Sample records for polyphenolic compound present

  1. Use of Polyphenolic Compounds in Dermatologic Oncology

    PubMed Central

    Costa, Adilson; Bonner, Michael Yi

    2017-01-01

    Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology. PMID:27164914

  2. Encapsulation of Natural Polyphenolic Compounds; a Review

    PubMed Central

    Munin, Aude; Edwards-Lévy, Florence

    2011-01-01

    Natural polyphenols are valuable compounds possessing scavenging properties towards radical oxygen species, and complexing properties towards proteins. These abilities make polyphenols interesting for the treatment of various diseases like inflammation or cancer, but also for anti-ageing purposes in cosmetic formulations, or for nutraceutical applications. Unfortunately, these properties are also responsible for a lack in long-term stability, making these natural compounds very sensitive to light and heat. Moreover, polyphenols often present a poor biodisponibility mainly due to low water solubility. Lastly, many of these molecules possess a very astringent and bitter taste, which limits their use in food or in oral medications. To circumvent these drawbacks, delivery systems have been developed, and among them, encapsulation would appear to be a promising approach. Many encapsulation methods are described in the literature, among which some have been successfully applied to plant polyphenols. In this review, after a general presentation of the large chemical family of plant polyphenols and of their main chemical and biological properties, encapsulation processes applied to polyphenols are classified into physical, physico-chemical, chemical methods, and other connected stabilization methods. After a brief description of each encapsulation process, their applications to polyphenol encapsulation for pharmaceutical, food or cosmetological purposes are presented. PMID:24309309

  3. Polyphenols in Food: Cancer Prevention and Apoptosis Induction.

    PubMed

    Sharma, Ashita; Kaur, Mandeep; Katnoria, Jatinder Kaur; Nagpal, Avinash Kaur

    2017-10-06

    Polyphenols are group of water-soluble organic compounds, mainly of natural origin. The compounds having about 5-7 aromatic rings and more than 12 phenolic hydroxyl groups are classified as polyphenols. These are the antioxidants which protect the body from oxidative damage. In plants, they are the secondary metabolites produced as a defense mechanism against stress factors. Antioxidant property of polyphenols is suggested to provide protection against many diseases associated with reactive oxygen species (ROS), including cancer. Various studies carried out across the world have suggested that polyphenols can inhibit the tumor generation, induce apoptosis in cancer cells and interfere in progression of tumors. This group of wonder compounds is present in surplus in natural plants and food products. Intake of polyphenols through diet can scavenge ROS and thus can help in cancer prevention. The plant derived products can also be used along with conventional chemotherapy to enhance the chemopreventive effects. The present review focuses on various in vitro and in vivo studies carried out to assess the anti-carcinogenic potential of polyphenols present in our food. Also, the pathways involved in cancer chemopreventive effects of various subclasses (flavonoids, lignans, stilbenes and phenolic acids) of polyphenols are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Interactions of polyphenols with carbohydrates, lipids and proteins.

    PubMed

    Jakobek, Lidija

    2015-05-15

    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Production of plant-derived polyphenols in microorganisms: current state and perspectives.

    PubMed

    Milke, Lars; Aschenbrenner, Jennifer; Marienhagen, Jan; Kallscheuer, Nicolai

    2018-02-01

    Plants synthesize several thousand different polyphenols of which many have the potential to aid in preventing or treating cancer, cardiovascular, and neurodegenerative diseases. However, plants usually contain complex polyphenol mixtures impeding access to individual compounds in larger quantities. In contrast, functional integration of biosynthetic plant polyphenol pathways into microorganisms allows for the production of individual polyphenols as chemically distinct compounds, which can be synthesized in large amounts and can be more easily isolated. Over the last decade, microbial synthesis of many plant polyphenols could be achieved, and along the way, many decisive bottlenecks in the endogenous microbial host metabolism as well as in the heterologous plant pathways could be identified. In this review, we present recent advancements in metabolic engineering of microorganisms for the production of plant polyphenols and discuss how current challenges could be addressed in the future.

  6. [Polyphenolic composition of the leaf of bilberry].

    PubMed

    Fraisse, D; Carnat, A; Lamaison, J L

    1996-01-01

    Dried leaves of 14 harvested batches and one batch from commercial origine of Vaccinium myrtillus L present a similar polyphenolic pattern. The mean levels of the harvested batches and the levels of the commercial batch were respectively: total polyphenol compounds 12.98 and 10.62%, tannins 7.84 and 7.43%, total flavonoid compounds 2.98 and 2.20% (spectrophotometry), 1.41 and 1.16% (HPLC), quercetin 3-glucuronide 1.02 and 0.83%, hyperoside 0.22 and 0.16%, chlorogenic acid 3.66 and 1.58%. The levels were higher in young leaves and lower in old leaves. A specific chromatographic profile of the flavonoid compounds and a determination method of the tannin or the total polyphenol content were proposed in a standardization purpose.

  7. Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS.

    PubMed

    Borrás-Linares, Isabel; Herranz-López, María; Barrajón-Catalán, Enrique; Arráez-Román, David; González-Álvarez, Isabel; Bermejo, Marival; Fernández Gutiérrez, Alberto; Micol, Vicente; Segura-Carretero, Antonio

    2015-08-07

    Previous findings on the capacity of Hibiscus sabdariffa (HS) polyphenols to ameliorate metabolic disturbances justify the necessity of studies oriented to find the potential metabolites responsible for such an effect. The present study examined the intestinal epithelial membrane permeability of polyphenols present in a phenolic-enriched Hibiscus sabdariffa extract (PEHS), free and encapsulated, using the Caco-2 cell line. Additionally, selected polyphenols (quercetin, quercetin-3-glucoside, quercetin-3-glucuronide, and N-feruloyltyramine) were also studied in the same absorption model. The powerful analytical platform used ultra-high-performance liquid chromatography coupled with ultra-high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-ESI-UHR-Qq-TOF-MS), and enabled the characterization of seven new compounds in PEHS. In the permeation study, only a few compounds were able to cross the cell monolayer and the permeability was lower when the extract was in an encapsulated form. Pure compounds showed a moderate absorption in all cases. Nevertheless, these preliminary results may need further research to understand the complete absorption mechanism of Hibiscus polyphenols.

  8. Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS

    PubMed Central

    Borrás-Linares, Isabel; Herranz-López, María; Barrajón-Catalán, Enrique; Arráez-Román, David; González-Álvarez, Isabel; Bermejo, Marival; Gutiérrez, Alberto Fernández; Micol, Vicente; Segura-Carretero, Antonio

    2015-01-01

    Previous findings on the capacity of Hibiscus sabdariffa (HS) polyphenols to ameliorate metabolic disturbances justify the necessity of studies oriented to find the potential metabolites responsible for such an effect. The present study examined the intestinal epithelial membrane permeability of polyphenols present in a phenolic-enriched Hibiscus sabdariffa extract (PEHS), free and encapsulated, using the Caco-2 cell line. Additionally, selected polyphenols (quercetin, quercetin-3-glucoside, quercetin-3-glucuronide, and N-feruloyltyramine) were also studied in the same absorption model. The powerful analytical platform used ultra-high-performance liquid chromatography coupled with ultra-high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-ESI-UHR-Qq-TOF-MS), and enabled the characterization of seven new compounds in PEHS. In the permeation study, only a few compounds were able to cross the cell monolayer and the permeability was lower when the extract was in an encapsulated form. Pure compounds showed a moderate absorption in all cases. Nevertheless, these preliminary results may need further research to understand the complete absorption mechanism of Hibiscus polyphenols. PMID:26262611

  9. Characterisation and Antioxidant Activity of Crude Extract and Polyphenolic Rich Fractions from C. incanus Leaves

    PubMed Central

    Gori, Antonella; Ferrini, Francesco; Marzano, Maria Cristina; Tattini, Massimiliano; Centritto, Mauro; Baratto, Maria Camilla; Pogni, Rebecca; Brunetti, Cecilia

    2016-01-01

    Cistus incanus (Cistaceae) is a Mediterranean evergreen shrub. Cistus incanus herbal teas have been used as a general remedy in traditional medicine since ancient times. Recent studies on the antioxidant properties of its aqueous extracts have indicated polyphenols to be the most active compounds. However, a whole chemical characterisation of polyphenolic compounds in leaves of Cistus incanus (C. incanus) is still lacking. Moreover, limited data is available on the contribution of different polyphenolic compounds towards the total antioxidant capacity of its extracts. The purpose of this study was to characterise the major polyphenolic compounds present in a crude ethanolic leaf extract (CEE) of C. incanus and develop a method for their fractionation. Superoxide anion, hydroxyl and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assays were also performed to evaluate the antioxidant properties of the obtained fractions. Three different polyphenolic enriched extracts, namely EAC (Ethyl Acetate Fraction), AF1 and AF2 (Aqueos Fractions), were obtained from CEE. Our results indicated that the EAC, enriched in flavonols, exhibited a higher antiradical activity compared to the tannin enriched fractions (AF1 and AF2). These findings provide new perspectives for the use of the EAC as a source of antioxidant compounds with potential uses in pharmaceutical preparations. PMID:27548139

  10. Strategies for the extraction and analysis of non-extractable polyphenols from plants.

    PubMed

    Domínguez-Rodríguez, Gloria; Marina, María Luisa; Plaza, Merichel

    2017-09-08

    The majority of studies based on phenolic compounds from plants are focused on the extractable fraction derived from an aqueous or aqueous-organic extraction. However, an important fraction of polyphenols is ignored due to the fact that they remain retained in the residue of extraction. They are the so-called non-extractable polyphenols (NEPs) which are high molecular weight polymeric polyphenols or individual low molecular weight phenolics associated to macromolecules. The scarce information available about NEPs shows that these compounds possess interesting biological activities. That is why the interest about the study of these compounds has been increasing in the last years. Furthermore, the extraction and characterization of NEPs are considered a challenge because the developed analytical methodologies present some limitations. Thus, the present literature review summarizes current knowledge of NEPs and the different methodologies for the extraction of these compounds, with a particular focus on hydrolysis treatments. Besides, this review provides information on the most recent developments in the purification, separation, identification and quantification of NEPs from plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Wine Polyphenols: Potential Agents in Neuroprotection

    PubMed Central

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  12. Wine polyphenols: potential agents in neuroprotection.

    PubMed

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  13. Characterization of polyphenol effects on inhibition and promotion or iron update by caco-2 cells

    USDA-ARS?s Scientific Manuscript database

    Polyphenolic compounds present in the seed coat of the common bean are generally known to be inhibitors of iron bioavailability. Recent research identified specific polyphenols such as myricetin, quercetin, and their associated glucosides, as being potent inhibitors. Such research also identified p...

  14. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries

    PubMed Central

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-01-01

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs. PMID:28245627

  15. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries.

    PubMed

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-02-26

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs.

  16. Polyphenolic content, in vitro antioxidant activity and chemical composition of extract from Nephelium lappaceum L. (Mexican rambutan) husk.

    PubMed

    Hernández, Cristian; Ascacio-Valdés, Juan; De la Garza, Heliodoro; Wong-Paz, Jorge; Aguilar, Cristóbal Noé; Martínez-Ávila, Guillermo Cristian; Castro-López, Cecilia; Aguilera-Carbó, Antonio

    2017-12-01

    To determinate the recovery of total polyphenolic compounds content, in vitro antioxidant activity and HPLC/ESI/MS characterization of extract from Nephelium lappaceum L. (Mexican rambutan). The rambutan husk extract was obtained by aqueous extraction and a polyphenolic fraction was recovered using Amberlite XAD-16. The total polyphenolic compounds content was determined by the Folin Ciocalteu and butanol-HCI methods. In vitro antioxidant activity was performed using ABTS and ferric reducing antioxidant power methods. Mexican rambutan husk showed a total polyphenolic content of 582 mg/g and an evident antioxidant activity by ABTS and ferric reducing antioxidant power analysis. The HPLC/ESI/MS assay allowed the identification of 13 compounds, most of which belong to ellagitannins. Geraniin, corilagin and ellagic acid were present in the sample; the mineral composition was also evaluated. Rambutan husk cultivated in Mexico is a promising source for the recovery of added value bioactive compounds with antioxidant activity, which have potential applications as bioactive antioxidant agents for the treatment of diseases. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  17. Grapes (Vitis vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome.

    PubMed

    Akaberi, Maryam; Hosseinzadeh, Hosein

    2016-04-01

    Metabolic syndrome is associated with several disorders, including hypertension, diabetes, hyperlipidemia as well as cardiovascular diseases and stroke. Plant-derived polyphenols, compounds found in numerous plant species, play an important role as potential treatments for components of metabolic syndrome. Studies have provided evidence for protective effects of various polyphenol-rich foods against metabolic syndrome. Fruits, vegetables, cereals, nuts, and berries are rich in polyphenolic compounds. Grapes (Vitis vinifera), especially grape seeds, stand out as rich sources of polyphenol potent antioxidants and have been reported helpful for inhibiting the risk factors involved in the metabolic syndrome such as hyperlipidemia, hyperglycemia, and hypertension. There are also many studies about gastroprotective, hepatoprotective, and anti-obesity effects of grape polyphenolic compounds especially proanthocyanidins in the literature. The present study investigates the protective effects of grape seeds in metabolic syndrome. The results of this study show that grape polyphenols have significant effects on the level of blood glucose, lipid profile, blood pressure, as well as beneficial activities in liver and heart with various mechanisms. In addition, the pharmacokinetics of grape polyphenols is discussed. More detailed mechanistic investigations and phytochemical studies for finding the exact bioactive component(s) and molecular signaling pathways are suggested. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Different phenolic compounds activate distinct human bitter taste receptors.

    PubMed

    Soares, Susana; Kohl, Susann; Thalmann, Sophie; Mateus, Nuno; Meyerhof, Wolfgang; De Freitas, Victor

    2013-02-20

    Bitterness is a major sensory attribute of several common foods and beverages rich in polyphenol compounds. These compounds are reported as very important for health as chemopreventive compounds, but they are also known to taste bitter. In this work, the activation of the human bitter taste receptors, TAS2Rs, by six polyphenol compounds was analyzed. The compounds chosen are present in a wide range of plant-derived foods and beverages, namely, red wine, beer, tea, and chocolate. Pentagalloylglucose (PGG) is a hydrolyzable tannin, (-)-epicatechin is a precursor of condensed tannins, procyanidin dimer B3 and trimer C2 belong to the condensed tannins, and malvidin-3-glucoside and cyanidin-3-glucoside are anthocyanins. The results show that the different compounds activate different combinations of the ~25 TAS2Rs. (-)-Epicatechin activated three receptors, TAS2R4, TAS2R5, and TAS2R39, whereas only two receptors, TAS2R5 and TAS2R39, responded to PGG. In contrast, malvidin-3-glucoside and procyanidin trimer stimulated only one receptor, TAS2R7 and TAS2R5, respectively. Notably, tannins are the first natural agonists found for TAS2R5 that display high potency only toward this receptor. The catechol and/or galloyl groups appear to be important structural determinants that mediate the interaction of these polyphenolic compounds with TAS2R5. Overall, the EC(50) values obtained for the different compounds vary 100-fold, with the lowest values for PGG and malvidin-3-glucoside compounds, suggesting that they could be significant polyphenols responsible for the bitterness of fruits, vegetables, and derived products even if they are present in very low concentrations.

  19. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS.

    PubMed

    Kammerer, Dietmar; Claus, Achim; Carle, Reinhold; Schieber, Andreas

    2004-07-14

    Phenolic compounds of 14 pomace samples originating from red and white winemaking were characterized by HPLC-MS. Up to 13 anthocyanins, 11 hydroxybenzoic and hydroxycinnamic acids, and 13 catechins and flavonols as well as 2 stilbenes were identified and quantified in the skins and seeds by HPLC-DAD. Large variabilities comprising all individual phenolic compounds were observed, depending on cultivar and vintage. Grape skins proved to be rich sources of anthocyanins, hydroxycinnamic acids, flavanols, and flavonol glycosides, whereas flavanols were mainly present in the seeds. However, besides the lack of anthocyanins in white grape pomace, no principal differences between red and white grape varieties were observed. This is the first study presenting comprehensive data on the contents of individual phenolic compounds comprising all polyphenolic subclasses of grapes including a comparison of several red and white pomaces from nine cultivars. The results obtained in the present study confirm that both skins and seeds of most grape cultivars constitute a promising source of polyphenolics.

  20. Gut Microbiota Modulation and Anti-Inflammatory Properties of Dietary Polyphenols in IBD: New and Consolidated Perspectives.

    PubMed

    Santino, Angelo; Scarano, Aurelia; De Santis, Stefania; De Benedictis, Maria; Giovinazzo, Giovanna; Chieppa, Marcello

    2017-01-01

    Polyphenols represent a great variety of compounds occurring in fruits, vegetables and plant-derived products. Dietary polyphenols have been found displaying several biological properties, such as anti-inflammatory, antioxidant and anti-aging activities, cardiovascular and neuro-protection, and reduction of the risk of intestinal diseases. The bio-efficacy of polyphenols is tightly linked to their bioavailability, to structural complexity and composition of food matrix in which they are present. Since most of the polyphenols are naturally stored in food matrices as glycosylated and/or variously decorated forms, they need an intestinal bio-conversion in more absorbable forms. Recent findings are highlighting the polyphenols-gut microbiota interplay in the health benefits linked to these compounds. Furthermore, the prebiotic-like activities of polyphenols on microbiota and their potential use in preventive/therapeutic strategies for gastrointestinal disorders are recently emerging. In this review, we will focus on the dietary flavonols, anthocyanins and stilbenes, as widely occurring polyphenols in human diet, their metabolism mediated by gut microbiota and their protective effects on inflammatory bowel diseases (IBDs). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Effect of polyphenolic compounds on the growth and cellulolytic activity of a strain of Trichoderma viride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrieta-Escobar, A.; Belin, J.M.

    1982-04-01

    Polyphenolic compounds are often regarded as inhibitors of microorganism growth. However, polyphenolic compounds can also induce stimulating effects on the growth, respiration, fermentation and excretion of amino acids. Depending on the concentration of polyphenolic compounds in the medium, opposed effects (inhibition, stimulation) can be observed. The purpose of this article is to study the effects of condensed tannins and some monomers on the growth and cellulolytic activity of Trichoderma viride. (Refs. 30).

  2. Evaluation of polyphenols and anthocyanins contents in black chockeberry--Photinia melanocarpa (Michx.) fruits extract.

    PubMed

    Symonowicz, Marzena; Sykuła-Zajac, Anna; Łodyga-Chruścińska, Elzbieta; Rumora, Ivana; Straukas, Martinas

    2012-01-01

    An evaluation of total polyphenols and anthocyanins contents in dietary supplements is important analysis in medical aspect of human and animal diets. The content of the mentioned compounds should be higher in 100 g of solid extracts than in 100 g of fruits. Thus, the presented work concerns the evaluation of total polyphenols and anthocyanins contents in black chockeberry--Photinia melanocarpa (Michx.) extract--dietary supplement (DS) available on market. The spectrophotometric analysis of DS were performed. The usage of certain conditions of measurements such as dilution factor, storage conditions and filtration, has the significance in the determination of the analyzed compounds in the extract.

  3. Development of extraction method for characterization of free and bonded polyphenols in barley (Hordeum vulgare L.) grown in Czech Republic using liquid chromatography-tandem mass spectrometry.

    PubMed

    Arigò, Adriana; Česla, Petr; Šilarová, Petra; Calabrò, Maria Luisa; Česlová, Lenka

    2018-04-15

    Complete characterizations of free and bonded phenolic compounds, presented in four cultivars of barley from two regions of Czech Republic, were achieved, using optimized solvent extraction and liquid chromatography coupled with tandem mass spectrometry. The optimization of extraction of free polyphenols was performed using Box-Behnken design and response surface methodology. The intra-day and extra-day precision of developed method were below 6% and 12%, respectively. The isolation of polyphenols bonded to the cell wall structure was carried out by a hydrolysis process. In all cultivars, p-hydroxybenzoic, p-coumaric and ferulic acids were the most abundant compounds. Their average amounts in barley samples were 17.6, 15.2 and 54.4% (m/m), respectively. The highest amount of these compounds was found in the bonded form, proving the importance of this procedure for the correct characterization of total polyphenols in food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation of protective effect of different dietary fibers on polyphenolic profile stability of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion.

    PubMed

    Viuda-Martos, Manuel; Lucas-Gonzalez, Raquel; Ballester-Costa, Carmen; Pérez-Álvarez, José A; Muñoz, Loreto A; Fernández-López, Juana

    2018-01-24

    The aim of this work was to determine the protective effect of different dietary fibers on (i) the recovery and bioaccessibility indexes, and (ii) the stability of polyphenolic compounds (phenolic acids, flavonoids and anthocyanins) of maqui berry powder subjected to in vitro gastrointestinal digestion (GID). The extracts obtained in each phase (oral, gastric and intestinal) of GID were used to analyze the stability of polyphenolic compounds by HPLC, and the bioaccessibility of these compounds was also determined. At the end of the GID process, the mixture of maqui berry with the different fibers increased the bioaccessibility index of the phenolic and flavonoid compounds in all cases. The results obtained suggest that the anthocyanins and phenolic acids and flavonoid compounds present in maqui are stabilized through dietary fiber interactions, which might provide sufficient levels for absorption during gastrointestinal digestion. The gums sodium carboxymethyl cellulose, xanthan gum and guar gum provided the best protective effect.

  5. Plant-derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity induced by tert-butylhydroperoxide via an iron-chelating mechanism.

    PubMed Central

    Sestili, Piero; Diamantini, Giuseppe; Bedini, Annalida; Cerioni, Liana; Tommasini, Ilaria; Tarzia, Giorgio; Cantoni, Orazio

    2002-01-01

    The protective effects of selected members from a series of caffeic acid esters and flavonoids were tested in various toxicity paradigms using U937 cells, previously shown to be sensitive to either iron chelators or bona fide radical scavengers or to both classes of compounds. It was found that all the protective polyphenols were active at very low concentrations and that their effects were observed only under those conditions in which iron chelators also afforded protection. Consistently, active polyphenolic compounds, unlike the inactive ones, effectively chelated iron in an in vitro system. It follows that, at least under the experimental conditions utilized in the present study, the most prominent activity of these polyphenolic compounds resides in their ability to chelate iron. Further studies revealed that the protective effects afforded by the caffeic acid esters and flavonoids were largely mediated by the catechol moiety and that the relative biological potency of these compounds was a direct function of their lipophilicity. PMID:11988084

  6. Anti-cancer Effects of Polyphenolic Compounds in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor-resistant Non-small Cell Lung Cancer

    PubMed Central

    Jeong, Hyungmin; Phan, Ai N. H.; Choi, Jong-Whan

    2017-01-01

    Background: Polyphenolic phytochemicals are natural compounds, easily found in fruits and vegetables. Importantly, polyphenols have been intensively studied as excellent antioxidant activity which contributes to anticancer function of the natural compounds. Lung cancer has been reported to mainly account for cancer-related deaths in the world. Moreover, epidermal growth factor receptor tyrosine kinase inhibitor (TKI) resistance is one of the biggest issues in cancer treatment, especially in nonsmall cell lung cancer (NSCLC). Even though several studies both in preclinical and clinical trials have showed promising therapeutic effects of polyphenolic compounds in anticancer therapy, the function of the natural compounds in TKI-resistant (TKIR) lung cancer remains poorly studied. Objective: The aim of this study is to screen polyphenolic compounds as potential anticancer adjuvants which suppress TKIR lung cancer. Materials and Methods: Colony formation and thiazolyl blue tetrazolium blue assay were performed in the pair-matched TKI-sensitive (TKIS) versus TKIR tumor cell lines to investigate the therapeutic effect of polyphenolic compounds in TKIR NSCLC. Results: Our data show that equol, kaempferol, resveratrol, and ellagic acid exhibit strong anticancer effect in HCC827 panel. Moreover, the inhibitory effect of most of tested polyphenolic compounds was highly selective for TKIR lung cancer cell line H1993 while sparing the TKIS one H2073. Conclusion: This study provides an important screening of potential polyphenolic compounds for drug development to overcome TKI resistance in advanced lung cancer. SUMMARY The study provides an important screening of potential polyphenolic compounds for drug development to overcome tyrosine kinase inhibitor (TKI) resistance in advance lung cancerEquol, kaempferol, resveratrol, and ellagic acid show strong anticancer effect in HCC827 panel, including TKI-sensitive (TKIS) and TKI-resistant clonesThe inhibitory effect of polyphenolic compounds such as equol, kaempferol, resveratrol, ellagic acid, gallic acid, p-Coumaric, and hesperidin is highly selective for TKI-resistant lung cancer cell line H1993 while sparing the TKIS one H2073. Abbreviations used: EGFR: Epidermal growth factor receptor, EMT: Epithelial-to-mesenchymal transition, GTP: Green tea polyphenols, IGF1R: Insulin-like growth factor 1 receptor, MET: Met proto-oncogene, MTT: Thiazolyl blue tetrazolium blue, NSCLC: Non-small cell lung cancer, ROS: Reactive oxygen species, RTK: Receptor tyrosine kinase, STAT3: Signal transducer and activator of transcription 3, TKIR: TKI-resistant, TKIs: Tyrosine kinase inhibitors, TKIS: TKI-sensitive. PMID:29200719

  7. Polyphenols benefits of olive leaf (Olea europaea L) to human health.

    PubMed

    Vogel, Patrícia; Kasper Machado, Isabel; Garavaglia, Juliano; Zani, Valdeni Terezinha; de Souza, Daiana; Morelo Dal Bosco, Simone

    2014-12-17

    The phenolic compounds present in olive leaves (Olea europaea L.) confer benefits to the human health. To review the scientific literature about the benefits of the polyphenols of olive leaves to human health. Literature review in the LILACS-BIREME, SciELO and MEDLINE databases for publications in English, Portuguese and Spanish with the descriptors "Olea europaea", "olive leaves", "olive leaf", "olive leaves extracts", "olive leaf extracts", "phenolic compounds", "polyphenols", "oleuropein", "chemical composition", and "health". There were identified 92 articles, but only 38 related to the objectives of the study and 9 articles cited in the works were included due to their relevance. The phenolic compounds present in olive leaves, especially the oleuropein, are associated to antioxidant, antihypertensive, hypoglycemic, hypocholesterolemic and cardioprotective activity. Furthermore, studies associate the oleuropein to an anti-inflammatory effect in trauma of the bone marrow and as a support in the treatment of obesity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  8. Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.) cultivars grown under organic and conventional conditions.

    PubMed

    Anton, Dea; Matt, Darja; Pedastsaar, Priit; Bender, Ingrid; Kazimierczak, Renata; Roasto, Mati; Kaart, Tanel; Luik, Anne; Püssa, Tõnu

    2014-06-04

    In the present study, four tomato cultivars were grown under organic and conventional conditions in separate unheated greenhouses in three consecutive years. The objective was to assess the influence of the cultivation system on the content of individual polyphenols, total phenolics, and antioxidant capacity of tomatoes. The fruits were analyzed for total phenolic content by the Folin-Ciocalteau method and antioxidant capacity by the DPPH free radical scavenging assay. Individual phenolic compounds were analyzed using HPLC-DAD-MS/MS. Among 30 identified and quantified polyphenols, significantly higher contents of apigenin acetylhexoside, caffeic acid hexoside I, and phloretin dihexoside were found in all organic samples. The content of polyphenols was more dependent on year and cultivar than on cultivation conditions. Generally, the cultivation system had minor impact on polyphenols content, and only a few compounds were influenced by the mode of cultivation in all tested cultivars during all three years.

  9. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage.

    PubMed

    Perron, Nathan R; García, Carla R; Pinzón, Julio R; Chaur, Manuel N; Brumaghim, Julia L

    2011-05-01

    Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: a review.

    PubMed

    Oracz, Joanna; Zyzelewicz, Dorota; Nebesny, Ewa

    2015-01-01

    Polyphenols form the largest group of compounds among natural antioxidants, which largely affect the overall antioxidant and anti-free radical activity of cocoa beans. The qualitative and quantitative composition of individual fractions of polyphenolic compounds, even within one species, is very diverse and depends on many factors, mainly on the area of cocoa trees cultivation, bean maturity, climatic conditions during growth, and the harvest season and storage time after harvest. Thermal processing of cocoa beans and cocoa derivative products at relatively high temperatures may in addition to favorable physicochemical, microbiological, and organoleptic changes result in a decrease of polyphenols concentration. Technological processing of cocoa beans negatively affects the content of polyphenolic compounds.

  11. Use of Moessbauer spectroscopy to study reaction products of polyphenols and iron compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gust, J.; Suwalski, J.

    1994-05-01

    Moessbauer spectroscopy was used to study parameters of the reaction products of iron compounds (Fe[sup III]) and polyphenols with hydroxyl (OH) groups in ortho positions. Polyphenols used in the reaction were catechol, pyrogallol, gallic acid, and oak tannin. The Fe-containing compounds were hydrated ferric sulfate (Fe[sub 2][SO[sub 4

  12. Differential protective effects of red wine polyphenol extracts (RWEs) on colon carcinogenesis.

    PubMed

    Mazué, Frédéric; Delmas, Dominique; Murillo, Genoveva; Saleiro, Diana; Limagne, Emeric; Latruffe, Norbert

    2014-04-01

    Various epidemiological studies have shown that a regular and moderate consumption of red wine is correlated with a decreased relative risk of developing coronary heart disease and cancer. These health benefits are commonly attributed to high contents of polyphenols, particularly resveratrol, representing important sources of antioxidants. However, resveratrol does not seem to be the only bioactive compound present in the wine which contains numerous other polyphenols. The present study investigates the efficiency of red wine extracts (RWEs), containing different polyphenols, on colon cancer cell proliferation in vitro and on colonic aberrant crypt foci (ACF) in vivo. Proliferation, cell cycle analysis and incidence of ACF were monitored to examine the effects of RWEs. RWEs derived from a long vinification process exhibit superior anti-proliferative activity in colon cancer cells and prevent the appearance of ACF in mice. Interestingly, quercetin and resveratrol, representing two major bio-active polyphenols, exhibit synergistic anti-proliferative effects. These data suggest that the efficacy of RWEs on colon carcinogenesis may depend on the polyphenolic content, synergistic interaction of bio-active polyphenols and modulation of cellular uptake of polyphenols.

  13. Physical and antibacterial properties of edible films formulated with apple skin polyphenols.

    PubMed

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; Friedman, M; McHugh, T H

    2011-03-01

    Fruit and vegetable skins have polyphenolic compounds, terpenes, and phenols with antimicrobial and antioxidant activity. These flavoring plant essential oil components are generally regarded as safe. Edible films made from fruits or vegetables containing apple skin polyphenols have the potential to be used commercially to protect food against contamination by pathogenic bacteria. The main objective of this study was to evaluate physical properties as well as antimicrobial activities against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica of apple skin polyphenols at 0% to 10% (w/w) concentrations in apple puree film-forming solutions formulated into edible films. Commercial apple skin polyphenol powder had a water activity of 0.44 and high total soluble phenolic compounds and antioxidant capacity (995.3 mg chlorogenic acid/100 g and 14.4 mg Trolox/g, respectively). Antimicrobial activities of edible film containing apple skin polyphenols were determined by the overlay method. Apple edible film with apple skin polyphenols was highly effective against L. monocytogenes. The minimum concentration need to inactive L. monocytogenes was 1.5%. However, apple skin polyphenols did not show any antimicrobial effect against E. coli O157:H7 and S. enterica even at 10% level. The presence of apple skin polyphenols reduced water vapor permeability of films. Apple skin polyphenols increased elongation of films and darkened the color of films. The results of the present study show that apple skin polyphenols can be used to prepare apple-based antimicrobial edible films with good physical properties for food applications by direct contact.

  14. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  15. Content of polyphenol compound in mangrove and macroalga extracts

    NASA Astrophysics Data System (ADS)

    Takarina, N. D.; Patria, M. P.

    2017-07-01

    Polyphenol or phenolic are compounds containing one or more hydroxyl group of the aromatic ring [1]. These compounds have some activities like antibacterial, antiseptic, and antioxidants. Natural resources like mangrove and macroalga were known containing these compounds. The purpose of the research was to investigate polyphenol content in mangrove and macroalga. Materials used in this research were mangrove (Avicennia sp.) leaves and the whole part of macroalga (Caulerpa racemosa). Samples were dried for 5 days then macerated in order to get an extract. Maceration were done using methanol for 48 hours (first) and 24 hours (second) continously. Polyphenol content was determined using phytochemical screening on both extracts. The quantitative test was carried out to determine catechin and tannin as polyphenol compound. The result showed that catechin was observed in both extracts while tannin in mangrove extract only. According to quantitative test, mangrove has a higher content of catechin and tannin which were 12.37-13.44 % compared to macroalga which was 2.57-4.58 %. Those indicated that both materials can be the source of polyphenol compound with higher content on mangrove. Moreover, according to this result, these resources can be utilized for advanced studies and human needs like medical drug.

  16. Valorization of Olive Mill Wastewater by Membrane Processes to Recover Natural Antioxidant Compounds for Cosmeceutical and Nutraceutical Applications or Functional Foods.

    PubMed

    Alfano, Alberto; Corsuto, Luisana; Finamore, Rosario; Savarese, Maria; Ferrara, Filomena; Falco, Salvatore; Santabarbara, Giuseppe; De Rosa, Mario; Schiraldi, Chiara

    2018-05-23

    Olive oil boasts numerous health benefits due to the high content of the monounsaturated fatty acid (MUFA) and functional bioactives including tocopherols, carotenoids, phospholipids, and polyphenolics with multiple biological activities. Polyphenolic components present antioxidant properties by scavenging free radicals and eliminating metabolic byproducts of metabolism. The objective of this research project was to recover the biologically active components rich in polyphenols, which include treatment of olive oil mills wastewater, and, at the same time, to remove the pollutant waste component resulting from the olive oil manufacturing processes. With specific focus on using technologies based on the application of ultra and nanofiltration membranes, the polyphenols fraction was extracted after an initial flocculation step. The nano-filtration permeate showed a reduction of about 95% of the organic load. The polyphenols recovery after two filtration steps was about 65% w / v . The nanofiltration retentate, dried using the spray dryer technique, was tested for cell viability after oxidative stress induction on human keratinocytes model in vitro and an improved cell reparation in the presence of this polyphenolic compound was demonstrated in scratch assays assisted through time lapse video-microscopy. The polyphenols recovered from these treatments may be suitable ingredients in cosmeceuticals and possibly nutraceutical preparations or functional foods.

  17. Bioactive constituents in pulses and their health benefits.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Shevkani, Khetan; Singh, Narpinder; Kaur, Amritpal

    2017-03-01

    Pulses are good sources of bioactive compounds such as polyphenols, phytosterols and non-digestible carbohydrates that play important physiological as well as metabolic roles. These compounds vary in concentration amongst different pulse species and varieties. Pulse seed coats are rich in water-insoluble fibres and polyphenols (having high antioxidant activities), while cotyledons contain higher soluble fibres, oligosaccharides, slowly digestible and resistant starch content. Ferulic acid is the most abundant phenolic acid present in pulses, while flavonol glycosides, anthocyanins and tannins are responsible for the seed coat colour. Sitosterol (most abundant), stigmasterol, and campesterol are the major phytosterols present in pulses. Pulse fibres, resistant starch and oligosaccharides function as probiotics and possess several other health benefits such as anti-inflammatory, anti-tumour, and reduce glucose as well as lipid levels. Beans and peas contain higher amounts of oligosaccharides than other pulses. Processing methods affect resistant starch, polyphenol composition and generally increase antioxidant activities of different pulses. In this review, the current information on pulse polyphenols, phytosterols, resistant starch, dietary fibre, oligosaccharides, antioxidant and associated health benefits are discussed.

  18. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice.

    PubMed

    Stalmach, Angelique; Edwards, Christine A; Wightman, Jolynne D; Crozier, Alan

    2013-01-01

    After acute ingestion of 350 ml of Concord grape juice, containing 528 μmol of (poly)phenolic compounds, by healthy volunteers, a wide array of phase I and II metabolites were detected in the circulation and excreted in urine. Ingestion of the juice by ileostomists resulted in 40% of compounds being recovered intact in ileal effluent. The current study investigated the fate of these undigested (poly)phenolic compounds on reaching the colon. This was achieved through incubation of the juice using an in vitro model of colonic fermentation and through quantification of catabolites produced after colonic degradation and their subsequent absorption prior to urinary excretion by healthy subjects and ileostomy volunteers. A total of 16 aromatic and phenolic compounds derived from colonic metabolism of Concord grape juice (poly)phenolic compounds were identified by GC-MS in the faecal incubation samples. Thirteen urinary phenolic acids and aromatic compounds were excreted in significantly increased amounts after intake of the juice by healthy volunteers, whereas only two of these compounds were excreted in elevated amounts by ileostomists. The production of phenolic acids and aromatic compounds by colonic catabolism contributed to the bioavailability of Concord grape (poly)phenolic compounds to a much greater extent than phase I and II metabolites originating from absorption in the upper gastrointestinal tract. Catabolic pathways are proposed, highlighting the impact of colonic microbiota and subsequent phase II metabolism prior to excretion of phenolic compounds derived from (poly)phenolic compounds in Concord grape juice, which pass from the small to the large intestine.

  19. Cocoa Flavonoid-Enriched Diet Modulates Systemic and Intestinal Immunoglobulin Synthesis in Adult Lewis Rats

    PubMed Central

    Massot-Cladera, Malen; Franch, Àngels; Castellote, Cristina; Castell, Margarida; Pérez-Cano, Francisco J.

    2013-01-01

    Previous studies have reported that a diet containing 10% cocoa, a rich source of flavonoids, has immunomodulatory effects on rats and, among others effects, is able to attenuate the immunoglobulin (Ig) synthesis in both systemic and intestinal compartments. The purpose of the present study was focused on investigating whether these effects were attributed exclusively to the flavonoid content or to other compounds present in cocoa. To this end, eight-week-old Lewis rats were fed, for two weeks, either a standard diet or three isoenergetic diets containing increasing proportions of cocoa flavonoids from different sources: one with 0.2% polyphenols from conventional defatted cocoa, and two others with 0.4% and 0.8% polyphenols, respectively, from non-fermented cocoa. Diet intake and body weight were monitored and fecal samples were obtained throughout the study to determine fecal pH, IgA, bacteria proportions, and IgA-coated bacteria. Moreover, IgG and IgM concentrations in serum samples collected during the study were quantified. At the end of the dietary intervention no clear changes of serum IgG or IgM concentrations were quantified, showing few effects of cocoa polyphenol diets at the systemic level. However, in the intestine, all cocoa polyphenol-enriched diets attenuated the age-related increase of both fecal IgA and IgA-coated bacteria, as well as the proportion of bacteria in feces. As these effects were not dependent on the dose of polyphenol present in the diets, other compounds and/or the precise polyphenol composition present in cocoa raw material used for the diets could be key factors in this effect. PMID:23966108

  20. Study of the Effect of Surfactants on Extraction and Determination of Polyphenolic Compounds and Antioxidant Capacity of Fruits Extracts

    PubMed Central

    Hosseinzadeh, Reza; Khorsandi, Khatereh; Hemmaty, Syavash

    2013-01-01

    Micelle/water mixed solutions of different surface active agents were studied for their effectiveness in the extraction of polyphenolic compounds from various varieties of apples from west Azerbaijan province in Iran. The total content of polyphenolic compound in fruit extracts were determined using ferrous tartrate and Folin–Ciocalteu assays methods and chromatographic methods and compared with theme. High performance liquid chromatography is one of the most common and important methods in biochemical compound identification. The effect of pH, ionic strength, surfactant type, surfactant concentration, extraction time and common organic solvent in the apple polyphenolics extractions was studied using HPLC-DAD. Mixtures of surfactants, water and methanol at various ratios were examined and micellar-water solutions of Brij surfactant showed the highest polyphenol extraction efficiency. Optimum conditions for the extraction of polyphenolic compounds from apple occurred at 7 mM Brij35, pH 3. Effect of ionic strength on extraction was determined and 2% (W/V) potassium Chloride was determined to be the optimum salt concentration. The procedure worked well with an ultrasound bath. Total antioxidant capacity also was determined in this study. The method can be safely scaled up for pharmaceutical applications. PMID:23472082

  1. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake.

    PubMed

    Bouayed, Jaouad; Hoffmann, Lucien; Bohn, Torsten

    2011-09-01

    In the present study, an in vitro model simulating gastrointestinal (GI) digestion, including dialysability, was adapted to assess free soluble polyphenols from apples (four varieties). Results indicated that polyphenol release was mainly achieved during the gastric phase (ca. 65% of phenolics and flavonoids), with a slight further release (<10%) during intestinal digestion. Anthocyanins present after the gastric phase (1.04-1.14mg/100g) were not detectable following intestinal digestion. Dialysis experiments employing a semipermeable cellulose membrane, presenting a simplified model of the epithelial barrier, showed that free soluble dialysable polyphenols and flavonoids were 55% and 44% of native concentrations, respectively, being approximately 20% and 30% lower than that of the GI digesta. Similar results were found for the antioxidant capacity of dialysable antioxidants, being 57% and 46% lower compared to total antioxidants in fresh apples (FRAP and ABTS test, respectively). It is suggested that some polyphenols are bound to macromolecular compounds that are non-dialysable, that the presented method allowed the study of free soluble polyphenols available for further uptake, and that both chemical extraction and concentrations in final digesta would overestimate polyphenol availability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography.

    PubMed

    Yanagida, Akio; Shoji, Atsushi; Shibusawa, Yoichi; Shindo, Heisaburo; Tagashira, Motoyuki; Ikeda, Mitsuo; Ito, Yoichiro

    2006-04-21

    High-speed counter-current chromatography (HSCCC) using the type-J coil planet centrifuge was applied to compositional analysis of tea catechins and separation of other food-related polyphenols. The HSCCC separation of nine different standard compounds and those from extracts of commercial tea leaves was performed with a two-phase solvent system composed of tert-butyl methyl ether-acetonitrile-0.1% aqueous trifluoroacetic acid (TFA) (2:2:3, v/v/v) by eluting the upper organic phase at a flow rate of 2 ml/min. The main compounds in the extract of non-fermented green tea were found to be monomeric catechins, their galloylated esters and caffeine. In addition to these compounds, oxidized pigments, such as hydrophobic theaflavins (TFs) and polar thearubigins (TRs) were also separated and detected from the extracts of semi-fermented oolong tea and fermented black tea. Furthermore, several food-related polyphenols, such as condensed catechin oligomers (procyanidins), phenolic acids and flavonol glycosides were clearly separated under the same HSCCC condition. These separation profiles of HSCCC provide useful information about the hydrophobic diversity of these bioactive polyphenols present in various types of teas and food products.

  3. Development and Validation of a Simultaneous RP-HPLCUV/DAD Method for Determination of Polyphenols in Gels Containing S. terebinthifolius Raddi (Anacardiaceae)

    PubMed Central

    Carvalho, Melina G.; Aragão, Cícero F. S; Raffin, Fernanda N.; de L. Moura, Túlio F. A.

    2017-01-01

    Topical gels containing extracts of Schinus terebinthifolius have been used to treat bacterial vaginosis. It has been reported that this species has antimicrobial, anti-inflammatory and anti-ulcerogenic properties, which can be attributed to the presence of phenolic compounds. In this work, a sensitive and selective reversed-phase HPLC-UV/DAD method for the simultaneous assay of six polyphenols that could be present in S. terebinthifolius was developed. The method was shown to be accurate and precise. Peak purity and similarity index both exceeded 0.99. Calibration curves were linear over the concentration range studied, with correlation coefficients between 0.9931 and 0.9974. This method was used to determine the polyphenol content of a hydroalcoholic extract and pharmacy-compounded vaginal gel. Although the method is useful to assess the 6 phenolic compounds, some compounds could not be detected in the products. SUMMARY A sensitive, selective, accurate and precise reversed-phase HPLC-UV/DAD method for the simultaneous assay of six polyphenols in S. terebinthifolius Raddi Abbreviations used: RP-HPLC-UV/DAD: Reverse Phase High Performance Liquid Chromatograph with Ultraviolet and Diode Array Detector, HPLC: High Performance Liquid Chromatograph, HPLC-UV: High Performance Liquid Chromatograph with Ultraviolet Detector, ANVISA: Brazilian National Health Surveillance Agency, LOD: Limit of detection, LOQ: Limit of quantitation PMID:28539726

  4. High throughput virtual screening and in silico ADMET analysis for rapid and efficient identification of potential PAP248-286 aggregation inhibitors as anti-HIV agents

    NASA Astrophysics Data System (ADS)

    Malik, Ruchi; Bunkar, Devendra; Choudhary, Bhanwar Singh; Srivastava, Shubham; Mehta, Pakhuri; Sharma, Manish

    2016-10-01

    Human semen is principal vehicle for transmission of HIV-1 and other enveloped viruses. Several endogenous peptides present in semen, including a 39-amino acid fragments of prostatic acid phosphatase (PAP248-286) assemble into amyloid fibrils named as semen-derived enhancer of viral infection (SEVI) that promote virion attachment to target cells which dramatically enhance HIV virus infection by up to 105-fold. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound, is the major catechin found in green tea which disaggregates existing SEVI fibers, and inhibits the formation of SEVI fibers. The aim of this study was to screen a number of relevant polyphenols to develop a rational approach for designing PAP248-286 aggregation inhibitors as potential anti-HIV agents. The molecular docking based virtual screening results showed that polyphenolic compounds 2-6 possessed good docking score and interacted well with the active site residues of PAP248-286. Amino acid residues of binding site namely; Lys255, Ser256, Leu258 and Asn265 are involved in binding of these compounds. In silico ADMET prediction studies on these hits were also found to be promising. Polyphenolic compounds 2-6 identified as hits may act as novel leads for inhibiting aggregation of PAP248-286 into SEVI.

  5. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans

    PubMed Central

    Wilson, Mark A; Shukitt-Hale, Barbara; Kalt, Wilhelmina; Ingram, Donald K; Joseph, James A; Wolkow, Catherine A

    2006-01-01

    Summary The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols on lifespan and aging of the nematode, Caenorhabditis elegans, a useful organism for such a study. We report that a complex mixture of blue-berry polyphenols increased lifespan and slowed aging-related declines in C. elegans. We also found that these benefits did not just reflect antioxidant activity in these compounds. For instance, blueberry treatment increased survival during acute heat stress, but was not protective against acute oxidative stress. The blueberry extract consists of three major fractions that all contain antioxidant activity. However, only one fraction, enriched in proanthocyanidin compounds, increased C. elegans lifespan and thermotolerance. To further determine how polyphenols prolonged C. elegans lifespan, we analyzed the genetic requirements for these effects. Prolonged lifespan from this treatment required the presence of a CaMKII pathway that mediates osmotic stress resistance, though not other pathways that affect stress resistance and longevity. In conclusion, polyphenolic compounds in blueberries had robust and reproducible benefits during aging that were separable from antioxidant effects. PMID:16441844

  6. Enhanced NMR-based profiling of polyphenols in commercially available grape juices using solid-phase extraction.

    PubMed

    Savage, Angela K; van Duynhoven, John P M; Tucker, Gregory; Daykin, Clare A

    2011-12-01

    Grapes and related products, such as juices, and in particular, their polyphenols, have previously been associated with many health benefits, such as protection against cardiovascular disease. Within grapes, a large range of structurally diverse polyphenols can be present, and their characterisation stands as a challenge. (1)H NMR spectroscopy in principle would provide a rapid, nondestructive and straightforward method for profiling of polyphenols. However, polyphenol profiling and identification in grape juices is hindered because of signals of prevailing carbohydrates causing spectral overlap and compromising dynamic range. This study describes the development of an extraction method prior to analysis using (1)H NMR spectroscopy, which can, potentially, significantly increase the number of detectable polyphenols and aid their identification, by reduction of signal overlap and selective removal of heavily dominating compounds such as sugars. Copyright © 2012 John Wiley & Sons, Ltd.

  7. A Survey of Modulation of Gut Microbiota by Dietary Polyphenols

    PubMed Central

    Dueñas, Montserrat; Muñoz-González, Irene; Cueva, Carolina; Jiménez-Girón, Ana; Sánchez-Patán, Fernando; Santos-Buelga, Celestino; Moreno-Arribas, M. Victoria; Bartolomé, Begoña

    2015-01-01

    Dietary polyphenols present in a broad range of plant foods have been related to beneficial health effects. This review aims to update the current information about the modulation of the gut microbiota by dietary phenolic compounds, from a perspective based on the experimental approaches used. After referring to general aspects of gut microbiota and dietary polyphenols, studies related to this topic are presented according to their experimental design: batch culture fermentations, gastrointestinal simulators, animal model studies, and human intervention studies. In general, studies evidence that dietary polyphenols may contribute to the maintenance of intestinal health by preserving the gut microbial balance through the stimulation of the growth of beneficial bacteria (i.e., lactobacilli and bifidobacteria) and the inhibition of pathogenic bacteria, exerting prebiotic-like effects. Combination of in vitro and in vivo models could help to understand the underlying mechanisms in the polyphenols-microbiota-host triangle and elucidate the implications of polyphenols on human health. From a technological point of view, supplementation with rich-polyphenolic stuffs (phenolic extracts, phenolic-enriched fractions, etc.) could be an effective option to improve health benefits of functional foods such as the case of dairy fermented foods. PMID:25793210

  8. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    PubMed

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  9. Natural Polyphenol Disposition via Coupled Metabolic Pathways

    PubMed Central

    Liu, Zhongqiu; Hu, Ming

    2009-01-01

    A major challenge associated with the development of chemopreventive polyphenols is the lack of bioavailability in vivo, which are primarily the result of coupled metabolic activities of conjugating enzymes and efflux transporters. These coupling processes are present in most of tissues and organs in mammals and are efficient for the purposes of drug metabolism, elimination and detoxification. Therefore, it was expected that these coupling processes represent a significant barrier to the oral bioavailabilities of polyphenols. In various studies of this coupling process, it was identified that various conjugating enzymes such as UGT and SULT are capable of producing very hydrophilic metabolites of polyphenols, which cannot diffuse out of the cells and needs the action of efflux transporters to pump them out of the cells. Additional studies have shown that efflux transporters such as MRP2, BCRP and OAT appear to serve as the gate keeper when there is an excess capacity to metabolize the compounds. These efflux transporters may also act as the facilitator of metabolism when there is a product/metabolite inhibition. For polyphenols, these coupled processes enable a duo recycling scheme of enteric and enterohepatic recycling, which allows the polyphenols to be reabsorbed and results in longer than expected apparent plasma half-lives for these compounds and their conjugates. Since the vast majority of polyphenols in plasma are hydrophilic conjugates, more research is needed to determine if the metabolites are active or reactive, which will help explain their mechanism of actions. PMID:17539746

  10. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2005-07-13

    Wine aging on yeast lees is a traditional enological practice used during the manufacture of wines. This technique has increased in popularity in recent years for the aging of red wines. Although wine polyphenols interact with yeast lees to a limited extent, such interactions have a large effect on the reactivity toward oxygen of wine polyphenolic compounds and yeast lees. Various domains of the yeast cell wall are protected by wine polyphenols from the action of extracellular hydrolytic enzymatic activities. Polysaccharides released during autolysis are thought to exert a significant effect on the sensory qualities of wine. We studied the chemical composition of polyphenolic compounds remaining in solution or adsorbed on yeast lees after various contact times during the simulation of wine aging. The analysis of the remnant polyphenols in the wine indicated that wine polyphenols adsorption on yeast lees follows biphasic kinetics. An initial and rapid fixation is followed by a slow, constant, and saturating fixation that reaches its maximum after about 1 week. Only very few monomeric phenolic compounds remained adsorbed on yeast lees, and no preferential adsorption of low or high polymeric size tannins occurred. The remnant condensed tannins in the wine contained fewer epigallocatechin units than the initial tannins, indicating that polar condensed tannins were preferentially adsorbed on yeast lees. Conversely, the efficiency of anthocyanin adsorption on yeast lees was unrelated to its polarity.

  11. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.

    PubMed

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-04-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance.

  12. Potential Health Benefits of Olive Oil and Plant Polyphenols.

    PubMed

    Gorzynik-Debicka, Monika; Przychodzen, Paulina; Cappello, Francesco; Kuban-Jankowska, Alicja; Marino Gammazza, Antonella; Knap, Narcyz; Wozniak, Michal; Gorska-Ponikowska, Magdalena

    2018-02-28

    Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate), as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.

  13. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production

    PubMed Central

    Martin, Sophie; Andriambeloson, Emile; Takeda, Ken; Andriantsitohaina, Ramaroson

    2002-01-01

    The present study investigates the mechanisms by which polyphenolic compounds from red wine elicit Ca2+ mobilization in bovine aortic endothelial cells (BAECs). Two polyphenol-containing red wine extracts, red wine polyphenolic compounds (RWPC) and Provinols™, and delphinidin, an anthocyanin were used. RWPC stimulated a Ca2+-dependent release of nitric oxide (NO) from BAECs accounting for the relaxation of endothelium-denuded rat aortic rings as shown by cascade bioassay. RWPC, Provinols™ and delphinidin increased cytosolic free calcium ([Ca2+]i), by releasing Ca2+ from intracellular stores and by increasing Ca2+ entry. The RWPC-induced increase in [Ca2+]i was decreased by exposure to ryanodine (30 μM), whereas Provinols™ and delphinidin-induced increases in [Ca2+]i were decreased by bradykinin (0.1 μM) and thapsigargin (1 μM) pre-treatment. RWPC, Provinols™ and delphinidin-induced increases in [Ca2+]i were sensitive to inhibitors of phospholipase C (neomycin, 3 mM; U73122, 3 μM) and tyrosine kinase (herbimycin A, 1 μM). RWPC, Provinols™ and delphinidin induced herbimycin A (1 μM)-sensitive tyrosine phosphorylation of several intracellular proteins. Provinols™ released Ca2+ via both a cholera (CTX) and pertussis toxins (PTX)-sensitive pathway, whereas delphinidin released Ca2+ only via a PTX-sensitive mechanism. Our data contribute in defining the mechanisms of endothelial NO production caused by wine polyphenols including the increase in [Ca2+]i and the activation of tyrosine kinases. Furthermore, RWPC, Provinols™ and delphinidin display differences in the process leading to [Ca2+]i increases in endothelial cells illustrating multiple cellular targets of natural dietary polyphenolic compounds. PMID:11906973

  14. Polyphenols from artichoke heads (Cynara cardunculus (L.) subsp. scolymus Hayek): in vitro bio-accessibility, intestinal uptake and bioavailability.

    PubMed

    D'Antuono, Isabella; Garbetta, Antonella; Linsalata, Vito; Minervini, Fiorenza; Cardinali, Angela

    2015-04-01

    Artichoke is a rich source of health promoting compounds such as polyphenols, important for their pharmaceutical and nutritional properties. In this study, the potential for bioavailability of the artichoke polyphenols was estimated by using both in vitro digestion and Caco-2 human intestinal cell models. In vitro digestive recoveries (bio-accessibility) were found to be 55.8% for total artichoke phenolics and in particular, 70.0% for chlorogenic acid, 41.3% for 3,5-O-dicaffeoylquinic acid, and 50.3% for 1,5-O-dicaffeoylquinic acid, highlighting potential sensitivity of these compounds to gastric and small intestinal digestive conditions. Uptake of artichoke polyphenols was rapid with peak accumulation occurring after 30 min with an efficiency of 0.16%, according to the poor uptake of dietary polyphenols. Some compounds, such as coumaric acid, caffeic acid and caffeic acid derivatives, were also detected in the basolateral side assuming extra and intracellular esterase activities on chlorogenic acid. Only apigenin-7-O-glucoside was transported through the Caco-2 monolayer demonstrating its bioavailability to the extent of 1.15% at 60 min. In addition, permeability coefficient (Papp = 2.29 × 10(-5) cm s(-1)), involving apical to basolateral transport of apigenin 7-O-glucoside, was calculated to facilitate estimation of transport through the Caco-2 monolayer. Finally, the mono and dicaffeoylquinic acids present in artichoke heads exert an antioxidant activity on the human low density lipoprotein system correlated to their chemical structure. In conclusion, the utilized in vitro models, although not fully responding to the morphological and physiological features of human in vivo conditions, could be a useful tool for investigating mechanistic effects of polyphenols released from the food matrix.

  15. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine

    PubMed Central

    Nabavi, Seyed Fazel; Tejada, Silvia; Setzer, William N.; Gortzi, Olga; Sureda, Antoni; Braidy, Nady; Daglia, Maria; Manayi, Azadeh; Nabavi, Seyed Mohammad

    2017-01-01

    Background At present, much attention has been focused on the beneficial effects of natural products on the human health due to their high efficacy and low adverse effects. Among them, polyphenolic compounds are known as one of the most important and common classes of natural products, which possess multiple range of health-promotion effects including anti-inflammatory and antioxidant activities. A plethora of scientific evidence has shown that polyphenolic compounds possess beneficial effects on the central nervous system. Methods Data were collected from Web of Science (ISI Web of Knowledge), Medline, Pubmed, Scopus, Embase, and BIOSIS Previews (from 1950 to 2015), through searching of these keywords: “chlorogenic acid and mental diseases” and “chlorogenic acid and neuroprotection”. Results Chlorogenic acid is known as one of the most common polyphenolic compounds, and is found in different types of fruits and vegetables, spices, wine, olive oil, as well as coffee. The potential neuroprotective effects of chlorogenic acid have been highlighted in several in vitro and in vivo studies. This review critically analyses the available scientific evidence regarding the neuroprotective effects of chlorogenic acid, and its neuropharmacological mechanisms of action. In addition, we also discuss its biosynthesis, sources, bioavailability and metabolism, to provide a broad perspective of the therapeutic implications of this compound in brain health and disease. Conclusion The present review showed that chlorogenic acid possesses neuroprotective effects under the both in vitro and in vivo models. PMID:27012954

  16. New free radicals to measure antiradical capacity: a theoretical study.

    PubMed

    León-Carmona, Jorge Rafael; Martínez, Ana; Galano, Annia

    2014-08-28

    A new family of free radicals, that are soluble in water and stable at all pH values, were recently synthesized and used to assess the antiradical capacity of several polyphenols. In the present work, density functional calculations were used to investigate the single electron transfer reactions between these new free radicals and polyphenols in aqueous solution. The quantification of the antiradical capacity is a challenge, particularly for polyphenols, since they become unstable under experimental conditions. It was found that the electron transfer from polyphenols to the newly developed free radicals can be used to assess the efficiency of this kind of compound for preventing oxidative stress. Since one of the free radicals can be deprotonated under experimental conditions, this newly synthesized radical can help distinguish more clearly between different antiradical compounds with similar antioxidant capacity by modifying the pH in the experiments. The results reported here are in good agreement with the available experimental data and allowed making recommendations about possible experimental conditions in the design of antioxidant assays using the investigated radicals.

  17. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity

    PubMed Central

    Kschonsek, Josephine; Wolfram, Theresa; Stöckl, Annette; Böhm, Volker

    2018-01-01

    Polyphenols are antioxidant ingredients in apples and are related to human health because of their free radical scavenging activities. The polyphenolic profiles of old and new apple cultivars (n = 15) were analysed using high-performance liquid chromatography (HPLC) with diode array detection (DAD). The in vitro antioxidant capacity was determined by total phenolic content (TPC) assay, hydrophilic trolox equivalent antioxidant capacity (H-TEAC) assay and hydrophilic oxygen radical absorbance (H-ORAC) assay. Twenty polyphenolic compounds were identified in all investigated apples by HPLC analysis. Quercetin glycosides (203 ± 108 mg/100 g) were the main polyphenols in the peel and phenolic acids (10 ± 5 mg/100 g) in the flesh. The calculated relative contribution of single compounds indicated flavonols (peel) and vitamin C (flesh) as the major contributors to the antioxidant capacity, in all cultivars investigated. The polyphenolic content (HPLC data) of the flesh differed significantly between old (29 ± 7 mg/100 g) and new (13 ± 4 mg/100 g) cultivars, and the antioxidant capacity of old apple cultivars was up to 30% stronger compared to new ones. PMID:29364189

  18. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagajjanani Rao, K.; Paria, Santanu, E-mail: santanuparia@yahoo.com

    Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60more » nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.« less

  19. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting

    PubMed

    Dybkowska, Ewa; Sadowska, Anna; Rakowska, Rita; Dębowska, Maria; Świderski, Franciszek; Świąder, Katarzyna

    The roasting stage constitutes a key component in the manufacturing process of natural coffee because temperature elicits changes in bioactive compounds such as polyphenols and that Maillard-reaction compounds appear, thus affecting the product’s sensory and antioxidant properties. Actual contents of these compounds may depend on which region the coffee is cultivated as well as the extent to which the beans are roasted To determine polyphenols content and antioxidant activity in the ‘Arabica’ coffee type coming from various world regions of its cultivation and which have undergone industrial roasting. Also to establish which coffee, taking into account the degree of roasting (ie. light, medium and strong), is nutritionally the most beneficial The study material was natural coffee beans (100% Arabica) roasted to various degrees, as aforementioned, that had been cultivated in Brazil, Ethiopia, Columbia and India. Polyphenols were measured in the coffee beans by spectrophotometric means based on the Folin-Ciocalteu reaction, whereas antioxidant activity was measured colourimetrically using ABTS+ cat-ionic radicals Polyphenol content and antioxidant activity were found to depend both on the coffee’s origin and degree of roasting. Longer roasting times resulted in greater polyphenol degradation. The highest polyphenol concentrations were found in lightly roasted coffee, ranging 39.27 to 43.0 mg/g, whereas levels in medium and strongly roasted coffee respectively ranged 34.06 to 38.43 mg/g and 29.21 to 36.89 mg/g. Antioxidant activity however significantly rose with the degree of roasting, where strongly roasted coffee had higher such activity than lightly roasted coffee. This can be explained by the formation of Maillard-reaction compounds during roasting, leading then to the formation of antioxidant melanoidin compounds which, to a large extent, compensate for the decrease in polyphenols during roasting Polyphenols levels and antioxidant activities in the studied Arabica coffee beans that had undergone roasting depended on the cultivation region of the world. Longer roasting caused a significant decline in polyphenols compound levels (from 7.3% to 32.1%) in the coffee beans. Antioxidant activities of coffee increased with roasting, despite reduced levels of natural antioxidants. From a nutritional standpoint, the most favoured coffees are those lightly or medium roasted

  20. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    PubMed

    Gu, Fenglin; Huang, Feifei; Wu, Guiping; Zhu, Hongying

    2018-02-09

    Black pepper ( Piper nigrum L.) is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC) degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC) and ultraviolet-visible and visible (UV-Vis) spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  1. Comparative study of submerged and surface culture acetification process for orange vinegar.

    PubMed

    Cejudo-Bastante, Cristina; Durán-Guerrero, Enrique; García-Barroso, Carmelo; Castro-Mejías, Remedios

    2018-02-01

    The two main acetification methodologies generally employed in the production of vinegar (surface and submerged cultures) were studied and compared for the production of orange vinegar. Polyphenols (UPLC/DAD) and volatiles compounds (SBSE-GC/MS) were considered as the main variables in the comparative study. Sensory characteristics of the obtained vinegars were also evaluated. Seventeen polyphenols and 24 volatile compounds were determined in the samples during both acetification processes. For phenolic compounds, analysis of variance showed significant higher concentrations when surface culture acetification was employed. However, for the majority of volatile compounds higher contents were observed for submerged culture acetification process, and it was also reflected in the sensory analysis, presenting higher scores for the different descriptors. Multivariate statistical analysis such as principal component analysis demonstrated the possibility of discriminating the samples regarding the type of acetification process. Polyphenols such as apigenin derivative or ferulic acid and volatile compounds such as 4-vinylguaiacol, decanoic acid, nootkatone, trans-geraniol, β-citronellol or α-terpineol, among others, were those compounds that contributed more to the discrimination of the samples. The acetification process employed in the production of orange vinegar has been demonstrated to be very significant for the final characteristics of the vinegar obtained. So it must be carefully controlled to obtain high quality products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography.

    PubMed

    Mouly, P; Gaydou, E M; Auffray, A

    1998-03-27

    We present a simultaneous liquid chromatographic method for the separation of two flavonoid compound families, flavanone glycosides (FGs) and polymethoxylated flavones (PMFs), which are usually found in citrus fruits species and varieties. This technique permits the quantitation of six FGs (narirutin, naringin, hesperidin, neohesperidin, didymin, poncirin) and six PMFs (sinensetin, hexamethoxyflavone, nobiletin, scutellarein, heptamethoxyflavone and tangeretin). This technique, to be used to characterize a citrus juice by its polyphenolic profile, has been applied to the determination of flavonoid compounds in grapefruit- and orange juice. Differentiation of orange juice varieties and mixtures containing tangor juice using polyphenolic profiles and flavonoid content has been achieved.

  3. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas*

    PubMed Central

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-01-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  4. Selectivity mapping of the binding sites of (E)-resveratrol imprinted polymers using structurally diverse polyphenolic compounds present in Pinot noir grape skins.

    PubMed

    Hashim, Shima N N S; Schwarz, Lachlan J; Danylec, Basil; Potdar, Mahesh K; Boysen, Reinhard I; Hearn, Milton T W

    2016-12-01

    This investigation describes a general procedure for the selectivity mapping of molecularly imprinted polymers, using (E)-resveratrol-imprinted polymers as the exemplar, and polyphenolic compounds present in Pinot noir grape skin extracts as the test compounds. The procedure is based on the analysis of samples generated before and after solid-phase extraction of (E)-resveratrol and other polyphenols contained within the Pinot noir grape skins using (E)-resveratrol-imprinted polymers. Capillary reversed-phase high-performance liquid chromatography (RP-HPLC) and electrospray ionisation tandem mass spectrometry (ESI MS/MS) was then employed for compound analysis and identification. Under optimised solid-phase extraction conditions, the (E)-resveratrol-imprinted polymer showed high binding affinity and selectivity towards (E)-resveratrol, whilst no resveratrol was bound by the corresponding non-imprinted polymer. In addition, quercetin-3-O-glucuronide and a dimer of catechin-methyl-5-furfuraldehyde, which share some structural features with (E)-resveratrol, were also bound by the (E)-resveratrol-imprinted polymer. Polyphenols that were non-specifically retained by both the imprinted and non-imprinted polymer were (+)-catechin, a B-type procyanidin and (-)-epicatechin. The compounds that did not bind to the (E)-resveratrol molecularly imprinted polymer had at least one of the following molecular characteristics in comparison to the (E)-resveratrol template: (i) different spatial arrangements of their phenolic hydroxyl groups, (ii) less than three or more than four phenolic hydroxyl groups, or (iii) contained a bulky substituent moiety. The results show that capillary RP-HPLC in conjunction with ESI MS/MS represent very useful techniques for mapping the selectivity of the binding sites of imprinted polymer. Moreover, this procedure permits performance monitoring of the characteristics of molecularly imprinted polymers intended for solid-phase extraction of bioactive and nutraceutical molecules from diverse agricultural waste sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of polyphenols from coffee and grape on gene expression in myoblasts.

    PubMed

    Priftis, Alexandros; Goutzourelas, Nikolaos; Halabalaki, Maria; Ntasi, Georgia; Stagos, Dimitrios; Amoutzias, Grigorios D; Skaltsounis, Leandros A; Kouretas, Dimitrios

    2018-06-01

    Coffee and grape contain various bioactive compounds like polyphenols that may exert beneficial effects, especially antioxidant activity, on human health upon consumption. However, the molecular mechanisms through which these effects are achieved are not fully elucidated. Thus, in the present study in order to investigate these mechanisms, a whole genome expression DNA microarray analysis was carried out in myoblasts treated with polyphenols of coffee and grape pomace at concentrations that improved the redox status. Grape was composed of catechin, epicatechin, cyanidin, malvidin, delphinidin, petunidin, myrtillin, kuromanin, oenin, peonidin, quercetin, gallic acid and caftaric acid as LC-MS revealed, with a total polyphenolic content (TPC) of 648 mg of gallic acid equivalents/g of dry matter. Coffee had a TPC of 42.61 mg GAE/g coffee and was composed of 3-chlorogenic acid (16.61 mg/g), 4- and 5-chlorogenic acids (13.62 mg/g), as UHPLC-HRMS revealed. According to the results, grape polyphenols altered mainly the expression of cytoskeleton and differentiation-associated genes, while coffee compounds had a more profound effect, on the expression levels of many metabolic and antioxidant genes possibly through the nuclear factor (erythroid-derived 2) like-2 (Nrf2) pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Vascular effects of wine polyphenols.

    PubMed

    Dell'Agli, Mario; Buscialà, Alessandra; Bosisio, Enrica

    2004-09-01

    Moderate consumption of red wine has been putatively associated with lowering the risk of developing coronary heart disease. This beneficial effect is mainly attributed to the occurrence of polyphenol compounds such as anthocyanosides (ACs), catechins, proanthocyanidins (PAs), stilbenes and other phenolics in red wine. This review focuses on the vascular effects of red wine polyphenols (RWPs), with emphasis on anthocyanosides and proanthocyanidins. From in vitro studies, the effect of red wine polyphenols on the vascular tone is thought to be due to short- and long-term mechanisms. NO-mediated vasorelaxation represents the short-term response to wine polyphenols, which exert the effect by increasing the influx of extracellular Ca(2+), and the mobilization of intracellular Ca(2+) in endothelial cells. Polyphenolic compounds may also have long-term properties, as they increase endothelial NO synthase expression acting on the promoter activity. In addition, they decrease the expression of adhesion molecules and growth factors, involved in migration and proliferation of vascular smooth muscle cells. Moreover, they inhibit platelet aggregation. However, a paucity of data as regards the bioavailability and metabolism of these compounds in human studies is a limiting factor to proving their efficacy in vivo.

  7. Characteristic of fermented spinach (Amaranthus spp.) polyphenol by kombucha culture for antioxidant compound

    NASA Astrophysics Data System (ADS)

    Aspiyanto, Susilowati, Agustine; Iskandar, Jeti M.; Melanie, Hakiki; Maryati, Yati; Lotulung, Puspa D.

    2017-01-01

    Fermentation on spinach (Amaranthus sp.) vegetable by kombucha culture as an effort to get poliphenol as antioxidant compound had been done. Purification of fermented spinach extract suspension was carried out through microfiltration (MF) membrane (pore size 0.15 µm) fitted in dead-end Stirred Ultrafiltration Cell (SUFC) mode at fixed condition (stirrer rotation 400 rpm, room temperature, pressure 40 psia). Result of the experimental activity showed that long fermentation time increased total acids, total polyphenol and Total Plate Count (TPC), and decreased total solids and reducing sugar in biomass. The optimal fermentation time was reached for 2 weeks with total polyphenol recovery increasing of 92.76 % from before and after fermentation. On this optimal fermentation time, biomass had identified galic acid with relative intensity of 8 %, while as polyphenol monomer was resulted 5 kinds of polyphenol compounds with total intensity 27.97 % and molecular weight (MW) 191.1736, 193.1871 and 194.2170 at T2.5, T2.86 and T3.86. Long fermentation time increased functional properties of polyphenol as antioxidant.

  8. In vitro micropropagation and mycorrhizal treatment influences the polyphenols content profile of globe artichoke under field conditions.

    PubMed

    Pandino, Gaetano; Lombardo, Sara; Antonino, Lo Monaco; Ruta, Claudia; Mauromicale, Giovanni

    2017-09-01

    The commercial importance of plant tissue culture has grown in recent years, reflecting its application to vegetative propagation, disease elimination, plant improvement and the production of polyphenols. The level of polyphenols present in plant tissue is influenced by crop genotype, the growing environment, the crop management regime and the post-harvest processing practice. Globe artichoke is a significant component of the Mediterranean Basin agricultural economy, and is rich in polyphenols (phenolic acids and flavones). Most commercially grown plants are derived via vegetative propagation, with its attendant risk of pathogen build-up. Here, a comparison was drawn between the polyphenol profiles of conventionally propagated and micropropagated/mycorrhized globe artichoke plants. Micropropagation/mycorrhization appeared to deliver a higher content of caffeoylquinic acids. The accumulation of these compounds, along with luteolin and its derivatives, was not season-dependent. Luteolin aglycone was accumulated preferentially in the conventionally propagated plants. Overall, it appeared that micropropagation/mycorrhization enhanced the accumulation of polyphenols. Copyright © 2017. Published by Elsevier Ltd.

  9. Curcumin and dietary polyphenol research: beyond drug discovery.

    PubMed

    Jin, Tian-Ru

    2018-05-01

    Numerous natural products available over the counter are commonly consumed by healthy, sub-healthy or ill people for the treatment and prevention of various chronic diseases. Among them, a few dietary polyphenols, including the curry compound curcumin, have been attracting the most attention from biomedical researchers and drug developers. Unlike many so-called "good drug candidates", curcumin and several other dietary polyphenols do not have a single known therapeutic target or defined receptor. In addition, the bioavailability of these polyphenols is usually very low due to their poor absorption in the gut. These recently debated features have created enormous difficulties for drug developers. In this review, I do not discuss how to develop curcumin, other dietary polyphenols or their derivatives into pharmaceutical agents. Instead, I comment on how curcumin and dietary polyphenol research has enriched our knowledge of insulin signaling, including the presentation of my perspectives on how these studies will add to our understanding of the famous hepatic insulin function paradox.

  10. Lettucenin sesquiterpenes contribute significantly to the browning of lettuce.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2014-05-21

    Wound-induced changes in the composition of secondary plant compounds cause the browning of processed lettuce. Cut tissues near the lettuce butt end clearly exhibit increased formation of yellow-brown pigments. This browning reaction is typically been attributed to the oxidation of polyphenols by the enzyme polyphenol oxidase (PPO). However, in our previous study on Iceberg lettuce, we showed that, besides the enzymatic polyphenol browning, other reactions must be involved in the formation of colored structures. With the present study for the first time, we isolated yellow sesquiterpenes by multilayer countercurrent chromatography (MLCCC), followed by preparative high-performance liquid chromatography (HPLC). Further analyses by nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques identified lettucenin A and three novel derivatives. We call these compounds lettucenins A1, B, and B1. Color-dilution analyses revealed these lettucenins as key chromophores in the browning of Iceberg lettuce. A time formation curve showed the accumulation of lettucenins A and B within 40 h after cutting. Thereafter, these structures were degraded to unknown colored compounds. Lettucenin A was verified in five varieties of Lactuca. In contrast to that, lettucenin A was present only at trace levels in five varieties of Cichorium. Therefore, lettucenin A might be used as a chemosystematic marker of the genus Lactuca.

  11. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study☆

    PubMed Central

    Grosso, Giuseppe; Stepaniak, Urszula; Topor-Mądry, Roman; Szafraniec, Krystyna; Pająk, Andrzej

    2014-01-01

    Objective The aim of this study was to estimate the intake of known individual polyphenols and their major dietary sources in the Polish arm of the HAPIEE (Health, Alcohol and Psychosocial factors In Eastern Europe) study. Methods A total of 10,477 random sample (45–69 y) of urban population of Krakow, Poland, completed a validated 148-item food frequency questionnaire. Polyphenol intake was calculated by matching food consumption data with the recently developed Phenol-Explorer database. Results The mean intake of polyphenols was 1756.5 ± 695.8 mg/d (median = 1662.5 mg/d). The main polyphenol groups were flavonoids (897 mg/d) and phenolic acids (800 mg/d). A total of 347 polyphenols from 19 polyphenol subclasses were found. The individual compounds with the highest intakes were isomers of chlorogenic acid (i.e., 5-caffeoylquinic acid and 4-caffeoylquinic acid) among hydroxycinnamic acids (average intake 150 mg/d), that largely originated from coffee, and compounds belonging to the catechin chemical family (i.e., [+]-gallocatechin, [-]-epigallocatechin 3-O-gallate, and [-]-epicatechin) among flavanols (average intake 50 mg/d), that mostly originated from tea and cocoa products. Conclusions The current study provides the most updated data for individual polyphenols intake in the diet of a well-established nutritional cohort. These findings will be useful to assess potential beneficial role on health of specific foods with high polyphenol content and characterize the effects of individual phenolic compounds. PMID:25280419

  12. Changes in chlorophyll and polyphenols content in Camellia sinensis var. sinensis at different stage of leaf maturity

    NASA Astrophysics Data System (ADS)

    Prawira-Atmaja, M. I.; Shabri; Khomaini, H. S.; Maulana, H.; Harianto, S.; Rohdiana, D.

    2018-03-01

    Chlorophyll and polyphenols are chemical compound related to parameter quality of green tea. We studied the variation of chlorophyll and polyphenol in the development stage of tea leaves (bud, 1st, 2nd, 3rd, and 4th). Five clones of tea (Camelia sinensis var. sinensis) from Indonesia and a clone from Japan were used in this study. The results showed that total chlorophyll and total polyphenol content in bud between 1.59-2.15 mg/g (db) and 12.24-14.59% respectively. The concentration of chlorophyll increased significantly with developments stage of leaf while total polyphenol tended to decrease with leaf maturity. Pearson Correlation analysis showed that chlorophyll content was negatively correlated (r = -0.83; p = 0.05) with total polyphenol during developmental stage of tea leaves. Results suggests that five clones of tea from Indonesia have similar quality with tea clone from Japan in chlorophyll and polyphenol content. The present study also provides guidelines on application plucking standard to produce high quality of green tea.

  13. Polyphenols from Root, Tubercles and Grains Cropped in Brazil: Chemical and Nutritional Characterization and Their Effects on Human Health and Diseases

    PubMed Central

    dos Santos Baião, Diego; Silva de Freitas, Cyntia; da Silva, Davi; Ribeiro Pereira, Patricia

    2017-01-01

    Throughout evolution, plants have developed the ability to produce secondary phenolic metabolites, which are important for their interactions with the environment, reproductive strategies and defense mechanisms. These (poly)phenolic compounds are a heterogeneous group of natural antioxidants found in vegetables, cereals and leguminous that exert beneficial and protective actions on human health, playing roles such as enzymatic reaction inhibitors and cofactors, toxic chemicals scavengers and biochemical reaction substrates, increasing the absorption of essential nutrients and selectively inhibiting deleterious intestinal bacteria. Polyphenols present in some commodity grains, such as soy and cocoa beans, as well as in other vegetables considered security foods for developing countries, including cassava, taro and beetroot, all of them cropped in Brazil, have been identified and quantified in order to point out their bioavailability and the adequate dietary intake to promote health. The effects of the flavonoid and non-flavonoid compounds present in these vegetables, their metabolism and their effects on preventing chronic and degenerative disorders like cancers, diabetes, osteoporosis, cardiovascular and neurological diseases are herein discussed based on recent epidemiological studies. PMID:28930173

  14. Dietary intake of polyphenols and major food sources in an institutionalised elderly population.

    PubMed

    González, S; Fernández, M; Cuervo, A; Lasheras, C

    2014-04-01

    Polyphenols are bioactive compounds widely found in fruit, vegetables and beverages of plant origin. Epidemiological studies have suggested an association between polyphenol intake and health; antioxidant, anti-inflammatory, anti-carcinogenic and other bioactivities may contribute to these beneficially protective effects. To date, most epidemiological studies describing polyphenol intake have been limited by the information available in nutrient databases. The present study aimed to determine the total and individual polyphenol intake among institutionalised elderly people living in Asturias (North of Spain) and to identify the major dietary sources of polyphenol classes and subclasses. The study sample comprised 304 subjects with a mean age of 73.2 years for men and 76.8 years for women. Dietary intake was assessed by means of a food frequency questionnaire. Phenol content was estimated from the Phenol-Explorer database, as developed at the French National Institute for Agricultural Research. The contribution of each food to the total and subgroup intake of polyphenols was calculated as a percentage. Except for flavonones, total polyphenol intake, groups and subgroups, was higher in men than women. The main polyphenol groups contributing to total polyphenol intake were flavonoids (62%) and phenolic acids (35.5%). We identified red wine, coffee, apples, oranges and green beans as the major food sources providing total polyphenol intake. Flavonoid and lignan intake was lower for those aged >80 years. Smoking habit, red wine consumption, physical activity and a Mediterranean diet score were associated with a greater polyphenol intake. The present study provides information on polyphenol intake in an elderly Mediterranean population with a level of detail that has not been achieved previously. The identification of age and lifestyle factors associated with the intake of polyphenols may be useful in future studies regarding polyphenols. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  15. Effect of UV-C Radiation, Ultra-Sonication Electromagnetic Field and Microwaves on Changes in Polyphenolic Compounds in Chokeberry (Aronia melanocarpa).

    PubMed

    Cebulak, Tomasz; Oszmiański, Jan; Kapusta, Ireneusz; Lachowicz, Sabina

    2017-07-12

    Chokeberry fruits are highly valued for their high content of polyphenolic compounds. The use of such abiotic stress factors as UV-C radiation, an electromagnetic field, microwave radiation, and ultrasound, at different operation times, caused differentiation in the contents of anthocyanins, phenolic acids, flavonols, and flavan-3-ols. Samples were analyzed for contents of polyphenolics with ultra-performance liquid chromatography and photodiode detector-quadrupole/time-of-flight mass spectrometry (UPLC-PDA-MS/MS). The analysis showed that after exposure to abiotic stress factors, the concentration of anthocyanins ranged from 3587 to 6316 mg/100 g dry matter (dm) that constituted, on average, 67.6% of all identified polyphenolic compounds. The second investigated group included phenolic acids with the contents ranging between 1480 and 2444 mg/100 g dm (26.5%); then flavonols within the range of 133 to 243 mg/100 g dm (3.7%), and finally flavan-3-ols fluctuated between 191 and 369 mg/100 g dm (2.2%). The use of abiotic stress factors such as UV-C radiation, microwaves and ultrasound field, in most cases contributed to an increase in the content of the particular polyphenolic compounds in black chokeberry. Under the influence of these factors, increases were observed: in anthocyanin content, of 22%; in phenolic acids, of 20%; in flavonols, of 43%; and in flavan-3-ols, of 30%. Only the use of the electromagnetic field caused a decrease in the content of the examined polyphenolic compounds.

  16. Characterisation of Pomegranate-Husk Polyphenols and Semi-Preparative Fractionation of Punicalagin.

    PubMed

    Aguilar-Zárate, Pedro; Wong-Paz, Jorge E; Michel, Mariela; Buenrostro-Figueroa, Juan; Díaz, Hugo R; Ascacio, Juan A; Contreras-Esquivel, Juan C; Gutiérrez-Sánchez, Gerardo; Aguilar, Cristóbal N

    2017-09-01

    Pomegranate-husk is the main by-product generated from the pomegranate industry. It is a potential source of compounds highly appreciated by different costumers. Punicalagin is the main compound present in pomegranate-husk. To characterise the pomegranate-husk total polyphenols by HPLC-ESI-MS and to establish a method for the recovery of punicalagin using a medium pressure liquid chromatography (MPLC) system. The characterisation of total pomegranate-husk polyphenols was carried out using liquid chromatography coupled to mass spectrometry. Thus, 200 mg of pomegranate-husk polyphenols were fractionated by MPLC. The isolated punicalagin was characterised by HPLC-MS and was tested as standard reagent for the measurement of its scavenging capacity reducing DPPH and ABTS radicals. Twenty peaks were identified by analytical HPLC-MS analysis from the pomegranate-husk polyphenols. The main compounds were the punicalagin anomers, punicalin and ellagic acid. The MPLC method allowed three fractions to be obtained. In fraction three 39.40 ± 8.06 mg of punicalagin anomers (purity > 97.9%) were recovered. The scavenging capacity of punicalagin showed an IC 50 of 109.53 and 151.50 μg/mL for DPPH and ABTS radicals, respectively. The MPLC system was an excellent tool for the separation of the main ellagitannins from pomegranate husk and for the isolation of punicalagin anomers. Fraction three was rich in high purity punicalagin anomers. The IC 50 was obtained for DPPH and ABTS radicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Inhibition of rat mammary microsomal oxidation of ethanol to acetaldehyde by plant polyphenols.

    PubMed

    Maciel, María Eugenia; Castro, José Alberto; Castro, Gerardo Daniel

    2011-07-01

    We previously reported that the microsomal fraction from rat mammary tissue is able to oxidize ethanol to acetaldehyde, a mutagenic-carcinogenic metabolite, depending on the presence of NADPH and oxygen but not inhibited by carbon monoxide or other cytochrome P450 inhibitors. The process was strongly inhibited by diphenyleneiodonium, a known inhibitor of NADPH oxidase, and by nordihydroguaiaretic acid, an inhibitor of lipoxygenases. This led us to suggest that both enzymes could be involved. With the purpose of identifying natural compounds present in food with the ability to decrease the production of acetaldehyde in mammary tissue, in the present studies, several plant polyphenols having inhibitory effects on lipoxygenases and of antioxidant nature were tested as potential inhibitors of the rat mammary tissue microsomal pathway of ethanol oxidation. We included in the present screening study 32 polyphenols having ready availability and that were also tested against the rat mammary tissue cytosolic metabolism of ethanol to acetaldehyde. Several polyphenols were also able to inhibit the microsomal ethanol oxidation at concentrations as low was 10-50 μM. The results of these screening experiments suggest the potential of several plant polyphenols to prevent in vivo production and accumulation of acetaldehyde in mammary tissue.

  18. Aronia melanocarpa juice induces a redox-sensitive p73-related caspase 3-dependent apoptosis in human leukemia cells.

    PubMed

    Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B

    2012-01-01

    Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G(2)/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells.

  19. Effects of thermal and high hydrostatic pressure processing and storage on the content of polyphenols and some quality attributes of fruit smoothies.

    PubMed

    Keenan, Derek F; Brunton, Nigel; Gormley, Ronan; Butler, Francis

    2011-01-26

    The aim of the present study was the evaluation of high hydrostatic pressure (HHP) processing on the levels of polyphenolic compounds and selected quality attributes of fruit smoothies compared to fresh and mild conventional pasteurization processing. Fruit smoothie samples were thermally (P(70) > 10 min) or HHP processed (450 MPa/1, 3, or 5 min/20 °C) (HHP1, HHP3, and HHP5, respectively). The polyphenolic content, color difference (ΔE), sensory acceptability, and rheological (G'; G''; G*) properties of the smoothies were assessed over a storage period of 30 days at 4 °C. Processing had a significant effect (p < 0.001) on the levels of polyphenolic compounds in smoothies. However, this effect was not consistent for all compound types. HHP processed samples (HHP1 and HHP3) had higher (p < 0.001) levels of phenolic compounds, for example, procyanidin B1 and hesperidin, than HHP5 samples. Levels of flavanones and hydroxycinnamic acid compounds decreased (p < 0.001) after 30 days of storage at 2-4 °C). Decreases were particularly notable between days 10 and 20 (hesperidin) and days 20 and 30 (chlorogenic acid) (p < 0.001). There was a wide variation in ΔE values recorded over the 30 day storage period (p < 0.001), with fresh and thermally processed smoothies exhibiting lower color change than their HHP counterparts (p < 0.001). No effect was observed for the type of process on complex modulus (G*) data, but all smoothies became less rigid during the storage period (p < 0.001). Despite minor product deterioration during storage (p < 0.001), sensory acceptability scores showed no preference for either fresh or processed (thermal/HHP) smoothies, which were deemed acceptable (>3) by panelists.

  20. Potential Health Benefits of Olive Oil and Plant Polyphenols

    PubMed Central

    Gorzynik-Debicka, Monika; Przychodzen, Paulina; Cappello, Francesco; Kuban-Jankowska, Alicja; Marino Gammazza, Antonella; Knap, Narcyz; Wozniak, Michal; Gorska-Ponikowska, Magdalena

    2018-01-01

    Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate), as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities. PMID:29495598

  1. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of polyphenolic composition of four cultivars of Fragaria vesca L. berries and their comparative evaluation.

    PubMed

    Del Bubba, Massimo; Checchini, Leonardo; Chiuminatto, Ugo; Doumett, Saer; Fibbi, Donatella; Giordani, Edgardo

    2012-09-01

    High-performance liquid chromatography coupled with ion spray mass spectrometry in the tandem mode with both negative and positive ionization was used for investigating a variety of polyphenolic compounds in four genotypes of Fragaria vesca berries. About 60 phenolic compounds belonging to the compound classes of phenolic acids, ellagitannins, ellagic acid derivatives, flavonols, monomeric and oligomeric flavanols, dihydrochalcones and anthocyanins were reported, providing for the first time a quite complete picture of polyphenolic composition of F. vesca berries. Some of the polyphenols herein investigated, such as a tris-galloyl-hexahydroxydiphenoyl-hexose, two castalagin/vescalagin-like isomers and peonidin-malonylglucoside, were described for the first time. Principal component analysis applied on original HPLC-MS/MS data, acquired in multiple reaction monitoring mode, successfully discriminated the four investigated cultivars on the basis of their polyphenolic composition, highlighting the fundamental role of mass spectrometry for food characterization. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine.

    PubMed

    Nabavi, Seyed Fazel; Tejada, Silvia; Setzer, William N; Gortzi, Olga; Sureda, Antoni; Braidy, Nady; Daglia, Maria; Manayi, Azadeh; Nabavi, Seyed Mohammad

    2017-01-01

    At present, much attention has been focused on the beneficial effects of natural products on the human health due to their high efficacy and low adverse effects. Among them, polyphenolic compounds are known as one of the most important and common classes of natural products, which possess multiple range of health-promotion effects including anti-inflammatory and antioxidant activities. A plethora of scientific evidence has shown that polyphenolic compounds possess beneficial effects on the central nervous system. Data were collected from Web of Science (ISI Web of Knowledge), Medline, Pubmed, Scopus, Embase, and BIOSIS Previews (from 1950 to 2015), through searching of these keywords: "chlorogenic acid and mental diseases" and "chlorogenic acid and neuroprotection". Chlorogenic acid is known as one of the most common polyphenolic compounds, and is found in different types of fruits and vegetables, spices, wine, olive oil, as well as coffee. The potential neuroprotective effects of chlorogenic acid have been highlighted in several in vitro and in vivo studies. This review critically analyses the available scientific evidence regarding the neuroprotective effects of chlorogenic acid, and its neuropharmacological mechanisms of action. In addition, we also discuss its biosynthesis, sources, bioavailability and metabolism, to provide a broad perspective of the therapeutic implications of this compound in brain health and disease. The present review showed that chlorogenic acid possesses neuroprotective effects under the both in vitro and in vivo models. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Identification of black bean (Phaseolus vulgaris L.) polyphenols that inhibit and promote iron uptake by caco-2 cells

    USDA-ARS?s Scientific Manuscript database

    In nutritional studies, polyphenolic compounds are considered to be inhibitors of Fe bioavailability. Because they are presumed to act in a similar manner, total polyphenols are commonly measured via the Folin-Ciocalteu colorimetric assay. In this study, we measured the content of polyphenolic compo...

  4. Silicate-catalyzed chemical grouting compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1972-09-28

    Chemical grouting compositions for stabilizing earth, sand, and other porous particulate formations or agglomerates of solids are described. The composition for producing a chemically grouting structure consists of an aqueous base solution of: (1) vegetative polyphenolic material consisting of condensed type tannins, and an aqueous catalyst solution of (2) a water-soluble alkali metal silicate. The polyphenolic material is present in an amount from 5% to 40% based on the weight of the base solution, and the water- soluble alkali metal silicate is present in an amount to provide from 1% to 15% SiOD2U in the silicate compound based on themore » weight of the polyphenolic material. These grouting compositions are completely safe to operating personnel and to surrounding environment, since the potassium or sodium silicate catalysts are nontoxic. (15 claims)« less

  5. Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation.

    PubMed

    Ancillotti, Claudia; Ciofi, Lorenzo; Rossini, Daniele; Chiuminatto, Ugo; Stahl-Zeng, Jianru; Orlandini, Serena; Furlanetto, Sandra; Del Bubba, Massimo

    2017-02-01

    Ultra-high-performance liquid chromatography coupled with high-resolution quadrupole-time of flight mass spectrometry with both negative and positive ionization was used for comprehensively investigating the phenolic and polyphenolic compounds in berries from three spontaneous or cultivated Vaccinium species (i.e., Vaccinium myrtillus, Vaccinium uliginosum subsp. gaultherioides, and Vaccinium corymbosum). More than 200 analytes, among phenolic and polyphenolic compounds belonging to the classes of anthocyanins, monomeric and oligomeric flavonols, flavanols, dihydrochalcones, phenolic acids, together with other polyphenolic compounds of mixed structural characteristics, were identified. Some of the polyphenols herein investigated, such as anthocyanidin glucuronides and malvidin-feruloyl-hexosides in V. myrtillus, or anthocyanindin aldopentosides and coumaroyl-hexosides in V. uliginosum subsp. gaultherioides and a large number of proanthocyanidins with high molecular weight in all species, were described for the first time in these berries. Principal component analysis applied on original LC-TOF data, acquired in survey scan mode, successfully discriminated the three Vaccinium berry species investigated, on the basis of their polyphenolic composition, underlying one more time the fundamental role of mass spectrometry for food characterization.

  6. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins--a pilot study.

    PubMed

    Rusanov, Krasimir; Garo, Eliane; Rusanova, Mila; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika

    2014-11-01

    The production of rose oil from rose flowers by water steam distillation leaves a water fraction of the distillate as main part of the waste. Therefore, the rose oil distillation wastewater represents a serious environmental problem due to the high content of polyphenols which are difficult to decompose and have to be considered as biopollutants when discarded into the drainage system and rivers. On the other hand, natural polyphenols are valuable compounds with useful properties as bioactive substances. Until now there is no established practice for processing of rose oil distillation wastewater and utilization of contained substances. Thus, it was the aim of this study to develop a strategy to separate this wastewater into a polyphenol depleted water fraction and a polyphenol enriched fraction which could be developed into innovative value-added products. In a first step, the phytochemical profile of rose oil distillation wastewater was determined. Its HPLC-PDA-MS analysis revealed the presence of flavan-3-ols, flavanones, flavonols and flavones. In a second step, the development of a stepwise concentration of rose oil distillation wastewater was performed. The concentration process includes a filtration process to eliminate suspended solids in the wastewater, followed by adsorption of the contained phenolic compounds onto adsorption resins (XAD and SP). Finally, desorption of the polyphenol fraction from the resin matrix was achieved using ethanol and/or aqueous ethanol. The result of the process was a wastewater low in soluble organic compounds and an enriched polyphenol fraction (RF20 SP-207). The profile of this fraction was similar to that of rose oil distillation wastewater and showed the presence of flavonols such as quercetin and kaempferol glycosides as major metabolites. These compounds were isolated from the enriched polyphenol fraction and their structures confirmed by NMR. In summary, a pilot medium scale system was developed using adsorption resins for the recovery of polyphenols from rose oil distillation wastewater suggesting an industrial scalability of the process. Georg Thieme Verlag KG Stuttgart · New York.

  7. Is enzymatic hydrolysis a reliable analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites in human fluids?

    PubMed

    Quifer-Rada, Paola; Martínez-Huélamo, Miriam; Lamuela-Raventos, Rosa M

    2017-07-19

    Phenolic compounds are present in human fluids (plasma and urine) mainly as glucuronidated and sulfated metabolites. Up to now, due to the unavailability of standards, enzymatic hydrolysis has been the method of choice in analytical chemistry to quantify these phase II phenolic metabolites. Enzymatic hydrolysis procedures vary in enzyme concentration, pH and temperature; however, there is a lack of knowledge about the stability of polyphenols in their free form during the process. In this study, we evaluated the stability of 7 phenolic acids, 2 flavonoids and 3 prenylflavanoids in urine during enzymatic hydrolysis to assess the suitability of this analytical procedure, using three different concentrations of β-glucuronidase/sulfatase enzymes from Helix pomatia. The results indicate that enzymatic hydrolysis negatively affected the recovery of the precursor and free-form polyphenols present in the sample. Thus, enzymatic hydrolysis does not seem an ideal analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites.

  8. Polyphenols, their metabolites and derivatives as drug leads.

    PubMed

    Almeida, Filipa A; Dos Santos, Cláudia Nunes; Ventura, Maria Rita

    2018-05-15

    In this non-comprehensive review, the potential of natural polyphenols as lead compounds for the design and synthesis of new molecules with potential application in several diseases was highlighted. Organic synthesis has been essential for the development of new analogues of naturally found polyphenols, providing a wide range of structural modifications for structure-activity relationship studies and improving or modulating the biological activity of the promising compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Bioactive compounds of juices from two Brazilian grape cultivars.

    PubMed

    da Silva, Juliana Kelly; Cazarin, Cinthia Baú Betim; Correa, Luiz Claudio; Batista, Ângela Giovana; Furlan, Cibele Priscila Busch; Biasoto, Aline Camarão Telles; Pereira, Giuliano Elias; de Camargo, Adriano Costa; Maróstica Junior, Mário Roberto

    2016-04-01

    Grape juice consumption may prevent several chronic diseases owing to the presence of phenolic compounds, which have an important role in the reduction of oxidative stress. This study investigated the polyphenol content and antioxidant activities of grape juices from two cultivars: BRS-Cora and Isabella. Total polyphenol content (TPC), anthocyanins, antioxidant capacity (oxygen radical absorbance capacity, ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl), and phenolic profile (high-performance liquid chromatography with diode array and fluorescence detection--HPLC-DAD-FLD) were determined. BRS-Cora grape juice showed higher concentrations of total polyphenols and anthocyanins, as well as higher antioxidant potential, than those of Isabella grape juice. A significant positive correlation was found in TPC or anthocyanin contents when correlated with the remaining antioxidant assays. In addition, HPLC-DAD-FLD showed a higher total phenolic content in BRS-Cora grape juice compared to Isabella. The present results show BRS-Cora as a promising cultivar for grape juice production with an improved functional potential. © 2015 Society of Chemical Industry.

  10. The Influence of Different Air-Drying Conditions on Bioactive Compounds and Antioxidant Activity of Berries.

    PubMed

    Bustos, Mariela C; Rocha-Parra, Diego; Sampedro, Ines; de Pascual-Teresa, Sonia; León, Alberto E

    2018-03-21

    The aim of the present research was to study the effect of convective drying on color, bioactive compounds, and antioxidant activity of berry fruits and to chemically characterize the polyphenolic composition of raspberry, boysenberry, redcurrants, and blackcurrants fruit. Drying berries at 65 °C provoked the best conservations of color, particularly for boysenberry and blackcurrant. Drying at 65 °C was also the condition that showed higher level of polyphenols, while drying at 50 or 130 °C showed above % degradation of them due to the long time or high temperature drying. Radical scavenging activity was the predominant antioxidant mechanism in all samples, with 65 °C dried berries being the most active ones possibly because of polyphenol depolymerization. The anthocyanin profile showed that delphinidin and cyanidin derivatives were the most abundant anthocyanidins with different predominance between berry genera. Degradation of anthocyanins was increased with drying temperature been Cy 3-glucoside and Cy 3-rutinoside the most abundant.

  11. Nanomaterial-Based Sensing and Biosensing of Phenolic Compounds and Related Antioxidant Capacity in Food.

    PubMed

    Della Pelle, Flavio; Compagnone, Dario

    2018-02-04

    Polyphenolic compounds (PCs) have received exceptional attention at the end of the past millennium and as much at the beginning of the new one. Undoubtedly, these compounds in foodstuffs provide added value for their well-known health benefits, for their technological role and also marketing. Many efforts have been made to provide simple, effective and user friendly analytical methods for the determination and antioxidant capacity (AOC) evaluation of food polyphenols. In a parallel track, over the last twenty years, nanomaterials (NMs) have made their entry in the analytical chemistry domain; NMs have, in fact, opened new paths for the development of analytical methods with the common aim to improve analytical performance and sustainability, becoming new tools in quality assurance of food and beverages. The aim of this review is to provide information on the most recent developments of new NMs-based tools and strategies for total polyphenols (TP) determination and AOC evaluation in food. In this review optical, electrochemical and bioelectrochemical approaches have been reviewed. The use of nanoparticles, quantum dots, carbon nanomaterials and hybrid materials for the detection of polyphenols is the main subject of the works reported. However, particular attention has been paid to the success of the application in real samples, in addition to the NMs. In particular, the discussion has been focused on methods/devices presenting, in the opinion of the authors, clear advancement in the fields, in terms of simplicity, rapidity and usability. This review aims to demonstrate how the NM-based approaches represent valid alternatives to classical methods for polyphenols analysis, and are mature to be integrated for the rapid quality assessment of food quality in lab or directly in the field.

  12. Nanomaterial-Based Sensing and Biosensing of Phenolic Compounds and Related Antioxidant Capacity in Food

    PubMed Central

    2018-01-01

    Polyphenolic compounds (PCs) have received exceptional attention at the end of the past millennium and as much at the beginning of the new one. Undoubtedly, these compounds in foodstuffs provide added value for their well-known health benefits, for their technological role and also marketing. Many efforts have been made to provide simple, effective and user friendly analytical methods for the determination and antioxidant capacity (AOC) evaluation of food polyphenols. In a parallel track, over the last twenty years, nanomaterials (NMs) have made their entry in the analytical chemistry domain; NMs have, in fact, opened new paths for the development of analytical methods with the common aim to improve analytical performance and sustainability, becoming new tools in quality assurance of food and beverages. The aim of this review is to provide information on the most recent developments of new NMs-based tools and strategies for total polyphenols (TP) determination and AOC evaluation in food. In this review optical, electrochemical and bioelectrochemical approaches have been reviewed. The use of nanoparticles, quantum dots, carbon nanomaterials and hybrid materials for the detection of polyphenols is the main subject of the works reported. However, particular attention has been paid to the success of the application in real samples, in addition to the NMs. In particular, the discussion has been focused on methods/devices presenting, in the opinion of the authors, clear advancement in the fields, in terms of simplicity, rapidity and usability. This review aims to demonstrate how the NM-based approaches represent valid alternatives to classical methods for polyphenols analysis, and are mature to be integrated for the rapid quality assessment of food quality in lab or directly in the field. PMID:29401719

  13. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    PubMed

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  14. Protective effects of Merlot red wine extract and its major polyphenols in PC12 cells under oxidative stress conditions.

    PubMed

    Martín, Sara; González-Burgos, Elena; Carretero, M Emilia; Gómez-Serranillos, M Pilar

    2013-01-01

    The potential effect of the extracts from free-run and pressed Merlot red wine has been evaluated in PC12 cells under oxidative stress situation. Comparing both vinification process, pressed Merlot red wine extract possessed higher neuroprotective activity than the free run wine, possibly attributed to the major content in all global polyphenolic families. High performance liquid chromatography determination of individual polyphenols showed that the major compounds found in Merlot red wine extract were quercetin, catechin, epicatechin, tyrosol, gallic acid, and procyanidins. Pretreatments with these polyphenolic compounds (0.25 mM and 0.1 mM, 24 h) significantly increased cell viability of H(2)O(2) and Fenton reaction treated cells. Moreover, these polyphenols attenuated ROS production and decreased the Redox Index of glutathione (RI = GSSG/GSH + GSSG) in cells treated only with Fenton reaction. Furthermore, some polyphenols induced antioxidant enzymes activity and protein expression. Quercetin was the most active. These results support the beneficial effects of red wine extracts and some of its polyphenols under oxidative stress conditions. This research provides evidences of the preventive properties of wine extracts and its major polyphenols under oxidative stress conditions. © 2012 Institute of Food Technologists®

  15. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina).

    PubMed

    Varela, M Celeste; Arslan, Idris; Reginato, Mariana A; Cenzano, Ana M; Luna, M Virginia

    2016-07-01

    Plants exposed to drought stress, as usually occurs in Patagonian shrublands, have developed different strategies to avoid or tolerate the lack of water during their development. Production of phenolic compounds (or polyphenols) is one of the strategies used by some native species of adverse environments to avoid the oxidative damage caused by drought. In the present study the relationship between phenolic compounds content, water availability and oxidative damage were evaluated in two native shrubs: Larrea divaricata (evergreen) and Lycium chilense (deciduous) of Patagonian shrublands by their means and/or by multivariate analysis. Samples of both species were collected during the 4 seasons for the term of 1 year. Soil water content, relative water content, total phenols, flavonoids, flavonols, tartaric acid esters, flavan-3-ols, proanthocyanidins, antioxidant capacity and lipid peroxidation were measured. According to statistical univariate analysis, L. divaricata showed high production of polyphenols along the year, with a phenolic compound synthesis enhanced during autumn (season of greatest drought), while L. chilense has lower production of these compounds without variation between seasons. The variation in total phenols along the seasons is proportional to the antioxidant capacity and inversely proportional to lipid peroxidation. Multivariate analysis showed that, regardless their mechanism to face drought (avoidance or tolerance), both shrubs are well adapted to semi-arid regions and the phenolic compounds production is a strategy used by these species living in extreme environments. The identification of polyphenol compounds showed that L. divaricata produces different types of flavonoids, particularly bond with sugars, while L. chilense produces high amount of non-flavonoids compounds. These results suggest that flavonoid production and accumulation could be a useful indicator of drought tolerance in native species. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Bioavailability study of a polyphenol-enriched extract from Hibiscus sabdariffa in rats and associated antioxidant status.

    PubMed

    Fernández-Arroyo, Salvador; Herranz-López, María; Beltrán-Debón, Raúl; Borrás-Linares, Isabel; Barrajón-Catalán, Enrique; Joven, Jorge; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio; Micol, Vicente

    2012-10-01

    The aqueous extracts of Hibiscus sabdariffa have been commonly used in folk medicine. Nevertheless, the compounds or metabolites responsible for its healthy effects have not yet been identified. The major metabolites present in rat plasma after acute ingestion of a polyphenol-enriched Hibiscus sabdariffa extract were characterized and quantified in order to study their bioavailability. The antioxidant status of the plasma samples was also measured through several complementary antioxidant techniques. High-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) was used for the bioavailability study. The antioxidant status was measured by ferric reducing ability of plasma method, thiobarbituric acid reactive substances assay, and superoxide dismutase activity assay. Seventeen polyphenols and metabolites have been detected and quantified. Eleven of these compounds were metabolites. Although phenolic acids were found in plasma without any modification in their structures, most flavonols were found as quercetin or kaempferol glucuronide conjugates. Flavonol glucuronide conjugates, which show longer half-life elimination values, are proposed to contribute to the observed lipid peroxidation inhibitory activity in the cellular membranes. By contrast, phenolic acids appear to exert their antioxidant activity through ferric ion reduction and superoxide scavenging at shorter times. We propose that flavonol-conjugated forms (quercetin and kaempferol) may be the compounds responsible for the observed antioxidant effects and contribute to the healthy effects of H. sabdariffa polyphenolic extract. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Polyphenol-Rich Lentils and Their Health Promoting Effects.

    PubMed

    Ganesan, Kumar; Xu, Baojun

    2017-11-10

    Polyphenols are a group of plant metabolites with potent antioxidant properties, which protect against various chronic diseases induced by oxidative stress. Evidence showed that dietary polyphenols have emerged as one of the prominent scientific interests due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are measured based on the human consumption and their bioavailability. Lentil ( Lens culinaris ; Family: Fabaceae) is a great source of polyphenol compounds with various health-promoting properties. Polyphenol-rich lentils have a potential effect on human health, possessing properties such as antioxidant, antidiabetic, anti-obesity, anti-hyperlipidemic, anti-inflammatory and anticancer. Based on the explorative study, the current comprehensive review aims to give up-to-date information on nutritive compositions, bioactive compounds and the health-promoting effect of polyphenol-rich lentils, which explores their therapeutic values for future clinical studies. All data of in vitro , in vivo and clinical studies of lentils and their impact on human health were collected from a library database and electronic search (Science Direct, PubMed and Google Scholar). Health-promoting information was gathered and orchestrated in the suitable place in the review.

  18. Polyphenols and Volatile Compounds in Commercial Chokeberry (Aronia melanocarpa) Products.

    PubMed

    Romani, Annalisa; Vignolini, Pamela; Ieri, Francesca; Heimler, Daniela

    2016-01-01

    Aronia melanocarpa (Michx.) Elliott commercial products (dried fruit, juice and compote) were analyzed for their polyphenol content by chromatographic and spectrophotometric analyses in order to ascertain the fate of this group of compounds when fresh fruit is processed and sold in different forms on the market. Different classes of polyphenols were investigated: hydroxycinnamic derivatives ranged from 0.65 mg/g to 4.30 mg/g, flavonoids from 0.36 mg/g to 1.12 mg/g, and anthocyanins from 0.65 to 7.08 mg/g sample. 4-O-Caffeoyl-quinic acid was tentatively identified for the first time in Aronia. In order to characterize better chokeberry juice, a GC profile of aroma compounds was obtained. The aroma juice compounds belong mainly to the chemical classes of alcohols (48.9%) and ketones (30.28%). The most abundant compound is 3-penthen-2-one (23.6%).

  19. Acute effect of tea, wine, beer, and polyphenols on ecto-alkaline phosphatase activity in human vascular smooth muscle cells.

    PubMed

    Negrão, Maria R; Keating, Elisa; Faria, Ana; Azevedo, Isabel; Martins, Maria J

    2006-07-12

    Alkaline phosphatase (ALP) is an ecto-enzyme widely distributed across species. It modulates a series of transmembranar transport systems, has an important role in bone mineralization, and can also be involved in vascular calcification. Polyphenol-rich diets seem to have protective effects on human health, namely, in the prevention of cardiovascular diseases. We aimed to investigate the effects of polyphenols and polyphenol-rich beverages upon membranar alkaline phosphatase (ecto-ALP) activity in intact human vascular smooth muscle cells (AALTR). The ecto-ALP activity was determined at pH 7.8, with p-nitrophenyl phosphate as the substrate, by absorbance spectrophotometry at 410 nm. Cell viability was assessed by the lactate dehydrogenase (LDH) method, and the polyphenol content of beverages was assessed using the Folin-Ciocalteu reagent. All polyphenols tested inhibited ecto-ALP activity, in a concentration-dependent way. Teas, wines, and beers also inhibited ecto-ALP activity, largely according to their polyphenol content. All tested compounds and beverages improved or did not change AALTR cell viability. Stout beer was an exception to the described behavior. Although more studies must be done, the inhibition of AALTR ecto-ALP activity by polyphenolic compounds and polyphenol-containing beverages may contribute to their cardiovascular protective effects.

  20. [Health effects of sour cherries with unique polyphenolic composition in their fruits].

    PubMed

    Hegedűs, Attila; Papp, Nóra; Blázovics, Anna; Stefanovitsné Bányai, Éva

    2018-05-01

    Health effects of fruit consumption are confirmed by many studies. Such effects are attributed to the polyphenolic compounds accumulating in fruit skin and mesocarp tissues. They contribute to the regulation on transcriptional, post-transcriptional and epigenetic levels. Since people consume much less fruits than the recommended quantities, a new approach includes the promotion of super fruits that are extremely rich sources of specific health compounds. A comparative analysis of Hungarian stone fruit cultivars detected a huge variability in fruit in vitro antioxidant capacity and total polyphenolic content. Two outstanding sour cherry cultivars ('Pipacs 1' and 'Fanal') were identified to accumulate elevated levels of polyphenolic compounds in their fruits. Sour cherries with different polyphenolic compositions were tested against alimentary induced hyperlipidemia using male Wistar rat model. Consumption of cherry fruit had different consequences for different cultivars: consumption of 'Pipacs 1' and 'Fanal' fruits resulted in 30% lower total cholesterol levels in the sera of hyperlipidemic animals after only 10 days of treatment. However, the consumption of 'Újfehértói fürtös' fruit has not induced significant alterations in the same parameter. Other lipid parameters also reflected the short-term beneficial effects of 'Pipacs 1' and 'Fanal' fruits. We suggest that not only some tropical and berry fruits might be considered as super fruits but certain genotypes of stone fruits as well. These have indeed marked physiological effects. Since 'Pipacs 1' and 'Fanal' are rich sources of colourless polyphenolics (e.g., phenolic acids and isoflavonoids) and anthocyanins, respectively, the protective effects associated with their consumption can be attributed to different polyphenolic compounds. Orv Hetil. 2018; 159(18): 720-725.

  1. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    PubMed

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  2. Deodorization of garlic breath volatiles by food and food components.

    PubMed

    Munch, Ryan; Barringer, Sheryl A

    2014-04-01

    The ability of foods and beverages to reduce allyl methyl disulfide, diallyl disulfide, allyl mercaptan, and allyl methyl sulfide on human breath after consumption of raw garlic was examined. The treatments were consumed immediately following raw garlic consumption for breath measurements, or were blended with garlic prior to headspace measurements. Measurements were done using a selected ion flow tube-mass spectrometer. Chlorophyllin treatment demonstrated no deodorization in comparison to the control. Successful treatments may be due to enzymatic, polyphenolic, or acid deodorization. Enzymatic deodorization involved oxidation of polyphenolic compounds by enzymes, with the oxidized polyphenols causing deodorization. This was the probable mechanism in raw apple, parsley, spinach, and mint treatments. Polyphenolic deodorization involved deodorization by polyphenolic compounds without enzymatic activity. This probably occurred for microwaved apple, green tea, and lemon juice treatments. When pH is below 3.6, the enzyme alliinase is inactivated, which causes a reduction in volatile formation. This was demonstrated in pH-adjusted headspace measurements. However, the mechanism for volatile reduction on human breath (after volatile formation) is unclear, and may have occurred in soft drink and lemon juice breath treatments. Whey protein was not an effective garlic breath deodorant and had no enzymatic activity, polyphenolic compounds, or acidity. Headspace concentrations did not correlate well to breath treatments. © 2014 Institute of Food Technologists®

  3. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa).

    PubMed

    Cendrowski, Andrzej; Ścibisz, Iwona; Kieliszek, Marek; Kolniak-Ostek, Joanna; Mitek, Marta

    2017-10-27

    Polyphenolic compounds, as a secondary metabolite of plants, possess great nutritional and pharmacological potential. Herein, we applied the green analytical method to study the nutrient profile of Rosa rugosa petals and liqueurs manufactured from them. Using the fast and validated ultra performance liquid chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method, we confirm the presence of the following compounds: phenolic acids, flavonols, flavan-3-ols and hydrolisable tannins (gallotannins and ellagitannins). R. rugosa petals contains up to 2175.43 mg polyphenols per 100 g fresh weight, therein 1517.01 mg ellagitannins per 100 g fresh weight. Liqueurs, traditionally manufactured from said petals using a conventional extraction method (maceration), also contain polyphenols in significant amounts (from 72% to 96% corresponding to percentage of theoretical polyphenol content in the used petals), therein ellagitannins amount to 69.7% on average. We confirmed that traditional maceration, most common for the isolation of polyphenols, is still suitable for the food industry due to its using aqueous ethanol, a common bio-solvent, easily available in high purity and completely biodegradable. Therefore R. rugosa used as a food may be considered as an ellagitannin-rich plant of economic importance. Manufactured rose liqueurs were stable and kept all their properties during the whole period of aging.

  4. Plant polyphenols and their anti-cariogenic properties: a review.

    PubMed

    Ferrazzano, Gianmaria F; Amato, Ivana; Ingenito, Aniello; Zarrelli, Armando; Pinto, Gabriele; Pollio, Antonino

    2011-02-11

    Polyphenols constitute one of the most common groups of substances in plants. Polyphenolic compounds have been reported to have a wide range of biological activities, many of which are related to their conventional antioxidant action; however, increasing scientific knowledge has highlighted their potential activity in preventing oral disease, including the prevention of tooth decay. The aim of this review is to show the emerging findings on the anti-cariogenic properties of polyphenols, which have been obtained from several in vitro studies investigating the effects of these bioactive molecules against Streptococcus mutans, as well as in vivo studies. The analysis of the literature supports the anti-bacterial role of polyphenols on cariogenic streptococci, suggesting (1) a direct effect against S. mutans; (2) an interaction with microbial membrane proteins inhibiting the adherence of bacterial cells to the tooth surface; and (3) the inhibition of glucosyl transferase and amylase. However, more studies, particularly in vivo and in situ, are necessary to establish conclusive evidence for the effectiveness and the clinical applications of these compounds in the prevention of dental caries. It is essential to better determine the nature and distribution of these compounds in our diet and to identify which of the hundreds of existing polyphenols are likely to provide the greatest effects.

  5. Growth Media Affect Assessment of Antimicrobial Activity of Plant-Derived Polyphenols.

    PubMed

    Xu, Xin; Ou, Zhen M; Wu, Christine D

    2018-01-01

    This study aimed to investigate the effects of different microbial growth media on the laboratory assessment of antimicrobial activity of natural polyphenolic compounds. The inhibition of the tea polyphenol EGCG on growth of selected oral microorganisms was evaluated in complex media and a protein-free chemically defined medium (CDM). Other antimicrobial agents (polyphenolic grape seed extract, plant alkaloid berberine, methyl salicylate, and chlorhexidine gluconate) were also tested in the study. The presence of proteins and their effects on the antimicrobial activity of EGCG were investigated by the addition of BSA to the CDM. The MICs of EGCG against test oral microorganisms were 4 to 64 times higher in complex media than in CDM. The polyphenolic grape seed extract exhibited similar discrepancies. However, the MICs of the nonpolyphenolic compounds (berberine, methyl salicylate, and chlorhexidine) were not significantly different between the two growth media. The MIC of EGCG against S. mutans UA159 in CDM with added BSA was 16 times higher than that in CDM alone. Therefore, nonproteinaceous CDM should be used to avoid interference of proteins with the active ingredients when testing the antimicrobial activity of plant-derived polyphenolic compounds against microorganisms. This will also minimize the discrepancies noted in results obtained by different investigators.

  6. Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology.

    PubMed

    Xu, Yan-Yang; Qiu, Yang; Ren, Hui; Ju, Dong-Hu; Jia, Hong-Lei

    2017-03-16

    Aronia melanocarpa berries are abundant in polyphenolic compounds. After juice production, the pomace of pressed berries still contains a substantial amount of polyphenolic compounds. For efficient utilization of A. melanocarpa berries and the enhancement of polyphenolic compound yields in Aronia melanocarpa pomace (AMP), total phenolics (TP) and total flavonoids (TF) from AMP were extracted, using ultrasound-assisted aqueous two-phase system (UAE-ATPS) extraction method. First, the influences of ammonium sulfate concentration, ethanol-water ratio, ultrasonic time, and ultrasonic power on TP and TF yields were investigated. On this basis, process variables such as ammonium sulfate concentration (0.30-0.35 g mL -1 ), ethanol-water ratio (0.6-0.8), ultrasonic time (40-60 min), and ultrasonic power (175-225 W) were further optimized by implementing Box-Benhnken design with response surface methodology. The experimental results showed that optimal extraction conditions of TP from AMP were as follows: ammonium sulfate concentration of 0.324 g mL -1 , ethanol-water ratio of 0.69, ultrasonic time of 52 min, and ultrasonic power of 200 W. Meanwhile, ammonium sulfate concentration of 0.320 g mL -1 , ethanol-water ratio of 0.71, ultrasonic time of 50 min, and ultrasonic power of 200 W were determined as optimum extraction conditions of TF in AMP. Experimental validation was performed, where TP and TF yields reached 68.15 ± 1.04 and 11.67 ± 0.63 mg g -1 , respectively. Close agreement was found between experimental and predicted values. Overall, the present results demonstrated that ultrasound-assisted aqueous two-phase system extraction method was successfully used to extract total phenolics and flavonoids in A. melanocarpa pomace.

  7. Haze in Apple-Based Beverages: Detailed Polyphenol, Polysaccharide, Protein, and Mineral Compositions.

    PubMed

    Millet, Melanie; Poupard, Pascal; Le Quéré, Jean-Michel; Bauduin, Remi; Guyot, Sylvain

    2017-08-09

    Producers of apple-based beverages are confronted with colloidal instability. Haze is caused by interactions between molecules that lead to the formation of aggregates. Haze composition in three apple-based beverages, namely, French sparkling cider, apple juice, and pommeau, was studied. Phenolic compounds, proteins, polysaccharides, and minerals were analyzed using global and detailed analytical methods. The results explained <75% (w/w) of haze dry mass. Polyphenols, represented mainly by procyanidins, were the main compounds identified and accounted for 10-31% of haze. However, oxidized phenolic compounds were probably underestimated and may represent a high proportion of haze. Proteins were present in all of the samples in proportions of <6% of haze except in two apple juice hazes, where they were the main constituents (18 and 24%). Polysaccharides accounted for 0-30% of haze. Potassium and calcium were the main minerals.

  8. Novel oxime based flavanone, naringin-oxime: synthesis, characterization and screening for antioxidant activity.

    PubMed

    Ozyürek, Mustafa; Akpınar, Damla; Bener, Mustafa; Türkkan, Baki; Güçlü, Kubilay; Apak, Reşat

    2014-04-05

    Recent interest in polyphenolic antioxidants due to their involvement in health benefits has led to the investigation of new polyphenolic compounds with enhanced antioxidant activity. Naringin (4',5,7-trihydroxyflavanone-7-β-l-rhamnoglucoside-(1,2)-α-d-glucopyranoside) is one of the major flavanones in citrus and grapefruit. The present study aimed to synthesize naringin oxime from naringin and to evaluate its antioxidant and anticancer potential using in vitro assay system. The structure of the synthesized compound, naringin oxime, was elucidated by FT-IR, (1)H NMR, elemental analysis and UV-vis spectroscopy. Antioxidant capacity of naringin oxime, as measured by the cupric reducing antioxidant capacity (CUPRAC) method, was found to be higher than that of the parent compound naringin. Other parameters of antioxidant activity (scavenging effects on OH, O2(-), and H2O2) of naringin and naringin oxime were also determined. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. In vitro Inhibition of Pancreatic Lipase by Polyphenols:
A Kinetic, Fluorescence Spectroscopy and Molecular Docking Study

    PubMed Central

    2017-01-01

    Summary The inhibitory activity and binding characteristics of caffeic acid, p-coumaric acid, quercetin and capsaicin, four phenolic compounds found in hot pepper, against porcine pancreatic lipase activity were studied and compared to hot pepper extract. Quercetin was the strongest inhibitor (IC50=(6.1±2.4) µM), followed by p-coumaric acid ((170.2±20.6) µM) and caffeic acid ((401.5±32.1) µM), while capsaicin and a hot pepper extract had very low inhibitory activity. All polyphenolic compounds showed a mixed-type inhibition. Fluorescence spectroscopy studies showed that polyphenolic compounds had the ability to quench the intrinsic fluorescence of pancreatic lipase by a static mechanism. The sequence of Stern-Volmer constant was quercetin, followed by caffeic and p-coumaric acids. Molecular docking studies showed that caffeic acid, quercetin and p-coumaric acid bound near the active site, while capsaicin bound far away from the active site. Hydrogen bonds and π-stacking hydrophobic interactions are the main pancreatic lipase-polyphenolic compound interactions observed. PMID:29540986

  10. Skin bioavailability of dietary vitamin E, carotenoids, polyphenols, vitamin C, zinc and selenium.

    PubMed

    Richelle, Myriam; Sabatier, Magalie; Steiling, Heike; Williamson, Gary

    2006-08-01

    Dietary bioactive compounds (vitamin E, carotenoids, polyphenols, vitamin C, Se and Zn) have beneficial effects on skin health. The classical route of administration of active compounds is by topical application direct to the skin, and manufacturers have substantial experience of formulating ingredients in this field. However, the use of functional foods and oral supplements for improving skin condition is increasing. For oral consumption, some dietary components could have an indirect effect on the skin via, for example, secondary messengers. However, in the case of the dietary bioactive compounds considered here, we assume that they must pass down the gastrointestinal tract, cross the intestinal barrier, reach the blood circulation, and then be distributed to the different tissues of the body including the skin. The advantages of this route of administration are that the dietary bioactive compounds are metabolized and then presented to the entire tissue, potentially in an active form. Also, the blood continuously replenishes the skin with these bioactive compounds, which can then be distributed to all skin compartments (i.e. epidermis, dermis, subcutaneous fat and also to sebum). Where known, the distribution and mechanisms of transport of dietary bioactive compounds in skin are presented. Even for compounds that have been studied well in other organs, information on skin is relatively sparse. Gaps in knowledge are identified and suggestions made for future research.

  11. Biphasic regulation of polymorphonuclear leukocyte spreading by polyphenolic compounds with pyrogallol moieties.

    PubMed

    Kori, Soichiro; Namiki, Hideo; Suzuki, Kingo

    2009-09-01

    Green tea polyphenols have been reported to have anti-inflammatory activities, although the molecular mechanisms responsible for this effect remain unclear. In the present study, we examined the effect of green tea extract and a variety of polyphenolic compounds on spreading of peripheral blood polymorphonuclear leukocytes (PMNs) over fibrinogen-coated surfaces. Green tea extract exerted a biphasic effect on PMN spreading; it induced or suppressed spreading at low and high concentrations, respectively. We also found that pyrogallol-bearing compounds have spreading induction activity. Among the compounds tested, tannic acid (TA) had the strongest activity; the concentrations required for induction of maximal spreading were 2 microM for TA, 200 microM for (-)-epigallocatechin gallate, and 2000 microM for the other active compounds. Furthermore, TA was the only compound showing a biphasic effect similar to that of green tea extract; TA at 20 or 200 microM suppressed spreading. The spreading-stimulatory signal was still latent during PMN exposure to TA at concentrations that inhibited spreading, because the pre-exposed PMNs underwent spreading when plated after removal of free TA by centrifugation. The spreading-inhibitory effect of TA at high concentrations overcame the induction of spreading by other stimuli, including phorbol 12-myristate 13-acetate, hydrogen peroxide, denatured fibrinogen surfaces, and naked plastic surfaces. These results suggest that TA as well as green tea extract is bi-functional, having pro-inflammatory and anti-inflammatory effects at low and high concentrations, respectively. Pharmacological use of TA may thus provide new strategies aimed at regulation of PMN spreading for control of inflammation.

  12. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    PubMed

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Putative identification of new p-coumaroyl glycoside flavonoids in grape by ultra-high performance liquid chromatography/high-resolution mass spectrometry.

    PubMed

    Panighel, Annarita; De Rosso, Mirko; Dalla Vedova, Antonio; Flamini, Riccardo

    2015-02-28

    Grape polyphenols are antioxidant compounds, markers in vine chemotaxonomy, and involved in color stabilization of red wines. Sugar acylation usually confers higher stability on glycoside derivatives and this effect is enhanced by an aromatic substituent such as p-coumaric acid. Until now, only p-coumaroyl anthocyanins have been found in grape. A method of 'suspect screening analysis' by ultra-high-performance liquid chromatography/high-resolution mass spectrometry (UHPLC/QTOFMS) has recently been developed to study grape metabolomics. In the present study, this approach was used to identify new polyphenols in grape by accurate mass measurement, MS/MS fragmentation, and study of correlations between fragments observed and putative structures. Three putative p-coumaroyl flavonoids were identified in Raboso Piave grape extract: a dihydrokaempferide-3-O-p-coumaroylhexoside-like flavanone, isorhamnetin-3-O-p-coumaroylglucoside, and a chrysoeriol-p-coumaroylhexoside-like flavone. Accurate MS provided structural characterization of functional groups, and literature data indicates their probable position in the molecule. A fragmentation scheme is proposed for each compound. Compounds were identified by overlapping various analytical methods according to recommendations in the MS-based metabolomics literature. Stereochemistry and the definitive position of substituents in the molecule can only be confirmed by isolation and characterization or synthesis of each compound. These findings suggest addressing research of acylated polyphenol glycosides to other grape varieties. Copyright © 2015 John Wiley & Sons, Ltd.

  14. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root.

    PubMed

    Desta, Kebede Taye; Kim, Gon-Sup; Kim, Yun-Hi; Lee, Won Sup; Lee, Soo Jung; Jin, Jong Sung; Abd El-Aty, A M; Shin, Ho-Chul; Shim, Jae-Han; Shin, Sung Chul

    2016-02-01

    Agastache rugosa Kuntze (Korean mint) is used as a spice and in folk medicine in East Asia. The present study identified a total of 18 polyphenols from the flower, leaf, stem and roots of this plant using high-performance liquid chromatography-tandem mass spectrometry. Fourteen of these compounds had not previously been identified in these plant tissues. Each polyphenol was validated in comparison with external calibration curves constructed using structurally related compounds, with determination coefficients >0.9993. The limits of detection and quantification were 0.092-0.650 and 0.307-2.167 mg/L, respectively. Recoveries of 61.92-116.44% were observed at two spiking levels, with 0.91-11% precision, expressed as relative standard deviation (except anthraquinone spiked at 10 mg/L). Hydroxycinnamic acid was the most abundant compound in the root, while the flowers showed the highest total flavonoid level. Antioxidant activities, determined in terms of reducing power, Fe(2+) chelating activity and the radical scavenging activities using α,α-diphenyl-β-picrylhydrazyl and 2-2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid, increased in a concentration-dependent manner; the highest activity was identified in the stems, followed by leaves > flowers > roots. These findings indicate that A. rugosa is a good source of bioactive compounds and can be used as a functional food. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Pilot study of diet and microbiota: interactive associations of fibers and polyphenols with human intestinal bacteria.

    PubMed

    Cuervo, Adriana; Valdés, Lorena; Salazar, Nuria; de los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia; Gueimonde, Miguel; González, Sonia

    2014-06-11

    Several studies have addressed the use of dietary fibers in the modulation of intestinal microbiota; however, information about other highly correlated components in foods, such as polyphenols, is scarce. The aim of this work was to explore the association between the intake of fibers and polyphenols from a regular diet and fecal microbiota composition in 38 healthy adults. Food intake was recorded using an annual food frequency questionnaire (FFQ). Quantification of microbial populations in feces was performed by quantitative PCR. A negative association was found between the intake of pectins and flavanones from oranges and the levels of Blautia coccoides and Clostridium leptum. By contrast, white bread, providing hemicellulose and resistant starch, was directly associated with Lactobacillus. Because some effects on intestinal microbiota attributed to isolated fibers or polyphenols might be modified by other components present in the same food, future research should be focused on diet rather than individual compounds.

  16. Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida BUNGE) fruits.

    PubMed

    Jurikova, Tunde; Sochor, Jiri; Rop, Otakar; Mlcek, Jiri; Balla, Stefan; Szekeres, Ladislav; Adam, Vojtech; Kizek, Rene

    2012-12-06

    Chinese hawthorn (Crataegus pinnatifida Bge.) fruits are rich in polyphenols (e.g., epicatechin, procyanidin B2, procyanidin B5, procyanidin C1, hyperoside, isoquercitrin and chlorogenic acid)--active compounds that exert beneficial effects. This review summarizes all information available on polyphenolic content and methods for their quantification in Chinese hawthorn berries and the relationships between individual polyphenolic compounds as well. The influence of species or cultivars, the locality of cultivation, the stage of maturity, and extract preparation conditions on the polyphenolic content were discussed as well. Currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included in the Chinese Pharmacopoeia. Recent trials have demonstrated the efficacy of Chinese hawthorn fruit in lowering blood cholesterol and the risk of cardiovascular diseases. The fruit has also demonstrated anti-inflammatory and anti-tumour activities. This review deals mainly with the biological activity of the fruit related to its antioxidant properties.

  17. Identification of Antidiabetic Compounds from Polyphenolic-rich Fractions of Bulbine abyssinica A. Rich Leaves

    PubMed Central

    Odeyemi, Samuel Wale; Afolayan, Anthony Jiede

    2018-01-01

    Background: Bulbine abyssinica has been reported to possess a variety of pharmacological activities traditionally. Previous work suggested its antidiabetic properties, but information on the antidiabetic compounds is still lacking. Objective: The present research exertion was aimed to isolate and identify biologically active polyphenols from B. abyssinica leaves and to evaluate their efficacy on carbohydrate digesting enzymes. Materials and Methods: Fractionation of the polyphenolic contents from the methanolic extract of B. abyssinica leaves was executed by the silica gel column chromatography to yield different fractions. The antioxidant activities of these fractions were carried out against 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl radicals, and ferric ion-reducing antioxidant power (FRAP). In vitro antidiabetic experimentation was performed by evaluating the α-amylase and α-glucosidase inhibitory capacity. The isolated polyphenols were then identified using liquid chromatography and mass spectroscopy (LC/MS). Results: Out of the eight polyphenolic fractions (BAL 1–8), BAL-4 has the highest inhibitory activity against ABTS radicals whereas BAL-6 showed potent ferric ion-reducing capacity. BAL-5 was the most effective fraction with antidiabetic activity with IC50of 140.0 and 68.58 ± 3.2 μg/ml for α-amylase and α-glucosidase inhibitory activities, respectively. All the fractions competitively inhibited α-amylase, BAL-5 and BAL-6 also inhibited α-glucosidase competitively, while BAL-4 and BAL-1 exhibited noncompetitive and near competitive inhibitions against α-glucosidase, respectively. The LC/MS analysis revealed the presence of carvone in all the fractions. Conclusions: The present study demonstrates the antioxidant and antidiabetic activities of the isolated polyphenols from B. abyssinica. SUMMARY Polyphenols were successfully isolated and identified from Bulbine abyssinica leavesThe isolated polyphenols are biologically active with high antioxidant as well as inhibitor of carbohydrate-digesting enzymesB. abyssinica can be a good source of amylase and glucosidase inhibitorsB. abyssinica can be used as complementary or alternative therapeutic agents especially for the treatment of diabetesCarvone, quercetin, and psoralen could be the compounds responsible for the α-amylase and α-glucosidase inhibitory activities. Abbreviations Used: ABTS: 2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), DPPH: 2,2-diphenyl-1-picrylhydrazyl, FRAP: Ferric ion-reducing antioxidant power, LC/MS: Liquid chromatography and mass spectroscopy, AGEs: Advanced glycation end products, TLC: Thin-layer chromatography, MeOH: Methanol, PNP-G: ρ-Nitrophenyl-α-D-Glucoside, R2: Coefficient of determination, mgQE: Milligram quercetin equivalent, mgTAE: Milligram tannic acid equivalent, mgCE: Milligram catechin equivalent, g: Gram PMID:29568191

  18. Sensorial properties of red wine polyphenols: Astringency and bitterness.

    PubMed

    Soares, Susana; Brandão, Elsa; Mateus, Nuno; de Freitas, Victor

    2017-03-24

    Polyphenols have been the subject of numerous research over the past years, being referred as the nutraceuticals of modern life. The healthy properties of these compounds have been associated to a natural chemoprevention of 21st century major diseases such as cancer and neurodegenerative diseases (e.g. Parkinson's and Alzheimer's). This association led to an increased consumption of foodstuffs rich in these compounds such as red wine. Related to the ingestion of polyphenols are the herein revised sensorial properties (astringency and bitterness) which are not still pleasant. This review intends to be an outline both at a sensory as a molecular level of the mechanisms underlying astringency and bitterness of polyphenols. Up-to-date knowledge of this matter is discussed in detail.

  19. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors

    PubMed Central

    Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.; Abdalla, Dulcineia S. P.

    2013-01-01

    Several biological activities have been described for polyphenolic compounds, including a modulator effect on the immune system. The effects of these biologically active compounds on the immune system are associated to processes as differentiation and activation of immune cells. Among the mechanisms associated to immune regulation are epigenetic modifications as DNA methylation of regulatory sequences, histone modifications and posttranscriptional repression by microRNAs that influences the gene expression of key players involved in the immune response. Considering that polyphenols are able to regulate the immune function and has been also demonstrated an effect on epigenetic mechanisms, it is possible to hypothesize that there exists a mediator role of epigenetic mechanisms in the modulation of the immune response by polyphenols. PMID:23812304

  20. Phenolic profile in Dunaliella tertiolecta growing under copper stress

    NASA Astrophysics Data System (ADS)

    López, Aroa; Rico, Milagros; Magdalena Santana-Casiano, J.; González-Dávila, Melchor; González, Aridane G.

    2014-05-01

    The present study investigates the phenolic profile of exudates and extracts of the green alga Dunaliella tertiolecta harvested in natural seawater (control) and in natural seawater in the presence of Cu(II) (315 nmol L-1 and 790 nmol L-1). Determining how polyphenol concentrations change in response to high metal levels will demonstrate the role of polyphenols in microalgae and might be useful to help explaining the dynamics of this important class of compounds in seawater. The use of reversed phase high performance liquid chromatography (RP-HPLC) allowed the identification of 14 phenolic constituents. The different experimental conditions changed the concentrations and types of polyphenols as a function of the concentration of the metal added. D. tertiolecta excretes almost twice the polyphenol concentration in the 790 nmol L-1 copper enrichment experiment, respect to the reference culture (without metal additions), in order to ameliorate the toxicity of the copper in the solution, acting as a protective mechanism. The in vitro antioxidant activity determined by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay revealed that the extract of cells from the control exhibited higher radical scavenging activity (14 ± 0.5%) than the synthetic compound butylated hydroxytoluene (BHT) (5 ± 0.1%), commonly used in the food industry as preservative. The concentration of polyphenols within the cell encourage further studies aimed at using algae as a source of chemical principles to be considered in the health, food and pharmaceutical industry.

  1. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants

    USDA-ARS?s Scientific Manuscript database

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al3+ and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and ...

  2. A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry.

    PubMed

    Abad-García, Beatriz; Berrueta, Luis A; Garmón-Lobato, Sergio; Gallo, Blanca; Vicente, Francisca

    2009-07-10

    In the present study, a methodology based on liquid chromatography with diode array detection (HPLC/DAD) coupled to an electrospray ionization (ESI) interface and a triple quadrupole mass spectrometer for the simultaneous identification of phenolic compounds in fruit juices has been developed. 72 available phenolic compound standards from diverse families present in fruits have been studied in order to analyze their fragmentation pattern. As a result, a general strategy for the characterization of unknown phenolic compounds in fruit juices was designed: (i) taking into account its UV-visible spectrum and elution order, assign the unknown polyphenol to a polyphenol class, (ii) identify the quasi-molecular ion using positive and negative MS spectra, being supported by adducts generated with solvent or sodium and molecular complexes, (iii) determinate the pattern of glycosylation in positive mode using ESI(+)-CID MS/MS product ion scan experiments, selecting the quasi-molecular ion as precursor ion, and finally, (iv) study the identity of the aglycone through ESI(+)-CID MS/MS product ion spectra from the protonated aglycone, [Y(0)](+). This strategy was successfully employed for the characterization of known and unknown phenolic compounds in juices from 17 different fruits.

  3. Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults.

    PubMed

    Sandhu, Amandeep K; Miller, Marshall G; Thangthaeng, Nopporn; Scott, Tammy M; Shukitt-Hale, Barbara; Edirisinghe, Indika; Burton-Freeman, Britt

    2018-01-24

    Strawberries contain a wide array of nutrients and phytochemicals including polyphenols such as anthocyanins, proanthocyanidins and ellagitannins. These polyphenols are absorbed and metabolized to various phenolic metabolites/conjugates in the body, which may play a role in disease risk reduction. In the present study, we investigated the metabolic fate of strawberry polyphenols after chronic (90 days) supplementation of freeze-dried strawberry (24 g d -1 , equivalent to 2 cups of fresh strawberries) vs. control powder in 19 healthy older adults. Blood samples were collected at two time-points i.e., fasting (t = 0 h) and 2 h after the breakfast meal. On days 45 and 90 breakfast also included a control or strawberry drink consistent with their treatment randomization. A total of 21 polyphenolic metabolites were quantified in plasma consisting of 3 anthocyanins/metabolites, 3 urolithin metabolites and 15 phenolic acid metabolites. Among anthocyanins/metabolite, pelargonidin glucuronide (85.7 ± 9.0 nmol L -1 , t = 2 h, day 90) was present in the highest concentration. Persistent concentrations of anthocyanins/metabolites, urolithins and some phenolic acids were observed in fasting (t = 0 h) plasma samples on day 45 and 90 after strawberry drink consumption suggesting a role of enteric, enterohepatic recycling or upregulation of gut microbial and/or human metabolism of these compounds. Our results suggest that strawberry polyphenols are absorbed and extensively metabolized, and can persist in the circulation.

  4. Phenolic profiles and polyphenol oxidase (PPO) gene expression of red clover (Trifolium pratense) selected for decreased postharvest browning

    USDA-ARS?s Scientific Manuscript database

    Red clover (Trifolium pratense L.) is a legume forage abundant in phenolic compounds. It tends to brown when cut for hay, due to oxidation of phenolic compounds catalyzed by polyphenol oxidase (PPO), and subsequent binding to proteins. Selecting for a greener hay may provide information about the re...

  5. Aronia melanocarpa Juice Induces a Redox-Sensitive p73-Related Caspase 3-Dependent Apoptosis in Human Leukemia Cells

    PubMed Central

    Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B.

    2012-01-01

    Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G2/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells. PMID:22412883

  6. Engineering of Microbial Cell Factories for the Production of Plant Polyphenols with Health-Beneficial Properties.

    PubMed

    Dudnik, Alexey; Gaspar, Paula; Neves, Ana Rute; Forster, Jochen

    2018-05-15

    Polyphenols form a group of important natural bioactive compounds with numerous ascribed health-beneficial attributes (e.g. antioxidant, anti-inflammatory, anti-microbial and tumor-suppressing properties). Some polyphenols can also be used as natural dyes or plastic precursors. Notwithstanding their relevance, production of most of these compounds still relies on extraction from plant material, which for most of it is a costly and an inefficient procedure. The use of microbial cell factories for this purpose is an emerging alternative that could allow a more efficient and sustainable production. The most recent advances in molecular biology and genetic engineering, combined with the ever-growing understanding of microbial physiology have led to multiple success stories. Production of multiple polyphenolic compounds or their direct precursors has been achieved not only in the common production hosts, such as Escherichia coli and Saccharomyces cerevisiae but also in Corynebacterium glutamicum and Lactococcus lactis. However, boosting production of native compounds or introduction of heterologous biosynthetic pathways also brings certain challenges, such as the need to express, balance and maintain efficient precursor supply. This review will discuss the most recent advances in the field of metabolic engineering of microorganisms for polyphenol biosynthesis and its future perspectives, as well as outlines their potential health benefits and current production methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion

    PubMed Central

    Mandalari, Giuseppina; Vardakou, Maria; Faulks, Richard; Bisignano, Carlo; Martorana, Maria; Smeriglio, Antonella; Trombetta, Domenico

    2016-01-01

    The goal of the present study was to quantify the rate and extent of polyphenols released in the gastrointestinal tract (GIT) from natural (NS) and blanched (BS) almond skins. A dynamic gastric model of digestion which provides a realistic simulation of the human stomach was used. In order to establish the effect of a food matrix on polyphenols bioaccessibility, NS and BS were either digested in water (WT) or incorporated into home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). Phenolic acids were the most bioaccessible class (68.5% release from NS and 64.7% from BS). WT increased the release of flavan-3-ols (p < 0.05) and flavonols (p < 0.05) from NS after gastric plus duodenal digestion, whereas CB and HB were better vehicles for BS. FM lowered the % recovery of polyphenols, the free total phenols and the antioxidant status in the digestion medium, indicating that phenolic compounds could bind protein present in the food matrix. The release of bioactives from almond skins could explain the beneficial effects associated with almond consumption. PMID:27649239

  8. Polyphenol composition and antioxidant activity of Kei-apple (Dovyalis caffra) juice.

    PubMed

    Loots, Du Toit; van der Westhuizen, Francois H; Jerling, Johann

    2006-02-22

    The polyphenolic and ascorbate (ASC) components as well as the antioxidant capacity of Kei-apple (Dovyalis caffra) juice were analyzed and compared to three other fruit juices. The Kei-apple juice had significantly the highest total polyphenolic concentrations (1013 mg gallic acid equivalent/L), and solid phase (C(18)) fractionation identified the majority of these polyphenols to be phenolic acids. The Kei-apple juice also had significantly the highest ASC concentrations (658 mg/L), which showed exceptional heat stability with very little conversion to dehydroascorbate (DHA). Antioxidant capacities of both the unfractionated fruit juices and their solid phase-extracted fractions, as determined by oxygen radical absorbance capacity and ferric reducing antioxidant power analyses, correlated well to the polyphenol concentrations. Gas chromatography-mass spectrometry analyses showed caffeic acid as the most abundant polyphenol present (128.7 mg/L) in the Kei-apple juice; it contributed to 63% of the total antioxidant capacity (of all of the individual compounds identified). Other notable polyphenols identified in higher concentrations included p-coumaric acid, p-hydroxyphenylacetic acid, and protocatechuic acid. Our results therefore support the putative high antioxidant value linked to this fruit and better define this potential in terms of the major antioxidants that exist in the Kei-apple.

  9. Hydrolyzable Tannins, Flavonol Glycosides, and Phenolic Acids Show Seasonal and Ontogenic Variation in Geranium sylvaticum.

    PubMed

    Tuominen, Anu; Salminen, Juha-Pekka

    2017-08-09

    The seasonal variation of polyphenols in the aboveground organs and roots of Geranium sylvaticum in four populations was studied using UPLC-DAD-ESI-QqQ-MS/MS. The content of the main compound, geraniin, was highest (16% of dry weight) in the basal leaves after the flowering period but stayed rather constant throughout the growing season. Compound-specific mass spectrometric methods revealed the different seasonal patterns in minor polyphenols. Maximum contents of galloylglucoses and flavonol glycosides were detected in the small leaves in May, whereas the contents of further modified ellagitannins, such as ascorgeraniin and chebulagic acid, increased during the growing season. In flower organs, the polyphenol contents differed significantly between ontogenic phases so that maximum amounts were typically found in the bud phase, except in pistils the amount of gallotannins increased significantly in the fruit phase. These results can be used in evaluating the role of polyphenols in plant-herbivore interactions or in planning the best collection times of G. sylvaticum for compound isolation purposes.

  10. A novel in vitro whole plant system for analysis of polyphenolics and their antioxidant potential in cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Cahill, David M; Conlan, Xavier A; Adholeya, Alok

    2014-10-15

    Plants are an important source for medicinal compounds. Chemical screening and selection is critical for identification of compounds of interest. Ocimum basilicum (Basil) is a rich source of polyphenolics and exhibits high diversity, therefore bioprospecting of a suitable cultivar is a necessity. This study reports on the development of a true to type novel "in vitro system" and its comparison with a conventional system for screening and selection of cultivars for high total phenolics, individual polyphenolics, and antioxidant content. We have shown for the first time using online acidic potassium permanganate chemiluminescence that extracts from Ocimum basilicum showed antioxidant potential. The current study identified the cultivar specific composition of polyphenolics and their antioxidant properties. Further, a distinct relationship between plant morphotype and polyphenolic content was also found. Of the 15 cultivars examined, "Holy Green", "Red Rubin", and "Basil Genovese" were identified as high polyphenolic producing cultivars while "Subja" was determined to be a low producer. The "in vitro system" enabled differentiation of the cultivars in their morphology, polyphenolic content, and antioxidant activity and is a cheap and efficient method for bioprospecting studies.

  11. Oenology: red wine procyanidins and vascular health.

    PubMed

    Corder, R; Mullen, W; Khan, N Q; Marks, S C; Wood, E G; Carrier, M J; Crozier, A

    2006-11-30

    Regular, moderate consumption of red wine is linked to a reduced risk of coronary heart disease and to lower overall mortality, but the relative contribution of wine's alcohol and polyphenol components to these effects is unclear. Here we identify procyanidins as the principal vasoactive polyphenols in red wine and show that they are present at higher concentrations in wines from areas of southwestern France and Sardinia, where traditional production methods ensure that these compounds are efficiently extracted during vinification. These regions also happen to be associated with increased longevity in the population.

  12. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    PubMed

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.

  13. Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols.

    PubMed

    Kammerer, Dietmar R; Carle, Reinhold; Stanley, Roger A; Saleh, Zaid S

    2010-06-09

    The purification and fractionation of phenolic compounds from crude plant extracts using a food-grade acrylic adsorbent were studied at pilot-plant scale. A diluted apple juice concentrate served as a model phenolic solution for column adsorption and desorption trials. Phenolic concentrations were evaluated photometrically using the Folin-Ciocalteu assay and by HPLC-DAD. Recovery rates were significantly affected by increasing phenolic concentrations of the feed solutions applied to the column. In contrast, the flow rate during column loading hardly influenced adsorption efficiency, whereas the temperature and pH value were shown to be crucial parameters determining both total phenolic recovery rates and the adsorption behavior of individual polyphenols. As expected, the eluent composition had the greatest impact on the desorption characteristics of both total and individual phenolic compounds. HPLC analyses revealed significantly different elution profiles of individual polyphenols depending on lipophilicity. This technique allows fractionation of crude plant phenolic extracts, thus providing the opportunity to design the functional properties of the resulting phenolic fractions selectively, and the present study delivers valuable information with regard to the adjustment of individual process parameters.

  14. Polyphenol-Rich Pomegranate Juice Reduces IgE Binding to Cashew Nut Allergens

    USDA-ARS?s Scientific Manuscript database

    Cashew nut allergy is mediated by IgE binding to seed-storage proteins including Ana o 1, 2, and 3. Cashew nuts commonly cause severe reactions and only small amounts are needed. Polyphenol rich juices and polyphenol compounds have been demonstrated to complex with peanut allergens. The interacti...

  15. Plant polyphenols as natural drugs for the management of Down syndrome and related disorders.

    PubMed

    Vacca, Rosa Anna; Valenti, Daniela; Caccamese, Salvatore; Daglia, Maria; Braidy, Nady; Nabavi, Seyed Mohammad

    2016-12-01

    Polyphenols are secondary metabolites of plants largely found in fruits, vegetables, cereals and beverages, and therefore represent important constituents of the human diet. Increasing studies have demonstrated the potential beneficial effects of polyphenols on human health. Extensive reviews have discussed the protective effects of polyphenols against a series of diseases such as cancer, cardiovascular diseases, diabetes, and neurodegenerative disorders. Limited studies have investigated the potential therapeutic effects of these natural compounds on neurodevelopmental disorders associated with intellectual disability, such as Down syndrome (DS), for which mitochondrial dysfunctions and oxidative stress are hallmarks and contribute to the deleterious symptoms and cognitive decline. This review, starting from the structure, source, bioavailability and pharmacokinetics of relevant polyphenols, highlights recent studies on the effect and potential molecular mechanism(s) of action of the phenolic compounds epigallocatechin-3-gallate, resveratrol and hydroxytyrosol in restoring mitochondrial energy deficit and in reversing phenotypical alteration in DS. The clinical implications of plant polyphenol dietary supplements as therapeutic tools in managing DS and other intellectual disability-related diseases, is also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of mash maceration on the polyphenolic content and visual quality attributes of cloudy apple juice.

    PubMed

    Mihalev, Kiril; Schieber, Andreas; Mollov, Plamen; Carle, Reinhold

    2004-12-01

    The effects of enzymatic mash treatments on yield, turbidity, color, and polyphenolic content of cloudy apple juice were studied. Using HPLC-ESI-MS, cryptochlorogenic acid was identified in cv. Brettacher cloudy apple juice for the first time. Commercial pectolytic enzyme preparations with different levels of secondary protease activity were tested under both oxidative and nonoxidative conditions. Without the addition of ascorbic acid, oxidation substantially decreased chlorogenic acid, epicatechin, and procyanidin B2 contents due to enzymatic browning. The content of chlorogenic acid as the major polyphenolic compound was also influenced by the composition of pectolytic enzyme preparations because the presence of secondary protease activity resulted in a rise of chlorogenic acid. The latter effect was probably due to the inhibited protein-polyphenol interactions, which prevented binding of polyphenolic compounds to the matrix, thus increasing their antioxidative potential. The results obtained clearly demonstrate the advantage of the nonoxidative mash maceration for the production of cloud-stable apple juice with a high polyphenolic content, particularly in a premature processing campaign.

  17. Antiobesity effect of polyphenolic compounds from molokheiya (Corchorus olitorius L.) leaves in LDL receptor-deficient mice.

    PubMed

    Wang, Li; Yamasaki, Masayuki; Katsube, Takuya; Sun, Xufeng; Yamasaki, Yukikazu; Shiwaku, Kuninori

    2011-03-01

    Dietary supplementation with polyphenolic compounds is associated with reduced diet-induced obesity and metabolic disorders in humans. The antioxidative properties of polyphenolic compounds contribute to their antiobesity effect in animal experiments and human studies. The aim of the study was to investigate the antiobesity effect of polyphenolic compounds from molokheiya leaves in LDLR-/- mice fed high-fat diet and to elucidate the mechanism of this effect. Three groups of LDLR-/- mice were fed with a high-fat diet, supplemented with 0% (control), 1 or 3% molokheiya leaf powder (MLP). Gene expression in the liver associated with lipid and glucose metabolism was analyzed, and physical parameters and blood biochemistry were determined. Compared to controls, mice body weight gain (P = 0.003), liver weight (P = 0.001) and liver triglyceride levels (P = 0.005) were significantly lower in the two MLP groups. Epididymal adipose tissue weight (P = 0.003) was reduced in the 3% MLP group. Liver tissue gene expression of gp91phox (NOX2), involved in oxidative stress, was significantly down-regulated (P = 0.005), and PPARα and CPT1A, related to the activation of β-oxidation, were significantly up-regulated (P = 0.025 and 0.006, respectively) in the 3% MLP group compared to the control group. Our results demonstrate an antiobesity effect of polyphenolic compounds from molokheiya leaves and that this effect is associated with reduction in oxidative stress and enhancement of β-oxidation in the liver. Consumption of molokheiya leaves may be beneficial for preventing diet-induced obesity.

  18. (-)-Gossypol reduces invasiveness in metastatic prostate cancer cells

    USDA-ARS?s Scientific Manuscript database

    Acquisition of metastatic ability by prostatic cancer cells is the most lethal aspect of prostatic cancer progression. (-)-Gossypol, a polyphenolic compound present in cottonseeds, possesses anti-proliferation and pro-apoptotic effects in various cancer cells. In this study, the differences betwee...

  19. Preparative separation of grape skin polyphenols by high-speed counter-current chromatography.

    PubMed

    Luo, Lanxin; Cui, Yan; Zhang, Shuting; Li, Lingxi; Li, Yuanyuan; Zhou, Peiyu; Sun, Baoshan

    2016-12-01

    To develop an efficient method for large preparation of various individual polyphenols from white grape skins (Fernão Pires; Vitis vinifera) by preparative high-speed counter-current chromatography (HSCCC) and preparative-HPLC, an optimized preparative HSCCC condition with two-phase solvent system composed of Hex-EtOAc-H2O (1:50:50, v/v) was used to separate grape skin polyphenols into various fractions. Both the tail-head and head-tail elution modes were used with a flow rate of 3.0ml/min and a rotary speed of 950rpm. Afterwards, a preparative-HPLC separation was applied to isolate individual polyphenols in each of the fractions from HSCCC. Total of 7 fractions (Fraction A to G) were obtained from grape skin extract by HSCCC. After preparative-HPLC isolation, fifteen individual compounds were obtained, most of which presented high yields and purity (all over 90%). The HSCCC method followed with preparative-HPLC appeared to be convenient and economical, constituting an efficient strategy for the isolation of grape skin polyphenols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Qualitative Analysis of Polyphenols in Macroporous Resin Pretreated Pomegranate Husk Extract by HPLC-QTOF-MS.

    PubMed

    Abdulla, Rahima; Mansur, Sanawar; Lai, Haizhong; Ubul, Ablikim; Sun, Guangying; Huang, Guozheng; Aisa, Haji Akber

    2017-09-01

    Pomegranate (Punica granatum L.) husk is a traditional herbal medicine abundant in phenolic compounds and plays some roles in the treatment of oxidative stress, bacterial and viral infection, diabetes mellitus, and acute and chronic inflammation. Identification and determination of polyphenols in macroporous resin pretreated pomegranate husk extract by high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The total polyphenols of pomegranate husk were prepared by ethanol extraction followed by pretreatment with HPD-300 macroporous resin. The polyphenolic compounds were qualitatively analysed by HPLC-QTOF-MS in negative electrospray ionisation (ESI) mode at different collision energy (CE) values. A total of 50 polyphenols were detected in the extract of pomegranate husk, including 35 hydrolysable tannins and 15 flavonoids with distinct retention time, fragmentation behaviours and characteristics, and the accurate mass-to-charge ratios at low, moderate and high CE values. Of these, we identified nine compounds for the first time in the pomegranate husk, including hexahydroxydiphenoyl-valoneoyl-glucoside (HHDP-valoneyl-glucoside), galloyl-O-punicalin, rutin, hyperoside, quercimeritrin, kaempferol-7-O-rhahmano-glucoside, luteolin-3'-O-arabinoside, luteolin-3'-O-glucoside, and luteolin-4'-O-glucoside. To validate the specificity and accuracy of mass spectrometry in the detection of polyphenols, as compared to the fragmentation pathways of granatin B in detail, including the HHDP-valoneyl- glucoside was first identified from pomegranate husk. The study provides evidence for the quality control and development of novel drugs based on polyphenols from the pomegranate husk. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Composition and antioxidant, antibacterial, and anti-HepG2 cell activities of polyphenols from seed coat of Amygdalus pedunculata Pall.

    PubMed

    Lu, Cairui; Li, Cong; Chen, Bang; Shen, Yehua

    2018-11-01

    This study aims at identifying the composition of polyphenols present in Amygdalus pedunculata Pall seed coat (APSC), and characterizing their antioxidant, antibacterial, and anticancer activities. The polyphenols from APSC were composed of 32 compounds. The compounds with important biological activities included apigenin 7-O-glucoside (the main component; 34.53 mg/100 g), quercitrin (23.43 mg/100 g), kaempferol (10.28 mg/100 g), naringenin (6.27 mg/100 g), cyanidin 3-rutinoside (5.76 mg/100 g), cyanidin 3-O-galactoside (5.19 mg/100 g), and quercetin (2.50 mg/100 g), as well as a variety of phenolic acids (gentisic acid, 23.13 mg/100 g; salicylic acid, 18.79 mg/100 g; gallic acid, 2.55 mg/100 g; etc.). Characterization of the identified polyphenols indicated that APSC possessed high antioxidant activity, due to its ability to reduce Fe 3+ and scavenge ABTS, DPPH, OH, O 2 - , and H 2 O 2 free radicals. The ability of APSC to reduce Fe 3+ and scavenge ABTS radical, and H 2 O 2 was stronger than that of control group ascorbic acid (Vc). The data from bacteriostatic test showed that polyphenols from APSC had good antibacterial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Bacillus subtilis, but showed no activity against Aspergillus niger. Cell viability assays using HepG2 cell illustrated that polyphenols from APSC significantly inhibited cell proliferation and induced cell apoptosis. The findings demonstrate that polyphenols from APSC may be utilized as is or further developed into natural antioxidant, antibacterial, and anticancer agents. This work also provides a basis for the development and utilization of Amygdalus pedunculata Pall. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Influence of thermal treatment on the stability of phenolic compounds and the microbiological quality of sucrose solution following osmotic dehydration of highbush blueberry fruits.

    PubMed

    Kucner, Anna; Papiewska, Agnieszka; Klewicki, Robert; Sójka, Michał; Klewicka, Elżbieta

    2014-01-01

    Osmotic dehydration is a process of the partial removal of water which is based on immersion of material having cellular structure in a hypertonic solution. Osmotic dehydration is used as a pretreatment for the dehydration of foods before they are subjected to further processing such as freezing, freeze drying, vacuum drying. Management of spent syrup is one of the most important problems related to osmotic dewatering. Osmotic solutions are heavily polluted with of carbohydrates, remains of the dehydrated material and microorganisms. The aim of this study was to determine the effect of thermal treatment on the content of phenolic compounds and the microbiological quality of sucrose solution used in 15 cycles of osmotic dehydration of highbush blueberry (Vaccinium corymbosum L.) fruits. The tested material was 65.0 ±0.5°Brix sucrose solution used for 15 cycles of osmotic dehydration of highbush blueberry (Vaccinium corymbosum L.). Osmotic dehydration was conducted at 40°C for 120 min using fruits previously subjected to enzymatic pretreatment. The thermal treatment of sucrose solution was conducted at 70, 80, 90, 100 and 115°C for 20, 40 and 60 s. The sucrose solution was analysed in terms of total polyphenols, particular polyphenols using high performance liquid chromatography and microbiological analysis was subjected. Thermal treatment at 70-115°C for 20 s caused degradation of 8.5% to 12.7% of polyphenols, while as much as 23.1% of polyphenols were degraded at 115°C after 60 s. The present paper proposes heating parameters that are optimal from the point of view of phenolic compound retention and microbiological quality: thermal treatment of syrup at 100°C for 40 s. Under these conditions, total polyphenols retention was 94.5%, while the retention of individual phenolic compounds varied from 89.2% to 37.2%, and that of flavan-3-ols amounted to 89.5%. The studied manner of syrup treatment eliminated the problem of syrup contamination with yeasts and molds (reducing their levels to less than 1 CFU/mL).

  3. [Isolation and characterization of polyphenols in seed of Litchi chinensis].

    PubMed

    Yan, Ren-Liang; Liu, Zhi-Gang

    2009-04-01

    To study the chemical constituents of polyphenols in seed of Litchi chinensis. The seeds of Litchi chinensis were extracted by 65% ethanol, then the compounds were separated by repeated silica gel, polyamide and preparative TLC. The structures of polyphones isolated were identified by analysis of their spectral datas and chemical properties. Four polyphones compounds were isolated as protocatechuic aldehyde (I), protocatechuic acid (II), daucosterol (III) and (-) -epicatichin (IV). Compounds I , III and IV are isolated from this plant for the first time.

  4. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent.

    PubMed

    Fu, Najing; Li, Liteng; Liu, Xiao; Fu, Nian; Zhang, Chenchen; Hu, Liandong; Li, Donghao; Tang, Baokun; Zhu, Tao

    2017-12-29

    Typically, a target compound is selected as a template for a molecularly imprinted polymer (MIP); however, some target compounds are not suitable as templates because of their poor solubility. Using the tailoring properties of a deep eutectic solvent (DES), the insoluble target compound caffeic acid was transformed into a ternary choline chloride-caffeic acid-ethylene glycol (ChCl-CA-EG) DES, which was then employed as a template to prepare MIPs. The ternary DES-based MIPs were characterized by Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy, and atomic force microscopy. The effects of time, temperature, ionic strength, and pH on the recognition processes for four polyphenols (caffeic acid, protocatechuic acid, catechin, and epicatechin) by 13 ChCl-CA-EG ternary DES-based MIPs was investigated using high-performance liquid chromatography. The recognition specificity of the MIPs for CA was significantly better than that for the other polyphenols, and the MIPs exhibited obvious characteristics of chromatographic packing materials. In addition, the recognition processes mainly followed a second-order kinetics model and the Freundlich isotherm model, which together indicated that the MIPs mainly recognized the polyphenols by chemical interactions including ion exchange, electron exchange, and new bond formation. Furthermore, the specific recognition ability of the MIPs for polyphenols, which was better than those of C 18 , C 8 , or non-molecularly imprinted polymer adsorbents, was successfully applied to the recognition of polyphenols in a Radix asteris sample. The transformation of an insoluble target compound in a polymeric DES for MIP preparation and recognition is a novel and feasible strategy suitable for use in further MIP research developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage

    PubMed Central

    Juarez-Enriquez, Edmundo; Salmerón, Ivan; Gutierrez-Mendez, Nestor; Ortega-Rivas, Enrique

    2016-01-01

    Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm2 and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake. PMID:28231106

  6. Fractionation and structural characterization of polyphenolic antioxidants from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME).

    PubMed

    Ogawa, Satoshi; Kimura, Hideto; Niimi, Ai; Katsube, Takuya; Jisaka, Mitsuo; Yokota, Kazushige

    2008-12-24

    Seed shells of the Japanese horse chestnut (Aesculus turbinata BLUME) contain high levels of polyphenolic antioxidants. These compounds were extracted, fractionated, and finally separated into three fractions, F1, F2, and F3, according to their degrees of polymerization. The structures of the isolated fractions were characterized by a combination of mass spectrometric analyses. F1 contained mainly low molecular weight phenolic substances, including procyanidin trimers. The predominant fractions F2 and F3 consisted of polymeric proanthocyanidins having a series of heteropolyflavan-3-ols, (+)-catechin/(-)-epicatechin units, and polymerization degrees of 19 and 23, respectively. The polyphenol polymers had doubly linked A-type interflavan linkages in addition to single B-type bonds without gallic acid esterified to them. The isolated polyphenolic compounds exhibited potent antioxidative activities comparable to monomeric (+)-catechin and (-)-epicatechin, or more efficacious than those monomers. The results suggest the potential usefulness of polyphenol polymers from seed shells as a source for nutraceutical factors.

  7. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens.

    PubMed

    Bhattacharya, Debanjana; Bhattacharya, Semantee; Patra, Madhu Manti; Chakravorty, Somnath; Sarkar, Soumyadev; Chakraborty, Writachit; Koley, Hemanta; Gachhui, Ratan

    2016-12-01

    The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration. Kombucha fermented for 14 days showed maximum activity against the bacterial strains. Its ethyl acetate extract was found to be the most effective upon sequential solvent extraction of the 14-day Kombucha. This potent ethyl acetate extract was then subjected to thin layer chromatography for further purification of antibacterial ingredients which led to the isolation of an active polyphenolic fraction. Catechin and isorhamnetin were detected as the major antibacterial compounds present in this polyphenolic fraction of Kombucha by High Performance Liquid Chromatography. Catechin, one of the primary antibacterial polyphenols in tea was also found to be present in Kombucha. But isorhamnetin is not reported to be present in tea, which may thereby suggest the role of fermentation process of black tea for its production in Kombucha. To the best of our knowledge, this is the first report on the presence of isorhamnetin in Kombucha. The overall study suggests that Kombucha can be used as a potent antibacterial agent against entero-pathogenic bacterial infections, which mainly is attributed to its polyphenolic content.

  8. Development of a Polyphenol Oxidase Biosensor from Jenipapo Fruit Extract (Genipa americana L.) and Determination of Phenolic Compounds in Textile Industrial Effluents.

    PubMed

    Antunes, Rafael Souza; Ferraz, Denes; Garcia, Luane Ferreira; Thomaz, Douglas Vieira; Luque, Rafael; Lobón, Germán Sanz; Gil, Eric de Souza; Lopes, Flávio Marques

    2018-05-15

    In this work, an innovative polyphenol oxidase biosensor was developed from Jenipapo ( Genipa americana L.) fruit and used to assess phenolic compounds in industrial effluent samples obtained from a textile industry located in Jaraguá-GO, Brasil. The biosensor was prepared and optimized according to: the proportion of crude vegetal extract, pH and overall voltammetric parameters for differential pulse voltammetry. The calibration curve presented a linear interval from 10 to 310 µM (r² = 0.9982) and a limit of detection of 7 µM. Biosensor stability was evaluated throughout 15 days, and it exhibited 88.22% of the initial response. The amount of catechol standard recovered post analysis varied between 87.50% and 96.00%. Moreover, the biosensor was able to detect phenolic compounds in a real sample, and the results were in accordance with standard spectrophotometric assays. Therefore, the innovatively-designed biosensor hereby proposed is a promising tool for phenolic compound detection and quantification when environmental contaminants are concerned.

  9. Prooxidative Potential of Photo-Irradiated Aqueous Extracts of Grape Pomace, a Recyclable Resource from Winemaking Process.

    PubMed

    Tsukada, Mana; Nakashima, Takuji; Kamachi, Toshiaki; Niwano, Yoshimi

    2016-01-01

    Our previous study revealed that aqueous extract of grape pomace obtained from a winemaking process could exert bactericidal action upon photo-irradiation via reactive oxygen species (ROS) formation. In the present study, we focused on chemical composition and prooxidative profile of the extract. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis showed that polyphenolic compounds including catechin monomers, dimers, trimers, and polyphenolic glucosides were contained. The polyphenol rich fraction used for the LC-ESI-MS analysis generated hydrogen peroxide (H2O2) upon photo-irradiation possibly initiated by photo-oxidation of phenolic hydroxyl group. That is, reduction of dissolved oxygen by proton-coupled electron transferred from the photo-oxidized phenolic hydroxyl group would form H2O2. The resultant H2O2 was then photolyzed to generate hydroxyl radical (•OH). The prooxidative profile of the extract in terms of •OH generation pattern upon photo-irradiation was similar to that of grape seed extract (GSE) as an authentic polyphenol product and (+)-catechin as a pure polyphenolic compound, and in all the three samples •OH generation could be retained during photo-irradiation for at least a couple of hours. The prooxidant activity of the photo-irradiated extract indicated by •OH yield was more potent than that of the photo-irradiated GSE and (+)-catechin, and this was well reflected in their bactericidal activity in which the photo-irradiated extract could kill the bacteria more efficiently than did the photo-irradiated GSE and (+)-catechin.

  10. Prooxidative Potential of Photo-Irradiated Aqueous Extracts of Grape Pomace, a Recyclable Resource from Winemaking Process

    PubMed Central

    Nakashima, Takuji; Kamachi, Toshiaki

    2016-01-01

    Our previous study revealed that aqueous extract of grape pomace obtained from a winemaking process could exert bactericidal action upon photo-irradiation via reactive oxygen species (ROS) formation. In the present study, we focused on chemical composition and prooxidative profile of the extract. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis showed that polyphenolic compounds including catechin monomers, dimers, trimers, and polyphenolic glucosides were contained. The polyphenol rich fraction used for the LC-ESI-MS analysis generated hydrogen peroxide (H2O2) upon photo-irradiation possibly initiated by photo-oxidation of phenolic hydroxyl group. That is, reduction of dissolved oxygen by proton-coupled electron transferred from the photo-oxidized phenolic hydroxyl group would form H2O2. The resultant H2O2 was then photolyzed to generate hydroxyl radical (•OH). The prooxidative profile of the extract in terms of •OH generation pattern upon photo-irradiation was similar to that of grape seed extract (GSE) as an authentic polyphenol product and (+)-catechin as a pure polyphenolic compound, and in all the three samples •OH generation could be retained during photo-irradiation for at least a couple of hours. The prooxidant activity of the photo-irradiated extract indicated by •OH yield was more potent than that of the photo-irradiated GSE and (+)-catechin, and this was well reflected in their bactericidal activity in which the photo-irradiated extract could kill the bacteria more efficiently than did the photo-irradiated GSE and (+)-catechin. PMID:27341398

  11. Determination of the polyphenolic content of a Capsicum annuum L. extract by liquid chromatography coupled to photodiode array and mass spectrometry detection and evaluation of its biological activity.

    PubMed

    Mokhtar, Meriem; Soukup, Jan; Donato, Paola; Cacciola, Francesco; Dugo, Paola; Riazi, Ali; Jandera, Pavel; Mondello, Luigi

    2015-01-01

    The present study was aimed to investigate the polyphenolic profile of a pepper (Capsicum annuum L.) extract from Algeria and evaluate its biological activity. The total polyphenol content of the extract was determined as 1.373 mg of gallic acid equivalents (±0.0046), whereas the flavonoids were determined as 0.098 mg of quercetin (±0.0015). The determination of the complete polyphenolic profile of the extract was achieved by liquid chromatography with an RP-amide column in combination with photodiode array and mass spectrometry detection through an electrospray ionization interface. A total of 18 compounds were identified, of which five were reported for the first time in the sample tested. Quercetin rhamnoside was the most abundant compound (82.6 μg/g of fresh pepper) followed by quercetin glucoside (19.86 μg/g). The antioxidant activity and antimicrobial effects were also determined. For the antimicrobial tests assessed against Gram-positive and Gram-negative bacteria, kaempferol showed the strongest inhibitory effect followed by quercetin and caffeic acids. In the study of the cytotoxicity of the extract, the cancer cells (U937) were more affected than the normal cells (peripheral blood mononucleated cells), with more than 62% inhibition at the highest concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hepatoprotective activity of Macrothelypteris torresiana (Gaudich.) aerial parts against CCl4-induced hepatotoxicity in rodents and analysis of polyphenolic compounds by HPTLC.

    PubMed

    Mondal, Sumanta; Ghosh, Debjit; Ganapaty, Seru; Chekuboyina, Surya Vamsi Gokul; Samal, Manisha

    2017-06-01

    Macrothelypteris torresiana is a fern species belonging to family Thelypteridaceae. The present study was conducted to evaluate hepatoprotective potential of ethanol extract from M. torresiana aerial parts (EEMTAP) and detect the polyphenolic compounds present in the extract using high performance thin layer chromatography (HPTLC). Hepatoprotective potential of EEMTAP were tested at doses of 300 and 600 mg/kg, per os (p.o.), on Wistar albino rats. The extract and silymarin treated animal groups showed significant decrease in activities of different biochemical parameters like serum glutamic oxaloacetic transaminase (SGOT), serum glutamate-pyruvate transaminase (SGPT), alkaline phosphatase (ALP), which were elevated by carbon tetrachloride (CCl 4 ) intoxication. The levels of total bilirubin and total protein alongwith the liver weight were also restored to normalcy by EEMTAP and silymarin treatment. After CCl 4 administration the level of hepatic antioxidant enzymes such as Glutathione (GSH) and Catalase (CAT) were decreased whereas the level of hepatic lipid peroxidation (LPO) was elevated. The level of these hepatic antioxidant enzymes were also brought to normalcy by EEMTAP and silymarin treatment. Histological studies supported the biochemical findings and treatment with EEMTAP at doses 300 and 600 mg/kg, p.o. was found to be effective in restoring CCl 4 -induced hepatotoxicity in rats. A simple HPTLC analysis was conducted for the detection of polyphenolic compounds in EEMTAP, and the result revealed the presence of caffeic acid as phenolic acid and quercetin as flavonoid. The proposed HPTLC method is simple, concise and provides a good resolution of caffeic acid and quercetin from other constituents present in EEMTAP.

  13. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis

    NASA Astrophysics Data System (ADS)

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-01

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties.

  14. Phytochemical composition and antioxidant capacity of Cordia dichotoma seeds.

    PubMed

    Tian, Shuge; Liu, Feng; Zhang, Xuejia; Upur, Halmuart

    2014-09-01

    This study aims to determine the phytochemical composition and antioxidant activity of air-dried Cordia dichotoma seeds. Total polyphenolic content was analyzed via the Folin-Ciocalteu method. Total triterpenoid content and amino acids was analyzed colorimetrically. The rosmarinic acid content was examined using high-performance liquid chromatography tandem mass spectrometry. The ethanolic extracts contained polyphenolic compounds (1.0%), triterpenoids (0.075%), amino acids (1.39%), and rosmarinic acid (0.0028%). The results from this study indicate that C. dichotoma seeds are a rich source of polyphenolic compounds and amino acids, which can be used for quality assessment. The ethanolic extract of C. dichotoma seeds has good antioxidant capacity.

  15. Effects of water blanching on polyphenol reaction kinetics and quality of cocoa beans

    NASA Astrophysics Data System (ADS)

    Menon, A. S.; Hii, C. L.; Law, C. L.; Suzannah, S.; Djaeni, M.

    2015-12-01

    Several studies have been reported on the potential health benefits of cocoa polyphenols. However, drying has an inhibitory effect on the substantial recovery of cocoa polyphenols. This is majorly because of the high degradation of polyphenol compounds as well as the enhanced activity of polyphenol oxidases; a pre-cursor for browning of polyphenols during drying. Pre-treatment technique such as water blanching (80° and 90°C for 5 min, 10 min and 15 min exposure times respectively) can inactivate the polyphenol oxidases enzyme and promote high percent of the polyphenol recovery in dried cocoa bean. The degradation kinetics of cocoa polyphenols during hot water blanching are analyzed; The rate constant for the polyphenol degradation after blanching was found to be ranging from 0.0208 to 0.0340 /min. The results for dried fresh cocoa beans showed an optimal level of polyphenol recovery (118 mg GAE/g) when blanched at 90°C for 5 minutes duration. The antioxidant activity is also analyzed using DPPH scavenging assay.

  16. Characterization of the Aroma-Active, Phenolic, and Lipid Profiles of the Pistachio (Pistacia vera L.) Nut as Affected by the Single and Double Roasting Process.

    PubMed

    Rodríguez-Bencomo, Juan José; Kelebek, Hasim; Sonmezdag, Ahmet Salih; Rodríguez-Alcalá, Luis Miguel; Fontecha, Javier; Selli, Serkan

    2015-09-09

    The pistachio (Pistacia vera L.) nut is one of the most widely consumed edible nuts in the world. However, it is the roasting process that makes the pistachio commercially viable and valuable as it serves as the key step to improving the nut's hallmark sensory characteristics including flavor, color, and texture. Consequently, the present study explores the effects of the single-roasting and double-roasting process on the pistachio's chemical composition, specifically aroma-active compounds, polyphenols, and lipids. Results showed the total polyphenol content of increased with the roasting treatment; however, not all phenolic compounds demonstrated this behavior. With regard to the aroma and aroma-active compounds, the results indicated that roasting process results in the development of characteristics and pleasant aroma of pistachio samples due to the Maillard reaction. With regard to lipids, the pistachio roasting treatment reduced the concentration of CN38 diacylglycerides while increasing the amount of elaidic acid.

  17. Material design of negative-tone polyphenol resist for EUV and EB lithography

    NASA Astrophysics Data System (ADS)

    Kojima, Kyoko; Mori, Shigeki; Shiono, Daiju; Hada, Hideo; Onodera, Junichi

    2007-03-01

    In order to enable design of a negative-tone polyphenol resist using polarity-change reaction, five resist compounds (3M6C-MBSA-BLs) with different number of functional group of γ-hydroxycarboxyl acid were prepared and evaluated by EB lithography. The resist using mono-protected compound (3M6C-MBSA-BL1a) showed 40-nm hp resolution at an improved dose of 52 μC/cm2 probably due to removal of a non-protected polyphenol while the sensitivity of the resist using a compound of protected ratio of 1.1 on average with distribution of different protected ratio was 72 μC/cm2. For evaluation of the di-protected compound based resist, a di-protected polyphenol was synthesized by a newly developed synthetic route of 3-steps reaction, which is well-suited for mass production. The resist using di-protected compound (3M6C-MBSA-BL2b) also showed 40-nm hp resolution at a dose of 40 μC/cm2, which was faster than that of mono-protected resist. Fundamental EUV lithographic evaluation of the resist using 3M6C-MBSA-BL2b by an EUV open frame exposure tool (EUVES-7000) gave its estimated optimum sensitivity of 7 mJ/cm2 and a proof of fine development behavior without any swelling.

  18. Potent suppressing activity of the non-polyphenolic fraction of green tea (Camellia sinensis) against genotoxin-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002)--association with pheophytins a and b.

    PubMed

    Okai, Y; Higashi-Okai, K

    1997-11-25

    Antigenotoxic and antimutagenic activities of green tea extract and tea-derived polyphenols have been studied using in vitro and in vivo experiments. However, antigenotoxic substances in the non-polyphenolic fraction of green tea have been poorly elucidated. In the present study, the effect of the non-polyphenolic fraction of green tea on genotoxin-induced umu C gene expression was analyzed using a tester bacteria, and potent antigenotoxic substances in the non-polyphenolic fraction were identified. The non-polyphenolic fraction of green tea showed strong suppressive activities against umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) induced by 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol (Trp-P-1) or mitomycin C (MMC) in the presence or absence of S9 metabolizing enzyme mixture. The non-polyphenolic fraction of green tea exhibited major two-color bands in a silica gel TLC and they were identified as chlorophyll-related compounds, pheophytins a and b, judged by their specific colors, Rf values in silica gel TLC and absorption spectra. These pigments showed significant suppressive activities against umu C gene expression in tester bacteria induced by Trp-P- and MMC in a dose-dependent manner. These results suggest that the non-polyphenolic fraction of green tea contains pheophytins a and b as potent antigenotoxic substances.

  19. Polyphenol supplementation: benefits for exercise performance or oxidative stress?

    PubMed

    Myburgh, Kathryn H

    2014-05-01

    Supplement use among athletes is widespread, including non-traditional and biological compounds. Despite increasing research, a comprehensive and critical review on polyphenol supplementation and exercise is still lacking. This review is relevant for researchers directly involved in the topic, as well as those with a broad interest in athletic performance enhancement and sports nutrition. The purpose of this review is to present background information on groups of polyphenols and their derivatives because their differing chemical structures influence mechanisms of action; to discuss the potential of plant, fruit and vegetable-based biological supplements, high in polyphenol content, to affect exercise performance and biomarkers of oxidative stress and exercise-induced muscle damage; and to critically discuss the exercise studies and biomarkers used. Subjects in the studies reviewed were either sedentary, healthy individuals, or active, recreationally trained or well-trained athletes. Polyphenol supplementation in exercise studies included mainly extracts (multicomponent or purified), juices, infusions or an increased intake of polyphenol-rich foods. This review includes details of supplement doses and exercise test protocols. Many studies considered only the performance or one or two selected biomarkers of antioxidant capacity instead of a comprehensive choice of biomarkers to assess damage to lipids or proteins. Evidence is insufficient to make recommendations for or against the use of polyphenol supplementation (neither specific polyphenols nor specific doses) for either recreational, competitive or elite athletes. Polyphenols have multiple biological effects, and future exercise studies must be designed appropriately and specifically to determine physiological interactions between exercise and the selected supplement, rather than considering performance alone.

  20. Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica).

    PubMed

    De Santiago, Elsy; Domínguez-Fernández, Maite; Cid, Concepción; De Peña, María-Paz

    2018-02-01

    The impact of cooking methods (boiling, microwaving, griddling and frying in olive and soybean oils) on nutritional composition (protein, minerals, fat, carbohydrates, fibre, fatty acid profile and energy), antioxidant capacity and (poly)phenolic compounds of cactus cladodes (Opuntia ficus-indica) was evaluated. Culinary processes, except boiling, increased soluble and insoluble fibre up to 5.0g/100g becoming a good fibre source. Cactus cladodes fried in olive oil showed a healthier fatty acid profile and lower ω-6/ω-3 ratio than in soybean oil. Flavonoids accounted for 80% of total (poly)phenolic compounds, being isorhamnetin the most abundant. Heat treatment, particularly griddling and microwaving, increased every flavonoid and phenolic acid up to 3.2-fold higher than in raw samples, and consequently their antioxidant capacity. Even boiling induced losses in total (poly)phenols and antioxidant capacity by leaching into water, the main compounds were maintained. Principal Component Analysis distributed heat treated cactus cladodes according to their distinctive polyphenols and antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile.

    PubMed

    Ferreira, Vanessa; Fernandes, Fátima; Pinto-Carnide, Olinda; Valentão, Patrícia; Falco, Virgílio; Martín, Juan Pedro; Ortiz, Jesús María; Arroyo-García, Rosa; Andrade, Paula B; Castro, Isaura

    2016-03-01

    A germplasm set of twenty-five grapevine accessions, forming eleven groups of possible berry skin color mutants, were genotyped with twelve microsatellite loci, being eleven of them identified as true color mutants. The polyphenolic profiling of the confirmed mutant cultivars revealed a total of twenty-four polyphenols, comprising non-colored compounds (phenolic acids, flavan-3-ols, flavonols and a stilbene) and anthocyanins. Results showed differences in the contribution of malvidin-3-O-glucoside to the characteristic Pinot Noir anthocyanins profile. Regarding the two Pique-Poul colored variants, the lighter variant was richer than the darker one in all classes of compounds, excepting anthocyanins. In Moscatel Galego Roxo the F3'H pathway seems to be more active than F3'5'H, resulting in higher amounts of cyanidin, precursor of the cyanidin derivatives. As far as we are aware, this is the first time that a relationship between the content of polyphenolic compounds is established in groups of grape berry skin color mutant cultivars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Phenolic Profiles, Phytchemicals and Mineral Content of Decoction and Infusion of Opuntia ficus-indica Flowers.

    PubMed

    Ammar, Imene; Ennouri, Monia; Bouaziz, Mohamed; Ben Amira, Amal; Attia, Hamadi

    2015-12-01

    Opuntia flowers are a natural source of biologically active compounds and they have been used as medicinal plant for a long time. Despite the various uses reported for the decoction and infusion of these flowers, their characterization has been discarded. In this study, the decoction and infusion prepared from Opuntia ficus-indica were analyzed with respect to their content in minerals and phytochemicals in order to evaluate its nutritional characteristics. The obtained data proved that these preparations are a rich source of minerals mainly K and Ca. Moreover, the phytochemical analysis revealed that they have important polyphenols, flavonoids and tannins contents with the infusion that presented the highest polyphenol levels. LC-MS analyses of decoction and infusion allowed the characterization of 20 phenolic compounds. It is mainly identified by the presence of flavonols glycosides.

  3. Polyphenols: Benefits to the Cardiovascular System in Health and in Aging

    PubMed Central

    Khurana, Sandhya; Venkataraman, Krishnan; Hollingsworth, Amanda; Piche, Matthew; Tai, T. C.

    2013-01-01

    Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging. PMID:24077237

  4. Role of polyphenols and nonpolyphenols against toxicity induced by fluoride: a comprehensive review.

    PubMed

    Claudio, Samuel R; Handan, Bianca A; Gomes de Moura, Carolina F; Viana, Milena de Barros; Yamauchi, Liria Y; Aguiar, Odair; Oshima, Celina T F; Ribeiro, Daniel A

    2018-04-17

    Since its discovery as an antimicrobial agent, fluoride has been used in the control of dental caries. Many studies have shown that the chronic exposure of fluoride in high concentrations causes adverse effects in multiple organs; the use of bioactive compounds present in foods as a tool to mitigate the effects of fluoride could potentially be useful for populations in different parts of the world are exposed to fluoride in a chronic and systemic way. Thus, the aim of this comprehensive review is to present and discuss the published papers that focused on the use of polyphenols and nonpolyphenols that can mitigate the harmful activities promoted by fluoride exposure. Certainly, these data will contribute toward a better understanding of the role of food compounds in the pathological outcomes induced by fluoride. The new information will be added to that already available for regulatory purposes as a safe way to promote oral healthcare and prevent oral carcinogenesis.

  5. Potential use of secondary products of the agri-food industry for topical formulations and comparative analysis of antioxidant activity of grape leaf polyphenols.

    PubMed

    Dresch, Roger Remy; Dresch, Maria Terezinha Kreinecker; Biegelmeyer, Renata; Argenta, Débora Fretes; da Rocha, Ricardo Fagundes; Teixeira, Helder Ferreira; Moreira, José Cláudio Fonseca; Henriques, Amélia Teresinha

    2018-02-01

    The aim of the present study was to develop a phytocosmetic using Vitis waste by-products, for use as a topical formulation for skin protection against ultraviolet radiation damage. The study also evaluates the free radical scavenger activity of the crude extracts of dried leaves of Vitis vinifera and Vitis labrusca, as well as the anthocyanins, flavonoid fraction and isolated compounds. Next, release and permeation studies of hydrogels were performed using Franz-type diffusion cells. Flavonoid acted more intensively in TRAP and conjugated dienes antioxidant assays, whereas anthocyanins had higher antioxidant activity in hydroxyl and nitric oxide assay. Only quercetin-3-O-glucuronide (5) was released from hydrogels, and the flavonoid retention in porcine ear skin after eight hours of permeation was below of limit of quantification for this compound. The polyphenols present in Vitis are capable of absorbing UV and visible light, justifying their potential as sunscreens for the development of a phytocosmetic.

  6. Anti-inflammatory effects of polyphenols in arthritis.

    PubMed

    Oliviero, Francesca; Scanu, Anna; Zamudio-Cuevas, Yessica; Punzi, Leonardo; Spinella, Paolo

    2018-03-01

    Polyphenols have been extensively investigated with regard to their antioxidant, anti-inflammatory, and immunomodulant properties in many inflammatory chronic conditions. The aim of this review is to summarise how these compounds can modulate the inflammatory pathways which characterise the most prevalent arthropathies including osteoarthritis, rheumatoid arthritis and crystal-induced arthritis. Among polyphenols, epigallocatechin gallate, carnosol, hydroxytyrosol, curcumin, resveratrol, kaempferol and genistein have been the most widely investigated in arthritis. The most important results of the studies outlined in this article show how polyphenolic compounds are able to inhibit the expression and the release of a number of pro-inflammatory mediators and proteolytic enzymes, the activity of different transcriptional factors and the production of reactive oxygen species in vitro. Studies on animal models of rheumatoid arthritis, osteoarthritis and gout show interesting results in terms of reduced tissue damage, restored cartilage homeostasis, and decreased levels of uric acid, respectively. Despite the multiple protective effects of polyphenols, there are no dietary recommendations for patients affected by rheumatic diseases. Future studies, including intervention trials, should be conducted to determine the relevance of polyphenols consumption or supplementation in arthritis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Effects of resveratrol and other polyphenols in hepatic steatosis

    PubMed Central

    Aguirre, Leixuri; Portillo, Maria Puy; Hijona, Elizabeth; Bujanda, Luis

    2014-01-01

    Non-alcoholic fatty liver disease covers a wide spectrum of liver pathologies which range from simple steatosis to non-alcoholic steatohepatitis. Polyphenols are members of a very large family of plant-derived compounds that can have beneficial effects on human health, and thus their study has become an increasingly important area of human nutrition research. The aim of the present review is to compile published data concerning the effects of both isolated polyphenols as well as polyphenol extracts, on hepatocyte and liver fat accumulation under different steatosis-inducing conditions. The results reported clearly show that this group of biomolecules is able to reduce fat accumulation, but further studies are needed to establish the optimal dose and treatment period length. With regard to the potential mechanisms of action, there is a good consensus. The anti-lipidogenic effect of polyphenols is mainly due to reduced fatty acid and triacylglycerol synthesis, increased in fatty acid oxidation, and reduced of oxidative stress and inflammation. As a general conclusion, it can be stated that polyphenols are biomolecules which produce hepatoprotective effects. To date, these beneficial effects have been demonstrated in cultured cells and animal models. Thus, studies performed in humans are needed before these molecules can be considered as truly useful tools in the prevention of liver steatosis. PMID:24966607

  8. Bioavailable Citrus sinensis Extract: Polyphenolic Composition and Biological Activity.

    PubMed

    Pepe, Giacomo; Pagano, Francesco; Adesso, Simona; Sommella, Eduardo; Ostacolo, Carmine; Manfra, Michele; Chieppa, Marcello; Sala, Marina; Russo, Mariateresa; Marzocco, Stefania; Campiglia, Pietro

    2017-04-15

    Citrus plants contain large amounts of flavonoids with beneficial effects on human health. In the present study, the antioxidant and anti-inflammatory potential of bioavailable polyphenols from Citrus sinensis was evaluated in vitro and ex vivo, using the murine macrophages cell line J774A.1 and primary peritoneal macrophages. Following simulated gastro-intestinal digestion, the in vitro bioavailability of Citrus sinensis polyphenolic extract was assessed using the human cell line Caco-2 grown as monolayers on a transwell membrane. Data demonstrated a relative permeation of its compounds (8.3%). Thus, the antioxidant and anti-inflammatory effect of polyphenolic Citrus sinensis fraction (Cs) was compared to the bioavailable one (CsB). Results revealed that Citrus extract were able to reduce macrophages pro-inflammatory mediators, including nitric oxide, iNOS, COX-2 and different cytokines. Moreover, the effect of Citrus sinensis polyphenols was associated with antioxidant effects, such as a reduction of reactive oxygen species (ROS) and heme-oxygenase-1 (HO-1) increased expression. Our results provide evidence that the bioavailable polyphenolic constituents of the Citrus sinensis extract accumulate prevalently at intestinal level and could reach systemic circulation exerting their effect. The bioavailable fraction showed a higher anti-inflammatory and antioxidant potential compared to the initial extract, thus highlighting its potential nutraceutical value.

  9. Optimization of Process Parameters and Kinetic Model of Enzymatic Extraction of Polyphenols from Lonicerae Flos

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Bi, Yongguang; Huang, Xiaojun; Huang, Mengqian

    2016-01-01

    Objective: To optimize and verify the cellulase extraction of polyphenols from honeysuckle and provide a reference for enzymatic extracting polyphenols from honeysuckle. Materials and Methods: The uniform design was used According to Fick's first law and kinetic model, fitting analysis of the dynamic process of enzymatic extracting polyphenols was conducted. Results: The optimum enzymatic extraction parameters for polyphenols from honeysuckle are found to be 80% (v/v) of alcohol, 35:1 (mL/g) of liquid-solid ratio, 80°C of extraction temperature, 8.5 of pH, 6.0 mg of enzyme levels, and 130 min of extraction time. Under the optimal conditions, the extraction rate of polyphenols was 3.03%. The kinetic experiments indicated kinetic equation had a good linear relationship with t even under the conditions of different levels of enzyme and temperature, which means fitting curve tallies well with the experimental values. Conclusion: The results of quantification showed that the results provide a reference for enzymatic extracting polyphenols from honeysuckle. SUMMARY Lonicerae flos (Lonicera japonica Thunb.) is a material of traditional Chinese medicine and healthy drinks, of which active compounds mainly is polyphenols. At present, plant polyphenols are the hotspots centents of food, cosmetic and medicine, because it has strong bioactivity. Several traditional methods are available for the extraction of plant polyphenols including impregnation, solvent extraction, ultrasonic extraction, hot-water extraction, alkaline dilute alcohol or alkaline water extraction, microwave extraction and Supercritical CO2 extraction. But now, an increasing number of research on using cellulase to extract active ingredients from plants. Enzymatic method is widely used for enzyme have excellent properties of high reaction efficiency and specificity, moderate reaction conditions, shorter extraction time and easier to control, less damage to the active ingredient. At present, the enzymatic extraction of polyphenols from honeysuckle and dynamic had not been reported. In this study, using cellulase to extract polyphenols from honeysuckle is first applied. Moreover, uniform design was used to optimize process and kinetic model of extraction was established to analyze the characteristics of enzymatic extraction, in order to improve the yield of polyphenols from honeysuckle and make maximum use of Lonicerae flos, which provide references for industrial production. PMID:27018039

  10. Consumption of extra-virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: a possible involvement of reduced levels of circulating visfatin.

    PubMed

    Santangelo, C; Filesi, C; Varì, R; Scazzocchio, B; Filardi, T; Fogliano, V; D'Archivio, M; Giovannini, C; Lenzi, A; Morano, S; Masella, R

    2016-11-01

    Phenolic compounds naturally contained in extra-virgin olive oil (EVOO) have demonstrated anti-inflammatory and antioxidant properties. The present study aimed at evaluating the effects of a polyphenol-rich extra-virgin olive oil (EVOO) (high-polyphenol EVOO, HP-EVOO) on the metabolic control and the production of specific pro-/anti-inflammatory adipokines in overweight patients with type 2 diabetes mellitus (T2D). Eleven overweight T2D patients not in treatment with insulin were invited to follow their habitual diet for a total of 8 weeks. During the first 4 weeks (wash-out period), they were asked to consume refined olive oil (ROO, polyphenols not detectable) and then to replace ROO with HP-EVOO (25 mL/day, 577 mg of phenolic compounds/kg) for the remaining 4 weeks. Anthropometric parameters, fasting glycaemia, glycated haemoglobin (HbA1c), high-sensitive C-reactive protein, plasma lipid profile, liver function and serum levels of TNF-α, IL-6, adiponectin, visfatin and apelin were assessed at the end of each 4-week period. HP-EVOO consumption significantly reduced fasting plasma glucose (P = 0.023) and HbA1c (P = 0.039) levels as well as BMI (P = 0.012) and body weight (P = 0.012). HP-EVOO ingestion determined a reduction in serum level of aspartate aminotransferase (AST, P = 0.0056) and alanine aminotransferase (ALT, P = 0.024). Serum visfatin levels strongly decreased after HP-EVOO ingestion (P = 0.0021). Daily consumption of polyphenol-rich EVOO might improve metabolic control and circulating inflammatory adipokines profile in overweight T2D patients.

  11. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines.

    PubMed

    Riebel, Matthias; Sabel, Andrea; Claus, Harald; Fronk, Petra; Xia, Ning; Li, Huige; König, Helmut; Decker, Heinz

    2015-09-18

    Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO), including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells) delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.

  12. Novel epigallocatechin gallate analogs as potential anticancer agents: a patent review (2009 – present)

    PubMed Central

    Landis-Piwowar, Kristin; Chen, Di; Foldes, Robert; Chan, Tak-Hang; Dou, Qing Ping

    2013-01-01

    Introduction Over the past three years numerous patents and patent applications have been published relating to scientific advances in the use of the green tea polyphenol epigallocatechin gallate (EGCG) (the most abundant, and bioactive compound in green tea) and its analogs as anticancer agents. EGCG affects multiple molecular targets involved in cancer cell proliferation and survival; however, polyphenolic catechins, such as EGCG, generally exhibit poor oral bioavailability. Since the anticancer activity of polyphenols largely depends on their susceptibility to biotransformation reactions, numerous EGCG derivatives, analogs and prodrugs have been designed to improve the stability, bioavailability and anticancer potency of the native compound. Areas covered This review focuses on the applications of EGCG and its analogs, derivatives and prodrugs in the prevention and treatment of human cancers. A comprehensive description of patents related to EGCG and its derivatives, analogs and prodrugs and their uses as anticancer agents is included. Expert opinion EGCG targets multiple essential survival proteins and pathways in human cancer cells. Because it is unstable physiologically, numerous alterations to the EGCG molecule have been patented, either to improve the integrity of the native compound or to generate a more stable yet similarly efficacious molecule. EGCG and its derivatives, analogs and prodrugs could be developed into future drugs for chemoprevention, chemosensitization, radiosensitization and/or cancer interception. PMID:23230990

  13. Characterization of total antioxidant capacity and (poly)phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking.

    PubMed

    Zaupa, Maria; Calani, Luca; Del Rio, Daniele; Brighenti, Furio; Pellegrini, Nicoletta

    2015-11-15

    In the recent years, the pigmented rice varieties are becoming more popular due to their antioxidant properties and phenolic content. In this study, we characterized the antioxidant capacity (TAC) and the phenolic profile in white, red and black rice varieties, and evaluated the effect of two cooking methods (i.e. "risotto" and boiling) on these compounds. Before the cooking, all the varieties contained several phenolic acids, whereas anthocyanins and flavonols were peculiar of black rice and flavan-3-ols of red rice. Among the rice varieties, the black had the highest TAC value. The content of (poly)phenolic compounds and TAC decreased after cooking in all three varieties, but to a lesser extent after the risotto method. As a consequence, the risotto cooking, which allows a complete absorption of water, would be a good cooking method to retain (poly)phenolic compounds and TAC in pigmented and non-pigmented whole-meal rice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Impact of Proteins on the Uptake, Distribution, and Excretion of Phenolics in the Human Body.

    PubMed

    Draijer, Richard; van Dorsten, Ferdi A; Zebregs, Yvonne E; Hollebrands, Boudewijn; Peters, Sonja; Duchateau, Guus S; Grün, Christian H

    2016-12-15

    Polyphenols, a complex group of secondary plant metabolites, including flavonoids and phenolic acids, have been studied in depth for their health-related benefits. The activity of polyphenols may, however, be hampered when consumed together with protein-rich food products, due to the interaction between polyphenols and proteins. To that end we have tested the bioavailability of representatives of a range of polyphenol classes when consumed for five days in different beverage matrices. In a placebo-controlled, randomized, cross-over study, 35 healthy males received either six placebo gelatine capsules consumed with 200 mL of water, six capsules with 800 mg polyphenols derived from red wine and grape extracts, or the same dose of polyphenols incorporated into 200 mL of either pasteurized dairy drink, soy drink (both containing 3.4% proteins) or fruit-flavoured protein-free drink . At the end of the intervention urine and blood was collected and analysed for a broad range of phenolic compounds using Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-Multiple Reaction Monitoring-Mass Spectrometry (LC-MRM-MS), and Nuclear Magnetic Resonance (NMR) spectroscopy techniques. The plasma and urine concentrations of the polyphenols identified increased with all formats, including the protein-rich beverages. Compared to capsule ingestion, consumption of polyphenol-rich beverages containing either dairy, soy or no proteins had minor to no effect on the bioavailability and excretion of phenolic compounds in plasma (118% ± 9%) and urine (98% ± 2%). We conclude that intake of polyphenols incorporated in protein-rich drinks does not have a major impact on the bioavailability of a range of different polyphenols and phenolic metabolites.

  15. Biochemical analysis and in vivo hypoglycemic activity of a grape polyphenol-soybean flour complex.

    PubMed

    Roopchand, Diana E; Kuhn, Peter; Poulev, Alexander; Oren, Andrew; Lila, Mary Ann; Fridlender, Bertold; Raskin, Ilya

    2012-09-12

    Defatted soybean flour (DSF) can efficiently sorb, concentrate, and stabilize polyphenols, but not sugars, from Concord grape juice, to yield grape polyphenol-enriched DSF. Sorption of grape polyphenols to DSF particles was dependent on the ratio of DSF and grape juice concentrate used, but not time of mixing or pH. Depending on ratios of starting materials, 1 g of grape polyphenol-enriched DSF contained 1.6-10.4 mg of anthocyanins, 7.5-93.1 mg of proanthocyanidins, and 20.5-144.5 mg of total polyphenols. LC-MS analysis of grape juice samples before and after addition and removal of DSF and eluate from grape polyphenol-enriched DSF confirmed that a broad range of grape compounds were sorbed to the DSF matrix. Finally, grape polyphenol-enriched DSF was able to significantly lower blood glucose levels in hyperglycemic C57BL/6J mice. The data indicate that grape polyphenol-enriched DSF can provide a high-protein, low-sugar ingredient for delivery of concentrated grape polyphenolics.

  16. The role of polyphenols in modern nutrition.

    PubMed

    Williamson, G

    2017-09-01

    Polyphenols are found in plant-based foods and beverages, notably apples, berries, citrus fruit, plums, broccoli, cocoa, tea and coffee and many others. There is substantial epidemiological evidence that a diet high in polyphenol-rich fruit, vegetables, cocoa and beverages protects against developing cardiovascular disease and type 2 diabetes. The absorption and metabolism of these compounds have been well described and, for many, the gut microbiota play a critical role in absorption; taking into consideration the parent compound and the metabolites from colon bacteria catabolism, more than 80% of a dose can be absorbed and ultimately excreted in the urine. Common polyphenols in the diet are flavanols (cocoa, tea, apples, broad beans), flavanones (hesperidin in citrus fruit), hydroxycinnamates (coffee, many fruits), flavonols (quercetin in onions, apples and tea) and anthocyanins (berries). Many intervention studies, mechanistic in vitro data and epidemiological studies support a role for polyphenols against the development of chronic diseases. For example, flavanols decrease endothelial dysfunction, lower blood pressure and cholesterol, and modulate energy metabolism. Coffee and tea both reduce the risk of developing type 2 diabetes, through action of their constituent polyphenols. Despite extensive research, the exact mechanisms of action of polyphenols in the human body have not been decisively proven, but there is strong evidence that some targets such as nitric oxide metabolism, carbohydrate digestion and oxidative enzymes are important for health benefits. Consumption of polyphenols as healthy dietary components is consistent with the advice to eat five or more portions of fruit and vegetables per day, but it is currently difficult to recommend what 'doses' of specific polyphenols should be consumed to derive maximum benefit.

  17. Probiotic and Synbiotic Sorbets Produced with Jussara (Euterpe edulis) Pulp: Evaluation Throughout the Storage Period and Effect of the Matrix on Probiotics Exposed to Simulated Gastrointestinal Fluids.

    PubMed

    Marinho, Júlia Fernanda Urbano; da Silva, Marluci Palazzolli; Mazzocato, Marcella Chalella; Tulini, Fabrício Luiz; Favaro-Trindade, Carmen Sílvia

    2017-11-08

    The aims of the present study were to develop and evaluate different formulations of probiotic and synbiotic sorbets produced with jussara (Euterpe edulis) pulp, polydextrose, Lactobacillus acidophilus LA3, and Lactobacillus paracasei BGP1. The pasteurized jussara pulp presented high content of phenolic compounds, especially anthocyanins, which were not inhibitory to the probiotics used in this study. The levels of polyphenols and anthocyanins present in the sorbets were also high and kept stable for 120 days, as well as the populations of both probiotics. On the other hand, probiotic populations reduced ca. 4 log CFU/g when exposed to simulated gastrointestinal fluids. Altogether, the sorbets produced in this study showed interesting results, indicating the viability on producing functional foods with probiotics, prebiotics, and other components that are rich in polyphenols, such as jussara pulp. The combination of these elements can improve the health beneficial effects of these compounds and provide important advantages to the intestinal microbiota of consumers.

  18. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances.

    PubMed

    Massounga Bora, Awa Fanny; Ma, Shaojie; Li, Xiaodong; Liu, Lu

    2018-03-01

    Green tea has been associated with the prevention and reduction of a wide range of severe health conditions such as cancer, immune, and cardiovascular diseases. The health benefits associated with green tea consumption have been predominantly attributed to green tea polyphenols. The functional properties of green tea polyphenols are mainly anti-oxidative, antimutagenic, anticarcinogenic, anti-microbial, etc. These excellent properties have recently gained considerable attention in the food industry. However, their application is limited by their sensitivity to factors like temperature, light, pH, oxygen, etc. More, studies have reported the occurrence of unpleasant taste and color transfer during food processing. Lastly, the production of functional food requires to maintain the stability, bioactivity, and bioavailability of the active compounds. To tackle these obstacles, technological approaches like microencapsulation have been developed and applied for the formulation of green tea-enriched food products. The present review discusses the novelty in microencapsulation techniques for the safe delivery of green tea polyphenols in food matrices. After a literature on the green tea polyphenols composition, and their health attributes, the encapsulation methods and the coating materials are presented. The application of green tea encapsulates in food matrices as well as their effect on food functional and sensory properties are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Defensive strategies in Geranium sylvaticum. Part 1: organ-specific distribution of water-soluble tannins, flavonoids and phenolic acids.

    PubMed

    Tuominen, Anu; Toivonen, Eija; Mutikainen, Pia; Salminen, Juha-Pekka

    2013-11-01

    A combination of high-resolution mass spectrometry and modern HPLC column technology, assisted by diode array detection, was used for accurate characterization of water-soluble polyphenolic compounds in the pistils, stamens, petals, sepals, stems, leaves, roots and seeds of Geranium sylvaticum. The organs contained a large variety of polyphenols, five types of tannins (ellagitannins, proanthocyanidins, gallotannins, galloyl glucoses and galloyl quinic acids) as well as flavonoids and simple phenolic acids. In all, 59 compounds were identified. Geraniin and other ellagitannins dominated in all the green photosynthetic organs. The other organs seem to produce distinctive polyphenol groups: pistils accumulated gallotannins; petals acetylglucose derivatives of galloylglucoses; stamens kaempferol glycosides, and seeds and roots accumulated proanthocyanidins. The intra-plant distribution of the different polyphenol groups may reflect the different functions and importance of various types of tannins as the defensive chemicals against herbivory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols.

    PubMed

    Murray, Margaret; Dordevic, Aimee L; Ryan, Lisa; Bonham, Maxine P

    2018-05-24

    Marine macroalgae are gaining recognition among the scientific community as a significant source of functional food ingredients. Due to the harsh environments in which macroalgae survive, they produce unique bioactive compounds that are not found in terrestrial plants. Polyphenols are the predominant bioactive compound in brown algae and are accountable for the majority of its biological activity. Phlorotannins are a type of polyphenol that are unique to marine sources and have exhibited protective effects against hyperglycemia, hyperlipidemia, inflammation and oxidative stress, known risk factors for cardiovascular disease and diabetic complications, in cell culture, animal studies and some human studies. This review updates the information on marine polyphenols, with a particular focus on phlorotannins and their potential health benefits in relation to the prevention and treatment of risk factors for type 2 diabetes and cardiovascular diseases.

  1. Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins.

    PubMed

    Guo, Jing; Yuan, Yahong; Dou, Pei; Yue, Tianli

    2017-10-01

    Fifty-one kiwifruit juice samples of seven kiwifruit varieties from five regions in China were analyzed to determine their polyphenols contents and to trace fruit varieties and geographical origins by multivariate statistical analysis. Twenty-one polyphenols belonging to four compound classes were determined by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. (-)-Epicatechin, (+)-catechin, procyanidin B1 and caffeic acid derivatives were the predominant phenolic compounds in the juices. Principal component analysis (PCA) allowed a clear separation of the juices according to kiwifruit varieties. Stepwise linear discriminant analysis (SLDA) yielded satisfactory categorization of samples, provided 100% success rate according to kiwifruit varieties and 92.2% success rate according to geographical origins. The result showed that polyphenolic profiles of kiwifruit juices contain enough information to trace fruit varieties and geographical origins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis.

    PubMed

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-15

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Stability of Polyphenols Epigallocatechin Gallate and Pentagalloyl Glucose in a Simulated Digestive System

    PubMed Central

    Krook, Melanie A.; Hagerman, Ann E.

    2012-01-01

    Polyphenols found in foods and beverages are under intense scrutiny for their potential beneficial effects on human health. We examined the stability of two bioactive polyphenols, epigallocatechin-O-gallate (EGCg) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG), in a model digestive system at low oxygen tension with and without added digestive components and foods. Both compounds were stable at pH values of 5–6 and below, indicating gastric stability. Both compounds decomposed at pH 7.0. PGG was stabilized in a model system containing pepsin, pancreatin, bile and lipase, and/or baby food, but was not stabilized by dry cereal. EGCg was not stabilized by the addition of any biomolecule. The effects of polyphenols on human health should be evaluated in the context of their stability in the digestive tract with and without added digestive components and/or food. PMID:23028206

  4. Maple polyphenols, ginnalins A-C, induce S- and G2/M-cell cycle arrest in colon and breast cancer cells mediated by decreasing cyclins A and D1 levels.

    PubMed

    González-Sarrías, Antonio; Ma, Hang; Edmonds, Maxwell E; Seeram, Navindra P

    2013-01-15

    Polyphenols are bioactive compounds found in plant foods. Ginnalins A-C are polyphenols present in the sap and other parts of the sugar and red maple species which are used to produce maple syrup. Here we evaluated the antiproliferative effects of ginnalins A-C on colon (HCT-116) and breast (MCF-7) tumourigenic and non-tumourigenic colon (CCD-18Co) cells and investigated whether these effects were mediated through cell cycle arrest and/or apoptosis. Ginnalins A-C were twofold more effective against the tumourigenic than non-tumourigenic cells. Among the polyphenols, ginnalin A (84%, HCT-116; 49%, MCF-7) was more effective than ginnalins B and C (50%, HCT-116; 30%, MCF-7) at 50 μM concentrations. Ginnalin A did not induce apoptosis of the cancer cells but arrested cell cycle (in the S- and G(2)/M-phases) and decreased cyclins A and D1 protein levels. These results suggest that maple polyphenols may have potential cancer chemopreventive effects mediated through cell cycle arrest. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-08-04

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide.

  6. Polyphenols, Inflammation, and Cardiovascular Disease

    PubMed Central

    Tangney, Christy; Rasmussen, Heather E.

    2013-01-01

    Polyphenols are compounds found in foods such as tea, coffee, cocoa, olive oil, and red wine and have been studied to determine if their intake may modify cardiovascular disease (CVD) risk. Historically, biologic actions of polyphenols have been attributed to antioxidant activities, but recent evidence suggests that immunomodulatory and vasodilatory properties of polyphenols may also contribute to CVD risk reduction. These properties will be discussed, and recent epidemiological evidence and intervention trials will be reviewed. Further identification of polyphenols in foods and accurate assessment of exposures through measurement of biomarkers (i.e., polyphenol metabolites) could provide the needed impetus to examine the impact of polyphenol-rich foods on CVD intermediate outcomes (especially those signifying chronic inflammation) and hard endpoints among high risk patients. Although we have mechanistic insight into how polyphenols may function in CVD risk reduction, further research is needed before definitive recommendations for consumption can be made. PMID:23512608

  7. Antioxidative properties of functional polyphenols and their metabolites assessed by an ORAC assay.

    PubMed

    Ishimoto, Hidekazu; Tai, Akihiro; Yoshimura, Morio; Amakura, Yoshiaki; Yoshida, Takashi; Hatano, Tsutomu; Ito, Hideyuki

    2012-01-01

    We compared the antioxidative activities of polyphenol metabolites with those of intact functional polyphenols by an assay of the oxygen radical absorbance capacity (ORAC). The metabolites of ellagitannin geraniin, chlorogenic acid, and (-)-epigallocatechin gallate displayed more potent antioxidative activity than their respective original compounds. Our findings suggest that these metabolites may play important roles as biological antioxidants after their consumption.

  8. Processing of polyphenolic composites with supercritical fluid anti-solvent technology

    NASA Astrophysics Data System (ADS)

    Kurniawansyah, Firman; Mammucari, Raffaella; Foster, Neil R.

    2017-05-01

    Polyphenols have been developed, primarily exploiting their robust antioxidant properties, for medical and food applications. In spite of their advantages, polyphenolic compounds have drawbacks from their natural characteristics of being poorly soluble in aqueous solutions, thermo-labile and low oral bioavailaibility. In this article, strategy of processing with supercritical fluid (SCF) anti-solvent to improve the shortcomings is overviewed. Information obtained from the existing studies commonly confirms SCF technology applicability to produce composites of polyphenols with various morphology, size distributions and crystallinity. The application of SCF technology also enables to develop polyphenolic composites for alternative drug delivery such as in the pulmonary administrations.

  9. Characterization of a Novel Class of Polyphenolic Inhibitors of Plasminogen Activator Inhibitor-1*

    PubMed Central

    Cale, Jacqueline M.; Li, Shih-Hon; Warnock, Mark; Su, Enming J.; North, Paul R.; Sanders, Karen L.; Puscau, Maria M.; Emal, Cory D.; Lawrence, Daniel A.

    2010-01-01

    Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC50 values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10–1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1. PMID:20061381

  10. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction

    PubMed Central

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2016-01-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983

  11. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties

    PubMed Central

    Miguélez, Elisa M.; Villar, Claudio J.

    2015-01-01

    Polyphenolic compounds are plant nutraceuticals showing a huge structural diversity, including chlorogenic acids, hydrolyzable tannins, and flavonoids (flavonols, flavanones, flavan-3-ols, anthocyanidins, isoflavones, and flavones). Most of them occur as glycosylated derivatives in plants and foods. In order to become bioactive at human body, these polyphenols must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. After elimination of sugar tailoring (generating the corresponding aglycons) and diverse hydroxyl moieties, as well as further backbone reorganizations, the final absorbed compounds enter the portal vein circulation towards liver (where other enzymatic transformations take place) and from there to other organs, including behind the digestive tract or via blood towards urine excretion. During this transit along diverse tissues and organs, they are able to carry out strong antiviral, antibacterial, and antiparasitic activities. This paper revises and discusses these antimicrobial activities of dietary polyphenols and their relevance for human health, shedding light on the importance of polyphenols structure recognition by specific enzymes produced by intestinal microbial taxa. PMID:25802870

  12. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding.

    PubMed

    Perron, Nathan R; Brumaghim, Julia L

    2009-01-01

    In this review, primary attention is given to the antioxidant (and prooxidant) activity of polyphenols arising from their interactions with iron both in vitro and in vivo. In addition, an overview of oxidative stress and the Fenton reaction is provided, as well as a discussion of the chemistry of iron binding by catecholate, gallate, and semiquinone ligands along with their stability constants, UV-vis spectra, stoichiometries in solution as a function of pH, rates of iron oxidation by O(2) upon polyphenol binding, and the published crystal structures for iron-polyphenol complexes. Radical scavenging mechanisms of polyphenols unrelated to iron binding, their interactions with copper, and the prooxidant activity of iron-polyphenol complexes are briefly discussed.

  13. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid.

    PubMed

    dos Santos, Michel David; Almeida, Maria Camila; Lopes, Norberto Peporine; de Souza, Glória Emília Petto

    2006-11-01

    Phenolic compounds are numerous and ubiquitous in the plant kingdom, being particularly present in health-promoting foods. Epidemiological evidences suggest that the consumption of polyphenol-rich foods reduces the incidence of cancer, coronary heart disease and inflammation. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. Data obtained from in vivo and in vitro experiments show that CGA mostly presents antioxidant and anti-carcinogenic activities. However, the effects of CGA on the inflammatory reaction and on the related pain and fever processes have been explored less so far. Therefore, this study was designed to evaluate the anti-inflammatory, antinociceptive and antipyretic activities of CGA in rats. In comparison to control, CGA at doses 50 and 100 mg/kg inhibited carrageenin-induced paw edema beginning at the 2nd hour of the experimental procedure. Furthermore, at doses 50 and 100 mg/kg CGA also inhibited the number of flinches in the late phase of formalin-induced pain test. Such activities may be derived from the inhibitory action of CGA in the peripheral synthesis/release of inflammatory mediators involved in these responses. On the other hand, even at the highest tested dose (200 mg/kg), CGA did not inhibit the febrile response induced by lipopolysaccharide (LPS) in rats. Additional experiments are necessary in order to clarify the true target for the anti-inflammatory and analgesic effects of CGA.

  14. Immobilization of polyphenol oxidase in conducting copolymers and determination of phenolic compounds in wines with enzyme electrodes.

    PubMed

    Kiralp, Senem; Toppare, Levent; Yağci, Yusuf

    2003-11-01

    Polyphenol oxidase (PPO) was immobilized in copolymers of thiophene functionalized menthyl monomer (MM) with pyrrole. Immobilization of enzyme was performed via entrapment in conducting copolymers during electrochemical polymerization of pyrrole. Maximum reaction rates, Michaelis-Menten constants and temperature, pH and operational stabilities of enzyme electrodes were investigated. Total amount of phenolic compounds in red wines of Turkey were analyzed by using these electrodes.

  15. Improvement of Nutritional and Bioactive Compound Production by Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), by Spraying Growth Regulators.

    PubMed

    Vi, Minhthuan; Yang, Xueqin; Zeng, Xianlu; Chen, Rui'an; Guo, Liqiong; Lin, Junfang; He, Qianyun; Zheng, Qianwang; Wei, Tao

    2018-01-01

    Hericium erinaceus is a popular culinary and medicinal mushroom in China because of its broad beneficial effects. In this study we evaluated the effects of stimulation with 7 growth regulators at 5 different concentrations on improving the production of nutritional and bioactive compounds by H. erinaceus. Results showed that among all the tested regulators, gibberellic acid (GA) increased protein content (165%), free amino acids (100%), polysaccharides (108%), and polyphenols (26%). Spraying nephthyl acetic acid increased polysaccharides and triterpenoids to 4.37 and 17.27 g/100 g, respectively. Spraying chitosan significantly increased polyphenols by 42%. The addition of triacontanol, indole acetic acid, and 2,4-dichlorophenoxyacetic acid improved the production of proteins, free amino acids, polysaccharides, and polyphenols, but not to the extent that GA did. These results indicate that adding certain growth regulators can effectively improve the production of nutritional and bioactive compounds in H. erinaceus.

  16. The Content of Dietary Fibre and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum).

    PubMed

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Sulewska, Hanna; Kreft, Ivan; Gujska, Elżbieta; Walkowiak, Jarosław

    2018-03-01

    In this report, we presented the profile of polyphenolic substances in flowers, leaves, stalk and roots of Fagopyrum tataricum estimated by using RP-UHPLC-ESI-MS equipment (reversed-phase ultra-high-performance liquid chromatography electrospray ionisation mass spectrometry). The neutral detergent fibre, acid detergent fibre, acid detergent lignin, cellulose and hemicellulose were also determined. Flowers, leaves, stalk and roots showed varying levels of dietary fibre and polyphenols. The highest content of neutral and acid detergent fibre were found in the roots (63.92 and 45.45% d.m., respectively) while the most rich in phenolic compounds were flowers (4.8 mg/1 g d.m.). Root and stalk contained the highest level of cellulose, 38.70 and 25.57% d.m., respectively. Among the investigated polyphenolic substances such as: 2,6-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydrobenzoic acid, caffeic acid, catechin, chlorogenic acid, fagopyrin, ferulic acid, myricetin, gallic acid, isovanilic acid, isovitexin, kaempferol, luteolin, p-coumaric acid, procyanidin B2, quercetin, quercetin 3-D galactoside, rutin, syringic acid and vitexin, we observed that the contents of rutin and chlorogenic acid were the highest. We found some correlation between dietary fibre fractions and individual phenolic substances. The levels of acid detergent fibre (ADF), cellulose and hemicellulose were negatively correlated with isovitexin, kaempferol, vitexin, fagopyrin, caffeic acid and procyanidin B2 content. In this investigation, two solvents (water and methanol) were estimated regarding their extraction efficiency of phenolic compounds. Taking these results into consideration, we recommend using methanol as the extractor to isolate chlorogenic acid, fagopyrin, kaempferol, procyanidin B2, quercetin, quercetin 3-D-galactoside, rutin, vitexin, and water for other investigated polyphenolic substances obtained from Fagopyrum tataricum.

  17. Bioactive compounds and antioxidant potential for polyphenol-rich cocoa extract obtained by agroindustrial residue.

    PubMed

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Pinheiro Arruda, Mara Silvia; Carréra Silva Júnior, José Otávio; Converti, Attilio; Ribeiro Costa, Roseane Maria

    2017-11-10

    Processing of cocoa (Theobroma cacao L.) beans responsible for agricultural exports leads to large amounts of solid waste that were discarded, however, this one presents high contents of metabolites with biological activities. The major objective of this study was to valorise cocoa agroindustrial residue obtained by hydraulic pressing for extract rich in antioxidants. For it, the centesimal composition of residue was investigated, the green extraction was carried out from the residue after, the bioactive compounds, sugar contents and screaming by HPTLC were quantified for extract. The extract has a total polyphenol content of 229.64 mg/g and high antioxidant activity according to ABTS 225.0 μM/g. HTPLC analysis confirmed the presence in the extract, residue of terpenes, sesquiterpenes, flavonoids and antioxidant activity. These results, as a whole, suggest that the extract from the cocoa residue has interesting characteristics to alternative crops with potential industrial uses.

  18. Antiparasitic efficacy of curcumin from Curcuma longa against Ichthyophthirius multifiliis in grass carp

    USDA-ARS?s Scientific Manuscript database

    Ichthyophthirius multifiliis (Ich) is a ciliated parasite that elicits great economic losses in aquaculture. In the present study, a polyphenol compound, curcumin, was obtained from the rhizome of Curcuma longa by bioassay-guided isolation based on the efficacy of anti-Ich theronts. Anti-Ich efficac...

  19. Reducing effects of polyphenols on metmyoglobin and the in vitro regeneration of bright meat color by polyphenols in the presence of cysteine.

    PubMed

    Miura, Yukari; Inai, Miyuki; Honda, Sari; Masuda, Akiko; Masuda, Toshiya

    2014-10-01

    The effect of polyphenols and related phenolic compounds on the reduction of metmyoglobin (MetMb) to oxymyoglobin (MbO2), in the presence of cysteine, was investigated. Caffeic acid, dihydrocaffeic acid, and hydroxtyrosol (600 μmol/L) did not show any reducing activity individually. However, their highly potent activity in the reduction of MetMb to MbO2 was observed in the presence of equimolar amounts of cysteine. On the basis of the analytical results for the redox reaction products generated during the MetMb-reducing reaction of caffeic acid, we proposed a mechanism for the polyphenol-mediated reduction of MetMb. As per the proposed mechanism, the antioxidant polyphenols having a catechol substructure can effectively reduce MetMb to MbO2 with chemical assistance from nucleophilic reactive thiol compounds such as cysteine. Moreover, cysteine-coupled polyphenols such as cysteinylcaffeic acids (which are coupling products of caffeic acid and cysteine) can be used as preserving agents for retaining the fresh meat color, because of their powerful reducing effect on MetMb. The reduction of MetMb to MbO2 changes the color of meat from brown to the more desirable bright red.

  20. Polyphenols: Potential Use in the Prevention and Treatment of Cardiovascular Diseases.

    PubMed

    Giglio, Rosaria Vincenza; Patti, Angelo Maria; Cicero, Arrigo F G; Lippi, Giuseppe; Rizzo, Manfredi; Toth, Peter P; Banach, Maciej

    2018-01-01

    Polyphenols are bioactive compounds that can be found mostly in foods like fruits, cereals, vegetables, dry legumes, chocolate and beverages such as coffee, tea and wine. They are extensively used in the prevention and treatment of cardiovascular disease (CVD) providing protection against many chronic illnesses. Their effects on human health depend on the amount consumed and on their bioavailability. Many studies have demonstrated that polyphenols have also good effects on the vascular system by lowering blood pressure, improving endothelial function, increasing antioxidant defences, inhibiting platelet aggregation and low-density lipoprotein oxidation, and reducing inflammatory responses. This review is focused on some groups of polyphenols and their effects on several cardiovascular risk factors such as hypertension, oxidative stress, atherogenesis, endothelial dysfunction, carotid artery intima-media thickness, diabetes and lipid disorders. It is proved that these compounds have many cardio protective functions: they alter hepatic cholesterol absorption, triglyceride biosynthesis and lipoprotein secretion, the processing of lipoproteins in plasma, and inflammation. In some cases, human long-term studies did not show conclusive results because they lacked in appropriate controls and in an undefined polyphenol dosing regimen. Rigorous evidence is necessary to demonstrate whether or not polyphenols beneficially impact CVD prevention and treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Modulation of neurotrophic signaling pathways by polyphenols

    PubMed Central

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the concomitant modulations of signaling pathways is useful for designing more effective agents for management of neurodegenerative diseases. PMID:26730179

  2. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update.

    PubMed

    Rodriguez-Mateos, Ana; Vauzour, David; Krueger, Christian G; Shanmuganayagam, Dhanansayan; Reed, Jess; Calani, Luca; Mena, Pedro; Del Rio, Daniele; Crozier, Alan

    2014-10-01

    There is substantial interest in the role of plant secondary metabolites as protective dietary agents. In particular, the involvement of flavonoids and related compounds has become a major topic in human nutrition research. Evidence from epidemiological and human intervention studies is emerging regarding the protective effects of various (poly)phenol-rich foods against several chronic diseases, including neurodegeneration, cancer and cardiovascular diseases. In recent years, the use of HPLC-MS for the analysis of flavonoids and related compounds in foods and biological samples has significantly enhanced our understanding of (poly)phenol bioavailability. These advancements have also led to improvements in the available food composition and metabolomic databases, and consequently in the development of biomarkers of (poly)phenol intake to use in epidemiological studies. Efforts to create adequate standardised materials and well-matched controls to use in randomised controlled trials have also improved the quality of the available data. In vitro investigations using physiologically achievable concentrations of (poly)phenol metabolites and catabolites with appropriate model test systems have provided new and interesting insights on potential mechanisms of actions. This article will summarise recent findings on the bioavailability and biological activity of (poly)phenols, focusing on the epidemiological and clinical evidence of beneficial effects of flavonoids and related compounds on urinary tract infections, cognitive function and age-related cognitive decline, cancer and cardiovascular disease.

  3. Changes Caused by Fruit Extracts in the Lipid Phase of Biological and Model Membranes

    PubMed Central

    Pruchnik, Hanna; Oszmiański, Jan; Sarapuk, Janusz; Kleszczyńska, Halina

    2010-01-01

    The aim of the study was to determine changes incurred by polyphenolic compounds from selected fruits in the lipid phase of the erythrocyte membrane, in liposomes formed of erythrocyte lipids and phosphatidylcholine liposomes. In particular, the effect of extracts from apple, chokeberry, and strawberry on the red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC liposomes was studied. In the erythrocyte population, the proportions of echinocytes increased due to incorporation of polyphenolic compounds. Fluorimetry with a laurdan probe indicated increased packing density in the hydrophilic phase of the membrane in presence of polyphenolic extracts, the highest effect being observed for the apple extract. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The polyphenolic extracts slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The studies have shown that the phenolic compounds contained in the extracts incorporate into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The compounds also penetrate the outer part of the external lipid layer of liposomes formed of natural and DPPC lipids, changing its packing order. PMID:21423329

  4. Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract.

    PubMed

    Si, Weiduo; Gong, Joshua; Tsao, Rong; Kalab, Milosh; Yang, Raymond; Yin, Yulong

    2006-09-01

    The Chinese green tea extract was found to strongly inhibit the growth of major food-borne pathogens, Escherichia coli O157:H7, Salmonella Typhimurium DT104, Listeria monocytogenes, Staphylococcus aureus, and a diarrhoea food-poisoning pathogen Bacillus cereus, by 44-100% with the highest activity found against S. aureus and lowest against E. coli O157:H7. A bioassay-guided fractionation technique was used for identifying the principal active component. A simple and efficient reversed-phase high-speed counter-current chromatography (HSCCC) method was developed for the separation and purification of four bioactive polyphenol compounds, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epicatechin (EC), and caffeine (CN). The structures of these polyphenols were confirmed with mass spectrometry. Among the four compounds, ECG and EGCG were the most active, particularly EGCG against S. aureus. EGCG had the lowest MIC90 values against S. aureus (MSSA) (58 mg/L) and its methicilin-resistant S. aureus (MRSA) (37 mg/L). Scanning electron microscopy (SEM) studies showed that these two compounds altered bacterial cell morphology, which might have resulted from disturbed cell division. This study demonstrated a direct link between the antimicrobial activity of tea and its specific polyphenolic compositions. The activity of tea polyphenols, particularly EGCG on antibiotics-resistant strains of S. aureus, suggests that these compounds are potential natural alternatives for the control of bovine mastitis and food poisoning caused by S. aureus.

  5. Polyphenols produced during red wine ageing.

    PubMed

    Brouillard, R; George, F; Fougerousse, A

    1997-01-01

    Over the past few years, it has been accepted that a moderate red wine consumption is a factor beneficial to human health. Indeed, people of France and Italy, the two major wine-producing European countries, eat a lot of fatty foods but suffer less from fatal heart strokes than people in North-America or in the northern regions of Europe, where wine is not consumed on a regular basis. For a time, ethanol was thought to be the "good" chemical species hiding behind what is known as the "French paradox". Researchers now have turned their investigations towards a family of natural substances called "polyphenols", which are only found in plants and are abundant in grapes. It is well known that these molecules behave as radical scavengers and antioxidants, and it has been demonstrated that they can protect cholesterol in the LDL species from oxidation, a process thought to be at the origin of many fatal heart attacks. However, taken one by one, it remains difficult to demonstrate which are the best polyphenols as far as their antioxidant activities are concerned. The main obstacle in that kind of research is not the design of the chemical and biological tests themselves, but surprisingly enough, the limited access to chemically pure and structurally elucidated polyphenolic compounds. In this article, particular attention will be paid to polyphenols of red wine made from Vitis vinifera cultivars. With respect to the "French paradox", we address the following question: are wine polyphenolic compounds identical to those found in grapes (skin, pulp and seed), or are there biochemical modifications specifically taking place on the native flavonoids when a wine ages? Indeed, structural changes occur during wine conservation, and one of the most studied of those changes concerns red wine colour evolution, called "wine ageing". As a wine ages, it has been demonstrated that the initially present grape pigments slowly turn into new more stable red pigments. That phenomenon goes on for weeks, months and years. Since grape and wine polyphenols are chemically distinct, their antioxidant activities cannot be the same. So, eating grapes might well lead to beneficial effects on human health, due to the variety and sometimes large amounts of their polyphenolic content. However, epidemiological surveys have focused on wines, not on grapes....

  6. A Potential Alternative against Neurodegenerative Diseases: Phytodrugs

    PubMed Central

    Pérez-Hernández, Jesús; Zaldívar-Machorro, Víctor Javier; Villanueva-Porras, David; Vega-Ávila, Elisa; Chavarría, Anahí

    2016-01-01

    Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability. PMID:26881043

  7. Comparing phenolic concentration using folin-ciocalteu and fast blue BB diazonium salt

    USDA-ARS?s Scientific Manuscript database

    Polyphenolics contribute to antioxidant properties of food, juices, and beverages, and are essential to the human diet. These phytochemicals have various preventive and disease fighting properties. The polyphenolics contribute to antioxidant properties and these compounds include flavonoids, flavon...

  8. Anti-Oxidative Polyphenolic Compounds of Cocoa.

    PubMed

    Nabavi, Seyed F; Sureda, Antoni; Daglia, Maria; Rezaei, Parizad; Nabavi, Seyed M

    2015-01-01

    Oxidative stress plays a key role in the pathogenesis of different serious chronic diseases such as cancer, diabetes, cardiovascular and neurodegenerative disorders, etc. Recent research has been focused on the beneficial role of dietary antioxidants against oxidative stress both under in vitro and in vivo conditions. Theobroma cacao L. (cacao tree) is an evergreen tree which is native to South America. It is a plant of great economic importance and its seeds are commonly used to produce cocoa powder and chocolate. In addition to its uses in food industry, cocoa is a rich source of polyphenolic antioxidants. There is a plethora of in vitro and in vivo studies that report cocoa antioxidant capacity. The protective activity of cocoa seems to be due to its phytochemical constituents, especially catechins. However, bioavailability of cocoa polyphenolic constituents following oral administration is very low (nanomolar concentrations). In the present paper, we critically reviewed the available literature on the antioxidant and free radical scavenging activities of cocoa and its polyphenolic constituents. In addition to these, we provide brief information about cultivation, phytochemistry, bioavailability and clinical impacts of cocoa.

  9. Punicalagin and catechins contain polyphenolic substructures that influence cell viability and can be monitored by radical chemosensors sensitive to electron transfer.

    PubMed

    Carreras, Anna; Mateos-Martín, María Luisa; Velázquez-Palenzuela, Amado; Brillas, Enric; Sánchez-Tena, Susana; Cascante, Marta; Juliá, Luis; Torres, Josep Lluís

    2012-02-22

    Plant polyphenols may be free radical scavengers or generators, depending on their nature and concentration. This dual effect, mediated by electron transfer reactions, may contribute to their influence on cell viability. This study used two stable radicals (tris(2,3,5,6-tetrachloro-4-nitrophenyl)methyl (TNPTM) and tris(2,4,6-trichloro-3,5-dinitrophenyl)methyl (HNTTM)) sensitive only to electron transfer reduction reactions to monitor the redox properties of polyphenols (punicalagin and catechins) that contain phenolic hydroxyls with different reducing capacities. The use of the two radicals reveals that punicalagin's substructures consisting of gallate esters linked together by carbon-carbon (C-C) bonds are more reactive than simple gallates and less reactive than the pyrogallol moiety of green tea catechins. The most reactive hydroxyls, detected by TNPTM, are present in the compounds that affect HT-29 cell viability the most. TNPTM reacts with C-C-linked gallates and pyrogallol and provides a convenient way to detect potentially beneficial polyphenols from natural sources.

  10. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents.

    PubMed

    Payet, Bertrand; Shum Cheong Sing, Alain; Smadja, Jacqueline

    2005-12-28

    Seven cane brown sugars (four from La Réunion, two from Mauritius, and one from France) were investigated for their polyphenol content and volatile composition in relation to their free radical scavenging capacity determined by ABTS and DPPH assays. The thin layer coated on the sugar crystal was extracted by Soxhlet extractor with dichloromethane. The volatile compounds of brown sugars were studied by GC-MS, and 43 compounds were identified. The total phenolic content of brown sugars was determined according to the Folin-Ciocalteu method. Phenolic compounds were quantified in the brown sugar extracts by LC-UV-ESI-MS. Brown sugar aqueous solutions exhibited weak free radical scavenging activity in the DPPH assay and higher antioxidant activity in the ABTS assay at relatively high concentration. The brown sugar extracts showed interesting free radical scavenging properties despite the low concentration of phenolic and volatile compounds. Sugar is a common foodstuff traditionally used for its sweetening properties, which might be accompanied by antioxidant properties arising from molecules (polyphenols, Maillard products) other than sucrose of the cane brown sugars.

  11. The photobase generator nifedipine as a novel matrix for the detection of polyphenols in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Nguyen, Huu-Nghi; Tanaka, Mitsuru; Komabayashi, Genki; Matsui, Toshiro

    2016-10-01

    Matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) is widely used for the detection and analysis of ionizable compounds. However, the method has less potential for the analysis of neutral compounds, such as polyphenols, owing to their lack of favorable proton-attachment or -removal groups. In this study, we reported for the first time that nifedipine (2,6-dimethyl-3,5-dicarbomethoxy-4-(2-nitrophenyl)-1,4-dihydropyridine), which is a strong photobase generator commonly used in polymerization, can abstract protons from neutral compounds in negative mode-MALDI experiments. When nifedipine (5 mg/ml) was used as a matrix reagent, the limit of detection (LOD) for epigallocatechin-3-O-gallate (EGCG) was determined to be 100 fmol/spot, which constitutes >50-fold improvement compared to the LOD obtained when trans-3-indoleacrylic acid, a matrix reagent previously reported for polyphenol detection, was used. Of the dihydropyridines investigated, only nifedipine facilitated the detection of EGCG, suggesting that the nitrosophenyl pyridine derivative of nifedipine formed by photoreduction under laser irradiation at 355 nm plays a crucial role in detecting polyphenols in negative mode. Reduced MS detection of 5-O-methylnaringenin indicated that nifedipine may preferably remove a proton from the 5-position OH group in the A ring of the flavonoid skeleton. The significant MS detection by nifedipine was extensively observed for polyphenols including flavones, flavonones, chalcones, stilbenoids and phenolic acids. In conclusion, nifedipine can act as a novel matrix for improving polyphenol detection by MALDI-MS in negative mode. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): review of recent advances from molecular mechanisms to nanomedicine and clinical trials.

    PubMed

    Peter, Beatrix; Bosze, Szilvia; Horvath, Robert

    2017-01-01

    Herbs and traditional medicines have been applied for thousands of years, but researchers started to study their mode of action at the molecular, cellular and tissue levels only recently. Nowadays, just like in ancient times, natural compounds are still determining factors in remedies. To support this statement, the recently won Nobel Prize for an anti-malaria agent from the plant sweet wormwood, which had been used to effectively treat the disease, could be mentioned. Among natural compounds and traditional Chinese medicines, the green tea polyphenol epigallocatechin gallate (EGCg) is one of the most studied active substances. In the present review, we summarize the molecular scale interactions of proteins and EGCg with special focus on its limited stability and antioxidant properties. We outline the observed biophysical effects of EGCg on various cell lines and cultures. The alteration of cell adhesion, motility, migration, stiffness, apoptosis, proliferation as well as the different impacts on normal and cancer cells are all reviewed. We also handle the works performed using animal models, microbes and clinical trials. Novel ways to develop its utilization for therapeutic purposes in the future are discussed too, for instance, using nanoparticles and green tea polyphenols together to cure illnesses and the combination of EGCg and anticancer compounds to intensify their effects. The limitations of the employed experimental models and criticisms of the interpretation of the obtained experimental data are summarized as well.

  13. Gontscharovia popovii, a new source of carvacrol, its polyphenolic constituents, essential oil analysis, total phenolic content and antioxidant activity.

    PubMed

    Zareiyan, Faraneh; Rowshan, Vahid; Bahmanzadegan, Atefeh; Hatami, Ahmad

    2017-09-28

    The experiment was carried out using the shadow-dried aerial parts including leaves and shoots of Gontscharovia popovii collected in Fars province in order to investigate the polyphenolic compositions, antioxidant activity, total phenolic content and essential oil constituents. The result showed IC 50 of 395.77 μg mL -1 and total phenolic content of about 20.01 mg g -1 gallic acid equivalent dry weight. It also showed a wild range of polyphenols such as; Gallic acid, catechin, chloregenic acid, rutin, vanillin, trans-Ferulic acid, sinapic acid, coumarin, hesperedin, quercetin, hesperetin, eugenol and carvacrol as the main detected polyphenols. Some major compounds were also detected through essential oil analysis, such as; 76.7% carvacrol, 4.25% γ-Terpinene, 3.8% p-Cymene and 2.4% (E)-Caryophyllene. Qualitative and quantitative analyses of chemical compounds of G. popovii was performed using HPLC, GC, GC/MS and microplate reader.

  14. Dietary fiber content and associated antioxidant compounds in Roselle flower (Hibiscus sabdariffa L.) beverage.

    PubMed

    Sáyago-Ayerdi, Sonia G; Arranz, Sara; Serrano, José; Goñi, Isabel

    2007-09-19

    The beverage of Hibiscus sabdariffa flowers is widely consumed in Mexico. Polyphenols contained in plant foods are frequently associated with dietary fiber. The aim of this work is to quantify the dietary fiber, associated polyphenols, and antioxidant capacity of the Roselle flower and the beverage traditionally prepared from it and its contribution to the Mexican diet. Roselle flower contained dietary fiber as the largest component (33.9%) and was rich in phenolic compounds (6.13%). Soluble dietary fiber was 0.66 g/L in beverage, and 66% of total extractable polyphenols contained in Roselle flower passed to the beverage and showed an antioxidant capacity of 335 micromoL trolox equivalents/100 mL beverage measured by ABTS. These data suggest that Roselle flower beverage intake in the Mexican diet may contribute around 166 and 165 mg/per serving to the intake of dietary fiber and polyphenols, respectively. The health benefits from consumption of Hibiscus beverage could be of considerable benefit to the whole population.

  15. Impact of canning and storage on apricot carotenoids and polyphenols.

    PubMed

    Le Bourvellec, Carine; Gouble, Barbara; Bureau, Sylvie; Reling, Patrice; Bott, Romain; Ribas-Agusti, Albert; Audergon, Jean-Marc; Renard, Catherine M G C

    2018-02-01

    Apricot polyphenols and carotenoids were monitored after industrial and domestic cooking, and after 2months of storage for industrial processing. The main apricot polyphenols were flavan-3-ols, flavan-3-ol monomers and oligomers, with an average degree of polymerization between 4.7 and 10.7 and caffeoylquinic acids. Flavonols and anthocyanins were minor phenolic compounds. Upon processing procyanidins were retained in apricot tissue. Hydroxycinnamic acids, flavan-3-ol monomers, flavonols and anthocyanins leached in the syrup. Flavonol concentrations on per-can basis were significantly increased after processing. Industrial processing effects were higher than domestic cooking probably due to higher temperature and longer duration. After 2months of storage, among polyphenols only hydroxycinnamic acids, flavan-3-ol monomers and anthocyanins were reduced. Whichever the processing method, no significant reductions of total carotenoids were observed after processing. The cis-β-carotene isomer was significantly increased after processing but with a lower extent in domestic cooking. Significant decreased in total carotenoid compounds occurred during storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Metabolomic approach to identifying bioactive compounds in berries: advances toward fruit nutritional enhancement.

    PubMed

    Stewart, Derek; McDougall, Gordon J; Sungurtas, Julie; Verrall, Susan; Graham, Julie; Martinussen, Inger

    2007-06-01

    Plant polyphenolics continue to be the focus of attention with regard to their putative impact on human health. An increasing and ageing human population means that the focus on nutrition and nutritional enhancement or optimisation of our foodstuffs is paramount. Using the raspberry as a model, we have shown how modern metabolic profiling approaches can be used to identify the changes in the level of beneficial polyphenolics in fruit breeding segregating populations and how the level of these components is determined by genetic and/or environmental control. Interestingly, the vitamin C content appeared to be significantly influenced by environment (growth conditions) whilst the content of the polyphenols such as cyanidin, pelargonidin and quercetin glycosides appeared much more tightly regulated, suggesting a rigorous genetic control. Preliminary metabolic profiling showed that the fruit polyphenolic profiles divided into two gross groups segregating on the basis of relative levels of cyanidin-3-sophoroside and cyanidin-3-rutinoside, compounds implicated as conferring human health benefits.

  17. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity.

    PubMed

    Yangui, Asma; Abderrabba, Manef

    2018-10-01

    Activated carbon coated with milk proteins was used for the removal and recovery of phenolic compounds from actual olive mill wastewater (OMW). The extraction of polyphenols using the new adsorbent based on natural coating agent has significant potential compared with traditional extraction methods, as it significantly increases the extraction yield (80%) and overall efficiencies of the process for total phenols (75.4%) and hydroxytyrosol (90.6%) which is the most valuable compound. Complete discussions on the adsorption isotherms, kinetic and thermodynamic were performed and the optimum adsorption variables were investigated using the response surface methodology and the central composite experimental design. The extracted polyphenols exhibited a high antioxidant activity and a fast scavenging effect on DPPH free radical. The strategy devised in this work for polyphenol extraction using modified activated carbon with biological coating agent is of simple design, very effective and ensure the recovery of highly antioxidant extract. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Proximate and polyphenolic characterization of cranberry pomace.

    PubMed

    White, Brittany L; Howard, Luke R; Prior, Ronald L

    2010-04-14

    The proximate composition and identification and quantification of polyphenolic compounds in dried cranberry pomace were determined. Proximate analysis was conducted based on AOAC methods for moisture, protein, fat, dietary fiber, and ash. Other carbohydrates were determined by the difference method. Polyphenolic compounds were identified and quantified by HPLC-ESI-MS. The composition of dried cranberry pomace was 4.5% moisture, 2.2% protein, 12.0% fat, 65.5% insoluble fiber, 5.7% soluble fiber, 8.4% other carbohydrates, 1.1% ash, and 0.6% total polyphenolics. It contained six anthocyanins (111.5 mg/100 g of DW) including derivatives of cyanidin and peonidin. Thirteen flavonols were identified (358.4 mg/100 g of DW), and the aglycones myricetin (55.6 mg/100 g of DW) and quercetin (146.2 mg/100 g of DW) were the most prominent. Procyanidins with degrees of polymerization (DP) of 1-6 were identified (167.3 mg/100 g of DW), the most abundant being an A-type of DP2 (82.6 mg/100 g of DW).

  19. Coffee component 3-caffeoylquinic acid increases antioxidant capacity but not polyphenol content in experimental cerebral infarction.

    PubMed

    Ruiz-Crespo, Silvia; Trejo-Gabriel-Galan, Jose M; Cavia-Saiz, Monica; Muñiz, Pilar

    2012-05-01

    Although coffee has antioxidant capacity, it is not known which of its bioactive compounds is responsible for it, nor has it been analyzed in experimental cerebral infarction. We studied the effect one of its compounds, 3-caffeoylquinic acid (3-CQA), at doses of 4, 25 and 100 μg on plasma antioxidant capacity and plasma polyphenol content, measuring the differences before and after inducing a cerebral infarction in an experimental rat model. We compared them with 3-caffeoylquinic-free controls. The increase in total antioxidant capacity was only higher than in controls in 3-CQA treated animals with the highest dose. This increase in antioxidant capacity was not due to an increase in polyphenols. No differences between the experimental and control group were found regarding polyphenol content and cerebral infarction volume. In conclusion, this increase in antioxidant capacity in the group that received the highest dose of 3-CQA was not able to reduce experimental cerebral infarction.

  20. Further Highlighting on the Prevention of Oxidative Damage by Polyphenol-Rich Wine Extracts.

    PubMed

    Salucci, Sara; Burattini, Sabrina; Giordano, Francesco Maria; Lucarini, Simone; Diamantini, Giuseppe; Falcieri, Elisabetta

    2017-04-01

    Wine contains various polyphenols such as flavonoids, anthocyanins, and tannins. These molecules are responsible for the quality of wines, influencing their astringency, bitterness, and color and they are considered to have antioxidant activity. Polyphenols, extracted from grapes during the processes of vinification, could protect the body cells against reactive oxygen species level increase and could be useful to rescue several pathologies where oxidative stress represents the main cause. For that, in this study, red and white wine, provided by an Italian vinery (Marche region), have been analyzed. Chromatographic and morphofunctional analyses have been carried out for polyphenol extraction and to evaluate their protective effect on human myeloid U937 cells exposed to hydrogen peroxide. Both types of wines contained a mix of phenolic compounds with antioxidant properties and their content decreased, as expected, in white wine. Ultrastructural observations evidenced that wines, in particular red wine, strongly prevent mitochondrial damage and apoptotic cell death. In conclusion, the considered extracts show a relevant polyphenol content with strong antioxidant properties and abilities to prevent apoptosis. These findings suggest, for these compounds, a potential role in all pathological conditions where the body antioxidant system is overwhelmed.

  1. Polyphenols in foods are more complex than often thought.

    PubMed

    Cheynier, Véronique

    2005-01-01

    Dietary polyphenols show a great diversity of structures, ranging from rather simple molecules (monomers and oligomers) to polymers. Higher-molecular-weight structures (with molecular weights of > 500) are usually designated as tannins, which refers to their ability to interact with proteins. Among them, condensed tannins (proanthocyanidins) are particularly important because of their wide distribution in plants and their contributions to major food qualities. All phenolic compounds are highly unstable and rapidly transformed into various reaction products when the plant cells are damaged (for instance, during food processing), thus adding to the complexity of dietary polyphenol composition. The polyphenol composition of plant-derived foods and beverages depends on that of the raw material used but also on the extraction process and subsequent biochemical and chemical reactions of plant polyphenols. The occurrence of specific tannin-like compounds (ie, thearubigins and theaflavins) arising from enzymatic oxidation is well documented in black tea. Various chemical reactions involving anthocyanins and/or flavanols have been demonstrated to occur during red wine aging. Current knowledge regarding the reaction mechanisms involved in some of these processes and the structures of the resulting products is reviewed. Their effects on organoleptic and nutritional quality are also discussed.

  2. Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds.

    PubMed

    Sanz-Pintos, Nerea; Pérez-Jiménez, Jara; Buschmann, Alejandro H; Vergara-Salinas, José Rodrigo; Pérez-Correa, José Ricardo; Saura-Calixto, Fulgencio

    2017-02-01

    Seaweeds are rich in different bioactive compounds with potential uses in drugs, cosmetics and the food industry. The objective of this study was to analyze macromolecular antioxidants or nonextractable polyphenols, in several edible seaweed species collected in Chile (Gracilaria chilensis, Callophyllis concepcionensis, Macrocystis pyrifera, Scytosyphon lomentaria, Ulva sp. and Enteromorpha compressa), including their 1st HPLC characterization. Macromolecular antioxidants are commonly ignored in studies of bioactive compounds. They are associated with insoluble dietary fiber and exhibit significant biological activity, with specific features that are different from those of both dietary fiber and extractable polyphenols. We also evaluated extractable polyphenols and dietary fiber, given their relationship with macromolecular antioxidants. Our results show that macromolecular antioxidants are a major polyphenol fraction (averaging 42% to total polyphenol content), with hydroxycinnamic acids, hydroxybenzoic acids and flavonols being the main constituents. This fraction also showed remarkable antioxidant capacity, as determined by 2 complementary assays. The dietary fiber content was over 50% of dry weight, with some samples exhibiting the target proportionality between soluble and insoluble dietary fiber for adequate nutrition. Overall, our data show that seaweed could be an important source of commonly ignored macromolecular antioxidants. © 2017 Institute of Food Technologists®.

  3. Phenolic Acid Profiling, Antioxidant, and Anti-Inflammatory Activities, and miRNA Regulation in the Polyphenols of 16 Blueberry Samples from China.

    PubMed

    Su, Xianming; Zhang, Jian; Wang, Hongqing; Xu, Jing; He, Jiuming; Liu, Liying; Zhang, Ting; Chen, Ruoyun; Kang, Jie

    2017-02-18

    To investigate the anti-atherosclerosis related mechanism of blueberries, the phenolic acids (PAs) content, antioxidant and anti-inflammatory activities, as well as the microRNA (miRNA) regulation of polyphenol fractions in blueberry samples from China were studied. Sixteen batches of blueberries including 14 commercialized cultivars (Reka, Patriot, Brigitta, Bluecrop, Berkeley, Duke, Darrow, Northland, Northblue, Northcountry, Bluesource, Southgood, O'Neal, and Misty) were used in this study. Seven PAs in the polyphenol fractions from 16 blueberry samples in China were quantified by high performance liquid chromatography/tandem mass spectrometry (HPLC/MS²). The antioxidant activities of blueberry polyphenols were tested by (1,1-diphenyl-2-picrylhydrazyl [DPPH]) assay. The anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]) activities of the polyphenol fractions of the blueberries were investigated by using lipopolysaccharide (LPS) induced RAW 264.7 macrophages. The correlation analysis showed that the antioxidant (1,1-diphenyl-2-picrylhydrazyl [DPPH]) and anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]) activities of the polyphenol fractions of the blueberries were in accordance with their PA contents. Although the polyphenol-enriched fractions of blueberries could inhibit the microRNAs (miRNAs) (miR-21, miR-146a, and miR-125b) to different extents, no significant contribution from the PAs was observed. The inhibition of these miRNAs could mostly be attributed to the other compounds present in the polyphenol-enriched fraction of the blueberries. This is the first study to evaluate the PAs content, antioxidant and anti-inflammatory activities, and miRNA regulation of Chinese blueberries.

  4. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols.

    PubMed

    Galleano, Monica; Pechanova, Olga; Fraga, Cesar G

    2010-12-01

    Fruits and vegetables are key foods whose high ingestion is associated with the improvement of numerous pathological conditions, including hypertension. Such health promoting actions have been increasingly ascribed to the antioxidant characteristics of different polyphenols in fruits and vegetables. Consequently, based on this assumption, many beverages and foods rich in polyphenols, grape, tea, cocoa, and soy products and many of their chemical constituents purified, are being studied both, as antioxidants and antihypertensive agents. This paper reviews the current evidence linking high polyphenol consumption with reductions in blood pressure. Basic chemical aspects of flavanols, flavonols, isoflavones and stilbenes, as possible responsible for the observed effects of those foods on blood pressure are included. Human interventions studies by using grapes and wine, cocoa and chocolate, black and green tea, soy products, and purified compounds ((+)-catequin, quercetin, (-)-epigallocatechin gallate) are summarized. The discussed hypothesis, strongly supported by experimental data in animals, is that by regulating nitric oxide bioavailability, polyphenols present in fruits and vegetables affect endothelial function and as a consequence, blood pressure. Even when data are not definitive and many questions remain open, the whole evidence is encouraging to start considering diets that can provide a benefit to hypertensive subjects, and those benefits will be more significant in people that do not have controlled his/her elevated blood pressure.

  5. Organic honey supplementation reverses pesticide-induced genotoxicity by modulating DNA damage response.

    PubMed

    Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Ciarapica, Veronica; Bracci, Massimo; Caboni, Maria Fiorenza; Pasini, Federica; Monaco, Federica; Amati, Monica; Borghi, Battista; Tomasetti, Marco

    2016-10-01

    Glyphosate (GLY) and organophosphorus insecticides such as chlorpyrifos (CPF) may cause DNA damage and cancer in exposed individuals through mitochondrial dysfunction. Polyphenols ubiquitously present in fruits and vegetables, have been viewed as antioxidant molecules, but also influence mitochondrial homeostasis. Here, honey containing polyphenol compounds was evaluated for its potential protective effect on pesticide-induced genotoxicity. Honey extracts from four floral organic sources were evaluated for their polyphenol content, antioxidant activity, and potential protective effects on pesticide-related mitochondrial destabilization, reactive oxygen and nitrogen species formation, and DNA damage response in human bronchial epithelial and neuronal cells. The protective effect of honey was, then evaluated in a residential population chronically exposed to pesticides. The four honey types showed a different polyphenol profile associated with a different antioxidant power. The pesticide-induced mitochondrial dysfunction parallels ROS formation from mitochondria (mtROS) and consequent DNA damage. Honey extracts efficiently inhibited pesticide-induced mtROS formation, and reduced DNA damage by upregulation of DNA repair through NFR2. Honey supplementation enhanced DNA repair activity in a residential population chronically exposed to pesticides, which resulted in a marked reduction of pesticide-induced DNA lesions. These results provide new insight regarding the effect of honey containing polyphenols on pesticide-induced DNA damage response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation

    PubMed Central

    2004-01-01

    The predominant (>90%) low-molecular-mass polyphenol was isolated from the leaves of the resurrection plant Myrothamnus flabellifolius and identified to be 3,4,5 tri-O-galloylquinic acid using 1H and 13C one- and two-dimensional NMR spectroscopy. The structure was confirmed by mass spectrometric analysis. This compound was present at high concentrations, 44% (by weight) in hydrated leaves and 74% (by weight) in dehydrated leaves. Electron microscopy of leaf material fixed with glutaraldehyde and caffeine demonstrated that the polyphenols were localized in large vacuoles in both hydrated and dehydrated leaves. 3,4,5 Tri-O-galloylquinic acid was shown to stabilize an artificial membrane system, liposomes, against desiccation if the polyphenol concentration was between 1 and 2 μg/μg phospholipid. The phase transition of these liposomes observed at 46 °C was markedly diminished by the presence of 3,4,5 tri-O-galloylquinic acid, suggesting that the presence of the polyphenol maintained the membranes in the liquid crystalline phase at physiological temperatures. 3,4,5 Tri-O-galloylquinic acid was also shown to protect linoleic acid against free radical-induced oxidation. PMID:15355309

  7. Biochemical Analysis and in Vivo Hypoglycemic Activity of a Grape Polyphenol–Soybean Flour Complex

    PubMed Central

    Roopchand, Diana E.; Kuhn, Peter; Poulev, Alexander; Oren, Andrew; Lila, Mary Ann; Fridlender, Bertold; Raskin, Ilya

    2012-01-01

    Defatted soybean flour (DSF) can efficiently sorb, concentrate, and stabilize polyphenols, but not sugars, from Concord grape juice, to yield grape polyphenol-enriched DSF. Sorption of grape polyphenols to DSF particles was dependent on the ratio of DSF and grape juice concentrate used, but not time of mixing or pH. Depending on ratios of starting materials, 1 g of grape polyphenol-enriched DSF contained 1.6–10.4 mg of anthocyanins, 7.5–93.1 mg of proanthocyanidins, and 20.5–144.5 mg of total polyphenols. LC-MS analysis of grape juice samples before and after addition and removal of DSF and eluate from grape polyphenol-enriched DSF confirmed that a broad range of grape compounds were sorbed to the DSF matrix. Finally, grape polyphenol-enriched DSF was able to significantly lower blood glucose levels in hyperglycemic C57BL/6J mice. The data indicate that grape polyphenol-enriched DSF can provide a high-protein, low-sugar ingredient for delivery of concentrated grape polyphenolics. PMID:22462390

  8. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer.

    PubMed

    Khushnud, Tasnima; Mousa, Shaker A

    2013-09-01

    Polyphenols are natural compounds found in plants, fruits, chocolate, and beverages such as tea and wine. To date, the majority of polyphenol research shows them to have anticancer activity in cell lines and animal models. Some human clinical trials also indicate possible anticancer benefits are associated with polyphenols. A problem with polyphenols is their short half-life and low bioavailability; thus the use of nanoparticles to enhance their delivery is a new research field. A Pubmed search was conducted to find in vitro, in vivo, and human clinical trials done within the past 10 years involving the use of polyphenols against different cancer types, and for studies done within the past 5 years on the use of nanoparticles to enhance polyphenol delivery. Based on the studies found, it is observed that polyphenols may be a potential alternative or additive therapy against cancer, and the use of nanoparticles to enhance their delivery to tumors is a promising approach. However, further human clinical trials are necessary to better understand the use of polyphenols as well as their nanoparticle-mediated delivery.

  9. Effect of Sulfites on Antioxidant Activity, Total Polyphenols, and Flavonoid Measurements in White Wine

    PubMed Central

    Garaguso, Ivana

    2018-01-01

    Polyphenols content and antioxidant activity are directly related to the quality of wine. Wine also contains sulfites, which are added during the winemaking process. The present study aimed to evaluate the effects of sulfites on the assays commonly used to measure the antioxidant activity and polyphenols and flavonoids content of white wines. The effects of sulfites were explored both in the standard assays and in white wine. The addition of sulfites (at 1–10 μg) in the standard assays resulted in a significant, positive interference in the Folin–Ciocalteu’s assay used for polyphenols measurements and in both the Ferric Reducing Antioxidant Power and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation decolorization assays, which were used for antioxidant activity evaluation. A negative interference of sulfites (at 1–20 μg) was observed for the colorimetric aluminium-chloride flavonoids assay. The addition of sulfites to organic white wines (at 25–200 mg/L wine) clearly resulted in a significant overestimation of antioxidant activity and polyphenols content, and in an underestimation of flavonoids concentration. To overcome sulfite interferences, white wines were treated with cross-linked polyvinylpyrrolidone. The total polyphenols content and antioxidant activity measurements obtained after polyvinylpyrrolidone treatment were significantly lower than those obtained in the untreated wines. Flavonoids were expected to be higher after polyvinylpyrrolidone treatment, but were instead found to be lower than for untreated wines, suggesting that in addition to sulfites, other non-phenolic reducing compounds were present in white wine and interfered with the flavonoid assay. In view of our results, we advise that a purification procedure should be applied in order to evaluate the quality of white wine. PMID:29522434

  10. Melatonin and hydroxytyrosol-rich wines influence the generation of DNA oxidation catabolites linked to mutagenesis after the ingestion of three types of wine by healthy volunteers.

    PubMed

    Marhuenda, Javier; Medina, Sonia; Martínez-Hernández, Pedro; Arina, Simón; Zafrilla, Pilar; Mulero, Juana; Genieser, Hans-Gottfried; Ferreres, Federico; Gil-Izquierdo, Ángel

    2016-12-07

    The Mediterranean Diet (MD) has been proved to exert benefits with respect to the maintenance of the redox balance, and wine is a representative component. Bioactive compounds such as polyphenols, melatonin and hydroxytyrosol act as radical scavengers and regulate the oxidation status of organisms. Oxidative damage to DNA yields a large range of end products. The repair of oxidized DNA entails the removal of the useless bases and/or nucleotides as well as the release of circulating nucleotides and nucleosides. The current research aims to elucidate, for the first time, the DNA protection against oxidative stress provided by three types of red wine - relating it to the intake of bioactive compounds - after the intake of a serving of red wine/must by 18 healthy female volunteers during a short term double-blind, crossover and placebo-controlled study. The novelty of our work is to describe the importance of melatonin and hydroxytyrosol and its metabolites (from gut microflora) in comparison with polyphenols in a red wine matrix (excluding colon derivatives). The results show that the intake of red wine and must secondarily reduces oxidative stress and carcinogenesis due to their content of homovanillic acid, as measured by decreases in the plasmatic concentration of 8-hydroxy-2'deoxyguanosine, 8-hydroxyguanine, and 8-nitroguanosine. Moreover, the intake of wine appears to exert vasodilatory effects, mediated by the action of nitric oxide and increased plasma guanosine-3'-5'-cyclic monophosphate plasmatic levels, owing to the intake of wines higher in melatonin and homovanillic acid. Therefore, the results obtained in the present study revealed that polyphenols, despite being the major compounds in the red wine matrix, are not the most effective compounds protecting DNA from oxidative attack.

  11. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.).

    PubMed

    de la Cerda-Carrasco, Aarón; López-Solís, Remigio; Nuñez-Kalasic, Hugo; Peña-Neira, Álvaro; Obreque-Slier, Elías

    2015-05-01

    Phenolic compounds are widely distributed secondary metabolites in plants usually conferring them with unique taste, flavour and health-promoting properties. In fruits of Vitis vinifera L., phenolic composition is highly dependent on grape variety. Differential extraction of these compounds from grapes during winemaking is critically associated with wine quality. By-products of winemaking, such as grape pomace, can contain significant amounts of polyphenols. However, information concerning the varietal effect on wine grape pomace is scarce. In this study, pomaces from Sauvignon Blanc (SB), Chardonnay (CH), Cabernet Sauvignon (CS) and Carménère (CA) grape varieties were characterized spectroscopically and by HPLC-DAD analysis. White grape pomaces (SB and CH) presented higher antioxidant capacities and higher contents of total phenols and total proanthocyanidins compared with red grape pomaces (CS and CA), whereas the latter showed much higher anthocyanin levels and colour intensities. Concentrations of monomeric proanthocyanidins and low-molecular-weight phenols in the four grape pomace varieties were significantly different. Grape pomaces from four varieties showed high but diverse contents of polyphenols and antioxidant capacities. Thus grape pomaces represent an important potential source of polyphenols, which could be useful for nutritional and/or pharmacological purposes. © 2014 Society of Chemical Industry.

  12. Antioxidant changes of leek (Allium ampeloprasum var. porrum) during spontaneous fermentation of the white shaft and green leaves.

    PubMed

    Bernaert, Nathalie; Wouters, Dorrit; De Vuyst, Luc; De Paepe, Domien; De Clercq, Hervé; Van Bockstaele, Erik; De Loose, Marc; Van Droogenbroeck, Bart

    2013-07-01

    Leek is grown for its thickened cylindrical white shaft made up of long leaf bases. Despite the potentially valuable nutritional profile of the green leaves, a large portion remains unused owing its restricted culinary applications. This large quantity of this plant biomass could be valorized given an adequate stabilization method. In this study, we examined leek fermentation with regard to antioxidant changes. The oxygen radical absorbance capacity (ORAC) increased by 62% when the green leaves were fermented for 21 days, while 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity did not increase significantly. Fermentation resulted in an increase of endogenous polyphenolic compounds such as ferulic acid, astragalin, luteolin and naringenin. Moreover, fermentation stimulated the production of a series of polyphenolic compounds that were not present in the fresh leek. The flavour precursors in leek, i.e. methiin and isoalliin, were reduced by 91-93% and 100%, respectively, when spontaneous fermentation was allowed to occur on the white shaft and green leaves. Our results demonstrated that application of fermentation resulted in a higher ORAC value and polyphenol content of the leek plant, especially in the green leaves. These results indicate the nutritional relevance of fermentation, which hold promise as a stabilization technique. © 2013 Society of Chemical Industry.

  13. Anthocyanidins and polyphenols in five brassica species microgreens: analysis by UHPLC-PDA-ESI/HRMS/MSn

    USDA-ARS?s Scientific Manuscript database

    Brassica vegetables are known to contain relatively high concentrations of bioactive compounds associated with human health. A comprehensive profiling of polyphenols from five Brassica species microgreens was conducted using ultra high-performance liquid chromatography photo diode array high-resolu...

  14. Dietary supplementation with coffee improves motor and cognitive performance in aged rats

    USDA-ARS?s Scientific Manuscript database

    Polyphenols found in fruits and nuts have anti-inflammatory properties that may provide protection against the decline of cognitive, motor and neuronal function in senescence. The presence of a number of bioactive compounds (e.g., polyphenols) implicates coffee as a potential nutritional therapeutic...

  15. Polyphenol fatty acid esters as serine protease inhibitors: a quantum-chemical QSAR analysis.

    PubMed

    Viskupicova, Jana; Danihelova, Martina; Majekova, Magdalena; Liptaj, Tibor; Sturdik, Ernest

    2012-12-01

    We investigated the ability of polyphenol fatty acid esters to inhibit the activity of serine proteases trypsin, thrombin, elastase and urokinase. Potent protease inhibition in micromolar range was displayed by rutin and rutin derivatives esterified with medium and long chain, mono- and polyunsaturated fatty acids (1e-m), followed by phloridzin and esculin esters with medium and long fatty acid chain length (2a-d, 3a-d), while unmodified compounds showed only little or no effect. QSAR study of the compounds tested provided the most significant parameters for individual inhibition activities, i.e. number of hydrogen bond donors for urokinase, molecular volume for thrombin, and solvation energy for elastase. According to the statistical analysis, the action of elastase inhibitors is opposed to those of urokinase and thrombin. Cluster analysis showed two groups of compounds: original polyphenols together with rutin esters with short fatty acid chain length and rutin esters with long fatty acid chain length.

  16. Preparation of biosensors by immobilization of polyphenol oxidase in conducting copolymers and their use in determination of phenolic compounds in red wine.

    PubMed

    Böyükbayram, A Elif; Kiralp, Senem; Toppare, Levent; Yağci, Yusuf

    2006-10-01

    Electrochemically produced graft copolymers of thiophene capped polytetrahydofuran (TPTHF1 and TPTHF2) and pyrrole were achieved by constant potential electrolysis using sodium dodecylsulfate (SDS) as the supporting electrolyte. Characterizations were based on Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Electrical conductivities were measured by the four-probe technique. Novel biosensors for phenolic compounds were constructed by immobilizing polyphenol oxidase (PPO) into conducting copolymers prepared by electropolymerization of pyrrole with thiophene capped polytetrahydrofuran. Kinetic parameters, maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) and optimum conditions regarding temperature and pH were determined for the immobilized enzyme. Operational stability and shelf-life of the enzyme electrodes were investigated. Enzyme electrodes of polyphenol oxidase were used to determine the amount of phenolic compounds in two brands of Turkish red wines and found very useful owing to their high kinetic parameters and wide pH working range.

  17. Flour from Prosopis alba cotyledons: A natural source of nutrient and bioactive phytochemicals.

    PubMed

    Cattaneo, F; Costamagna, M S; Zampini, I C; Sayago, J; Alberto, M R; Chamorro, V; Pazos, A; Thomas-Valdés, S; Schmeda-Hirschmann, G; Isla, M I

    2016-10-01

    The Prosopis alba seed is a waste material in the process to produce pod flour. To suggest a potential use of these seeds it is necessary to determine the nutritional, phytochemical and functional quality of cotyledon flour from Prosopis alba. This flour showed high level of proteins (62%), low content of total carbohydrate and fat. Free polyphenol (1150±20mg GAE/100g flour) and carotenoids (10.55±0.05mg β-CE/100g flour) compounds were the dominant compounds. The main identified constituents in the polyphenolic extracts were C- glycosyl flavones, including schaftoside, isoschaftoside, vicenin II, vitexin and isovitexin. The extract enriched in polyphenolic compounds exhibited ABTS(+) reducing capacity and scavenging activity of H2O2; and was able to inhibit phospholipase, lipoxygenase and cyclooxygenase, three pro-inflammatory enzymes. According to our results, the P. alba cotyledon flour could be considered as a new alternative in the formulation of functional foods or food supplements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Non-anthocyanin polyphenolic transformation by native yeast and bacteria co-inoculation strategy during vinification.

    PubMed

    Devi, Apramita; Archana, Kodira Muthanna; Bhavya, Panikuttria Kuttappa; Anu-Appaiah, Konerira Aiyappaa

    2018-02-01

    Co-inoculation has been adapted by many wine-producing countries because it enhances the success of malolactic fermentation and reduces the fermentation cost, as well as time. However, wine phenolics have been sparsely highlighted during co-inoculation, even though polyphenols are an important parameter affecting wine colour, astringency and aroma. In the present study, we investigated the impact of co-inoculation on non-anthocyanin polyphenol profile for two different grape varieties. Co-inoculation of native yeast strain (AAV2) along with Oenococcus oeni was adapted for Cabernet Sauvignon and Shiraz wine. It was observed that the co-inoculation had minimal yet significant impact on the phenolic composition of wines for both the grape varieties. Color loss, as well as fruity aroma development, was observed in co-inoculated wines. The wines were on a par with the commercial wine, as well as wines without malolactic fermentation, in terms of phenolic compounds and overall organoleptic acceptance. Principal component analysis and hierarchical cluster analysis further suggested that the varietal influence on phenolic composition was dominating compared to inoculation strategies. Among the varieties, the inoculation strategies have significantly influenced the Cabernet wines compared to Shiraz wines. The results of the present study demonstrate that the phenolic compounds are not drastically affected by metabolic activities of malolactic bacteria during co-inoculation and, hence, are equally suitable for wine fermentation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Quantification of almond skin polyphenols by liquid chromatography-mass spectrometry.

    PubMed

    Bolling, Bradley W; Dolnikowski, Gregory; Blumberg, Jeffrey B; Oliver Chen, C Y

    2009-01-01

    Reverse phase HPLC coupled to negative mode electrospray ionization (ESI) mass spectrometry (MS) was used to quantify 16 flavonoids and 2 phenolic acids from almond skin extracts. Calibration curves of standard compounds were run daily and daidzein was used as an internal standard. The inter-day relative standard deviation (RSD) of standard curve slopes ranged from 13% to 25% of the mean. On column (OC) limits of detection (LOD) for polyphenols ranged from 0.013 to 1.4 pmol, and flavonoid glycosides had a 7-fold greater sensitivity than aglycones. Limits of quantification were 0.043 to 2.7 pmol OC, with a mean of 0.58 pmol flavonoid OC. Mean inter-day RSD of polyphenols in almond skin extract was 6.8% with a range of 4% to 11%, and intra-day RSD was 2.4%. Liquid nitrogen (LN(2)) or hot water (HW) blanching was used to facilitate removal of the almond skins prior to extraction using assisted solvent extraction (ASE) or steeping with acidified aqueous methanol. Recovery of polyphenols was greatest in HW blanched almond extracts with a mean value of 2.1 mg/g skin. ASE and steeping extracted equivalent polyphenols, although ASE of LN(2) blanched skins yielded 52% more aglycones and 23% less flavonoid glycosides. However, the extraction methods did not alter flavonoid profile of HW blanched almond skins. The recovery of polyphenolic components that were spiked into almond skins before the steeping extraction was 97% on a mass basis. This LC-MS method presents a reliable means of quantifying almond polyphenols.

  20. Quantification of Almond Skin Polyphenols by Liquid Chromatography-Mass Spectrometry

    PubMed Central

    Bolling, Bradley W.; Dolnikowski, Gregory; Blumberg, Jeffrey B.; Oliver Chen, C.Y.

    2014-01-01

    Reverse phase HPLC coupled to negative mode electrospray ionization (ESI) mass spectrometry (MS) was used to quantify 16 flavonoids and 2 phenolic acids from almond skin extracts. Calibration curves of standard compounds were run daily and daidzein was used as an internal standard. The inter-day relative standard deviation (RSD) of standard curve slopes ranged from 13% to 25% of the mean. On column (OC) limits of detection (LOD) for polyphenols ranged from 0.013 to 1.4 pmol, and flavonoid glycosides had a 7-fold greater sensitivity than aglycones. Limits of quantification were 0.043 to 2.7 pmol OC, with a mean of 0.58 pmol flavonoid OC. Mean inter-day RSD of polyphenols in almond skin extract was 6.8% with a range of 4% to 11%, and intra-day RSD was 2.4%. Liquid nitrogen (LN2) or hot water (HW) blanching was used to facilitate removal of the almond skins prior to extraction using assisted solvent extraction (ASE) or steeping with acidified aqueous methanol. Recovery of polyphenols was greatest in HW blanched almond extracts with a mean value of 2.1 mg/g skin. ASE and steeping extracted equivalent polyphenols, although ASE of LN2 blanched skins yielded 52% more aglycones and 23% less flavonoid glycosides. However, the extraction methods did not alter flavonoid profile of HW blanched almond skins. The recovery of polyphenolic components that were spiked into almond skins before the steeping extraction was 97% on a mass basis. This LC-MS method presents a reliable means of quantifying almond polyphenols. PMID:19490319

  1. Profiling Polyphenols in Five Brassica species Microgreens by UHPLC-PDA-ESI/HRMSn

    PubMed Central

    Sun, Jianghao; Xiao, Zhenlei; Lin, Long-ze; Lester, Gene E.; Wang, Qin; Harnly, James M.; Chen, Pei

    2014-01-01

    Brassica vegetables are known to contain relatively high concentrations of bioactive compounds associated with human health. A comprehensive profiling of polyphenols from five Brassica species microgreens was conducted using ultra high-performance liquid chromatography photo diode array high-resolution multi-stage mass spectrometry (UHPLC-PDA-ESI/HRMSn). A total of 164 polyphenols including 30 anthocyanins, 105 flavonol glycosides, and 29 hydroxycinnamic acid and hydroxybenzoic acid derivatives were putatively identified.The putative identifications were based on UHPLC-HRMSn analysis using retention times, elution orders, UV/Vis spectra and high resolution mass spectra, in-house polyphenol database, and as well as literature comparisons. This study showed that these five Brassica species microgreens could be considered as good sources of food polyphenols. PMID:24144328

  2. Effect of flash release treatment on phenolic extraction and wine composition.

    PubMed

    Morel-Salmi, Cécile; Souquet, Jean-Marc; Bes, Magali; Cheynier, Véronique

    2006-06-14

    The flash release (FR) process, consisting of rapidly heating the grapes and then applying strong vacuum, has been proposed to increase the polyphenol content of red wines. Its impact on polyphenol extraction kinetics and on the polyphenol composition of red juice and wines was studied over two seasons on different grape varieties (Grenache, Mourvedre, Carignan). The FR process allows fast extraction of all phenolic compounds (hydroxycinnamic acids, flavonols, anthocyanins, catechins, proanthocyanidins) and can be used to produce polyphenol-enriched grape juices. However, the concentration of all polyphenols dramatically decreased throughout fermentation when pressing was achieved immediately after FR. The FR wines made with pomace maceration were also enriched in polyphenols compared to the corresponding control wines. Increasing the duration of high-temperature exposure in the FR treatment further increased extraction of phenolic compounds but also accelerated their conversion to derived species. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase, higher after FR than in the control, and even higher after longer heating. FR resulted in an increased tannin-to-anthocyanin ratio and an increased conversion of anthocyanins to tannin-anthocyanin adducts showing the same color properties as anthocyanins. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase that also contained larger amounts of orange sulfite bleaching-resistant pigments.

  3. Variation of total aroma and polyphenol content of dark chocolate during three phase of conching.

    PubMed

    Albak, F; Tekin, A R

    2016-01-01

    Variation in the volatiles, total polyphenol, theobromine and caffein was investigated both qualitatively and quantitatively for all phases of conching with GC/MS/SPME, HPLC, GC/O, and UV-visible spectrophotometry. The volatile compounds being identified during the three phases consisted of aldehydes, ketones, pyrazines, acids, alcohols and esters. The number and concentration of these compounds were observed to be 31-25,681 ppb, 44-34,838 ppb and 44-29,809 ppb in the dry, pasty, and liquid phases respectively. The odor of dark chocolate was described as nutty, sweet, caramel, green and chocolate using olfactometry. The percent decrease in the concentration of total polyphenol, caffein and theobromine was observed to be only 3.0, 11.0, and 32.0 respectively.

  4. Recent Advances in the Recombinant Biosynthesis of Polyphenols

    PubMed Central

    Chouhan, Sonam; Sharma, Kanika; Zha, Jian; Guleria, Sanjay; Koffas, Mattheos A. G.

    2017-01-01

    Plants are the source of various natural compounds with pharmaceutical and nutraceutical importance which have shown numerous health benefits with relatively fewer side effects. However, extraction of these compounds from native producers cannot meet the ever-increasing demands of the growing population due to, among other things, the limited production of the active compound(s). Their production depends upon the metabolic demands of the plant and is also subjected to environmental conditions, abundance of crop species and seasonal variations. Moreover, their extraction from plants requires complex downstream processing and can also lead to the extinction of many useful plant varieties. Microbial engineering is one of the alternative approaches which can meet the global demand for natural products in an eco-friendly manner. Metabolic engineering of microbes or pathway reconstruction using synthetic biology tools and novel enzymes lead to the generation of a diversity of compounds (like flavonoids, stilbenes, anthocyanins etc.) and their natural and non-natural derivatives. Strain and pathway optimization, pathway regulation and tolerance engineering have produced microbial cell factories into which the metabolic pathway of plants can be introduced for the production of compounds of interest on an industrial scale in an economical and eco-friendly way. While microbial production of phytochemicals needs to further increase product titer if it is ever to become a commercial success. The present review covers the advancements made for the improvement of microbial cell factories in order to increase the product titer of recombinant polyphenolic compounds. PMID:29201020

  5. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity

    PubMed Central

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1–0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning. PMID:27272505

  6. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    PubMed

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  7. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    NASA Astrophysics Data System (ADS)

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-10-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.

  8. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    PubMed Central

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-01-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin–Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry. PMID:27786308

  9. Identification of Natural Animicrobial Substances in Red Muscadine Juice against Cranonbacter sakazakii

    USDA-ARS?s Scientific Manuscript database

    Muscadine grape (Vitis rotundifolia Michx.) juice with natural organic, phenolic acids and polyphenol compounds identified in red muscadine juice (‘Noble’) were tested against Cronobacter sakazakii. Commercial baby juices with high polyphenol content (176.7~347.7 mg/mL), showed poor antimicrobial a...

  10. The Antibacterial Activity of Date Syrup Polyphenols against S. aureus and E. coli

    PubMed Central

    Taleb, Hajer; Maddocks, Sarah E.; Morris, R. Keith; Kanekanian, Ara D.

    2016-01-01

    Plant-derived products such as date syrup (DS) have demonstrated antibacterial activity and can inhibit bacteria through numerous different mechanisms, which may be attributed to bioactive compounds including plant-derived phenolic molecules. DS is rich in polyphenols and this study hypothesized that DS polyphenols demonstrate inherent antimicrobial activity, which cause oxidative damage. This investigation revealed that DS has a high content of total polyphenols (605 mg/100 g), and is rich in tannins (357 mg/100 g), flavonoids (40.5 mg/100 g), and flavanols (31.7 mg/100 g) that are known potent antioxidants. Furthermore, DS, and polyphenols extracted from DS, the most abundant bioactive constituent of DS are bacteriostatic to both Gram positive and Gram negative Escherichia coli and Staphylococcus aureus, respectively. It has further been shown that the extracted polyphenols independently suppress the growth of bacteria at minimum inhibitory concentration (MIC) of 30 and 20 mg/mL for E. coli and S. aureus, and have observed that DS behaves as a prooxidant by generating hydrogen peroxide that mediates bacterial growth inhibition as a result of oxidative stress. At sub-lethal MIC concentrations DS demonstrated antioxidative activity by reducing hydrogen peroxide, and at lethal concentrations DS demonstrated prooxidant activity that inhibited the growth of E. coli and S. aureus. The high sugar content naturally present in DS did not significantly contribute to this effect. These findings highlight that DS’s antimicrobial activity is mediated through hydrogen peroxide generation in inducing oxidative stress in bacteria. PMID:26952177

  11. Seed oil extraction from red prickly pear using hexane and supercritical CO2 : assessment of phenolic compound composition, antioxidant and antibacterial activities.

    PubMed

    Koubaa, Mohamed; Mhemdi, Houcine; Barba, Francisco J; Angelotti, Armel; Bouaziz, Fatma; Chaabouni, Semia Ellouz; Vorobiev, Eugène

    2017-01-01

    Investigating Opuntia species for their seed oil content is of much importance owing to their potential use for food and in cosmetic applications. These oils have an important content in unsaturated fatty acids as well as antioxidant compounds (e.g. polyphenols, vitamin E), which have been associated with the prevention of some chronic diseases. Moreover, Opuntia stricta oils possess important antimicrobial activities. For instance, the main focus of this study was to compare the effectiveness of conventional (hexane extraction) and novel (supercritical (SC)-CO 2 ) extraction methods for the recovery of oil and phenolic compounds from O. stricta seeds. The oil yield of both extracts was then compared and the polyphenol content and composition of both extracts were determined by liquid chromatography-high-resolution mass spectrometry. Additionally, antioxidant (DPPH assay) and antimicrobial activities (disc diffusion method) of O. stricta seed oils were determined. The oil yield (based on Soxhlet's method) of O. stricta seeds was determined using SC-CO 2 (49.9 ± 2.2%), and hexane (49.0 ± 1.5%). Although obtaining similar oil extraction yields using the two methods, the extracted oil using SC-CO 2 was more enriched in polyphenols (172.2 ± 11.9 µg gallic acid equivalents (GAE) g -1 oil) than that extracted using hexane (76.0 ± 6.9 µg GAE g -1 of oil). Polyphenol profiles showed that the SC-CO 2 process led to the yield of more compounds (45) than that using hexane extraction (11). Moreover, the antioxidant and antimicrobial activities of SC-CO 2 extract showed a high percentage of inhibition. SC-CO 2 extraction of O. stricta seed oil led to extraction of oil with a similar yield to that with hexane extraction, but with higher polyphenol content. The extract containing polyphenols exhibited high antioxidant and antibacterial properties, demonstrating their great potential as feedstock for high-oil quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Sensitive characterization of polyphenolic antioxidants in Polygonatum odoratum by selective solid phase extraction and high performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Hu, Xin; Zhao, Huading; Shi, Shuyun; Li, Hui; Zhou, Xiaoling; Jiao, Feipeng; Jiang, Xinyu; Peng, Dongming; Chen, Xiaoqin

    2015-08-10

    The complexity of natural products always leads to the co-elution of interfering compounds with bioactive compounds, which then has a detrimental effect on structural elucidation. Here, a new method, based on selective solid phase extraction combined with 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) spiking and high performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS), is described for sensitive screening, selective extraction and identification of polyphenolic antioxidants in Polygonatum odoratum. First, 25 polyphenolic antioxidants (1-25) were screened by DPPH spiking with HPLC. Second, polydopamine coated Fe3O4 microspheres (Fe3O4@PDA) were prepared to selectively extract target antioxidants with extraction efficiency from 55% to 100% when the amount of Fe3O4@PDA, extraction time, desorption solvent and time were 10mg, 20 min, acetonitrile, and 5 min. Third, 25 antioxidants (10 cinnamides and 15 homoisoflavanones) were identified by HPLC-DAD-QTOF-MS/MS. Furthermore, the DPPH scavenging activities of purified compounds (IC50, 1.6-32.8 μg/mL) validated the method. Among the identified antioxidants, four of them (12, 13, 18 and 19) were new compounds, four of them (2, 4, 8 and 14) were first obtained from family Liliaceae, five of them (1, 3, 5, 7 and 9) were first reported in genus Polygonatum, while one compound (24) was first identified in this species. The results indicated that the proposed method was an efficient and sensitive approach to explore polyphenolic antioxidants from complex natural products. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum Ruprecht (Phaeophyta: Laminariales) on feeding rate and growth in the red abalone Haliotus rufescens Swainson

    USGS Publications Warehouse

    Winter, Frank C.; Estes, James A.

    1992-01-01

    The effects of polyphenolic compounds from brown algae on grazing and growth rate of the California red abalone Haliotis rufescens Swainson were examined. Abalone consumed three phenolic-poor algal species, Laminaria sinclarii (Harvey) Farlow, Macrocystis pyrifera Agardh, and Nereocystis luetkeana Postels et Ruprecht (mean phenolic content = 0.52% dry mass), at a greater rate than two phenolic-rich species, Dictyoneurum californicum Ruprecht and Cystoseira osmundacea Agardh (mean phenolic content = 4.60% dry mass). This inverse relationship between phenolic content and consumption rate also existed after the algae were macerated and the liquid portion of the blended slurry incorporated in agar discs. However, the correlation between grazing rate and phenolic content imprpve d in this latter experiment, thus suggesting that abalone grazing was deterred significantly by the morphology of L. sinclarii and, to a lesser extent, of M. pyrifera. Polyphenolics extracted from D. californicum reduced abalone grazing rates by 90% when incorporated into agar discs at a concentration of 6 mg·ml−1. Although abalone were unable to maintain body mass when fed ad libitum on macerated M. pyrifera incorporated into agar discs, polyphenolics from D. californicum further inhibited shell growth when added to the discs at 5 mg·ml−1. The abalone ate less of the phenol-containing discs than of the discs lacking phenolics. Our results support findings of several prior studies that polyphenolic compounds from brown algae deter grazing by coastal zone herbivores in the northeast Pacific Ocean.

  14. QTL and candidate gene mapping for polyphenolic composition in apple fruit

    PubMed Central

    2012-01-01

    Background The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin. Results Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence in silico enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17. Conclusion We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes. PMID:22269060

  15. [Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina].

    PubMed

    Jaramillo Jaramillo, Carmita; Jaramillo Espinoza, Anyi; D'Armas, Haydelba; Troccoli, Luis; Rojas de Astudillo, Luisa

    2016-09-01

    Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (p<0.001) acute toxicity against A. salina, while at a higher polyphenol concentration the level of plants cytotoxicity decreased significantly (p<0.001). The results of principal component analysis showed that saponins apparently were in synergy with polyphenols to decrease cytotoxicity, but antagonize with alkaloids and cyanogenic glycosides, indicating that these secondary metabolites present variability in the mechanisms of action against A. salina, as cytotoxic compounds. These results also demonstrate that polyphenols and saponins can be lethal at low concentrations, demonstrating the potential of brine shrimp bioassay as a model to evaluate plant extracts containing low concentrations of chemical compounds with high polarities. The significant positive correlation between cytotoxicity and concentration of alkaloids confirmed by the bioassay of brine shrimp can be useful to identify promising sources of antitumor compounds, and to evaluate tolerable limits not affecting other benign cells. Contents of secondary metabolites found in the selected plants confer them great pharmacologic values.

  16. Lowbush wild blueberries have the potentail to modify gut microbiota and xenobiotic metabolism in the rat colon

    USDA-ARS?s Scientific Manuscript database

    Polyphenols present in lowbush blueberries cannot be absorbed by the intestinal epithelial tissue in their native form. These compounds are catabolized by the gut microbiota before being utilized. The objective of this research is to study the effect of a diet enriched with lowbush blueberries on th...

  17. Pine Bark and Green Tea Concentrated Extracts: Antioxidant Activity and Comprehensive Characterization of Bioactive Compounds by HPLC–ESI-QTOF-MS

    PubMed Central

    Cádiz-Gurrea, María de la Luz; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio

    2014-01-01

    The consumption of polyphenols has frequently been associated with low incidence of degenerative diseases. Most of these natural antioxidants come from fruits, vegetables, spices, grains and herbs. For this reason, there has been increasing interest in identifying plant extract compounds. Polymeric tannins and monomeric flavonoids, such as catechin and epicatechin, in pine bark and green tea extracts could be responsible for the higher antioxidant activities of these extracts. The aim of the present study was to characterize the phenolic compounds in pine bark and green tea concentrated extracts using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC–ESI-QTOF-MS). A total of 37 and 35 compounds from pine bark and green tea extracts, respectively, were identified as belonging to various structural classes, mainly flavan-3-ol and its derivatives (including procyanidins). The antioxidant capacity of both extracts was evaluated by three complementary antioxidant activity methods: Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). Higher antioxidant activity values by each method were obtained. In addition, total polyphenol and flavan-3-ol contents, which were determined by Folin–Ciocalteu and vanillin assays, respectively, exhibited higher amounts of gallic acid and (+)-catechin equivalents. PMID:25383680

  18. Pine bark and green tea concentrated extracts: antioxidant activity and comprehensive characterization of bioactive compounds by HPLC-ESI-QTOF-MS.

    PubMed

    de la Luz Cádiz-Gurrea, María; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio

    2014-11-06

    The consumption of polyphenols has frequently been associated with low incidence of degenerative diseases. Most of these natural antioxidants come from fruits, vegetables, spices, grains and herbs. For this reason, there has been increasing interest in identifying plant extract compounds. Polymeric tannins and monomeric flavonoids, such as catechin and epicatechin, in pine bark and green tea extracts could be responsible for the higher antioxidant activities of these extracts. The aim of the present study was to characterize the phenolic compounds in pine bark and green tea concentrated extracts using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-QTOF-MS). A total of 37 and 35 compounds from pine bark and green tea extracts, respectively, were identified as belonging to various structural classes, mainly flavan-3-ol and its derivatives (including procyanidins). The antioxidant capacity of both extracts was evaluated by three complementary antioxidant activity methods: Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). Higher antioxidant activity values by each method were obtained. In addition, total polyphenol and flavan-3-ol contents, which were determined by Folin-Ciocalteu and vanillin assays, respectively, exhibited higher amounts of gallic acid and (+)-catechin equivalents.

  19. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention

    PubMed Central

    Martí, Raúl; Roselló, Salvador; Cebolla-Cornejo, Jaime

    2016-01-01

    A diet rich in vegetables has been associated with a reduced risk of many diseases related to aging and modern lifestyle. Over the past several decades, many researches have pointed out the direct relation between the intake of bioactive compounds present in tomato and a reduced risk of suffering different types of cancer. These bioactive constituents comprise phytochemicals such as carotenoids and polyphenols. The direct intake of these chemoprotective molecules seems to show higher efficiencies when they are ingested in its natural biological matrix than when they are ingested isolated or in dietary supplements. Consequently, there is a growing trend for improvement of the contents of these bioactive compounds in foods. The control of growing environment and processing conditions can ensure the maximum potential accumulation or moderate the loss of bioactive compounds, but the best results are obtained developing new varieties via plant breeding. The modification of single steps of metabolic pathways or their regulation via conventional breeding or genetic engineering has offered excellent results in crops such as tomato. In this review, we analyse the potential of tomato as source of the bioactive constituents with cancer-preventive properties and the result of modern breeding programs as a strategy to increase the levels of these compounds in the diet. PMID:27331820

  20. Comprehensive polyphenol profiling of a strawberry extract (Fragaria × ananassa) by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry.

    PubMed

    La Barbera, Giorgia; Capriotti, Anna Laura; Cavaliere, Chiara; Piovesana, Susy; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-03-01

    The aim of metabolic untargeted profiling is to detect and identify unknown compounds in a biological matrix to achieve the most comprehensive metabolic coverage. In phytochemical mixtures, however, the complexity of the sample could present significant difficulties in compound identification. In this case, the optimization of both the chromatographic and the mass-spectrometric conditions is supposed to be crucial for the detection and identification of the largest number of compounds. In this work, a systematic investigation of different chromatographic and mass-spectrometric conditions is presented to achieve a comprehensive untargeted profiling of a strawberry extract (Fragaria × ananassa). To fulfill this aim, an ultra-high-pressure liquid chromatography system coupled via an electrospray source to a hybrid quadrupole-Orbitrap mass spectrometer was used. Spectra were acquired in data-dependent mode, and several parameters were investigated to acquire the largest possible number of both mass spectrometry (MS) features and MS 2 mass spectra for unique metabolites. The main classes of polyphenols studied were flavonoids, phenolic acids, dihydrochalcones, ellagitannins, and proanthocyanidins. Method optimization allowed to us identify and tentatively identify 18 and 113 compounds, respectively, among which 74 have never been reported before in strawberries and, to the best of our knowledge, 22 of them have never been reported before. The results show the importance of an extended investigation of the chromatographic and mass-spectrometric method before a complete untargeted profiling of complex phytochemical mixtures.

  1. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence

    PubMed Central

    Merino, Jordi; Fitó, Montse

    2017-01-01

    Dietary polyphenols come mainly from plant-based foods including fruits, vegetables, whole grains, coffee, tea, and nuts. Polyphenols may influence glycemia and type 2 diabetes (T2D) through different mechanisms, such as promoting the uptake of glucose in tissues, and therefore improving insulin sensitivity. This review aims to summarize the evidence from clinical trials and observational prospective studies linking dietary polyphenols to prediabetes and T2D, with a focus on polyphenol-rich foods characteristic of the Mediterranean diet. We aimed to describe the metabolic biomarkers related to polyphenol intake and genotype-polyphenol interactions modulating the effects on T2D. Intakes of polyphenols, especially flavan-3-ols, and their food sources have demonstrated beneficial effects on insulin resistance and other cardiometabolic risk factors. Several prospective studies have shown inverse associations between polyphenol intake and T2D. The Mediterranean diet and its key components, olive oil, nuts, and red wine, have been inversely associated with insulin resistance and T2D. To some extent, these associations may be attributed to the high amount of polyphenols and bioactive compounds in typical foods conforming this traditional dietary pattern. Few studies have suggested that genetic predisposition can modulate the relationship between polyphenols and T2D risk. In conclusion, the intake of polyphenols may be beneficial for both insulin resistance and T2D risk. PMID:28883903

  2. Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2007-09-01

    A series of prenylated, flavone-based polyphenols, compounds 1-8, were isolated from the wood of Artocarpus heterophyllus. These compounds, which have previously been shown not to inhibit tyrosinase activity, were found to be active inhibitors of the in vivo melanin biosynthesis in B16 melanoma cells, with little or no cytotoxicity. To clarify the structural requirement for inhibition, some structure-activity relationships were studied, in comparison with related compounds lacking prenyl side chains. Our experiments indicate that both prenyl and OH groups, as well as the type of substitution pattern, are crucial for the inhibition of melanin production in B16 melanoma cells.

  3. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols

    PubMed Central

    Flamini, Riccardo; Mattivi, Fulvio; De Rosso, Mirko; Arapitsas, Panagiotis; Bavaresco, Luigi

    2013-01-01

    Grape is qualitatively and quantitatively very rich in polyphenols. In particular, anthocyanins, flavonols and stilbene derivatives play very important roles in plant metabolism, thanks to their peculiar characteristics. Anthocyanins are responsible for the color of red grapes and wines and confer organoleptic characteristics on the wine. They are used for chemotaxonomic studies and to evaluate the polyphenolic ripening stage of grape. They are natural colorants, have antioxidant, antimicrobial and anticarcinogenic activity, exert protective effects on the human cardiovascular system, and are used in the food and pharmaceutical industries. Stilbenes are vine phytoalexins present in grape berries and associated with the beneficial effects of drinking wine. The principal stilbene, resveratrol, is characterized by anticancer, antioxidant, anti-inflammatory and cardioprotective activity. Resveratrol dimers and oligomers also occur in grape, and are synthetized by the vine as active defenses against exogenous attack, or produced by extracellular enzymes released from pathogens in an attempt to eliminate undesirable toxic compounds. Flavonols are a ubiquitous class of flavonoids with photo-protection and copigmentation (together with anthocyanins) functions. The lack of expression of the enzyme flavonoid 3′,5′-hydroxylase in white grapes restricts the presence of these compounds to quercetin, kaempferol and isorhamnetin derivatives, whereas red grapes usually also contain myricetin, laricitrin and syringetin derivatives. In the last ten years, the technological development of analytical instrumentation, particularly mass spectrometry, has led to great improvements and further knowledge of the chemistry of these compounds. In this review, the biosynthesis and biological role of these grape polyphenols are briefly introduced, together with the latest knowledge of their chemistry. PMID:24084717

  4. QTL analysis and candidate gene mapping for the polyphenol content in cider apple.

    PubMed

    Verdu, Cindy F; Guyot, Sylvain; Childebrand, Nicolas; Bahut, Muriel; Celton, Jean-Marc; Gaillard, Sylvain; Lasserre-Zuber, Pauline; Troggio, Michela; Guilet, David; Laurens, François

    2014-01-01

    Polyphenols have favorable antioxidant potential on human health suggesting that their high content is responsible for the beneficial effects of apple consumption. They control the quality of ciders as they predominantly account for astringency, bitterness, color and aroma. In this study, we identified QTLs controlling phenolic compound concentrations and the average polymerization degree of flavanols in a cider apple progeny. Thirty-two compounds belonging to five groups of phenolic compounds were identified and quantified by reversed phase liquid chromatography on both fruit extract and juice, over three years. The average polymerization degree of flavanols was estimated in fruit by phloroglucinolysis coupled to HPLC. Parental maps were built using SSR and SNP markers and used for the QTL analysis. Sixty-nine and 72 QTLs were detected on 14 and 11 linkage groups of the female and male maps, respectively. A majority of the QTLs identified in this study are specific to this population, while others are consistent with previous studies. This study presents for the first time in apple, QTLs for the mean polymerization degree of procyanidins, for which the mechanisms involved remains unknown to this day. Identification of candidate genes underlying major QTLs was then performed in silico and permitted the identification of 18 enzymes of the polyphenol pathway and six transcription factors involved in the apple anthocyanin regulation. New markers were designed from sequences of the most interesting candidate genes in order to confirm their co-localization with underlying QTLs by genetic mapping. Finally, the potential use of these QTLs in breeding programs is discussed.

  5. Bioaccessibility of polyphenols from selected cereal grains and legumes as influenced by food acidulants.

    PubMed

    Hithamani, Gavirangappa; Srinivasan, Krishnapura

    2017-01-01

    Polyphenols in food are valued for their health-beneficial influences. Food acidulants lime juice and amchur used in Indian cookery were evaluated for their influence on polyphenol bioaccessibility from food grains. Lime juice increased bioaccessible flavonoids by 25% in roasted finger millet, while there was no change in total bioaccessible polyphenols in pressure-cooked, open-pan-boiled and roasted finger millet in the presence of food acidulants. Addition of amchur to pressure-cooked and microwave-heated pearl millet increased bioaccessible flavonoids by 30 and 53% respectively, while lime juice increased them by 46% in pressure-cooked pearl millet. Increased bioaccessibility of specific phenolic acids from finger millet and pearl millet was observed upon addition of these food acidulants. The presence of either lime juice or amchur increased bioaccessible flavonoids from both legumes studied. Addition of lime juice and amchur, however, exerted a negative effect on the bioaccessibility of several phenolic compounds from food grains in native state and under certain processing conditions. Thus food acidulants lime juice and amchur had a significant influence on the bioaccessibility of health-beneficial phenolic compounds from food grains. Use of food acidulants in food preparations could be a strategy to enhance the bioavailability of polyphenols, especially flavonoids from grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota.

    PubMed

    Alqurashi, Randah M; Alarifi, Sehad N; Walton, Gemma E; Costabile, Adele F; Rowland, Ian R; Commane, Daniel M

    2017-11-01

    A considerable proportion of dietary plant-polyphenols reach the colon intact; determining the effects of these compounds on colon-health is of interest. We hypothesise that both fibre and plant polyphenols present in açai (Euterpe oleracea) provide prebiotic and anti-genotoxic benefits in the colon. We investigated this hypothesis using a simulated in vitro gastrointestinal digestion of açai pulp, and a subsequent pH-controlled, anaerobic, batch-culture fermentation model reflective of the distal region of the human large intestine. Following in vitro digestion, 49.8% of the total initial polyphenols were available. In mixed-culture fermentations with faecal inoculate, the digested açai pulp precipitated reductions in the numbers of both the Bacteroides-Prevotella spp. and the Clostridium-histolyticum groups, and increased the short-chain fatty acids produced compared to the negative control. The samples retained significant anti-oxidant and anti-genotoxic potential through digestion and fermentation. Dietary intervention studies are needed to prove that consuming açai is beneficial to gut health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Antioxidant properties of commercial alcoholic and nonalcoholic beverages.

    PubMed

    Lugasi, Andrea; Hóvári, Judit

    2003-04-01

    Recent interest in food phenolics has increased greatly, because of their antioxidant and free radical scavenging abilities. Popular beverages in the world include tea, coffee, cocoa, beer, wine and fruit/vegetable juices. All of these beverages contain phenolic compounds. In present study total polyphenol content and in vitro antioxidant properties were investigated in 16 red wines, 5 white wines, 5 lager beers, 3 dark beers, 17 fruit juices and 5 vegetable juices. High polyphenol content was measured in red wines (1720 +/- 546 mg x L(-1)) and in some fruit juices such as elderberry and prunes (5,680 and 1,807 mg x L(-1), respectively). The concentration of polyphenols was between 159 and 5,680 mg x L(-1) in fruit juices and between 255 and 696 mg x L(-1) in vegetable ones, while low level of phenolics was observed in dark and lager beers and white wines (473, 376 and 392 mg x L(-1), respectively). All samples exhibited significant antioxidant properties such as hydrogen-donating ability, reducing power, chelating ability and total antioxidant status (TAS) value. These antioxidant properties strongly correlated with the total polyphenol content of the beverages.

  8. Infrared Spectroscopy as a Tool to Study the Antioxidant Activity of Polyphenolic Compounds in Isolated Rat Enterocytes

    PubMed Central

    Barraza-Garza, Guillermo; Castillo-Michel, Hiram; de la Rosa, Laura A.; Martinez-Martinez, Alejandro; Pérez-León, Jorge A.; Cotte, Marine; Alvarez-Parrilla, Emilio

    2016-01-01

    The protective effect of different polyphenols, catechin (Cat), quercetin (Qc) (flavonoids), gallic acid (GA), caffeic acid (CfA), chlorogenic acid (ChA) (phenolic acids), and capsaicin (Cap), against H2O2-induced oxidative stress was evaluated in rat enterocytes using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Fourier Transform Infrared Microspectroscopy (FTIRM), and results were compared to standard lipid peroxidation techniques: conjugated dienes (CD) and Thiobarbituric Acid Reactive Substances (TBARS). Analysis of ATR-FTIR and FTIRM spectral data allowed the simultaneous evaluation of the effects of H2O2 and polyphenols on lipid and protein oxidation. All polyphenols showed a protective effect against H2O2-induced oxidative stress in enterocytes, when administered before or after H2O2. Cat and capsaicin showed the highest protective effect, while phenolic acids had weaker effects and Qc presented a mild prooxidative effect (IR spectral profile of biomolecules between control and H2O2-treated cells) according to FTIR analyses. These results demonstrated the viability to use infrared spectroscopy to evaluate the oxidant and antioxidant effect of molecules in cell systems assays. PMID:27213031

  9. Antioxidant effects of green tea

    PubMed Central

    FORESTER, SARAH C.; LAMBERT, JOSHUA D.

    2013-01-01

    Consumption of green tea (Camellia sinensis) may provide protection against chronic diseases, including cancer. Green tea polyphenols are believed to be responsible for this cancer preventive effect, and the antioxidant activity of the green tea polyphenols has been implicated as a potential mechanism. This hypothesis has been difficult to study in vivo due to metabolism of these compounds and poor understanding of the redox environment in vivo. Green tea polyphenols can be direct antioxidants by scavenging reactive oxygen species or chelating transition metals as has been demonstrated in vitro. Alternatively, they may act indirectly by up-regulating phase II antioxidant enzymes. Evidence of this latter effect has been observed in vivo, yet more work is required to determine under which conditions these mechanisms occur. Green tea polyphenols can also be potent pro-oxidants, both in vitro and in vivo, leading to the formation of hydrogen peroxide, the hydroxyl radical, and superoxide anion. The potential role of these pro-oxidant effects in the cancer preventive activity of green tea is not well understood. The evidence for not only the antioxidant, but also pro-oxidant, properties of green tea are discussed in the present review. PMID:21538850

  10. Development and Phytochemical Characterization of High Polyphenol Red Lettuce with Anti-Diabetic Properties

    PubMed Central

    Cheng, Diana M.; Pogrebnyak, Natalia; Kuhn, Peter; Krueger, Christian G.; Johnson, William D.; Raskin, Ilya

    2014-01-01

    Polyphenol-rich Rutgers Scarlet Lettuce (RSL) (Lactuca sativa L.) was developed through somaclonal variation and selection in tissue culture. RSL may contain among the highest reported contents of polyphenols and antioxidants in the category of common fruits and vegetables (95.6 mg/g dry weight and 8.7 mg/g fresh weight gallic acid equivalents and 2721 µmol/g dry weight and 223 µmol/g fresh weight Trolox equivalents). Three main compounds accumulate at particularly high levels in RSL: chlorogenic acid, up to 27.6 mg/g dry weight, cyanidin malonyl-glucoside, up to 20.5 mg/g dry weight, and quercetin malonyl-glucoside, up to 35.7 mg/g dry weight. Major polyphenolic constituents of RSL have been associated with health promotion as well as anti-diabetic and/or anti-inflammatory activities. Daily oral administration of RSL (100 or 300 mg/kg) for up to eight days acutely reduced hyperglycemia and improved insulin sensitivity in high fat diet-induced obese hyperglycemic mice compared to vehicle (water) control. Data presented here support possible use of RSL as a functional food for the dietary management of diabetes. PMID:24637790

  11. Effects of UV-B radiation levels on concentrations of phytosterol, ergothioneine, and polyphenolic compounds in mushroom powder used as dietary supplements

    USDA-ARS?s Scientific Manuscript database

    Compositional changes of powder dietary supplement made from mushrooms previously exposed to different levels of UV-B irradiation were evaluated for the bioactive naturally occurring mushroom anti-oxidant, ergothioneine, other natural polyphenolic anti-oxidants: e.g. flavonoids, lignans, and others,...

  12. Physical Stability Studies of Semi-Solid Formulations from Natural Compounds Loaded with Chitosan Microspheres

    PubMed Central

    Acosta, Niuris; Sánchez, Elisa; Calderón, Laura; Cordoba-Diaz, Manuel; Cordoba-Diaz, Damián; Dom, Senne; Heras, Ángeles

    2015-01-01

    A chitosan-based hydrophilic system containing an olive leaf extract was designed and its antioxidant capacity was evaluated. Encapsulation of olive leaf extract in chitosan microspheres was carried out by a spray-drying process. The particles obtained with this technique were found to be spherical and had a positive surface charge, which is an indicator of mucoadhesiveness. FTIR and X-ray diffraction results showed that there are not specific interactions of polyphenolic compounds in olive leaf extract with the chitosan matrix. Stability and release studies of chitosan microspheres loaded with olive leaf extract before and after the incorporation into a moisturizer base were performed. The resulting data showed that the developed formulations were stable up to three months. The encapsulation efficiency was around 44% and the release properties of polyphenols from the microspheres were found to be pH dependent. At pH 7.4, polyphenols release was complete after 6 h; whereas the amount of polyphenols released was 40% after the same time at pH 5.5. PMID:26389926

  13. Studies on Modulation of Gut Microbiota by Wine Polyphenols: From Isolated Cultures to Omic Approaches

    PubMed Central

    Dueñas, Montserrat; Cueva, Carolina; Muñoz-González, Irene; Jiménez-Girón, Ana; Sánchez-Patán, Fernando; Santos-Buelga, Celestino; Moreno-Arribas, M. Victoria; Bartolomé, Begoña

    2015-01-01

    Moderate consumption of wine seems to produce positive health effects derived from the occurrence of bioactive polyphenols. The gut microbiota is involved in the metabolism of phenolic compounds, and these compounds and/or their metabolites may modulate gut microbiota through the stimulation of the growth of beneficial bacteria and the inhibition of pathogenic bacteria. The characterization of bacterial metabolites derived from polyphenols is essential in order to understand their effects, including microbial modulation, and therefore to associate dietary intake with particular health effects. This review aims to summarize the current information about the two-way “wine polyphenols–gut microbiota” interaction, from a perspective based on the experimental and analytical designs used. The availability of advanced methods for monitoring bacterial communities, along with the combination of in vitro and in vivo models, could help to assess the metabolism of polyphenols in the human body and to monitor total bacterial communities, and, therefore, to elucidate the implications of diet on the modulation of microbiota for delivering health benefits. PMID:26785335

  14. Role of the cultivar in choosing Clementine fruits with a high level of health-promoting compounds.

    PubMed

    Milella, Luigi; Caruso, Marisa; Galgano, Fernanda; Favati, Fabio; Padula, Maria Carmela; Martelli, Giuseppe

    2011-05-25

    Thirteen cultivars and two hybrids of Clementine fruits (Citrus clementina Hort. Ex. Tan) cultivated in Italy were characterized according to pH, titratable acidity, total soluble solids, total polyphenols, carotenoids, vitamin C, hesperidin, rutin, narirutin and naringin and radical scavenging activity. The presence of rutin in Clementine fruit juice is reported for the first time here. The results indicated that all chemical parameters statistically differentiated each cultivar (P < 0.001). In particular, principal component analysis showed a clear discrimination of five cultivars from all the other varieties based on vitamin C and total polyphenols for the Caffin cultivar, which showed also the highest antioxidant activity; narirutin for the Etna hybrid cultivar; hesperidin, rutin and total soluble solids for the SRA 89 cultivar; and naringin, hesperidin and rutin for the Esbal cultivar. Moreover, the Mandalate hybrid cultivar showed the lowest antioxidant activity as well as vitamin C and total polyphenols content, while titratable acidity and naringin level were the highest. The antioxidant activity assessed in all the fruits was closely correlated with vitamin C and total polyphenols content, rather than with the flavonoid compounds.

  15. Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano).

    PubMed

    Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; De Nisco, Mauro; Tenore, Gian Carlo; Scopa, Antonio; Sofo, Adriano; Marzocco, Stefania; Adesso, Simona; Novellino, Tiziana; Campiglia, Pietro

    2015-01-15

    Fresh cut vegetables represent a widely consumed food worldwide. Among these, lettuce (Lactuca sativa L.) is one of the most popular on the market. The growing interest for this "healthy" food is related to the content of bioactive compounds, especially polyphenols, that show many beneficial effects. In this study, we report the anti-inflammatory and antioxidant potential of polyphenols extracted from lettuce (var. Maravilla de Verano), in J774A.1 macrophages stimulated with Escherichia coli lipopolysaccharide (LPS). Lettuce extract significantly decreased reactive oxygen species, nitric oxide release, inducible nitric oxide synthase and cycloxygenase-2 expression. A detailed quali/quantitative profiling of the polyphenolic content was carried out, obtaining fast separation (10 min), good retention time and peak area repeatability, (RSD% 0.80 and 8.68, respectively) as well as linearity (R(2)⩾ 0.999) and mass accuracy (⩽ 5 ppm). Our results show the importance in the diet of this cheap and popular food for his healthy properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Separation and purification of polyphenols from red wine extracts using high speed counter current chromatography.

    PubMed

    Li, Yuanyuan; Li, Lingxi; Cui, Yan; Zhang, Shuting; Sun, Baoshan

    2017-06-01

    Polyphenols are important compounds of red wine owing to their contribution to sensory properties and antioxidant activities. In this study, high-speed counter-current chromatography (HSCCC) coupled with semi-preparative HPLC was used for large-scale separation and purification of polyphenols from red wine extracts. With the solvent system of hexane-ethyl acetate-water (1-50-50), various oligomeric procyanidins including monomer catechin, epicatechin, dimers B1, B2; phenolic acids including coutaric acid, caftaric acid and other type of polyphenols were largely separated within 370min and most of these compounds presented high yields (0.97mg to 13.79mg) with high purity (90.34% to 98.91%) after the semi-preparative HPLC isolation. Using the solvent system of Methyl tert-Butyl Ether (MTBE) - n-butyl alcohol- acetonitrile-water (1-40-1-50, acidified with 0.01% trifluoroacetic acid (TFA)) by one-step HSCCC of 100mg of the red wine extracts, the major anthocyanins, i.e., malvidin-3-O-glucoside, delphinidin-3-O-glucoside and peonidin-3-O-glucoside, as well as two polymeric proanthocyanidin fractions were successfully separated one another within 320min. The yields of malvidin-3-O-glucoside, delphinidin-3-O-glucoside and peonidin-3-O-glucoside were 12.12mg, 1.78mg and 11.57mg with the purity of 92.74%, 91.03% and 91.21%, respectively. Thiolysis-UPLC analysis indicated that the two polymeric proanthocyanidin fractions presented high purity, with mean degree of polymerization of 7.66±0.12 and 6.20±0.09, respectively. The further experiments on the antioxidant activities by DPPH radical test, FRAP assay and ABTS method showed that all of the isolated procyandins and anthocyanins and the two polymeric proanthocyanidin fractions, with exception of phenolic acids possessed much greater antioxidant activities compared to standard Trolox andl-ascorbic acid (2-14 times). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Polyphenolic Nutrients in Cancer Chemoprevention and Metastasis: Role of the Epithelial-to-Mesenchymal (EMT) Pathway

    PubMed Central

    Amawi, Haneen; Ashby, Charles R.; Peraman, Ramalingam

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) has received significant interest as a novel target in cancer prevention, metastasis, and resistance. The conversion of cells from an epithelial, adhesive state to a mesenchymal, motile state is one of the key events in the development of cancer metastasis. Polyphenols have been reported to be efficacious in the prevention of cancer and reversing cancer progression. Recently, the antimetastatic efficacy of polyphenols has been reported, thereby expanding the potential use of these compounds beyond chemoprevention. Polyphenols may affect EMT pathways, which are involved in cancer metastasis; for example, polyphenols increase the levels of epithelial markers, but downregulate the mesenchymal markers. Polyphenols also alter the level of expression and functionality of important proteins in other signaling pathways that control cellular mesenchymal characteristics. However, the specific proteins that are directly affected by polyphenols in these signaling pathways remain to be elucidated. The aim of this review is to analyze current evidence regarding the role of polyphenols in attenuating EMT-mediated cancer progression and metastasis. We also discuss the role of the most important polyphenol subclasses and members of the polyphenols in reversing metastasis and targeting EMT. Finally, limitations and future directions to improve our understanding in this field are discussed. PMID:28825675

  18. Isolation, characterization and in silico docking studies of synergistic estrogen receptor a anticancer polyphenols from Syzygium alternifolium (Wt.) Walp.

    PubMed Central

    Yugandhar, Pulicherla; Kumar, Konidala Kranthi; Neeraja, Pabbaraju; Savithramma, Nataru

    2017-01-01

    Aim: This study aims to isolate, characterize, and in silico evaluate of anticancer polyphenols from different parts of Syzygium alternifolium. Materials and Methods: The polyphenols were isolated by standard protocol and characterized using Fourier-transform infrared (FT-IR), High performance liquid chromatography - Photodiode array detector coupled with Electrospray ionization - mass spectrometry (MS/MS). The compounds were elucidated based on retention time and molecular ions (m/z) either by [M+H]+/[M-H]− with the comparison of standard phenols as well as ReSpect software tool. Furthermore, absorption, distribution, metabolism, and excretion (ADME)/toxicity properties of selected phenolic scaffolds were screened using OSIRIS and SwissADME programs, which incorporate toxicity risk assessments, pharmacokinetics, and rule of five principles. Molecular docking studies were carried out for selected toxicity filtered compounds against breast cancer estrogen receptor a (ERa) structure (protein data bank-ID: 1A52) through AutoDock scoring functions by PyRx virtual screening program. Results: The obtained results showed two intensive peaks in each polyphenol fraction analyzed with FT-IR, confirms O-H/C-O stretch of the phenolic functional group. A total of 40 compounds were obtained, which categorized as 9 different classes. Among them, flavonol group represents more number of polyphenols. In silico studies suggest seven compounds have the possibility to use as future nontoxic inhibitors. Molecular docking studies with ERa revealed the lead molecules unequivocally interact with Leu346, Glu353, Leu391, Arg394, Gly521, Leu525 residues, and Phe404 formed atomic π-stacking with dihydrochromen-4-one ring of ligands as like estrodial, which stabilizes the receptor structure and complicated to generate a single mutation for drug resistance. Conclusion: Overall, these results significantly proposed that isolated phenolics could be served as potential ER mitigators for breast cancer therapy. PMID:28894629

  19. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties.

    PubMed

    Reboredo-Rodríguez, Patricia; Figueiredo-González, María; González-Barreiro, Carmen; Simal-Gándara, Jesús; Salvador, María Desamparados; Cancho-Grande, Beatriz; Fregapane, Giuseppe

    2017-03-20

    Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food-as stated by the European Food Safety Authority (EFSA)-due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.

  20. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties

    PubMed Central

    Reboredo-Rodríguez, Patricia; Figueiredo-González, María; González-Barreiro, Carmen; Simal-Gándara, Jesús; Salvador, María Desamparados; Cancho-Grande, Beatriz; Fregapane, Giuseppe

    2017-01-01

    Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food—as stated by the European Food Safety Authority (EFSA)—due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed. PMID:28335517

  1. Exhaustive Qualitative LC-DAD-MSn Analysis of Arabica Green Coffee Beans: Cinnamoyl-glycosides and Cinnamoylshikimic Acids as New Polyphenols in Green Coffee.

    PubMed

    Baeza, Gema; Sarriá, Beatriz; Bravo, Laura; Mateos, Raquel

    2016-12-28

    Coffee is one of the most consumed beverages in the world, due to its unique aroma and stimulant properties. Although its health effects are controversial, moderate intake seems to be beneficial. The present work deals with the characterization and quantification of polyphenols and methylxanthines in four Arabica green coffee beans from different geographical origins. The antioxidant activity was also evaluated. Forty-three polyphenols (cinnamic acid, cinnamoyl-amide, 5 cinammoyl-glycosides, and 36 cinnamate esters) were identified using LC-MS n . Among these, cinnamate esters of six different chemical groups (including two dimethoxycinnamoylquinic acid isomers, three caffeoyl-feruloylquinic acid isomers, caffeoyl-sinapoylquinic acid, p-coumaroyl-feruloylquinic acid, two caffeoylshikimic acid isomers, and trimethoxycinnamoylshikimic acid) in addition to five isomers of cinnamoyl-glycosides called caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosic acid (CDOA) are described for the first time in Arabica green coffee beans. Moreover, 38 polyphenols (6-7% w/w) and 2 methylxanthines (1.3% w/w) were quantified by HPLC-DAD. Caffeoylquinic was the most abundant group of compounds (up to 85.5%) followed by dicaffeoylquinic and feruloylquinic acids (up to 8 and 7%, respectively) and the newly identified cinnamoyl-glycosides (CDOA) (up to 2.5%). Caffeine was the main methylxanthine (99.8%), with minimal amounts of theobromine (0.2%). African coffees (from Kenya and Ethiopia) showed higher polyphenolic content than American beans (from Brazil and Colombia), whereas methylxanthine contents varied randomly. Both phenols and methylxanthines contributed to the antioxidant capacity associated with green coffee, with a higher contribution of polyphenols. We conclude that green coffee represents an important source of polyphenols and methylxanthines, with high antioxidant capacity.

  2. Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity.

    PubMed

    Laczkó-Zöld, Eszter; Komlósi, Andrea; Ülkei, Timea; Fogarasi, Erzsébet; Croitoru, Mircea; Fülöp, Ibolya; Domokos, Erzsébet; Ştefănescu, Ruxandra; Varga, Erzsébet

    2018-06-01

    In this study, we analyzed extracts of Ribes (black currant, red currant and gooseberry) fruits obtained with methanol, methanol 50% and water. For each extract total polyphenol content, total flavonoid content and total anthocyanin content was assessed. The antioxidant activity of extracts was evaluated by 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity and by the photo-chemiluminescence (PCL) method. Identification and quantification of individual phenolic compounds was performed by means of high performance liquid chromatograph coupled with diode array detector (HPLC-DAD) analyses. From each fruit, best extraction of polyphenols was obtained with methanol 50%. In case of red currants and gooseberry there was no significant difference in flavonoids and anthocyanins extraction rate by the different extraction solvents. For black currants the methanol and methanol 50% extract presented the highest antioxidant activity. For red currants extracts with methanol 50% showed stronger antioxidant activity (IC 50 = 5.71 mg/ml for DPPH, IC 50 = 1.17 mg/ml for ABTS) than those with methanol or water. In case of gooseberry by the DPPH test the water extract proved to be the most active (IC 50 = 5.9 mg/ml). In the PCL test black currants methanol 50% extract was over 6 times more powerful as the ones from red currants. In case of gooseberries, water extract presented the highest antioxidant activity (41.84 μmol AAE/g). In black currant cyanidin-3-glucoside was the major compound. Quercetin 3-O-glucoside was identified in each sample. From cinnamic acid derivatives neochlorogenic acid was present in black currants in the highest amount (356.33 μg/g).

  3. Antioxidant activity and HPLC analysis of polyphenol-enriched extracts from industrial apple pomace.

    PubMed

    Bai, Xuelian; Zhang, Huawei; Ren, Shuang

    2013-08-15

    Phenolic compounds are the predominant ingredients in apple pomace. However, polyphenols from industrial apple pomace, which usually consists of several cultivars, have not been studied in detail. The present work focused on the antioxidant assay and HPLC analysis of polyphenol-enriched extracts from industrial apple pomace. Six fractions of apple polyphenols, API to APVI, were acquired through extraction and purification using absorbent macroporous resin. Fraction APIII, eluted by 40% aqueous ethanol, had the highest content of total phenolics (1.48 ± 0.03 g gallic acid equivalents g(-1) dry apple pomace), which consisted of chlorogenic acid, caffeic acid, syrigin, procyanidin B2, (-)-epicatechin, cinnamic acid, coumaric acid and quercetin. Antioxidant assays showed that APIII had the strongest antioxidant activity of DPPH radical scavenging rate (90.96% ± 10.23%), ABTS radical inhibition rate (89.78% ± 6.54%) and the strongest reducing power (8.30 ± 0.71 µmol Trolox equivalents kg(-1) dry apple pomace). It also indicated that procyanidin B2, chlorogenic acid, (-)-epicatechin and quercetin had stronger antioxidant capacity than other phenols. Our data suggested that extracts from industrial apple pomace were rich in phenols and exhibited potent antioxidant activity. Extraction of polyphenols from industrial apple pomace would bring a great benefit and improve development of apple juice and cider industries. © 2013 Society of Chemical Industry.

  4. Evaluation of Antioxidant, Immunomodulatory, and Cytotoxic Action of Fractions from Eugenia uniflora L. and Eugenia malaccensis L.: Correlation with Polyphenol and Flavanoid Content

    PubMed Central

    Figueirôa, Evellyne de Oliveira; de Melo, Cristiane Moutinho Lagos; Neves, Juliana Kelle de Andrade Lemoine; da Silva, Nicácio Henrique; Pereira, Valéria Rêgo Alves; Correia, Maria Tereza dos Santos

    2013-01-01

    An increasing number of biological activities presented by medicinal plants has been investigated over the years, and they are used in the search for new substances with lower side effects. Eugenia uniflora L. and Eugenia malaccensis L. (Myrtaceae) have many folk uses in various countries. This current study was designed to quantify the polyphenols and flavonoids contents and evaluate the immunomodulatory, antioxidant, and cytotoxic potentials of fractions from E. uniflora L. and E. malaccensis L. It was observed that the polyphenol content was higher in ethyl acetate fractions. These fractions have high antioxidant potential. E. malaccensis L. seeds showed the largest DPPH radical scavenger capacity (EC50 = 22.62). The fractions of E. malaccensis L. leaves showed lower antioxidant capacity. The samples did not alter the profile of proinflammatory cytokines and nitric oxide release. The results indicate that species of the family Myrtaceae are rich in compounds with antioxidant capacity, which can help reduce the inflammatory response. PMID:24089599

  5. Determination of Polyphenols, Capsaicinoids, and Vitamin C in New Hybrids of Chili Peppers

    PubMed Central

    Daood, Hussein; Ambrózy, Zsuzsanna; Helyes, Lajos

    2015-01-01

    Six hybrids were subjected to chromatographic analyses by HPLC for the determination of phytochemicals such as capsaicinoid, polyphenol, and vitamin C. The dynamics of ripening of 4 of the hybrids were also characterised. Seven capsaicinoids could be separated and determined; the major compounds were nordihydrocapsaicin, capsaicin, and dihydrocapsaicin, while homocapsaicin and homodihydrocapsaicin derivatives were detected as minor constituents. Capsaicin content ranged between 95.5 ± 4.15 and 1610.2 ± 91.46 μg/g FW, and the highest value was found in Bandai (C. frutescens) at the green ripening stage. The major capsaicinoids had a decreasing tendency in Bandai and Chili 3735 hybrids, while no change was observed in Beibeihong and Lolo during ripening. Nine polyphenol compounds were detected including 8 flavonoids and a nonflavonoid compound in the pods of all hybrids. The major components were naringenin-diglucoside, catechin, and vanillic acid-derivative and luteolin-glucoside. Naringenin-diglucoside ranged from 93.5 ± 4.26 to 368.8 ± 30.77 μg/g FW. Except vanillic acid-derivative, dominant polyphenols increased or remained unchanged during ripening. As for vitamin C, its content tended to increase with the advance in ripening in all hybrids included in this study. The highest value of 3689.4 ± 39.50 μg/g FW was recorded in Fire Flame hybrid. PMID:26495153

  6. Mass spectrometry in grape and wine chemistry. Part I: polyphenols.

    PubMed

    Flamini, Riccardo

    2003-01-01

    Mass spectrometry, had and still has, a very important role for research and quality control in the viticulture and enology field, and its analytical power is relevant for structural studies on aroma and polyphenolic compounds. Polyphenols are responsible for the taste and color of wine, and confer astringency and structure to the beverage. The knowledge of the anthocyanic structure is very important to predict the aging attitude of wine, and to attempt to resolve problems about color stability. Moreover, polyphenols are the main compounds related to the benefits of wine consumption in the diet, because of their properties in the treatment of circulatory disorders such as capillary fragility, peripheral chronic venous insufficiency, and microangiopathy of the retina. Liquid Chromatography-Mass Spectrometry (LC-MS) techniques are nowadays the best analytical approach to study polyphenols in grape extracts and wine, and are the most effective tool in the study of the structure of anthocyanins. The MS/MS approach is a very powerful tool that permits anthocyanin aglycone and sugar moiety characterization. LC-MS allows the characterization of complex structures of grape polyphenols, such as procyanidins, proanthocyanidins, prodelphinidins, and tannins, and provides experimental evidence for structures that were previously only hypothesized. The matrix-assisted-laser-desorption-ionization-time-of-flight (MALDI-TOF) technique is suitable to determine the presence of molecules of higher molecular weight with high accuracy, and it has been applied with success to study procyanidin oligomers up to heptamers in the reflectron mode, and up to nonamers in the linear mode. The levels of resveratrol in wine, an important polyphenol well-known for its beneficial effects, have been determined by SPME and LC-MS, and the former approach led to the best results in terms of sensitivity. Copyright 2003 Wiley Periodicals, Inc.

  7. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides.

    PubMed

    Moctezuma, Coral; Hammerbacher, Almuth; Heil, Martin; Gershenzon, Jonathan; Méndez-Alonzo, Rodrigo; Oyama, Ken

    2014-05-01

    The role of plant polyphenols as defenses against insect herbivores is controversial. We combined correlative field studies across three geographic regions (Northern Mexico, Southern Mexico, and Costa Rica) with induction experiments under controlled conditions to search for candidate compounds that might play a defensive role in the foliage of the tropical oak, Quercus oleoides. We quantified leaf damage caused by four herbivore guilds (chewers, skeletonizers, leaf miners, and gall forming insects) and analyzed the content of 18 polyphenols (including hydrolyzable tannins, flavan-3-ols, and flavonol glycosides) in the same set of leaves using high performance liquid chromatography and mass spectrometry. Foliar damage ranged from two to eight percent per region, and nearly 90% of all the damage was caused by chewing herbivores. Damage due to chewing herbivores was positively correlated with acutissimin B, catechin, and catechin dimer, and damage by mining herbivores was positively correlated with mongolinin A. By contrast, gall presence was negatively correlated with vescalagin and acutissimin B. By using redundancy analysis, we searched for the combinations of polyphenols that were associated to natural herbivory: the combination of mongolinin A and acutissimin B had the highest association to herbivory. In a common garden experiment with oak saplings, artificial damage increased the content of acutissimin B, mongolinin A, and vescalagin, whereas the content of catechin decreased. Specific polyphenols, either individually or in combination, rather than total polyphenols, were associated with standing leaf damage in this tropical oak. Future studies aimed at understanding the ecological role of polyphenols can use similar correlative studies to identify candidate compounds that could be used individually and in biologically meaningful combinations in tests with herbivores and pathogens.

  8. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage.

    PubMed

    Andrés, Víctor; Villanueva, María J; Tenorio, María D

    2016-02-01

    The effects of high-pressure processing--HPP--(450 and 600 MPa/3 min/20 °C) on the colour, carotenoids, ascorbic acid, polyphenols and antioxidant activity (FRAP and DPPH) of a smoothie were compared to thermal processing (80 °C/3 min). Stability during 45 days at 4 °C was also evaluated. HPP samples showed slight differences (p < 0.05) in colour compared to untreated smoothies. Both HPP significantly increased the extractability of lycopene, β-carotene and polyphenols compared to untreated samples. After HPP, ascorbic acid was retained by more than 92% of the initial content. The best results for antioxidant activity were obtained when HPP was applied at 600 MPa. FRAP and DPPH showed a high correlation with ascorbic acid (R(2) = 0.7135 and 0.8107, respectively) and polyphenolic compounds (R(2) = 0.6819 and 0.6935, respectively), but not with total carotenoids. Changes in bioactive compounds during the storage period were lower in the HPP smoothie than in the thermal-treated sample. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Evaluation of polyphenolic content and antioxidant activity in two onion varieties grown under organic and conventional production systems.

    PubMed

    Ren, Feiyue; Reilly, Kim; Gaffney, Michael; Kerry, Joseph P; Hossain, Mohammad; Rai, Dilip K

    2017-07-01

    Onions contain a number of bioactive compounds, in particular polyphenols. They are rich sources of such compounds in the human diet and offer significant health benefits to the consumer. Demand for organic crops is steadily increasing partly based on the expected health benefits of organic food consumption. The current study examines the influence of organic and conventional crop management practices on bioactive polyphenolic content of onion. We examined the effect of conventional, organic, and mixed cultivation practices on the content of total phenolics, total flavonoids and antioxidant activity in two varieties of onion grown over 4 years in a split-plot factorial systems comparison trial. Levels of total phenolics and total flavonoids showed a significant year-on-year variation and were significantly different between organic and conventional production systems. The levels of total phenolics, total flavonoids and antioxidant activity in general were significantly higher (P < 0.05) under fully organic compared to fully conventional management. Organic cultivation practices resulted in significantly higher levels of potential bioactive compounds in onion. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC

    PubMed Central

    Ben Salem, Maryem; Athmouni, Khaled; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir

    2017-01-01

    Objective. Artichoke (Cynara scolymus L.) was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods. Artichoke Leaves Extracts (ALE) were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr) model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results. It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%), ABTS (538.75 mmol), FRAP assay (542.62 umol), and β-carotene bleaching (70.74%) compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo). Conclusion. ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties. PMID:28539965

  11. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC.

    PubMed

    Ben Salem, Maryem; Affes, Hanen; Athmouni, Khaled; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir

    2017-01-01

    Objective . Artichoke ( Cynara scolymus L.) was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods . Artichoke Leaves Extracts (ALE) were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr) model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results . It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%), ABTS (538.75 mmol), FRAP assay (542.62 umol), and β -carotene bleaching (70.74%) compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo). Conclusion . ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties.

  12. High performance thin layer chromatography fingerprinting, phytochemical and physico-chemical studies of anti-diabetic herbal extracts

    PubMed Central

    Itankar, Prakash R.; Sawant, Dattatray B.; Tauqeer, Mohd.; Charde, Sonal S.

    2015-01-01

    Introduction: Herbal medicines have gained increasing popularity in the last few decades, and this global resurgence of herbal medicines increases their commercial value. However, this increasing demand has resulted in a decline in their quality, primarily due to a lack of adequate regulations pertaining to herbal medicines. Aim: To develop an optimized methodology for the standardization of herbal raw materials. Materials and Methods: The present study has been designed to examine each of the five herbal anti-diabetic drugs, Gymnema sylvester R. Br., Pterocarpus marsupium Roxburgh., Enicostema littorale Blume., Syzygium cumini (L.) Skeels. and Emblica officinalis Gaertn. The in-house extracts and marketed extracts were evaluated using physicochemical parameters, preliminary phytochemical screening, quantification of polyphenols (Folin–Ciocalteu colorimetric method) and high performance thin layer chromatography (HPTLC) fingerprint profiling with reference to marker compounds in plant extracts. Results: All the plants mainly contain polyphenolic compounds and are quantified in the range of 3.6–21.72% w/w. E. officinalis contain the highest and E. littorale contain the lowest content of polyphenol among plant extracts analyzed. HPTLC fingerprinting showed that the in-house extracts were of better quality than marketed extracts. Conclusion: The results obtained from the study could be utilized for setting limits for the reference phytoconstituents (biomarker) for the quality control and quality assurance of these anti-diabetic drugs. PMID:27011722

  13. In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols.

    PubMed

    Yang, Isabelle; Jayaprakasha, Guddarangavvanahally K; Patil, Bhimanagouda

    2018-02-21

    Kale (Brassica oleracea) is a leafy green vegetable belonging to the Brassicaceae family, and kale leaves have large amounts of dietary fiber and polyphenolics. Dietary fiber can bind bile acids, thus potentially decreasing cholesterol levels; however, whether the polyphenols from kale contribute to in vitro bile acid binding capacity remains unclear. In the present study, kale was extracted with hexane, acetone, and MeOH : water and the dried extracts, as well as the fiber-rich residue, were tested for their bile acid binding capacity. The fiber-rich residue bound total bile acids in amounts equivalent to that bound by raw kale. The lyophilized acetone extract bound significantly more glycochenodeoxycholate and glycodeoxycholate and less of other bile acids. To test whether bile acid binding enhanced the bioaccessibility of polyphenolic compounds from kale, we used ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry to identify chemical constituents and measure their bioaccessibility in an in vitro digestion reaction. This identified 36 phenolic compounds in kale, including 18 kaempferol derivatives, 13 quercetin derivatives, 4 sinapoyl derivatives, and one caffeoylquinic acid. The bioaccessibility of these phenolics was significantly higher (69.4%) in digestions with bile acids. Moreover, bile acids enhanced the bioaccessibility of quercetin by 25 times: only 2.7% of quercetin derivatives were bioaccessible in the digestion without bile acids, but with bile acids, their accessibility increased to 69.5%. Bile acids increased the bioaccessibility of kaempferol from 37.7% to 69.2%. The extractability and biostability of total phenolics in the digested residue increased 1.8 fold in the digestions with bile acids. These results demonstrated the potential use of kale to improve human health.

  14. Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver

    PubMed Central

    Stadlbauer, Sven; Rios, Pablo; Ohmori, Ken; Suzuki, Keisuke; Köhn, Maja

    2015-01-01

    Natural polyphenols like oligomeric catechins (procyanidins) derived from green tea and herbal medicines are interesting compounds for pharmaceutical research due to their ability to protect against carcinogenesis in animal models. It is nevertheless still unclear how intracellular pathways are modulated by polyphenols. Monomeric polyphenols were shown to affect the activity of some protein phosphatases (PPs). The three phosphatases of regenerating liver (PRLs) are close relatives and promising therapeutic targets in cancer. In the present study we show that several procyanidins inhibit the activity of all three members of the PRL family in the low micromolar range, whereas monomeric epicatechins show weak inhibitory activity. Increasing the number of catechin units in procyanidins to more than three does not further enhance the potency. Remarkably, the tested procyanidins showed selectivity in vitro when compared to other PPs, and over 10-fold selectivity toward PRL-1 over PRL-2 and PRL-3. As PRL overexpression induces cell migration compared to control cells, the effect of procyanidins on this phenotype was studied. Treatment with procyanidin C2 led to a decrease in cell migration of PRL-1- and PRL-3-overexpressing cells, suggesting the compound-dependent inhibition of PRL-promoted cell migration. Treatment with procyanidin B3 led to selective suppression of PRL-1 overexpressing cells, thereby corroborating the selectivity toward PRL-1- over PRL-3 in vitro. Together, our results show that procyanidins negatively affect PRL activity, suggesting that PRLs could be targets in the polypharmacology of natural polyphenols. Furthermore, they are interesting candidates for the development of PRL-1 inhibitors due to their low cellular toxicity and the selectivity within the PRL family. PMID:26226290

  15. In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica.

    PubMed

    Moukette, Bruno Moukette; Pieme, Constant Anatole; Njimou, Jacques Romain; Biapa, Cabral Prosper Nya; Marco, Bravi; Ngogang, Jeanne Yonkeu

    2015-03-14

    Excessive production of free radicals causes direct damage to biological molecules such as DNA, proteins, lipids, carbohydrates leading to tumor development and progression. Natural antioxidant molecules from phytochemicals of plant origin may directly inhibit either their production or limit their propagation or destroy them to protect the system. In the present study, Monodora myristica a non-timber forest product consumed in Cameroon as spice was screened for its free radical scavenging properties, antioxidant and enzymes protective activities. Its phenolic compound profile was also realized by HPLC. This study demonstrated that M. myristica has scavenging properties against DPPH(•), OH(•), NO(•), and ABTS(•) radicals which vary in a dose depending manner. It also showed an antioxidant potential that was comparable with that of Butylated Hydroxytoluene (BHT) and vitamin C used as standard. The aqueous ethanol extract of M. myristica barks (AEH); showed a significantly higher content in polyphenolic compounds (21.44 ± 0.24 mg caffeic acid/g dried extract) and flavonoid (5.69 ± 0.07 quercetin equivalent mg/g of dried weight) as compared to the other studied extracts. The HPLC analysis of the barks and leaves revealed the presence of several polyphenols. The acids (3,4-OH-benzoic, caffeic, gallic, O- and P- coumaric, syringic, vanillic), alcohols (tyrosol and OH-tyrosol), theobromine, quercetin, rutin, catechine and apigenin were the identified and quantified polyphenols. All the tested extracts demonstrated a high protective potential on the superoxide dismutase (SOD), catalase and peroxidase activities. Finally, the different extracts from M. myristica and specifically the aqueous ethanol extract reveal several properties such as higher free radical scavenging properties, significant antioxidant capacities and protective potential effects on liver enzymes.

  16. Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée.

    PubMed

    Pimpão, Rui C; Ventura, M Rita; Ferreira, Ricardo B; Williamson, Gary; Santos, Claudia N

    2015-02-14

    Bioavailability studies are vital to assess the potential impact of bioactive compounds on human health. Although conjugated phenolic metabolites derived from colonic metabolism have been identified in the urine, the quantification and appearance of these compounds in plasma is less well studied. In this regard, it is important to further assess their potential biological activity in vivo. To address this gap, a cross-over intervention study with a mixed fruit purée (blueberry, blackberry, raspberry, strawberry tree fruit and Portuguese crowberry) and a standard polyphenol-free meal was conducted in thirteen volunteers (ten females and three males), who received each test meal once, and plasma metabolites were identified by HPLC-MS/MS. Sulfated compounds were chemically synthesised and used as standards to facilitate quantification. Gallic and caffeic acid conjugates were absorbed rapidly, reaching a maximum concentration between 1 and 2 h. The concentrations of sulfated metabolites resulting from the colonic degradation of more complex polyphenols increased in plasma from 4 h, and pyrogallol sulfate and catechol sulfate reached concentrations ranging from 5 to 20 μm at 6 h. In conclusion, phenolic sulfates reached high concentrations in plasma, as opposed to their undetected parent compounds. These compounds have potential use as biomarkers of polyphenol intake, and their biological activities need to be considered.

  17. Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling.

    PubMed

    Graef, Jennifer L; Rendina-Ruedy, Elizabeth; Crockett, Erica K; Ouyang, Ping; King, Jarrod B; Cichewicz, Robert H; Lucas, Edralin A; Smith, Brenda J

    2018-05-01

    Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Polyphenol-enriched Vaccinium uliginosum L. fractions reduce retinal damage induced by blue light in A2E-laden ARPE19 cell cultures and mice.

    PubMed

    Lee, Bom-Lee; Kang, Jung-Hwan; Kim, Hye-Mi; Jeong, Se-Hee; Jang, Dae-Sik; Jang, Young-Pyo; Choung, Se-Young

    2016-12-01

    Polyphenols exert beneficial effects on vision. We hypothesized that polyphenol components of Vaccinium uliginosum L. (V.U.) extract protect retinal pigment epithelial (RPE) cells against blue light-induced damage. Our aim was to test extracts containing polyphenol components to ascertain effects to reduce damage against blue light in RPEs. We measured the activity in fractions eluted from water, ethanol, and HP20 resin (FH), and found that the FH fraction had the highest beneficial activity. We isolated the individual active compounds from the FH fraction using chromatographic techniques, and found that FH contained flavonoids, anthocyanins, phenyl propanoids, and iridoids. Cell cultures of A2E-laden ARPE-19 exposed to blue light after treatment with V.U. extract fractions and their individual constituents indicated improvement. V uliginosum L extract fractions and constituent compounds significantly reduced A2E photo-oxidation-induced RPE cell death and inhibited intracellular A2E accumulation. Furthermore, Balb/c male mice were exposed to blue light at 10000 lux for 1 h/d for 2 weeks to induce retinal damage. One week after the final blue light exposure, retinal damage evaluated revealed that the outer nuclear layer thickness and nuclei count were improved. Histologic examination of murine photoreceptor cells demonstrated that FH, rich in polyphenols, inhibited the loss of outer nuclear layer thickness and nuclei. Our findings suggest that V.U. extract and eluted fractions are a potential source of bioactive compounds that potentially serve a therapeutic approach for age-related macular degeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases

    PubMed Central

    Del Rio, Daniele; Rodriguez-Mateos, Ana; Spencer, Jeremy P.E.; Tognolini, Massimiliano; Borges, Gina

    2013-01-01

    Abstract Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist in planta, at concentrations in the low-μM-to-mM range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds nM concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed in vivo intervention and in vitro mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes. Antioxid. Redox Signal. 18, 1818–1892. PMID:22794138

  20. Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5).

    PubMed

    Wu, Chung-Pu; Calcagno, Anna Maria; Hladky, Stephen B; Ambudkar, Suresh V; Barrand, Margery A

    2005-09-01

    Plant flavonoids are polyphenolic compounds, commonly found in vegetables, fruits and many food sources that form a significant portion of our diet. These compounds have been shown to interact with several ATP-binding cassette transporters that are linked with anticancer and antiviral drug resistance and, as such, may be beneficial in modulating drug resistance. This study investigates the interactions of six common polyphenols; quercetin, silymarin, resveratrol, naringenin, daidzein and hesperetin with the multidrug-resistance-associated proteins, MRP1, MRP4 and MRP5. At nontoxic concentrations, several of the polyphenols were able to modulate MRP1-, MRP4- and MRP5-mediated drug resistance, though to varying extents. The polyphenols also reversed resistance to NSC251820, a compound that appears to be a good substrate for MRP4, as predicted by data-mining studies. Furthermore, most of the polyphenols showed direct inhibition of MRP1-mediated [3H]dinitrophenyl S-glutathione and MRP4-mediated [3H]cGMP transport in inside-out vesicles prepared from human erythrocytes. Also, both quercetin and silymarin were found to inhibit MRP1-, MRP4- and MRP5-mediated transport from intact cells with high affinity. They also had significant effects on the ATPase activity of MRP1 and MRP4 without having any effect on [32P]8-azidoATP[alphaP] binding to these proteins. This suggests that these flavonoids most likely interact at the transporter's substrate-binding sites. Collectively, these results suggest that dietary flavonoids such as quercetin and silymarin can modulate transport activities of MRP1, -4 and -5. Such interactions could influence bioavailability of anticancer and antiviral drugs in vivo and thus, should be considered for increasing efficacy in drug therapies.

  1. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries.

    PubMed

    Teleszko, Mirosława; Wojdyło, Aneta; Rudzińska, Magdalena; Oszmiański, Jan; Golis, Tomasz

    2015-04-29

    The aim of this study was to determine selected phytochemicals in berries of eight sea buckthorn (Hippophaë rhamnoides subsp. mongolica) cultivars, including lipophilic and hydrophilic compounds. In the experiment chromatographic analyses, GC (phytosterols and fatty acids), UPLC-PDA-FL, LC-MS (polyphenols), and HPLC (L-ascorbic acid), as well spectrophotometric method (total carotenoids) were used. The lipid fraction isolated from whole fruit contained 14 phytosterols (major compounds β-sitosterol > 24-methylenecykloartanol > squalene) and 11 fatty acids in the order MUFAs > SFAs > PUFAs. Carotenoids occurred in concentrations between 6.19 and 23.91 mg/100 g fresh weight (fw) (p < 0.05). The major polyphenol group identified in berries was flavonols (mean content of 311.55 mg/100 g fw), with the structures of isorhamnetin (six compounds), quercetin (four compounds), and kaempferol (one compound) glycosides. Examined sea buckthorn cultivars were characterized also by a high content of L-ascorbic acid in a range from 52.86 to 130.97 mg/100 g fw (p < 0.05).

  2. Effect of pulsed electric fields treatment and mash size on extraction and composition of apple juices.

    PubMed

    Turk, Mohammad F; Baron, Alain; Vorobiev, Eugene

    2010-09-08

    This study explored the effect of pulsed electric field (PEF) treatment (E=450 V/cm; tt=10 ms; E<3 kJ/kg) and apple mash size on juice yield, polyphenolic compounds, sugars, and malic acid. Juice yield increased significantly after PEF treatment of large mash (Y=71.4%) and remained higher than the juice yield obtained for a control small mash (45.6%). The acid sweet balance was not altered by PEF. A correlation was established between the decrease of light absorbance (control: 1.43; treated: 1.10) and the decline of native polyphenols yield due to PEF treatment (control: 9.6%; treated: 5.9% for small mash). An enhanced oxidation of phenolic compounds in cells due to electroporation of the inner cell membrane and the adsorption of the oxidized products on the mash may explain both the lower light absorbance and the lower native polyphenol concentration.

  3. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits

    PubMed Central

    Ganesan, Kumar

    2017-01-01

    Polyphenols are plant metabolites with potent anti-oxidant properties, which help to reduce the effects of oxidative stress-induced dreaded diseases. The evidence demonstrated that dietary polyphenols are of emerging increasing scientific interest due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are based on the human consumption and their bioavailability. Common beans (Phaseolus vulgaris L.) are a greater source of polyphenolic compounds with numerous health promoting properties. Polyphenol-rich dry common beans have potential effects on human health, and possess anti-oxidant, anti-diabetic, anti-obesity, anti-inflammatory and anti-mutagenic and anti-carcinogenic properties. Based on the studies, the current comprehensive review aims to provide up-to-date information on the nutritional compositions and health-promoting effect of polyphenol-rich common beans, which help to explore their therapeutic values for future clinical studies. Investigation of common beans and their impacts on human health were obtained from various library databases and electronic searches (Science Direct PubMed, and Google Scholar). PMID:29113066

  4. Polyphenols as Modulators of Aquaporin Family in Health and Disease.

    PubMed

    Fiorentini, Diana; Zambonin, Laura; Dalla Sega, Francesco Vieceli; Hrelia, Silvana

    2015-01-01

    Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  5. Beer Polyphenols and Menopause: Effects and Mechanisms—A Review of Current Knowledge

    PubMed Central

    Sandoval-Ramírez, Berner Andrée; M. Lamuela-Raventós, Rosa; Estruch, Ramon; Sasot, Gemma; Doménech, Monica

    2017-01-01

    Beer is one of the most frequently consumed fermented beverages in the world, and it has been part of the human diet for thousands of years. Scientific evidence obtained from the development of new techniques of food analysis over the last two decades suggests that polyphenol intake derived from moderate beer consumption may play a positive role in different health outcomes including osteoporosis and cardiovascular risk and the relief of vasomotor symptoms, which are commonly experienced during menopause and are an important reason why women seek medical care during this period; here, we review the current knowledge regarding moderate beer consumption and its possible effects on menopausal symptoms. The effect of polyphenol intake on vasomotor symptoms in menopause may be driven by the direct interaction of the phenolic compounds present in beer, such as 8-prenylnaringenin, 6-prenylnaringenin, and isoxanthohumol, with intracellular estrogen receptors that leads to the modulation of gene expression, increase in sex hormone plasma concentrations, and thus modulation of physiological hormone imbalance in menopausal women. Since traditional hormone replacement therapies increase health risks, alternative, safer treatment options are needed to alleviate menopausal symptoms in women. The present work aims to review the current data on this subject. PMID:28904736

  6. Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity.

    PubMed

    Correa-Betanzo, Julieta; Padmanabhan, Priya; Corredig, Milena; Subramanian, Jayasankar; Paliyath, Gopinadhan

    2015-03-25

    Biological activity of polyphenols is influenced by their uptake and is highly influenced by their interactions with the food matrix. This study evaluated the complex formation of blueberry polyphenols with fruit matrixes such as pectin and cellulose and their effect on the biological and antiproliferative properties of human colon cell lines HT-29 and CRL 1790. Free or complexed polyphenols were isolated by dialyzing aqueous or methanolic blueberry homogenates. Seven phenolic compounds and thirteen anthocyanins were identified in blueberry extracts. Blueberry extracts showed varying degrees of antioxidant and antiproliferative activities, as well as α-glucosidase activity. Fruit matrix containing cellulose and pectin, or purified polygalacturonic acid and cellulose, did not retain polyphenols and showed very low antioxidant or antiproliferative activities. These findings suggest that interactions between polyphenols and the food matrix may be more complex than a simple association and may play an important role in the bioefficacy of blueberry polyphenols.

  7. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats.

    PubMed

    Messaoudi, Michaël; Bisson, Jean-François; Nejdi, Amine; Rozan, Pascale; Javelot, Hervé

    2008-12-01

    Depression is a major public health problem affecting about 12% of the world population. Drugs exist but they have many side effects. In the last few years, natural substances (e.g. flavonoids) have been tested to cure such disorders. Cocoa polyphenolic extract is a complex compound prepared from non-roasted cocoa beans containing high levels of flavonoids. The antidepressant-like effect of cocoa polyphenolic extract was evaluated using the forced swimming test in rats. Cocoa polyphenolic extract significantly reduced the duration of immobility at both doses of 24 mg/kg/14 days and 48 mg/kg/14 days, although no change of motor dysfunction was observed with the two doses tested in the open field. The results of the forced swimming test after a subchronic treatment and after an additional locomotor activity test confirm the assumption that the antidepressant-like effect of cocoa polyphenolic extract in the forced swimming test model is specific. Further, it can be speculated that this effect might be related to its content of active polyphenols.

  8. Antioxidative and anti-carcinogenic activities of tea polyphenols.

    PubMed

    Yang, Chung S; Lambert, Joshua D; Sang, Shengmin

    2009-01-01

    Tea (Camellia sinensis, Theaceace), a popular beverage consumed world-wide, has been studied for its preventive effects against cancer as well as cardiovascular, neurodegenerative, and other diseases. Most of the proposed beneficial effects have been attributed to the polyphenolic compounds in tea, but the nature of these activities and the molecular mechanisms of their actions remain unclear. Tea polyphenols are known to be strong antioxidants. Prevention of oxidative stress, modulation of carcinogen metabolism, and prevention of DNA damage have been suggested as possible cancer preventive mechanisms for tea and tea polyphenols. In this chapter, we discuss these topics in the light of biotransformation and bioavailability of tea polyphenols. We also review the preventive effects of tea polyphenols in animal models of carcinogenesis and some of the possible post-initiation mechanisms of action. Finally, we discuss the effects of tea consumption on cancer risk in humans. It is our aim to raise some of the unanswered questions regarding cancer prevention by tea and to stimulate further research in this area.

  9. Phytochemical analysis of ten varieties of pawpaw (Asimina triloba [L.] Dunal) fruit pulp.

    PubMed

    Brannan, Robert G; Peters, Trisha; Talcott, Stephen T

    2015-02-01

    Pawpaw (Asimina triloba [L.] Dunal) is a tree fruit with the potential to become a high-value fruit crop, however, its rapid perishability is a significant obstacle. The objective was to determine the phytochemical content and quality characteristics of pawpaw pulp from ten varieties. This study reports for the first time the mass spectral characterization of phenolic acids and flavonoids of pawpaw, which indicated that the predominant polyphenolic compounds were three phenolic acids, protocatechuic acid hexoside, p-coumaroyl hexoside, and 5-O-p-coumaroylquinic acid, and flavonols, particularly (-)-epicatechin, B-type procyanidin dimers and trimers. The relationship between the polyphenolics identified in the current study and future work on polyphenolic oxidase activity will help the process of assessing whether pawpaws should be selected based on potential health benefits, i.e. high polyphenolic content, or increased shelf life in the form of decreased browning that may be afforded pawpaws containing low polyphenolic levels via decreased action of polyphenol oxidase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis.

    PubMed

    Alemanno, L; Ramos, T; Gargadenec, A; Andary, C; Ferriere, N

    2003-10-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H- and 13C-NMR. They were hydroxycinnamic acid amides: N-trans-caffeoyl-l-DOPA or clovamide, N-trans-p-coumaroyl-l-tyrosine or deoxiclovamide, and N-trans-caffeoyl-l-tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues.

  11. Localization and Identification of Phenolic Compounds in Theobroma cacao L. Somatic Embryogenesis

    PubMed Central

    ALEMANNO, L.; RAMOS, T.; GARGADENEC, A.; ANDARY, C.; FERRIERE, N.

    2003-01-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H‐ and 13C‐NMR. They were hydroxycinnamic acid amides: N‐trans‐caffeoyl‐l‐DOPA or clovamide, N‐trans‐p‐coumaroyl‐l‐tyrosine or deoxiclovamide, and N‐trans‐caffeoyl‐l‐tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non‐embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues. PMID:12933367

  12. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2013-03-20

    Enzymatic browning is generally reported as the reaction between phenolic substances and enzymes. The quality of iceberg lettuce is directly linked to this discoloration. In particular, the color change of lettuce stems considerably reduces consumer acceptance and thus decreases sales revenue of iceberg lettuce. Ten phenolic compounds (caffeic acid, chlorogenic acid, phaseolic acid, chicoric acid, isochlorogenic acid, luteolin-7-O-glucuronide, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, and quercetin-3-O-(6″-malonyl)-glucoside) were isolated from Lactuca sativa var. capitata by multilayer countercurrent chromatography (MLCCC) and preparative high-performance liquid chromatography (HPLC). In addition, syringin was identified for the first time in iceberg lettuce. This polyphenolic ingredient was previously not mentioned for the family of Cichorieae in general. The purity and identity of isolated compounds were confirmed by different NMR experiments, HPLC-DAD-MS, and HR-MS techniques. Furthermore, the relationship between discoloration of iceberg lettuce and enzymatic browning was thoroughly investigated. Unexpectedly, the total concentration of phenolic compounds and the activity of polyphenol oxidase were not directly related to the browning processes. Results of model incubation experiments of plant extract solutions led to the conclusion that in addition to the typical enzymatic browning induced by polyphenol oxidases, further mechanisms must be involved to explain total browning of lettuce.

  13. The high-performance liquid chromatography/multistage electrospray mass spectrometric investigation and extraction optimization of beech (Fagus sylvatica L.) bark polyphenols.

    PubMed

    Hofmann, Tamás; Nebehaj, Esztella; Albert, Levente

    2015-05-08

    The aim of the present work was the high-performance liquid chromatographic separation and multistage mass spectrometric characterization of the polyphenolic compounds of beech bark, as well as the extraction optimization of the identified compounds. Beech is a common and widely used material in the wood industry, yet its bark is regarded as a by-product. Using appropriate extraction methods these compounds could be extracted and utilized in the future. Different extraction methods (stirring, sonication, microwave assisted extraction) using different solvents (water, methanol:water 80:20 v/v, ethanol:water 80:20 v/v) and time/temperature schedules have been compared basing on total phenol contents (Folin-Ciocâlteu) and MRM peak areas of the identified compounds to investigate optimum extraction efficiency. Altogether 37 compounds, including (+)-catechin, (-)-epicatechin, quercetin-O-hexoside, taxifolin-O-hexosides (3), taxifolin-O-pentosides (4), B-type (6) and C-type (6) procyanidins, syringic acid- and coumaric acid-di-O-glycosides, coniferyl alcohol- and sinapyl alcohol-glycosides, as well as other unknown compounds with defined [M-H](-) m/z values and MS/MS spectra have been tentatively identified. The choice of the method, solvent system and time/temperature parameters favors the extraction of different types of compounds. Pure water can extract compounds as efficiently as mixtures containing organic solvents under high-pressure and high temperature conditions. This supports the implementation of green extraction methods in the future. Extraction times that are too long and high temperatures can result in the decrease of the concentrations. Future investigations will focus on the evaluation of the antioxidant capacity and utilization possibilities of the prepared extracts. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. In vivo bioavailability of polyphenols from grape by-product extracts, and effect on lipemia of normocholesterolemic Wistar rats.

    PubMed

    Olivero-David, Raul; Ruiz-Roso, Maria Belen; Caporaso, Nicola; Perez-Olleros, Lourdes; De Las Heras, Natalia; Lahera, Vicente; Ruiz-Roso, Baltasar

    2018-04-24

    The direct use of phenolic extracts from grape by-products can be useful to formulate functional food to improve consumers' health. The use of phenolic extracts instead of pure polyphenols as an ingredient is relevant in this context. The current work studied the bioavailability and absorption of polyphenols from grape by-product extracts and their health effect on cholesterolemia, by adding the extract (GE) to Wistar rats diet (50 g/kg) in vivo. GE caused the appearance of (+)-catechin, myricetin and quercetic acid in plasma and liver. (+)-Catechin was the most abundant compound, with 6 μg/mL in plasma and 0.7 μg/mg protein in liver, while no phenolic compounds were detected in plasma or liver in the control group. Similarly, 3,4-hydroxyphenylacetic (DOPAC), a major product of polyphenol digestion, was detected in the plasma, liver and urine of the GE-group only. GE-group had significantly lower cholesterol level and lower total cholesterol/HDL ratio in plasma. Total bile acid (TBA) content significantly increased in faecal matter after 24 h administration of the GE-enriched diet. Grape extract polyphenols are partially bioavailable and showed improvement in lipid metabolism. Thus, the results suggest that GE is promising as a functional ingredient in the prevention of hypercholesterolemia. This article is protected by copyright. All rights reserved.

  15. Antioxidant activity evaluation and HPLC-photodiode array/MS polyphenols analysis of pomegranate juice from selected italian cultivars: A comparative study.

    PubMed

    Fanali, Chiara; Belluomo, Maria Giovanna; Cirilli, Marco; Cristofori, Valerio; Zecchini, Maurizio; Cacciola, Francesco; Russo, Marina; Muleo, Rosario; Dugo, Laura

    2016-07-01

    Chemical composition of pomegranate juice can vary due to cultivar, area of cultivation, ripening, climate, and other variables. This study investigates the polyphenolic composition and antioxidant activity of juices obtained from six old Italian pomegranate cultivars. Fruit accessions physicochemical characteristics were determined. Total polyphenols content (TPC), anthocyanin content (TAC) and proanthocyanidin content (TPAC) were measured in the juice samples. Phenolic bioactive molecules were analyzed by HPLC-photodiode array (PDA)/ESI-MS in all the pomegranate juices. In total, seven nonanthocyanidinic and six anthocyanidinic compounds were identified. The six anthocyanins were found in all juices although at different amounts. These results were correlated with antioxidant activity measured by three different chemical assays: 2,2 diphenyl-1-picrylhydrazyl (DPPH(•) ) scavenging activity assay, Trolox equivalent antioxidant capacity (TEAC) method and ferric reducing-antioxidant power (FRAP) assay. Pomegranate juices obtained by six different varieties show variable polyphenolic content and antioxidant activity. The antioxidant capacity methods used have shown variable sensitivity, supporting the hypothesis that different methods for the assessment of antioxidant capacity of food compounds are indeed necessary, due to complexity of sample composition and assay chemical mechanism and sensitivity. Juices from Italian pomegranate show good levels of polyphenols content and antioxidant activity making them potential candidates for employment in the food industry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Antioxidant capacity, polyphenolic content and tandem HPLC-DAD-ESI/MS profiling of phenolic compounds from the South American berries Luma apiculata and L. chequén.

    PubMed

    Simirgiotis, Mario J; Bórquez, Jorge; Schmeda-Hirschmann, Guillermo

    2013-08-15

    Native Myrtaceae fruits were gathered by South American Amerindians as a food source. At present, there is still some regional consume of the small berries from trees belonging to genus Luma that occurs in southern Chile and Argentina. The aerial parts and berries from Luma apiculata and Luma chequen were investigated for phenolic constituents and antioxidant capacity. A high performance electrospray ionisation mass spectrometry method was developed for the rapid identification of phenolics in polar extracts from both species. Thirty-one phenolic compounds were detected and 27 were identified or tentatively characterised based on photodiode array UV-vis spectra (DAD), ESI-MS-MS spectrometric data and spiking experiments with authentic standards. Twelve phenolic compounds were detected in L. apiculata fruits and 12 in the aerial parts while L. chequen yielded 10 compounds in fruits and 16 in aerial parts, respectively. From the compounds occurring in both Luma species, seven were identified as tannins or their monomers, 15 were flavonol derivatives and five were anthocyanins. The whole berry and aerial parts extracts presented high antioxidant capacity in the DPPH assay (IC50 of 10.41±0.02 and 2.44±0.03 μg/mL for L. apiculata, 12.89±0.05 and 3.22±0.05 for L. chequen, respectively), which can be related to the diverse range of phenolics detected. The antioxidant capacity together with the high polyphenolic contents and compounds identified can support at least in part, their use as botanical drugs. From the compounds identified in both species, 3-O-(6″-O-galloyl)-hexose derivatives of myricetin, quercetin, laricitrin and isorhamnetin are reported for the first time for the genus Luma. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Polyphenols as potential therapeutical agents against cardiovascular diseases.

    PubMed

    Curin, Yann; Andriantsitohaina, Ramaroson

    2005-01-01

    Increasing evidence suggests that polyphenols from fruits, vegetables and beverages such as wine and tea may exert protective effects on the cardiovascular system. Indeed, research in the field of polyphenols points out their antioxidant and free radical scavenging properties, leading to lower low-density lipoprotein (LDL) oxidation and platelet aggregation. These compounds are also able to modulate the generation of nitric oxide (NO) from vascular endothelium and to interfere with the mechanisms leading to inflammation and endothelial apoptosis, contributing to the prevention of the endothelial dysfunction, known to play a central role in the pathogenesis of cardiovascular diseases. This article reviews the potential targets of polyphenols involved in the complex pathophysiological events occurring in cardiovascular diseases, such as hypertension, atherosclerosis and stroke.

  18. Encapsulation of Beetroot Pomace Extract: RSM Optimization, Storage and Gastrointestinal Stability.

    PubMed

    Tumbas Šaponjac, Vesna; Čanadanović-Brunet, Jasna; Ćetković, Gordana; Jakišić, Mirjana; Djilas, Sonja; Vulić, Jelena; Stajčić, Slađana

    2016-04-30

    One of the great problems in food production are surplus by-products, usually utilized for feeding animals and for preparation of dietary fibre or biofuel. These products represent potential sources of bioactive antioxidants and colour-giving compounds which could be used in the pharmaceutical industry and as food additives. In the present study beetroot pomace extract was encapsulated in soy protein by a freeze drying method. Process parameters (core: wall ratio, extract concentration and mixing time) were optimized using response surface methodology (RSM) in order to obtain the optimum encapsulate (OE) with the highest polyphenol encapsulation efficiency (EE) and radical scavenging activity on DPPH radicals (SA). Using the calculated optimum conditions, the EE (86.14%) and SA (1668.37 μmol Trolox equivalents/100 g) of OE did not differ significantly (p < 0.05) from the predicted ones. The contents of total polyphenols (326.51 mg GAE/100 g), flavonoids (10.23 mg RE/100 g), and betalains (60.52 mg betanin/100 g and 61.33 mg vulgaxanthin-I/100 g), individual content of phenolic compounds and betalains by HPLC, and the ability to reduce Fe(3+) ions, i.e., reducing power (394.95 μmol Trolox equivalents/100 g) of OE were determined as well. During three months of storage at room temperature, polyphenol retention was much higher (76.67%) than for betalain pigments, betacyanins (17.77%) and betaxanthins (17.72%). In vitro digestion and release of phenolics from OE showed higher release rate in simulated intestinal fluid than in gastric fluid. These results suggest encapsulation as a contemporary method for valorisation of sensitive bioactive compounds from food industry by-products.

  19. Acute effects of ingestion of black and green tea on lipoprotein oxidation.

    PubMed

    Hodgson, J M; Puddey, I B; Croft, K D; Burke, V; Mori, T A; Caccetta, R A; Beilin, L J

    2000-05-01

    Tea has been associated with a reduced risk of cardiovascular disease. One proposed mechanism of this risk reduction involves inhibition of lipoprotein oxidation in vivo by antioxidant polyphenolic compounds derived from tea. However, controlled interventions uniformly failed to show that ingestion of tea can inhibit LDL oxidation ex vivo. The absence of effects in previous studies may be due to the isolation of LDL particles from polyphenolic compounds that are present in the aqueous phase of serum. The objective of this study was to examine the acute effects of ingestion of black and green tea on ex vivo Cu(2+)-induced lipoprotein oxidation without prior isolation of lipoproteins from serum. The acute effects of 4 hot drinks-green tea and black tea (each at a dose equivalent to 4 standard cups), water matched to the teas for caffeine content, and water-were assessed in 20 healthy men by using a Latin-square design. The lag time to lipoprotein diene formation, slope of the propagation phase of the oxidation curve, and area under the oxidation curve were calculated. Urinary concentrations of 4-O-methylgallic acid were used as a marker of uptake and metabolism of polyphenolic compounds from tea. Significant increases in urinary 4-O-methylgallic acid for black and green tea (P < 0. 0001) were observed. Caffeine did not significantly influence lipoprotein oxidation. Compared with the water control, there was a greater lag time for black tea (5.4 +/- 2.9 min; P = 0.05) that was of borderline significance and a similar trend for green tea (4.4 +/- 2.8 min; P = 0.17). Slope and area under the oxidation curve were not altered. Black tea has a mild acute effect on ex vivo lipoprotein oxidation in human serum. 2000;71:-7.

  20. Peanuts as functional food: a review.

    PubMed

    Arya, Shalini S; Salve, Akshata R; Chauhan, S

    2016-01-01

    Peanut is an important crop grown worldwide. Commercially it is used mainly for oil production but apart from oil, the by-products of peanut contains many other functional compounds like proteins, fibers, polyphenols, antioxidants, vitamins and minerals which can be added as a functional ingredient into many processed foods. Recently it has also revealed that peanuts are excellent source of compounds like resveratrol, phenolic acids, flavonoids and phytosterols that block the absorption of cholesterol from diet. It is also a good source of Co-enzyme Q10 and contains all the 20 amino acids with highest amount of arginine. These bioactive compounds have been recognized for having disease preventive properties and are thought to promote longevity. The processing methods like roasting and boiling have shown increase in the concentration of these bioactive compounds. In the present paper an overview on peanut bioactive constituents and their health benefits are presented.

  1. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes.

    PubMed

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-12-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 degrees C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.

  2. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*

    PubMed Central

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-01-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955

  3. Electrochemical oxidation of wine polyphenols in the presence of sulfur dioxide.

    PubMed

    Makhotkina, Olga; Kilmartin, Paul A

    2013-06-12

    Electrochemical oxidation of three representative wine polyphenols (catechin, caffeic acid, and quercetin) in the presence of sulfur dioxide in a model wine solution (pH = 3.3) was investigated. The oxidation was undertaken using chronoamperometry at a rotating glassy carbon rod electrode, and the reaction products were characterized by HPLC-MS. The mechanism of electrochemical oxidation of polyphenols in the presence of sulfur dioxide was proposed to be an ECEC mechanism. The polyphenols first underwent a one-electron oxidation to a semiquinone radical, which can be reduced back to the original polyphenol by sulfur dioxide, or further oxidized to the quinone form. In the cases of caffeic acid and catechin, the quinone combined with sulfur dioxide and produced new derivatives. The quercetin quinone underwent further chemical transformations, producing several new compounds. The proposed mechanisms were confirmed by digital simulation of cyclic voltammograms.

  4. Evaluation of the Antidiabetic Activity and Chemical Composition of Geranium collinum Root Extracts-Computational and Experimental Investigations.

    PubMed

    Numonov, Sodik; Edirs, Salamet; Bobakulov, Khayrulla; Qureshi, Muhammad Nasimullah; Bozorov, Khurshed; Sharopov, Farukh; Setzer, William N; Zhao, Haiqing; Habasi, Maidina; Sharofova, Mizhgona; Aisa, Haji Akber

    2017-06-13

    The root of Geranium collinum Steph is known in Tajik traditional medicine for its hepatoprotective, antioxidant, and anti-inflammatory therapeutic effects. The present study was conducted to evaluate of potential antidiabetic, antioxidant activities, total polyphenolic and flavonoid content from the different extracts (aqueous, aqueous-ethanolic) and individual compounds isolated of the root parts of G. collinum . The 50% aqueous-ethanolic extract possesses potent antidiabetic activity, with IC 50 values of 0.10 μg/mL and 0.09 μg/mL for the enzymes protein-tyrosine phosphatase (1B PTP-1B) and α-glucosidase, respectively. Phytochemical investigations of the 50% aqueous-ethanolic extract of G. collinum , led to the isolation of ten pure compounds identified as 3,3',4,4'-tetra- O -methylellagic acid ( 1 ), 3,3'-di- O -methylellagic acid ( 2 ), quercetin ( 3 ), caffeic acid ( 4 ), (+)-catechin ( 5 ), (-)-epicatechin ( 6 ), (-)-epigallocatechin ( 7 ), gallic acid ( 8 ), β-sitosterol-3- O -β-d-glucopyranoside ( 9 ), and corilagin ( 10 ). Their structures were determined based on 1D and 2D NMR and mass spectrometric analyses. Three isolated compounds exhibited strong inhibitory activity against PTP-1B, with IC 50 values below 0.9 μg/mL, more effective than the positive control (1.46 μg/mL). Molecular docking analysis suggests polyphenolic compounds such as corilagin, catechin and caffeic acid inhibit PTP-1B and β-sitosterol-3- O -β-d-gluco-pyranoside inhibits α-glucosidase. The experimental results suggest that the biological activity of G. collinum is related to its polyphenol contents. The results are also in agreement with computational investigations. Furthermore, the potent antidiabetic activity of the 50% aqueous-ethanolic extract from G. collinum shows promise for its future application in medicine. To the best of our knowledge, we hereby report, for the first time, the antidiabetic activity of G. collinum.

  5. The potential of the aquatic water fern Azolla within a biobased economy

    NASA Astrophysics Data System (ADS)

    Nierop, Klaas G. J.; Jongerius, Anna L.; Bijl, Peter K.; Bruijnincx, Pieter C. A.; Klein Gebbink, Robertus J. M.; Reichart, Gert-Jan

    2014-05-01

    Azolla is a free-floating freshwater fern capable of fixing atmospheric carbon dioxide and nitrogen, the latter of which through its symbiosis with the cyanobacteria Anabaena azollae. It is currently ranked among the fastest growing plants on Earth and occurs in both tropical and temperate freshwater ecosystems. Therefore, it is non-directly competitive with food crops. In addition, Azolla does not require inorganic fertilizers, which makes it a potential and unique source of biomass for the sustainable production of fuels and chemicals that are currently derived from fossil (fuel) sources. The biochemical composition of Azolla allows the production of biofuel or biobased chemicals that are of interest to the chemical industry. Of Azolla, two extractable groups of compounds are of particular interest, i.e. the polyphenols (condensed tannins and ester-bound caffeic acid) and the lipids. The antioxidant property of polyphenols and their application to the treatment of cancer, diabetes and cardiovascular diseases has further contributed to the growth of the polyphenol market. In addition, they can be chemically transformed into aromatic platform and specialty chemicals. The composition of the lipid fraction of Azolla is characterized by highly specific compounds consisting of C26-C36 carbon chains all bearing a ω20-hydroxy group. Such compounds produce an oil fraction upon hydrous pyrolysis, or, alternatively, are well suited to be converted to e.g. various specialty chemicals that are hardly available from both natural sources. Indeed, upon chemical conversion these lipids may yield components for fuels, plastics, cosmetics, and lubricants. Another group of interesting compounds within the lipid group are the polyunsaturated fatty acids (PUFAs). The demand for PUFAs has witnessed a significant increase over the last three years, particularly due to their benefits as cholesterol lowering agents. Here we will present some of the thermal and chemical conversions of the Azolla-derived biochemicals to show the potential of this crop to produce both commonly used components and promising new ones.

  6. Grape Polyphenol Signaling to Regulate Breast Cancer Metastasis

    DTIC Science & Technology

    2009-09-01

    than individual compounds at inhibition of breast cancer progression. For this, we tested the effects of resveratrol, quercetin , and catechin, which...combined grape polyphenols induce apoptosis and are more effective than individual resveratrol, quercetin , or catechin at inhibition of cell functions...Therefore, we decided to study the effects of resveratrol, quercetin , and catechin individually or combined (RQC) at low dietary concentrations on

  7. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process.

    PubMed

    Costamagna, M S; Zampini, I C; Alberto, M R; Cuello, S; Torres, S; Pérez, J; Quispe, C; Schmeda-Hirschmann, G; Isla, M I

    2016-01-01

    Geoffroea decorticans (chañar), is widely distributed throughout Northwestern Argentina. Its fruit is consumed as flour, arrope or hydroalcoholic beverage. The chañar fruits flour was obtained and 39 phenolic compounds were tentatively identified by HPLC-MS/MS(n). The compounds comprised caffeic acid glycosides, simple phenolics (protocatechuic acid and vanillic acid), a glycoside of vanillic acid, p-coumaric acid and its phenethyl ester as well as free and glycosylated flavonoids. The polyphenols enriched extract with and without gastroduodenal digestion inhibited enzymes associated with metabolic syndrome, including α-amylase, α-glucosidase, lipase and hydroxyl methyl glutaryl CoA reductase. The polyphenolic extract exhibited antioxidant activity by different mechanisms and inhibited the pro-inflammatory enzymes (ciclooxygenase, lipoxygenase and phospholipase A2). The polyphenolic extract did not showed mutagenic effect by Ames test against Salmonella typhimurium TA98 and TA100 strains. These findings add evidence that chañar fruit flour may be considered a functional food with preventive properties against diseases associated with oxidative stress, inflammatory mediators and metabolic syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Phenolic constituents of shea (Vitellaria paradoxa) kernels.

    PubMed

    Maranz, Steven; Wiesman, Zeev; Garti, Nissim

    2003-10-08

    Analysis of the phenolic constituents of shea (Vitellaria paradoxa) kernels by LC-MS revealed eight catechin compounds-gallic acid, catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin, gallocatechin gallate, and epigallocatechin gallate-as well as quercetin and trans-cinnamic acid. The mean kernel content of the eight catechin compounds was 4000 ppm (0.4% of kernel dry weight), with a 2100-9500 ppm range. Comparison of the profiles of the six major catechins from 40 Vitellaria provenances from 10 African countries showed that the relative proportions of these compounds varied from region to region. Gallic acid was the major phenolic compound, comprising an average of 27% of the measured total phenols and exceeding 70% in some populations. Colorimetric analysis (101 samples) of total polyphenols extracted from shea butter into hexane gave an average of 97 ppm, with the values for different provenances varying between 62 and 135 ppm of total polyphenols.

  9. Polyphenolic composition and antioxidant activity of the under-utilised Prunus mahaleb L. fruit.

    PubMed

    Blando, Federica; Albano, Clara; Liu, Yazheng; Nicoletti, Isabella; Corradini, Danilo; Tommasi, Noemi; Gerardi, Carmela; Mita, Giovanni; Kitts, David D

    2016-06-01

    The identification of novel plant-based functional foods or nutraceutical ingredients that possess bioactive properties with antioxidant function has recently become important to the food, nutraceutical and cosmetic industries. This study evaluates the polyphenolic composition, identifies bioactive compounds and assays the total antioxidant capacity of Prunus mahaleb L. fruits collected from different populations and sampling years in the countryside around Bari (Apulia Region, Italy). We identified nine polyphenolic compounds including major anthocyanins, coumaric acid derivatives and flavonols from P. mahaleb fruits. The anthocyanin content (in some populations > 5 g kg(-1) fresh weight; FW) in the fruit was comparable to that reported for so-called superfruits such as bilberries, chokeberries and blackcurrants. Coumaric acid derivatives comprised a large portion of the total polyphenolic content in the P. mahaleb fruits. Antioxidant activities, assessed using ORAC and TEAC assays, measured up to 150 and 45 mmol Trolox equivalents kg(-1) FW, respectively. Therefore antioxidant capacity of P. mahaleb fruits is relatively high and comparable to that of superfruit varieties that are often used in commercial nutraceutical products. Our findings suggest that mahaleb fruit (currently not consumed fresh or used in other ways) could serve as a source of bioactive compounds and therefore find interest from the functional food and nutraceutical industries, as a natural food colorant and antioxidant ingredient in the formulation of functional foods. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Changes in polyphenol composition and bioactivity of the native Chilean white strawberry (Fragaria chiloensis spp. chiloensis f. chiloensis) after in vitro gastrointestinal digestion.

    PubMed

    Thomas-Valdés, Samanta; Theoduloz, Cristina; Jiménez-Aspee, Felipe; Burgos-Edwards, Alberto; Schmeda-Hirschmann, Guillermo

    2018-03-01

    The Chilean white strawberry (Fragaria chiloensis spp. chiloensis f. chiloensis) is a semi-domesticated strawberry with high polyphenol content and antioxidant activity occurring in southern Chile. The aim of this work was to compare the composition and bioactivity of the polyphenol-enriched fruit extract (PEE) before and after simulated gastrointestinal digestion (GID). Results show a decrease by >50% in the total phenolic (TP) content at the end of the GID, compared to the non-digested PEE. A reduction in the antioxidant capacity of the PEEs was observed after GID by means of DPPH, FRAP, TEAC and anion superoxide assays. After simulated GID the PEE significantly inhibited α-glucosidase with an IC 50 value of 3.13μg/mL. The inhibition of pancreatic lipase was reduced by 95% after GID. All the PEEs did not show inhibitory effect towards α-amylase throughout the GID. In the same way, the PEEs did not significantly protect human gastric adenocarcinoma (AGS) cells against H 2 O 2 -induced stress. Thirty eight compounds were tentatively identified in the non-digested PEE. The compounds that were more affected by the simulated GID were simple phenolics. After the GID, only 33 and 25 compounds were detected, in the gastric and intestinal steps, respectively. These results evidence the changes elicited by GID on the bioactivity and polyphenolic composition of the white strawberry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Systematic and Empirical Study of the Dependence of Polyphenol Recovery from Apricot Pomace on Temperature and Solvent Concentration Levels

    PubMed Central

    Cheaib, Dina; Rajha, Hiba N.; Maroun, Richard G.; Louka, Nicolas

    2018-01-01

    This work aims to study the impact of solvent mixture (between 0 and 50% ethanol/water mixture) and temperature (between 25°C and 75°C) levels on the solid-liquid extraction of phenolic compounds (quantity and bioactivity) from apricot pomace. Results show that the mean augmentation of 1% ethanol in the range [0–12%] enhances by three times the extraction of polyphenols compared to the same augmentation in the range [0–50%]. Similarly, the mean augmentation of 1°Celcius in the range [0–25°Celcius] enhances by two times the extraction of polyphenols compared to the same augmentation in the range [0–75°Celcius]. Moreover, 1% of ethanol exhibited a greater impact on the phenolic compound extraction than 1°Celsius. The response surface methodology showed that the optimal extraction condition was reached with 50% ethanol/water at 75°C giving a total phenolic content (TPC) of 9.8 mg GAE/g DM, a flavonoids content (FC) of 8.9 mg CE/g DM, a tannin content (TC) of 4.72 mg/L, and an antiradical activity (AA) of 44%. High-performance liquid chromatography (HPLC) analysis showed that polyphenols were influenced by the selectivity of the solvent as well as the properties of each phenolic compound. Apricot pomace extracts could therefore be used as natural bioactive molecules for many industrial applications. PMID:29618957

  12. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer's disease.

    PubMed

    Jabir, Nasimudeen R; Khan, Fayaz Rahman; Tabrez, Shams

    2018-05-16

    Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disorder characterized by excessive deposition of β-amyloid (Aβ) oligomers, and neurofibrillary tangles (NFTs), comprising of hyperphosphorylated tau proteins. The cholinergic system has been suggested as the earliest and most affected molecular mechanism that describes AD pathophysiology. Moreover, cholinesterase inhibitors (ChEIs) are the potential class of drugs that can amplify cholinergic activity to improve cognition and global performance and reduce psychiatric and behavioral disturbances. Approximately, 60%-80% of all cases of dementia in the world are patients with AD. In view of the continuous rise of this disease especially in the aged population, there is a dire need to come up with a novel compound and/or mixture that could work against this devastating disease. In this regard, the best is to rely on natural compounds rather than synthetic ones, because natural compounds are easily available, cost-effective, and comparatively less toxic. To serve this purpose, lately, scientific community has started exploring the possibility of using different polyphenols either solitary or in combination that can serve as therapeutics against AD. In the current article, we have summarized the role of various polyphenols, namely quercetin, resveratrol, curcumin, gallocatechins, cinnamic acid, caffeine, and caffeic acid as an inhibitor of cholinesterase for the treatment of AD. We have also tried to uncover the mechanistic insight on the action of these polyphenols against AD pathogenicity. © 2018 John Wiley & Sons Ltd.

  13. Quantification of Phytochemicals from Commercial Spirulina Products and Their Antioxidant Activities

    PubMed Central

    Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas

    2016-01-01

    The present study aimed to profile the polyunsaturated fatty acids, sugars, free amino acids, and polyphenols in 37 varieties of Spirulina commonly available in the market using gas chromatography and high performance liquid chromatography. In addition, the biological potentials of the Spirulina samples were evaluated by analysing the in vitro antioxidant activities using various analytical techniques. The analyses revealed the presence of 13 polyunsaturated fatty acids, 18 amino acids, 7 sugars, and polyphenols. The polyunsaturated fatty acids contents were varied between Spirulina samples. The total polyunsaturated fatty acids amount was 4.25 mg/100 g, and the average among of sapienic acid detected was 2.25 mg/100 g, which was followed by linoleic acid (16.7%) and γ-linolenic acid (14%). Among the 7 sugars, the hexose levels were the highest (73.85%). The total amino acids contents ranged from 11.49 to 56.14 mg/100 g, and the individual essential amino acids accounted for 17% to 39.18%. The “natural” tablets exhibited the highest polyphenols levels (24 mg/g). All of the Spirulina samples expressed dose-dependent antioxidant activities. The polyunsaturated fatty acids, sugars, free amino acids, and polyphenols contents varied widely, and the variations in these compounds between the Spirulina samples were significant. PMID:26933442

  14. Absorption, metabolism and protective role of fruits and vegetables polyphenols against gastric cancer.

    PubMed

    Metere, A; Giacomelli, L

    2017-12-01

    Growing evidence links free radicals to the aging processes, degenerative diseases and cancer, underlying the important role played by some antioxidants, as polyphenols, present in fruits and vegetables, which seem able to counteract the toxic effects induced by oxidative stress. The gastrointestinal tract is continuously exposed to oxidant and antioxidant substances and, in particular in this district, the food rich in antioxidants could exert a protective effect against the risk of cancer. Polyphenols have a direct protective effect on the gastrointestinal tract, detoxifying the Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), preserving antioxidant proteins and complexing metals. Although polyphenols are a class of antioxidant largely represented in vegetables and fruits, we are still uncertain whether the beneficial effects of a diet rich in plant products, are mainly due to these compounds. Our knowledge does not allow to be sure about which antioxidants are capable of having therapeutic effects, through which mechanism, the exact therapeutic dose or how long they have to be taken to have a significant protective effect. In this review we take into account the most common antioxidants, usually found in the diet and the processes regulating their absorption, metabolism and excretion, in order to elucidate the mechanism that could be responsible for the protection against cancer.

  15. Comprehensive two-dimensional liquid chromatography for polyphenol analysis in foodstuffs.

    PubMed

    Cacciola, Francesco; Farnetti, Sara; Dugo, Paola; Marriott, Philip John; Mondello, Luigi

    2017-01-01

    Polyphenols are a class of plant secondary metabolites that are recently drawing a special interest because of their broad spectrum of pharmacological effects. As they are characterized by an enormous structural variability, the identification of these molecules in food samples is a difficult task, and sometimes having only a limited number of commercially available reference materials is not of great help. One-dimensional liquid chromatography is the most widely applied analytical approach for their analysis. In particular, the hyphenation of liquid chromatography to mass spectrometry has come to play an influential role by allowing relatively fast tentative identification and accurate quantification of polyphenolic compounds at trace levels in vegetable media. However, when dealing with very complex real-world food samples, a single separation system often does not provide sufficient resolving power for attaining rewarding results. Comprehensive two-dimensional liquid chromatography is a technique of great analytical impact, since it offers much higher peak capacities than separations in a single dimension. In the present review, we describe applications in the field of comprehensive two-dimensional liquid chromatography for polyphenol analysis in real-world food samples. Comprehensive two-dimensional liquid chromatography applications to nonfood matrices fall outside the scope of the current report and will not be discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.

    PubMed

    Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan

    2017-12-01

    In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds.

    PubMed

    Afshari, Mahvash; Rahimmalek, Mehdi; Miroliaei, Mehran

    2018-05-19

    A comparative study was carried out on the methanolic extracts from six Achillea species and the examined polyphenols from these plants on the formation of advanced glycation end-products (AGE) in vitro. A. pachycephala which was richer in flavonoids (15 mg quercetin/g W) and phenolics (111.10 mg tannic acid/g DW) with substantial antioxidant activity (IC 50 = 365.5 μg/ml) presented strong anti-AGE properties. Chlorogenic acid, luteolin, quercetin and caffeic acid were identified as the major polyphenols in the extracts by HPLC. In general, polyphenolic content follows the order A. pachycephalla > A. nobilis > A. filipendulina > A. santolina > A. aucheri > A. millefolium. Most extracts exhibited marked anti-AGE ability in the bovine serum albumin (BSA)/methylglyoxal (MG) system, though A. pachycephala showed the highest potential. The formation of AGEs was assessed by monitoring the production of fluorescent products and Circular dichroism (CD) spectroscopy. Diminution in free radical production (assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays) is discussed as potential mechanism for delay or reduced AGE. The results demonstrate the antiglycative, antioxidant and antimicrobial potential of Achillea species which can be attribute to polyphenols content and the effectiveness on generation of AGEs, thus Achillea species can be considered as natural sources for slowing down glycation related diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Biological Activities of Polyphenols from Grapes

    PubMed Central

    Xia, En-Qin; Deng, Gui-Fang; Guo, Ya-Jun; Li, Hua-Bin

    2010-01-01

    The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included. PMID:20386657

  19. Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols

    PubMed Central

    Marin, Daniela Eliza; Pelmus, Rodica Stefania; Habeanu, Mihaela; Rotar, Mircea Catalin; Gras, Mihail Alexandru; Pistol, Gina Cecilia; Taranu, Ionelia

    2018-01-01

    The absorption and antioxidant activity of polyphenols from grape pomace (GP) are important aspects of its valorization as a feed additive in the diet of weaned piglets. This study aimed to evaluate the presence of polyphenols from GP both in vitro in IPEC cells and in vivo in the duodenum and colon of piglets fed with diets containing or not 5% GP and also to compare and correlate the aspects of their in vitro and in vivo absorption. Total polyphenolic content (TPC) and antioxidant status (TAS, CAT, SOD and GPx enzyme activity, and lipid peroxidation-TBARS level) were assessed in duodenum and colon of piglets fed or not a diet with 5% GP. The results of UV-Vis spectroscopy demonstrated that in cellular and extracellular medium the GP polyphenols were oxidized (between λmax = 276 nm and λmax = 627.0 nm) with the formation of o-quinones and dimers. LC-MS analysis indicated a procyanidin trimer possibly C2, and a procyanidin dimer as the major polyphenols identified in GP, 12.8% of the procyanidin trimer and 23% of the procyanidin dimer respectively being also found in the compound feed. Procyanidin trimer C2 is the compound accumulated in duodenum, 73% of it being found in the colon of control piglets, and 62.5% in the colon of GP piglets. Correlations exist between the in vitro and in vivo investigations regarding the qualitative evaluation of GP polyphenols in the cells (λmax at 287.1 nm) and in the gut (λmax at 287.5 nm), as oxidated metabolic products. Beside the presence of polyphenols metabolites this study shows also the presence of the unmetabolized procyanidin trimers in duodenum and colon tissue, an important point in evaluating the benefic actions of these molecules at intestinal level. Moreover the in vivo study shows that a 5% GP in piglet’s diet increased the total antioxidant status (TAS) and decreased lipid peroxidantion (TBARS) in both duodenum and colon, and increased SOD activity in duodenum and CAT and GPx activity in colon. These parameters are modulated by the different polyphenols absorbed, mainly by the procyanidin trimers and catechin on one side and the polyphenols metabolites on the other side. PMID:29747456

  20. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders

    PubMed Central

    Działo, Magdalena; Mierziak, Justyna; Korzun, Urszula; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2016-01-01

    Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract. PMID:26901191

  1. Emerging role of phenolic compounds as natural food additives in fish and fish products.

    PubMed

    Maqsood, Sajid; Benjakul, Soottawat; Shahidi, Fereidoon

    2013-01-01

    Chemical and microbiological deteriorations are principal causes of quality loss of fish and fish products during handling, processing, and storage. Development of rancid odor and unpleasant flavor, changes of color and texture as well as lowering nutritional value in fish can be prevented by appropriate use of additives. Due to the potential health hazards of synthetic additives, natural products, especially antioxidants and antimicrobial agents, have been intensively examined as safe alternatives to synthetic compounds. Polyphenols (PP) are the natural antioxidants prevalent in fruits, vegetables, beverages (tea, wine, juices), plants, seaweeds, and some herbs and show antioxidative and antimicrobial activities in different fish and fish products. The use of phenolic compounds also appears to be a good alternative for sulphiting agent for retarding melanosis in crustaceans. Phenolic compounds have also been successfully employed as the processing aid for texture modification of fish mince and surimi. Thus, plant polyphenolic compounds can serve as potential additives for preventing quality deterioration or to retain the quality of fish and fish products.

  2. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders.

    PubMed

    Działo, Magdalena; Mierziak, Justyna; Korzun, Urszula; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2016-02-18

    Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.

  3. A comprehensive evaluation of three microfluidic chemiluminescence methods for the determination of the total phenolic contents in fruit juices.

    PubMed

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2017-01-01

    Three recently reported microfluidic chemiluminescence (MF-CL) methods (based on reactions with acidic permanganate enhanced by formaldehyde (KMnO4-COH), acidic cerium (IV) and rhodamine B (Ce-RB), and acidic cerium (IV) and rhodamine 6G (Ce-R6G) enhanced by SDS) for the determination of the total phenolic content (TPC) in juices were critically evaluated in terms of their selectivity. The evaluation was carried out using 86 analytes, including 22 phenolic compounds (phenolic acids and polyphenols), 6 known non-phenolic antioxidants, 9 amino acids and a number of proteins, carbohydrates, nucleotide bases, inorganic salts and other compounds. Each method was sensitive toward phenolic compounds (PCs). However, the KMnO4-COH CL system showed a higher sensitivity toward phenolic acids and also responded to non-phenolic antioxidants. The other two systems showed higher sensitivity toward polyphenolic compounds than to phenolic acids and did not responded to all other compounds including non-phenolic antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [ANTIOXIDANT POTENTIAL OF MELIPONA BEECHEII HONEY AND ITS RELATIONSHIP TO HEALTH: A REVIEW].

    PubMed

    Cauich Kumul, Roger; Ruiz Ruiz, Jorge Carlos; Ortíz Vázquez, Elizabeth; Segura Campos, Maira Rubi

    2015-10-01

    The present article provides a literature review about the biological potential of Melipona beecheii. The objective is to project some tendecies in research about nutraceutical aspects related to the bioactive compounds presents in the honey of this stingless bee species, known for its medicinal properties traditional, in the Yucatan Peninsula. Currently, there is strong evidence that M. beecheii honey has bioactive compounds such as proteins, flavonoids and polyphenols with high antioxidant activity. The scientific evidence allows to propose to the honey of stingless bee species as a potential alternative for the obtention of bioactive compounds with antioxidant activity in the Yucatan Peninsula and natural food being proposed to reduce some diseases associated with stress oxidative physiological human cells. However, there is still information that explains such antioxidant activity, therefore, according to the literature reviewed, sees the need to address nutraceuticals and functional aspects correlated with the bioactive compounds present in this honey bee. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. A new approach for the assessment of the toxicity of polyphenol-rich compounds with the use of high content screening analysis

    PubMed Central

    Golanski, Jacek; Lukasiak, Magdalena; Redzynia, Malgorzata; Dastych, Jaroslaw; Watala, Cezary

    2017-01-01

    The toxicity of in vitro tested compounds is usually evaluated based on AC50 values calculated from dose-response curves. However, there is a large group of compounds for which a standard four-parametric sigmoid curve fitting may be inappropriate for estimating AC50. In the present study, 22 polyphenol-rich compounds were prioritized from the least to the most toxic based on the total area under and over the dose-response curves (AUOC) in relation to baselines. The studied compounds were ranked across three key cell indicators (mitochondrial membrane potential, cell membrane integrity and nuclear size) in a panel of five cell lines (HepG2, Caco-2, A549, HMEC-1, and 3T3), using a high-content screening (HCS) assay. Regarding AUOC score values, naringin (negative control) was the least toxic phenolic compound. Aronox, spent hop extract and kale leaf extract had very low cytotoxicity with regard to mitochondrial membrane potential and cell membrane integrity, as well as nuclear morphology (nuclear area). Kaempferol (positive control) exerted strong cytotoxic effects on the mitochondrial and nuclear compartments. Extracts from buckthorn bark, walnut husk and hollyhock flower were highly cytotoxic with regard to the mitochondrion and cell membrane, but not the nucleus. We propose an alternative algorithm for the screening of a large number of agents and for identifying those with adverse cellular effects at an early stage of drug discovery, using high content screening analysis. This approach should be recommended for series of compounds producing a non-sigmoidal cell response, and for agents with unknown toxicity or mechanisms of action. PMID:28662177

  6. Polyphenolic profile of butterhead lettuce cultivar by ultrahigh performance liquid chromatography coupled online to UV-visible spectrophotometry and quadrupole time-of-flight mass spectrometry.

    PubMed

    Viacava, Gabriela E; Roura, Sara I; López-Márquez, Diana M; Berrueta, Luis A; Gallo, Blanca; Alonso-Salces, Rosa M

    2018-09-15

    In the present study, the butterhead lettuce cultivar was analyzed by ultrahigh performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry (QToF/MS) in the positive and negative ion mode in order to characterize its polyphenolic profile for the first time. The instrument acquisition mode MS E was used to collect automatic and simultaneous information of exact mass at high and low collision energies of precursor ions as well as other ions produced as a result of their fragmentation. One hundred eleven phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried leaves of butterhead lettuce cultivar: 40 hydroxycinnamic acid derivatives, 21 hydroxybenzoic acid derivatives, 2 hydroxyphenylacetic acid derivatives, 18 flavonols, 9 flavones, one flavanone, 7 coumarins, one hydrolysable tannin and 12 lignans. Forty-seven of these compounds have been tentatively identified for the first time in lettuce. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Resources and biological activities of natural polyphenols.

    PubMed

    Li, An-Na; Li, Sha; Zhang, Yu-Jie; Xu, Xiang-Rong; Chen, Yu-Ming; Li, Hua-Bin

    2014-12-22

    The oxidative stress imposed by reactive oxygen species (ROS) plays an important role in many chronic and degenerative diseases. As an important category of phytochemicals, phenolic compounds universally exist in plants, and have been considered to have high antioxidant ability and free radical scavenging capacity, with the mechanism of inhibiting the enzymes responsible for ROS production and reducing highly oxidized ROS. Therefore, phenolic compounds have attracted increasing attention as potential agents for preventing and treating many oxidative stress-related diseases, such as cardiovascular diseases, cancer, ageing, diabetes mellitus and neurodegenerative diseases. This review summarizes current knowledge of natural polyphenols, including resource, bioactivities, bioavailability and potential toxicity.

  8. Resources and Biological Activities of Natural Polyphenols

    PubMed Central

    Li, An-Na; Li, Sha; Zhang, Yu-Jie; Xu, Xiang-Rong; Chen, Yu-Ming; Li, Hua-Bin

    2014-01-01

    The oxidative stress imposed by reactive oxygen species (ROS) plays an important role in many chronic and degenerative diseases. As an important category of phytochemicals, phenolic compounds universally exist in plants, and have been considered to have high antioxidant ability and free radical scavenging capacity, with the mechanism of inhibiting the enzymes responsible for ROS production and reducing highly oxidized ROS. Therefore, phenolic compounds have attracted increasing attention as potential agents for preventing and treating many oxidative stress-related diseases, such as cardiovascular diseases, cancer, ageing, diabetes mellitus and neurodegenerative diseases. This review summarizes current knowledge of natural polyphenols, including resource, bioactivities, bioavailability and potential toxicity. PMID:25533011

  9. Antiviral effects of black raspberry (Rubus coreanus) seed extract and its polyphenolic compounds on norovirus surrogates.

    PubMed

    Lee, Ji-Hye; Bae, Sun Young; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Chung, Yeon Bin; Gowda K, Giri; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-06-01

    Black raspberry seeds, a byproduct of wine and juice production, contain large quantities of polyphenolic compounds. The antiviral effects of black raspberry seed extract (RCS) and its fraction with molecular weight less than 1 kDa (RCS-F1) were examined against food-borne viral surrogates, murine norovirus-1 (MNV-1) and feline calicivirus-F9 (FCV-F9). The maximal antiviral effect was achieved when RCS or RCS-F1 was added simultaneously to cells with MNV-1 or FCV-F9, reaching complete inhibition at 0.1-1 mg/mL. Transmission electron microscopy (TEM) images showed enlarged viral capsids or disruption (from 35 nm to up to 100 nm) by RCS-F1. Our results thus suggest that RCS-F1 can interfere with the attachment of viral surface protein to host cells. Further, two polyphenolic compounds derived from RCS-F1, cyanidin-3-glucoside (C3G) and gallic acid, identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against the viruses. C3G was suggested to bind to MNV-1 RNA polymerase and to enlarge viral capsids using differential scanning fluorimetry and TEM, respectively.

  10. Polyphenol Compound as a Transcription Factor Inhibitor.

    PubMed

    Park, Seyeon

    2015-10-30

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).

  11. Effects of processing on the polyphenol and phenolic acid content and antioxidant capacity of semi-dried cherry tomatoes (Lycopersicon esculentum M.).

    PubMed

    Rizzo, Valeria; Clifford, Mike N; Brown, Jonathan E; Siracusa, Laura; Muratore, Giuseppe

    2016-04-01

    This study was performed to test the effects of pre-treating cherry tomatoes with a solution containing citric acid-NaCl-CaCl2 (10:10:24 g L(-1)), followed by one of three different drying regimes (40, 60, 80 °C) on the antioxidant capacity of their aqueous extracts and the extent of phenolic compound degradation. Chlorogenic acids, caffeic acid, ferulic acid, rutin and naringenin were all detected in the aqueous extracts. In fresh cherry tomatoes the predominant phenolic compound was rutin, followed by naringenin, which corresponded to 79% and 8% of the total phenolic compounds present, respectively. Pre-treatment was protective towards naringenin and had a modest protective effect on rutin and ferulic acid (0.1 > P > 0.05). Total phenolic content was similar in all samples, but there was a trend for the level of free polyphenols to be lower in treated tomatoes. The destruction of naringenin was confirmed by liquid chromatographic-mass spectrometric data. A significant effect of temperature on the antioxidant capacity was observed. After this treatment the industry might introduce some advances in the processing of tomatoes, preserving the main nutritive characteristics and saving the products as semi-dried. © 2015 Society of Chemical Industry.

  12. Antioxidant potential of hydro-methanolic extract of Prasium majus L: an in vitro study.

    PubMed

    Chaouche, T M; Haddouchi, F; Ksouri, R; Medini, F; El-Haci, I A; Boucherit, Z; Sekkal, F Z; Atik-Bekara, F

    2013-11-01

    Phytochemicals are extensively found at different levels in many medicinal plants. To investigate the phenolic compound content and in vitro antioxidant activity of hydro-methanolic extract from Prasium majus L. (Lamiaceae). The present investigation comprises, estimation of total polyphenol, flavonoid, tannin, in vitro antioxidant assays such as total antioxidant capacity, DPPH, ABTS, beta-carotene and ferric reducing power. P. majus exhibited 64.25 mg GAE g(-1) extract of polyphenol phenol content and better scavenging activity of DPPH (IC50 = 7.95 microg mL(-1)), ABTS*+ (IC50 = 373.78 microg mL(-1)) and beta-carotene (IC50 = 122.56 microg mL(-1)). Our results clearly demonstrated that hydro-methanolic extract P. majus has antioxidant capacity. Therefore is a valuable source of natural antioxidants.

  13. Decreased activity and accelerated apoptosis of neutrophils in the presence of natural polyphenols

    PubMed Central

    Perečko, Tomáš; Harmatha, Juraj; Nosáľ, Radomír; Drábiková, Katarína

    2012-01-01

    Prolonged or excessive formation and liberation of cytotoxic substances from neutrophils intensifies inflammation and the risk of tissue damage. From this perspective, administration of substances which are able to reduce activity of neutrophils and to enhance apoptosis of these cells may improve the therapy of pathological states connected with persistent inflammation. In this short review, neutrophil oxidative burst and apoptosis are presented as potential targets for pharmacological intervention. Effects of natural polyphenols (resveratrol, pterostilbene, pinosylvin, piceatannol, curcumin, N-feruloylserotonin) are summarised, considering the ability of these compounds to affect inflammation and particularly neutrophil activity. The intended neutrophil inhibition is introduced as a part of a new strategy for pharmacological modulation of chronic inflammatory processes, focused on supporting innate anti-inflammatory mechanisms and enhancing resolution of inflammation. PMID:23118588

  14. Recent advances on tea polyphenols

    PubMed Central

    Kanwar, Jyoti; Taskeen, Mujtaba; Mohammad, Imthiyaz; Huo, Congde; Chan, Tak Hang; Dou, Qing Ping

    2012-01-01

    Over the past decade many scientific and medical studies have focused on green tea for its long-purported health benefits. There is convincing evidence that tea is a cup of life. It has multiple preventive and therapeutic effects. This review thus focuses on the recent advances of tea polyphenols and their applications in the prevention and treatment of human cancers. Of the various polyphenols in tea, (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant, and active compound studied in tea research. EGCG inhibits several molecular targets to inhibit cancer initiation and modulates several essential survival pathways to block cancer progression. Herein, we describe the various mechanisms of action of EGCG and also discuss previous and current ongoing clinical trials of EGCG and green tea polyphenols in different cancer types. PMID:22201858

  15. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua.

    PubMed

    Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino

    2012-03-16

    Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Protective Effect of Highly Polymeric A-Type Proanthocyanidins from Seed Shells of Japanese Horse Chestnut (Aesculus turbinata BLUME) against Light-Induced Oxidative Damage in Rat Retina

    PubMed Central

    Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro

    2018-01-01

    Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O-glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. Highlights: The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal lipids. Highly polymeric A-type proanthocyanidin from the seed shells protected the rat retina from light exposure damage by inhibiting oxidative stress and apoptotic mechanisms. PMID:29748512

  17. Protective Effect of Highly Polymeric A-Type Proanthocyanidins from Seed Shells of Japanese Horse Chestnut (Aesculus turbinata BLUME) against Light-Induced Oxidative Damage in Rat Retina.

    PubMed

    Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro; Ohira, Akihiro

    2018-05-10

    Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O -glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut ( Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal lipids. Highly polymeric A-type proanthocyanidin from the seed shells protected the rat retina from light exposure damage by inhibiting oxidative stress and apoptotic mechanisms.

  18. Theobroma cacao L., the Food of the Gods: a scientific approach beyond myths and claims.

    PubMed

    Rusconi, M; Conti, A

    2010-01-01

    Cocoa beans are rich source of polyphenols, contributing about 10% of the dry weight of the whole bean and its derivative chocolate, particularly dark chocolate, is considered one of the major contributors of antioxidants to the American diet after fruits and vegetables. At present the wide variation in cocoa processing and in the content and profile of polyphenols make it difficult to determine to what extent the findings about positive effects expressed in different studies, translate into tangible clinical benefits. Moreover, before claiming any healthy properties to a plant, natural product or food item on human subject, a basic research project approved by scientific and ethical commissions has to be performed. Until now the definition, composition, manufacturing specifications, packaging and labelling of cocoa and chocolate products in Europe, are regulated by "Directive 2000/36/EC of the European parliament and of the council". The definitions take changes in consumer tastes, chocolate composition and labelling into account, but do not consider the real potential of healthy, beneficial and nutraceutical effects. In fact, they fail to establish an official analytical methodology for the quantification of phenolic compounds in cocoa and chocolate. Moreover quantification of these compounds is not used in product classification. This article reviews many qualitative differences of cocoa and chocolate, in particular dark chocolate, aiming to establish the different implications for public health through the use of the analyzed concentration of polyphenols in cocoa products. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Substituted Caffeic and Ferulic Acid Phenethyl Esters: Synthesis, Leukotrienes Biosynthesis Inhibition, and Cytotoxic Activity.

    PubMed

    Morin, Pier; St-Coeur, Patrick-Denis; Doiron, Jérémie A; Cormier, Marc; Poitras, Julie J; Surette, Marc E; Touaibia, Mohamed

    2017-07-06

    Glioblastoma multiforme (GBM) is an aggressive brain tumor that correlates with short patient survival and for which therapeutic options are limited. Polyphenolic compounds, including caffeic acid phenethyl ester (CAPE, 1a ), have been investigated for their anticancer properties in several types of cancer. To further explore these properties in brain cancer cells, a series of caffeic and ferulic acid esters bearing additional oxygens moieties (OH or OCH₃) were designed and synthesized. (CAPE, 1a ), but not ferulic acid phenethyl ester (FAPE, 1b ), displayed substantial cytotoxicity against two glioma cell lines. Some but not all selected compounds derived from both (CAPE, 1a ) and (FAPE, 1b ) also displayed cytotoxicity. All CAPE-derived compounds were able to significantly inhibit 5-lipoxygenase (5-LO), however FAPE-derived compounds were largely ineffective 5-LO inhibitors. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds in cancer models and provides additional leads in the development of novel therapeutic strategies in gliomas.

  20. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages.

    PubMed

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-09-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols.

  1. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages

    PubMed Central

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-01-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols. PMID:25320718

  2. Updated bioavailability and 48 h excretion profile of flavan-3-ols from green tea in humans.

    PubMed

    Calani, Luca; Del Rio, Daniele; Luisa Callegari, Maria; Morelli, Lorenzo; Brighenti, Furio

    2012-08-01

    Green tea is a popular beverage, prepared with infusion of unfermented dried leaves of Camellia sinensis, and is one of the most relevant sources of polyphenolic compounds in the human diet. This study reports green tea flavan-3-ol absorption, metabolism and complete urinary excretion up to 48 h in 20 healthy volunteers. Urinary and tea samples were analysed by high-performance liquid chromatography coupled with tandem mass spectrometry. Green tea contained monomeric flavan-3-ols and proanthocyanidins with a total polyphenol content of 728 μmol. A total of 41 metabolites were identified in urines, all present in conjugated forms. Among these, six colonic metabolites of green tea flavan-3-ols were identified for the first time after green tea consumption in humans. The average 48 h bioavailability was close to 62%, major contributors being microbial metabolites. Some volunteer showed a 100% absorption/excretion, whereas some others were unable to efficiently absorb/excrete this class of flavonoids. This suggests that colonic ring fission metabolism could be relevant in the putative bioactivity of green tea polyphenols.

  3. Recommendations for Development of Botanical Polyphenols as “Natural Drugs” for Promotion of Resilience Against Stress-Induced Depression and Cognitive Impairment

    PubMed Central

    Ward, Libby; Pasinetti, Giulio Maria

    2016-01-01

    Extensive evidence has demonstrated that psychological stress has detrimental effects on psychological health, cognitive function, and ultimately well-being. While stressful events are a significant cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The mechanisms underlying such resilience are poorly understood, and there is an urgent need to identify and target these mechanisms to promote resilience under stressful events. Botanicals have been used throughout history to treat various medical conditions; however, the development of botanical compounds into potential preventative and therapeutic agents in studies promoting brain health is hindered by the fact that most orally consumed botanicals are extensively metabolized during absorption and/or by post-absorptive xenobiotic metabolism. Therefore, the primary objective of this review article is to provide recommendations for developing natural compounds as novel therapeutic strategies to promote resilience in susceptible subjects. The development of botanical polyphenols to ultimately attenuate mood disorders and cognitive impairment will rely on understanding (1) the absorption and bioavailability of botanical polyphenols with emphasis on flavan-3-ols, (2) the characterization of tissue specific accumulation of biologically available polyphenols and their mechanisms of action in the brain, and eventually (3) the characterization of biologically available polyphenol metabolites in mechanisms associated with the promotion of resilience against mood disorders and cognitive impairment in response to stress. We also summarize exciting new lines of investigation about the role of botanicals such as polyphenols in the promotion of cognitive and psychological resilience. This information will provide a strategical framework for the future development of botanicals as therapeutic agents to promote resilience, ultimately preventing and/or therapeutically treating cognitive impairment and psychological dysfunction. PMID:27342633

  4. Recommendations for Development of Botanical Polyphenols as "Natural Drugs" for Promotion of Resilience Against Stress-Induced Depression and Cognitive Impairment.

    PubMed

    Ward, Libby; Pasinetti, Giulio Maria

    2016-09-01

    Extensive evidence has demonstrated that psychological stress has detrimental effects on psychological health, cognitive function, and ultimately well-being. While stressful events are a significant cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The mechanisms underlying such resilience are poorly understood, and there is an urgent need to identify and target these mechanisms to promote resilience under stressful events. Botanicals have been used throughout history to treat various medical conditions; however, the development of botanical compounds into potential preventative and therapeutic agents in studies promoting brain health is hindered by the fact that most orally consumed botanicals are extensively metabolized during absorption and/or by post-absorptive xenobiotic metabolism. Therefore, the primary objective of this review article is to provide recommendations for developing natural compounds as novel therapeutic strategies to promote resilience in susceptible subjects. The development of botanical polyphenols to ultimately attenuate mood disorders and cognitive impairment will rely on understanding (1) the absorption and bioavailability of botanical polyphenols with emphasis on flavan-3-ols, (2) the characterization of tissue-specific accumulation of biologically available polyphenols and their mechanisms of action in the brain, and eventually (3) the characterization of biologically available polyphenol metabolites in mechanisms associated with the promotion of resilience against mood disorders and cognitive impairment in response to stress. We also summarize exciting new lines of investigation about the role of botanicals such as polyphenols in the promotion of cognitive and psychological resilience. This information will provide a strategical framework for the future development of botanicals as therapeutic agents to promote resilience, ultimately preventing and/or therapeutically treating cognitive impairment and psychological dysfunction.

  5. [Polyphenol availability in fruits and vegetables consumed in Brazil].

    PubMed

    Faller, Ana Luísa Kremer; Fialho, Eliane

    2009-04-01

    To estimate total polyphenol availability in fruits and vegetables commonly consumed in Brazil and its regions, and to identify the main food sources that constitute food habits in this country. Total polyphenols were determined by the Folin-Ciocalteu method and the availability estimated according to the Pesquisa de Orçamentos Familiares 2002/ 2003 (2002/2003 Family Budget Survey). Twelve highly consumed food items were chosen, of which six were 'tropical fruits' and six were vegetables under the categories of 'leafy and flower vegetables', 'fruit vegetables' and 'tuberous vegetables'. Polyphenol quantification was performed with three independent experiments, each one in duplicate. The national polyphenol availability was estimated in grams per fresh weight of each analyzed food. Daily per capita availability in Brazil and its regions was calculated using the amount of polyphenol provided by the consumption of the 12 foods analyzed. Polyphenol contents of foods varied from 15.35 to 214.84 mg GAE/ 100 g of fresh weight. Polyphenol availability in Brazil, based on the amount in kilograms that is annually acquired in Brazil, of the 12 selected foods was 48.3 mg/ day, and the Southeast and Central-West regions had the highest and lowest values, respectively. Banana was the main polyphenol source consumed in Brazil, even though this pattern varied among regions. The estimated daily polyphenol availability in Brazil was similar to other countries. Differences observed among regions could be directly related to distinct cultural habits. Although there is no recommended daily availability of polyphenols, consumption of the recommended daily amount of fruits and vegetables can increase the availability of polyphenols 16 times, showing a clear relationship between the consumption of these food groups and the availability of beneficial bioactive compounds.

  6. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols.

    PubMed

    Diniz, Carmen; Suliburska, Joanna; Ferreira, Isabel M P L V O

    2017-06-01

    Polyphenols can be found in natural products of plant origin, including vegetables, fruits, and beverages. A large number of these plant origin compounds are an integral part of the human diet and in the past decade evidence has shown their beneficial properties in human health, by acting in several cell signaling pathways. Among other beneficial effects, polyphenols have been associated with angiogenesis. Increasing evidence highlighting the ability of dietary polyphenols to influence angiogenesis by interfering with multiple signaling pathways is debated. Particular emphasis is given to the mechanisms that ultimately may induce the formation of capillary-like structures (by increasing endothelial cell proliferation, migration, and invasion) or, conversely, may inhibit the steps of angiogenesis leading to the inhibition/regress of vascular development. Dietary polyphenols can, therefore, be viewed as promising nutraceuticals but important aspects have still to be further investigated, to deep knowledge concerning their concentration-mediated effects, effect of specific polyphenols, and respective metabolites, to ensure their appropriate and effective usefulness as proangiogenic or antiangiogenic nutraceuticals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice

    PubMed Central

    Pasinetti, Giulio Maria; Singh, Risham; Westfall, Susan; Herman, Francis; Faith, Jeremiah; Ho, Lap

    2018-01-01

    A growing body of experimental data suggests that microbes in the gut influence behavior and can alter brain physiology and neurochemistry. Although promising, researchers are only starting to understand the potential of the gut microbiota for use in neurological disease. Recent evidence demonstrated that gastrointestinal activities are linked to mood disorders such as anxiety, depression, and most recently, cognitive functions in age-related neurodegenerative disorders. Studies from our group and others are uncovering new evidence suggesting that the gut microbiota plays a crucial role in the metabolism and bioavailability of certain dietary compounds and synthetic drugs. Based on this evidence, this review article will discuss the implications of the gut microbiota in mechanisms of bioavailability and biotransformation with an emphasis on dietary polyphenol compounds. This will be followed by a survey of ongoing innovative research identifying the ability of individual gut bacteria to enhance the bioavailability of gut-derived, brain-penetrating, bioactive polyphenol metabolites that ultimately influence mechanisms associated with the promotion of resilience against psychological and cognitive impairment in response to stress. Lastly, current research initiatives aimed at promoting the generation of brain bioactive polyphenol metabolites by specialized gut microbes will be discussed, specifically the use of gnotobiotic mice to develop bioengineered second generation probiotics. We propose that leveraging the gut microbial ecosystem to generate brain targeted bioactive metabolites from dietary polyphenols can attenuate lifestyle risk factors and promote resilience against age-related cognitive decline. PMID:29660942

  8. Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics

    PubMed Central

    Pinasseau, Lucie; Vallverdú-Queralt, Anna; Verbaere, Arnaud; Roques, Maryline; Meudec, Emmanuelle; Le Cunff, Loïc; Péros, Jean-Pierre; Ageorges, Agnès; Sommerer, Nicolas; Boulet, Jean-Claude; Terrier, Nancy; Cheynier, Véronique

    2017-01-01

    Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. A major challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms. A targeted metabolomics approach based on ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode has been developed for high throughput profiling of the phenolic composition of grape skins. This method enables rapid, selective, and sensitive quantification of 96 phenolic compounds (anthocyanins, phenolic acids, stilbenoids, flavonols, dihydroflavonols, flavan-3-ol monomers, and oligomers…), and of the constitutive units of proanthocyanidins (i.e., condensed tannins), giving access to detailed polyphenol composition. It was applied on the skins of mature grape berries from a core-collection of 279 Vitis vinifera cultivars grown with or without watering to assess the genetic variation for polyphenol composition and its modulation by irrigation, in two successive vintages (2014–2015). Distribution of berry weights and δ13C values showed that non irrigated vines were subjected to a marked water stress in 2014 and to a very limited one in 2015. Metabolomics analysis of the polyphenol composition and chemometrics analysis of this data demonstrated an influence of water stress on the biosynthesis of different polyphenol classes and cultivar differences in metabolic response to water deficit. Correlation networks gave insight on the relationships between the different polyphenol metabolites and related biosynthetic pathways. They also established patterns of polyphenol response to drought, with different molecular families affected either positively or negatively in the different cultivars, with potential impact on grape and wine quality. PMID:29163566

  9. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools.

    PubMed

    Martelo-Vidal, M J; Vázquez, M

    2014-09-01

    Spectral analysis is a quick and non-destructive method to analyse wine. In this work, trans-resveratrol, oenin, malvin, catechin, epicatechin, quercetin and syringic acid were determined in commercial red wines from DO Rías Baixas and DO Ribeira Sacra (Spain) by UV-VIS-NIR spectroscopy. Calibration models were developed using principal component regression (PCR) or partial least squares (PLS) regression. HPLC was used as reference method. The results showed that reliable PLS models were obtained to quantify all polyphenols for Rías Baixas wines. For Ribeira Sacra, feasible models were obtained to determine quercetin, epicatechin, oenin and syringic acid. PCR calibration models showed worst reliable of prediction than PLS models. For red wines from mencía grapes, feasible models were obtained for catechin and oenin, regardless the geographical origin. The results obtained demonstrate that UV-VIS-NIR spectroscopy can be used to determine individual polyphenolic compounds in red wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of sample preparation on the measurement of sugars, organic acids, and polyphenols in apple fruit by mid-infrared spectroscopy.

    PubMed

    Bureau, Sylvie; Scibisz, Iwona; Le Bourvellec, Carine; Renard, Catherine M G C

    2012-04-11

    The objectives of this study were (i) to test different conditions of freezing, thawing, and grinding during sample preparation and (ii) to evaluate the possibility of using mid-infrared spectroscopy for analyzing the composition of sugars, organic acids, and polyphenols in apples. Seven commercial apple cultivars were chosen for their large variability in composition (total polyphenols from 406 to 1033 mg kg(-1) fresh weight). The different conditions of sample preparation affected only the phenolic compounds and not sugars or organic acids. The regression models of the mid-infrared spectra showed a good ability to estimate sugar and organic acid contents (R(2) ≥ 0.96), except for citric acid. Good predictions were obtained for total phenolic, flavan-3-ols, and procyanidins (R(2) ≥ 0.94) provided oxidation was avoided during sample preparation. A rapid and simple procedure was then proposed for phenolic compounds using sodium fluoride during sample homogenization at ambient temperature and freeze-drying before spectra acquisition.

  11. Innovative method for recovery and valorization of hydroxytyrosol from olive mill wastewaters.

    PubMed

    Bonetti, A; Venturini, S; Ena, A; Faraloni, C

    2016-01-01

    The nutritional properties of olive oil can be attributed to its oleic acid and phenolic compounds content, acting as natural oxidants to prevent human diseases. In particular, hydroxytyrosol has an anti-inflammatory action similar to omega 3 fatty acids from fish oil. The olive oil production was conducted by two extraction procedures: first, a two-phase extraction giving extra-virgin olive oil and humid pomace, second, a three-phase working process of humid pomace, obtaining another minimum quantity of extra-virgin olive oil, 'dry' pomace devoid of polyphenols, and mill wastewaters rich in anti-oxidant compounds. The aim of this processing was to employ water to extract the highest concentration of polyphenols from humid pomace and convey them in oil mill wastewaters for extraction. Processed olives were 37,200 kg, pomace deprived of polyphenols was equal to 20,400 kg and processing was performed with 500 kg of olives per hour. This method offers advantages of using cheap equipment and technical simplicity.

  12. Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin.

    PubMed

    de Torres, C; Díaz-Maroto, M C; Hermosín-Gutiérrez, I; Pérez-Coello, M S

    2010-02-15

    Grape skins are the part of the fruit with the highest amount of volatile and polyphenolic compounds. Volatile compounds give the fruit and other grape derivatives their flavour. Polyphenolic compounds are responsible for the colour of the fruit, juice and wine, and also act as very important natural antioxidant compounds. Dehydration is a method used to prevent the damage of these compounds over time. Nevertheless, in the case of volatile compounds, removing water can cause compound degradation or the evaporation of such compounds. This work studied two drying methods, freeze-drying and oven-drying, at 60 degrees C, as skin preservation methods. The skins from two grape varieties, Carménère and Cabernet Sauvignon, were dried. Many volatile compounds, which are of interest in the aroma profile, were identified in both varieties as terpenes (linalool, etc.), sesquiterpenes (farnesol), norisoprenoids (vitispirane, etc.), C(6) alcohols (1-hexanol, etc.), etc., and their amount decreased significantly with the oven-drying method, in contrast to the freeze-drying method. Both phenolic compounds, anthocyanins and flavonols, were identified in fresh and dehydrated samples, thus resulting in the freeze-drying method being less aggressive than oven-drying methods. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Influence of Berry-Polyphenols on Receptor Signaling and Cell-Death Pathways: Implications for Breast Cancer Prevention

    PubMed Central

    Aiyer, Harini S; Warri, Anni M; Woode, Denzel R; Hilakivi-Clarke, Leena; Clarke, Robert

    2012-01-01

    Breast cancer is the most commonly diagnosed cancer among women worldwide. Many women have become more aware of the benefits of increasing fruit consumption, as part of a healthy lifestyle, for the prevention of cancer. The mechanisms by which fruits, including berries, prevent breast cancer can be partially explained by exploring their interactions with pathways known influence cell-proliferation and evasion of cell-death. Two receptor pathways- estrogen receptor (ER) and tyrosine kinase receptors, especially the epidermal growth factor receptor (EGFR) family- are drivers of cell-proliferation and play a significant role in the development of both primary and recurrent breast cancer. There is strong evidence to show that several phytochemicals present in berries such as cyanidin, delphinidin, quercetin, kaempferol, ellagic acid, resveratrol and pterostilbene, interact with and alter the effects of these pathways. Further, they also induce cell death (apoptosis and autophagy) via their influence on kinase signaling. In this review, we summarize in vitro data regarding the interaction of berry polyphenols with the specific receptors and the mechanisms by which they induce cell death. Further, we also present in vivo data of primary breast cancer prevention by individual compounds and whole berries. Finally, we present a possible role for berries and berry compounds in the prevention of breast cancer and our perspective on the areas that require further research. PMID:22300613

  14. Green tea and the skin.

    PubMed

    Hsu, Stephen

    2005-06-01

    Plant extracts have been widely used as topical applications for wound-healing, anti-aging, and disease treatments. Examples of these include ginkgo biloba, echinacea, ginseng, grape seed, green tea, lemon, lavender, rosemary, thuja, sarsaparilla, soy, prickly pear, sagebrush, jojoba, aloe vera, allantoin, feverwort, bloodroot, apache plume, and papaya. These plants share a common character: they all produce flavonoid compounds with phenolic structures. These phytochemicals are highly reactive with other compounds, such as reactive oxygen species and biologic macromolecules, to neutralize free radicals or initiate biological effects. A short list of phenolic phytochemicals with promising properties to benefit human health includes a group of polyphenol compounds, called catechins, found in green tea. This article summarizes the findings of studies using green tea polyphenols as chemopreventive, natural healing, and anti-aging agents for human skin, and discusses possible mechanisms of action.

  15. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities.

    PubMed

    Ferri, Maura; Rondini, Greta; Calabretta, Maria Maddalena; Michelini, Elisa; Vallini, Veronica; Fava, Fabio; Roda, Aldo; Minnucci, Giordano; Tassoni, Annalisa

    2017-10-25

    The present work aimed at optimizing a two-step enzymatic plus solvent-based process for the recovery of bioactive compounds from white grape (Vitis vinifera L., mix of Trebbiano and Verdicchio cultivars) pomace, the winemaking primary by-product. Phenolic compounds solubilised by water enzyme-assisted and ethanol-based extractions of wet (WP) and dried (DP) pomace were characterised for composition and tested for antioxidant, anti-tyrosinase and anti-inflammatory bioactivities. Ethanol treatment led to higher phenol yields than water extraction, while DP samples showed the highest capacity of releasing polyphenols, most probably as a positive consequence of the pomace drying process. Different compositions and bioactivities were observed between water and ethanol extracts and among different treatments and for the first time the anti-tyrosinase activity of V. vinifera pomace extracts, was here reported. Enzymatic treatments did not significantly improve the total amount of solubilised compounds; Celluclast in DP led to the recovery of extracts enriched in specific compounds, when compared to control. The best extracts (enzymatic plus ethanol treatment total levels) were obtained from DP showing significantly higher amounts of polyphenols, flavonoids, flavanols and tannins and exerted higher antioxidant and anti-tyrosinase activities than WP total extracts. Conversely, anti-inflammatory capacity was only detected in water (with and without enzyme) extracts, with WP samples showing on average a higher activity than DP. The present findings demonstrate that white grape pomace constitute a sustainable source for the extraction of phytochemicals that might be exploited as functional ingredients in the food, nutraceutical, pharmaceutical or cosmetic industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization, quantification, and yearly variation of the naturally occurring polyphenols in a common red variety of curly kale ( Brassica oleracea L. convar. acephala var. sabellica cv. 'Redbor').

    PubMed

    Olsen, Helle; Aaby, Kjersti; Borge, Grethe Iren A

    2010-11-10

    This study focuses on the characterization and quantification of polyphenols in the edible leaves of red curly kale ( Brassica oleracea L. convar. acephala (DC.) Alef. var. sabellica L.), variety 'Redbor F1 hybrid'. The kale was grown at an experimental field (59° 40' N) in the years 2007-2009. The analysis of kale extract by HPLC-DAD-ESI-MS has allowed the determination of 47 different acylated and nonacylated flavonoid glycosides and complex hydroxycinnamic acids. Those compounds included mono- to tetraglycosides of quercetin, kaempferol, and cyanidin and derivatives of p-coumaric, ferulic, sinapic, and caffeic acid. Among the compounds characterized, four flavonols, three anthocyanins, and three phenolic acids were identified in the Brassica family for the first time. Aglycones and conjugated polyphenols were quantified by HPLC-DAD using commercially available standards. The main flavonol, anthocyanin, and phenolic acid were kaempferol-3-sinapoyl-diglucoside-7-diglucoside, cyanidin-3-sinapoyl-feruloyl-diglucoside-5-glucoside, and disinapoyl-diglucoside, respectively, each representing 9.8, 10.3, and 4.9% of the total amount of 872 mg polyphenol equivalents per 100 g of fresh kale. Variations between individual plants and growing seasons were of the same order of magnitude for total phenolics and total monomeric anthocyanins.

  17. The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika.

    PubMed

    Mudrić, Sanja Ž; Gašić, Uroš M; Dramićanin, Aleksandra M; Ćirić, Ivanka Ž; Milojković-Opsenica, Dušanka M; Popović-Đorđević, Jelena B; Momirović, Nebojša M; Tešić, Živoslav Lj

    2017-02-15

    Spice peppers (Capsicum annuum L.) var. Lemeška and Lakošnička paprika were investigated to evaluate their polyphenolic and carbohydrate profiles and antioxidant activity. A total of forty-nine polyphenolics were identified using ultrahigh-performance liquid chromatography (UHPLC) coupled to LTQ OrbiTrap mass analyzer. Twenty-five of them were quantified using available standards, while the other compounds were confirmed by exact mass search of their deprotonated molecule [M-H](-) and its MS(4) fragmentation. Thirteen carbohydrates were quantified using high-performance anion exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). Radical scavenging activity (RSA) ranged from 17.32 to 48.34mmol TE (Trolox equivalent)/kg DW (dry weight) and total phenolics content (TPC) was ranged between 7.03 and 14.92g GAE (gallic acid equivalents)/kg DW. To our best knowledge, five polyphenolic compounds were for the first time tentatively identified in paprika: 5-O-p-coumaroylquinic acid, luteolin 7-O-(2″-O-pentosyl-4″-O-hexosyl)hexoside, quercetin 3-O-(2″-O-hexosyl)rhamnoside, isorhamnetin 3-O-[6″-O-(5-hydroxyferuloyl)hexoside]-7-O-rhamnoside, and luteolin 7-O-[2″-O-(5'″-O-sinapoyl)pentosyl-6″-O-malonyl]hexoside. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide.

    PubMed

    Xu, Changmou; Yagiz, Yavuz; Marshall, Sara; Li, Zheng; Simonne, Amarat; Lu, Jiang; Marshall, Maurice R

    2015-09-01

    Acrylamide is a byproduct of the Maillard reaction and is formed in a variety of heat-treated commercial starchy foods. It is known to be toxic and potentially carcinogenic to humans. Muscadine grape polyphenols and standard phenolic compounds were examined on the reduction of acrylamide in an equimolar asparagine/glucose chemical model, a potato chip model, and a simulated physiological system. Polyphenols were found to significantly reduce acrylamide in the chemical model, with reduced rates higher than 90% at 100 μg/ml. In the potato chip model, grape polyphenols reduced the acrylamide level by 60.3% as concentration was increased to 0.1%. However, polyphenols exhibited no acrylamide reduction in the simulated physiological system. Results also indicated no significant correlation between the antioxidant activities of polyphenols and their acrylamide inhibition. This study demonstrated muscadine grape extract can mitigate acrylamide formation in the Maillard reaction, which provides a new value-added application for winery pomace waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota.

    PubMed

    Sánchez-Patán, Fernando; Barroso, Elvira; van de Wiele, Tom; Jiménez-Girón, Ana; Martín-Alvarez, Pedro J; Moreno-Arribas, M Victoria; Martínez-Cuesta, M Carmen; Peláez, Carmen; Requena, Teresa; Bartolomé, Begoña

    2015-09-15

    In this study, we have assessed the phenolic metabolism of a cranberry extract by microbiota obtained from the ascending colon and descending colon compartments of a dynamic gastrointestinal simulator (SHIME). For comparison, parallel fermentations with a grape seed extract were carried out. Extracts were used directly without previous intestinal digestion. Among the 60 phenolic compounds targeted, our results confirmed the formation of phenylacetic, phenylpropionic and benzoic acids as well as phenols such as catechol and its derivatives from the action of colonic microbiota on cranberry polyphenols. Benzoic acid (38.4μg/ml), 4-hydroxy-5-(3'-hydroxyphenyl)-valeric acid (26.2μg/ml) and phenylacetic acid (19.5μg/ml) reached the highest concentrations. Under the same conditions, microbial degradation of grape seed polyphenols took place to a lesser extent compared to cranberry polyphenols, which was consistent with the more pronounced antimicrobial effect observed for the grape seed polyphenols, particularly against Bacteroides, Prevotella and Blautia coccoides-Eubacterium rectale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modulation of endogenous antioxidant system by wine polyphenols in human disease.

    PubMed

    Rodrigo, Ramón; Miranda, Andrés; Vergara, Leonardo

    2011-02-20

    Numerous studies indicate that moderate red wine consumption is associated with a protective effect against all-cause mortality. Since oxidative stress constitutes a unifying mechanism of injury of many types of disease processes, it should be expected that polyphenolic antioxidants account for this beneficial effect. Nevertheless, beyond the well-known antioxidant properties of these compounds, they may exert several other protective mechanisms. Indeed, the overall protective effect of polyphenols is due to their large array of biological actions, such as free radical-scavenging, metal chelation, enzyme modulation, cell signalling pathways modulation and gene expression effects, among others. Wine possesses a variety of polyphenols, being resveratrol its most outstanding representative, due to its pleiotropic biological properties. The presence of ethanol in wine aids to polyphenol absorption, thereby contributing to their bioavailability. Before absorption, polyphenols must be hydrolyzed by intestinal enzymes or by colonic microflora. Then, they undergo intestinal and liver metabolism. There have been no reported polyphenol adverse effects derived from intakes currently associated with the normal diet. However, supplements for health-protection should be cautiously used as no level definition has been given to make sure the dose is safe. The role of oxidative stress and the beneficial effects of wine polyphenols against cardiovascular, cancer, diabetes, microbial, inflammatory, neurodegenerative and kidney diseases and ageing are reviewed. Future large scale randomized clinical trials should be conducted to fully establish the therapeutic use of each individual wine polyphenol against human disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Dietary polyphenol intake and their major food sources in the Mexican Teachers' Cohort.

    PubMed

    Zamora-Ros, Raul; Biessy, Carine; Rothwell, Joseph A; Monge, Adriana; Lajous, Martin; Scalbert, Augustin; López-Ridaura, Ruy; Romieu, Isabelle

    2018-06-04

    Several descriptive studies on the intake of polyphenols, mostly flavonoids, have been published, especially in Europe and the USA, but insufficient data are still available in Latin-American countries, where different types of foods are consumed and different dietary habits are observed. The goal of this cross-sectional study was to estimate dietary intakes of polyphenols, including grand total, total per classes and subclasses and individual compounds, and to identify their main food sources in Mexican women. The Mexican Teachers' Cohort includes 115 315 female teachers, 25 years and older, from twelve states of Mexico, including urban and rural areas. Dietary data were collected in the period 2008-2011 using a validated FFQ, and individual polyphenol intake was estimated using food composition data from the Phenol-Explorer database. Median total polyphenol intake was the highest in Baja California (750 mg/d) and the lowest in Yucatan (536 mg/d). The main polyphenols consumed were phenolic acids (56·3-68·5 % total polyphenols), followed by flavonoids (28·8-40·9 %). Intake of other polyphenol subclasses (stilbenes, lignans and others) was insignificant. Coffee and fruits were the most important food sources of phenolic acids and flavonoids, respectively. Intake of a total of 287 different individual polyphenols could be estimated, of which forty-two were consumed in an amount ≥1 mg/d. The most largely consumed polyphenols were several caffeoylquinic acids (ranging from 20 and 460 mg/d), ferulic acid, hesperidin and proanthocyanidins. This study shows a large heterogeneity in intakes of individual polyphenols among Mexican women, but a moderate heterogeneity across Mexican states. Main food sources were also similar in the different states.

  2. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  3. Biopolyester-based systems containing naturally occurring compounds with enhanced thermo-oxidative stability.

    PubMed

    Arrigo, Rossella; Morici, Elisabetta; Dintcheva, Nadka Tzankova

    2016-11-02

    This work presents a sustainable approach for the stabilization of polylactic acid (PLA) against thermo-oxidative aging. Naturally occurring phenolic and polyphenolic compounds, such as ferulic acid (FerAc), vanillic acid (VanAc), quercetin (Querc) and vitamin E (VitE), were introduced into PLA. The preliminary characterization of the systems formulated containing different amounts of natural stabilizers showed that all compounds used acted as plasticizers, leading to a decrease in rheological functions with respect to neat PLA, without significantly modifying the crystallinity of the raw material. The study of the thermo-oxidative behavior of neat PLA and PLA/natural compound systems, performed by spectrometric and thermal analyses, indicated that all stabilizers considered were able to exert a remarkable antioxidant action against thermo-oxidative phenomena. All natural compounds considered are thus proposed as ecofriendly stabilizers, to get fully bio-based polymer systems with enhanced thermo-oxidative stability, suitable for biomedical applications.

  4. Comparison of content in phenolic compounds, polyphenol oxidase, and peroxidase in grains of fifty sorghum varieties from burkina faso.

    PubMed

    Dicko, Mamoudou H; Hilhorst, Riet; Gruppen, Harry; Traore, Alfred S; Laane, Colja; van Berkel, Willem J H; Voragen, Alphons G J

    2002-06-19

    Analysis of fifty sorghum [Sorghum bicolor (L.) Moench] varieties used in Burkina Faso showed that they have different contents of phenolic compounds, peroxidase (POX), and polyphenol oxidase (PPO). Most of the varieties (82%) had a tannin content less than 0.25% (w/w). POX specific activity was higher than the monophenolase and o-diphenolase specific activities of PPO. For POX, there was a diversity of isoforms among varieties. No clear correlation could be made between the quantitative composition of the grain in phenolics, PPO, and POX, and resistance of plant to pathogens. In general, varieties good for a thick porridge preparation ("tô") had low phenolic compounds content and a medium POX activity. From the red varieties, those used for local beer ("dolo") had a high content in phenolic compounds and PPO, and a low POX activity. The variety considered good for couscous had a low POX content. The characteristics might be useful as selection markers for breeding for specific applications.

  5. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn

    PubMed Central

    Sun, Jianghao; Liu, Xianjin; Yang, Tianbao; Slovin, Janet; Chen, Pei

    2013-01-01

    Phenolic compounds in the fruits of two diploid strawberries (Fragaria vesca f. semperflorens) inbred lines-Ruegen F7-4 (a red-fruited genotype) and YW5AF7 (a yellow-fruited genotype) were characterised using ultra-high-performance liquid chromatography coupled with tandem high-resolution mass spectrometry (UHPLC-HRMSn). The changes of anthocyanin composition during fruit development and between Ruegen F7-4 and YW5AF7 were studied. About 67 phenolic compounds, including taxifolin 3-O-arabinoside, glycosides of quercetin, kaempferol, cyanidin, pelargonidin, peonidin, ellagic acid derivatives, and other flavonols were identified in these two inbred lines. Compared to the regular octoploid strawberry, unique phenolic compounds were found in F. vesca fruits, such as taxifolin 3-O-arabinoside (both) and peonidin 3-O-malonylglucoside (Ruegen F7-4). The results provide the basis for comparative analysis of polyphenolic compounds in yellow and red diploid strawberries, as well as with the cultivated octoploid strawberries. PMID:24176345

  6. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMS(n.).

    PubMed

    Sun, Jianghao; Liu, Xianjin; Yang, Tianbao; Slovin, Janet; Chen, Pei

    2014-03-01

    Phenolic compounds in the fruits of two diploid strawberries (Fragaria vesca f. semperflorens) inbred lines-Ruegen F7-4 (a red-fruited genotype) and YW5AF7 (a yellow-fruited genotype) were characterised using ultra-high-performance liquid chromatography coupled with tandem high-resolution mass spectrometry (UHPLC-HRMS(n)). The changes of anthocyanin composition during fruit development and between Ruegen F7-4 and YW5AF7 were studied. About 67 phenolic compounds, including taxifolin 3-O-arabinoside, glycosides of quercetin, kaempferol, cyanidin, pelargonidin, peonidin, ellagic acid derivatives, and other flavonols were identified in these two inbred lines. Compared to the regular octoploid strawberry, unique phenolic compounds were found in F. vesca fruits, such as taxifolin 3-O-arabinoside (both) and peonidin 3-O-malonylglucoside (Ruegen F7-4). The results provide the basis for comparative analysis of polyphenolic compounds in yellow and red diploid strawberries, as well as with the cultivated octoploid strawberries. Published by Elsevier Ltd.

  7. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database.

    PubMed

    Rothwell, Joseph A; Urpi-Sarda, Mireia; Boto-Ordoñez, Maria; Llorach, Rafael; Farran-Codina, Andreu; Barupal, Dinesh Kumar; Neveu, Vanessa; Manach, Claudine; Andres-Lacueva, Cristina; Scalbert, Augustin

    2016-01-01

    The Phenol-Explorer web database details 383 polyphenol metabolites identified in human and animal biofluids from 221 publications. Here, we exploit these data to characterize and visualize the polyphenol metabolome, the set of all metabolites derived from phenolic food components. Qualitative and quantitative data on 383 polyphenol metabolites as described in 424 human and animal intervention studies were systematically analyzed. Of these metabolites, 301 were identified without prior enzymatic hydrolysis of biofluids, and included glucuronide and sulfate esters, glycosides, aglycones, and O-methyl ethers. Around one-third of these compounds are also known as food constituents and corresponded to polyphenols absorbed without further metabolism. Many ring-cleavage metabolites formed by gut microbiota were noted, mostly derived from hydroxycinnamates, flavanols, and flavonols. Median maximum plasma concentrations (C(max)) of all human metabolites were 0.09 and 0.32 μM when consumed from foods or dietary supplements, respectively. Median time to reach maximum plasma concentration in humans (T(max)) was 2.18 h. These data show the complexity of the polyphenol metabolome and the need to take into account biotransformations to understand in vivo bioactivities and the role of dietary polyphenols in health and disease. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polyphenolic diversity and characterization in the red-purple berries of East Asian wild Vitis species.

    PubMed

    Koyama, Kazuya; Kamigakiuchi, Hiroshi; Iwashita, Kazuhiro; Mochioka, Ryosuke; Goto-Yamamoto, Nami

    2017-02-01

    Grapes (Vitis spp.) produce diverse polyphenolic compounds, which are phytochemicals that contribute to human health. In this study, the polyphenolic profiles of the red-purple berries of two wild grape species native to Japan, Vitis ficifolia and V. coignetiae, and their interspecific hybrid cultivars were investigated and compared with the profiles of V. vinifera and V. × labruscana cultivars. Proanthocyanidins (PAs) were present at lower concentrations in both skins and seeds of wild grape species and their hybrid cultivars than those in V. vinifera cultivars. They also differed in their composition, consisting mainly of epicatechin in wild grape species, but containing considerable amounts of both epigallocatechin in the skins and epicatechin gallate in the seeds of V. vinifera. In contrast, V. ficifolia varieties and their hybrid cultivars accumulated high concentrations of diverse anthocyanins, and whose compositions of anthocyanins and flavonols differed between species in their degree of modification by glucosylation, acylation, methylation and B-ring hydroxylation. Principal component analysis (PCA) indicated that the polyphenolic constituents clearly separate V. vinifera and V. × labruscana cultivars from the wild grape species as well as between wild grape species, V. coignetiae and V. ficifolia. Intermediate compositions were also observed in the hybrid cultivars between these wild grape species and V. vinifera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of polyphenols including curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene on lymphocyte pro-inflammatory cytokine production of senior horses in vitro.

    PubMed

    Siard, Melissa H; McMurry, Kellie E; Adams, Amanda A

    2016-05-01

    Senior horses (aged ≥ 20 years) exhibit increased chronic, low-grade inflammation systemically, termed inflamm-aging. Inflammation is associated with many afflictions common to the horse, including laminitis and osteoarthritis, which are commonly treated with the non-steroidal anti-inflammatory drugs (NSAIDs) flunixin meglumine and phenylbutazone. Although these NSAIDs are effective in treating acute inflammatory problems, long-term treatment with NSAIDs can result in negative side effects. Thus, bioactive polyphenols including curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene were investigated to determine their effectiveness as anti-inflammatory agents in vitro. Heparinized blood was collected via jugular venipuncture from senior horses (n = 6; mean age = 26 ± 2 years), and peripheral blood mononuclear cells (PBMC) were isolated using a Ficoll density gradient. PBMC were then incubated 22 h at 37°C, 5% CO2 with multiple concentrations (320, 160, 80, 40, 20, 10 μM) of all five polyphenols (curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene), dissolved in DMSO to achieve the aforementioned concentrations. PBMC were stimulated the last 4h of the incubation period with phorbol 12-myristate 13-acetate (PMA)/ionomycin and Brefeldin A (BFA). A Vicell-XR counter evaluated cell viability following incubation. PBMC were stained intracellularly for interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) and analyzed via flow cytometry. Data was analyzed by one-way analysis of variance (ANOVA). Viability of PBMC incubated with various compound concentrations were compared with PBMC incubated with DMSO alone (positive control) to determine at what concentration each compound caused cytotoxicity. The highest concentration at which cell viability did not significantly differ from the positive control was: 20 μM for curcuminoids, 40 μM for hydroxypterostilbene, 80 μM for pterostilbene, and 160 μM for quercetin and resveratrol. Flunixin meglumine and phenylbutazone were then evaluated within this range of optimal concentrations for the polyphenol compounds (160, 80, 40, 20 μM) to compare the polyphenols to NSAIDs at equivalent concentrations. The highest concentration at which viability did not significantly differ from the positive control was: 40 μM for flunixin meglumine and 160 μM for phenylbutazone. All five polyphenols and flunixin meglumine significantly decreased lymphocyte production of IFN-γ, while only hydroxypterostilbene, pterostilbene, quercetin, and resveratrol significantly reduced lymphocyte production of TNF-α compared to the positive control (p < 0.05). Polyphenols performed similarly to or more effectively than common NSAIDs in reducing lymphocyte production of inflammatory cytokines of the senior horse in vitro. This study therefore supports the further investigation of polyphenols to determine whether they may be effective anti-inflammatory treatments for chronic inflammation in the horse. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Interaction of plant phenols with food macronutrients: characterisation and nutritional-physiological consequences.

    PubMed

    Zhang, Hao; Yu, Dandan; Sun, Jing; Liu, Xianting; Jiang, Lu; Guo, Huiyuan; Ren, Fazheng

    2014-06-01

    Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein-polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.

  11. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    PubMed

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing.

    PubMed

    Mahn, Andrea; Reyes, Alejandro

    2012-12-01

    Broccoli offers many heath-promoting properties owing to its content of antioxidant and anticarcinogenic compounds. The concentration and bioavailability of polyphenols, glucosinolates, sulforaphane and selenium depend on plant biochemistry, cultivation strategy and type of processing. In this article, the main biochemical properties of broccoli are reviewed regarding their health-promoting effects. Additionally, the way these properties are affected by processing is discussed. Steaming and drying result in an apparent increment of sulforaphane content as well as antioxidant activity, most likely due to an increase of the extractability of antioxidants and sulforaphane. Freezing and boiling diminish polyphenols concentration, mainly due to volatilization and leaching into the cooking water. In view of these results, the optimization of broccoli processing in order to maximize the content of bioactive compounds should be possible. The effect of processing on selenium compounds has been poorly studied so far, and therefore this topic should be investigated in the future. Finally, the effect of operating conditions in different drying processes on the content of bioactive compounds in broccoli should be investigated in a greater depth.

  13. Genetic dissection of the (poly)phenol profile of diploid strawberry (Fragaria vesca) fruits using a NIL collection.

    PubMed

    Urrutia, Maria; Schwab, Wilfried; Hoffmann, Thomas; Monfort, Amparo

    2016-01-01

    Over the last few years, diploid strawberry (Fragaria vesca) has been recognized as a model species for applied research of cultivated strawberry (Fragaria × ananassa) that is one of the most economically important crops. Berries, particularly strawberries, are known for their high antioxidant capacity due to a high concentration of (poly) phenolic compounds. Studies have already characterized the phenolic composition of fruits from sets of cultivated strawberries but the quantification of phenolics in a Fragaria mapping population has not been reported, yet. The metabolite profiling of a F. vesca near isogenic line (NIL) collection by LC-MS allowed the unambiguous identification of 22 (poly)-phenols, including anthocyanins, flavonols, flavan-3-ols, flavanones, hydroxycinnamic acid derivatives, and ellagic acid in the diploid strawberry fruit. The variability in the collection revealed that the genetic factor was more decisive than the environmental factor for the accumulation of 18 of the 24 compounds. Genotyping the NIL collection with the Axiom® IStraw90® SNPs array, we were able to map 76 stable QTLs controlling accumulation of the (poly)-phenolic compounds. They provide a powerful new tool to characterise candidate genes to increase the antioxidant capacity of fruits and produce healthier strawberries for consumers. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Plasma pharmacokinetics of catechin metabolite 4'-O-Me-EGC in healthy humans.

    PubMed

    Renouf, Mathieu; Redeuil, Karine; Longet, Karin; Marmet, Cynthia; Dionisi, Fabiola; Kussmann, Martin; Williamson, Gary; Nagy, Kornél

    2011-10-01

    Tea is an infusion of the leaves of the Camellia sinensis plant and is the most widely consumed beverage in the world after water. Green tea contains significant amounts of polyphenol catechins and represents a promising dietary component to maintain health and well-being. Epidemiological studies indicate that polyphenol intake may have potential health benefits, such as, reducing the incidence of coronary heart disease, diabetes and cancer. While bioavailability of green tea bioactives is fairly well understood, some gaps still remain to be filled, especially the identification and quantification of conjugated metabolites in plasma, such as, sulphated, glucuronidated or methylated compounds. In the present study, we aimed to quantify the appearance of green tea catechins in plasma with particular emphasis on their methylated forms. After feeding 400 mL of green tea, 1.25% infusion to 9 healthy subjects, we found significant amounts of EC, EGC and EGCg in plasma as expected. EGC was the most bioavailable catechin, and its methylated form (4'-O-Me-EGC) was also present in quantifiable amounts. Its kinetics followed that of its parent compound. However, the relative amount of the methylated form of EGC was lower than that of the parent compound, an important aspect which, in the literature, has been controversial so far. The quantitative results presented in our study were confirmed by co-chromatography and accurate mass analysis of the respective standards. We show that the relative abundance of 4'-O-Me-EGC is ~40% compared to the parent EGC. 4'-O-Me-EGC is an important metabolite derived from catechin metabolism. Its presence in significant amounts should not be overlooked when assessing human bioavailability of green tea.

  15. Changes in bioactive compounds and oxidative enzymes of fresh-cut pomegranate arils during storage as affected by deficit irrigation and postharvest vapor heat treatments.

    PubMed

    Peña-Estévez, María E; Gómez, Perla A; Artés, Francisco; Aguayo, Encarna; Martínez-Hernández, Ginés Benito; Galindo, Alejandro; Torecillas, Arturo; Artés-Hernández, Francisco

    2016-12-01

    The effect of postharvest vapor heat treatments at 95℃ (4, 7, and 10 s) regarding a conventional sanitizing treatment with 100 mg NaClO l -1 on enzyme activities (phenylalanine ammonia lyase, polyphenol oxidase, and peroxidase), phenolic content, and total antioxidant capacity of fresh-cut pomegranates arils throughout 18 days at 5℃ was studied. Furthermore, the effect of two sustained deficit irrigation (SDI) strategies, compared to a standardly irrigated control (CTRL), was also studied on such quality parameters throughout storage. Arils from CTRL-irrigated fruit registered phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase initial activities of 60.6, 382, and 14.4 U g -1  fw, respectively. Arils from sustained deficit irrigation fruit registered 46-58% lower phenylalanine ammonia lyase values while polyphenol oxidase and peroxidase activities did not register great variants (<9%) among both sustained deficit irrigation treatments. Postharvest vapor heat treatments enhanced phenylalanine ammonia lyase activity in those samples from sustained deficit irrigation fruit although no great peroxidase and polyphenol oxidase (<2-5%) increases were observed. Arils from SDI 1 fruit registered higher phenolic content than those values reported for CTRL samples. However, phenolic compounds decreased during storage, in a greater extent for sustained deficit irrigation samples, although 7 s arils achieved better phenolic compounds retention in sustained deficit irrigation samples. Vapor heat treatments reduced up to twofold the total antioxidant capacity losses observed in samples sanitized by conventional NaOCl treatment during shelf life. Conclusively, postharvest vapor heat treatment for 7 and 10 s used to extend the shelf life of pomegranate arils up to 18 days at 5℃ reduced the losses of health-promoting compounds during storage compared to conventional NaOCl sanitizing treatment. © The Author(s) 2016.

  16. Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) D.A. Webb) skin polyphenols.

    PubMed

    Llorach, Rafael; Garrido, Ignacio; Monagas, Maria; Urpi-Sarda, Mireia; Tulipani, Sara; Bartolome, Begona; Andres-Lacueva, Cristina

    2010-11-05

    Almond, as a part of the nut family, is an important source of biological compounds, and specifically, almond skins have been considered an important source of polyphenols, including flavan-3-ols and flavonols. Polyphenol metabolism may produce several classes of metabolites that could often be more biologically active than their dietary precursor and could also become a robust new biomarker of almond polyphenol intake. In order to study urinary metabolome modifications during the 24 h after a single dose of almond skin extract, 24 volunteers (n = 24), who followed a polyphenol-free diet for 48 h before and during the study, ingested a dietary supplement of almond skin phenolic compounds (n = 12) or a placebo (n = 12). Urine samples were collected before ((-2)-0 h) and after (0-2 h, 2-6 h, 6-10 h, and 10-24 h) the intake and were analyzed by liquid chromatography-mass spectrometry (LC-q-TOF) and multivariate statistical analysis (principal component analysis (PCA) and orthogonal projection to latent structures (OPLS)). Putative identification of relevant biomarkers revealed a total of 34 metabolites associated with the single dose of almond extract, including host and, in particular, microbiota metabolites. As far as we know, this is the first time that conjugates of hydroxyphenylvaleric, hydroxyphenylpropionic, and hydroxyphenylacetic acids have been identified in human samples after the consumption of flavan-3-ols through a metabolomic approach. The results showed that this non-targeted approach could provide new intake biomarkers, contributing to the development of the food metabolome as an important part of the human urinary metabolome.

  17. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians

    PubMed Central

    Habauzit, Vèronique

    2012-01-01

    Growing evidence suggests that polyphenols could be serious candidates to explain the protective effects of plant-derived foods and beverages. Based on current studies, a general consensus has been achieved to sustain the hypothesis that the specific intake of foods and beverages containing relatively high concentrations of flavonoids may play a meaningful role in reducing cardiovascular disease (CVD) risk through an improvement in vascular function and a modulation of inflammation. This review aims at providing an update on the effects of the consumption of polyphenols-rich foods on intermediate clinical markers of CVD in humans, namely cholesterolemia, blood pressure, endothelial function and platelet function. To date, on the basis of clinical studies, the demonstration is particularly convincing for flavonoids from cocoa-derived products and to a lesser extent for those of tea. While additional studies in this area are clearly needed, incorporating plant foods that are rich in flavanols in the diet of healthy individuals could help to reduce CVD risk. For flavonoids from fruits such as berries, pomegranate, grapes or citrus fruits and those from beverages such as red wine or coffee, the evidence is so far inconclusive. This is primarily due to the limited number and the weakness of experimental designs of the studies performed with these dietary sources. Future long-term well-designed investigations with polyphenols-rich foods but also with isolated phenolic compounds would provide valuable information to establish public health recommendations on polyphenols, taking into account both the nature of the compounds and the optimal dose, for cardiovascular health protection. PMID:23251771

  18. The impact of wine components on fractionation of Cu and Fe in model wine systems: Macromolecules, phenolic and sulfur compounds.

    PubMed

    Kontoudakis, Nikolaos; Smith, Mark; Guo, Anque; Smith, Paul A; Scollary, Geoffrey R; Wilkes, Eric N; Clark, Andrew C

    2017-08-01

    A variety of techniques have been developed with the ability to measure different forms of metals in wine with the ultimate aim of providing a more accurate indicator of metal induced spoilage of wine. This study was conducted in order to identify which wine components influence the measurement of Cu and Fe in their fractionated and/or electrochemically active forms. The measurement techniques involved detection of labile Cu by stripping potentiometry and fractionation of Cu and Fe by sequential solid phase extraction, with detection by inductively coupled plasma-optical emission spectroscopy. The wine components assessed included those extracted from wine (red wine tannin, white wine protein, white wine polysaccharide, red wine polyphenol, white wine polyphenol), and commercially available monomeric compounds, including phenolic compounds and sulfur-containing compounds. For Cu, only hydrogen sulfide, which is known to induce the formation of Cu(I) sulfide, showed any appreciable influence on the fractionation and electrochemical detection of Cu. This form of Cu was also identified as the major component of red and white wines. For Fe, the fractionation was different for red versus white wine, and influenced significantly by extracted red wine polyphenol, (-)-epicatechin, gallic acid and tartaric acid. The wine components showed more influence on Fe at pH4.00 compared to pH3.25. These results enable a targeted use of these techniques in the assessment of metal-induced spoilage of wine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Use of high-performance liquid chromatography with diode array detection coupled to electrospray-Qq-time-of-flight mass spectrometry for the direct characterization of the phenolic fraction in organic commercial juices.

    PubMed

    Rodríguez-Medina, I C; Segura-Carretero, A; Fernández-Gutiérrez, A

    2009-06-05

    We have developed a direct method for the qualitative analysis of polyphenols in commercial organic fruit juices. The juices were diluted with water (50/50), filtered and directly injected. The analysis of phenolic compounds was carried out by reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to photodiode array detection (DAD) and electrospray ionisation-Qq-time-of-flight mass spectrometry (ESI-Qq-TOF-MS). A unique gradient program has been optimized for the separation of several phenolic classes and the analysis time was only 5 min. The fruit juice samples were successfully analysed in positive and negative ionisation modes. In positive mode the anthocyanins were identified whereas the vast majority of polyphenols were identified using the negative ionisation mode. The sensitivity, together with mass accuracy and true isotopic pattern of the Qq-TOF-MS, allowed the identification of the phenolic compounds. Moreover, the advantage of the proposed method is the combined search of MS and MS/MS spectra, which improves the identification of compounds considerably, reducing ambiguities and false positive hits. Therefore the total fragmentation of the compound ion leading to the aglycone ion or other fragments was corroborated by MS-MS. The method was successfully employed to characterize diverse phenolic families in commercially available organic juices from four different fruits and consequently could be used in the future for the quantification purposes to compare different content of polyphenols in juices.

  20. Evaluation of Antioxidant and Free Radical Scavenging Capacities of Polyphenolics from Pods of Caesalpinia pulcherrima

    PubMed Central

    Hsu, Feng-Lin; Huang, Wei-Jan; Wu, Tzu-Hua; Lee, Mei-Hsien; Chen, Lih-Chi; Lu, Hsiao-Jen; Hou, Wen-Chi; Lin, Mei-Hsiang

    2012-01-01

    Thirteen polyphenolics were isolated from fresh pods of Caesalpinia pulcherrima using various methods of column chromatography. The structures of these polyphenolics were elucidated as gallic acid (1), methyl gallate (2), 6-O-galloyl-d-glucoside (3), methyl 6-O-galloyl-β-d-glucoside (4), methyl 3,6-di-O-galloyl-α-d-glucopyranoside (5), gentisic acid 5-O-α-d-(6′-O-galloyl)glucopyranoside (6), guaiacylglycerol 4-O-β-d-(6′-O-galloyl)glucopyranoside (7), 3-methoxy-4-hydroxyphenol 1-O-β-d-(6′-O-galloyl) glucopyranoside (8), (+)-gallocatechin (9), (+)-catechin (10), (+)-gallocatechin 3-O-gallate (11), myricetin 3-rhamnoside (12), and ampelopsin (13). All isolated compounds were tested for their antioxidant activities in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and peroxynitrite radicals scavenging assays. Among those compounds, 11, 12, and 2 exhibited the best DPPH-, hydroxyl-, and peroxynitrite radical-scavenging activities, respectively. Compound 7 is a new compound, and possesses better scavenging activities towards DPPH but has equivalent hydroxyl radical scavenging activity when compared to BHT. The paper is the first report on free radical scavenging properties of components of the fresh pods of Caesalpinia pulcherrima. The results obtained from the current study indicate that the free radical scavenging property of fresh pods of Caesalpinia pulcherrima may be one of the mechanisms by which this herbal medicine is effective in several free radical mediated diseases. PMID:22754350

  1. Cytoprotective Polyphenols Against Chronological Skin Aging and Cutaneous Photodamage.

    PubMed

    Davinelli, Sergio; Bertoglio, Juan Carlos; Polimeni, Ascanio; Scapagnini, Giovanni

    2018-01-01

    Skin aging is a complex biological process influenced by a combination of intrinsic and extrinsic factors, leading to cumulative alterations of skin structure, function and appearance. Polyphenols, which are secondary plant metabolites, represent one of the largest classes of compounds used in dermatology and nutricosmetics to combat skin aging. The main objective is to provide an overview of the existing literature linking skin aging and the ability of polyphenols as regulatory elements able to maintain skin homeostasis. In this review, we discuss recent progress in understanding the molecular bases of skin aging, with specific emphasis on some well known and extensively studied polyphenols which have significant anti-aging influences and photoprotective effects. Although no relevant clinical data exist and standard delivery systems have not been established, promising results have been obtained in many in vitro and animal models. A wide variety of polyphenols may minimize mechanisms underlying the functional manifestations of photoaging and chronological skin aging. Polyphenols exert their influence mostly through their antioxidant and anti-inflammatory effects, thereby abrogating collagen degradation and/or increasing procollagen synthesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes.

    PubMed

    Gómez-Zorita, Saioa; Lasa, Arrate; Abendaño, Naiara; Fernández-Quintela, Alfredo; Mosqueda-Solís, Andrea; Garcia-Sobreviela, Maria Pilar; Arbonés-Mainar, Jose M; Portillo, Maria P

    2017-11-21

    Adipocytes derived from human mesenchymal stem cells (MSCs) are widely used to investigate adipogenesis. Taking into account both the novelty of these MSCs and the scarcity of studies focused on the effects of phenolic compounds, the aim of the present study was to analyze the effect of apigenin, hesperidin and kaempferol on pre-adipocyte and mature adipocytes derived from this type of cells. In addition, the expression of genes involved in TG accumulation was also measured. Pre-adipocytes were cultured from day 0 to day 8 and mature adipocytes for 48 h with the polyphenols at doses of 1, 10 and 25 µM. Apigenin did not show an anti-adipogenic action. Pre-adipocytes treated with hesperidin and kaempferol showed reduced TG content at the three experimental doses. Apigenin did not modify the expression of the main adipogenic genes (c/ebpβ, c/ebpα, pparγ and srebp1c), hesperidin inhibited genes involved in the three phases of adipogenesis (c/ebpβ, srebp1c and perilipin) and kaempferol reduced c/ebpβ. In mature adipocytes, the three polyphenols reduced TG accumulation at the dose of 25 µM, but not at lower doses. All compounds increased mRNA levels of atgl. Apigenin and hesperidin decreased fasn expression. The present study shows the anti-adipogenic effect and delipidating effects of apigenin, hesperidin and kaempferol in human adipocytes derived from hMSCs. While hesperidin blocks all the stages of adipogenesis, kaempferol only inhibits the early stage. Regarding mature adipocytes, the three compounds reduce TG accumulation by activating, at least in part, lipolysis, and in the case of hesperidin and apigenin, also by reducing lipogenesis. The present study shows for the first time the anti-adipogenic effect and delipidating effect of apigenin, hesperidin and kaempferol in human adipocytes derived from MSCs for the first time.

  3. Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode.

    PubMed

    Viacava, Gabriela E; Roura, Sara I; Berrueta, Luis A; Iriondo, Carmen; Gallo, Blanca; Alonso-Salces, Rosa M

    2017-12-01

    Lettuce (Lactuca sativa) is one of the most popular leafy vegetables in the world and constitutes a major dietary source of phenolic compounds with health-promoting properties. In particular, the demand for green and red oak-leaf lettuces has considerably increased in the last years but few data on their polyphenol composition are available. Moreover, the usage of analytical edge technology can provide new structural information and allow the identification of unknown polyphenols. In the present study, the phenolic profiles of green and red oak-leaf lettuce cultivars were exhaustively characterized by ultrahigh-performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI), and quadrupole time-of-flight mass spectrometry (QToF/MS), using the MS E instrument acquisition mode for recording simultaneously exact masses of precursor and fragment ions. One hundred fifteen phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried lettuce leaves. Forty-eight of these compounds were tentatively identified for the first time in lettuce, and only 20 of them have been previously reported in oak-leaf lettuce cultivars in literature. Both oak-leaf lettuce cultivars presented similar phenolic composition, except for apigenin-glucuronide and dihydroxybenzoic acid, only detected in the green cultivar; and for luteolin-hydroxymalonylhexoside, an apigenin conjugate with molecular formula C 40 H 54 O 19 (monoisotopic MW = 838.3259 u), cyanidin-3-O-glucoside, cyanidin-3-O-(3″-O-malonyl)glucoside, cyanidin-3-O-(6″-O-malonyl)glucoside, and cyanidin-3-O-(6″-O-acetyl)glucoside, only found in the red cultivar. The UHPLC-DAD-ESI-QToF/MS E approach demonstrated to be a useful tool for the characterization of phenolic compounds in complex plant matrices. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Exogenous antioxidants—Double-edged swords in cellular redox state

    PubMed Central

    Bohn, Torsten

    2010-01-01

    The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects. PMID:20972369

  5. A novel differential pulse voltammetric (DPV) method for measuring the antioxidant capacity of polyphenols-reducing cupric neocuproine complex.

    PubMed

    Tufan, Ayşe Nur; Baki, Sefa; Güçlü, Kubilay; Özyürek, Mustafa; Apak, Reşat

    2014-07-23

    A novel differential pulse voltammetric (DPV) method is presented, using a chromogenic oxidizing reagent, cupric neocuproine complex (Cu(Nc)2(2+)), for the assessment of antioxidant capacity of polyphenolic compounds (i.e., flavonoids, simple phenolic acids, and hydroxycinnamic acids), ascorbic acid, and real samples for the first time. The electrochemical behavior of the Cu(Nc)2(2+) complex was studied by cyclic voltammetry at a glassy carbon (GC) electrode. The electroanalytical method was based on the reduction of Cu(Nc)2(2+) to Cu(Nc)2(+) by antioxidants and electrochemical detection of the remaining Cu(II)-Nc (unreacted complex), the difference being correlated to antioxidant capacity of the analytes. The calibration curves of individual compounds comprising polyphenolics and vitamin C were constructed, and their response sensitivities and linear concentration ranges were determined. The reagent on the GC electrode retained its reactivity toward antioxidants, and the measured trolox equivalent antioxidant capacity (TEAC) values of various antioxidants suggested that the reactivity of the Cu(II)-Nc reagent is comparable to that of the solution-based spectrophotometric cupric ion reducing antioxidant capacity (CUPRAC) assay. This electroanalytical method better tolerated sample turbidity and provided higher sensitivity (i.e., lower detection limits) in antioxidant determination than the spectrophotometric assay. The proposed method was successfully applied to the measurement of total antioxidant capacity (TAC) in some herbal tea samples such as green tea, sage, marjoram, and alchemilla. Results demonstrated that the proposed voltammetric method has precision and accuracy comparable to those of the spectrophotometric CUPRAC assay.

  6. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins.

    PubMed

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A

    2014-09-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute a new family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of "mechanism-effect" and "effect-mechanism" relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins.

  7. Polyphenol-rich strawberry extract protects human dermal fibroblasts against hydrogen peroxide oxidative damage and improves mitochondrial functionality.

    PubMed

    Giampieri, Francesca; Alvarez-Suarez, José M; Mazzoni, Luca; Forbes-Hernandez, Tamara Y; Gasparrini, Massimiliano; Gonzàlez-Paramàs, Ana M; Santos-Buelga, Celestino; Quiles, José L; Bompadre, Stefano; Mezzetti, Bruno; Battino, Maurizio

    2014-06-11

    Strawberry bioactive compounds are widely known to be powerful antioxidants. In this study, the antioxidant and anti-aging activities of a polyphenol-rich strawberry extract were evaluated using human dermal fibroblasts exposed to H2O2. Firstly, the phenol and flavonoid contents of strawberry extract were studied, as well as the antioxidant capacity. HPLC-DAD analysis was performed to determine the vitamin C and β-carotene concentration, while HPLC-DAD/ESI-MS analysis was used for anthocyanin identification. Strawberry extract presented a high antioxidant capacity, and a relevant concentration of vitamins and phenolics. Pelargonidin- and cyanidin-glycosides were the most representative anthocyanin components of the fruits. Fibroblasts incubated with strawberry extract and stressed with H2O2 showed an increase in cell viability, a smaller intracellular amount of ROS, and a reduction of membrane lipid peroxidation and DNA damage. Strawberry extract was also able to improve mitochondrial functionality, increasing the basal respiration of mitochondria and to promote a regenerative capacity of cells after exposure to pro-oxidant stimuli. These findings confirm that strawberries possess antioxidant properties and provide new insights into the beneficial role of strawberry bioactive compounds on protecting skin from oxidative stress and aging.

  8. Factors influencing the antifolate activity of synthetic tea-derived catechins.

    PubMed

    Sáez-Ayala, Magalí; Fernández-Pérez, María Piedad; Chazarra, Soledad; Mchedlishvili, Nani; Tárraga-Tomás, Alberto; Rodríguez-López, José Neptuno

    2013-07-16

    Novel tea catechin derivatives have been synthesized, and a structure-activity study, related to the capacity of these and other polyphenols to bind dihydrofolate reductase (DHFR), has been performed. The data showed an effective binding between all molecules and the free enzyme, and the dissociation constants of the synthetic compounds and of the natural analogues were on the same order. Polyphenols with a catechin configuration were better DHFR inhibitors than those with an epicatechin configuration. Antiproliferative activity was also studied in cultured tumour cells, and the data showed that the activity of the novel derivatives was higher in catechin isomers. Derivatives with a hydroxyl group para on the ester-bonded gallate moiety presented a high in vitro binding to DHFR, but exhibited transport problems in cell culture due to ionization at physiologic pHs. The impact of the binding of catechins to serum albumin on their biological activity was also evaluated. The information provided in this study could be important for the design of novel medicinal active compounds derived from tea catechins. The data suggest that changes in their structure to avoid serum albumin interactions and to facilitate plasmatic membrane transport are essential for the intracellular functions of catechins.

  9. Therapeutic charm of quercetin and its derivatives: a review of research and patents.

    PubMed

    Sharma, Ajay; Kashyap, Dharambir; Sak, Katrin; Tuli, Hardeep Singh; Sharma, Anil K

    2018-01-01

    Bioactive polyphenolic compounds derived from plants are being utilized for prevention of various chronic diseases including cancer and cardiovascular disorders. Quercetin, a potential poly-phenolic flavonol, found in onions, apples and berries, has been implicated against cancer proliferation, chronic inflammation and various other oxidative manifestations. Evidences suggested that quercetin negatively regulates the numerous crucial signaling pathways associated with life-threatening diseases. Major signaling pathways including NF-κB, MAPK, PI3K-AKT and mTOR are found to be regulated by quercetin. In addition, several patents have reported recently on quercetin derivatives describing wide therapeutic applications such as anticancer/antiproliferatory, antioxidative/antiaging, antiviral, anti-inflammatory, cardioprotective. Present review emphasizes the chemistry and sources of quercetin followed by description of its broad-spectrum therapeutic potential along with proposed mechanisms of action. Furthermore, this review also highlights the important modifications in the basic chemical structure of quercetin in terms of published patents. Insolubility of the bioactive compounds restricts their medicinal importance which could be overcome by modifications in the chemical structure of so-called derivatives. Most of the patents deal with the modifications in chemical structure of quercetin mainly at hydroxyl groups and C-6 and C-7 positions.

  10. Effects of Copper Pollution on the Phenolic Compound Content, Color, and Antioxidant Activity of Wine.

    PubMed

    Sun, Xiangyu; Ma, Tingting; Han, Luyang; Huang, Weidong; Zhan, Jicheng

    2017-05-03

    The effects of copper pollution on the polyphenol content, color, and antioxidant activity of wine, as well as correlations among these factors, were investigated. Copper had clear influences on wine polyphenol content. At low copper concentrations, the concentrations of nearly all polyphenols increased, and the antioxidant activity values of the wine also increased. When the copper concentration reached the lowest level of the medium copper range (9.6~16 mg/L), most of the indices also improved. When the copper concentrations reached the latter part of the medium copper range (19.2 and 22.4 mg/L), many of the tested indices began to decrease. Furthermore, when the copper concentration reached the high ranges (32, 64, and 96 mg/L), the polyphenol content, CIELAB color parameters, and antioxidant activity of wine were substantially decreased, indicating the need to control increasing copper content in grape must.

  11. Comparative polyphenolic content and antioxidant activities of Genista tinctoria L. and Genistella sagittalis (L.) Gams (Fabaceae).

    PubMed

    Hanganu, Daniela; Olah, Neli Kinga; Benedec, Daniela; Mocan, Andrei; Crisan, Gianina; Vlase, Laurian; Popica, Iulia; Oniga, Ilioara

    2016-01-01

    The aim of this study was focused on the polyphenolic composition and antioxidant capacity of Genista tinctoria L. and Genistella sagittalis (L.) Gams. A qualitative and quantitative characterization of the main phenolic compounds from the extracts were carried out using a HPLC-MS method. The total polyphenolic and flavonoid content was spectrophotometrically determined. The antioxidant activity towards various radicals generated in different systems was evaluated usingDPPH bleaching method, Trolox equivalent antioxidant capacity assay (TEAC) and Oxygen radical absorbance capacity (ORAC), and all indicated that G. tinctoria extract was more antioxidant than G. sagittalis extract.That was in good agreement with the total polyphenolic and flavonoidic content.Chlorogenic acid, p-coumaric acid, isoquercitrin and apigenin were identified in bothspecies. Caffeic acid, ferulic acid, hyperoside, rutin, quercitrin and luteolin were found only in G. tinctoria, while quercetin was determined in G. sagittalis.

  12. Activated charcoal-mediated RNA extraction method for Azadirachta indica and plants highly rich in polyphenolics, polysaccharides and other complex secondary compounds

    PubMed Central

    2013-01-01

    Background High quality RNA is a primary requisite for numerous molecular biological applications but is difficult to isolate from several plants rich in polysaccharides, polyphenolics and other secondary metabolites. These compounds either bind with nucleic acids or often co-precipitate at the final step and many times cannot be removed by conventional methods and kits. Addition of vinyl-pyrollidone polymers in extraction buffer efficiently removes polyphenolics to some extent, but, it failed in case of Azadirachta indica and several other medicinal and aromatic plants. Findings Here we report the use of adsorption property of activated charcoal (0.03%–0.1%) in RNA isolation procedures to remove complex secondary metabolites and polyphenolics to yield good quality RNA from Azadirachta indica. We tested and validated our modified RNA isolation method across 21 different plants including Andrographis paniculata, Aloe vera, Rosa damascena, Pelargonium graveolens, Phyllanthus amarus etc. from 13 other different families, many of which are considered as tough system for isolating RNA. The A260/280 ratio of the extracted RNA ranged between 1.8-2.0 and distinct 28S and 18S ribosomal RNA bands were observed in denaturing agarose gel electrophoresis. Analysis using Agilent 2100 Bioanalyzer revealed intact total RNA yield with very good RNA Integrity Number. Conclusions The RNA isolated by our modified method was found to be of high quality and amenable for sensitive downstream molecular applications like subtractive library construction and RT-PCR. This modified RNA isolation procedure would aid and accelerate the biotechnological studies in complex medicinal and aromatic plants which are extremely rich in secondary metabolic compounds. PMID:23537338

  13. Potential Application of Nanoemulsions for Skin Delivery of Pomegranate Peel Polyphenols.

    PubMed

    Baccarin, Thaisa; Lemos-Senna, Elenara

    2017-11-01

    Pomegranate peel and seeds have demonstrated to possess antioxidant compounds with potential application to protect the skin against the ultraviolet radiation damage. However, the photoprotection activity is dependent on the amount of these compounds that reach the viable skin layers. In this paper, we describe the in vitro skin permeation and retention of the major pomegranate peel polyphenols using Franz diffusion cells, after entrapping a ethyl acetate fraction (EAF) from Punica granatum peel extract into nanoemulsions (NEs) prepared with pomegranate seed oil (PSO) or medium chain triglyceride oil (MCT). The in vitro skin permeation of gallic acid (GA), ellagic acid (EA), and punicalagin (PC) was evaluated using a HPLC-DAD validated method. After 8 h of skin permeation, all polyphenol compounds were mostly retained in the skin and did not reach the receptor compartment. However, a 2.2-fold enhancement of the retained amount of gallic acid in the stratum corneum was verified after EAF-loaded NEs are applied, when compared with the free EAF. GA and EA were delivered to the viable epidermis and dermis only when nanoemulsions were applied onto the skin. The mean retained amounts of GA and EA in the EP and DE after applying the EAF-loaded PSO-NE were 1.78 and 1.36 μg cm -2 and 1.10 and 0.97 μg cm -2 , respectively. Similar values were obtained after applying the EAF-loaded MCT-NE. The skin permeation results were supported by the confocal microscopy images. These results evidenced the promising application of nanoemulsions to deliver the pomegranate polyphenols into the deeper skin layers.

  14. Identification of Natural Antimicrobial Substances in Red Muscadine Juice against Enterobacter sakazakii

    USDA-ARS?s Scientific Manuscript database

    Red muscadine (Vitis rotundifolia Michx.) juices with natural organic, phenolic acids and polyphenol compounds were tested against Cronobacter sakazakii. The concentration of total phenolic compounds of commercial baby juices ranged from 176.7 to 347.7 mg/mL. Commercial baby juices showed poor antim...

  15. Mapping the genetic and tissular diversity of 64 phenolic compounds in Citrus species using a UPLC–MS approach

    PubMed Central

    Durand-Hulak, Marie; Dugrand, Audray; Duval, Thibault; Bidel, Luc P. R.; Jay-Allemand, Christian; Froelicher, Yann; Bourgaud, Frédéric; Fanciullino, Anne-Laure

    2015-01-01

    Background and Aims Phenolic compounds contribute to food quality and have potential health benefits. Consequently, they are an important target of selection for Citrus species. Numerous studies on this subject have revealed new molecules, potential biosynthetic pathways and linkage between species. Although polyphenol profiles are correlated with gene expression, which is responsive to developmental and environmental cues, these factors are not monitored in most studies. A better understanding of the biosynthetic pathway and its regulation requires more information about environmental conditions, tissue specificity and connections between competing sub-pathways. This study proposes a rapid method, from sampling to analysis, that allows the quantitation of multiclass phenolic compounds across contrasting tissues and cultivars. Methods Leaves and fruits of 11 cultivated citrus of commercial interest were collected from adult trees grown in an experimental orchard. Sixty-four phenolic compounds were simultaneously quantified by ultra-high-performance liquid chromatography coupled with mass spectrometry. Key Results Combining data from vegetative tissues with data from fruit tissues improved cultivar classification based on polyphenols. The analysis of metabolite distribution highlighted the massive accumulation of specific phenolic compounds in leaves and the external part of the fruit pericarp, which reflects their involvement in plant defence. The overview of the biosynthetic pathway obtained confirmed some regulatory steps, for example those catalysed by rhamnosyltransferases. The results suggest that three other steps are responsible for the different metabolite profiles in ‘Clementine’ and ‘Star Ruby’ grapefruit. Conclusions The method described provides a high-throughput method to study the distribution of phenolic compounds across contrasting tissues and cultivars in Citrus, and offers the opportunity to investigate their regulation and physiological roles. The method was validated in four different tissues and allowed the identification and quantitation of 64 phenolic compounds in 20 min, which represents an improvement over existing methods of analysing multiclass polyphenols. PMID:25757470

  16. The cardioprotective power of leaves

    PubMed Central

    Boncler, Magdalena; Watala, Cezary

    2015-01-01

    Lack of physical activity, smoking and/or inappropriate diet can contribute to the increase of oxidative stress, in turn affecting the pathophysiology of cardiovascular diseases. Strong anti-oxidant properties of plant polyphenolic compounds might underlie their cardioprotective activity. This paper reviews recent findings on the anti-oxidant activity of plant leaf extracts and emphasizes their effects on blood platelets, leukocytes and endothelial cells – the targets orchestrating the development and progression of cardiovascular diseases. We also review the evidence linking supplementation with plant leaf extracts and the risk factors defining the metabolic syndrome. The data point to the importance of leaves as an alternative source of polyphenolic compounds in the human diet and their role in the prevention of cardiovascular diseases. PMID:26322095

  17. The anti-allergic activity of polyphenol extracted from five marine algae

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Lin, Hong; Li, Zhenxing; Mou, Quangui

    2015-08-01

    Natural polyphenol has been widely believed to be effective in allergy remission. Currently, most of the natural polyphenol products come from terrestrial sources such as tea, grape seeds among others, and few polyphenols have been developed from algae for their anti-allergic activity. The aim of the study was to screen some commercial seaweed for natural extracts with anti-allergic activity. Five algae including Laminaria japonica, Porphyra sp., Spirulina platensis, Chlorella pyrenoidosa and Scytosiphon sp. were extracted with ethanol, and the extracts were evaluated for total polyphenol contents and anti-allergic activity with the hyaluronidase inhibition assay. Results showed that the total polyphenol contents in the ethanol extracts ranged from 1.67% to 8.47%, while the highest was found in the extract from Scytosiphon sp. Hyaluronidase inhibition assay showed that the extracts from Scytosiphon sp. had the lowest IC50, 0.67 mg mL-1, while Chlorella pyrenoidosa extract had the highest IC50, 15.07 mg mL-1. The anti-allergic activity of Scytosiphon sp. extract was even higher than the typical anti-allergic drug Disodium Cromoglycate (DSCG) (IC50 = 1.13 mg mL-1), and was similar with natural polyphenol from Epigallocatechin gallate (EGCG) (IC50 = 0.56 mg mL-1). These results indicated that the ethanol extract of Scytosiphon sp. contains a high concentration of polyphenol with high anti-allergic activity. Potentially Scytosiphon sp. can be developed to a natural anti-allergic compound for allergy remission.

  18. Chemical and sensory characterisation of Sangiovese red wines: comparison between biodynamic and organic management.

    PubMed

    Parpinello, Giuseppina Paola; Rombolà, Adamo Domenico; Simoni, Marco; Versari, Andrea

    2015-01-15

    The effects of biodynamic production practices on composition and sensory attributes of Sangiovese wines were examined for 2 years (2009 and 2010) in a vineyard that was converted from organic (ORG) to biodynamic (BDN) viticulture. During the first year (2009), the BDN wines were characterised by low alcohol strength, colour intensity, total polyphenols, monomeric anthocyanins and catechin. Conversely, the second year BDN wines differed from the organic wines in terms of total polyphenols and phenolic compounds, including polymeric pigments, co-pigmentation, tannins and iron-reactive polyphenols. The effect of management practices, harvest and their interaction was analysed for each compound. Positive interaction was observed for total acidity, volatile acidity, cyanidin-3-glucoside, protocatechuic acid, (+)-catechin, quercetin and trans-resveratrol. ORG wine initially showed a more complex aroma profile; however, the differences were almost indistinguishable during the second year. Trained panellists highlighted differences in colour intensity between ORG and BDN wines although no preference was found by consumers. The concentrations of ochratoxin A and biogenic amines were far below the health-hazardous threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Olive Oil Phenolics Prevent Oxysterol‐Induced Proinflammatory Cytokine Secretion and Reactive Oxygen Species Production in Human Peripheral Blood Mononuclear Cells, Through Modulation of p38 and JNK Pathways

    PubMed Central

    Deiana, Monica; Spencer, Jeremy P. E.; Corona, Giulia

    2017-01-01

    Scope The aim of the present study was to investigate the ability of extra virgin olive oil (EVOO) polyphenols to counteract the proinflammatory effects induced by dietary and endogenous oxysterols in ex vivo immune cells. Methods and results Peripheral blood mononuclear cells (PBMCs), separated from the whole blood of healthy donors, were utilized and were stimulated with an oxysterols mixture, in the presence of physiologically relevant concentrations of the EVOO polyphenols, hydroxytyrosol, tyrosol, and homovanillic alcohol. Oxysterols significantly increased the production of proinflammatory cytokines, interleukin‐1β, regulated on activation, normal T‐cell expressed and secreted and macrophage migration inhibitory factor in ex vivo cultured PBMCs. Increased levels of reactive oxygen species (ROS) were also detected along with increased phosphorylation of the p38 and JNK. All phenolic compounds significantly reduced cytokine secretion induced by the oxysterols and inhibited ROS production and mitogen activated protein kinase phosphorylation. Conclusions These results suggest that extra virgin olive oil polyphenols modulate the immune response induced by dietary and endogenous cholesterol oxidation products in human immune cells and may hold benefit in controlling chronic immune and/or inflammatory processes. PMID:28815947

  20. Antioxidant activity of apples--an impact of maturity stage and fruit part.

    PubMed

    Duda-Chodak, Aleksandra; Tarko, Tomasz; Tuszyński, Tadeusz

    2011-01-01

    Recently, many studies have been oriented towards improving methods and efficiency of antioxidants recovery from different fruit and their wastes.The aim of the study was to evaluate antioxidant potential of apple seeds and peel, which constitute the fruit industry wastes, and compare it to apple flesh. Antioxidant activity of apples at different maturity and storage stage were analysed too. The Idared and the Šampion cultivars of apples were used in the study. Antioxidant activity was estimated using ABTS and DPPH assays, and polyphenols profile was determined by HPLC method. Seeds of analysed apple cultivars were characterised by a significantly higher antioxidant capacity and by higher concentrations of polyphenols analysed when compared to their peel and flesh. There were present two predominant compounds: phloridzin in seeds (84% and 72%) and quercetin glycosides in peels (54% and 38%, Idared and Šampion cultivars, respectively). No quercetin glycosides in seeds were found. The capacity to scavenge an ABTS radical, but not DPPH, decreased during ripening of apples, while cold storage resulted in enhanced antioxidant potential. It can be concluded that unripe apples together with apple seeds and peel (fruit industry wastes) constitute a valuable source of polyphenols.

  1. Phenolic Compounds in Apple (Malus x domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing

    PubMed Central

    Francini, Alessandra; Sebastiani, Luca

    2013-01-01

    This paper summarizes the information on the occurrence of phenolic compounds in apple (Malus x domestica Borkh.) fruit and juice, with special reference to their health related properties. As phytochemical molecules belonging to polyphenols are numerous, we will focus on the main apples phenolic compounds with special reference to changes induced by apple cultivar, breeding approaches, fruit postharvest and transformation into juice. PMID:26784345

  2. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    PubMed Central

    Kasprzak, Kamila; Oniszczuk, Tomasz; Waksmundzka-Hajnos, Monika; Nowak, Renata; Polak, Renata

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale (Brassica oleracea L. var. sabellica)—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity. PMID:29507816

  3. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale.

    PubMed

    Kasprzak, Kamila; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Waksmundzka-Hajnos, Monika; Olech, Marta; Nowak, Renata; Polak, Renata; Oniszczuk, Anna

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale ( Brassica oleracea L. var. sabellica )-a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans -caffeic, cis -caffeic, trans -p-coumaric, cis -p-coumaric, trans -ferulic, cis -ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans -sinapic, and cis -sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea . Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity.

  4. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage.

    PubMed

    Oral, Rasim Alper; Dogan, Mahmut; Sarioglu, Kemal

    2014-01-01

    Using a glucose-glycine and asparagine-fructose system as a Maillard reaction model, the effects of seven polyphenols and solid phase extracts of three plants on the formation of furans and acrylamide were investigated. The polyphenols and extracts were used in biscuit formulation and acrylamide formation was observed. They were used for the storage of the glycine-glucose model system at three different temperatures. The addition of some of the extracts and polyphenols significantly decreased furan formation to different extents. All phenolic compounds and plant extracts decreased in the range of 30.8-85% in the model system except for oleuropein, and all of them decreased in the range of 10.3-19.2% in biscuit. Total furan formation was inhibited by caffeic acid, punicalagin, epicatechin, ECE and PPE during storage. This study evaluated and found the inhibitory effect on the formation of furans and acrylamide in Maillard reactions by the use of some plant extracts and polyphenols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of viticulture practices on concentration of polyphenolic compounds and total antioxidant capacity of Southern Italy red wines.

    PubMed

    Coletta, Antonio; Berto, Silvia; Crupi, Pasquale; Cravero, Maria Carla; Tamborra, Pasquale; Antonacci, Donato; Daniele, Pier Giuseppe; Prenesti, Enrico

    2014-01-01

    This study aims to assess the effect of three wine grape varieties, three training systems and two bud loads on the Total Antioxidant Capacity (TAC) and polyphenolic composition of Southern Italy red wines produced, during two vintages. Overall, Primitivo, Malvasia nera of Brindisi-Lecce and Montepulciano as grape varieties, single Guyot (SG), single spur pruned low cordon (SLC) and single spur pruned high wire cordon (HSLC) as training systems, 8 and 12 buds/plant as bud loads were compared. Significant differences in the polyphenolic families were shown by the grape varieties and by modifying the vine growing practices. Moreover, the results demonstrated that varieties influenced the TAC (indicating the Malvasia as the more effective one), that SLC led to the lowest level of TAC and that 8 buds/plant increased it. The relationship between antioxidant indexes and the concentration of single polyphenolic families was evaluated and the highest correlation was found between the total polyphenols and the proanthocyanidins family. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27).

    PubMed

    Celińska-Janowicz, Katarzyna; Zaręba, Ilona; Lazarek, Urszula; Teul, Joanna; Tomczyk, Michał; Pałka, Jerzy; Miltyk, Wojciech

    2018-01-01

    Propolis evokes several therapeutic properties, including anticancer activity. These activities are attributed to the action of polyphenols. Previously it has been demonstrated, that one of the most abundant polyphenolic compounds in ethanolic extracts of propolis are chrysin, caffeic acid, p -coumaric acid, and ferulic acid. Although their pro-apoptotic activity on human tongue squamous cell carcinoma cells (CAL-27) was established previously, the detailed mechanism of this process remains unclear. Considering the crucial role of proline metabolism and proline dehydrogenase/proline oxidase (PRODH/POX) in the regulation of cancer cell survival/apoptosis, we studied these processes in polyphenol-treated CAL-27 cells. All studied polyphenols evoked anti-proliferative activity, accompanied by increased PRODH/POX, P53, active caspases-3 and -9 expressions and decreased collagen biosynthesis, prolidase activity and proline concentration in CAL-27 cells. These data suggest that polyphenols of propolis induce PRODH/POX-dependent apoptosis through up-regulation of mitochondrial proline degradation and down-regulation of proline utilization for collagen biosynthesis.

  7. Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27)

    PubMed Central

    Celińska-Janowicz, Katarzyna; Zaręba, Ilona; Lazarek, Urszula; Teul, Joanna; Tomczyk, Michał; Pałka, Jerzy; Miltyk, Wojciech

    2018-01-01

    Propolis evokes several therapeutic properties, including anticancer activity. These activities are attributed to the action of polyphenols. Previously it has been demonstrated, that one of the most abundant polyphenolic compounds in ethanolic extracts of propolis are chrysin, caffeic acid, p-coumaric acid, and ferulic acid. Although their pro-apoptotic activity on human tongue squamous cell carcinoma cells (CAL-27) was established previously, the detailed mechanism of this process remains unclear. Considering the crucial role of proline metabolism and proline dehydrogenase/proline oxidase (PRODH/POX) in the regulation of cancer cell survival/apoptosis, we studied these processes in polyphenol-treated CAL-27 cells. All studied polyphenols evoked anti-proliferative activity, accompanied by increased PRODH/POX, P53, active caspases-3 and -9 expressions and decreased collagen biosynthesis, prolidase activity and proline concentration in CAL-27 cells. These data suggest that polyphenols of propolis induce PRODH/POX-dependent apoptosis through up-regulation of mitochondrial proline degradation and down-regulation of proline utilization for collagen biosynthesis. PMID:29681859

  8. Phytochemical Analysis, Antioxidant and Antimicrobial Activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. Flowers.

    PubMed

    Babotă, Mihai; Mocan, Andrei; Vlase, Laurian; Crișan, Ovidiu; Ielciu, Irina; Gheldiu, Ana-Maria; Vodnar, Dan Cristian; Crișan, Gianina; Păltinean, Ramona

    2018-02-13

    Antennaria dioica (L.) Gaertn. and Helichrysum arenarium (L.) Moench. are two species of the Asteraceae family, known in Romanian traditional medicine for their diuretic, choleretic, and anti-inflammatory properties. The aim of the present study was to evaluate the phenolic and sterolic composition of flowers from the two species and to assess their antioxidant, antibacterial and antifungal properties. LC-MS analyses were performed on methanolic, ethanolic and 70% v/v ethanolic extracts, before and after acid hydrolysis, and revealed high amounts of polyphenols. Chlorogenic acid was found as the main compound for the flowers of A. dioica (502.70 ± 25.11 mg/100 g d.w.), while quercitrin was dominant in H. arenarium (424.28 ± 21.21 mg/100 g d.w.) in 70% v / v ethanolic extracts before hydrolysis. Antioxidant capacity assays showed an important antioxidant potential, which can be correlated with the determined polyphenolic compounds, showing the 70% v / v ethanolic extracts of the two species as being the most effective antioxidant samples for the DPPH assay. Antibacterial and antifungal assays confirm a modest biological potential for the same extract of both species. Results obtained in the present study bring important data and offer scientific evidence on the chemical composition and on the biological activities of the flowers belonging to the two species.

  9. Global Analysis of Type Three Secretion System and Quorum Sensing Inhibition of Pseudomonas savastanoi by Polyphenols Extracts from Vegetable Residues

    PubMed Central

    Campo, Margherita; Scardigli, Arianna; Romani, Annalisa

    2016-01-01

    Protection of plants against bacterial diseases still mainly relies on the use of chemical pesticides, which in Europe correspond essentially to copper-based compounds. However, recently plant diseases control is oriented towards a rational use of molecules and extracts, generally with natural origin, with lower intrinsic toxicity and a reduced negative environmental impact. In this work, polyphenolic extracts from vegetable no food/feed residues of typical Mediterranean crops, as Olea europaea, Cynara scolymus, and Vitis vinifera were obtained and their inhibitory activity on the Type Three Secretion System (TTSS) and the Quorum Sensing (QS) of the Gram-negative phytopathogenic bacterium Pseudomonas savastanoi pv. nerii strain Psn23 was assessed. Extract from green tea (Camellia sinensis) was used as a positive control. Collectively, the data obtained through gfp-promoter fusion system and real-time PCR show that all the polyphenolic extracts here studied have a high inhibitory activity on both the TTSS and QS of Psn23, without any depressing effect on bacterial viability. Extracts from green tea and grape seeds were shown to be the most active. Such activity was confirmed in planta by a strong reduction in the ability of Psn23 to develop hyperplastic galls on explants from adult oleander plants, as well as to elicit hypersensitive response on tobacco. By using a newly developed Congo red assay and an ELISA test, we demonstrated that the TTSS-targeted activity of these polyphenolic extracts also affects the TTSS pilus assembly. In consideration of the potential application of polyphenolic extracts in plant protection, the absence of any toxicity of these polyphenolic compounds was also assessed. A widely and evolutionary conserved molecular target such as Ca2+-ATPase, essential for the survival of any living organism, was used for the toxicity assessment. PMID:27668874

  10. Maceration enzymes and mannoproteins: a possible strategy to increase colloidal stability and color extraction in red wines.

    PubMed

    Guadalupe, Zenaida; Palacios, Antonio; Ayestaran, Belén

    2007-06-13

    Different strategies were adopted to achieve increases in color stability in Tempranillo wines: (i) addition of maceration enzymes directly to the must, (ii) addition of commercial mannoproteins to the must, and (iii) inoculation of must with yeast overexpressed of mannoproteins. The addition of enzymes favored color extraction, and the wines obtained presented higher values of wine color, color intensity, bisulfite-stable color, and visually enhanced color intensity. The enzyme hydrolytic activity produced an increase in the acid polysaccharide content and polyphenol index and yielded to wines with more astringency, tannin, and length. Added mannoproteins had clearer effects on the analyzed parameters than yeast. Contrary to what may be thought, mannoproteins did not maintain the extracted polyphenols in colloidal dispersion and neither ensured color stability. These compounds clearly modified the gustative structure of the wines, enhancing the sweetness and roundness.

  11. Mass Spectral Characterization and UPLC Quantitation of 3-Deoxyanthocyanidins in Sorghum bicolor Varietals.

    PubMed

    Stern, Nathan P; Rana, Jatinder; Chandra, Amitabh; Balles, John

    2018-01-01

    A quantitative ultra-performance LC (UPLC) method was developed and validated to successfully separate, identify, and quantitate the major polyphenolic compounds present in different varieties of sorghum (Sorghum bicolor) feedstock. The method was linear from 3.2 to 320 ppm, with an r2 of 0.99999 when using luteolinidin chloride as the external standard. Method accuracy was determined to be 99.5%, and precision of replicate preparations was less than 1% RSD. Characterization by UPLC-MS determined that the predominant polyphenolic components of the sorghum varietals were 3-deoxyanthocyanidins (3-DXAs). High-throughput screening for 3-DXA identified four unique classes within the sorghum varieties. Certain feedstock varieties have been found to have a high potential to not only be plant-based colorants, but also provide significant amounts of bioactive 3-DXAs, making them of unique interest to the dietary supplement industry.

  12. Chia Oil Extraction Coproduct as a Potential New Ingredient for the Food Industry: Chemical, Physicochemical, Techno-Functional and Antioxidant Properties.

    PubMed

    Fernández-López, Juana; Lucas-González, Raquel; Viuda-Martos, Manuel; Sayas-Barberá, Estrella; Pérez-Alvarez, José Angel

    2018-06-01

    The aim of this work was to characterize the coproduct obtained from chia oil production (cold-pressing) with a view to its possible application in new food product development. For this characterization, the following determinations were made: proximate composition, physicochemical analysis, techno-functional properties, total phenolic and flavonoid content, polyphenolic profile and antioxidant capacity (using four different methods). Chia coproduct showed significantly higher levels of proteins and total dietary fiber and lower levels of fats than chia seeds, pointing to the promising nature of this coproduct as an ingredient of food formulations since it remains a source of high biological value proteins and total dietary fiber (as chia seeds themselves) but with a lower energy value. This chia coproduct presents similar techno-functional properties to the original chia seeds and significantly higher levels of polyphenolic compounds and, consequently, higher antioxidant activity.

  13. A New Look on Protein-Polyphenol Complexation during Honey Storage: Is This a Random or Organized Event with the Help of Dirigent-Like Proteins?

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS –PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230–180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110–85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, “protein-type” complexes were formed by protein cross-linking, while in the smaller, “polyphenol-type” complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the reaction of quinones with proteins and polyphenols could possibly be under assumed guidance of dirigent proteins. PMID:24023654

  14. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    PubMed

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230-180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110-85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the reaction of quinones with proteins and polyphenols could possibly be under assumed guidance of dirigent proteins.

  15. Carbohydrate-Free Peach (Prunus persica) and Plum (Prunus domestica) Juice Affects Fecal Microbial Ecology in an Obese Animal Model

    PubMed Central

    Markel, Melissa; Martino, Hercia S.; Minamoto, Yasushi; Steiner, Jörg M.; Byrne, David; Suchodolski, Jan S.; Mertens-Talcott, Susanne U.

    2014-01-01

    Background Growing evidence shows the potential of nutritional interventions to treat obesity but most investigations have utilized non-digestible carbohydrates only. Peach and plum contain high amounts of polyphenols, compounds with demonstrated anti-obesity effects. The underlying process of successfully treating obesity using polyphenols may involve an alteration of the intestinal microbiota. However, this phenomenon is not well understood. Methodology/Principal Findings Obese Zucker rats were assigned to three groups (peach, plum, and control, n = 10 each), wild-type group was named lean (n = 10). Carbohydrates in the fruit juices were eliminated using enzymatic hydrolysis. Fecal samples were obtained after 11 weeks of fruit or control juice administration. Real-time PCR and 454-pyrosequencing were used to evaluate changes in fecal microbiota. Over 1,500 different Operational Taxonomic Units at 97% similarity were detected in all rats. Several bacterial groups (e.g. Lactobacillus and members of Ruminococcacea) were found to be more abundant in the peach but especially in the plum group (plum juice contained 3 times more total polyphenolics compared to peach juice). Principal coordinate analysis based on Unifrac-based unweighted distance matrices revealed a distinct separation between the microbiota of control and treatment groups. These changes in fecal microbiota occurred simultaneously with differences in fecal short-chain acids concentrations between the control and treatment groups as well as a significant decrease in body weight in the plum group. Conclusions This study suggests that consumption of carbohydrate-free peach and plum juice has the potential to modify fecal microbial ecology in an obese animal model. The separate contribution of polyphenols and non-polyphenols compounds (vitamins and minerals) to the observed changes is unknown. PMID:25007331

  16. In vitro anthelmintic activity of five tropical legumes on the exsheathment and motility of Haemonchus contortus infective larvae.

    PubMed

    von Son-de Fernex, Elke; Alonso-Díaz, Miguel Angel; Valles-de la Mora, Braulio; Capetillo-Leal, Concepción M

    2012-08-01

    This study investigated the in vitro anthelmintic (AH) activity of five tropical legume plants [Arachis pintoi CIAT 22160 (A.p. 22160), Gliricidia sepium, Cratylia argentea (C.a. Yacapani), C. argentea CIAT 22386 (C.a. 22386), C. argentea Veranera (C.a. Veranera)] against Haemonchus contortus infective larvae and the role of tannins/polyphenolic compounds in the AH effect. Lyophilized leaf extracts of each plant were evaluated using the Larval Exsheathment Inhibition Assay (LEIA) and the larval migration inhibition assay (LMIA). The role of tannins/polyphenolic compounds in the AH effect was evaluated in both assays using polyethylene glycol (PEG) to remove tannins from the solutions. At the highest concentration (1200μg of extract/ml), A. pintoi 22160, C.a. Yacapani, C.a. Veranera and C.a. 22386 completely inhibited the exsheathment process of H. contortus (P<0.01). At the same concentration (1200μg of extract/ml), the inhibition of larval migration for C.a. 22386, C.a. Veranera and G. sepium was 66.0%, 35.9% and 39.2% (relative to the PBS control), respectively. In both bioassays (LEIA and LMIA), the AH effect shown by each plant was blocked after the addition of polyethylene glycol (PEG), corroborating the role of tannins/polyphenolic compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Tuning constitutive and pathological inflammation in the gut via the interaction of dietary nitrate and polyphenols with host microbiome.

    PubMed

    Rocha, Bárbara S; Nunes, Carla; Laranjinha, João

    2016-12-01

    Chronic inflammation is currently recognized as a critical process in modern-era epidemics such as diabetes, obesity and neurodegeneration. However, little attention is paid to the constitutive inflammatory pathways that operate in the gut and that are mandatory for local welfare and the prevention of such multi-organic diseases. Hence, the digestive system, while posing as a barrier between the external environment and the host, is crucial for the balance between constitutive and pathological inflammatory events. Gut microbiome, a recently discovered organ, is now known to govern the interaction between exogenous agents and the host with ensued impact on local and systemic homeostasis. Whereas gut microbiota may be modulated by a myriad of factors, diet constitutes one of its major determinants. Thus, dietary compounds that influence microbial flora may thereby impact on inflammatory pathways. One such example is the redox environment in the gut lumen which is highly dependent on the local generation of nitric oxide along the nitrate-nitrite-nitric oxide pathway and that is further enhanced by simultaneous consumption of polyphenols. In this paper, different pathways encompassing the interaction of dietary nitrate and polyphenols with gut microbiota will be presented and discussed in connection with local and systemic inflammatory events. Furthermore, it will be discussed how these interactive cycles (nitrate-polyphenols-microbiome) may pose as novel strategies to tackle inflammatory diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    PubMed Central

    2012-01-01

    Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as the total antioxidant potential, using the ferric reducing power (FRAP) assay. Results Spectrophotometric assays in the ultraviolet-visible (UV-VIS) region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC) was used to identify and quantify phenolic compounds (depending on the method of extraction). Methanol ensured more efficient extraction of flavonoids than the other solvents tested. Antioxidant activity in methanolic extracts was correlated with the polyphenol content. Conclusions The UV-VIS spectra of assimilator pigments (e.g. chlorophylls), polyphenols and flavonoids extracted from the C. officinalis flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm. PMID:22540963

  19. Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS) in jussara (Euterpe edulis) extracts.

    PubMed

    Vieira, Gláucia S; Marques, Anna S F; Machado, Mariana T C; Silva, Vanessa M; Hubinger, Miriam D

    2017-06-01

    This work aimed to propose two analytical methods for the quantitative and qualitative analysis of major anthocyanins and non-anthocyanin phenolic compounds in jussara ( Euterpe edulis ) extracts, using ultra performance liquid chromatography-mass spectrometry. These methods were evaluated for selectivity, precision, linearity, detection and quantification limits. The complete separation of 5 anthocyanins and 22 non-anthocyanins polyphenols was achieved in 4.5 and 7 min, respectively. Limits of detection ranged from 0.55 to 9.24 µg/L, with relative standard deviation for concentration up to 7.0%. In jussara extract, 13 of the 27 analytes were characterized. The dominant compound was cyanidin-3-O-rutinoside, representing about 73% of the total phenolic compounds content (approximately 23 mg/g of extract in dry weight). Other phenolic compounds found in the extract were: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, quercetin, rutin, myricetin, kaempferol, kaempferol-3-O-rutinoside, luteolin, apigenin, catechin, ellagic acid and 4,5-dicaffeoylquinic acid.

  20. Volatile flavor compounds, total polyphenolic contents and antioxidant activities of a China gingko wine.

    PubMed

    Wang, Xu; Xie, Kelin; Zhuang, Haining; Ye, Ran; Fang, Zhongxiang; Feng, Tao

    2015-09-01

    The volatile compounds in gingko wine, a novel functional wine, were extracted by head-space solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS) coupled with odor activity value (OAV) and relative odor contribution (ROC) analyses. In addition, the total polyphenolic content of gingko wine was determined using the Folin-Ciocalteu reagent, and its antioxidant capacity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Fifty-eight compounds were tentatively identified, including 13 esters, 10 alcohols, 11 acids, 12 carbonyl compounds, 2 lactones, 2 phenols, and 8 hydrocarbons. Ethyl hexanoate, ethyl pentanoate, nonanal, ethyl butyrate and ethyl heptanoate were the major contributors to the gingko wine aroma based on the results of OAV and ROC. The total phenols content of the gingko wine was 456 mg/L gallic acid equivalents, and its antioxidant capacity was higher than those of typical Chinese liquors analyzed in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Green tea: a promising natural product in oral health.

    PubMed

    Narotzki, Baruch; Reznick, Abraham Z; Aizenbud, Dror; Levy, Yishai

    2012-05-01

    Green tea is a leading beverage in the Far East for thousands of years; it is regarded for a long time as a health product. Green tea is important source of polyphenol antioxidants. Polyphenols including epigallocatechin 3 gallate (EGCG) constitute the most interesting components in green tea leaves. Green tea has the potential to protect against various malignant, cardiovascular and metabolic diseases. There is a growing body of evidence pointing a beneficial role of green tea and its polyphenols in oral health. Green tea protects against bacterial induced dental caries. Tea polyphenols possess antiviral properties, believed to help in protection from influenza virus. Additionally, green tea polyphenols can abolish halitosis through modification of odorant sulphur components. Oral cavity oxidative stress and inflammation, consequent to cigarette smoking and cigarettes' deleterious compounds nicotine and acrolein, may be reduced in the presence of green tea polyphenols. Generally, green tea defends healthy cells from malignant transformation and locally has the ability to induce apoptosis in oral cancer cells. All together, there is an increasing interest in the health benefits of green tea in the field of oral health. Nonetheless, there is still a need for more clinical and biological studies to support guidelines for green tea intake as part of prevention and treatment of specific oral pathologies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. [Effect of processing on the antioxidant capacity of the plum (Prunus domestica)].

    PubMed

    Valero, Yolmar; Colina, Jhoana; Ineichen, Emilio

    2012-12-01

    Fruits are considered sources of antioxidant compounds whose properties could impair due to processing. The objective of this work was to determine the effect of blanching and osmotic dehydration on the total polyphenols content, tannins and antioxidant capacity of plums (Prunus domestica) in yellow and red varieties. The total phenolic content in plums was determined according to the Folin-Ciocalteu assay and tannins were determined by vanillin assay. The antiradical efficiency (AE) and ferric reducing power (FRP) were used to estimate the total antioxidant capacity. The content of total polyphenols and tannins were higher in the red plum. The content of polyphenols in the pulp was higher that the peel while for tannins the opposite was observed in both varieties. The red plum had higher antioxidant capacity. The AE was low and slow kinetics for the two varieties. There was a linear correlation between polyphenols and tannins with antiradical efficiency; however, there was no correlation with the reducing power. The total polyphenols content was increased with blanching, while the tannins and the AE decreased, ferric reducing power is unaffected. For osmotic dehydration, the tannins and the AE were decreased, while the total polyphenols content and ferric reducing power are unaffected. It is recommended the blanched as an alternative to consumption and conservation in the plum.

  3. Analysis of the effects of polyphenols on human spermatozoa reveals unexpected impacts on mitochondrial membrane potential, oxidative stress and DNA integrity; implications for assisted reproductive technology.

    PubMed

    Aitken, R J; Muscio, L; Whiting, S; Connaughton, H S; Fraser, B A; Nixon, B; Smith, N D; De Iuliis, G N

    2016-12-01

    The need to protect human spermatozoa from oxidative stress during assisted reproductive technology, has prompted a detailed analysis of the impacts of phenolic compounds on the functional integrity of these cells. Investigation of 16 individual compounds revealed a surprising variety of negative effects including: (i) a loss of mitochondrial membrane potential (Δψm) via mechanisms that were not related to opening of the permeability transition pore but associated with a reduction in thiol expression, (ii) a decline in intracellular reduced glutathione, (iii) the stimulation of pro-oxidant activity including the induction of ROS generation from mitochondrial and non-mitochondrial sources, (iv) stimulation of lipid peroxidation, (v) the generation of oxidative DNA damage, and (vi) impaired sperm motility. For most of the polyphenolic compounds examined, the loss of motility was gradual and highly correlated with the induction of lipid peroxidation (r=0.889). The exception was gossypol, which induced a rapid loss of motility due to its inherent alkylating activity; one consequence of which was a marked reduction in carboxymethyl lysine expression on the sperm tail; a post-translational modification that is known to play a key role in the regulation of sperm movement. The only polyphenols that did not appear to have adverse effects on spermatozoa were resveratrol, genistein and THP at doses below 100μM. These compounds could, therefore, have some therapeutic potential in a clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Dietary proanthocyanidins: occurrence, dietary intake, bioavailability, and protection against cardiovascular disease.

    PubMed

    Rasmussen, Salka Elbøl; Frederiksen, Hanne; Struntze Krogholm, Kirstine; Poulsen, Lea

    2005-02-01

    The French have one of the lowest incidences of coronary heart disease in the Western world despite a diet with a relatively high fat content. This phenomenon that has puzzled researchers worldwide for more than a decade is known as the 'French paradox' and has been linked to the high consumption of red wine in France. Red wine is rich in the complex polyphenols, the proanthocyanidins, and these compounds have recently attracted attention as potential cardiac-protective compounds. The present review summarizes the literature on proanthocyanidins with focus on their chemical structure, the occurrence, the daily intake from foods, the bioavailability and metabolism, and the evidence for a protective effect against cardiovascular diseases.

  5. Formation of hydrogen peroxide in cell culture media by apple polyphenols and its effect on antioxidant biomarkers in the colon cell line HT-29.

    PubMed

    Bellion, Phillip; Olk, Melanie; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine

    2009-10-01

    Beneficial health effects of diets containing fruits have partly been attributed to polyphenols which display a spectrum of bioactive effects, including antioxidant activity. However, polyphenols can also exert prooxidative effects in vitro. In this study, polyphenol-mediated hydrogen peroxide (H(2)O(2)) formation was determined after incubation of apple juice extracts (AEs) and polyphenols in cell culture media. Effects of extracellular H(2)O(2 )on total glutathione (tGSH; =GSH + GSSG) and cellular reactive oxygen species (ROS) level of HT-29 cells were studied by coincubation +/- catalase (CAT). AEs ( > or =30 microg/mL) significantly generated H(2)O(2) in DMEM, depending on their composition. Similarly, H(2)O(2) was measured for individual apple polyphenols/degradation products (phenolic acids > epicatechin, flavonols > dihydrochalcones). Highest concentrations were generated by compounds bearing the o-catechol moiety. H(2)O(2) formation was found to be pH dependent; addition of CAT caused a complete decomposition of H(2)O(2) whereas superoxide dismutase was less/not effective. At incubation of HT-29 cells with quercetin (1-100 microM), generated H(2)O(2) slightly contributed to antioxidant cell protection by modulation of tGSH- and ROS-level. In conclusion, H(2)O(2) generation in vitro by polyphenols has to be taken into consideration when interpreting results of such cell culture experiments. Unphysiologically high polyphenol concentrations, favoring substantial H(2)O(2 )formation, are not expected to be met in vivo, even under conditions of high end nutritional uptake.

  6. Evolution of phenolic compounds of spanish oak wood during natural seasoning. First results.

    PubMed

    Fernández De Simón, B; Cadahía, E; Conde, E; García-Vallejo, M C

    1999-04-01

    Low molecular weight polyphenols and ellagitannins were analyzed by HPLC, and the molecular weight distribution of ellagitannins was calculated by GPC, in oak heartwood of Quercus robur L., Quercus petraea Liebl., Quercus pyrenaica Wild., and Quercus faginea Lam., grown in Spain, before and after 1 year of seasoning, in Bordeaux, France. During this process, the concentrations of low molecular weight polyphenols (acids and aldehydes, benzoic and cinnamic, and coumarins) increased, and those of ellagitannins (castalagin, vescalagin, and roburins A-E) decreased. A similar behavior for the A and B compounds in all species was not found. This modification in the chemical composition was similar in the four Spanish species of Quercus studied and allowed the differentiation between the unseasoned wood and the wood after the first year of seasoning.

  7. Chemical Composition and, Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves.

    PubMed

    Muanda, François Nsemi; Bouayed, Jaouad; Djilani, Abdelouaheb; Yao, Chunyan; Soulimani, Rachid; Dicko, Amadou

    2011-01-01

    Desmodium adscendens plant is widely used as juice or tea in various parts of the world against a wide range of diseases. This study determines the quality and the quantity of polyphenols, flavonoids, anthocyanins, and tannins in D. adscendens leaves by UV-spectrophotometry and RP-HPLC methods. In addition, the antioxidant capacity of these phenolic compounds is evaluated by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic)), DPPH (2,2-diphenyl-1 picrylhydrazyl), and Cellular tests. D. adscendens leaves are mainly composite of flavonoid compounds with 12.8 mg of catechin equivalent (CE)/g dw. The amounts of total polyphenol compounds are 11.1 mg of gallic acid equivalent (GAE)/g dw. The quantity of total anthocyanin and total tannin compounds is not considerable 0.0182 mg CgE/g dw and 0.39 mg CE/g dw, respectively. A direct correlation between phenolic compounds and antioxidant activity is observed (R(2) = 0.96). The RP-HPLC analyses reveal that the main phenolic compound identified in the methanol-water extract is quercetrin dihydrat (2.11 mg/mL). According to the results, it is observed that D. adscendens leaves possess a considerable scavenging antioxidant and antiradical capacity, therefore these antioxidant properties might increase the therapeutic value of this medicinal plant.

  8. African eggplant (Solanum anguivi Lam.) fruit with bioactive polyphenolic compounds exerts in vitro antioxidant properties and inhibits Ca(2+)-induced mitochondrial swelling.

    PubMed

    Elekofehinti, Olusola Olalekan; Kamdem, Jean Paul; Bolingon, Aline Augusti; Athayde, Margareth Linde; Lopes, Seeger Rodrigo; Waczuk, Emily Pansera; Kade, Ige Joseph; Adanlawo, Isaac Gbadura; Rocha, Joao Batista Teixeira

    2013-10-01

    To evaluate the antioxidant and radical scavenging activities of Solanum anguivi fruit (SAG) and its possible effect on mitochondrial permeability transition pore as well as mitochondrial membrane potential (ΔΨm) isolated from rat liver. Antioxidant activity of SAG was assayed by using 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power, iron chelation and ability to inhibit lipid peroxidation in both liver and brain homogenate of rats. Also, the effect of SAG on mitochondrial membrane potential and mitochondrial swelling were determined. Identification and quantification of bioactive polyphenolics was done by HPLC-DAD. SAG exhibited potent and concentration dependent free radical-scavenging activity (IC50/DPPH=275.03±7.8 μg/mL). Reductive and iron chelation abilities also increase with increase in SAG concentration. SAG also inhibited peroxidation of cerebral and hepatic lipids subjected to iron oxidative assault. SAG protected against Ca(2+) (110 μmol/L)-induced mitochondrial swelling and maintained the ΔΨm. HPLC analysis revealed the presence of gallic acid [(17.54±0.04) mg/g], chlorogenic acid (21.90±0.02 mg/g), caffeic acid (16.64±0.01 mg/g), rutin [(14.71±0.03) mg/g] and quercetin [(7.39±0.05) mg/g]. These effects could be attributed to the bioactive polyphenolic compounds present in the extract. Our results suggest that SAG extract is a potential source of natural antioxidants that may be used not only in pharmaceutical and food industry but also in the treatment of diseases associated with oxidative stress. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  9. Recovery of phenolic compounds from grape seeds: effect of extraction time and solid-liquid ratio.

    PubMed

    Casazza, Alessandro A; Aliakbarian, Bahar; Perego, Patrizia

    2011-10-01

    The aim of this research was to study the recovery of phenolic compounds from grape seeds, by-products from winemaking industries, using ethanolic solid-liquid extraction. For such a purpose, the combined effects of the extraction time (9, 19 and 29 h) and the solid-liquid ratio (0.10, 0.20 and 0.30 gdw mL(-1)), were investigated (where dw = dry waste). Results demonstrated that Pinot Noir seeds had high levels of both total polyphenols (73.66 mg(Gallic Acid Equivalent) gdw(-1)) and flavonoids (30.90 mg(Catechin Equivalent) gdw(-1)), being the optimum extraction time 19 h approximately. The main phenolic compounds analysed with high performance liquid chromatography were catechin and quercetin with a maximum extraction yield obtained at 29 h (362.23 and 339.35 mg/100 gdw, respectively). Concentration of the polyphenols and their antiradical powers are demonstrated to have a significant linear correlation.

  10. Mediterranean diet and cardioprotection: the role of nitrite, polyunsaturated fatty acids and polyphenols

    PubMed Central

    Nadtochiy, Sergiy M.; Redman, Emily K.

    2010-01-01

    The continually increasing rate of myocardial infarction (MI) in the Western world at least partly can be explained by a poor diet lacking in green vegetables, fruits, and fish, and enriched in food that contains saturated fat. In contrast, a number of epidemiological studies provide strong evidence highlighting the cardioprotective benefits of the Mediterranean diet enriched in green vegetables, fruits, fish and grape wine. Regular consumption of these products leads to an accumulation of nitrate/nitrite/NO•, polyunsaturated fatty acids (PUFA), and polyphenolic compounds, such as resveratrol, in the human body. Studies have confirmed that these constituents are bioactive exogenous mediators, which induce strong protection against MI. The aim of this review is to provide a critical, in-depth analysis of the cardioprotective pathways mediated by nitrite/NO•, PUFA, and phenolic compounds of grape wines discovered in the recent years, including cross-talk between different mechanisms and compounds. Overall, these findings may facilitate the design and synthesis of novel therapeutic tools for the treatment of MI. PMID:21454053

  11. Biochemical degradation and physical migration of polyphenolic compounds in osmotic dehydrated blueberries with pulsed electric field and thermal pretreatments.

    PubMed

    Yu, Yuanshan; Jin, Tony Z; Fan, Xuetong; Wu, Jijun

    2018-01-15

    Fresh blueberries were pretreated by pulsed electric fields (PEF) or thermal pretreatment and then were subject to osmotic dehydration. The changes in contents of anthocyanins, predominantly phenolic acids and flavonols, total phenolics, polyphenol oxidase (PPO) activity and antioxidant activity in the blueberry samples during pretreatment and osmotic dehydration were investigated. Biochemical degradation and physical migration of these nutritive compounds from fruits to osmotic solutions were observed during the pretreatments and osmotic dehydration. PEF pretreated samples had the least degradation loss but the most migration loss of these compounds compared to thermally pretreated and control samples. Higher rates of water loss and solid gain during osmotic dehydration were also obtained by PEF pretreatment, reducing the dehydration time from 130 to 48h. PEF pretreated and dehydrated fruits showed superior appearance to thermally pretreated and control samples. Therefore, PEF pretreatment is a preferred technology that balances nutritive quality, appearance, and dehydration rate. Published by Elsevier Ltd.

  12. Inhibitory effect of rice bran extracts and its phenolic compounds on polyphenol oxidase activity and browning in potato and apple puree.

    PubMed

    Sukhonthara, Sukhontha; Kaewka, Kunwadee; Theerakulkait, Chockchai

    2016-01-01

    Full-fatted and commercially defatted rice bran extracts (RBE and CDRBE) were evaluated for their ability to inhibit enzymatic browning in potato and apple. RBE showed more effective inhibition of polyphenol oxidase (PPO) activity and browning in potato and apple as compared to CDRBE. Five phenolic compounds in RBE and CDRBE (protocatechuic acid, vanillic acid, p-coumaric acid, ferulic acid and sinapic acid) were identified by HPLC. They were then evaluated for their important role in the inhibition using a model system which found that ferulic acid in RBE and p-coumaric acid in CDRBE were active in enzymatic browning inhibition of potato and apple. p-Coumaric acid exhibited the highest inhibitory effect on potato and apple PPO (p ⩽ 0.05). Almost all phenolic compounds showed higher inhibitory effect on potato and apple PPO than 100 ppm citric acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Polyphenolic compounds with anti-tumour potential from Corchorus olitorius (L.) Tiliaceae, a Nigerian leaf vegetable.

    PubMed

    Taiwo, Bamigboye J; Taiwo, Grace O; Olubiyi, Olujide O; Fatokun, Amos A

    2016-08-01

    Chromatographic fractionation of the methanolic extract of Corchorus olitorius (L.) (Tiliaceae), on silica gel yielded two polyphenolic compounds. The structures of the compounds were elucidated as Methyl-1,4,5-tri-O-caffeoyl quinate and trans-3-(4-Hydroxy-3-methoxyphenyl)acrylic anhydride, based on extensive use of spectroscopic techniques such as (1)H and (13)C NMR, DEPT and 2D NMR experiments (COSY, HSQC, HMBC), IR and MS. To establish an initial proof-of-concept for the biological relevance of these compounds, their cytotoxicity against the cancer cell lines HeLa, HL460 and PC3, which might indicate their anti-tumour potential, was assessed. The compounds when tested at a range of concentrations up to 1.6mM were found to possess mild cytotoxic activity which was significant against HeLa cells at ⩾800μM. The trans-3-(4-Hydroxy-3-methoxyl phenyl)acrylic anhydride was found to be related to curcumin, a compound known to have anti-cancer activity. Docking of each of the two compounds and also of curcumin into some molecular targets implicated in tumourigenesis revealed that the three compounds had binding affinities that were superior to those obtained for the co-crystallized inhibitors of metalloproteinase-9, fibroblast growth factor receptor 2 (FGFR2) and epidermal growth factor receptor (EGFR). The plant Corchorus olitorius therefore represents a potential source of natural 'lead' compounds with anti-tumour potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City

    PubMed Central

    Hernández-Ramírez, Raúl U.; Galván-Portillo, Marcia V.; Ward, Mary H.; Agudo, Antonio; González, Carlos A.; Oñate-Ocaña, Luis F.; Herrera-Goepfert, Roberto; Palma-Coca, Oswaldo; López-Carrillo, Lizbeth

    2009-01-01

    N-Nitroso compounds (NOC) are potent animal carcinogens and potential human carcinogens. The primary source of exposure for most individuals may be endogenous formation, a process that can be inhibited by dietary polyphenols. To estimate the risk of gastric cancer (GC) in relation to the individual and combined consumption of polyphenols and NOC precursors (nitrate and nitrite), a population-based case–control study was carried out in Mexico City from 2004 to 2005 including 257 histologically confirmed GC cases and 478 controls. Intake of polyphenols, nitrate and nitrite were estimated using a food frequency questionnaire. High intakes of cinnamic acids, secoisolariciresinol and coumestrol were associated with an ~50% reduction in GC risk. A high intake of total nitrite as well as nitrate and nitrite from animal sources doubled the GC risk. Odds ratios around 2-fold were observed among individuals with both low intake of cinnamic acids, secoisolariciresinol or coumestrol and high intake of animal-derived nitrate or nitrite, compared to high intake of the polyphenols and low animal nitrate or nitrite intake, respectively. Results were similar for both the intestinal and diffuse types of GC. Our results show, for the first time, a protective effect for GC because of higher intake of cinnamic acids, secoisolariciresinol and coumestrol, and suggest that these polyphenols reduce GC risk through inhibition of endogenous nitrosation. The main sources of these polyphenols were pears, mangos and beans for cinnamic acids; beans, carrots and squash for secoisolariciresinol and legumes for coumestrol. PMID:19449378

  15. Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption.

    PubMed

    Andriamihaja, Mireille; Lan, Annaïg; Beaumont, Martin; Grauso, Marta; Gotteland, Martin; Pastene, Edgar; Cires, Maria Jose; Carrasco-Pozo, Catalina; Tomé, Daniel; Blachier, François

    2018-06-01

    Hydrogen sulfide (H 2 S), a metabolic end product synthesized by the microbiota from L-cysteine, has been shown to act at low micromolar concentration as a mineral oxidative substrate in colonocytes while acting as an inhibitor of oxygen consumption at higher luminal concentrations (65 µM and above). From the previous works showing that polyphenols can bind volatile sulfur compounds, we hypothesized that different dietary proanthocyanidin-containing polyphenol (PACs) plant extracts might modulate the inhibitory effect of H 2 S on colonocyte respiration. Using the model of human HT-29 Glc-/+ cell colonocytes, we show here that pre-incubation of 65 µM of the H 2 S donor NaHS with the different polyphenol extracts markedly reduced the inhibitory effect of NaHS on colonocyte oxygen consumption. Our studies on HT-29 Glc-/+ cell respiration performed in the absence or the presence of PACs reveal rapid binding of H 2 S with the sulfide-oxidizing unit and slower binding of H 2 S to the cytochrome c oxidase (complex IV of the respiratory chain). Despite acute inhibition of colonocyte respiration, no measurable effect of NaHS on paracellular permeability was recorded after 24 h treatment using the Caco-2 colonocyte monolayer model. The results are discussed in the context of the binding of excessive bacterial metabolites by unabsorbed dietary compounds and of the capacity of colonocytes to adapt to changing luminal environment.

  16. Puffed cereals with added chamomile - quantitative analysis of polyphenols and optimization of their extraction method.

    PubMed

    Blicharski, Tomasz; Oniszczuk, Anna; Olech, Marta; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Krawczyk, Wojciech; Nowak, Renata

    2017-05-11

    [b]Abstract Introduction[/b]. Functional food plays an important role in the prevention, management and treatment of chronic diseases. One of the most interesting techniques of functional food production is extrusion-cooking. Functional foods may include such items as puffed cereals, breads and beverages that are fortified with vitamins, some nutraceuticals and herbs. Due to its pharmacological activity, chamomile flowers are the most popular components added to functional food. Quantitative analysis of polyphenolic antioxidants, as well as comparison of various methods for the extraction of phenolic compounds from corn puffed cereals, puffed cereals with an addition of chamomile (3, 5, 10 and 20%) and from [i]Chamomillae anthodium. [/i] [b]Materials and Methods[/b]. Two modern extraction methods - ultrasound assisted extraction (UAE) at 40 °C and 60 °C, as well as accelerated solvent extraction (ASE) at 100 °C and 120 °C were used for the isolation of polyphenols from functional food. Analysis of flavonoids and phenolic acids was carried out using reversed-phase high-performance liquid chromatography and electrospray ionization mass spectrometry (LC-ESI-MS/MS). [b]Results and Conclusions[/b]. For most of the analyzed compounds, the highest yields were obtained by ultrasound assisted extraction. The highest temperature during the ultrasonification process (60 °C) increased the efficiency of extraction, without degradation of polyphenols. UAE easily arrives at extraction equilibrium and therefore permits shorter periods of time, reducing the energy input. Furthermore, UAE meets the requirements of 'Green Chemistry'.

  17. Activity of hawthorn leaf and bark extracts in relation to biological membrane.

    PubMed

    Włoch, Aleksandra; Kapusta, Ireneusz; Bielecki, Krzysztof; Oszmiański, Jan; Kleszczyńska, Halina

    2013-07-01

    The aim of the study was to identify and determine the percent content of polyphenols in extracts from leaves and hawthorn bark, to examine the effect of the extracts on the properties of the biological membrane as well as to determine their antioxidant activity toward membrane lipids. In particular, a biophysical investigation was conducted on the effect of hawthorn extracts on the osmotic resistance and morphology of erythrocyte cells and on the packing of the heads of membrane lipids. Analysis of the polyphenol content of extracts used the HPLC method. Analysis of the polyphenol composition has shown a dominant share of procyanidins and epicatechin in both extracts. The research showed that the polyphenolic compounds contained in hawthorn extracts are incorporated mainly into the hydrophilic part of the erythrocyte membrane, inducing echinocyte shapes. They also diminish the packing order of the lipid polar heads of the membrane, as evidenced by the lowered generalized polarization values of Laurdan. The substances used induced increased osmotic pressure of erythrocytes, making them less sensitive to changes in osmotic pressure. The presence of the extract compounds in the outer hydrophilic part of the erythrocyte membrane, evidenced by examination of the shapes and packing in the hydrophilic part of membrane, indicates that the substances constitute a kind of barrier that protects the erythrocyte membrane against free radicals, while the membrane-bound extracts do not disturb the membrane structure and, thus, do not cause any side effects.

  18. Novel strategies for capturing health-protective mango phytochemicals in shelf stable food matrices.

    PubMed

    Guzman, Ivette; Grace, Mary H; Yousef, Gad G; Raskin, Ilya; Lila, Mary Ann

    2015-03-01

    Cost-effective methods for concentration and stabilization of otherwise perishable mango fruit phytoactives into shelf stable high protein ingredients were developed to combat stunting (malnutrition) in rural Africa. Mango juices complexed with sunflower oil and protein-rich legume flours yielded carotenoid-enriched oils and pelleted polyphenol-enriched flour matrices. Carotenoids from juices were concentrated 9-10 times in the fortified sunflower oil. Protein-rich soy and peanut flours captured 2.2-3.2 mg/g polyphenols from the juices. Alternatively, mango juice was sorbed and co-dried with flours, which stably bound the polyphenols, carotenoids, and natural sugars in soy or peanut protein-rich matrices. The concentration of provitamin A carotenoids was almost doubled and total polyphenols were enriched 4-5 times higher in the matrices compared to fresh pureed juice. Both strategies require minimal instrumentation, are compatible with rural village dietary practices; and capture the benefits of otherwise perishable seasonal resources by complexing healthful proteins together with phytoactive compounds.

  19. Polyphenols of Carménère Grapes

    PubMed Central

    Huamán-Castilla, Nils Leander; Mariotti-Celis, María Salomé; Pérez-Correa, José Ricardo

    2017-01-01

    Carménère is the emblematic grape of Chile. Recent studies indicate that it has a different polyphenolic profile than other commercial varieties of grape among other factors, due to its long maturation period. The grape and wine of Carménère stand out for having high concentrations of anthocyanins (malvidin), flavonols (quercetin and myricetin) and flavanols (catechin, epicatechin and epigallocatechin). These compounds are related to the distinctive characteristic of Carménère wine regarding astringency and color. In vivo and in vitro models suggest some positive effects of these polyphenols in the treatment and prevention of chronic diseases, such as atherosclerosis and cancer. Therefore, there is a high level of interest to develop scalable industrial methods in order to obtain and purify Carménère grape polyphenol extracts that could be used to improve the characteristics of wines from other varieties or produce nutraceuticals or functional foods for preventing and treating various chronic diseases. PMID:28845147

  20. Neurological Effects of Honey: Current and Future Prospects

    PubMed Central

    Mijanur Rahman, Mohammad; Gan, Siew Hua; Khalil, Md. Ibrahim

    2014-01-01

    Honey is the only insect-derived natural product with therapeutic, traditional, spiritual, nutritional, cosmetic, and industrial value. In addition to having excellent nutritional value, honey is a good source of physiologically active natural compounds, such as polyphenols. Unfortunately, there are very few current research projects investigating the nootropic and neuropharmacological effects of honey, and these are still in their early stages. Raw honey possesses nootropic effects, such as memory-enhancing effects, as well as neuropharmacological activities, such as anxiolytic, antinociceptive, anticonvulsant, and antidepressant activities. Research suggests that the polyphenol constituents of honey can quench biological reactive oxygen species and counter oxidative stress while restoring the cellular antioxidant defense system. Honey polyphenols are also directly involved in apoptotic activities while attenuating microglia-induced neuroinflammation. Honey polyphenols are useful in improving memory deficits and can act at the molecular level. Therefore, the ultimate biochemical impact of honey on specific neurodegenerative diseases, apoptosis, necrosis, neuroinflammation, synaptic plasticity, and behavior-modulating neural circuitry should be evaluated with appropriate mechanistic approaches using biochemical and molecular tools. PMID:24876885

  1. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review.

    PubMed

    Devi, Palanisamy Bruntha; Vijayabharathi, Rajendran; Sathyabama, Sathyaseelan; Malleshi, Nagappa Gurusiddappa; Priyadarisini, Venkatesan Brindha

    2014-06-01

    The growing public awareness of nutrition and health care research substantiates the potential of phytochemicals such as polyphenols and dietary fiber on their health beneficial properties. Hence, there is in need to identify newer sources of neutraceuticals and other natural and nutritional materials with the desirable functional characteristics. Finger millet (Eleusine coracana), one of the minor cereals, is known for several health benefits and some of the health benefits are attributed to its polyphenol and dietary fiber contents. It is an important staple food in India for people of low income groups. Nutritionally, its importance is well recognised because of its high content of calcium (0.38%), dietary fiber (18%) and phenolic compounds (0.3-3%). They are also recognized for their health beneficial effects, such as anti-diabetic, anti-tumerogenic, atherosclerogenic effects, antioxidant and antimicrobial properties. This review deals with the nature of polyphenols and dietary fiber of finger millet and their role with respect to the health benefits associated with millet.

  2. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer.

    PubMed

    Oladokun, Olayide; Tarrega, Amparo; James, Sue; Smart, Katherine; Hort, Joanne; Cook, David

    2016-08-15

    Thirty-four commercial lager beers were analysed for their hop bitter acid, phenolic acid and polyphenol contents. Based on analytical data, it was evident that the beers had been produced using a range of different raw materials and hopping practices. Principal Components Analysis was used to select a sub-set of 10 beers that contained diverse concentrations of the analysed bitter compounds. These beers were appraised sensorially to determine the impacts of varying hop acid and polyphenolic profiles on perceived bitterness character. Beers high in polyphenol and hop acid contents were perceived as having 'harsh' and 'progressive' bitterness, whilst beers that had evidently been conventionally hopped were 'sharp' and 'instant' in their bitterness. Beers containing light-stable hop products (tetrahydro-iso-α-acids) were perceived as 'diminishing', 'rounded' and 'acidic' in bitterness. The hopping strategy adopted by brewers impacts on the nature, temporal profile and intensity of bitterness perception in beer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Combination of Analytical and Chemometric Methods as a Useful Tool for the Characterization of Extra Virgin Argan Oil and Other Edible Virgin Oils. Role of Polyphenols and Tocopherols.

    PubMed

    Rueda, Ascensión; Samaniego-Sánchez, Cristina; Olalla, Manuel; Giménez, Rafael; Cabrera-Vique, Carmen; Seiquer, Isabel; Lara, Luis

    2016-01-01

    Analysis of phenolic profile and tocopherol fractions in conjunction with chemometrics techniques were used for the accurate characterization of extra virgin argan oil and eight other edible vegetable virgin oils (olive, soybean, wheat germ, walnut, almond, sesame, avocado, and linseed) and to establish similarities among them. Phenolic profile and tocopherols were determined by HPLC coupled with diode-array and fluorescence detectors, respectively. Multivariate factor analysis (MFA) and linear correlations were applied. Significant negative correlations were found between tocopherols and some of the polyphenols identified, but more intensely (P < 0.001) between the γ-tocopherol and oleuropein, pinoresinol, and luteolin. MFA revealed that tocopherols, especially γ-fraction, most strongly influenced the oil characterization. Among the phenolic compounds, syringic acid, dihydroxybenzoic acid, oleuropein, pinoresinol, and luteolin also contributed to the discrimination of the oils. According to the variables analyzed in the present study, argan oil presented the greatest similarity with walnut oil, followed by sesame and linseed oils. Olive, avocado, and almond oils showed close similarities.

  4. Inhibition of Akt/mTOR Signaling by the Dietary Flavonoid Fisetin

    PubMed Central

    Syed, Deeba N.; Adhami, Vaqar M.; Khan, Mohammad Imran; Mukhtar, Hasan

    2014-01-01

    Plants have long been providing mankind with remedies of different ailments. Flavonoids, a family of naturally occurring polyphenolic compounds are ubiquitous in plants. Development of polyphenol-based drugs has not attracted much attention by researchers and drug companies. Therefore, despite extensive studies on polyphenols, this vast group of compounds is underrepresented in clinical medicine. Fisetin (3,7,3’,4’-tetrahydroxyflavone) belongs to the flavonol subgroup of flavonoids together with quercetin, myricetin and kaempferol and is found in several fruits and vegetables including strawberries, apples, persimmons and onions. Fisetin is showing promise as a useful natural agent against cancer and has been evaluated for its potential inhibitory role against cancer in several in vitro and in vivo studies. The Akt/mTOR pathway is known to play a central role in various cellular processes that contribute to the malignant phenotype. Accordingly, inhibition of this signaling cascade has been a focus of recent therapeutic studies. Novel inhibitors of PI3-K, Akt, and mTOR are now passing through early phase clinical trials. Herein, we review the effect of fisetin on the PI3-K/Akt/mTOR pathway as studied in different cancer cell models. PMID:23293889

  5. Hypocholesterolemic Effect and In Vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract.

    PubMed

    Padilla-Camberos, Eduardo; Flores-Fernandez, Jose Miguel; Fernandez-Flores, Ofelia; Gutierrez-Mercado, Yanet; Carmona-de la Luz, Joel; Sandoval-Salas, Fabiola; Mendez-Carreto, Carlos; Allen, Kirk

    2015-01-01

    Cholesterol control is fundamental for prevention of cardiovascular disorders. In this work, the hypocholesterolemic activity of an aqueous Opuntia ficus-indica extract (AOE) was tested in triton-induced mice. The inhibitory activity on pancreatic lipase enzyme was evaluated in vitro by the same extract. Furthermore, polyphenol content of the extract was evaluated. Hypercholesterolemia was induced in three groups of mice by intraperitoneal administration of Triton WR-1339. After induction of hypercholesterolemia, the groups were treated with an AOE (500 mg/kg) and saline solution and the positive control group with orlistat, respectively. Cholesterol levels were measured 24 h later in peripheral blood. The levels of blood cholesterol after administration of AOE significantly decreased compared to negative control. The inhibitory activity of AOE on pancreatic lipase enzyme was evaluated at concentrations from 60 to 1000 μg/mL. The AOE inhibited the pancreatic lipase with an IC50 = 588.5 μg/mL. The AOE had a high content of polyphenolic compounds. These results show that AOE is able to prevent hypercholesterolemia by pancreatic lipase inhibition, in part due to its polyphenolic compounds.

  6. Hypocholesterolemic Effect and In Vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract

    PubMed Central

    Flores-Fernandez, Jose Miguel; Fernandez-Flores, Ofelia; Gutierrez-Mercado, Yanet; Carmona-de la Luz, Joel; Sandoval-Salas, Fabiola; Mendez-Carreto, Carlos

    2015-01-01

    Cholesterol control is fundamental for prevention of cardiovascular disorders. In this work, the hypocholesterolemic activity of an aqueous Opuntia ficus-indica extract (AOE) was tested in triton-induced mice. The inhibitory activity on pancreatic lipase enzyme was evaluated in vitro by the same extract. Furthermore, polyphenol content of the extract was evaluated. Hypercholesterolemia was induced in three groups of mice by intraperitoneal administration of Triton WR-1339. After induction of hypercholesterolemia, the groups were treated with an AOE (500 mg/kg) and saline solution and the positive control group with orlistat, respectively. Cholesterol levels were measured 24 h later in peripheral blood. The levels of blood cholesterol after administration of AOE significantly decreased compared to negative control. The inhibitory activity of AOE on pancreatic lipase enzyme was evaluated at concentrations from 60 to 1000 μg/mL. The AOE inhibited the pancreatic lipase with an IC50 = 588.5 μg/mL. The AOE had a high content of polyphenolic compounds. These results show that AOE is able to prevent hypercholesterolemia by pancreatic lipase inhibition, in part due to its polyphenolic compounds. PMID:26078966

  7. Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin.

    PubMed

    Syed, Deeba N; Adhami, Vaqar M; Khan, Mohammad Imran; Mukhtar, Hasan

    2013-09-01

    Plants have long been providing mankind with remedies of different ailments. Flavonoids, a family of naturally occurring polyphenolic compounds are ubiquitous in plants. Development of polyphenol-based drugs has not attracted much attention by researchers and drug companies. Therefore, despite extensive studies on polyphenols, this vast group of compounds is underrepresented in clinical medicine. Fisetin (3,7,3',4'-tetrahydroxyflavone) belongs to the flavonol subgroup of flavonoids together with quercetin, myricetin and kaempferol and is found in several fruits and vegetables including strawberries, apples, persimmons and onions. Fisetin is showing promise as a useful natural agent against cancer and has been evaluated for its potential inhibitory role against cancer in several in vitro and in vivo studies. The Akt/mTOR pathway is known to play a central role in various cellular processes that contribute to the malignant phenotype. Accordingly, inhibition of this signaling cascade has been a focus of recent therapeutic studies. Novel inhibitors of PI3-K, Akt, and mTOR are now passing through early phase clinical trials. Herein, we review the effect of fisetin on the PI3- K/Akt/mTOR pathway as studied in different cancer cell models.

  8. Effect of Organic and Conventional Management on Bio-Functional Quality of Thirteen Plum Cultivars (Prunus salicina Lindl.).

    PubMed

    Cuevas, Francisco Julián; Pradas, Inmaculada; Ruiz-Moreno, María José; Arroyo, Francisco Teodoro; Perez-Romero, Luis Felipe; Montenegro, José Carlos; Moreno-Rojas, José Manuel

    2015-01-01

    In this study, thirteen Japanese plum cultivars (Prunus salicina Lindl.) grown under conventional and organic conditions were compared to evaluate the influence of the culture system on bioactive compounds. Their organic acids content (malic, citric, tartaric, succinic, shikimic, ascorbic and fumaric acid), total polyphenols, total anthocyanins, total carotenoids and antioxidant capacity (FRAP, ABTS) were evaluated. The study was performed during two consecutive seasons (2012 and 2013) in two experimental orchards located at the IFAPA centre Las Torres-Tomejil (Seville, SW Spain). The culture system affected all the studied parameters except for total carotenoid content. The organic plums had significantly higher polyphenol and anthocyanin concentrations and a greater antioxidant capacity. Additionally, significant differences between cultivars were also found. 'Showtime' and 'Friar' were the cultivars with the highest polyphenol concentration and antioxidant capacity. 'Black Amber' had the highest anthocyanin content and 'Larry Ann' and 'Songold' the highest carotenoid content. 'Sapphire' and 'Black amber' were the cultivars with the highest concentration of ascorbic acid. Our results showed a strong year effect. In conclusion, organic management had an impact on the production of phytochemical compounds in plums.

  9. Effect of Organic and Conventional Management on Bio-Functional Quality of Thirteen Plum Cultivars (Prunus salicina Lindl.)

    PubMed Central

    Cuevas, Francisco Julián; Pradas, Inmaculada; Ruiz‐Moreno, María José; Arroyo, Francisco Teodoro; Perez-Romero, Luis Felipe; Montenegro, José Carlos; Moreno‐Rojas, José Manuel

    2015-01-01

    In this study, thirteen Japanese plum cultivars (Prunus salicina Lindl.) grown under conventional and organic conditions were compared to evaluate the influence of the culture system on bioactive compounds. Their organic acids content (malic, citric, tartaric, succinic, shikimic, ascorbic and fumaric acid), total polyphenols, total anthocyanins, total carotenoids and antioxidant capacity (FRAP, ABTS) were evaluated. The study was performed during two consecutive seasons (2012 and 2013) in two experimental orchards located at the IFAPA centre Las Torres-Tomejil (Seville, SW Spain). The culture system affected all the studied parameters except for total carotenoid content. The organic plums had significantly higher polyphenol and anthocyanin concentrations and a greater antioxidant capacity. Additionally, significant differences between cultivars were also found. ‘Showtime’ and ‘Friar’ were the cultivars with the highest polyphenol concentration and antioxidant capacity. ‘Black Amber’ had the highest anthocyanin content and ‘Larry Ann’ and ‘Songold’ the highest carotenoid content. ‘Sapphire’ and ‘Black amber’ were the cultivars with the highest concentration of ascorbic acid. Our results showed a strong year effect. In conclusion, organic management had an impact on the production of phytochemical compounds in plums. PMID:26313546

  10. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.

    PubMed

    Keating, Elisa; Martel, Fátima

    2018-01-01

    In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect-an aerobic lactatogenesis- characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.

  11. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity.

    PubMed

    Brudzynski, Katrina; Miotto, Danielle

    2011-08-01

    Size-exclusion chromatography (SEC) and activity-guided fractionation of honeys allowed the isolation of high molecular weight brown compounds, ranging in size from 66 to 235kDa that exhibited peroxyl radical-scavenging activity. Their concentrations, antioxidant activity and degree of browning increased after heat-treatment of honeys, suggesting that they represent melanoidins. Chemical analysis of melanoidins demonstrated the presence of proteins, polyphenols and oligosaccharides. Heat-treatment caused an increased incorporation of phenolics into high molecular weight melanoidins and drastically decreased the protein content in these fractions with a concomitant appearance of high molecular weight protein-polyphenol complexes of reduced solubility. LC-ESI-MS demonstrated the presence of oligosaccharide moieties, supporting the postulated origin of melanoidins. The changes in the phenolic content of melanoidins from heated honeys were strongly correlated with their oxygen radical absorbance capacity (ORAC) values (R=0.75, p<0.0001), indicating that polyphenols contribute to the antioxidant activity of melanoidins. In summary, honey melanoidins are multi-component polymers consisting of protein-polyphenol-oligosaccharide complexes. A direct interaction between polyphenols and melanoidins resulted in a loss or gain of function for melanoidin antioxidant activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching.

    PubMed

    Sun, Lijun; Chen, Weiqi; Meng, Yonghong; Yang, Xingbin; Yuan, Li; Guo, Yurong; Warren, Frederick J; Gidley, Michael J

    2016-10-01

    Young apple polyphenols (YAP) and nine types of phenolic compounds were investigated regarding the inhibitory activity against porcine pancreatic α-amylase (PPA) in vitro. Tannic acid, chlorogenic acid and caffeic acid in YAP showed relatively high inhibition with the IC50 values of 0.30, 1.96 and 3.69mg/mL, respectively. A detailed kinetics of inhibition study revealed that YAP and tannic acid were competitive inhibitors of PPA, whereas chlorogenic acid and caffeic acid were mixed inhibitors, exhibiting both competitive and uncompetitive characteristics. The fluorescence of PPA could be significantly quenched by YAP and the three polyphenols, and their quenching constants were determined. The results showed that for the polyphenols investigated, the order of the apparent static quenching constants (KFQ) was in agreement with that of the reciprocal competitive inhibition constants (1/Kic) (tannic acid>chlorogenic acid>caffeic acid>epicatechin); both of the parameters were contrary to the order of the IC50 values. Thus, combining detailed kinetics and fluorescence quenching studies can be applied to characterise the interactions between polyphenols in young apples and α-amylase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts.

  14. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.).

    PubMed

    Nguyen, Phuong M; Niemeyer, Emily D

    2008-09-24

    Many herbs and spices have been shown to contain high levels of polyphenolic compounds with potent antioxidant properties. In the present study, we explore how nutrient availability, specifically nitrogen fertilization, affects the production of polyphenolic compounds in three cultivars (Dark Opal, Genovese, and Sweet Thai) of the culinary herb, basil ( Ocimum basilicum L.). Nitrogen fertilization was found to have a significant effect on total phenolic levels in Dark Opal ( p < 0.001) and Genovese ( p < 0.001) basil with statistically higher phenolic contents observed when nutrient availability was limited at the lowest (0.1 mM) applied nitrogen treatment. Similarly, basil treated at the lowest nitrogen fertilization level generally contained significantly higher rosmarinic ( p = 0.001) and caffeic ( p = 0.001) acid concentrations than basil treated at other nitrogen levels. Nitrogen fertilization also affected antioxidant activity ( p = 0.002) with basil treated at the highest applied nitrogen level, 5.0 mM, exhibiting lower antioxidant activity than all other nitrogen treatments. The anthocyanin content of Dark Opal basil was not affected by applied nitrogen level, but anthocyanin concentrations were significantly impacted by growing season ( p = 0.001). Basil cultivar was also determined to have a statistically significant effect on total phenolic levels, rosmarinic and caffeic acid concentrations, and antioxidant activities.

  15. Bioaccessibility and bioavailability of phenolic compounds in bread: a review.

    PubMed

    Angelino, Donato; Cossu, Marta; Marti, Alessandra; Zanoletti, Miriam; Chiavaroli, Laura; Brighenti, Furio; Del Rio, Daniele; Martini, Daniela

    2017-07-19

    Cereal-based products, like breads, are a vehicle for bioactive compounds, including polyphenols. The health effects of polyphenols like phenolic acids (PAs) are dependent on their bioaccessibility and bioavailability. The present review summarizes the current understanding of potential strategies to improve phenolic bioaccessibility and bioavailability and the main findings of in vitro and in vivo studies investigating these strategies applied to breads, including the use of raw ingredients with greater phenolic content and different pre-processing technologies, such as fermentation and enzymatic treatment of ingredients. There is considerable variability between in vitro studies, mainly resulting from the use of different methodologies, highlighting the need for standardization. Of the few in vivo bioavailability studies identified, acute, single-dose studies demonstrate that modifications to selected raw materials and bioprocessing of bran could increase the bioavailability, but not necessarily the net content, of bread phenolics. The two medium-term identified dietary interventions also demonstrated greater phenolic content, resulting from the modification of the raw materials used. Overall, the findings suggest that several strategies can be used to develop new bread products with greater phenolic bioaccessibility and bioavailability. However, due to the large variability and the few studies available, further investigations are required to determine better the usefulness of these innovative processes.

  16. The polyphenolics in the aqueous extract of Psidium guajava kinetically reveal an inhibition model on LDL glycation.

    PubMed

    Chen, Kuan-Chou; Chuang, Chao-Ming; Lin, Li-Yun; Chiu, Wen-Ta; Wang, Hui-Er; Hsieh, Chiu-Lan; Tsai, Tsuimin; Peng, Robert Y

    2010-01-01

    Guava [Psidium guajava L. (Myrtaceae)] budding leaf extract (PE) has shown tremendous bioactivities. Previously, we found seven major compounds in PE, i.e., gallic acid, catechin, epicatechin, rutin, quercetin, naringenin, and kaempferol. PE showed a potentially active antiglycative effect in an LDL (low density lipoprotein) mimic biomodel, which can be attributed to its large content of polyphenolics. The glycation and antiglycative reactions showed characteristic distinct four-phase kinetic patterns. In the presence of PE, the kinetic coefficients were 0.000438, 0.000060, 0.000, and -0.0001354 ABS-mL/mg-min, respectively, for phases 1 to 4. Computer simulation evidenced the dose-dependent inhibition model. Conclusively, PE contains a large amount of polyphenolics, whose antiglycative bioactivity fits the inhibition model.

  17. Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability.

    PubMed

    López-García, Jorge; Kuceková, Zdenka; Humpolíček, Petr; Mlček, Jiři; Sáha, Petr

    2013-10-30

    The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.

  18. Scaffold of Selenium Nanovectors and Honey Phytochemicals for Inhibition of Pseudomonas aeruginosa Quorum Sensing and Biofilm Formation.

    PubMed

    Prateeksha; Singh, Braj R; Shoeb, M; Sharma, S; Naqvi, A H; Gupta, Vijai K; Singh, Brahma N

    2017-01-01

    Honey is an excellent source of polyphenolic compounds that are effective in attenuating quorum sensing (QS), a chemical process of cell-to-cell communication system used by the opportunistic pathogen Pseudomonas aeruginosa to regulate virulence and biofilm formation. However, lower water solubility and inadequate bioavailability remains major concerns of these therapeutic polyphenols. Its therapeutic index can be improved by using nano-carrier systems to target QS signaling potently. In the present study, we fabricated a unique drug delivery system comprising selenium nanoparticles (SeNPs; non-viral vectors) and polyphenols of honey (HP) for enhancement of anti-QS activity of HP against P. aeruginosa PAO1. The developed selenium nano-scaffold showed superior anti-QS activity, anti-biofilm efficacy, and anti-virulence potential in both in-vitro and in-vivo over its individual components, SeNPs and HP. LasR is inhibited by selenium nano-scaffold in-vitro . Using computational molecular docking studies, we have also demonstrated that the anti-virulence activity of selenium nano-scaffold is reliant on molecular binding that occurs between HP and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Our preliminary investigations with selenium-based nano-carriers hold significant promise to improve anti-virulence effectiveness of phytochemicals by enhancing effective intracellular delivery.

  19. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    PubMed Central

    Herranz-López, María; Micol, Vicente

    2017-01-01

    Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation. PMID:29112149

  20. Bergamot Polyphenolic Fraction Supplementation Improves Cognitive Functioning in Schizophrenia: Data From an 8-Week, Open-Label Pilot Study.

    PubMed

    Bruno, Antonio; Pandolfo, Gianluca; Crucitti, Manuela; Cedro, Clemente; Zoccali, Rocco Antonio; Muscatello, Maria Rosaria Anna

    2017-08-01

    Novel treatment strategies for cognitive dysfunctions may prevent long-term disability in patients with schizophrenia, and polyphenolic compounds might be a promising strategy. Bergamot (Citrus bergamia), a citrus fruit characterized by a high amount of flavonoids and flavonoid glycosides, may represent a potential nutraceutical approach to cognitive dysfunction. The present study was aimed to explore the efficacy of bergamot polyphenolic fraction (BPF) supplementation on cognitive/executive functioning in a sample of patients with schizophrenia receiving second-generation antipsychotics. Twenty outpatients treated with second-generation antipsychotics assumed BPF at an oral daily dose of 1000 mg/d for 8 weeks. Brief Psychiatric Rating Scale, Wisconsin Card Sorting Test (WCST), Verbal Fluency Task-Controlled Oral Word Association Test, and Stroop Color-Word Test were administered. At end point, (week 8) BPF supplementation significantly improved WCST "perseverative errors" (P = 0.004) and semantic fluency test (P = 0.004). Moreover, a trend for other cognitive variable (WCST "categories," phonemic fluency, and Stroop Color-Word Test) improvement was observed. The findings provide evidence that BPF administration may be proposed as a potential supplementation strategy to improve cognitive outcome in schizophrenia. Further clinical trials with adequately powered and well-designed methodology are needed to better explore the BPF effectiveness on cognitive impairments in patients with schizophrenia.

  1. The health benefits of wine.

    PubMed

    German, J B; Walzem, R L

    2000-01-01

    Epidemiologic studies from numerous disparate populations reveal that individuals with the habit of daily moderate wine consumption enjoy significant reductions in all-cause and particularly cardiovascular mortality when compared with individuals who abstain or who drink alcohol to excess. Researchers are working to explain this observation in molecular and nutritional terms. Moderate ethanol intake from any type of beverage improves lipoprotein metabolism and lowers cardiovascular mortality risk. The question now is whether wine, particularly red wine with its abundant content of phenolic acids and polyphenols, confers additional health benefits. Discovering the nutritional properties of wine is a challenging task, which requires that the biological actions and bioavailability of the >200 individual phenolic compounds be documented and interpreted within the societal factors that stratify wine consumption and the myriad effects of alcohol alone. Further challenge arises because the health benefits of wine address the prevention of slowly developing diseases for which validated biomarkers are rare. Thus, although the benefits of the polyphenols from fruits and vegetables are increasingly accepted, consensus on wine is developing more slowly. Scientific research has demonstrated that the molecules present in grapes and in wine alter cellular metabolism and signaling, which is consistent mechanistically with reducing arterial disease. Future research must address specific mechanisms both of alcohol and of polyphenolic action and develop biomarkers of their role in disease prevention in individuals.

  2. Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-κB and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages.

    PubMed

    Appel, Kurt; Meiser, Peter; Millán, Estrella; Collado, Juan Antonio; Rose, Thorsten; Gras, Claudia C; Carle, Reinhold; Muñoz, Eduardo

    2015-09-01

    Black chokeberry has been known to play a protective role in human health due to its high polyphenolic content including anthocyanins and caffeic acid derivatives. In the present study, we first characterized the polyphenolic content of a commercial chokeberry concentrate and investigated its effect on LPS-induced NF-κB activation and release of pro-inflammatory mediators in macrophages in the presence or the absence of sodium selenite. Examination of the phytochemical profile of the juice concentrate revealed high content of polyphenols (3.3%), including anthocyanins, proanthocyanidins, phenolic acids, and flavonoids. Among them, cyanidin-3-O-galactoside and caffeoylquinic acids were identified as the major compounds. Data indicated that chokeberry concentrate inhibited both the release of TNFα, IL-6 and IL-8 in human peripheral monocytes and the activation of the NF-κB pathway in RAW 264.7 macrophage cells. Furthermore, chokeberry synergizes with sodium selenite to inhibit NF-κB activation, cytokine release and PGE2 synthesis. These findings suggest that selenium added to chokeberry juice enhances significantly its anti-inflammatory activity, thus revealing a sound approach in order to tune the use of traditional herbals by combining them with micronutrients. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The gnotobiotic brine shrimp (Artemia franciscana) model system reveals that the phenolic compound pyrogallol protects against infection through its prooxidant activity.

    PubMed

    Baruah, Kartik; Duy Phong, Ho Phuong Pham; Norouzitallab, Parisa; Defoirdt, Tom; Bossier, Peter

    2015-12-01

    The phenolic compound pyrogallol is the functional unit of many polyphenols and currently there has been a growing interest in using this compound in human and animal health owing to its health-promoting effects. The biological actions of pyrogallol moiety (and polyphenols) in inducing health benefitting effects have been studied; however, the mechanisms of action remain unclear yet. Here, we aimed at unravelling the underlying mechanism of action behind the protective effects of pyrogallol against bacterial infection by using the gnotobiotically-cultured brine shrimp Artemia franciscana and pathogenic bacteria Vibrio harveyi as host-pathogen model system. The gnotobiotic test system represents an exceptional system for carrying out such studies because it eliminates any possible interference of microbial communities (naturally present in the experimental system) in mechanistic studies and furthermore facilitates the interpretation of the results in terms of a cause effect relationship. We provided clear evidences suggesting that pyrogallol pretreament, at an optimum concentration, induced protective effects in the brine shrimp against V. harveyi infection. By pretreating brine shrimp with pyrogallol in the presence or absence of an antioxidant enzyme mixture (catalase and superoxide dismutase), we showed that the Vibrio-protective effect of the compound was caused by its prooxidant action (e.g. generation of hydrogen peroxide, H2O2). We showed further that generation of prooxidant is linked to the induction of heat shock protein Hsp70, which is involved in eliciting the prophenoloxidase and transglutaminase immune responses. The ability of pyrogallol to induce protective immunity makes it a potential natural protective agent that might be a potential preventive modality for different host-pathogen systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Design and optimization of a semicontinuous hot-cold extraction of polyphenols from grape pomace.

    PubMed

    Monrad, Jeana K; Srinivas, Keerthi; Howard, Luke R; King, Jerry W

    2012-06-06

    Grape pomace contains appreciable amounts of polyphenolic compounds such as anthocyanins and procyanidins which can be recovered for use as food supplements. The extraction of these polyphenols from the pomace is usually accomplished at slightly elevated temperatures, frequently employing hydroethanolic solvents. Due to governmental regulations and the cost involved in using ethanol as a solvent, as well as the loss in polyphenolics due to thermal degradation, improved extraction techniques are required. In this study, a semicontinuous extraction apparatus employing only water was developed to maximize the recovery of anthocyanins and procyanidins from red grape pomace (Vitis vinifera). Water is preheated prior to its entry to the extraction cell containing the grape pomace sample, where it is allowed to then flow continuously through the unheated extraction vessel prior to its collection at ambient conditions. Extraction variables that impacted the polyphenolic recovery included pomace moisture content (crude or dried), sample mass, water flow rate, and extraction temperature. A response surface method was used to analyze the results from the extraction, and the optimal conditions were found to be 140 °C and 9 mL/min water flow rate. These conditions can produce an extract containing 130 mg/100 g DW of anthocyanins and 2077 mg/100 g DW of procyanidins. Higher yields of polyphenolics were observed using crude (wet) rather than dried pomace, hence avoiding the need to dry the pomace prior to extraction. The described semicontinuous extraction method using only water as the extraction solvent under subcritical conditions allowed the efficient extraction of polyphenols from red grape pomace without the attendant loss of polyphenolic content due to having to heat the extraction vessel prior to commencement of extraction.

  5. Applications of Electromigration Techniques: Applications of Electromigration Techniques in Food Analysis

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr; Ligor, Magdalena; Buszewski, Bogusław

    Electromigration techniques, including capillary electrophoresis (CE), are widely used for separation and identification of compounds present in food products. These techniques may also be considered as alternate and complementary with respect to commonly used analytical techniques, such as high-performance liquid chromatography (HPLC), or gas chromatography (GC). Applications of CE concern the determination of high-molecular compounds, like polyphenols, including flavonoids, pigments, vitamins, food additives (preservatives, antioxidants, sweeteners, artificial pigments) are presented. Also, the method developed for the determination of proteins and peptides composed of amino acids, which are basic components of food products, are studied. Other substances such as carbohydrates, nucleic acids, biogenic amines, natural toxins, and other contaminations including pesticides and antibiotics are discussed. The possibility of CE application in food control laboratories, where analysis of the composition of food and food products are conducted, is of great importance. CE technique may be used during the control of technological processes in the food industry and for the identification of numerous compounds present in food. Due to the numerous advantages of the CE technique it is successfully used in routine food analysis.

  6. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods.

    PubMed

    Adesso, Simona; Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; Scopa, Antonio; Sofo, Adriano; Tenore, Gian Carlo; Russo, Mariateresa; Di Gaudio, Francesca; Autore, Giuseppina; Campiglia, Pietro; Marzocco, Stefania

    2016-09-01

    Besides their nutritional value, vegetables are a source of health-promoting compounds, such as polyphenols, and their content can be influenced by the particular farming method. In this study polyphenolic extracts from Lactuca sativa (var. Maravilla de verano) plants cultivated with different farming methods were chemically characterised and tested in vitro and ex vivo inflammation models. The tested extacts (250-2.5 µg mL(-1) ) were able to reduce both the inflammatory and oxidative stress in LPS-stimulated J774A.1 murine monocyte macrophage cells, by lowering the release of nitric oxide (NO) and reactive oxygen species (ROS) and promoting nuclear translocation of nuclear factor (erythroid-derived 2)-like 2; (Nrf2) and nuclear factor-κB (NF-κB). In this regard, quantitative profiles revealed different amounts of polyphenols, in particular quercetin levels were higher in plants under mineral fertilised treatment. Those extract showed an enhanced anti-inflammatory and antioxidant activity. Our data showed the anti-inflammatory and antioxidant potential of Maravilla de Verano polyphenolic extracts. The effect of farming methods on polyphenolic levels was highlighted. The higher reduction of inflammatory mediators release in extracts from plants cultivated under mineral fertilisation treatment was correlated to the higher amount of quercetin. These results can be useful for both nutraceutical or agronomic purposes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Leaf polyphenol profile and SSR-based fingerprinting of new segregant Cynara cardunculus genotypes

    PubMed Central

    Pandino, Gaetano; Lombardo, Sara; Moglia, Andrea; Portis, Ezio; Lanteri, Sergio; Mauromicale, Giovanni

    2015-01-01

    The dietary value of many plant polyphenols lies in the protection given against degenerative pathologies. Their in planta role is associated with the host's defense response against biotic and abiotic stress. The polyphenol content of a given plant tissue is strongly influenced by the growing environment, but is also genetically determined. Plants belonging to the Cynara cardunculus species (globe artichoke and the cultivated and wild cardoon) accumulate substantial quantities of polyphenols mainly mono and di-caffeoylquinic acid (CQA) in their foliage. Transgressive segregation for CQA content in an F1 population bred from a cross between a globe artichoke and a cultivated cardoon led to the selection of eight segregants which accumulated more CQA in their leaves than did those of either of their parental genotypes. The selections were grown over two seasons to assess their polyphenol profile (CQAs, apigenin and luteolin derivatives and narirutin), and were also fingerprinted using a set of 217 microsatellite markers. The growing environment exerted a strong effect on polyphenol content, but two of the selections were able to accumulate up to an order of magnitude more CQA than either parent in both growing seasons. Since the species is readily vegetatively propagable, such genotypes can be straightforwardly exploited as a source of pharmaceutically valuable compounds, while their SSR-based fingerprinting will allow the genetic identity of clonally propagated material to be easily verified. PMID:25653660

  8. Regulation of inflammation and redox signaling by dietary polyphenols.

    PubMed

    Rahman, Irfan; Biswas, Saibal K; Kirkham, Paul A

    2006-11-30

    Reactive oxygen species (ROS) play a key role in enhancing the inflammation through the activation of NF-kappaB and AP-1 transcription factors, and nuclear histone acetylation and deacetylation in various inflammatory diseases. Such undesired effects of oxidative stress have been found to be controlled by the antioxidant and/or anti-inflammatory effects of dietary polyphenols such as curcumin (diferuloylmethane, a principal component of turmeric) and resveratrol (a flavonoid found in red wine). The phenolic compounds in fruits, vegetables, tea and wine are mostly derivatives, and/or isomers of flavones, isoflavones, flavonols, catechins, tocopherols, and phenolic acids. Polyphenols modulate important cellular signaling processes such as cellular growth, differentiation and host of other cellular features. In addition, they modulate NF-kappaB activation, chromatin structure, glutathione biosynthesis, nuclear redox factor (Nrf2) activation, scavenge effect of ROS directly or via glutathione peroxidase activity and as a consequence regulate inflammatory genes in macrophages and lung epithelial cells. However, recent data suggest that dietary polyphenols can work as modifiers of signal transduction pathways to elicit their beneficial effects. The effects of polyphenols however, have been reported to be more pronounced in vitro using high concentrations which are not physiological in vivo. This commentary discusses the recent data on dietary polyphenols in the control of signaling and inflammation particularly during oxidative stress, their metabolism and bioavailability.

  9. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers.

    PubMed

    Pérez-Sánchez, Almudena; Borrás-Linares, Isabel; Barrajón-Catalán, Enrique; Arráez-Román, David; González-Álvarez, Isabel; Ibáñez, Elena; Segura-Carretero, Antonio; Bermejo, Marival; Micol, Vicente

    2017-01-01

    Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the apparent permeability values (Papp) were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS) of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability); therefore, RE itself should also be classified into this category.

  10. Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts.

    PubMed

    Messyasz, Beata; Michalak, Izabela; Łęska, Bogusława; Schroeder, Grzegorz; Górka, Bogusława; Korzeniowska, Karolina; Lipok, Jacek; Wieczorek, Piotr; Rój, Edward; Wilk, Radosław; Dobrzyńska-Inger, Agnieszka; Górecki, Henryk; Chojnacka, Katarzyna

    2018-01-01

    The biologically active compounds (fatty acids, pigments, phenolics, and flavonoid content) were studied in supercritical fluid extracts from the biomass of marine ( Ulva clathrata , Cladophora glomerata , Polysiphonia fucoides , and their multi-species mixture) and freshwater ( C. glomerata ) macroalgae. Different extraction techniques were used in order to compare differences in the biologically active compound composition of the macroalgal extracts. The results indicated that the saturated and unsaturated fatty acids ranged from C9:0 to C22:0. The analysis of differences in the composition of unsaturated to saturated fatty acids in extracts showed that palmitic acid (C16:0) and oleic acid (C18:1, n-9) reached the highest value not only in marine monospecies and multi-species biomass but also in the freshwater macroalga C. glomerata . When comparing the similarity between the concentration of fatty acids and the ratio of the concentration of unsaturated fatty acids to saturated in macroalgal extracts, we found small but not statistically significant variations in values between years (up to 10%). This is acceptable for applications as a stable raw material for industrial purposes. Significantly higher values of fatty acids, carotenoids, and chlorophylls were obtained in the case of SC-CO 2 extraction. The active ingredients of polyphenols, possessing antioxidant activity ranged from approximately 2-4%. Moreover, flavonoids represented less than 10% of the total content of polyphenolic compounds. The extraction efficiency of polyphenols was higher from a mixture of marine algae for the ultrasound-assisted extraction compared to freshwater. All these findings show that marine and freshwater macroalgae, as a raw material, have the optimal biologically active compounds composition for cosmetics.

  11. Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans.

    PubMed

    D'Souza, Roy N; Grimbs, Sergio; Behrends, Britta; Bernaert, Herwig; Ullrich, Matthias S; Kuhnert, Nikolai

    2017-09-01

    A comprehensive analysis of cocoa polyphenols from unfermented and fermented cocoa beans from a wide range of geographic origins was carried out to catalogue systematic differences based on their origin as well as fermentation status. This study identifies previously unknown compounds with the goal to ascertain, which of these are responsible for the largest differences between bean types. UHPLC coupled with ultra-high resolution time-of-flight mass spectrometry was employed to identify and relatively quantify various oligomeric proanthocyanidins and their glycosides amongst several other unreported compounds. A series of biomarkers allowing a clear distinction between unfermented and fermented cocoa beans and for beans of different origins were identified. The large sample set employed allowed comparison of statistically significant variations of key cocoa constituents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of cytotoxic and anti-platelet activities of polyphenolic extracts from Arnica montana flowers and Juglans regia husks.

    PubMed

    Rywaniak, Joanna; Luzak, Boguslawa; Podsedek, Anna; Dudzinska, Dominika; Rozalski, Marcin; Watala, Cezary

    2015-01-01

    Polyphenolic compounds of plant origin are well known to be beneficial to human health: they exert protective effects on haemostasis and have a particular influence on blood platelets. However, the anti-platelet properties of polyphenolic compounds observed so far have not been weighed against their potential cytotoxic action against platelets. The aim of this study was to demonstrate that anti-platelet and cytotoxic effects on blood platelets may interfere and therefore, may often lead to confusion when evaluating the properties of plant extracts or other agents towards blood platelets. The anti-platelet and cytotoxic in vitro effects of plant extracts obtained from the husks of walnuts (J. regia) and flowers of arnica (A. montana) on platelet reactivity and viability were examined. Platelet function was assessed using standard methods (flow cytometry: P-selectin expression, activation of GPIIbIIIa complex, vasodilator-stimulated phosphoprotein, VASP index; turbidimetric and impedance aggregometry) and newly set assays (flow cytometric monitoring of platelet cytotoxicity). The results reveal that none of the studied plant extracts demonstrated cytotoxicity towards blood platelets. The phenolic acid-rich extract of A. montana (7.5 and 15 µg/ml) significantly reduced the ADP-induced aggregation in both whole blood and PRP, and decreased the platelet reactivity index (PRI; VASP phosphorylation) in whole blood, while showing excellent antioxidant capacity. The extract of J. regia husks significantly reduced ADP-induced platelet aggregation in whole blood when applied at 7.5 µg/ml, and only slightly decreased the PRI at 15 µg/ml. Both examined extracts suppressed platelet hyper-reactivity, and such influence did not interfere with cytotoxic effects of the extracts. Thus, its high polyphenol content, excellent antioxidant capacity and distinct anti-platelet properties, in combination with its lack of toxicity, make the extract of A. montana flowers a possible candidate as an anti-platelet agent or a compounding diet supplement.

  13. Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: contribution of chlorogenic acid.

    PubMed

    Francisco, Vera; Costa, Gustavo; Figueirinha, Artur; Marques, Carla; Pereira, Paulo; Miguel Neves, Bruno; Celeste Lopes, Maria; García-Rodríguez, Carmen; Teresa Cruz, Maria; Teresa Batista, Maria

    2013-06-21

    Cymbopogon citratus (DC.) Stapf leaves infusion is used in traditional medicine for the treatment of inflammatory conditions, however little is known about their bioactive compounds. Investigate the compounds responsible for anti-inflammatory potential of Cymbopogon citratus (Cy) on cytokines production induced by lipopolysaccharide (LPS) in human and mouse macrophages, and the action mechanisms involved. An essential oil-free infusion of Cy was prepared and polyphenol-rich fractions (PFs) were obtained from it by column chromatography. Chlorogenic acid (CGA) was identified, by HPLC/PDA/ESI-MS(n). The expression of cytokines, namely TNF-α and CCL5, was analyzed by real-time RT-PCR, on LPS-stimulated human macrophages. Activation of nuclear factor (NF)-κB, a master regulator of inflammation, was investigated by western blot and gene reporter assay. Proteasome activity was assessed using a fluorogenic peptide. Cymbopogon citratus extract and its polyphenols inhibited the cytokine production on human macrophages. This supports the anti-inflammatory activity of Cy polyphenols in physiologically relevant cells. Concerning the effect on the activation of NF-κB pathway, the results pointed to an inhibition of LPS-induced NF-κB activation by Cy and PFs. CGA was identified, by HPLC/PDA/ESI-MS(n), as the main phenolic acid of the Cy infusion, and it demonstrated to be, at least in part, responsible by that effect. Additionally, it was verified for the first time that Cy and PFs inhibited the proteasome activity, a complex that controls NF-κB activation, having CGA a strong contribution. The results evidenced, for the first time, the anti-inflammatory properties of Cymbopogon citratus through proteasome inhibition and, consequently NF-κB pathway and cytokine expression. Additionally, Cy polyphenols, in particular chlorogenic acid, were highlighted as bioactive compounds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Changes in the Aromatic Profile, Sugars, and Bioactive Compounds When Purple Garlic Is Transformed into Black Garlic.

    PubMed

    Martínez-Casas, Lucía; Lage-Yusty, María; López-Hernández, Julia

    2017-12-13

    Black garlic is an elaborated product obtained from fresh garlic (Allium sativum L.) at a controlled high humidity and temperature, which leads to modifications in color, taste, and texture. To clarify the physicochemical changes that occur during the thermal process, this work aimed to evaluate and contrast the antioxidant capacity and that of other compounds between purple garlic ecotype "Purple from Las Pedroñeras" and its black garlic derivative. Our results showed numerous differences between both, because black garlic presented a significant divergence in its volatile profile, a decreased amount of ascorbic acid, an increment in sugar and polyphenol contents, a greater antioxidant capacity, and a different composition of phenolic acids and flavonoids.

  15. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango)

    PubMed Central

    2017-01-01

    Mangifera indica (family Anacardiaceae), commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described. PMID:29456572

  16. Antioxidant properties and hyphenated HPLC-PDA-MS profiling of Chilean Pica mango fruits (Mangifera indica L. Cv. piqueño).

    PubMed

    Ramirez, Javier E; Zambrano, Ricardo; Sepúlveda, Beatriz; Simirgiotis, Mario J

    2013-12-31

    Antioxidant capacities and polyphenolic contents of two mango cultivars from northern Chile, one of them endemic of an oasis in the Atacama Desert, were compared for the first time. Twenty one phenolic compounds were detected in peel and pulp of mango fruits varieties Pica and Tommy Atkins by HPLC-PDA-MS and tentatively characterized. Eighteen compounds were present in Pica pulp (ppu), 13 in Pica peel (ppe) 11 in Tommy Atkins pulp (tpu) and 12 in Tommy Atkins peel (tpe). Three procyanidin dimers (peaks 6, 9 and 10), seven acid derivatives (peaks 1-4, 11, 20 and 21) and four xanthones were identified, mainly mangiferin (peak 12) and mangiferin gallate, (peak 7), which were present in both peel and pulp of the two studied species from northern Chile. Homomangiferin (peak 13) was also present in both fruit pulps and dimethylmangiferin (peak 14) was present only in Tommy pulp. Pica fruits showed better antioxidant capacities and higher polyphenolic content (73.76/32.23 µg/mL in the DPPH assay and 32.49/72.01 mg GAE/100 g fresh material in the TPC assay, for edible pulp and peel, respectively) than Tommy Atkins fruits (127.22/46.39 µg/mL in the DPPH assay and 25.03/72.01 mg GAE/100 g fresh material in the TPC assay for pulp and peel, respectively). The peel of Pica mangoes showed also the highest content of phenolics (66.02 mg/100 g FW) measured by HPLC-PDA. The HPLC generated fingerprint can be used to authenticate Pica mango fruits and Pica mango food products.

  17. Biophysical mechanism of the protective effect of blue honeysuckle (Lonicera caerulea L. var. kamtschatica Sevast.) polyphenols extracts against lipid peroxidation of erythrocyte and lipid membranes.

    PubMed

    Bonarska-Kujawa, D; Pruchnik, H; Cyboran, S; Żyłka, R; Oszmiański, J; Kleszczyńska, H

    2014-07-01

    The aim of the present research was to determine the effect of blue honeysuckle fruit and leaf extracts components on the physical properties of erythrocyte and lipid membranes and assess their antioxidant properties. The HPLC analysis showed that the extracts are rich in polyphenol anthocyanins in fruits and flavonoids in leaves. The results indicate that both extracts have antioxidant activity and protect the red blood cell membrane against oxidation induced by UVC irradiation and AAPH. The extracts do not induce hemolysis and slightly increase osmotic resistance of erythrocytes. The research showed that extracts components are incorporated mainly in the external part of the erythrocyte membrane, inducing the formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that the extracts polyphenols alter the packing arrangement of the hydrophilic part of the erythrocyte and lipid membranes, without changing the fluidity of the hydrophobic part. The DSC results also show that the extract components do not change the main phase transition temperature of DPPC membrane. Studies of electric parameters of membranes modified by the extracts showed that they slightly stabilize lipid membranes and do not reduce their specific resistance or capacity. Examination of IR spectra indicates small changes in the degree of hydration in the hydrophilic region of liposomes under the action of the extracts. The location of polyphenolic compounds in the hydrophilic part of the membrane seems to constitute a protective shield of the cell against other substances, the reactive forms of oxygen in particular.

  18. Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study.

    PubMed

    Godos, Justyna; Castellano, Sabrina; Ray, Sumantra; Grosso, Giuseppe; Galvano, Fabio

    2018-04-24

    Background : The epidemiological evidence for a relation between dietary polyphenol intake and depression is limited. Therefore, the aim of this study was to assess the association between habitual dietary intake of total polyphenols, their classes, subclasses and individual compounds and depressive symptoms among the participants of the Mediterranean healthy Eating, Lifestyle and Aging (MEAL) study. Methods : Demographic and dietary characteristics of 1572 adults living in southern Italy were analyzed. Food frequency questionnaires and Phenol-Explorer were used to calculate habitual dietary intakes of polyphenols. The Center for Epidemiologic Studies Depression Scale (CES-D-10) was used as screening tool for depressive symptoms. Multivariate logistic regression analyses were used to test associations and were expressed as odds ratio (OR) and 95% confidence intervals (CI). Results : A total of 509 individuals reported having depressive symptoms. Based on multivariate logistic regression analyses, total polyphenol intake was not associated with depressive symptoms. After adjustment for potential confounding factors, dietary intake of phenolic acid (OR = 0.64, 95% CI: 0.44, 0.93), flavanones (OR = 0.54, 95% CI: 0.32, 0.91), and anthocyanins (OR = 0.61, 95% CI: 0.42, 0.89) showed significant inverse association with depressive symptoms, when comparing the highest with the lowest quartile. Moreover, flavanones and anthocyanins, were associated with depressive symptoms in a dose-response manner. Among individual compounds, inverse association was observed for quercetin (OR = 0.53, 95% CI: 0.32, 0.86) and naringenin (OR = 0.51, 95% CI: 0.30, 0.85), for the highest versus lowest quartile of intake. When taking into consideration the major sources of the polyphenols, only citrus fruits and wine consumption was inversely associated with depressive symptoms (Q4 vs. Q1: OR= 0.51, 95% CI: 0.35, 0.75; Q4 vs. Q1: OR = 0.53, 95% CI: 0.38, 0.74, respectively). Conclusions : Higher dietary intake of flavonoid may be inversely associated with depressive symptoms. Further studies are needed to definitively confirm these observed associations.

  19. Isolation and Characterization of Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitory Polyphenolic Compounds From Dodonaea viscosa and Their Kinetic Analysis.

    PubMed

    Uddin, Zia; Song, Yeong Hun; Ullah, Mahboob; Li, Zuopeng; Kim, Jeong Yoon; Park, Ki Hun

    2018-01-01

    Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B) enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95%) of Dodonaea viscosa aerial parts afforded nine ( 1 - 9 ) polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC 50 13.5-57.9 μM. Among them, viscosol ( 4 ) was found to be the most potent compound having IC 50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant ( K i ) value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3 , 6 , 7 , and 9 were found to be the most abundant metabolites in D. viscosa extract.

  20. Isolation and characterization of protein tyrosine phosphatase 1B (PTP1B) inhibitory polyphenolic compounds from Dodonaea viscosa and their kinetic analysis

    NASA Astrophysics Data System (ADS)

    Uddin, Zia; Song, Yeong Hun; Ullah, Mahboob; Li, Zuopeng; Kim, Jeong Yoon; Park, Ki Hun

    2018-03-01

    Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B) enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95%) of Dodonaea viscosa aerial parts afforded nine (1-9) polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5-57.9 μM. Among them, viscosol (4) was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki) value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7 and 9 were found to be the most abundant metabolites in D.viscosa extract.

Top