decrease of cardiovascular diseases. Thus the most important fruit/vegetables and bioactive compounds to prevent endothelial diseases are berries, apples, virgin olive oil, tomatoes, soybeans, and polyphenols, carotenoids and unsaturated fatty acids, respectively. The bioactive compounds from fruit and vegetables provide endothelial protection through the following mechanisms: improved eNOS/NO bioavailability, attenuates oxidative stress, inhibited NF-κB pathway and decreased cell adhesion molecules expression. In this article natural bioactive compound mechanisms of endothelium protection are thoroughly reviewed.

  2. Modulatory effects of plant polyphenols on human multidrug resistance proteins 1, 4, and 5 (ABCC1, 4, and 5)

    PubMed Central

    Wu, Chung-Pu; Calcagno, Anna Maria; Hladky, Stephen B.; Ambudkar, Suresh V.; Barrand, Margery A.

    2005-01-01

    SUMMARY Plant flavonoids are polyphenolic compounds commonly found in vegetables, fruits and many food sources that form a significant portion of our diet. These compounds have been shown to interact with several ATP-Binding Cassette transporters that are linked with anticancer and antiviral drug resistance and as such, may be beneficial in modulating drug resistance. The present study investigates the interactions of six common polyphenols; quercetin, silymarin, resveratrol, naringenin, daidzein and hesperetin with the multidrug resistance associated proteins, MRP1, MRP4 and MRP5. At non-toxic concentrations, several of the polyphenols were able to modulate MRP1-, MRP4- and MRP5- mediated drug resistance though to varying extents. The polyphenols also reversed resistance to NSC251820, a compound that appears to be a good substrate for MRP4 as had been predicted by data mining studies. Furthermore, most of the polyphenols showed direct inhibition of MRP1-mediated [3H]-dinitrophenyl S-glutathione and MRP4-mediated [3H]-cGMP transport in inside-out vesicles prepared from human erythrocytes. Additionally, both quercetin and silymarin were found to inhibit MRP1-, MRP4-, and MRP5-mediated transport from intact cells with high affinity. They also had significant effects on ATPase activity of MRP1 and MRP4 without having any effect on [α-32P]8-azidoATP binding to these proteins. This suggests that these flavonoids most likely interact at the transporter’s substrate-binding sites. Collectively, these results suggest that dietary flavonoids such as quercetin and silymarin can modulate transport activities of MRP1, 4 and 5. Such interactions could influence bioavailability of anticancer and antiviral drugs in vivo and thus, should be considered for increasing efficacy in drug therapies. PMID:16156793

  3. Modulation of (-)-epicatechin metabolism by coadministration with other polyphenols in Caco-2 cell model.

    PubMed

    Sanchez-Bridge, Belén; Lévèques, Antoine; Li, Hequn; Bertschy, Emmanuelle; Patin, Amaury; Actis-Goretta, Lucas

    2015-01-01

    Widely consumed beverages such as red wine, tea, and cocoa-derived products are a great source of flavanols. Epidemiologic and interventional studies suggest that cocoa flavanols such as (-)-epicatechin may reduce the risk of cardiovascular diseases. The interaction of (-)-epicatechin with food components including other polyphenols could modify its absorption, metabolism, and finally its bioactivity. In the present study we investigate (-)-epicatechin absorption and metabolism when coexposed with other polyphenols in the intestinal absorptive Caco-2 cell model. Depending on the type of polyphenols coadministered, the total amount of 3'-O-methyl-epicatechin and 3'-O-sulfate-epicatechin conjugates found both in apical and basal compartments ranged from 19 to 801 nM and from 6 to 432 nM, respectively. The coincubation of (-)-epicatechin with flavanols, chlorogenic acid, and umbelliferone resulted in similar amounts of 3'-O-methyl-epicatechin effluxed into the apical compartment relative to control. Coincubation with isorhamnetin, kaempferol, diosmetin, nevadensin, chrysin, equol, genistein, and hesperitin promoted the transport of 3'-O-methyl-epicatechin toward the basolateral side and decreased the apical efflux. Quercetin and luteolin considerably inhibited the appearance of this (-)-epicatechin conjugate both in the apical and basolateral compartments. In conclusion, we could demonstrate that the efflux of (-)-epicatechin conjugates to the apical or basal compartments of Caco-2 cells is modulated by certain classes of polyphenols and their amount. Ingesting (-)-epicatechin with specific polyphenols could be a strategy to increase the bioavailability of (-)-epicatechin and to modulate its metabolic profile. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  4. [Quod medicina aliis, aliis est acre venenum**--venoms as a source of anticancer agents].

    PubMed

    Kucińska, Małgorzata; Ruciński, Piotr; Murias, Marek

    2013-01-01

    Natural product derived from plants and animals were used in folk medicine for centuries. The venoms produced by animals for hunting of self-defence are rich in bioactive compounds with broad spectrum of biological activity. The papers presents the most promising compounds isolated from venoms of snakes, scorpions and toads. For these compounds both: mechanism of anticancer activity as well as possibilities of clinical use are presented.

  5. [Research progress of chemistry and anti-cancer activities of natural products from Chinese Garcinia plants].

    PubMed

    Fu, Wen-Wei; Tan, Hong-Sheng; Xu, Hong-Xi

    2014-02-01

    Garcinia plants are one of the rich sources of natural xanthones and benzophenones which have attracted a great deal of attention from the scientists in the fields of chemistry and pharmacology. Recently, many structurally unique constituents with various bioactivities, especially anti-tumor activity, have been isolated from Garcinia plants. This concise review focused on the anti-cancer activity natural products isolated from Chinese Garcinia plants, and the research finding by authors and collaborators over the past several years were cited.

  6. Bioactivities of chicken essence.

    PubMed

    Li, Y F; He, R R; Tsoi, B; Kurihara, H

    2012-04-01

    The special flavor and health effects of chicken essence are being widely accepted by people. Scientific researches are revealing its truth as a tonic food in traditional health preservation. Chicken essence has been found to possess many bioactivities including relief of stress and fatigue, amelioration of anxiety, promotion of metabolisms and post-partum lactation, improvement on hyperglycemia and hypertension, enhancement of immune, and so on. These activities of chicken essence are suggested to be related with its active components, including proteins, dipeptides (such as carnosine and anserine), polypeptides, minerals, trace elements, and multiple amino acids, and so on. Underlying mechanisms responsible for the bioactivities of chicken essence are mainly related with anti-stress, anti-oxidant, and neural regulation effects. However, the mechanisms are complicated and may be mediated via the combined actions of many active components, more than the action of 1 or 2 components alone. © 2012 Institute of Food Technologists®

  7. Mechanisms of Nitrite Bioactivation

    PubMed Central

    Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2014-01-01

    It is now accepted that the anion nitrite, once considered an inert oxidation product of nitric oxide (NO), contributes to hypoxic vasodilation, physiological blood pressure control, and redox signaling. As such, its application in therapeutics is being actively testing in pre-clinical models and in human phase I–II clinical trials. Major pathways for nitrite bioactivation involve its reduction to NO by members of the hemoglobin or molybdopterin family of proteins, or catalyzed dysproportionation. These conversions occur preferentially under hypoxic and acidic conditions. A number of enzymatic systems reduce nitrite to NO and their activity and importance are defined by oxygen tension, specific organ system and allosteric and redox effectors. In this work, we review different proposed mechanisms of nitrite bioactivation, focusing on analysis of kinetics and experimental evidence for the relevance of each mechanism under different conditions. PMID:24315961

  8. Impact of dietary polyphenols on carbohydrate metabolism.

    PubMed

    Hanhineva, Kati; Törrönen, Riitta; Bondia-Pons, Isabel; Pekkinen, Jenna; Kolehmainen, Marjukka; Mykkänen, Hannu; Poutanen, Kaisa

    2010-03-31

    Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic beta-cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.

  9. Impact of Dietary Polyphenols on Carbohydrate Metabolism

    PubMed Central

    Hanhineva, Kati; Törrönen, Riitta; Bondia-Pons, Isabel; Pekkinen, Jenna; Kolehmainen, Marjukka; Mykkänen, Hannu; Poutanen, Kaisa

    2010-01-01

    Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic β–cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed. PMID:20480025

  10. Encapsulation of Natural Polyphenolic Compounds; a Review

    PubMed Central

    Munin, Aude; Edwards-Lévy, Florence

    2011-01-01

    Natural polyphenols are valuable compounds possessing scavenging properties towards radical oxygen species, and complexing properties towards proteins. These abilities make polyphenols interesting for the treatment of various diseases like inflammation or cancer, but also for anti-ageing purposes in cosmetic formulations, or for nutraceutical applications. Unfortunately, these properties are also responsible for a lack in long-term stability, making these natural compounds very sensitive to light and heat. Moreover, polyphenols often present a poor biodisponibility mainly due to low water solubility. Lastly, many of these molecules possess a very astringent and bitter taste, which limits their use in food or in oral medications. To circumvent these drawbacks, delivery systems have been developed, and among them, encapsulation would appear to be a promising approach. Many encapsulation methods are described in the literature, among which some have been successfully applied to plant polyphenols. In this review, after a general presentation of the large chemical family of plant polyphenols and of their main chemical and biological properties, encapsulation processes applied to polyphenols are classified into physical, physico-chemical, chemical methods, and other connected stabilization methods. After a brief description of each encapsulation process, their applications to polyphenol encapsulation for pharmaceutical, food or cosmetological purposes are presented. PMID:24309309

  11. Marine actinobacteria: an important source of bioactive natural products.

    PubMed

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids

    PubMed Central

    Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine

    2013-01-01

    Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section. PMID:24022731

  13. Plastids of marine phytoplankton produce bioactive pigments and lipids.

    PubMed

    Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine

    2013-09-09

    Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section.

  14. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  15. Chemistry and biochemistry of dietary polyphenols.

    PubMed

    Tsao, Rong

    2010-12-01

    Polyphenols are the biggest group of phytochemicals, and many of them have been found in plant-based foods. Polyphenol-rich diets have been linked to many health benefits. This paper is intended to review the chemistry and biochemistry of polyphenols as related to classification, extraction, separation and analytical methods, their occurrence and biosynthesis in plants, and the biological activities and implications in human health. The discussions are focused on important and most recent advances in the above aspects, and challenges are identified for future research.

  16. Wine polyphenols: potential agents in neuroprotection.

    PubMed

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  17. Natural Polyphenols and Spinal Cord Injury

    PubMed Central

    Khalatbary, Ali Reza

    2014-01-01

    Polyphenols have been shown to have some of the neuroprotective effects against neurodegenerative diseases. These effects are attributed to a variety of biological activities, including free radical scavenging/antioxidant and anti-inflammatory and anti-apoptotic activities. In this regard, many efforts have been made to study the effects of various well-known dietary polyphenols on spinal cord injury (SCI) and to explore the mechanisms behind the neuroprotective effects. The aim of this paper is to present the mechanisms of neuroprotection of natural polyphenols used in animal models of SCI. PMID:24842137

  18. Wine Polyphenols: Potential Agents in Neuroprotection

    PubMed Central

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  19. Chemistry and Biochemistry of Dietary Polyphenols

    PubMed Central

    Tsao, Rong

    2010-01-01

    Polyphenols are the biggest group of phytochemicals, and many of them have been found in plant-based foods. Polyphenol-rich diets have been linked to many health benefits. This paper is intended to review the chemistry and biochemistry of polyphenols as related to classification, extraction, separation and analytical methods, their occurrence and biosynthesis in plants, and the biological activities and implications in human health. The discussions are focused on important and most recent advances in the above aspects, and challenges are identified for future research. PMID:22254006

  20. Polyphenols and the modulation of gene expression pathways: can we eat our way out of the danger of chronic disease?

    PubMed

    Joven, Jorge; Micol, Vicente; Segura-Carretero, Antonio; Alonso-Villaverde, Carlos; Menéndez, Javier A

    2014-01-01

    Plant-derived dietary polyphenols may improve some disease states and promote health. Experimental evidence suggests that this is partially attributable to changes in gene expression. The rational use of bioactive food components may therefore present an opportunity to activate or repress selected gene expression pathways and, consequently, to manage or prevent disease. It remains to be determined whether this use of bioactive food components can be done safely. This article reviews the associated controversies and limitations of polyphenol therapy. There is a paucity of clinical data on the rational use of polyphenols, including a lack of knowledge on effective dosage, actual chemical formulations, bioavailability, distribution in tissues, the effect of genetic variations, differences in gut microflora, the synergistic (or antagonistic) effects observed in extracts, and the possible interaction between polyphenols and lipid domains of cell membranes that may alter the function of relevant receptors. The seminal question of why plants make substances that benefit humans remains unanswered, and there is still much to learn in terms of correlative versus causal effects of human exposure to various nutrients. The available data strongly suggest significant effects at the molecular level that represent interactions with the epigenome. The advent of relatively simple technologies is helping the field of epigenetics progress and facilitating the acquisition of multiple types of data that were previously difficult to obtain. In this review, we summarize the molecular basis of the epigenetic regulation of gene expression and the epigenetic changes associated with the consumption of polyphenols that illustrate how modifications in human nutrition may become relevant to health and disease.

  1. Polyphenolic Antioxidants and Neuronal Regeneration

    PubMed Central

    Ataie, Amin; Shadifar, Mohammad; Ataee, Ramin

    2016-01-01

    Many studies indicate that oxidative stress is involved in the pathophysiology of neurodegenerative diseases. Oxidative stress can induce neuronal damages, modulate intracellular signaling and ultimately leads to neuronal death by apoptosis or necrosis. To review antioxidants preventive effects on oxidative stress and neurodegenerative diseases we accumulated data from international medical journals and academic informations’ sites. According to many studies, antioxidants could reduce toxic neuronal damages and many studies confirmed the efficacy of polyphenol antioxidants in fruits and vegetables to reduce neuronal death and to diminish oxidative stress. This systematic review showed the antioxidant activities of phytochemicals which play as natural neuroprotectives with low adverse effects against some neurodegenerative diseases as Parkinson or Alzheimer diseases. PMID:27303602

  2. Curcumin AntiCancer Studies in Pancreatic Cancer.

    PubMed

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-07-16

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC.

  3. Curcumin AntiCancer Studies in Pancreatic Cancer

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  4. Oxadiazoles as privileged motifs for promising anticancer leads: recent advances and future prospects.

    PubMed

    Khan, Imtiaz; Ibrar, Aliya; Abbas, Naeem

    2014-01-01

    Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. The rapid emergence of hundreds of new agents that modulate an ever-growing list of cancer-specific molecular targets offers tremendous hope for cancer patients. However, almost all of the chemotherapy drugs currently on the market cause serious side effects. Based on these facts, the design of new chemical entities as anticancer agents requires the simulation of a suitable bioactive pharmacophore. The pharmacophore not only should have the required potency but must also be safer on normal cell lines than on tumor cells. In this perspective, oxadiazole scaffolds with well-defined anticancer activity profile have fueled intense academic and industrial research in recent years. This paper is intended to highlight the recent advances along with current developments as well as future outlooks for the design of novel and efficacious anticancer agents based on oxadiazole motifs.

  5. Review of procedures used for the extraction of anti-cancer compounds from tropical plants.

    PubMed

    Pandey, Saurabh; Shaw, Paul N; Hewavitharana, Amitha K

    2015-01-01

    Tropical plants are important sources of anti-cancer lead molecules. According to the US National Cancer Institute, out of the 3000 plants identified as active against cancer using in vitro studies, 70% are of tropical origin. The extraction of bioactive compounds from the plant materials is a fundamental step whose efficiency is critical for the success of drug discovery efforts. There has been no review published of the extraction procedures of anti-cancer compounds from tropical plants and hence the following is a critical evaluation of such procedures undertaken prior to the use of these compounds in cancer cell line studies, during the last five years. It presents a comprehensive analysis of all approaches taken to extract anti-cancer compounds from various tropical plants. (Databases searched were PubMed, SciFinder, Web of Knowledge, Scopus, Embase and Google Scholar).

  6. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells

    USDA-ARS?s Scientific Manuscript database

    Objectives: The present study was carried out to determine if lyophilized acai fruit pulp (genus, Euterpe), rich in polyphenolics and other bioactive antioxidant and anti-inflammatory phytochemicals, is efficacious in reversing age-related cognitive deficits in aged rats. Methods: The diets of 19-mo...

  7. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    PubMed

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.

  8. Structural diversity and bioactivities of natural benzophenones.

    PubMed

    Wu, Shi-Biao; Long, Chunlin; Kennelly, Edward J

    2014-09-01

    Natural benzophenones are a class of compounds consisting of more than 300 members, which exhibit great structural diversity and bioactive properties. Many benzophenones have been reported from higher plants or fungi, most with polyisoprenylated benzophenone skeletons, and are mainly found in the Clusiaceae (formerly Guttiferae) family, a number from edible or medicinal species. Owing to their variable substituents and complex ring systems, many new polyisoprenylated benzophenones (PPBS), including ones with unusual skeletons, were isolated and identified. These natural benzophenones exhibit a range of biological activities including antifungal, anti-HIV, antimicrobial, antioxidant, antiviral and cytotoxic. Because of the increased numbers and biological importance of these unique natural product polyphenols, we will review natural benzophenones and provide an in-depth discussion of their structural diversity and biological activity. By focusing on these key developments in benzophenones, we will contribute a focused review, selecting examples mostly from the last 15 years, but extending our scope to other historically important benzophenones discovered prior to that time.

  9. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    PubMed

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent. © 2015 Institute of Food Technologists®

  10. Improved LC-MS(n) characterization of hydroxycinnamic acid derivatives and flavonols in different commercial mate (Ilex paraguariensis) brands. Quantification of polyphenols, methylxanthines, and antioxidant activity.

    PubMed

    Mateos, Raquel; Baeza, Gema; Sarriá, Beatriz; Bravo, Laura

    2018-02-15

    Yerba mate is a beverage rich in bioactive compounds popular in South America. Polyphenols and methylxanthines were qualitatively and quantitatively analyzed in four commercial brands of yerba mate, as well as the antioxidant capacity of the beverages. Using LC/MS(n) analysis, 58 polyphenols were observed of which 4-sinapoylquinic acid, di- and tri-methoxycinnamoylquinic acids, two isomers of trimethoxycinnamoylshikimic acid and four isomers of caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosonic acid were identified for the first time in mate. Additionally, 46 polyphenols and 2 methylxanthines were quantified by HPLC-DAD. Hydroxycinnamic acid derivatives and flavonols comprised 90% and 10% of mate phenols, respectively, 3-caffeoylquinic (26.8-28.8%), 5-caffeoylquinic (21.1-22.4%), 4-caffeoylquinic (12.6-14.2%) and 3,5-dicaffeoylquinic acids (9.5-11.3%) along with rutin (7.1-7.8%) were the most abundant polyphenols, whereas caffeine was the main methylxanthine (90%). Ilex paraguariensis is an important source of polyphenols with moderate methylxanthines content; therefore its high antioxidant capacity was mainly associated to its polyphenolic composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Classification of current anticancer immunotherapies

    PubMed Central

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  12. Classification of current anticancer immunotherapies.

    PubMed

    Galluzzi, Lorenzo; Vacchelli, Erika; Bravo-San Pedro, José-Manuel; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P; Coussens, Lisa; Dhodapkar, Madhav V; Eggermont, Alexander M; Fearon, Douglas T; Fridman, Wolf H; Fučíková, Jitka; Gabrilovich, Dmitry I; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M; Klein, Eva; Knuth, Alexander; Lewis, Claire E; Liblau, Roland; Lotze, Michael T; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J; Mittendorf, Elizabeth A; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E; Pienta, Kenneth J; Porgador, Angel; Prendergast, George C; Rabinovich, Gabriel A; Restifo, Nicholas P; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J; Speiser, Daniel E; Spisek, Radek; Srivastava, Pramod K; Talmadge, James E; Tartour, Eric; Van Der Burg, Sjoerd H; Van Den Eynde, Benoît J; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S; Whiteside, Theresa L; Wolchok, Jedd D; Zitvogel, Laurence; Zou, Weiping; Kroemer, Guido

    2014-12-30

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.

  13. Red wine polyphenols for cancer prevention.

    PubMed

    He, Shan; Sun, Cuirong; Pan, Yuanjiang

    2008-05-01

    Conventional cancer therapies, the second leading cause of death worldwide, result in serious side effects and, at best, merely extend the patient's lifespan by a few years. Searching for effective prevention is of high priority in both basic and clinical sciences. In recent decades natural products have been considered to be an important source of cancer chemopreventive agents. Red wine polyphenols, which consisted of various powerful antioxidants such as flavonoids and stilbenes, have been implicated in cancer prevention and that promote human health without recognizable side effects. Since resveratrol, a major component of red wine polyphenols, has been studied and reviewed extensively for its chemopreventive activity to interfere with the multi-stage carcinogenesis, this review focuses on recent progress in studies on cancer chemopreventive activities of red wine polyphenol extracts and fractions as well as other red wine polyphenols, like procyanidin B5 analogues and myricetin.

  14. Protection of Dietary Polyphenols against Oral Cancer

    PubMed Central

    Ding, Yijian; Yao, Hua; Yao, Yanan; Yenwong Fai, Leonard; Zhang, Zhuo

    2013-01-01

    Oral cancer represents a health burden worldwide with approximate 275,000 new cases diagnosed annually. Its poor prognosis is due to local tumor invasion and frequent lymph node metastasis. Better understanding and development of novel treatments and chemo-preventive approaches for the preventive and therapeutic intervention of this type of cancer are necessary. Recent development of dietary polyphenols as cancer preventives and therapeutic agents is of great interest due to their antioxidant and anti-carcinogenic activities. Polyphenols may inhibit carcinogenesis in the stage of initiation, promotion, or progression. In particular, dietary polyphenols decrease incidence of carcinomas and exert protection against oral cancer by induction of cell death and inhibition of tumor growth, invasion, and metastasis. In this review, we discuss current progress of dietary polyphenols against oral cancers in vitro, in vivo, and at population levels. PMID:23771133

  15. Functional Properties of Grape and Wine Polyphenols.

    PubMed

    Giovinazzo, Giovanna; Grieco, Francesco

    2015-12-01

    Grape berries polyphenols are mainly synthesized in the skin tissues and seeds and they are extracted during the winemaking process. These substances have a potentially positive effect, on human health, thus giving to grape and red wine "functional properties" that can contribute to prevent a number of human illness. Nevertheless, the research community is showing that the real effect is a result of a combination of different factors, notably daily intake, bioavailability, or in vivo antioxidant activity that are yet to be resolved. Viticulture and winemaking practices, determine the concentration of polyphenols in grape and wine. To date, reduced knowledge is existing on the effects of different yeast strains on the final concentration of polyphenols in red wine. We summarize the recent findings concerning the effects of polyphenols on human chronic disease and the future directions for research to increase the amount of these compounds in wine.

  16. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties

    PubMed Central

    2013-01-01

    For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs. PMID:23724847

  17. Novel insights of dietary polyphenols and obesity

    PubMed Central

    Wang, Shu; Moustaid-Moussa, Naima; Chen, Lixia; Mo, Huanbiao; Shastri, Anuradha; Su, Rui; Bapat, Priyanka; Kwun, InSook; Shen, Chwan-Li

    2013-01-01

    Prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here we evaluated the impact of commonly consumed polyphenols, including green tea catechins and epigallocatechin gallates, resveratrol, and curcumin, on obesity and obesity-related-inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the AMP-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, PPAR gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor kappa B that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass, and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area, and are inconsistent about the anti-obesity impact of dietary polyphenols, probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols. PMID:24314860

  18. Novel insights of dietary polyphenols and obesity.

    PubMed

    Wang, Shu; Moustaid-Moussa, Naima; Chen, Lixia; Mo, Huanbiao; Shastri, Anuradha; Su, Rui; Bapat, Priyanka; Kwun, InSook; Shen, Chwan-Li

    2014-01-01

    The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols. © 2014.

  19. Modulation of neurotrophic signaling pathways by polyphenols

    PubMed Central

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and

  20. Modulation of neurotrophic signaling pathways by polyphenols.

    PubMed

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the

  1. Polyphenols: skin photoprotection and inhibition of photocarcinogenesis.

    PubMed

    Afaq, F; Katiyar, S K

    2011-12-01

    Polyphenols are a large family of naturally occurring plant products and are widely distributed in plant foods, such as, fruits, vegetables, nuts, flowers, bark and seeds, etc. These polyphenols contribute to the beneficial health effects of dietary products. Clinical and epidemiological studies suggest that exposure of the skin to environmental factors/pollutants, such as solar ultraviolet (UV) radiation induce harmful effects and leads to various skin diseases including the risk of melanoma and non-melanoma skin cancers. The incidence of non-melanoma skin cancer, comprising of squamous cell carcinoma and basal cell carcinoma, is a significant public health concern world-wide. Exposure of the skin to solar UV radiation results in inflammation, oxidative stress, DNA damage, dysregulation of cellular signaling pathways and immunosuppression thereby resulting in skin cancer. The regular intake of natural plant products, especially polyphenols, which are widely present in fruits, vegetables, dry legumes and beverages have gained considerable attention as protective agents against the adverse effects of UV radiation. In this article, we first discussed the impact of polyphenols on human health based on their structure-activity relationship and bioavailability. We then discussed in detail the photoprotective effects of some selected polyphenols on UV-induced skin inflammation, proliferation, immunosuppression, DNA damage and dysregulation of important cellular signaling pathways and their implications in skin cancer management. The selected polyphenols include: green tea polyphenols, pomegranate fruit extract, grape seed proanthocyanidins, resveratrol, silymarin, genistein and delphinidin. The new information on the mechanisms of action of these polyphenols supports their potential use in skin photoprotection and prevention of photocarcinogenesis in humans.

  2. Safety Pharmacology of Anticancer Agents.

    PubMed

    Martin, Pauline L

    2015-01-01

    The safety pharmacology testing for anticancer agents has historically differed for small molecule pharmaceutical drugs versus large-molecule biopharmaceuticals. For pharmaceutical drugs, dedicated safety pharmacology studies have been conducted according to the ICH M3 (R2), ICH 7A, and ICH S7B guidance documents. For biopharmaceuticals, safety pharmacology endpoints have been incorporated into the repeated-dose toxicology studies according to ICHS6 (R1). However, the introduction of the ICH S9 guidance document for the nonclinical evaluation for anticancer pharmaceuticals has allowed for a streamlined approach for both types of molecules to facilitate access of new potential therapeutics to cancer patients and to reduce the number of animal studies. Examples of the testing strategies that have previously been employed for some representative anticancer agents are provided, and their predictivity to adverse events noted in the clinic is discussed.

  3. Novel Anticancer β-Lactams

    NASA Astrophysics Data System (ADS)

    Banik, Bimal K.; Banik, Indrani; Becker, Frederick F.

    Stereocontrolled synthesis of racemic and chiral novel β-lactams using polyaromatic imines has been accomplished. Domestic and automated microwave-induced reactions have been investigated for the preparation of these types of β-lactams. A preliminary mechanism of this reaction has been advanced. Formation of trans-β-lactams has been explained through isomerization of the enolates formed during the reaction of acid chloride with imines in the presence of tertiary base. A donor-acceptor complex pathway has been believed to be involved in the formation of cis-β-lactams. The effect of a peri hydrogen has been found to be significant in controlling the stereochemistry of the β-lactams. Structure-activity relationship has identified β-lactams with anticancer activity. The presence of an acetoxy group has proven very important for anticancer activity. The preparation and mechanism of action of several other new anticancer β-lactams have also been explored.

  4. Natural Polyphenol Disposition via Coupled Metabolic Pathways

    PubMed Central

    Liu, Zhongqiu; Hu, Ming

    2009-01-01

    A major challenge associated with the development of chemopreventive polyphenols is the lack of bioavailability in vivo, which are primarily the result of coupled metabolic activities of conjugating enzymes and efflux transporters. These coupling processes are present in most of tissues and organs in mammals and are efficient for the purposes of drug metabolism, elimination and detoxification. Therefore, it was expected that these coupling processes represent a significant barrier to the oral bioavailabilities of polyphenols. In various studies of this coupling process, it was identified that various conjugating enzymes such as UGT and SULT are capable of producing very hydrophilic metabolites of polyphenols, which cannot diffuse out of the cells and needs the action of efflux transporters to pump them out of the cells. Additional studies have shown that efflux transporters such as MRP2, BCRP and OAT appear to serve as the gate keeper when there is an excess capacity to metabolize the compounds. These efflux transporters may also act as the facilitator of metabolism when there is a product/metabolite inhibition. For polyphenols, these coupled processes enable a duo recycling scheme of enteric and enterohepatic recycling, which allows the polyphenols to be reabsorbed and results in longer than expected apparent plasma half-lives for these compounds and their conjugates. Since the vast majority of polyphenols in plasma are hydrophilic conjugates, more research is needed to determine if the metabolites are active or reactive, which will help explain their mechanism of actions. PMID:17539746

  5. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    PubMed Central

    Bhullar, Khushwant S.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders. PMID:23840922

  6. Antioxidant and cytoprotective properties of partridgeberry polyphenols.

    PubMed

    Bhullar, Khushwant S; Rupasinghe, H P Vasantha

    2015-02-01

    Partridgeberry (Vaccinium vitis-idaea) is a polyphenol-rich berry of the Ericaceous family, grown in Newfoundland and Labrador province of Canada. The aims of this study were to identify extraction solvents for the maximum recovery of polyphenols, to establish fractionation technique for isolation of major sub-classes of polyphenols, and to evaluate antioxidant and cytoprotective properties of the partridgeberry polyphenol preparations. The acidified 70% acetone was identified as the ideal solvent for the maximum recovery of polyphenols from partridgeberry. Further, aqueous two-phase extraction, column chromatography and UPLC-MS/MS were employed to produce three partridgeberry polyphenol fractions, rich in either, anthocyanins, flavan-3-ols or flavonols. All the three PPF were potent antioxidants and displayed cytoprotective activity through the activation of nuclear factor erythroid 2-related factor 2 pathway, scavenging of reactive oxygen species, and inhibition of cellular death. The current study suggests that partridgeberry has numerous potential health implications in both prevention and amelioration of various diseases involving oxidative stress.

  7. Synergistic anticancer effect of the extracts from Polyalthia evecta caused apoptosis in human hepatoma (HepG2) cells

    PubMed Central

    Machana, Sasipawan; Weerapreeyakul, Natthida; Barusrux, Sahapat; Thumanu, Kanjana; Tanthanuch, Waraporn

    2012-01-01

    Objective To evaluate the anticancer activity of the extract fraction of Polyalthia evecta (P. evecta) (Pierre) Finet & Gagnep and the synergistic anticancer effect of the extracts from P. evecta by using the ATR/FT-IR spectroscopy. Methods The 50% ethanol-water crude leaf extract of P. evecta (EW-L) was prepared and was further fractionated to isolate various fractions. The anticancer activity was investigated from cytotoxicity against HepG2 using a neutral red assay and apoptosis induction by evaluation of nuclei morphological changes after DAPI staining. Synergistic anticancer effects of the extracts from P. evecta were performed using the ATR/FT-IR spectroscopy. Results The result showed that the EW-L showed higher cytotoxicity and apoptosis induction in HepG2 cells than its fractionated extracts. The hexane extract exhibited higher cytotoxicity and apoptosis induction than the water extracts, but less than the EW-L. The combined water and hexane extracts apparently increased cytotoxicity and apoptosis induction. The %apoptotic cells induced by the extract mixture were increased about 2-fold compared to the single hexane extract. Conclusions The polar extract fraction is necessary for the anticancer activity of the non-polar extract fraction. The ATR/FT-IR spectra illustrates the physical interaction among the constituents in the extract mixture and reveals the presence of polyphenolic constituents in the EW-L, which might play a role for the synergistic anticancer effect. PMID:23569977

  8. Physical, bioactive and sensory quality parameters of reduced sugar chocolates formulated with natural sweeteners as sucrose alternatives.

    PubMed

    Belščak-Cvitanović, Ana; Komes, Draženka; Dujmović, Marko; Karlović, Sven; Biškić, Matija; Brnčić, Mladen; Ježek, Damir

    2015-01-15

    In this study, sugar alcohols, dietary fibers, syrups and natural sweeteners were used as sucrose alternatives in the production of reduced sugar chocolates (50% of cocoa parts) with enhanced bioactive profile. Formulated chocolates were evaluated for their physical (particle size distribution, texture) and sensory properties, sugar composition, polyphenolic compounds content and antioxidant capacity. All produced reduced sugar chocolates ensured >20% lower calorific value than conventional chocolate (prepared with sucrose). Formulated chocolates containing stevia leaves and peppermint exhibited the best sensory properties (especially with regard to mouthfeel, sweetness and herbal aroma), as well as the highest polyphenolic content and antioxidant capacity. Particle size and hardness of chocolates increased in comparison to conventional chocolate, in particular when the combination of fructose and isomalt or lactitol was used. The bioactive profile of produced chocolates was enriched with phenolic acids, flavone (luteolin and apigenin) and flavonol (quercetin) derivatives, which were not identified in control chocolate.

  9. Bioactive compounds contents, antioxidant and antimicrobial activities during ripening of Prunus persica L. varieties from the North West of Tunisia.

    PubMed

    Belhadj, Feten; Somrani, Imen; Aissaoui, Neyssene; Messaoud, Chokri; Boussaid, Mohamed; Marzouki, M Nejib

    2016-08-01

    Bioactive molecules from fruits of four varieties of Prunus persica at different stages of ripening (green, small orange, red) were studied. For example, contents on polyphenols (20.36mg GAE/g FW) and flavonoids (0.764mg RE/g FW) were high and varied according variety. The antioxidant activity, using four different tests (DPPH radical scavenging activity, reducing power, β carotene bleaching system and TBARS assay) showed that the variety Chatos exhibited the highest antioxidant activity comparing with others varieties. The antibacterial activity of Prunus persica varieties studied seems to be more sensitive against Staphylococcus aureus and Listeria monocytogenes. The capacity of peach DMSO extracts to inhibit Candida albicans growth was more pronounced, especially, in the presence of Chatos DMSO extract. Enzymes inhibition gives results which correlate with polyphenols, flavonoids and condensed tannins contents, and so, confirm the fascinating bioactivity of this fruit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nutrition and Healthy Ageing: Calorie Restriction or Polyphenol-Rich “MediterrAsian” Diet?

    PubMed Central

    Rimbach, Gerald

    2013-01-01

    Diet plays an important role in mammalian health and the prevention of chronic diseases such as cardiovascular disease (CVD). Incidence of CVD is low in many parts of Asia (e.g., Japan) and the Mediterranean area (e.g., Italy, Spain, Greece, and Turkey). The Asian and the Mediterranean diets are rich in fruit and vegetables, thereby providing high amounts of plant bioactives including polyphenols, glucosinolates, and antioxidant vitamins. Furthermore, oily fish which is rich in omega-3 fatty acids is an important part of the Asian (e.g., Japanese) and also of the Mediterranean diets. There are specific plant bioactives which predominantly occur in the Mediterranean (e.g., resveratrol from red wine, hydroxytyrosol, and oleuropein from olive oil) and in the Asian diets (e.g., isoflavones from soybean and epigallocatechin gallate from green tea). Interestingly, when compared to calorie restriction which has been repeatedly shown to increase healthspan, these polyphenols activate similar molecular targets such as Sirt1. We suggest that a so-called “MediterrAsian” diet combining sirtuin-activating foods (= sirtfoods) of the Asian as well as Mediterranean diet may be a promising dietary strategy in preventing chronic diseases, thereby ensuring health and healthy ageing. Future (human) studies are needed which take the concept suggested here of the MediterrAsian diet into account. PMID:24069505

  11. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs

    PubMed Central

    Baikar, Supriya; Malpathak, Nutan

    2010-01-01

    A large number of secondary metabolites like alkaloids, terpenoids, polyphenols and quinones are produced by the plants. These metabolites can be utilized as natural medicines for the reason that they inhibit the activity of DNA topoisomerase which are the clinical targets for anticancer drugs. DNA topoisomerases are the cellular enzymes that change the topological state of DNA through the breaking and rejoining of DNA strands. Synthetic drugs as inhibitors of topoisomerases have been developed and used in the clinical trials but severe side effects are a serious problem for them therefore, there is a need for the development of novel plant-derived natural drugs and their analogs which may serve as appropriate inhibitors with respect to drug designing. The theme for this review is how secondary metabolites or natural products inactivate the action of DNA topoisomerases and open new avenues towards isolation and characterization of compounds for the development of novel drugs with anticancer potential. PMID:22228937

  12. Research Progress in the Modification of Quercetin Leading to Anticancer Agents.

    PubMed

    Massi, Alessandro; Bortolini, Olga; Ragno, Daniele; Bernardi, Tatiana; Sacchetti, Gianni; Tacchini, Massimo; De Risi, Carmela

    2017-07-29

    The flavonoid quercetin (3,3',4',5,7-pentahydroxyflavone) is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin can prevent neurological disorders and exerts protection against mitochondrial damages. Various in vitro studies have assessed the anticancer effects of quercetin, although there are no conclusive data regarding its mode of action. However, low bioavailability, poor aqueous solubility as well as rapid body clearance, fast metabolism and enzymatic degradation hamper the use of quercetin as therapeutic agent, so intense research efforts have been focused on the modification of the quercetin scaffold to obtain analogs with potentially improved properties for clinical applications. This review gives an overview of the developments in the synthesis and anticancer-related activities of quercetin derivatives reported from 2012 to 2016.

  13. Studies on Modulation of Gut Microbiota by Wine Polyphenols: From Isolated Cultures to Omic Approaches

    PubMed Central

    Dueñas, Montserrat; Cueva, Carolina; Muñoz-González, Irene; Jiménez-Girón, Ana; Sánchez-Patán, Fernando; Santos-Buelga, Celestino; Moreno-Arribas, M. Victoria; Bartolomé, Begoña

    2015-01-01

    Moderate consumption of wine seems to produce positive health effects derived from the occurrence of bioactive polyphenols. The gut microbiota is involved in the metabolism of phenolic compounds, and these compounds and/or their metabolites may modulate gut microbiota through the stimulation of the growth of beneficial bacteria and the inhibition of pathogenic bacteria. The characterization of bacterial metabolites derived from polyphenols is essential in order to understand their effects, including microbial modulation, and therefore to associate dietary intake with particular health effects. This review aims to summarize the current information about the two-way “wine polyphenols–gut microbiota” interaction, from a perspective based on the experimental and analytical designs used. The availability of advanced methods for monitoring bacterial communities, along with the combination of in vitro and in vivo models, could help to assess the metabolism of polyphenols in the human body and to monitor total bacterial communities, and, therefore, to elucidate the implications of diet on the modulation of microbiota for delivering health benefits. PMID:26785335

  14. Impact of processing on the bioavailability and vascular effects of blueberry (poly)phenols.

    PubMed

    Rodriguez-Mateos, Ana; Del Pino-García, Raquel; George, Trevor W; Vidal-Diez, Alberto; Heiss, Christian; Spencer, Jeremy P E

    2014-10-01

    Blueberries are a rich source of flavonoids and phenolic acids. Currently, little information is available regarding the impact of processing on the bioavailability and the bioactivity of blueberry (poly)phenols. In a randomized, controlled crossover trial, ten healthy volunteers consumed (a) blueberry-containing baked products, (b) an unprocessed blueberry drink containing the same amount of freeze-dried blueberry powder as used in the baked products, and (c) matched control baked products. Endothelial function was measured as flow-mediated dilation (FMD) and plasma samples taken at baseline and at 1, 2, 4, and 6 h postconsumption. Although processing did not significantly change the total (poly)phenolic amount, the processed products contained significantly less anthocyanins (-42%), more chlorogenic acid (23%), no flavanol nonamers or decamers, and significantly more flavanol dimers and trimers (36% and 28%, respectively). FMD increased after 1, 2, and 6 h consumption of the baked products to a similar degree as the unprocessed blueberries, despite significant differences in the levels of individual plasma metabolites. No changes were observed after the consumption of the control product. Careful processing can preserve important biological activities of blueberries despite changing the blueberry (poly)phenol composition and plasma metabolite profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Determination of polyphenolic compounds by liquid chromatography-mass spectrometry in Thymus species.

    PubMed

    Boros, Borbála; Jakabová, Silvia; Dörnyei, Agnes; Horváth, Györgyi; Pluhár, Zsuzsanna; Kilár, Ferenc; Felinger, Attila

    2010-12-17

    Polyphenolic compounds represent a wide group of phytochemicals, including well-known subgroups of phenolic acids, flavonoids, natural dyes, lignans etc., which are produced by plants. These natural bioactive compounds possess a variety of beneficial effects including antioxidant and anticarcinogenic activities, protection against coronary diseases as well as antimicrobial properties. Thymus species have already been reported as sources of different phenolic acids and flavonoids. Moreover, the composition and content of flavonoids in Thymus species play important role as taxonomic markers providing distinction of species. High-performance liquid chromatography (HPLC) coupled with diode array detector (DAD) and on-line mass spectrometry (ESI-MS) method was used for analysis. The method was evaluated for a number of validation characteristics (repeatability and intermediate precision, LOD, LOQ, calibration range, and recovery). The polyphenolic pattern of five native Hungarian Thymus species (T. glabrescens Willd., T. pannonicus All., T. praecox Opiz, T. pulegioides L., and T. serpyllum L.) was characterized. The dominant compound was rosmarinic acid, which ranged between 83.49 μg g(-1) and 1.436 mg g(-1). Other phenolic acids (ferulic acid, caffeic acid and its other derivatives, chlorogenic acid and p-coumaric acids) were present in every examined Thymus species, as well as flavanones: naringenin, eriodictyol and dihydroquercetin; flavones: apigenin and apigenin-7-glucoside, flavonols: quercetin and rutin. The polyphenolic pattern was found to be a useful additional chemotaxonomic tool for classification purposes and determination of the locality of origin.

  16. Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion

    PubMed Central

    Mandalari, Giuseppina; Vardakou, Maria; Faulks, Richard; Bisignano, Carlo; Martorana, Maria; Smeriglio, Antonella; Trombetta, Domenico

    2016-01-01

    The goal of the present study was to quantify the rate and extent of polyphenols released in the gastrointestinal tract (GIT) from natural (NS) and blanched (BS) almond skins. A dynamic gastric model of digestion which provides a realistic simulation of the human stomach was used. In order to establish the effect of a food matrix on polyphenols bioaccessibility, NS and BS were either digested in water (WT) or incorporated into home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). Phenolic acids were the most bioaccessible class (68.5% release from NS and 64.7% from BS). WT increased the release of flavan-3-ols (p < 0.05) and flavonols (p < 0.05) from NS after gastric plus duodenal digestion, whereas CB and HB were better vehicles for BS. FM lowered the % recovery of polyphenols, the free total phenols and the antioxidant status in the digestion medium, indicating that phenolic compounds could bind protein present in the food matrix. The release of bioactives from almond skins could explain the beneficial effects associated with almond consumption. PMID:27649239

  17. Anticoagulant Activity of Polyphenolic-Polysaccharides Isolated from Melastoma malabathricum L.

    PubMed Central

    Abas, Faridah; Abdullah, Janna Ong; Mohd Tohit, Eusni Rahayu; Hamid, Muhajir

    2014-01-01

    Melastoma malabathricum Linn. is a perennial traditional medicine plants that grows abundantly throughout Asian countries. In this study, M. malabathricum Linn. leaf hot water crude extract with anticoagulant activity was purified through solid phase extraction cartridge and examined for the bioactive chemical constituents on blood coagulation reaction. The SPE purified fractions were, respectively, designated as F1, F2, F3, and F4, and each was subjected to the activated partial thromboplastin time (APTT) anticoagulant assay. Active anticoagulant fractions (F1, F2, and F3) were subjected to chemical characterisation evaluation. Besides, neutral sugar for carbohydrate part was also examined. F1, F2, and F3 were found to significantly prolong the anticoagulant activities in the following order, F1 > F2 > F3, in a dose dependent manner. In addition, carbohydrate, hexuronic acid, and polyphenolic moiety were measured for the active anticoagulant fractions (F1, F2, and F3). The characterisation of chemical constituents revealed that all these three fractions contained acidic polysaccharides (rhamnogalacturonan, homogalacturonan, and rhamnose hexose-pectic type polysaccharide) and polyphenolics. Hence, it was concluded that the presence of high hexuronic acids and polysaccharides, as well as polyphenolics in traditional medicinal plant, M. malabathricum, played a role in prolonging blood clotting in the intrinsic pathway. PMID:24987430

  18. The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    PubMed Central

    Fernández-Arroyo, Salvador; Huete-Toral, Fernando; Jesús Pérez de Lara, María; de la Luz Cádiz-Gurrea, María; Legeai-Mallet, Laurence; Micol, Vicente; Segura-Carretero, Antonio; Joven, Jorge; Pintor, Jesús

    2015-01-01

    Background Imbalances in the functional binding of fibroblast growth factors (FGFs) to their receptors (FGFRs) have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R) in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R) mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM) generation, and grade of activation of mitogen-activated protein kinases. Results Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage. PMID:26445212

  19. Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion.

    PubMed

    Mandalari, Giuseppina; Vardakou, Maria; Faulks, Richard; Bisignano, Carlo; Martorana, Maria; Smeriglio, Antonella; Trombetta, Domenico

    2016-09-15

    The goal of the present study was to quantify the rate and extent of polyphenols released in the gastrointestinal tract (GIT) from natural (NS) and blanched (BS) almond skins. A dynamic gastric model of digestion which provides a realistic simulation of the human stomach was used. In order to establish the effect of a food matrix on polyphenols bioaccessibility, NS and BS were either digested in water (WT) or incorporated into home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). Phenolic acids were the most bioaccessible class (68.5% release from NS and 64.7% from BS). WT increased the release of flavan-3-ols (p < 0.05) and flavonols (p < 0.05) from NS after gastric plus duodenal digestion, whereas CB and HB were better vehicles for BS. FM lowered the % recovery of polyphenols, the free total phenols and the antioxidant status in the digestion medium, indicating that phenolic compounds could bind protein present in the food matrix. The release of bioactives from almond skins could explain the beneficial effects associated with almond consumption.

  20. Determination of polyphenols and antioxidant activity of Vitis labrusca cv. baile berries.

    PubMed

    Nile, Shivraj Hariram; Park, Se Won

    2015-10-01

    Grape juice and grape skin extracts are important commercial source of polyphenolic compounds which exert different functional properties such as color potential, antimicrobial, antioxidant activity, and health benefits. In this paper we describe a sensitive and specific assay for determination of bioactive polyphenolic compounds in Campbell Early (Vitis labrusca cv. baile). Five polyphenolic components were separated on an Agilent Zorbax Extend C18 Column (250 mm x 4.6 mm x 5 μm) and detected by a diode array detector. The mobile phase was composed of (a) aqueous phosphoric acid (0.2%, v/v); and (b) acetonitrile using a gradient elution. Analytes were performed at 25 degrees C with a flow rate of 0.8 ml/min and UV detection at 280, 360, and 520 nm. All calibration curves showed good linear regression (r2 ≥ 0.9999) within tested ranges. Overall intra- and inter-day variations were less than 1.90%, and the average recoveries were 95.5-105% for analytes. The antioxidant activity determined by DPPH radical assay, ranged from 86-105 for extracts, and 165-252 for studied standards (μM trolox/100 g dry wt.). The proposed method would be sensitive enough and reliable for quality control in functional food and modernization of Campbell Early (Vitis labrusca cv. baile) as potent antioxidant agents.

  1. Rapid solid-phase extraction and analysis of resveratrol and other polyphenols in red wine.

    PubMed

    Hashim, Shima N N S; Schwarz, Lachlan J; Boysen, Reinhard I; Yang, Yuanzhong; Danylec, Basil; Hearn, Milton T W

    2013-10-25

    Red wine has long been credited as a good source of health-beneficial antioxidants, including the bioactive polyphenols catechin, quercetin, and (E)-resveratrol. In this paper, we report the application of reusable molecularly imprinted polymers (MIPs) for the selective and robust solid-phase extraction (SPE) and rapid analysis of (E)-resveratrol (LOD=8.87×10(-3) mg/L, LOQ=2.94×10(-2) mg/L), along with a range of other polyphenols from an Australian Pinot noir red wine. Optimization of the molecularly imprinted solid-phase extraction (MISPE) protocol resulted in the significant enrichment of (E)-resveratrol and several structurally related polyphenols. These secondary metabolites were subsequently identified by RP-HPLC and μLC-ESI ion trap MS/MS methods. The developed MISPE protocol employed low volumes of environmentally benign solvents selected according to the Green Chemistry principles, and resulted in the recovery of 99% of the total (E)-resveratrol present. These results further demonstrate the potential of generic protocols for the analysis of target compound with health beneficial properties within the food and nutraceutical industries using tailor-made MIPs. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Comparison of in vivo and in vitro digestion on polyphenol composition in lingonberries: potential impact on colonic health.

    PubMed

    Brown, Emma M; Nitecki, Sonja; Pereira-Caro, Gema; McDougall, Gordon J; Stewart, Derek; Rowland, Ian; Crozier, Alan; Gill, Chris I R

    2014-01-01

    The composition of polyphenols in ileal fluid samples obtained from an ileostomy subject after lingonberry intake was compared with lingonberry extracts obtained after simulated in vitro digestion (IVDL) and subsequent faecal fermentation (IVFL). HPLC-PDA-MS/MS analysis confirmed similar patterns of lingonberry (poly)phenolic metabolism after the in vivo and in vitro digestion, with reduced recovery of anthocyanins and a similar pattern of recovery for proanthocyanidins observed for both methods of digestion. On the other hand, the IVFL sample contained none of the original (poly)phenolic components but was enriched in simple aromatic components. Digested and fermented extracts exhibited significant (P < 0.05) anti-genotoxic (Comet assay), anti-mutagenic (Mutation Frequency assay), and anti-invasive (Matrigel Invasion assay) effects in human cell culture models of colorectal cancer at physiologically-relevant doses (0-50 μg/mL gallic acid equivalents). The ileal fluid induced significant anti-genotoxic activity (P < 0.05), but at a higher concentration (200 μg/mL gallic acid equivalents) than the IVDL. Despite extensive structural modification following digestion and fermentation, lingonberry extracts retained their bioactivity in vitro. This reinforces the need for studies to consider the impact of digestion when investigating bioactivity of dietary phytochemicals. © 2014 International Union of Biochemistry and Molecular Biology.

  3. The Potential Health Benefits of Polyphenol-Rich Extracts from Cichorium intybus L. Studied on Caco-2 Cells Model.

    PubMed

    Azzini, Elena; Maiani, Giuseppe; Garaguso, Ivana; Polito, Angela; Foddai, Maria S; Venneria, Eugenia; Durazzo, Alessandra; Intorre, Federica; Palomba, Lara; Rauseo, Maria L; Lombardi-Boccia, Ginevra; Nobili, Fabio

    2016-01-01

    Phytochemicals can exert their bioactivity without reaching the systemic circulation; scarcely absorbed antioxidants might reach the large bowel contributing to protection from oxidative damage-induced gastrointestinal diseases. In the present work, we aimed to study the relationship between potential activity of polyphenol-rich extracts from Cichorium intybus L. and changes in morphological characteristics on Caco-2 cells. Phytochemicals content (carotenoids and flavonoids) and total antioxidant activity of Red Chicory of Treviso and Variegated Chicory of Castelfranco were evaluated. The bioactivity of polyphenol-rich extracts from chicories was studied in in vitro Caco-2 cell monolayers model. Morphological characteristics changes to test the antioxidant and/or prooxidant effect were verified by histological analysis and observed by Electronic Scansion Microscopy (SEM). On Caco-2 cell model, the polyphenols fractions from chicories have indicated a moderate antioxidant behavior until 17 μM concentration, while 70 μM and 34 μM exert cytotoxic effects for Treviso's and Castelfranco's Chicory, respectively, highlighted by TEER decreasing, increased permeability, and alteration of epithelium. Our findings support the beneficial effects of these products in counteracting the oxidative stress and cellular damage, induced in vitro on Caco-2 cell model, through interaction with the mucopolysaccharide complexes in the glycocalyx, maintaining in vivo a healthy and effective intestinal barrier.

  4. The Potential Health Benefits of Polyphenol-Rich Extracts from Cichorium intybus L. Studied on Caco-2 Cells Model

    PubMed Central

    Azzini, Elena; Maiani, Giuseppe; Garaguso, Ivana; Polito, Angela; Foddai, Maria S.; Venneria, Eugenia; Durazzo, Alessandra; Intorre, Federica; Palomba, Lara; Rauseo, Maria L.; Lombardi-Boccia, Ginevra; Nobili, Fabio

    2016-01-01

    Phytochemicals can exert their bioactivity without reaching the systemic circulation; scarcely absorbed antioxidants might reach the large bowel contributing to protection from oxidative damage-induced gastrointestinal diseases. In the present work, we aimed to study the relationship between potential activity of polyphenol-rich extracts from Cichorium intybus L. and changes in morphological characteristics on Caco-2 cells. Phytochemicals content (carotenoids and flavonoids) and total antioxidant activity of Red Chicory of Treviso and Variegated Chicory of Castelfranco were evaluated. The bioactivity of polyphenol-rich extracts from chicories was studied in in vitro Caco-2 cell monolayers model. Morphological characteristics changes to test the antioxidant and/or prooxidant effect were verified by histological analysis and observed by Electronic Scansion Microscopy (SEM). On Caco-2 cell model, the polyphenols fractions from chicories have indicated a moderate antioxidant behavior until 17 μM concentration, while 70 μM and 34 μM exert cytotoxic effects for Treviso's and Castelfranco's Chicory, respectively, highlighted by TEER decreasing, increased permeability, and alteration of epithelium. Our findings support the beneficial effects of these products in counteracting the oxidative stress and cellular damage, induced in vitro on Caco-2 cell model, through interaction with the mucopolysaccharide complexes in the glycocalyx, maintaining in vivo a healthy and effective intestinal barrier. PMID:26843906

  5. Preparation method: structure-bioactivity correlation in mesoporous bioactive glass

    NASA Astrophysics Data System (ADS)

    Shih, Shao-Ju; Chou, Yu-Jen; Borisenko, Konstantin B.

    2013-06-01

    Mesoporous bioactive glasses (MBGs) are receiving increased attention because of their superior bioactive properties and possible applications as drug-releasing carriers, bone implants and sealing materials in dentistry. We report here the results of investigation of structures and bioactivities of two types of MBG particles prepared by two different techniques, the sol-gel method and spray pyrolysis (SP). In this study, we used transmission electron microscopy and selected area electron diffraction to characterize particle morphology and atomistic structures of the particles correlating these observations with nitrogen adsorption measurements to determine surface areas of the particles and in vitro bioactivity tests. It is found that the preparation method can influence the final composition of the particles and that SP method offers a better control over the composition. The SP particles have higher bioactivity than the sol-gel particles due to their higher surface area and possibly more favourable atomistic structure for promoting deposition of pure hydroxyl apatite phase.

  6. Culturable endophytes of medicinal plants and the genetic basis for their bioactivity.

    PubMed

    Miller, Kristin I; Qing, Chen; Sze, Daniel Man-Yuen; Roufogalis, Basil D; Neilan, Brett A

    2012-08-01

    The bioactive compounds of medicinal plants are products of the plant itself or of endophytes living inside the plant. Endophytes isolated from eight different anticancer plants collected in Yunnan, China, were characterized by diverse 16S and 18S rRNA gene phylogenies. A functional gene-based molecular screening strategy was used to target nonribosomal peptide synthetase (NRPS) and type I polyketide synthase (PKS) genes in endophytes. Bioinformatic analysis of these biosynthetic pathways facilitated inference of the potential bioactivity of endophyte natural products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. All of the endophyte culture broth extracts demonstrated antiproliferative effects in at least one test assay, either cytotoxic, antibacterial or antifungal. From the perspective of natural product discovery, this study confirms the potential for endophytes from medicinal plants to produce anticancer, antibacterial and antifungal compounds. In addition, PKS and NRPS gene screening is a valuable method for screening isolates of biosynthetic potential.

  7. [Chemical studies on plant polyphenols and formation of black tea polyphenols].

    PubMed

    Tanaka, Takashi

    2008-08-01

    Recent biological and pharmacological studies strongly suggested that plant polyphenols in foods, beverages and crude drugs have various health benefits. However, still there are chemically uncharacterized polyphenols, especially those with large molecular weights. The typical example is black tea polyphenols. Four tea catechins of fresh tea leaves are enzymatically oxidized in tea fermentation process of black tea manufacture to give a complex mixture of the oxidation products. Despite many efforts since 1950's, major part of the black tea polyphenols has not been clarified yet. We have investigated the oxidation mechanism of each catechin by employing a newly developed in vitro model fermentation system. The oxidation was initiated by enzymatic dehydrogenation of catechins, and subsequent intermolecular quinone-phenol coupling reactions followed by cascade-type degradation of the unstable products resulted in the formation of complex black tea polyphenols. Besides black tea polyphenols, this review introduces the chemistry of insolubilization of persimmon proanthocyanidins, wood polyphenols in connection with whisky polyphenols, and co-polymerization of cinnamaldehyde and proanthocyanidins in cinnamon bark.

  8. Propolis as lipid bioactive nano-carrier for topical nasal drug delivery.

    PubMed

    Rassu, Giovanna; Cossu, Massimo; Langasco, Rita; Carta, Antonio; Cavalli, Roberta; Giunchedi, Paolo; Gavini, Elisabetta

    2015-12-01

    Propolis shows therapeutic properties ascribed to the presence of some flavonoids, phenolic acids, and their esters; it is a natural multifunctional material, solid at room temperature, and composed mainly of resin and waxes. We therefore used propolis as a lipid material to prepare solid lipid nanoparticles (SLNs); SLNs are proposed bioactive medications for topical intranasal therapy. Suitable formulation parameters were studied and the SLNs obtained by the high shear homogenization method were characterized; a selected formulation was viscosized to increase the residence time. Dimensional, morphological, and solid-state characterizations of the formulated SLNs were performed. In vitro and ex vivo permeation tests of diclofenac sodium, the model drug, and polyphenols were carried out. The propolis amount and surfactant concentration represent the key parameters that affect nanoparticle properties in terms of size, drug and polyphenol content, and physical stability. Size dispersions of about 600 nm and 0.4 PI were obtained, which do not change by increasing the viscosity. Drug is encapsulated in SLNs, as demonstrated by FTIR and DSC analyses. In vitro and ex vivo studies prove that drug and polyphenols do not cross the membranes; therefore, propolis-based SLNs could be used as delivery systems of diclofenac and flavonoids for the local treatment of nasal cavity diseases. Due to propolis composition, the proposed formulation could be used as a bioactive medication in which the carrier can exert a complementary effect with the loaded drug. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. In vitro effects of tea polyphenols on redox metabolism, oxidative stress, and apoptosis in PC12 cells.

    PubMed

    Raza, Haider; John, Annie

    2008-09-01

    Tea polyphenols, especially catechins, have been reported to be potent antioxidants and beneficial in oxidative stress-related diseases including cancer. Numerous animal and cell culture models demonstrate anticancer effects of tea catechins. Experimental and epidemiological evidence suggests the use of black tea polyphenols (BTP), green tea catechins (especially epigallocatechin gallate [EGCG]), and other polyphenols in preventing the progression of cancer both in animal and human populations. In the present study, we have demonstrated alterations in oxidative stress and redox metabolism using an isolated cell-free system and also in PC12 cancer cells after treatment with EGCG and BTP. We have demonstrated that tea catechins, alter the production of reactive oxygen species, glutathione metabolism, lipid peroxidation, and protein oxidation under in vitro conditions. We have also demonstrated that EGCG and BTP affect redox metabolism under cell culture conditions. Induction of apoptosis was observed, after the treatment with tea polyphenols, as shown by increased DNA breakdown and activation of the apoptotic markers, cytochrome c, caspase 3, and poly-(ADP-ribose) polymerase. These results may have implications in determining the chemopreventive and therapeutic use of tea catechins in vivo.

  10. Resveratrol: a natural polyphenol with multiple chemopreventive properties.

    PubMed

    Brisdelli, Fabrizia; D'Andrea, Gabriele; Bozzi, Argante

    2009-07-01

    Resveratrol, a naturally occurring polyphenol, shows pleiotropic health beneficial effects, including anti-oxidant, anti-inflammatory, anti-aging, cardioprotective and neuroprotective activities. Due to the several protective effects and since this compound is widely distributed in the plant kingdom, resveratrol can be envisaged as a chemo-preventive/curative agent introduced almost daily with the diet. Currently, a number of preclinical findings suggest resveratrol as a promising nature's weapon for cancer prevention and treatment. A remarkable progress in elucidating the molecular mechanisms underlying anti-cancer properties of resveratrol has been achieved in the last years. Concerning the resveratrol mechanism of action as a protective (vs. normal cells and tissues) and toxic (vs. cancer cells) compound, many studies focus on its antioxidant capacity as well as on its ability to trigger and favor the apoptotic cascade in malignant cells. However, a generalized mechanism of action able to explain this dual effect of resveratrol has not yet been clearly established. In addition to these important functions, resveratrol is reported to exhibit several other biological/biochemical protective effects on heart, circulation, brain and age-related diseases which are summarized in this Review.

  11. Bioactive peptides derived from food.

    PubMed

    Rutherfurd-Markwick, Kay J; Moughan, Paul J

    2005-01-01

    As interest in the ability of functional foods to impact on human health has grown over the past decade, so has the volume of knowledge detailing the beneficial roles of food-derived bioactive peptides. Bioactive peptides from both plant and animal proteins have been discovered, with to date, by far the most being isolated from milk-based products. A wide range of activities has been described, including antimicrobial and antifungal properties, blood pressure-lowering effects, cholesterol-lowering ability, antithrombotic effects, enhancement of mineral absorption, immunomodulatory effects, and localized effects on the gut. Although there is still considerable research to be performed in the area of food-derived bioactive peptides, it is clear that the generation of bioactive peptides from dietary proteins during the normal digestive process is of importance. Therefore, it will become necessary when determining dietary protein quality to consider the potential effects of latent bioactive peptides that are released during digestion of the protein.

  12. Anti-fouling bioactive surfaces.

    PubMed

    Yu, Qian; Zhang, Yanxia; Wang, Hongwei; Brash, John; Chen, Hong

    2011-04-01

    Bioactive surfaces refer to surfaces with immobilized bioactive molecules aimed specifically at promoting or supporting particular interactions. Such surfaces are of great importance for various biomedical and biomaterials applications. In the past few years, considerable effort has been made to create bioactive surfaces by forming specific biomolecule-modified surfaces on a non-biofouling "base" or "background". Hydrophilic and bioinert polymers have been widely used as anti-fouling layers that resist non-specific protein interactions. They can also serve as "spacers" to effectively move the immobilized biomolecule away from the surface, thus enhancing its bioactivity. In this review we summarize several successful approaches for the design and preparation of bioactive surfaces based on different types of anti-fouling/spacer materials. Some perspectives on future research in this area are also presented.

  13. Polyphenolic constituents of Actaea racemosa.

    PubMed

    Nuntanakorn, Paiboon; Jiang, Bei; Einbond, Linda S; Yang, Hui; Kronenberg, Fredi; Weinstein, I Bernard; Kennelly, Edward J

    2006-03-01

    A new lignan, actaealactone (1), and a new phenylpropanoid ester derivative, cimicifugic acid G (2), together with 15 known polyphenols, protocatechuic acid, protocatechualdehyde, p-coumaric acid, caffeic acid, methyl caffeate, ferulic acid, ferulate-1-methyl ester, isoferulic acid, 1-isoferuloyl-beta-d-glucopyranoside, fukinolic acid, and cimicifugic acids A, B, and D-F, were isolated from an extract of the rhizomes and roots of black cohosh (Actaea racemosa). The structures of the new compounds were determined on the basis of NMR spectroscopic analysis. Compounds 1 and 2 displayed antioxidant activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assay with IC(50) values of 26 and 37 microM, respectively. Other antioxidants identified from A. racemosa include cimicifugic acid A (3), cimicifugic acid B (4), and fukinolic acid (5). Compounds 1 and 2 also exhibited a small stimulating effect on the growth of MCF-7 breast cancer cell proliferation 1.24-fold (14 microM) and 1.14-fold (10 microM), respectively, compared to untreated cells.

  14. Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa 'Hayward' and Actinidia eriantha 'Bidan'.

    PubMed

    Leontowicz, Hanna; Leontowicz, Maria; Latocha, Piotr; Jesion, Iwona; Park, Yong-Seo; Katrich, Elena; Barasch, Dinorah; Nemirovski, Alina; Gorinstein, Shela

    2016-04-01

    The aim of this research is to identify and compare the bioactive compounds, antioxidant capacities and binding potentials to human protein in different varieties of hardy kiwi (Actinidia (A.) arguta), 'Hayward' (Actinidia deliciosa) and less - known 'Bidan' (Actinidia eriantha). Polyphenols, flavonoids, flavanols, tannins, vitamin C, lutein, zeaxanthin and dietary fibers were significantly higher in cultivar 'M1' among the A. arguta than in 'Hayward'. The binding properties of studied kiwi fruits were determined by interaction of polyphenols with human serum albumin (HSA). An internal standard FTIR technique allowed the quantitative comparison of specific IR absorption bands (Amides I, II, III) of different kiwi fruit samples after interaction with HSA. It was shown that the antioxidant and binding capacities and FTIR quantitative estimations of A. arguta fruits were significantly higher than in 'Hayward', but lower than the 'Bidan'. In MS spectra were found some slight differences in A. arguta kiwis in comparison with 'Hayward' and 'Bidan'. Two A. arguta cultivars were similar to 'Bidan'. The interaction of polyphenols with HSA, evaluated by fluorometry/FTIR, made it possible to compare the bioactivity of different cultivars and families. In conclusion, for the first time fruits A. arguta, cultivated in Poland, were compared with widely consumed kiwi fruits, using advanced analytical methods. The high bioactivity and nutritional value of A. arguta fruits from Polish ecological plantation enables us to recommend them for marketing and consumption.

  15. Bioactivities of alternative protein sources and their potential health benefits.

    PubMed

    Pihlanto, A; Mattila, P; Mäkinen, S; Pajari, A-M

    2017-08-14

    Increasing the utilisation of plant proteins is needed to support the production of protein-rich foods that could replace animal proteins in the human diet so as to reduce the strain that intensive animal husbandry poses to the environment. Lupins, quinoa and hempseed are significant sources of energy, high quality proteins, fibre, vitamins and minerals. In addition, they contain compounds such as polyphenols and bioactive peptides that can increase the nutritional value of these plants. From the nutritional standpoint, the right combination of plant proteins can supply sufficient amounts of essential amino acids for human requirements. This review aims at providing an overview of the current knowledge of the nutritional properties, beneficial and non-nutritive compounds, storage proteins, and potential health benefits of lupins, quinoa and hempseed.

  16. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl.

    PubMed

    Ahmed, Shabina Ishtiaq; Hayat, Muhammad Qasim; Tahir, Muhammad; Mansoor, Qaisar; Ismail, Muhammad; Keck, Kristen; Bates, Robert B

    2016-11-11

    Cassia angustifolia Vahl. (commonly known as senna makkai or cassia senna), native to Saudi Arabia, Egypt, Yemen and also extensively cultivated in Pakistan, is a medicinal herb used traditionally to cure number of diseases like liver diseases, constipation, typhoid, cholera etc. This study was conducted to evaluate the in-vitro antimicrobial, antioxidant and anticancer assays and phytochemical constituents of aqueous and organic extracts of C. angustifolia leaves. The antimicrobial activities of C. angustifolia aqueous and organic (methanol, ethanol, acetone, ethyl acetate) extracts were investigated by the disk diffusion method. These extracts were further evaluated for antioxidant potential by the DPPH radical scavenging assay. Anticancer activities of the extracts were determined by the MTT colorimetric assay. The total phenolic and flavonoid contents of C. angustifolia extracts were evaluated by the Folin-Ciocalteu method and aluminum chloride colorimetric assay, respectively. The structures of the bioactive compounds were elucidated by NMR and ESI-MS spectrometry. Bioactivity-guided screening of C. angustifolia extracts, led to the isolation and identification of three flavonoids quercimeritrin (1), scutellarein (2), and rutin (3) reported for the first time from this plant, showed significant anticancer activity against MCF-7 (IC50, 4.0 μg/μL), HeLa (IC50, 5.45 μg/μL), Hep2 (IC50, 7.28 μg/μL) and low cytotoxicity against HCEC (IC50, 21.09 μg/μL). Significant antioxidant activity was observed with IC50 2.41 μg/mL against DPPH radical. Moreover, C. angustifolia extracts have the potential to inhibit microbial growth of E. cloacae, P. aeruginosa, S. mercescens and S. typhi. C. angustifolia extracts revealed the presence of quercimeritrin (1), scutellarein (2), and rutin (3), all known to have useful bioactivities including antimicrobial, antioxidant and anticancer activities.

  17. A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles: Their characteristics and the adsorption properties of polyphenols.

    PubMed

    Qiu, Chao; Qin, Yang; Zhang, Shuangling; Xiong, Liu; Sun, Qingjie

    2016-12-15

    Polyphenols are known to have potent antioxidant capacity and other health-beneficial bioactivities. However, extremely low absorption rate of polyphenols restricts their bioactivity in vivo. Development of biopolymer nanoparticle carrier is a promising solution. For the first time, we have successfully prepared worm-like amylopectin nanoparticles (APNPs) and spherical amylose nanoparticles (AMNPs) using fractionated amylose and amylopectin from potato starch. Additionally, adsorption kinetics and adsorption isotherms of three polyphenols (procyanidins, epicatechins and catechins) on AMNPs and APNPs were investigated. We found that procyanidins, epicatechins, and catechins could bind to AMNPs at levels of up to 1.2, 1.5, and 1.4g/g, respectively, while the APNPs demonstrated higher adsorption amounts of 1.4, 4.3, and 2.2g/g, respectively. Furthermore, the particle size of polyphenol-loaded nanoparticles was not significantly changed. The results suggested that APNPs and AMNPs can be applied as an effective nanocarrier by delivering active compounds for nutraceutical and pharmaceutical industries.

  18. Evaluation of polyphenolic content and antioxidant activity in two onion varieties grown under organic and conventional production systems.

    PubMed

    Ren, Feiyue; Reilly, Kim; Gaffney, Michael; Kerry, Joseph P; Hossain, Mohammad; Rai, Dilip K

    2017-07-01

    Onions contain a number of bioactive compounds, in particular polyphenols. They are rich sources of such compounds in the human diet and offer significant health benefits to the consumer. Demand for organic crops is steadily increasing partly based on the expected health benefits of organic food consumption. The current study examines the influence of organic and conventional crop management practices on bioactive polyphenolic content of onion. We examined the effect of conventional, organic, and mixed cultivation practices on the content of total phenolics, total flavonoids and antioxidant activity in two varieties of onion grown over 4 years in a split-plot factorial systems comparison trial. Levels of total phenolics and total flavonoids showed a significant year-on-year variation and were significantly different between organic and conventional production systems. The levels of total phenolics, total flavonoids and antioxidant activity in general were significantly higher (P < 0.05) under fully organic compared to fully conventional management. Organic cultivation practices resulted in significantly higher levels of potential bioactive compounds in onion. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Polyphenols from Allanblackia floribunda seeds: Identification, quantification and antioxidant activity.

    PubMed

    Akpanika, Grace A; Winters, Ana; Wilson, Thomas; Ayoola, Gloria A; Adepoju-Bello, Aderonke A; Hauck, Barbara

    2017-05-01

    Oil rich seeds of Allanblackia floribunda, a tree from tropical Africa, have traditionally been used in food preparation. Furthermore, the therapeutic properties of various parts of this tree have long been exploited in traditional medicine. As both food and pharmaceutical industries show growing interest in tropical tree crops, this study aimed to investigate whether A. floribunda seeds could also be used as a source of potentially bioactive compounds. The polyphenol profile revealed six predominant compounds which were identified by HPLC-PDA-ESI/MS(n) as the biflavonoids morelloflavone, Gb-2a and volkensiflavone and their respective glucosides. A range of less abundant flavones, flavonols and flavan-3-ols was also detected. All six major compounds showed antioxidant activity, with the activity of morelloflavone, its glucoside and Gb-2a-glucoside comparable with that of ascorbic acid. The main compounds accounted for approximately 10% of dry weight, making the seeds used for oil production a rich source of biflavonoids as a by-product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Potential antioxidant, antiinflammatory, and proapoptotic anticancer activities of Kakadu plum and Illawarra plum polyphenolic fractions.

    PubMed

    Tan, Aaron C; Konczak, Izabela; Ramzan, Iqbal; Zabaras, Dimitrios; Sze, Daniel M-Y

    2011-01-01

    Kakadu plum (Terminalia ferdinandiana Exell, Combretaceae) and Illawarra plum (Podocarpus elatus Endl., Podocarpaceae) extracts were fractionated, using a bioassay-guided approach and screened for antioxidant activity [oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays] and antiinflammatory activity (nitrite concentration and prostaglandin E(2) release in lipopolysaccharide (LPS)-activated murine macrophages). Among 8 fractions obtained from KP and 5 fractions obtained from IP, fraction KPF5 from KP exhibited superior activity in all assays, with an ORAC value of 3,776 ± 603 μmol Trolox/g DW and a CAA value of 52.2 ± 8.6 μmol quercetin equivalents/g DW. In addition, KPF5 further demonstrated an upregulation of the Nrf2/Keap1 ratio in Hep G2 cells. KPF5 also inhibited the expression of COX-2 and iNOS in LPS-activated murine macrophages, potentially through the NF-κB, p44/42 mitogen activated protein kinase and Akt pathways. KPF5 also induced apoptosis and DNA damage in HT-29 cells, as determined by the cytokinesis block micronucleus cytome assay.

  1. Topoisomerase as target for antibacterial and anticancer drug discovery.

    PubMed

    Kathiravan, Muthu K; Khilare, Madhavi M; Nikoomanesh, Kiana; Chothe, Aparna S; Jain, Kishor S

    2013-06-01

    DNA topoisomerases comprise a major aspect of basic cellular biology and are molecular targets for a variety of drugs like antibiotics, antibacterials and anticancer drugs. They act by inhibiting the topoisomerase molecule from relegating DNA strands after cleavage and convert the topoisomerases molecule into a DNA damaging agent. Though drugs of various categories acting through different mechanisms are available for the treatment, there are still problems associated with the currently available drugs. Therefore, Structural biologists, Structural chemists and Medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase and drug treating each class along with their structural requirement and activity. The emphasis has been laid in particular on the new potential heterocyles and the possible treatments as well as the current ongoing research status in the field of topoisomerase as dual targeting.

  2. Activation of polyphenol oxidase of chloroplasts.

    PubMed

    Tolbert, N E

    1973-02-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or -18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles x mg(-1) chlorophyll x hr(-1). Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes.Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  3. Activation of Polyphenol Oxidase of Chloroplasts 1

    PubMed Central

    Tolbert, N. E.

    1973-01-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or —18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density. Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles × mg−1 chlorophyll × hr−1. Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes. Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  4. Gamma radiation enhances the bioactivity of fresh parsley (Petroselinum crispum (Mill.) Fuss Var. Neapolitanum)

    NASA Astrophysics Data System (ADS)

    Cătunescu, Giorgiana M.; Rotar, Ioan; Vidican, Roxana; Bunghez, Florina; Rotar, Ancuța M.

    2017-03-01

    Research showed the effects of drying, freezing, and irradiation on the bioactivity of parsley, but overlooked comparing them. In the present study, the effect of minimal processing paired with gamma irradiation (0.7-2.7 kGy) was evaluated in respect to the content of ascorbic acid, polyphenols, antiradical capacity and antibacterial activity of parsley methanolic extracts. The results were compared with natural drying (20-22 °C) and rapid freezing (-20 °C). Absorbed doses of 0.7-1.4 kGy can be recommended to no treatment from a nutritional point of view because the content of vitamin C was better preserved and a significant increase of polyphenols content was observed when compared with control samples. Drying can be recommended only in terms of vitamin C and polyphenols content per consumed serving, as it doubles the content of vitamin C and triples polyphenols compared to the same mass of fresh product. Plant extracts with optimal antioxidant and antimicrobial can be obtained from fresh herbs stored at refrigeration temperature as little as possible. Extracts from dried or frozen herbs preserved for long periods of time are not recommended. An absorbed dose of 2.7 kGy may be applied to parsley in order to increase its antibacterial against Gram-negative bacteria such as E. coli and S. Typhimurium.

  5. Bioactive indicators related to bioelements of eight unifloral honeys.

    PubMed

    Vit, Patricia; Rodríguez-Malaver, Antonio; Rondón, Carlos; González, Isbelia; Luisa Di Bernardo, María; Ysabel García, María

    2010-12-01

    Honey is the most popular bee product used by man, with nutritional and medicinal purposes. Its great diversity is attributed to numerous factors (bee type, visited flora, environment, and management). The quality of honey is controlled with routine parameters (free acidity, diastase activity, reducing sugars, ash, water, hydroxymethyfurfural, and sucrose contents). Besides the biochemical quality control, a functional profile is also important for pharmacological applications. In this work, bioactive indicators such as the antioxidant activity, flavonoid and polyphenol contents were evaluated by spectrophotometry, and correlated to the content of six bioelements (Ca, Cu, Fe, Mg, Mn, Zn) measured by atomic absorption spectroscopy, tandem FI-FAAS, in 14 unifloral Czech honeys. The antioxidant activity was 43.13 +/- 53.72 micromoles TEAC/100 g honey. The flavonoid content was 5.18 +/- 4.19 mg QE/100 g, and the polyphenol content was 45.38 +/- 27.20 mg GAE/100 g. Buckwheat honey showed the highest values for these indicators of bioactivity, the acacia honeys the lowest, and the rest of the honeys were comprised between both of them. Honey content of bioelements was 138.19 +/- 55.57 ppm Ca (min 77.11-max 261.65), 0.33 +/- 0.41 ppm Cu (min 0.00-max 1.37), 2.95 +/- 1.10 ppm Fe (min 1.34-max 5.36), 35.08 +/- 29.59 ppm Mg (min 8.76-128.06), 4.93 +/- 3.99 ppm Mn (min 0.34-max 11.31), 1.07 +/- 0.56 ppm Zn (min 0.49-max 2.52). The antioxidant activity of honey was significantly correlated to its content of cupper, iron, magnesium, manganese and zinc, but was not correlated to calcium.

  6. Polyphenolic compounds and antioxidant activity of new and old apple varieties.

    PubMed

    Wojdyło, Aneta; Oszmiański, Jan; Laskowski, Piotr

    2008-08-13

    There is considerable evidence to show that a greater intake of apple contributes to improved health by reducing the risk of diseases, such as cardiovascular disease and some forms of cancer. Apple fruit is a major source of phenol compounds, because its consumption is widespread in many countries and it is available on the market for the whole year. The phenolic composition of 67 varieties of apple cultivars (new and old varieties) was examined for the concentration of some important phytochemicals and antioxidant activity. For the first time, we have looked at the correlation and compared polyphenolic coumpounds in Golden Delicious variety and new varieties grown from it. Up to 18 compounds, including catechin, procyanidin, hydroxycinnamates, flavonols, anthocyanins, and dihydrochalcones, were analyzed by high-performance liquid chromatography with diode array detection analysis of crude extracts and after thiolysis and LC-MS. The mean content of total polyphenols lay between 523.02 and 2723.96 mg/100 g dw and depending upon the apples variety. Flavanols (catechin and oligomeric procyanidins) are the major class of apple polyphenols, representing more than 80%, followed by hydroxycinnamic acids (1-31%), flavonols (2-10%), dihydrochalcones (0.5-5%), and in red apples, anthocyanins (1%). In this study, the best correlation was found for the total polyphenols and ABTS method, with a lower correlation for FRAP and DPPH methods ( r = 0.871, 0.839, and 0.804, respectively). The presented data clearly demonstrated that new varieties, i.e., Ozark Gold, Julyred, and Jester, of apple had the same or higher value of bioactive compounds in comparison to the old varieties, i.e., Golden Delicious, Idared, and Jonagold.

  7. Preclinical trial of the antitumoral therapeutic effectiveness of some natural polyphenolic biopreparations.

    PubMed

    Rotinberg, P; Kelemen, S; Gramescu, M; Rotinberg, H; Nuta, V

    2000-01-01

    We have assessed the antitumoral action of the POLYAS I and POLYAS II vegetal polyphenolic biopreparations--separated and purified from Asclepias syriaca leaves - in rats with various experimental tumoral lines. We studied the therapeutic effect of different doses on the tumor generation process and compared it with the experimental oncostatic action of several standard chemotherapeutic drugs of clinical use (thiotepa, methotrexate, melphalan and cyclophosphamide). In our experimental treatment with the bioactive polyphenolic agents, we have used various doses, both higher and lower than the dose that had conditioned the expression of their antitumoral action upon Guerin T-8 lymphotropic epithelioma and upon Walker 256 carcinosarcoma. We found the antineoplastic effectiveness of those aromatic biopreparations from phytomass to be dose-dependent. We compared the evaluation indices of the antitumoral pharmacodynamic effect we obtained in the treatment with the POLYAS biopreparations with those of reference cytostatic agents. The antitumoral potential of the new natural biopreparations is higher than, equal or close to that of the standard oncochemotherapeutic agents. Antitumoral effectiveness can be improved by an experimental manipulation of the therapeutic doses--which proves the existence of a dose-response relationship. POLYAS I and POLYAS II polyphenolic biopreparations are compatible in point of effectiveness with the standard cytostatic agents, a fact that we considered relevant for the characterization of the POLYAS I and POLYAS II vegetal extracts as potential antineoplastic agents. The quantitative preclinical evaluation of the specific pharmacodynamic effect will be complemented by the investigation of the new polyphenolic biopreparations therapeutic effectiveness in tumors with various degrees of development.

  8. Bioactive materials in endodontics.

    PubMed

    Enkel, Bénédicte; Dupas, Cécile; Armengol, Valérie; Akpe Adou, Jonas; Bosco, Julia; Daculsi, Guy; Jean, Alain; Laboux, Olivier; LeGeros, Racquel Z; Weiss, Pierre

    2008-07-01

    Endodontic treatment in dentistry is a delicate procedure and many treatment attempts fail. Despite constant development of new root canal filling techniques, the clinician is confronted with both a complex root canal system and the use of filling materials that are harmful for periapical tissues. This paper evaluates reported studies on biomaterials used in endodontics, including calcium hydroxide, mineral trioxide aggregate, calcium phosphate ceramics and calcium phosphate cements. Special emphasis is made on promising new biomaterials, such as injectable bone substitute and injectable calcium phosphate cements. These materials, which combine biocompatibility, bioactivity and rheological properties, could be good alternatives in endodontics as root canal fillers. They could also be used as drug-delivery vehicles (e.g., for antibiotics and growth factors) or as scaffolds in pulp tissue engineering.

  9. Screening of cytoprotectors against methotrexate-induced cytogenotoxicity from bioactive phytochemicals

    PubMed Central

    Wu, Ying; Yang, Jianbo

    2016-01-01

    As a well known anti-neoplastic drug, the cytogenotoxicity of methotrexate (MTX) has received more attention in recent years. To develop a new cytoprotector to reduce the risk of second cancers caused by methotrexate, an umu test combined with a micronucleus assay was employed to estimate the cytoprotective effects of ten kinds of bioactive phytochemicals and their combinations. The results showed that allicin, proanthocyanidins, polyphenols, eleutherosides and isoflavones had higher antimutagenic activities than other phytochemicals. At the highest dose tested, the MTX genetoxicity was suppressed by 34.03%∼67.12%. Of all the bioactive phytochemical combinations, the combination of grape seed proanthocyanidins and eleutherosides from Siberian ginseng as well as green tea polyphenols and eleutherosides exhibited stronger antimutagenic effects; the inhibition rate of methotrexate-induced genotoxicity separately reached 74.7 ± 6.5% and 71.8 ± 4.7%. Pretreatment of Kunming mice with phytochemical combinations revealed an obvious reduction in micronucleus and sperm abnormality rates following exposure to MTX (p < 0.01). Moreover, significant increases in thymus and spleen indices were observed in cytoprotector candidates in treated groups. The results indicated that bioactive phytochemicals combinations had the potential to be used as new cytoprotectors. PMID:27190706

  10. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects.

    PubMed

    Rai, Mahendra; Kon, Kateryna; Ingle, Avinash; Duran, Nelson; Galdiero, Stefania; Galdiero, Massimiliano

    2014-03-01

    There are alarming reports of growing microbial resistance to all classes of antimicrobial agents used against different infections. Also the existing classes of anticancer drugs used against different tumours warrant the urgent search for more effective alternative agents for treatment. Broad-spectrum bioactivities of silver nanoparticles indicate their potential to solve many microbial resistance problems up to a certain extent. The antibacterial, antifungal, antiviral, antiprotozoal, acaricidal, larvicidal, lousicidal and anticancer activities of silver nanoparticles have recently attracted the attention of scientists all over the world. The aim of the present review is to discuss broad-spectrum multifunctional activities of silver nanoparticles and stress their therapeutic potential as smart nanomedicine. Much emphasis has been dedicated to the antimicrobial and anticancer potential of silver nanoparticles showing their promising characteristics for treatment, prophylaxis and control of infections, as well as for diagnosis and treatment of different cancer types.

  11. Role of polyphenols in cell death control.

    PubMed

    Giovannini, Claudio; Masella, Roberta

    2012-05-01

    Dietary consumption of fruit, vegetables, fish, and olive oil has been demonstrated to exert beneficial effects on human health. This finding may be due to the high content of antioxidant compounds including polyphenols. Current evidence strongly supports a contribution of polyphenols to the prevention of several chronic degenerative diseases such as cancer, atherosclerosis and cardiovascular diseases, central nervous system disorders, as well as aging. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process. Because of their ability to modulate cell death, polyphenols have been proposed as chemopreventive and therapeutic agents. This paper reviews and discusses the last 3-year findings related to the principal molecular mechanisms involved in the control of the balance between apoptosis and cell proliferation exerted by polyphenols.

  12. In vitro bioactivity of combustion products from 12 tobacco constituents.

    PubMed

    Préfontaine, David; Morin, André; Jumarie, Catherine; Porter, Andrew

    2006-05-01

    Twelve chemical components of tobacco leaf, representing 50% of its dry weight, were individually combusted and the bioactivities of their combustion products i.e. total particulate matter (TPM) were assayed using three in vitro tests. These components included carbohydrates, amino acids, proteins, polyphenols and carboxylic acids. The mutagenic potencies were assessed with the Salmonella mutagenicity assay (S. typhimurium TA98 and TA100). The induction of chromosomal damage, determined with the micronucleus test (IVMNT), and the neutral red uptake cytotoxicity test (NRU), were conducted on V79 hamster lung fibroblast cells. The Salmonella mutagenicity test and IVMNT were conducted with and without rat liver microsomal S9 fraction. Salmonella mutagenicity data confirmed the mutagenicity of TPM samples obtained from nitrogenous compounds (amino acids and proteins). The IVMNT showed that precursors of phenols in smoke (i.e. polyphenols) exhibited significantly higher levels of toxicity compared to other tobacco components. While S9 activation amplified the Salmonella mutagenicity response to combustion products, it significantly inhibited the toxicity measured with the IVMNT. NRU data demonstrated the increasing cytotoxicity induced following longer exposure time to TPM samples from nitrogenous and phenolic components. This study is the first to characterize the toxicity of the combustion products of major tobacco constituents. Our data suggest different mechanisms of toxicity and underline the relevance of using various bioassays.

  13. The Stability of Bioactive Compounds in Spaceflight Foods

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Douglas, G. L.

    2017-01-01

    The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature

  14. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    NASA Astrophysics Data System (ADS)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  15. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

    PubMed Central

    Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno

    2017-01-01

    Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects. PMID:28701955

  16. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives.

    PubMed

    Roberts, Joseph L; Moreau, Régis

    2016-08-10

    Overwhelming evidence indicates that diets rich in fruits and vegetables are protective against common chronic diseases, such as cancer, obesity and cardiovascular disease. Leafy green vegetables, in particular, are recognized as having substantial health-promoting activities that are attributed to the functional properties of their nutrients and non-essential chemical compounds. Spinach (Spinacia oleracea L.) is widely regarded as a functional food due to its diverse nutritional composition, which includes vitamins and minerals, and to its phytochemicals and bioactives that promote health beyond basic nutrition. Spinach-derived phytochemicals and bioactives are able to (i) scavenge reactive oxygen species and prevent macromolecular oxidative damage, (ii) modulate expression and activity of genes involved in metabolism, proliferation, inflammation, and antioxidant defence, and (iii) curb food intake by inducing secretion of satiety hormones. These biological activities contribute to the anti-cancer, anti-obesity, hypoglycemic, and hypolipidemic properties of spinach. Despite these valuable attributes, spinach consumption remains low in comparison to other leafy green vegetables. This review examines the functional properties of spinach in cell culture, animals and humans with a focus on the molecular mechanisms by which spinach-derived non-essential phytochemicals and bioactives, such as glycolipids and thylakoids, impart their health benefits.

  17. Antioxidant and antiplatelet activity by polyphenol-rich nutrients: focus on extra virgin olive oil and cocoa.

    PubMed

    Loffredo, Lorenzo; Perri, Ludovica; Nocella, Cristina; Violi, Francesco

    2017-01-01

    Cardiovascular disease is the most common cause of death in the Western world. In the last decades nutraceutical approaches have been proposed to counteract atherosclerotic complications. In particular, polyphenols, a class of bio-active molecules prevalently contained in foods such as cocoa, fruits, vegetables, wine and tea, have been widely studied for their beneficial properties. Several epidemiological and interventional studies have shown that polyphenol-rich nutrients, as in extra virgin olive oil (EVOO) and cocoa, are associated with a risk reduction of cardiovascular events and/or modulation of cardiovascular risk factors. Definition of the mechanisms accounting for this putative cardio-protective effect is still elusive. This review focuses on the mechanisms that may be implicated in the beneficial effects of EVOO and cocoa, including down-regulation of oxidative stress and platelet aggregation, improvement of endothelial function and cardiovascular risk factor such as blood pressure, serum cholesterol and insulin sensitivity.

  18. Inhibition of apple polyphenol oxidase activity by procyanidins and polyphenol oxidation products.

    PubMed

    Le Bourvellec, Carine; Le Quéré, Jean-Michel; Sanoner, Philippe; Drilleau, Jean-François; Guyot, Sylvain

    2004-01-14

    The rate of consumption of dissolved oxygen by apple polyphenol oxidase in cider apple juices did not correlate with polyphenol oxidase activity in the fruits and decreased faster than could be explained by the decrease of its polyphenolic substrates. The kinetics parameters of a crude polyphenol oxidase extract, prepared from apple (Braeburn cultivar), were determined using caffeoylquinic acid as a substrate. Three apple procyanidin fractions of n 80, 10.5, and 4 were purified from the parenchyma of cider apples of various cultivars. Procyanidins, caffeoylquinic acid, (-)-epicatechin, and a mixture of caffeoylquinic acid and (-)-epicatechin were oxidized by reaction with caffeoylquinic acid o-quinone in order to form oxidation products. All the fractions were evaluated for their inhibitory effect on PPO activity. Native procyanidins inhibited polyphenol oxidase activity, the inhibition intensity increasing with n. The polyphenol oxidase activity decreased by 50% for 0.026 g/L of the fraction of n 80, 0.17 g/L of the fraction of n 10.5, and 1 g/L of the fraction of n 4. The inhibitory effect of oxidized procyanidins was twice that of native procyanidins. Oxidation products of caffeoylquinic acid and (-)-epicatechin also inhibited polyphenol oxidase.

  19. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    PubMed Central

    Dobretsov, Sergey; Tamimi, Yahya; Al-Kindi, Mohamed A.; Burney, Ikram

    2016-01-01

    Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF)-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies. PMID:27226907

  20. The investigation of some bioactive compounds and antioxidant properties of hawthorn (Crataegus monogyna subsp. monogyna Jacq).

    PubMed

    Keser, Serhat; Celik, Sait; Turkoglu, Semra; Yilmaz, Ökkes; Turkoglu, Ismail

    2014-01-01

    The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin-Cioacalteu's reagent. The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by high-performance liquid chromatography in the hawthorn extract. It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed the highest activity in reducing power and metal chelating activity assays. In addition, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents.

  1. Sage in vitro cultures: a promising tool for the production of bioactive terpenes and phenolic substances.

    PubMed

    Marchev, Andrey; Haas, Christiane; Schulz, Sibylle; Georgiev, Vasil; Steingroewer, Juliane; Bley, Thomas; Pavlov, Atanas

    2014-02-01

    Extracts of Salvia species are used in traditional medicine to treat various diseases. The economic importance of this genus has increased in recent years due to evidence that some of its secondary metabolites have valuable pharmaceutical and nutraceutical properties.The bioactivity of sage extracts is mainly due to their content of terpenes and polyphenols. The increasing demand for sage products combined with environmental, ecological and climatic limitations on the production of sage metabolites from field-grown plants have led to extensive investigations into biotechnological approaches for the production of Salvia phytochemicals. The purpose of this review is to evaluate recent progress in investigations of sage in vitro systems as tools for producing important terpenoids and polyphenols and in development of methods for manipulating regulatory processes to enhance secondary metabolite production in such systems.

  2. Comparison of bioactive components in fresh, pressurized, pasteurized and sterilized pennywort (Centella asiatica L.) juices

    NASA Astrophysics Data System (ADS)

    Apichartsrangkoon, Arunee; Chattong, Utaiwan; Chunthanom, Pornprapa

    2012-06-01

    The biologically active constituents of pennywort juice were analyzed by HPLC. The juice extract contained the bioactive glycosides, including asiaticoside and madecassoside. Antioxidant properties of juices were determined in terms of ferric-reducing antioxidant power assay, total polyphenol, β-carotene and ascorbic acid contents. After processing, asiaticoside, madecassoside and β-carotene in the extracted juice were relatively stable with no significant losses occurring. Pressurization could significantly retain ascorbic acid, polyphenols and antioxidant capacity than those pasteurization or sterilization. For storage assessment, asiaticoside in the processed juices was relatively stable during 4 months storage. Losses of ascorbic acid in the pressurized juice during storage were greater than in pasteurized and sterilized juice. However, the total amount of ascorbic acid retained in pressurized juice was still higher than those thermal-treated products.

  3. Therapeutic potential of abalone and status of bioactive molecules: A comprehensive review.

    PubMed

    Suleria, H A R; Masci, P P; Gobe, G C; Osborne, S A

    2017-05-24

    Marine organisms are increasingly being investigated as sources of bioactive molecules with therapeutic applications as nutraceuticals and pharmaceuticals. In particular, nutraceuticals are gaining popularity worldwide owing to their therapeutic potential and incorporation in functional foods and dietary supplements. Abalone, a marine gastropod, contains a variety of bioactive compounds with anti-oxidant, anti-thrombotic, anti-inflammatory, anti-microbial, and anti-cancer activities. For thousands of years different cultures have used abalone as a traditional functional food believing consumption provides health benefits. Abalone meat is one of the most precious commodities in Asian markets where it is considered a culinary delicacy. Recent research has revealed that abalone is composed of many vital moieties like polysaccharides, proteins, and fatty acids that provide health benefits beyond basic nutrition. A review of past and present research is presented with relevance to the therapeutic potential of bioactive molecules from abalone.

  4. The "PepSAVI-MS" Pipeline for Natural Product Bioactive Peptide Discovery.

    PubMed

    Kirkpatrick, Christine L; Broberg, Christopher A; McCool, Elijah N; Lee, Woo Jean; Chao, Alex; McConnell, Evan W; Pritchard, David A; Hebert, Michael; Fleeman, Renee; Adams, Jessie; Jamil, Amer; Madera, Laurence; Strömstedt, Adam A; Göransson, Ulf; Liu, Yufeng; Hoskin, David W; Shaw, Lindsey N; Hicks, Leslie M

    2017-01-17

    The recent increase in extensively drug-resistant bacterial pathogens and the associated increase of morbidity and mortality demonstrate the immediate need for new antibiotic backbones with novel mechanisms of action. Here, we report the development of the PepSAVI-MS pipeline for bioactive peptide discovery. This highly versatile platform employs mass spectrometry and statistics to identify bioactive peptide targets from complex biological samples. We validate the use of this platform through the successful identification of known bioactive peptides from a botanical species, Viola odorata. Using this pipeline, we have widened the known antimicrobial spectrum for V. odorata cyclotides, including antibacterial activity of cycloviolacin O2 against A. baumannii. We further demonstrate the broad applicability of the platform through the identification of novel anticancer activities for cycloviolacins by their cytotoxicity against ovarian, breast, and prostate cancer cell lines.

  5. Elasto-regenerative properties of polyphenols.

    PubMed

    Sinha, Aditi; Nosoudi, Nasim; Vyavahare, Naren

    2014-02-07

    Abdominal aortic aneurysms (AAA) are progressive dilatations of infra-renal aorta causing structural weakening rendering the aorta prone to rupture. AAA can be potentially stabilized by inhibiting inflammatory enzymes such as matrix metalloproteinases (MMP); however, active regression of AAA is not possible without new elastic fiber regeneration. Here we report the elastogenic benefit of direct delivery of polyphenols such as pentagalloyl glucose (PGG), epigallocatechin gallate (EGCG), and catechin, to smooth muscle cells obtained either from healthy or from aneurysmal rat aorta. Addition of 10 μg/ml PGG and ECGC induce elastin synthesis, organization, and crosslinking while catechin does not. Our results indicate that polyphenols bind to monomeric tropoelastin and enhance coacervation, aid in crosslinking of elastin by increasing lysyl oxidase (LOX) synthesis, and by blocking MMP-2 activity. Thus, polyphenol treatments leads to increased mature elastin fibers synthesis without increasing the production of intracellular tropoelastin. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Pseudopyronine B: A Potent Antimicrobial and Anticancer Molecule Isolated from a Pseudomonas mosselii

    PubMed Central

    Nishanth Kumar, S.; Aravind, S. R.; Jacob, Jubi; Gopinath, Geethu; Lankalapalli, Ravi S.; Sreelekha, T.T.; Dileep Kumar, B.S.

    2016-01-01

    In continuation of our search for new bioactive compounds from soil microbes, a fluorescent Pseudomonas strain isolated from paddy field soil of Kuttanad, Kerala, India was screened for the production of bioactive secondary metabolites. This strain was identified as Pseudomonas mosselii through 16S rDNA gene sequencing followed by BLAST analysis and the bioactive metabolites produced were purified by column chromatography (silica gel) and a pure bioactive secondary metabolite was isolated. This bioactive compound was identified as Pseudopyronine B by NMR and HR-ESI-MS. Pseudopyronine B recorded significant antimicrobial activity especially against Gram-positive bacteria and agriculturally important fungi. MTT assay was used for finding cell proliferation inhibition, and Pseudopyronine B recorded significant antitumor activity against non-small cell lung cancer cell (A549), and mouse melanoma cell (B16F10). The preliminary MTT assay results revealed that Pseudopyronine B recorded both dose- and time-dependent inhibition of the growth of test cancer cell lines. Pseudopyronine B induced apoptotic cell death in cancer cells as evidenced by Acridine orange/ethidium bromide and Hoechst staining, and this was further confirmed by flow cytometry analysis using Annexin V. Cell cycle analysis also supports apoptosis by inducing G2/M accumulation in both A549 and B16F10 cells. Pseudopyronine B treated cells recorded significant up-regulation of caspase 3 activity. Moreover, this compound recorded immunomodulatory activity by enhancing the proliferation of lymphocytes. The production of Pseudopyronine B by P. mosselii and its anticancer activity in A549 and B16F10 cell lines is reported here for the first time. The present study has a substantial influence on the information of Pseudopyronine B from P. mosselii as potential sources of novel drug molecule for the pharmaceutical companies, especially as potent antimicrobial and anticancer agent. PMID:27617005

  7. A systematic determination of polyphenols constituents and cytotoxic ability in fruit parts of pomegranates derived from five Chinese cultivars.

    PubMed

    Li, Rui; Chen, Xiang Gui; Jia, Kun; Liu, Zhen Ping; Peng, Hai Yan

    2016-01-01

    Plant polyphenols derived from pomegranates are natural health-promoting components, and their bioactivities are well proved. However, the systematic studies of polyphenols constituents and cytotoxic ability in fruit parts of pomegranates derived from different Chinese cultivars have not been studied yet. In this report, a validated and sensitive HPLC-DAD method and fluorescence spectrophotometric method was established for quantitative analysis of four polyphenols and total phenolic content (TPC) in fruit parts of pomegranates (including peels, flesh, seeds, juices and leaves) derived from five Chinese cultivars, respectively. HPLC analysis was performed on the YMC ODS-A C18 column with gradient elution of MeOH and 0.1 % TFA. Four polyphenols including gallic acid, ellagic acid, punicalagin A&B and punicalin A&B exhibited satisfactory linearity in the concentration ranges of 20-320, 39-624, 74-1184 and 38-608 μg/mL, respectively. The results demonstrated that the amounts of TPC and four polyphenols in different fruit parts of pomegranates varied significantly. Peels of Sour-YRP possessed the highest content of punicalagin A&B (125.23 mg/g), whereas other three polyphenols exhibited only trace. Among the five Chinese cultivars, Sour-YRP contained the highest content of TPC (688.61 mg/g) and could be considered as the desirable botanical source to obtain polyphenols. It is also discovered that low-maturity pomegranate might possessed much higher TPC than high-maturity pomegranate. The optimized HPLC-DAD method could be used for quality control of different pomegranates by identification and quantification of its main polyphenolic components. Furthermore, the in vitro cytotoxicity of different pomegranates fruit parts to cancer cells was evaluated. We discovered that peels and flesh extract of Sour-YRP significantly inhibited the proliferation of HepG2 and Hela cancer cells lines. The results of this work are promising for further investigation and development

  8. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  9. Fungal metabolites with anticancer activity.

    PubMed

    Evidente, Antonio; Kornienko, Alexander; Cimmino, Alessio; Andolfi, Anna; Lefranc, Florence; Mathieu, Véronique; Kiss, Robert

    2014-05-01

    Covering: 1964 to 2013. Natural products from bacteria and plants have played a leading role in cancer drug discovery resulting in a large number of clinically useful agents. In contrast, the investigations of fungal metabolites and their derivatives have not led to a clinical cancer drug in spite of significant research efforts revealing a large number of fungi-derived natural products with promising anticancer activity. Many of these natural products have displayed notable in vitro growth-inhibitory properties in human cancer cell lines and select compounds have been demonstrated to provide therapeutic benefits in mouse models of human cancer. Many of these compounds are expected to enter human clinical trials in the near future. The present review discusses the reported sources, structures and biochemical studies aimed at the elucidation of the anticancer potential of these promising fungal metabolites.

  10. Anticancer Molecular Mechanisms of Resveratrol.

    PubMed

    Varoni, Elena M; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment.

  11. Synthesis and bioactivity of a side chain bridged paclitaxel: A test of the T-Taxol conformation.

    PubMed

    Hodge, Mathis; Chen, Qiao-Hong; Bane, Susan; Sharma, Shubhada; Loew, Maura; Banerjee, Abhijit; Alcaraz, Ana A; Snyder, James P; Kingston, David G I

    2009-05-15

    A knowledge of the bioactive tubulin-binding conformation of paclitaxel (Taxol()) is crucial to a full understanding of the bioactivity of this important anticancer drug, and potentially also to the design of simplified analogs. The bioactive conformation has been shown to be best approximated by the T-Taxol conformation. As a further test of this conclusion, the paclitaxel analog 4 was designed as a compound which has all the chemical functionality necessary for activity, but which cannot adopt the T-Taxol conformation. The synthesis and bioassay of 4 confirmed its lack of activity, and thus provided further support for the T-Taxol conformation as the bioactive tubulin-binding conformation.

  12. Cancer prevention by tocopherols and tea polyphenols.

    PubMed

    Yang, Chung S; Li, Guangxun; Yang, Zhihong; Guan, Fei; Chen, Amber; Ju, Jihyeung

    2013-06-28

    Tocopherols (vitamin E) and tea polyphenols have been reported to have cancer preventive activities. Large-scale human trials with high doses of alpha-tocopherol, however, have produced disappointing results. This review presents data showing that - and -tocopherols inhibit colon, lung, mammary and prostate carcinogenesis in animal models, whereas -tocopherol is ineffective in animal and human studies. Possible mechanisms of action are discussed. A broad cancer preventive activity of green tea polyphenols has been demonstrated in animal models, and many mechanisms have been proposed. The cancer preventive activity of green tea in humans, however, has not been conclusively demonstrated and remains to be further investigated.

  13. Effect of Polyphenol Oxidase on Deodorization.

    PubMed

    Negishi, O; Ozawa, T

    1997-01-01

    A mixture of purified polyphenol oxidases (PPO), or acetone powders prepared from fruits and vegetables, and polyphenolic compounds (PPs) totally eliminated a methylmercaptan odor. 2-Methyl-thiochlorogenic acid was isolated from the reaction mixture of methylmercaptan and chlorogenic acid with burdock acetone powder. Further, the formation of 5-methylthiochlorogenic acid and 2,5-bis(methylthio)-chlorogenic acid was suggested. These facts demonstrate that the o-quinone compounds formed from o-diphenols by PPO rapidly reacted with methylmercaptan. The oxidation reaction of PPs by using acetone powder containing PPO or peroxidase is considered to be more effective for removing bad smells from our mouths and from the environment.

  14. Cancer Prevention by Tocopherols and Tea Polyphenols

    PubMed Central

    Yang, Chung S.; Li, Guangxun; Yang, Zhihong; Guan, Fei; Chen, Amber; Ju, Jihyeung

    2013-01-01

    Tocopherols (vitamin E) and tea polyphenols have been reported to have cancer preventive activities. Large-scale human trials with high doses of alpha-tocopherol, however, have produced disappointing results. This review presents data showing that γ- and δ-tocopherols inhibit colon, lung, mammary and prostate carcinogenesis in animal models, whereas α-tocopherol is ineffective in animal and human studies. Possible mechanisms of action are discussed. A broad cancer preventive activity of green tea polyphenols has been demonstrated in animal models, and many mechanisms have been proposed. The cancer preventive activity of green tea in humans, however, has not been conclusively demonstrated and remains to be further investigated. PMID:23403075

  15. Proteomic Analysis of Anticancer TCMs Targeted at Mitochondria

    PubMed Central

    Wang, Yang; Yu, Ru-Yuan; He, Qing-Yu

    2015-01-01

    Traditional Chinese medicine (TCM) is a rich resource of anticancer drugs. Increasing bioactive natural compounds extracted from TCMs are known to exert significant antitumor effects, but the action mechanisms of TCMs are far from clear. Proteomics, a powerful platform to comprehensively profile drug-regulated proteins, has been widely applied to the mechanistic in