Science.gov

Sample records for polysaccharide impedes fluid

  1. Bioelectric impedance measurement for fluid status assessment.

    PubMed

    Piccoli, Antonio

    2010-01-01

    Adequacy of body fluid volume improves short- and long-term outcomes inpatients with heart and kidney disorders. Bioelectrical impedance vector analysis (BIVA) has the potential to be used as a routine method at the bedside for assessment and management of body fluids. Impedance (Z vector) is a combination of resistance, R (function of intra- and extracellular fluid volume) and reactance, Xc (function of the dielectric material of tissue cells), with the best signal to noise ratio at 50 kHz. BIVA allows a direct assessment of body fluid volume through patterns of vector distribution on the R-Xc plane without the knowledge of the body weight. Reference tolerance ellipses (50, 75 and 95%) for the individual vector were previously calculated in the healthy population. We determined the optimal vector distribution in patients undergoing hemodialysis without hypotension or intradialytic symptoms. Most vectors lay within the reference 75% tolerance ellipse of the healthy population indicating full electrical restoration of tissues. We also determined the optimal vector distribution of patients undergoing continuous ambulatory peritoneal dialysis without edema and with a residual urine output. The vector distribution was close to the distribution of both healthy subjects and pre-session distribution of hemodialysis patients. We established the relationship between central venous pressure and BIVA in critically ill patients. Shorter vectors (overhydration) were associated with increasing venous pressure, whereas longer vectors were associated with decreasing venous pressure. The association between BIVA and NT-proBNP has been evaluated in patients with acute cardiac-related dyspnea. In the 'gray zone' of NT-proBNP values between 'ruling out' and 'ruling in' acute heart failure, BIVA detected latent peripheral congestion. Simple patterns of BIVA allow detection, monitoring, and control of hydration status using vector displacement for the feedback on treatment. Copyright (c

  2. Chatter suppression through variable impedance and smart fluids

    SciTech Connect

    Segalman, D.; Redmond, J.

    1996-02-01

    A novel approach to mitigating chatter vibrations in machine tools is presented. Encountered in many types of metal removal processes, chatter is a dangerous condition which results from the interaction of the cutting dynamics with the modal characteristics of the machine-workpiece assembly. Tool vibrations are recored on the surface of the workpiece during metal removal, imposing a waviness which alters the chip thickness during subsequent cutting passes. Deviations from the nominal chip thickness effect changes in the cutting force which, under certain conditions, can further excite vibrations. The chatter mitigation strategy presented is based on periodically altering the impedance of the cutting tool assembly. A cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface. Results from a simulated milling process reveal that significant reductions in vibration amplitude can be achieved through proper selection of fluid and excitation frequency.

  3. Fluid mechanical model of the acoustic impedance of small orifices

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Rogers, T.

    1976-01-01

    A fluid mechanical model of the acoustic behavior of small orifices is presented which predicts orifice resistance and reactance as a function of incident sound pressure level, frequency, and orifice geometry. Agreement between predicted and measured values is excellent. The model shows the following: (1) The acoustic flow in immediate neighborhood of the orifice can be modeled as a locally spherical flow. Within this near field, the flow is, to a first approximation, unsteady and incompressible. (2) At very low sound pressure levels, the orifice viscous resistance is directly related to the effect of boundary-layer displacement along the walls containing the orifice, and the orifice reactance is directly related to the inertia of the oscillating flow in the neighborhood of the orifice. (3) For large values of the incident acoustic pressure, the impedance is dominated by nonlinear jet-like effects. (4) For low values of the pressure, the resistance and reactance are roughly equal.

  4. Electric impedance for evaluation of body fluid balance in cardiac surgical patients.

    PubMed

    Perko, M J; Jarnvig, I L; Højgaard-Rasmussen, N; Eliasen, K; Arendrup, H

    2001-02-01

    To evaluate whether electric impedance can be used to monitor body fluid balance and fluid distribution in cardiac surgical patients. Prospective clinical study. Heart Center, Rigshospital, Copenhagen. Sixteen consecutive patients scheduled for cardiac surgery. Body weight, fluid balance, central hemodynamics, and total and segmental body impedance were examined perioperatively. During semisupine rest before surgery, changes in impedance indicated relocation of fluid from the legs to the thorax, mostly in the extracellular space. After surgery, weight and fluid balance increased by 3.87 +/- 0.35 kg and 1.86 +/- 0.16 L (mean +/- SE, p < 0.01) and remained elevated through the next 2 days. Impedance decreased by 30% over the thorax, by 24% over the abdomen, by 2% over the leg, and by 4% over the entire body. Changes in total and thoracoabdominal impedances had the highest correlation to the fluid balance (r = -0.86 and r = -0.87). After correction of impedance values by the constant from the regression model, the mean difference in estimation of fluid changes obtained by electric impedance and by fluid balance was 0 +/- 0.1 L at the range of changes of 4.6 L. Alterations in electric impedance closely follow changes in fluid balance during the perioperative period. This method can be used in clinical practice to control postoperative body fluid balance in cardiac surgical patients.

  5. Klebsiella pneumoniae Capsule Polysaccharide Impedes the Expression of β-Defensins by Airway Epithelial Cells▿

    PubMed Central

    Moranta, David; Regueiro, Verónica; March, Catalina; Llobet, Enrique; Margareto, Javier; Larrate, Eider; Garmendia, Junkal; Bengoechea, José A.

    2010-01-01

    Human β-defensins (hBDs) contribute to the protection of the respiratory tract against pathogens. It is reasonable to postulate that pathogens have developed countermeasures to resist them. Klebsiella pneumoniae capsule polysaccharide (CPS), but not the lipopolysaccharide O antigen, mediated resistance against hBD1 and hBD2. hBD3 was the most potent hBD against Klebsiella. We investigated the possibility that as a strategy for survival in the lung, K. pneumoniae may not activate the expression of hBDs. Infection of A549 and normal human bronchial cells with 52145-ΔwcaK2, a CPS mutant, increased the expression of hBD2 and hBD3. Neither the wild type nor the lipopolysaccharide O antigen mutant increased the expression of hBDs. In vivo, 52145-ΔwcaK2 induced higher levels of mBD4 and mBD14, possible mouse orthologues of hBD2 and hBD3, respectively, than the wild type. 52145-ΔwcaK2-dependent upregulation of hBD2 occurred via NF-κB and mitogen-activated protein kinases (MAPKs) p44/42, Jun N-terminal protein kinase (JNK)-dependent pathways. The increase in hBD3 expression was dependent on the MAPK JNK. 52145-ΔwcaK2 engaged Toll-like receptors 2 and 4 (TLR2 and TLR4) to activate hBD2, whereas hBD3 expression was dependent on NOD1. K. pneumoniae induced the expression of CYLD and MKP-1, which act as negative regulators for 52145-ΔwcaK2-induced expression of hBDs. Bacterial engagement of pattern recognition receptors induced CYLD and MKP-1, which may initiate the attenuation of proinflammatory pathways. The results of this study indicate that K. pneumoniae CPS not only protects the pathogen from the bactericidal action of defensins but also impedes their expression. These features of K. pneumoniae CPS may facilitate pathogen survival in the hostile environment of the lung. PMID:20008534

  6. Sensing fluid viscosity and density through mechanical impedance measurement using a whisker transducer

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Ling, Shih-Fu

    2013-05-01

    This paper presents a new technique for fluid viscosity and density sensing through measuring the mechanical impedance of the fluid load applied on a sphere. A piezoelectric whisker transducer (WT) is proposed which acts simultaneously as both the actuator to excite the sphere tip to oscillate in the fluid and the sensor to measure the force, velocity and mechanical impedance. The relationship between mechanical impedance of the fluid load and electrical impedance of the WT is derived based on a transduction matrix model which characterizes the electro-mechanical transduction process of the WT in both directions. The mechanical impedance is further related to the fluid viscosity and density using a theoretical model. The establishment of this fluid-mechanical-electrical relationship allows the WT to extract the fluid viscosity and density conveniently and accurately just from its electrical impedance. Experimental studies are carried out to calibrate the WT and test its performance using glycerol-water mixtures. It is concluded that the WT is capable of providing results comparable to those of standard viscometers within a wide measurement range due to its low working frequency and large vibration amplitude. Its unique self-actuation-and-sensing feature makes it a suitable solution for online fluid sensing.

  7. A Review of Electrical Impedance Spectrometry Methods for Parametric Estimation of Physiologic Fluid Volumes

    NASA Technical Reports Server (NTRS)

    Dewberry, B.

    2000-01-01

    Electrical impedance spectrometry involves measurement of the complex resistance of a load at multiple frequencies. With this information in the form of impedance magnitude and phase, or resistance and reactance, basic structure or function of the load can be estimated. The "load" targeted for measurement and estimation in this study consisted of the water-bearing tissues of the human calf. It was proposed and verified that by measuring the electrical impedance of the human calf and fitting this data to a model of fluid compartments, the lumped-model volume of intracellular and extracellular spaces could be estimated, By performing this estimation over time, the volume dynamics during application of stimuli which affect the direction of gravity can be viewed. The resulting data can form a basis for further modeling and verification of cardiovascular and compartmental modeling of fluid reactions to microgravity as well as countermeasures to the headward shift of fluid during head-down tilt or spaceflight.

  8. The polysaccharide capsule of Streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice.

    PubMed

    de Vos, Alex F; Dessing, Mark C; Lammers, Adriana J J; de Porto, Alexander P N A; Florquin, Sandrine; de Boer, Onno J; de Beer, Regina; Terpstra, Sanne; Bootsma, Hester J; Hermans, Peter W; van 't Veer, Cornelis; van der Poll, Tom

    2015-01-01

    Toll-like receptors (TLR) and the downstream adaptor protein MyD88 are considered crucial for protective immunity during bacterial infections. Streptococcus (S.) pneumoniae is a human respiratory pathogen and a large majority of clinical pneumococcal isolates expresses an external polysaccharide capsule. We here sought to determine the role of pneumococcal capsule in MyD88-mediated antibacterial defense during S. pneumonia pneumonia. Wild type (WT) and Myd88(-/-) mice were inoculated intranasally with serotype 2 S. pneumoniae D39 or with an isogenic capsule locus deletion mutant (D39∆cps), and analysed for bacterial outgrowth and inflammatory responses in the lung. As compared to WT mice, Myd88(-/-) mice infected with D39 demonstrated a modestly impaired bacterial clearance accompanied by decreased inflammatory responses in the lung. Strikingly, while WT mice rapidly cleared D39∆cps, Myd88(-/-) mice showed 105-fold higher bacterial burdens in their lungs and dissemination to blood 24 hours after infection. These data suggest that the pneumococcal capsule impairs recognition of TLR ligands expressed by S. pneumoniae and thereby partially impedes MyD88-mediated antibacterial defense.

  9. Identification of fluids and an interface between fluids by measuring complex impedance

    DOEpatents

    Lee, David O.; Wayland, Jr., James R.

    1989-01-01

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface.

  10. Identification of fluids and an interface between fluids by measuring complex impedance

    DOEpatents

    Lee, D.O.; Wayland, J.R. Jr.

    1989-12-05

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface. 5 figs.

  11. Measurements of electrical impedance and elastic wave velocity of reservoir rock under fluid-flow test

    NASA Astrophysics Data System (ADS)

    Sawayama, Kazuki; Kitamura, Keigo; Fujimitsu, Yasuhiro

    2017-04-01

    The estimation of water saturation under the ground is essential in geothermal fields, particularly for EGS (enhanced geothermal system). To estimate water saturation, recently, electromagnetic exploration using Magnetotelluric (MT) method has been applied in the geothermal fields. However, the relationship between electrical impedance obtained from this method and water saturation in the reservoir rock has not been well known. Our goal is to elucidate this basic relationship by fluid-flow experiments. As our first step to this goal, we developed the technique to measure and analyze the electrical impedance of the cracked rock in the geothermal reservoir. The fluid-flow test has been conducted as following procedures. At first, reservoir rock sample (pyroxene andesite, Makizono lava formation, Japan) was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure. This nitrogen gas imitates the overheated steam in the geothermal fields. Then, brine (1wt.%-KCl, 1.75 S/m) which imitates the artificial recharge to the reservoir was injected to the samples. After flow rate of drainage fluid becomes stable, injection pressure was increased (11, 12, 14, 16, 18 MPa) and decreased (18, 16, 14, 12, 11 MPa) to vary the water saturation in the samples. During the test, water saturation, permeability, electrical impedance (10-2-105 Hz of frequency) and elastic wave velocity were measured. As a result of andesite, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine. After the brine injection, electrical impedance decreased with injection pressure (small change of water saturation) by up to 40% while P-wave velocity was almost constant (less than 1%). This decrease of electrical impedance with injection pressure could be related to the flow to the narrow path (microcrack

  12. [Separation of enantiomers by supercritical fluid chromatography on polysaccharide derivative-based chiral stationary phases].

    PubMed

    Li, Dongyan; Wu, Xi; Hao, Fangli; Yang, Yang; Chen, Xiaoming

    2016-01-01

    Eleven kinds of chiral compounds have been well separated within 10 min on polysaccharide derivative-based chiral stationary phases named Chiralpak IA, IB, IC, ID, IE and IF by supercritical fluid chromatography (SFC). The chiral recognition of these chiral compounds has demonstrated good complementary enantioselectivities of the six chiral columns, which were proved to be useful for chiral SFC. Both the elution time and enantioselectivies could be significantly affected by the modifier types and their concentrations, such as methanol, ethanol and isopropanol, which should be optimized during the experiments. In addition, the solvent versatility of the immobilized chiral stationary phase on the optimization of the chiral separation was helpful.

  13. Use of low-frequency electrical impedance measurements to determine phospholipid content in amniotic fluid

    NASA Astrophysics Data System (ADS)

    DeLuca, F.; Cametti, C.; Zimatore, G.; Maraviglia, B.; Pachi', A.

    1996-09-01

    In this report we propose a new method for an in vitro test of the foetal lung maturity based on the measurement of the electrical conductivity of the overall amniotic fluid obtained from transabdominal amniocentesis, since this quantity can be linked to a first approximation in a very simple way to the phospholipid content. We have carried out measurements of 85 different samples of amniotic fluid as a function of gestation weeks and we have observed a pronounced change of the electrical conductivity that reflects the increase in the phospholipid concentration occurring at the end of normal pregnancies. The method could be further developed to obtain similar information on in vivo experiments by means of bioelectric impedance tomography, taking advantage of the frequency dependence of the tissue electrical impedance.

  14. Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves

    PubMed Central

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2012-01-01

    Ultrasonic sensors can be used to determine physical fluid parameters like viscosity, density, and speed of sound. In this contribution, we present the concept for an integrated sensor utilizing pressure waves to sense the characteristic acoustic impedance of a fluid. We note that the basic setup generally allows to determine the longitudinal viscosity and the speed of sound if it is operated in a resonant mode as will be discussed elsewhere. In this contribution, we particularly focus on a modified setup where interferences are suppressed by introducing a wedge reflector. This enables sensing of the liquid's characteristic acoustic impedance, which can serve as parameter in condition monitoring applications. We present a device model, experimental results and their evaluation. PMID:23565036

  15. Study of S-wave ray elastic impedance for identifying lithology and fluid

    NASA Astrophysics Data System (ADS)

    Gong, Xue-Ping; Zhang, Feng; Li, Xiang-Yang; Chen, Shuang-Quan

    2013-06-01

    In this paper, we derive an approximation of the SS-wave reflection coefficient and the expression of S-wave ray elastic impedance (SREI) in terms of the ray parameter. The SREI can be expressed by the S-wave incidence angle or P-wave reflection angle, referred to as SREIS and SREIP, respectively. Our study using elastic models derived from real log measurements shows that SREIP has better capability for lithology and fluid discrimination than SREIS and conventional S-wave elastic impedance (SEI). We evaluate the SREIP feasibility using 25 groups of samples from Castagna and Smith (1994). Each sample group is constructed by using shale, brine-sand, and gas-sand. Theoretical evaluation also indicates that SREIP at large incident angles is more sensitive to fluid than conventional fluid indicators. Real seismic data application also shows that SREIP at large angles calculated using P-wave and S-wave impedance can efficiently characterize tight gas-sand.

  16. Impedance loading and radiation of finite aperture multipole sources in fluid filled boreholes

    NASA Astrophysics Data System (ADS)

    Geerits, Tim W.; Kranz, Burkhard

    2017-04-01

    In the exploration of oil and gas finite aperture multipole borehole acoustic sources are commonly used to excite borehole modes in a fluid-filled borehole surrounded by a (poro-) elastic formation. Due to the mutual interaction of the constituent sources and their immediate proximity to the formation it has been unclear how and to what extent these effects influence radiator performance. We present a theory, based on the equivalent surface source formulation for fluid-solid systems that incorporates these 'loading' effects and allows for swift computation of the multipole source dimensionless impedance, the associated radiator motion and the resulting radiated wave field in borehole fluid and formation. Dimensionless impedance results are verified through a comparison with finite element modeling results in the cases of a logging while drilling tool submersed in an unbounded fluid and a logging while drilling tool submersed in a fluid filled borehole surrounded by a fast and a slow formation. In all these cases we consider a monopole, dipole and quadrupole excitation, as these cases are relevant to many borehole acoustic applications. Overall, we obtain a very good agreement.

  17. The relationship between nocturnal polyuria and the distribution of body fluid: assessment by bioelectric impedance analysis.

    PubMed

    Torimoto, Kazumasa; Hirayama, Akihide; Samma, Shoji; Yoshida, Katsunori; Fujimoto, Kiyohide; Hirao, Yoshihiko

    2009-01-01

    Increased nocturnal urinary volume is closely associated with nocturia. We investigated the relationship between nocturnal polyuria and the variation of body fluid distribution during the daytime using bioelectric impedance analysis. A total of 34 men older than 60 years were enrolled in this study. A frequency volume chart was recorded. Nocturnal polyuria was defined as a nocturnal urine volume per 24-hour production of greater than 0.35 (the nocturnal polyuria index). Bioelectric impedance analysis was performed 4 times daily at 8 and 11 a.m., and 5 and 9 p.m. using an InBody S20 body composition analyzer (BioSpace, Seoul, Korea). A significant difference was found in mean +/- SEM 24-hour urine production per fat-free mass between the groups with and without nocturnal polyuria (17.8 +/- 1.4 vs 7.7 +/- 0.9 ml/kg). The increase in fluid in the legs compared with the volume at 8 a.m. was significantly larger at 5 p.m., while there was no difference in the arms or trunk. Nocturnal urine volume significantly correlated with the difference in fluid volume in the legs (r = 0.527, p = 0.0019) and extracellular fluid volume (r = 0.3844, p = 0.0248) between the volumes at 8 a.m. and 9 p.m. Overproduction of urine per fat-free mass leads to nocturnal polyuria. Extracellular fluid accumulates as edema in the legs during the day in patients with nocturnal polyuria. The volume of accumulated extracellular fluid correlates with nocturnal urine volume. We suggest that leg edema is the source of nocturnal urine volume and decreasing edema may cure nocturnal polyuria.

  18. Cerebrospinal fluid flow impedance is elevated in Type I Chiari malformation.

    PubMed

    Shaffer, Nicholas; Martin, Bryn A; Rocque, Brandon; Madura, Casey; Wieben, Oliver; Iskandar, Bermans J; Dombrowski, Stephen; Luciano, Mark; Oshinski, John N; Loth, Francis

    2014-02-01

    Diagnosis of Type I Chiari malformation (CMI) is difficult because the most commonly used diagnostic criterion, cerebellar tonsillar herniation (CTH) greater than 3-5 mm past the foramen magnum, has been found to have little correlation with patient symptom severity. Thus, there is a need to identify new objective measurement(s) to help quantify CMI severity. This study investigated longitudinal impedance (LI) as a parameter to assess CMI in terms of impedance to cerebrospinal fluid motion near the craniovertebral junction. LI was assessed in CMI patients (N = 15) and age-matched healthy controls (N = 8) using computational fluid dynamics based on subject-specific magnetic resonance imaging (MRI) measurements of the cervical spinal subarachnoid space. In addition, CTH was measured for each subject. Mean LI in the CMI group (551 ± 66 dyn/cm5) was significantly higher than in controls (220 ± 17 dyn/cm5, p < 0.001). Mean CTH in the CMI group was 9.0 ± 1.1 mm compared to -0.4 ± 0.5 mm in controls. Regression analysis of LI versus CTH found a weak relationship (R2 = 0.46, p < 0.001), demonstrating that CTH was not a good indicator of the impedance to CSF motion caused by cerebellar herniation. These results showed that CSF flow impedance was elevated in CMI patients and that LI provides different information than a standard CTH measurement. Further research is necessary to determine if LI can be useful in CMI patient diagnosis.

  19. Weight changes in critically ill patients evaluated by fluid balances and impedance measurements.

    PubMed

    Roos, A N; Westendorp, R G; Frölich, M; Meinders, A E

    1993-06-01

    To study simple, rapid, and predictive methods to determine body weight changes in critically ill patients. Prospective, consecutive sample. Medical intensive care unit of a university hospital. Thirty-one consecutive patients. Calculated weight changes, using day-to-day and cumulative fluid balances corrected (in two ways) for insensible losses, were compared with the actual weight changes (mattress bascule). A tetrapolar impedance technique measuring resistance was evaluated for estimating weight changes. No reliable relationship was found between calculated weight changes using fluid balances corrected for insensible loss and the observed weight changes. An intraindividual relationship was found between actual weight changes and changes in resistance measured with the tetrapolar impedance technique in a group of 24 critically ill patients with large weight changes (11.1 +/- 6.7 kg). No such intraindividual relationship was found in seven patients with small weight changes (3.1 +/- 2.2 kg). In each patient, the slope coefficient of the change in weight and resistance relationship differed; this individual slope coefficient could be an indication for hydration. Calculated fluid balances are not predictive for actual weight changes in critically ill patients. Absolute weight measurements are indispensable. Changes in resistance correlated with weight changes in individual patients if weight changes were > 3 kg.

  20. Efficacy of fluid assessment based on intrathoracic impedance monitoring in patients with systolic heart failure.

    PubMed

    Soga, Yoshimitsu; Ando, Kenji; Arita, Takeshi; Hyodo, Makoto; Goya, Masahiko; Iwabuchi, Masashi; Nobuyoshi, Masakiyo

    2011-01-01

    Previous studies have demonstrated that intrathoracic impedance monitoring (IIM) is associated with fluid overload. However, it remains unclear whether this new technology can predict heart failure (HF) before deterioration. Whether fluid status based on IIM predicts HF in patients with left ventricular (LV) systolic dysfunction was investigated. A prospective clinical observational study of 123 patients implanted with IIM-capable cardiac devices was carried out. The primary endpoint was the positive predictive value (PPV) at 12 months. Secondary endpoints were a correlation between onset of HF and IIM, optimal threshold of fluid index and duration between the alert and HF. Complete follow-up clinical data were obtained from 111 patients. During the observational period, 168 alerts were confirmed from 68 patients. In patient-based analysis (alert-based analysis), PPV was 33.8% (33.9%). Sensitivity, specificity and false positive was 67.6% (83.8%), 49.4% (28.4%) and 50.6% (71.6%), respectively. Mean duration between the alert and HF event was 21.4 ± 6.1 days. On multivariate logistic analysis, maximum fluid index, LV ejection fraction and atrial fibrillation were independent predictors of HF events. The optimal cut-off value determined by receiver operating characteristic curve was 114-ohm·day with sensitivity and specificity of 89.5% and 73.0%, respectively. IIM-based fluid index in patients with HF due to LV systolic dysfunction was effective in predicting worsening HF.

  1. Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure events: results of the Fluid Accumulation Status Trial (FAST).

    PubMed

    Abraham, William T; Compton, Steven; Haas, Garrie; Foreman, Blair; Canby, Robert C; Fishel, Robert; McRae, Scott; Toledo, Gloria B; Sarkar, Shantanu; Hettrick, Douglas A

    2011-01-01

    The relative sensitivity and unexplained detection rate of changes in intrathoracic impedance has not been compared with standard heart failure (HF) monitoring using daily weight changes. The Fluid Accumulation Status Trial (FAST) prospectively followed 156 HF patients with implanted cardioverter-defibrillator or cardiac resynchronization therapy defibrillator devices modified to record daily changes in intrathoracic impedance in a blinded fashion for 537±312 days. Daily impedance changes were used to calculate a fluid index that could be compared with a prespecified threshold. True positives were defined as adjudicated episodes of worsening HF occurring within 30 days of a fluid index above threshold or an acute weight gain. Unexplained detections were defined as threshold crossings or acute weight gains not associated with worsening HF. Impedance measurements were performed on >99% of follow-up days, compared with only 76% of days for weight measurements. Sixty-five HF events occurred during follow-up (0.32/patient-year). Forty HF events were detected by impedance but not weight, whereas 5 were detected by weight but not impedance. Sensitivity was greater (76% vs 23%; P<.0001) and unexplained detection rate was lower (1.9 vs 4.3/patient-year; P<.0001) for intrathoracic impedance monitoring at the threshold of 60Ω days compared with acute weight increases of 3 lbs in 1 day or 5 lbs in 3 days and also over a wide range of fluid index and weight thresholds. The sensitivity and unexplained detection rate of intrathoracic impedance monitoring was superior to that seen for acute weight changes. Intrathoracic impedance monitoring represents a useful adjunctive clinical tool for managing HF in patients with implanted devices.

  2. Thoracic artificial lung impedance studies using computational fluid dynamics and in vitro models.

    PubMed

    Schewe, Rebecca E; Khanafer, Khalil M; Orizondo, Ryan A; Cook, Keith E

    2012-03-01

    Current thoracic artificial lungs (TALs) possess blood flow impedances greater than the natural lungs, resulting in abnormal pulmonary hemodynamics when implanted. This study sought to reduce TAL impedance using computational fluid dynamics (CFD). CFD was performed on TAL models with inlet and outlet expansion and contraction angles, θ, of 15°, 45°, and 90°. Pulsatile blood flow was simulated for flow rates of 2-6 L/min, heart rates of 80 and 100 beats/min, and inlet pulsatilities of 3.75 and 2. Pressure and flow data were used to calculate the zeroth and first harmonic impedance moduli, Z(0) and Z(1), respectively. The 45° and 90° models were also tested in vitro under similar conditions. CFD results indicate Z(0) increases as stroke volume and θ increase. At 4 L/min, 100 beats/min, and a pulsatility of 3.75, Z(0) was 0.47, 0.61, and 0.79 mmHg/(L/min) for the 15°, 45°, and 90° devices, respectively. Velocity band and vector plots also indicate better flow patterns in the 45° device. At the same conditions, in vitro Z (0) were 0.69 ± 0.13 and 0.79 ± 0.10 mmHg/(L/min), respectively, for the 45° and 90° models. These Z(0) are 65% smaller than previous TAL designs. In vitro, Z(1) increased with flow rate but was small and unlikely to significantly affect hemodynamics. The optimal design for flow patterns and low impedance was the 45° model.

  3. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    PubMed

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity.

  4. Quantitative Assessment of Fluid Accumulation Using Bioelectrical Impedance Analysis in Patients With Acute Decompensated Heart Failure.

    PubMed

    Sakaguchi, Taiki; Yasumura, Kaori; Nishida, Hiroki; Inoue, Hiroyuki; Furukawa, Tetsuo; Shinouchi, Kazuya; Miura, Hiroyuki; Miyazaki, Koichi; Hamano, Gou; Koide, Masao; Abe, Haruhiko; Date, Motoo; Hirooka, Keiji; Koretsune, Yukihiro; Kusuoka, Hideo; Yasumura, Yoshio

    2015-01-01

    Acute decompensated heart failure (ADHF) is generally considered to be a problem of fluid volume overload, therefore accurately quantifying the degree of fluid accumulation is of critical importance in assessing whether adequate decongestion has been achieved. The aim of this study was to develop and validate a method to quantify the degree of fluid accumulation in patients with ADHF. Using multi-frequency bioelectrical impedance analysis (BIA), we measured extracellular water (ECW) volume in 130 ADHF patients on admission and at discharge. We also predicted optimal ECW volume using original equations based on data from 60 control subjects without the signs of HF. Measured/predicted (M/P) ratio of ECW in ADHF patients was observed to decrease from 1.26±0.25 to 1.04±0.17 during hospitalization (P<0.001). The amount of ECW volume reduction was significantly correlated with reduction in body weight (r=0.766, P<0.001). On multivariate analysis, higher M/P ratio of ECW at discharge was associated with increased risk of ADHF readmission or cardiac death within 6 months after discharge. Multi-frequency BIA-measured ECW was found to offer valuable information for analyzing the pathophysiology of ADHF, and may be a useful guide in the management of this disease.

  5. Assessment of fluid and nutritional status using multifrequency bioelectrical impedance analysis in peritoneal dialysis patients.

    PubMed

    Hyun, Seung-Hyea; Choi, Ji-Young; Cho, Jang-Hee; Park, Sun-Hee; Kim, Chan-Duck; Kim, Yong-Lim

    2014-01-01

    The purpose of this study was to evaluate the clinical usefulness and relevance of bioelectrical impedance analysis (BIA) for assessing the fluid and nutritional status in peritoneal dialysis (PD) patients. Statistical analyses between various measures of fluid and nutritional status were performed in 106 cases of 64 patients. Extracellular fluid/total body water (ECF/TBW) was correlated with systolic blood pressure, extremity edema, and antihypertensive medications (p = 0.042, p < 0.001, and p = 0.029, respectively). Body cell mass (BCM)/height(2) was correlated with SGA rating and PCR (p < 0.001 and p = 0.002, respectively). ECF/TBW and BCM/height(2) significantly predicted extremity edema (p < 0.001) and SGA rating (p = 0.001), respectively. ROC analysis yielded an ECF/TBW cut-off of 0.36 and a BCM/height(2) cut-off of 11.23. When the BCM/height(2) cut-off of 11.23 was applied to subclinical patients (SGA score ≥6), a significant difference in SGA rating was detected in subgroups (p = 0.010). BIA yields useful and relevant information about hydration and nutritional status in PD patients.

  6. Bioelectrical impedance spectroscopy as a fluid management system in heart failure.

    PubMed

    Weyer, Sören; Zink, Matthias Daniel; Wartzek, Tobias; Leicht, Lennart; Mischke, Karl; Vollmer, Thomas; Leonhardt, Steffen

    2014-06-01

    Episodes of hospitalization for heart failure patients are frequent and are often accompanied by fluid accumulations. The change of the body impedance, measured by bioimpendace spectroscopy, is an indicator of the water content. The hypothesis was that it is possible to detect edema from the impedance data. First, a finite integration technique was applied to test the feasibility and allowed a theoretical analysis of current flows through the body. Based on the results of the simulations, a clinical study was designed and conducted. The segmental impedances of 25 patients suffering from heart failure were monitored over their recompensation process. The mean age of the patients was 73.8 and their mean body mass index was 28.6. From these raw data the model parameters from the Cole model were deduced by an automatic fitting algorithm. These model data were used to classify the edema status of the patient. The baseline values of the regression lines of the extra- and intracellular resistance from the transthoracic measurement and the baseline value of the regression line of the extracellular resistance from the foot-to-foot measurement were identified as important parameters for the detection of peripheral edema. The rate of change of the imaginary impedance at the characteristic frequency and the mean intracellular resistance from the foot-to-foot measurement were identified as important parameters for the detection of pulmonary edema. To classify the data, two decision trees were considered: One should detect pulmonary edema (n(pulmonary) = 13, n(none) = 12) and the other peripheral edema (n(peripheral) = 12, n(none) = 13). Peripheral edema could be detected with a sensitivity of 100% and a specificity of 90%. The detection of pulmonary edema showed a sensitivity of 92.31% and a specificity of 100%. The leave-one-out cross-validation-error for the peripheral edema detection was 12% and 8% for the detection of pulmonary edema. This enables the application of BIS as

  7. Measurement of fluid viscosity at microliter volumes using quartz impedance analysis.

    PubMed

    Saluja, Atul; Kalonia, Devendra S

    2004-08-05

    The purpose of this work was to measure viscosity of fluids at low microliter volumes by means of quartz crystal impedance analysis. To achieve this, a novel setup was designed that allowed for measurement of viscosity at volumes of 8 to 10 microL. The technique was based on the principle of electromechanical coupling of piezoelectric quartz crystals. The arrangement was simple with measurement times ranging from 2 to 3 minutes. The crystal setup assembly did not impose any unwanted initial stress on the unloaded quartz crystal. Quartz crystals of 5- and 10-MHz fundamental frequency were calibrated with glycerol-water mixtures of known density and viscosity prior to viscosity measurements. True frequency shifts, for the purpose of this work, were determined followed by viscosity measurement of aqueous solutions of sucrose, urea, PEG-400, glucose, and ethylene glycol at 25 degrees C +/- 0.5 degrees C. The measured viscosities were found to be reproducible and consistent with the values reported in the literature. Minor inconsistencies in the measured resistance and frequency shifts did not affect the results significantly, and were found to be experimental in origin rather than due to electrode surface roughness. Besides, as expected for a viscoelastic fluid, PEG 8000 solutions, the calculated viscosities were found to be less than the reported values due to frequency dependence of storage and loss modulus components of complex viscosity. From the results, it can be concluded that the present setup can provide accurate assessment of viscosity of Newtonian fluids and also shows potential for analyzing non-Newtonian fluids at low microliter volumes.

  8. Analysis of different device-based intrathoracic impedance vectors for detection of heart failure events (from the Detect Fluid Early from Intrathoracic Impedance Monitoring study).

    PubMed

    Heist, E Kevin; Herre, John M; Binkley, Philip F; Van Bakel, Adrian B; Porterfield, James G; Porterfield, Linda M; Qu, Fujian; Turkel, Melanie; Pavri, Behzad B

    2014-10-15

    Detect Fluid Early from Intrathoracic Impedance Monitoring (DEFEAT-PE) is a prospective, multicenter study of multiple intrathoracic impedance vectors to detect pulmonary congestion (PC) events. Changes in intrathoracic impedance between the right ventricular (RV) coil and device can (RVcoil→Can) of implantable cardioverter-defibrillators (ICDs) and cardiac resynchronization therapy ICDs (CRT-Ds) are used clinically for the detection of PC events, but other impedance vectors and algorithms have not been studied prospectively. An initial 75-patient study was used to derive optimal impedance vectors to detect PC events, with 2 vector combinations selected for prospective analysis in DEFEAT-PE (ICD vectors: RVring→Can + RVcoil→Can, detection threshold 13 days; CRT-D vectors: left ventricular ring→Can + RVcoil→Can, detection threshold 14 days). Impedance changes were considered true positive if detected <30 days before an adjudicated PC event. One hundred sixty-two patients were enrolled (80 with ICDs and 82 with CRT-Ds), all with ≥1 previous PC event. One hundred forty-four patients provided study data, with 214 patient-years of follow-up and 139 PC events. Sensitivity for PC events of the prespecified algorithms was as follows: ICD: sensitivity 32.3%, false-positive rate 1.28 per patient-year; CRT-D: sensitivity 32.4%, false-positive rate 1.66 per patient-year. An alternative algorithm, ultimately approved by the US Food and Drug Administration (RVring→Can + RVcoil→Can, detection threshold 14 days), resulted in (for all patients) sensitivity of 21.6% and a false-positive rate of 0.9 per patient-year. The CRT-D thoracic impedance vector algorithm selected in the derivation study was not superior to the ICD algorithm RVring→Can + RVcoil→Can when studied prospectively. In conclusion, to achieve an acceptably low false-positive rate, the intrathoracic impedance algorithms studied in DEFEAT-PE resulted in low sensitivity for the prediction of heart

  9. The effect of acute fluid consumption on measures of impedance and percent body fat using leg-to-leg bioelectrical impedance analysis.

    PubMed

    Dixon, C B; LoVallo, S J; Andreacci, J L; Goss, F L

    2006-01-01

    To examine the effect of acute fluid consumption on measures of impedance and percent body fat (%BF) using a common leg-to-leg bioelectrical impedance analyzer system. Cross-sectional design with treatment order determined using a counterbalanced assignment. University laboratory. In total, 21 recreationally active men (mean age 19.7 +/- 1.0 years; body mass index 24.2 +/- 2.3 kg/m2) volunteered to participate in this study. Subjects had their body composition assessed on three separate occasions. After an initial baseline body composition measurement, subjects consumed 591 ml of water (H2O), a carbohydrate/electrolyte drink (CHOE), or received nothing, used as the control (CON). Subjects were reassessed 20, 40, and 60 min after baseline (POST). Urine specific gravity (USG) was recorded at baseline and 60 min POST to assess hydration state. There were no significant changes in impedance or total body water (TBW) for any of the measurement time periods after drinking H2O or a CHOE beverage. Body weight (BW) (P < 0.0001) and %BF (P < 0.02) increased significantly 20 min POST and remained elevated at the 40 and 60 min POST time periods. After drinking, USG significantly decreased (P<0.0001) 60 min POST from baseline. For the CON trial, there were no significant changes in BW, %BF, TBW, or USG over time. Fluid consumption had no effect on lower-body impedance despite causing significant changes in hydration state. A slight overestimation in %BF (approximately 0.5%) was observed due to increased BW in the H20 and CHOE trials. This finding may have little practical significance when assessing body composition by LBIA.

  10. Hypoalbuminemia is also a marker of fluid excess determined by bioelectrical impedance parameters in dialysis patients.

    PubMed

    Cigarran, Secundino; Barril, Guillermina; Cirugeda, Antonio; Bernis, Carmen; Aguilera, Abelardo; Sanz, Paloma; Herraez, Isabel; Alegre, Laura; Selgas, Rafael

    2007-04-01

    Hypoalbuminemia may be secondary to volume expansion conditions and an independent risk factor for cardiovascular disease. Bioelectrical impedance analysis (BIA) is an accurate, non-invasive method to measure body composition, especially the water compartments in humans. The aim of this cross-sectional study is to evaluate the relationship between serum albumin concentration (SA) and hydration state measured by whole BIA. The study investigated 108 non-selected patients (73 on hemodialysis, 35 on peritoneal dialysis) with a mean age of 61.4 +/- 15.6 years, 42.7% of whom were female. The patients were allotted to groups according to their SA: Group 1, < or = 3.5 g/dL; Group 2, 3.6-4.0 g/dL; and Group 3, >4.0 g/dL. The BIA parameters used included: total body water, intracellular water (ICW), extracellular water (ECW), phase angle (PA), body cell mass (BCM), ICW/ECW ratio and ICW/ECW ratio patients/controls (fluid index). Seventy-five healthy volunteers formed the control group. A strong positive correlation was found between the PA and fluid index (r (2) = 0.993, P < 0.001), as well as between the PA and SA (r = 0.386, P < 0.001), and the ICW/ECW ratio and SA (r = 0.227, P < 0.001). The ECW was negatively correlated with SA (r = -0.330, P < 0.001). Every 0.1 g/dL decrease in SA was associated with a 0.33 L increase in ECW. Group 1 patients had lower reactance (P = 0.006), PA (P < 0.001), BCM (P = 0.012), fluid index (P < 0.001) and ICW/ECW ratio (P = 0.015), and an increased ECW (NS) than groups 2 and 3. We conclude that hypoalbuminemia is also a marker of fluid excess. The SA is associated to the fluid index and the PA allows assessment of the dry weight and its variations in an individualized manner in dialysis patients.

  11. Reliability of bioelectrical impedance methods in detecting body fluids in elderly patients with congestive heart failure.

    PubMed

    Sergi, G; Lupoli, L; Enzi, G; Volpato, S; Perissinotto, E; Bertani, R; Inelmen, E M; Bonometto, P; Busetto, L; Berton, A; Coin, A

    2006-01-01

    To investigate the reliability of bioelectrical impedance analysis (BIA) in estimating total body water (TBW) and extracellular water (ECW) in elderly patients suffering from congestive heart failure (CHF). In 72 elderly subjects, 34 with CHF (aged 83.9+/-6.9 years) and 38 healthy controls (78.7+/-7.5 years), TBW and ECW values were assessed using dilution methods, and bioelectrical variables were measured using single frequency BIA (SF-BIA) at 1 and 50 kHz, and bioelectrical spectroscopy (BIS). In CHF patients, Ht(2)/R(1) correlated weakly with TBW (r = 0.56) and ECW (0.47). In both healthy controls and CHF patients, TBW correlated strongly with Ht(2)/R(50), Ht(2)/R(0), Ht(2)/R(8) and Ht(2)/Zc. Using multiple regression analysis and the Bland-Altmann approach, SF-BIA at 50 kHz and BIS proved similar in predicting TBW for both the explained variance (R(2)~0.89) and the limits of agreement. In all subjects, ECW was estimated best by including height, weight and Ht(2)/R(0 )(R(2) 0.75) or Ht(2)/Zc (R(2) 0.77) in multivariate models, while SF-BIA at 50 kHz did not explain more than 71 % of ECW variability. The SEE % was nonetheless about twice the SEE % for estimating TBW. SF-BIA at 1 kHz is unreliable in predicting body fluids in elderly people with CHF. SF-BIA at 50 kHz and BIS are useful for estimating TBW in healthy elderly people and in cases of water imbalance, but both methods are less reliable in estimating ECW, particularly in conditions of fluid overload.

  12. Alterations in body fluid content can be detected by bioelectrical impedance analysis.

    PubMed

    Scheltinga, M R; Jacobs, D O; Kimbrough, T D; Wilmore, D W

    1991-05-01

    The electrical resistance across the whole body and its segments to the conduction of a weak alternating current was determined in human subjects under three different conditions: (1) during bed rest, (2) during infusion of 1 liter of saline, and (3) during donation of 1 unit of blood. During bed rest, extracellular and total body water were measured by dilution of bromide and heavy water, respectively. Electrical resistance obtained from electrodes placed on proximal portions of extremities ("proximal resistance") accounted for less than 50% of that determined by electrodes positioned on routinely used portions of a hand and foot ("whole body resistance"). Following saline infusion, resistance determined from the whole body and all its segments fell (P less than 0.001); the magnitude of the drop in both proximal and whole body resistance was inversely related to the volume of total body water (TBW) (r = -0.82, P less than 0.002, and r = -0.73, P less than 0.01, respectively). In contrast, blood donation was associated with significantly increased resistance at both measurement sites. TBW predicted from anthropometrics was inversely related to both proximal (r = -0.90, P less than 0.001) and whole body resistance (r = -0.75, P less than 0.001). Bioelectrical impedance analysis is a simple technique which may be useful in monitoring minimal alterations in TBW. Furthermore, altered fluid status may be predicted more accurately by changes in proximal resistance compared to changes in traditionally used whole body resistance.

  13. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices

    NASA Astrophysics Data System (ADS)

    Su, J.; Rupp, J.; Garmory, A.; Carrotte, J. F.

    2015-09-01

    The response of orifices to incident acoustic waves, which is important for many engineering applications, is investigated with an approach combining both experimental measurements and numerical simulations. This paper presents experimental data on acoustic impedance of orifices, which is subsequently used for validation of a numerical technique developed for the purpose of predicting the acoustic response of a range of geometries with moderate computational cost. Measurements are conducted for orifices with length to diameter ratios, L/D, of 0.5, 5 and 10. The experimental data is obtained for a range of frequencies using a configuration in which a mean (or bias) flow passes from a duct through the test orifices before issuing into a plenum. Acoustic waves are provided by a sound generator on the upstream side of the orifices. Computational fluid dynamics (CFD) calculations of the same configuration have also been performed. These have been undertaken using an unsteady Reynolds averaged Navier-Stokes (URANS) approach with a pressure based compressible formulation with appropriate characteristic based boundary conditions to simulate the correct acoustic behaviour at the boundaries. The CFD predictions are in very good agreement with the experimental data, predicting the correct trend with both frequency and orifice L/D in a way not seen with analytical models. The CFD was also able to successfully predict a negative resistance, and hence a reflection coefficient greater than unity for the L / D = 0.5 case.

  14. Estimation of reservoir fluid saturation from 4D seismic data: effects of noise on seismic amplitude and impedance attributes

    NASA Astrophysics Data System (ADS)

    Souza, Rafael; Lumley, David; Shragge, Jeffrey

    2017-02-01

    Time-lapse (4D) seismic data sets have proven to be extremely useful for reservoir monitoring. Seismic-derived impedance estimates are commonly used as a 4D attribute to constrain updates to reservoir fluid flow models. However, 4D seismic estimates of P-wave impedance can contain significant errors associated with the effects of seismic noise and the inherent instability of inverse methods. These errors may compromise the geological accuracy of the reservoir model leading to incorrect reservoir model property updates and incorrect reservoir fluid flow predictions. To evaluate such errors and uncertainties we study two time-lapse scenarios based on 1D and 3D reservoir model examples, thereby exploring a number of inverse theory concepts associated with the instability and error of coloured inversion operators and their dependence on seismic noise levels. In the 1D example, we show that inverted band-limited impedance changes have a smaller root-mean-square (RMS) error in comparison to their absolute broadband counterpart for signal-to-noise ratios 10 and 5 while for signal-to-noise ratio (S/N)  =  3 both inversion methods present similarly high errors. In the 3D example we use an oilfield benchmark case based on the Namorado Field in Campos Basin, Brazil. We introduce a histogram similarity measure to quantify the impact of seismic noise on maps of 4D seismic amplitude and impedance changes as a function of S/N levels, which indicate that amplitudes are less sensitive to 4D seismic noise than impedances. The RMS errors in the estimates of water saturation changes derived from 4D seismic amplitudes are also smaller than for 4D seismic impedances, over a wide range of typical seismic noise levels. These results quantitatively demonstrate that seismic amplitudes can be more accurate and robust than seismic impedances for quantifying water saturation changes with 4D seismic data, and emphasize that seismic amplitudes may be more reliable to update fluid flow

  15. Comparison of Wired and Wireless Bio-Electrical Impedance Fluid Status Monitoring Devices and Validation to Body Mass and Urine Specific Gravity Changes Following Mild Dehydration

    DTIC Science & Technology

    2008-01-18

    status assessment method, ZOE2, is FDA approved for fluid status monitoring. The ZOE2 measures thoracic bio -electrical impedance. A new wireless version...impedance as a valid measure of hydration status in clinical or controlled settings. However, there is speculation as to the utility of bio -electrical...no significant differences were detected between pre- to post-practice for the ZOE2 or ZOEW device. Bio -electrical impedance, as measured by the ZOEW

  16. Influence of lung volume, fluid and capillary recruitment during positional changes and exercise on thoracic impedance in heart failure.

    PubMed

    Kim, Chul-Ho; Fuglestad, Matthew A; Richert, Maile L Ceridon; Shen, Win K; Johnson, Bruce D

    2014-10-01

    It is unclear how dynamic changes in pulmonary-capillary blood volume (Vc), alveolar lung volume (derived from end-inspiratory lung volume, EILV) and interstitial fluid (ratio of alveolar capillary membrane conductance and pulmonary capillary blood volume, Dm/Vc) influence lung impedance (Z(T)). The purpose of this study was to investigate if positional change and exercise result in increased EILV, Vc and/or lung interstitial fluid, and if Z(T) tracks these variables. 12 heart failure (HF) patients underwent measurements (Z(T), EILV, Vc/Dm) at rest in the upright and supine positions, during exercise and into recovery. Inspiratory capacity was obtained to provide consistent measures of EILV while assessing Z(T). Z(T) increased with lung volume during slow vital capacity maneuvers (p<0.05). Positional change (upright→supine) resulted in an increased Z(T) (p<0.01), while Vc increased and EILV and Dm/Vc decreased (p<0.05). Moreover, during exercise Vc and EILV increased and Dm/Vc decreased (p<0.05), whereas, Z(T) did not change significantly (p>0.05). Impedance appears sensitive to changes in lung volume and body position which appear to generally overwhelm small acute changes in lung fluid when assed dynamically at rest or during exercise. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods.

    PubMed

    Jaffrin, Michel Y; Morel, Hélène

    2008-12-01

    This paper reviews various bioimpedance methods permitting to measure non-invasively, extracellular, intracellular and total body water (TBW) and compares BIA methods based on empirical equations of the wrist-ankle resistance or impedance at 50 kHz, height and weight with BIS methods which rely on an electrical model of tissues and resistances measured at zero and infinite frequencies. In order to compare these methods, impedance measurements were made with a multifrequency Xitron 4200 impedance meter on 57 healthy subjects which had undergone simultaneously a Dual X-ray absorptiometry examination (DXA), in order to estimate their TBW from their fat-free-mass. Extracellular (ECW) and TBW volumes were calculated for these subjects using the original BIS method and modifications of Matthie[Matthie JR. Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J Appl Physiol 2005;99:780-1], Jaffrin et al. [Jaffrin MY, Fenech M, Moreno MV, Kieffer R. Total body water measurement by a modification of the bioimpédance spectroscopy method. Med Bio Eng Comput 2006;44:873-82], Moissl et al. [Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006;27:921-33] and their TBW resistivities were compared and discussed. ECW volumes were calculated by BIA methods of Sergi et al. [Sergi G, Bussolotto M, Perini P, Calliari I, et al. Accuracy of bioelectrical bioimpedance analysis for the assessment of extracellular space in healthy subjects and in fluid retention states. Ann Nutr Metab 1994;38(3):158-65] and Hannan et al. [Hannan WJ, Cowen SJ, Fearon KC, Plester CE, Falconer JS, Richardson RA. Evaluation of multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin Sci 1994;86:479-85] and TBW volumes by BIA methods of Kushner and Schoeller [Kushner RF

  18. An electrochemical impedance spectroscopy (EIS) assay measuring the calcification inhibition capacity in biological fluids.

    PubMed

    Ismail, A H; Schäfer, C; Heiss, A; Walter, M; Jahnen-Dechent, W; Leonhardt, S

    2011-08-15

    Pathological calcification of the cardiovascular system is one of the major causes of high mortality and morbidity in dialysis patients. The inhibition of ectopic calcification relies (I) on the formation of calciprotein particles (CPPs), nanospherical complexes of calcium phosphate mineral, fetuin-A and other acidic serum proteins, and (II) on the stabilization of calcium phosphate prenucleation clusters by fetuin-A monomers. In supersaturated serum, mineral ion aggregation leads to a change in the electrical impedance. In this work, we present a method based on electrochemical impedance spectroscopy (EIS) to establish an impedance trace of mineral ion clustering in vitro. In the presence of 20 μM of serum protein fetuin-A, a prototypic calcification inhibitor, we measured a change in impedance (Δ(R)) of 195.52 ± 27.78%Ω compared to 430.41 ± 11.36%Ω in inhibitor-free samples. We also identified a CPP-formation dependency on the actual content of ions and protein in the samples under investigation. Two-step ripening of CPP was also observed. The presented method may form the basis of a simple label-free bedside or online test to be used in routine clinical practice for estimating the calcification risk in serum. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Volume of extravascular lung fluid determined by blood ultrasound velocity and electrical impedance dilution.

    PubMed

    Krivitski, N M; Kislukhin, V V; Dobson, A; Gleed, R D; Rawson, R E; Robertshaw, D

    1998-01-01

    A hypertonic sodium chloride bolus passing through the lung has a sound velocity transient that is biphasic when it reaches the carotid artery. This transient is compatible with water moving into the hypertonic bolus from the lung parenchyma, thereby leaving the lung parenchyma hypertonic. Subsequently, as the bolus leaves the lung vasculature, water passes from the blood into the tissue to return the lung tonicity to baseline, giving a moment when net movement is zero, an instant of osmotic equilibrium. Concurrent measurements of impedance track the sodium chloride transient. A theoretic basis for the calculation of extravascular lung water is derived from the water transferred to the blood, the amount of sodium chloride moved from blood to the lung, and the increase in blood osmolarity measured at the moment of equilibrium. Examples from measurements on sheep suggest that two intravenous injections of hypertonic and isotonic sodium chloride, with observations of sound velocity and electrical impedance in the systemic arterial circulation (which could also provide the cardiac output), provide a basis for calculation of lung permeability, water and salt movements, and extravascular lung water estimation.

  20. Rotorcraft Transmission Noise Path Model, Including Distributed Fluid Film Bearing Impedance Modeling

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Hanford, Amanda D.; Shepherd, Micah R.; Campbell, Robert L.; Smith, Edward C.

    2010-01-01

    A computational approach for simulating the effects of rolling element and journal bearings on the vibration and sound transmission through gearboxes has been demonstrated. The approach, using ARL/Penn State s CHAMP methodology, uses Component Mode Synthesis of housing and shafting modes computed using Finite Element (FE) models to allow for rapid adjustment of bearing impedances in gearbox models. The approach has been demonstrated on NASA GRC s test gearbox with three different bearing configurations: in the first condition, traditional rolling element (ball and roller) bearings were installed, and in the second and third conditions, the traditional bearings were replaced with journal and wave bearings (wave bearings are journal bearings with a multi-lobed wave pattern on the bearing surface). A methodology for computing the stiffnesses and damping in journal and wave bearings has been presented, and demonstrated for the journal and wave bearings used in the NASA GRC test gearbox. The FE model of the gearbox, along with the rolling element bearing coupling impedances, was analyzed to compute dynamic transfer functions between forces applied to the meshing gears and accelerations on the gearbox housing, including several locations near the bearings. A Boundary Element (BE) acoustic model was used to compute the sound radiated by the gearbox. Measurements of the Gear Mesh Frequency (GMF) tones were made by NASA GRC at several operational speeds for the rolling element and journal bearing gearbox configurations. Both the measurements and the CHAMP numerical model indicate that the journal bearings reduce vibration and noise for the second harmonic of the gear meshing tones, but show no clear benefit to using journal bearings to reduce the amplitudes of the fundamental gear meshing tones. Also, the numerical model shows that the gearbox vibrations and radiated sound are similar for journal and wave bearing configurations.

  1. Body fluid volume and nutritional status in hemodialysis: vector bioelectric impedance analysis.

    PubMed

    Espinosa Cuevas, M A; Navarrete Rodriguez, G; Villeda Martinez, M E; Atilano Carsi, X; Miranda Alatriste, P; Tostado Gutiérrez, T; Correa-Rotter, R

    2010-04-01

    Protein-energy malnutrition and hypervolemia are major causes of morbidity and mortality in patients on chronic hemodialysis (CHD). The methods used to evaluate nutritional status and volume status remain controversial. Vector bioelectric impedance analysis (vector- BIA) has recently been developed to assess both nutritional status and tissue hydration. The purpose of the study was to assess the nutritional status and volume status of patients on CHD with conventional nutritional assessment methods and with vector-BIA and then to compare the resulting findings. 76 Mexican patients on CHD were studied. Nutritional status and body composition were assessed with anthropometry, biochemical variables, and the modified Bilbrey nutritional index (mBNI), the results were compared with both conventional BIA and vector-BIA. The BNI was used to determine the number of patients with normal nutritional status (n = 27, 35.5%), and mild (n = 31, 40.8%), moderate (n = 10, 13.2%) and severe malnutrition (n = 8, 10.5%). Patients displayed shorter vectors with smaller phase angles or with an overhydration vectorial pattern before the initiation of their hemodialysis session. There was general improvement to normal hydration status post-dialysis (p < 0.05); however, 28% remained overhydrated as assessed by vector-BIA. The vector-BIA results showed that worse malnutrition status was associated with greater volume overload (p < 0.05). Diabetes mellitus (DM) was associated with shorter vectors with smaller phase angles (a vectorial pattern of overhydration and cachexia) (p < 0.05). Patients with lower serum creatinine presented with shorter vectors and smaller phase angles (vectorial patterns of malnutrition and/or overhydration) (p < 0.05). In women, lower serum albumin (< 3.4 g/dl) correlated with greater overhydration and malnutrition (p < 0.05). In this population, the vector-BIA showed that 28% of the population remained overhydrated after their hemodialysis session. Diabetics and

  2. Hydrodynamic and Longitudinal Impedance Analysis of Cerebrospinal Fluid Dynamics at the Craniovertebral Junction in Type I Chiari Malformation

    PubMed Central

    Martin, Bryn A.; Kalata, Wojciech; Shaffer, Nicholas; Fischer, Paul; Luciano, Mark; Loth, Francis

    2013-01-01

    Elevated or reduced velocity of cerebrospinal fluid (CSF) at the craniovertebral junction (CVJ) has been associated with type I Chiari malformation (CMI). Thus, quantification of hydrodynamic parameters that describe the CSF dynamics could help assess disease severity and surgical outcome. In this study, we describe the methodology to quantify CSF hydrodynamic parameters near the CVJ and upper cervical spine utilizing subject-specific computational fluid dynamics (CFD) simulations based on in vivo MRI measurements of flow and geometry. Hydrodynamic parameters were computed for a healthy subject and two CMI patients both pre- and post-decompression surgery to determine the differences between cases. For the first time, we present the methods to quantify longitudinal impedance (LI) to CSF motion, a subject-specific hydrodynamic parameter that may have value to help quantify the CSF flow blockage severity in CMI. In addition, the following hydrodynamic parameters were quantified for each case: maximum velocity in systole and diastole, Reynolds and Womersley number, and peak pressure drop during the CSF cardiac flow cycle. The following geometric parameters were quantified: cross-sectional area and hydraulic diameter of the spinal subarachnoid space (SAS). The mean values of the geometric parameters increased post-surgically for the CMI models, but remained smaller than the healthy volunteer. All hydrodynamic parameters, except pressure drop, decreased post-surgically for the CMI patients, but remained greater than in the healthy case. Peak pressure drop alterations were mixed. To our knowledge this study represents the first subject-specific CFD simulation of CMI decompression surgery and quantification of LI in the CSF space. Further study in a larger patient and control group is needed to determine if the presented geometric and/or hydrodynamic parameters are helpful for surgical planning. PMID:24130704

  3. Fluid management in the intensive care unit: bioelectrical impedance vector analysis as a tool to assess hydration status and optimal fluid balance in critically ill patients.

    PubMed

    Basso, Flavio; Berdin, Giovanna; Virzì, Grazia Maria; Mason, Giacomo; Piccinni, Pasquale; Day, Sonya; Cruz, Dinna N; Wjewodzka, Marzena; Giuliani, Anna; Brendolan, Alessandra; Ronco, Claudio

    2013-01-01

    Fluid balance disorders are a relevant risk factor for morbidity and mortality in critically ill patients. Volume assessment in the intensive care unit (ICU) is thus of great importance, but there are currently few methods to obtain an accurate and timely assessment of hydration status. Our aim was to evaluate the hydration status of ICU patients via bioelectric impedance vector analysis (BIVA) and to investigate the relationship between hydration and mortality. We evaluated 280 BIVA measurements of 64 patients performed daily in the 5 days following their ICU admission. The observation period ranged from a minimum of 72 h up to a maximum of 120 h. We observed the evolution of the hydration status during the ICU stay in this population, and analyzed the relationship between mean and maximum hydration reached and mortality--both in the ICU and at 60 days--using logistic regression. A state of overhydration was observed in the majority of patients (70%) on admission, which persisted during the ICU stay. Patients who required continuous renal replacement therapy (CRRT) were more likely to be overhydrated starting from the 2nd day of observation. Logistic regression showed a strong and significant correlation between mean/maximum hydration reached and mortality, both independently and correcting for severity of prognosis. Fluid overload measured by BIVA is a frequent condition in critically ill patients--whether or not they undergo CRRT--and a significant predictor of mortality. Hence, hydration status should be considered as an additional prognosticator in the clinical management of the critically ill patient. (i) On the day of ICU admittance, patients showed a marked tendency to overhydration (>70% of total). This tendency was more pronounced in patients on CRRT. (ii) Hyperhydration persisted during the ICU stay. Patients who underwent CRRT showed significantly higher hyperhydration from the 2nd day of hospitalization. (iii) Nonsurvivors showed worse hyperhydration

  4. IL-1β impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint

    PubMed Central

    Liu, Wenjing; Sun, Yangpeng; He, Yiqing; Zhang, Hong; Zheng, Youhua; Yao, Yu; Zhang, Zhiguang

    2017-01-01

    Mesenchymal stem cell-based therapy has great therapeutic potential for temporomandibular joint (TMJ) cartilage repair. However, the behavior of mesenchymal stem cells in the inflammatory milieu following their delivery remains poorly understood. Synovial fluid-derived mesenchymal stem cells (SFMSCs) are a promising resource for TMJ cartilage repair, as they are easily obtained from patients with TMJ disorders (TMD). In this study, we obtained SFMSCs from patients with TMD and expanded them in vitro; we then stimulated the cells with interleukin (IL)-8, IL-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α and IL-12p. The cells expressed CD90, CD44, CD105 and CD73, and were negative for CD45, CD34, CD11b, CD19 and HLA-DR. They could be induced to differentiate into osteogenic, chondrogenic, adipogenic and neurogenic lineages in vitro. Only the levels of IL-6 and IL-8 were upregulated significantly following stimulation with IL-8, IL-1β, IL-6, IL-10, TNF-α and IL-12p. Furthermore, IL-6 and IL-8 expression was driven mainly by IL-1β-dependent nuclear factor-κB (NF-κB) pathway activation, and was independent of IL-8, IL-6, IL-10, TNF-α and IL-12p. IL-6 and IL-8 expression was inhibited completely by treatment with the NF-κB inhibitor, BAY11-7082. SRY-box 9 (SOX9) was downregulated and matrix metalloproteinase (MMP)13 was upregulated upon chondrogenic differentiation induced in the cells also exposed to IL-1β. Sulfated glycosaminoglycan production was also reduced upon chondrogenic differentiation in the presence of IL-6, but not IL-8. Thus, IL-1β in the inflammatory milieu is crucial in regulating SFMSCs. In doing so, IL-1β impedes the chondrogenic differentiation of SFMSCs. The upregulation of IL-6 and NF-κB pathway activation also contribute to this biological behavior. The findings of our study indicate the potential adverse effects of IL-1β on the chondrogenic differentiation of SFMSCs, and may thus provide new insight into the pathogenesis of TMD. PMID

  5. Bioelectrical impedance analysis for assessment of fluid status and body composition in neonates--the good, the bad and the unknown.

    PubMed

    Lingwood, B E

    2013-01-01

    There is a critical need for improved technologies to monitor fluid balance and body composition in neonates, particularly those receiving intensive care. Bioelectrical impedance analysis meets many of the criteria required in this environment and appears to be effective for monitoring physiological trends. The literature regarding the use of bioelectrical impedance in neonates was reviewed. It was found that prediction equations for total body water, extracellular water and fat-free mass have been developed, but many require further testing and validation in larger cohorts. Alternative approaches based on Hanai mixture theory or vector analysis are in the early stages of investigation in neonates. Further research is required into electrode positioning, bioimpedance spectroscopy and Cole analysis in order to realise the full potential of this technology.

  6. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  7. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  8. Experimental study of two-phase fluid flow in two different porosity types of sandstone by P-wave velocity and electrical Impedance measurement

    NASA Astrophysics Data System (ADS)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Takaki, S.

    2015-12-01

    Carbon dioxide (CO2) capture and storage (CCS) is recently expected as the promising method to reduce greenhouse gas emissions. It is important to investigate CO2 behavior in the reservoir, to evaluate the safety and to account the stored CO2 volume. In this study, experimental investigation is conducted to discuss the relationships between injected fluid speed (Flow rate: FR) or capillary number (Ca) and non-wetting fluid flow by compressional wave velocity (Vp) and electrical impedance (Z). In the experiment, N2 and supercritical CO2 were injected into the two sandstones with different porosity (φ), Berea sandstone (φ: 18 %), and Ainoura sandstone (φ: 11.9 %). The dimension of the rock specimens is cored cylinder with a 35 mm diameter and 70 mm height. Experimental conditions are nearly same as the reservoir of deep underground (Confining pressure:15MPa, 40℃). Initial conditions of the specimen are brine (0.1wt%-KCl) saturated. Four piezo-electrical transducers (PZTs) are set on the each surface of the top, middle, lower of the specimen to monitor the CO2 bahavior by Vp. To measuring Z, we use for electrodes method with Ag-AgCl electrodes. Four electrodes are wounded around specimen on the both sides of PZTs. We measured the changes of these parameters with injecting N2, injected fluid speed (FR), the differential pore pressure (DP), N2 saturation (SN2), P-wave velocity (Vp) and electrical impedance (Z), respectively. We also estimated the Ca from measured FR. From these experimental results, there are no obvious Vp changes with increasing Ca, while Z measurement indicates clear and continuous increment. In regards to Vp, Vp reduced at the small FR (0.1 to 0.2 ml/min). As the Ca increases, Vp doesn't indicate large reduction. On the other hand, Z is more sensitive to change the fluid saturation than Vp. It is well-known that both of Vp and Z are the function of fluid saturation. Though, these experimental results are not consistent with previous studies. In

  9. Measurements And Particle In Cell vs. Fluid Simulations Of A New Time Domain Impedance Probe For Ionospheric Plasma Characterization

    NASA Astrophysics Data System (ADS)

    Spencer, E. A.; Russ, S.; Kerrigan, B.; Leggett, K.; Mullins, J.; Clark, D. C.; Mizell, J.; Gollapalli, R.; Vassiliadis, D.; Lusk, G. D.

    2015-12-01

    A plasma impedance probe is used to obtain plasma parameters in the ionosphere by measuring the magnitude, shape and location of resonances in the frequency spectrum when a probe structure is driven with RF excitation. The measured magnitude and phase response with respect to frequency can be analyzed via analytical and simulational means. We have designed and developed a new Time Domain Impedance Probe capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 50 microseconds, which yields a spatial resolution of 0.35 meters for a satellite orbital velocity of 7 km/s. The method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The frequency bandwidth of the voltage signal is selected in order that the electron plasma resonances are observable. A prototype of the instrument will be flown in October 2015 on a NASA Undergraduate Student Instrument Progam (USIP) sounding rocket launched out of Wallops Flight Facility. To analyze the measurements, we use a Particle In Cell (PIC) kinetic simulation to calculate the impedance of a dipole antenna immersed in a plasma. The electromagnetic solver utilizes the Finite Difference Time Domain method, while the particle to grid and grid to particle interpolation schemes are standard. The plasma sheath formation electron flux into the dipole surface is not included. The bulk velocity of the plasma around the dipole is assumed to be zero. For completeness, the hot plasma and nonlinear effects of probe plasma interaction are explored, including the appearance of cyclotron harmonics. In this work the electron neutral collisions are simulated via a Poisson process approximation. Our results are compared to sounding rocket data from the NASA Tropical Storms mission in 2007, as well as the

  10. Pectic polysaccharides of the fresh plum Prunus domestica L. isolated with a simulated gastric fluid and their anti-inflammatory and antioxidant activities.

    PubMed

    Popov, Sergey V; Ovodova, Raisa G; Golovchenko, Victoria V; Khramova, Daria S; Markov, Pavel A; Smirnov, Vasily V; Shashkov, Alexandre S; Ovodov, Yury S

    2014-01-15

    A pectic polysaccharide, designated as PD, was extracted from fresh plums (Prunus domestica L.) with a simulated gastric fluid. Galacturonan, which was partially substituted with methyl and O-acetyl ester groups, and rhamnogalacturonan were the main constituents of the linear regions of the sugar chains of PD. The ramified region contained mainly 1,4-linked β-d-galactopyranose residues and, to a lesser extent, 1,5-linked α-l-arabinofuranose residues. The separation of PD, by DEAE-cellulose column chromatography, yielded two pectic fractions: PD-1 and PD-2, eluted with 0.1 and 0.2 M NaCl, respectively. Enzymatic digestion of PD with 1,4-α-d-polygalacturonase yielded the fraction PD-E. The parent pectin PD and the PD-1 fraction were found to diminish the adhesion of peritoneal leukocytes at the concentrations of 0.05-1.0mg/ml. However, the PD-E fraction failed to have an effect on cell adhesion at the concentrations of 0.05-0.1mg/ml. PD, PD-1 and PD-E were found to inhibit the production of superoxide anion radicals by reducing xanthine oxidase activity by 38%, 97% and 47%, respectively. Therefore, the PD-1 fraction appeared to be an active fragment of pectic macromolecule isolated from fresh plum with a simulated gastric fluid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, Wei; Anderson, Roger N.

    1998-01-01

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  12. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  13. Wearable Multi-Frequency and Multi-Segment Bioelectrical Impedance Spectroscopy for Unobtrusively Tracking Body Fluid Shifts during Physical Activity in Real-Field Applications: A Preliminary Study

    PubMed Central

    Villa, Federica; Magnani, Alessandro; Maggioni, Martina A.; Stahn, Alexander; Rampichini, Susanna; Merati, Giampiero; Castiglioni, Paolo

    2016-01-01

    Bioelectrical Impedance Spectroscopy (BIS) allows assessing the composition of body districts noninvasively and quickly, potentially providing important physiological/clinical information. However, neither portable commercial instruments nor more advanced wearable prototypes simultaneously satisfy the demanding needs of unobtrusively tracking body fluid shifts in different segments simultaneously, over a broad frequency range, for long periods and with high measurements rate. These needs are often required to evaluate exercise tests in sports or rehabilitation medicine, or to assess gravitational stresses in aerospace medicine. Therefore, the aim of this work is to present a new wearable prototype for monitoring multi-segment and multi-frequency BIS unobtrusively over long periods. Our prototype guarantees low weight, small size and low power consumption. An analog board with current-injecting and voltage-sensing electrodes across three body segments interfaces a digital board that generates square-wave current stimuli and computes impedance at 10 frequencies from 1 to 796 kHz. To evaluate the information derivable from our device, we monitored the BIS of three body segments in a volunteer before, during and after physical exercise and postural shift. We show that it can describe the dynamics of exercise-induced changes and the effect of a sit-to-stand maneuver in active and inactive muscular districts separately and simultaneously. PMID:27187389

  14. The use of bio-electrical impedance analysis (BIA) to guide fluid management, resuscitation and deresuscitation in critically ill patients: a bench-to-bedside review.

    PubMed

    Malbrain, Manu L N G; Huygh, Johan; Dabrowski, Wojciech; De Waele, Jan J; Staelens, Anneleen; Wauters, Joost

    2014-01-01

    The impact of a positive fluid balance on morbidity and mortality has been well established. However, little is known about how to monitor fluid status and fluid overload. This narrative review summarises the recent literature and discusses the different parameters related to bio-electrical impedance analysis (BIA) and how they might be used to guide fluid management in critically ill patients. Definitions are listed for the different parameters that can be obtained with BIA; these include among others total body water (TBW), intracellular water (ICW), extracellular water (ECW), ECW/ICW ratio and volume excess (VE). BIA allows calculation of body composition and volumes by means of a current going through the body considered as a cylinder. Reproducible measurements can be obtained with tetrapolar electrodes with two current and two detection electrodes placed on hands and feet. Modern devices also apply multiple frequencies, further improving the accuracy and reproducibility of the results. Some pitfalls and conditions are discussed that need to be taken into account for correct BIA interpretation. Although BIA is a simple, noninvasive, rapid, portable, reproducible, and convenient method of measuring body composition and fluid distribution with fewer physical demands than other techniques, it is still unclear whether it is sufficiently accurate for clinical use in critically ill patients. However, the potential clinical applications are numerous. An overview regarding the use of BIA parameters in critically ill patients is given, based on the available literature. BIA seems a promising tool if performed correctly. It is non-invasive and relatively inexpensive and can be performed at bedside, and it does not expose to ionising radiation. Modern devices have very limited between-observer variations, but BIA parameters are population-specific and one must be aware of clinical situations that may interfere with the measurement such as visible oedema, nutritional

  15. Antibiofilm polysaccharides

    PubMed Central

    Rendueles, Olaya; Kaplan, Jeffrey B.; Ghigo, Jean-Marc

    2012-01-01

    Summary Bacterial extracellular polysaccharides have been shown to mediate many of the cell-to cell and cell-to-surface interactions that are required for the formation, cohesion and stabilization of bacterial biofilms. However, recent studies have identified several bacterial polysaccharides that inhibit biofilm formation by a wide-spectrum of bacteria and fungi both in vitro and in vivo. This review discusses the composition, modes of action, and potential biological roles of antibiofilm polysaccharides recently identified in bacteria and eukaria. Some of these molecules may have technological applications as antibiofilm agents in industry and medicine. PMID:22730907

  16. Exploring chiral separation of 3-carboxamido-5-aryl isoxazole derivatives by supercritical fluid chromatography on amylose and cellulose tris dimethyl- and chloromethyl phenylcarbamate polysaccharide based stationary phases.

    PubMed

    Zehani, Yasmine; Lemaire, Lucas; Ghinet, Alina; Millet, Régis; Chavatte, Philippe; Vaccher, Claude; Lipka, Emmanuelle

    2016-10-07

    Four polysaccharide based chiral stationary phases were chosen, two chlorinated: Lux™ Amylose-2 (tris-5-chloro-2-methylphenylcarbamate of amylose) and Lux™ Cellulose-2 (tris-3-chloro-4-methylphenylcarbamate of cellulose) and two methylated: Chiralpak(®) AD-H (tris-3,5-dimethylphenylcarbamate of amylose) and Chiralcel(®) OD-H (tris-3,5-dimethylphenylcarbamate of cellulose) to separate four 3-carboxamido-5-aryl isoxazole derivatives by supercritical fluid chromatography. The effect of chiral stationary phase, co-solvent nature (MeOH, EtOH, 2-PrOH and ACN) and percentage (10-20%), temperature (20-45°C) and chemical structure of the compounds on retention, resolution and elution order were thoroughly studied. In addition, thermodynamic parameters were determined from the linear portion of the Van't Hoff plots. For all the derivatives, the Lux™ Cellulose-2 and Chiralpak(®) AD-H provided excellent resolutions (Rs=9.78) in short run time (under 6min). The preparation of about 10mg of each of the eight enantiomers was achieved successfully on a Chiralpak(®) AD-H with various percentages of ethanol as a co-solvent. Lastly, the enantiomeric purity of each of the eight individual enantiomer generated was determined and found higher than 98%.

  17. A monoclonal antibody against Meningococcus group B polysaccharides used to immunocapture and quantify polysialylated NCAM in tissues and biological fluids.

    PubMed

    Dubois, C; Okandze, A; Figarella-Branger, D; Rampini, C; Rougon, G

    1995-04-12

    Polysialylated isoforms of neural cell adhesion molecule (PSA-NCAM) are transiently expressed in many tissues during development and in discrete areas of the adult central nervous system. In pathological situations, they are expressed by poorly differentiated tumor cells of neuroectodermal origin and by regenerating muscle. An ELISA is introduced here to estimate the relative concentrations of PSA-NCAM expressed by tissues or released into biological fluids. In this double-sandwich assay, an anti-PSA antibody (anti-MenB) was adsorbed onto plastic plates and permitted the immunocapture of PSA-bearing molecules. It is demonstrated that these molecules are major NCAM. The second antibody was directed against an amino acid sequence shared by NCAM isoforms in several species. The standard curves were established using Nonidet P40 extracts of human or mouse embryonic brain known to be rich in PSA-NCAM. The sensitivity of the assay allows for quantitation of PSA-NCAM in muscle during regeneration and in small samples of cerebrospinal fluid from patients with medulloblastoma metastasis.

  18. An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications.

    PubMed

    Bozzini, B; Carlino, P; D'Urzo, L; Pepe, V; Mele, C; Venturo, F

    2008-11-01

    In dental applications, the contact between the metal implant and the receiving living tissue is made through the oxide layer on the implant surface, which allows the osseointegration process. In dentistry, the passive film formed on titanium seems to be more stable and protective than that formed on the Ti alloys, customarily used in other medical applications. Corrosion of titanium alloys in the mouth can result from the presence of a number of corrosive species, such as the hydrogen ion (H(+)), sulfide compounds (S(2-)), dissolved oxygen (O(2)) and Cl(-) and can result in the release of Ti(4+) ions that, in turn, brings about the reduction of alkaline phosphatase activity of osteoblastic cells. The present study reports a time-dependent electrochemical corrosion study of titanium in contact with the following biologically relevant solutions: (i) SBF (simulating the inorganic part of human plasma), (ii) SBF with added ovalbumin (a protein simulating the post-implant environment) and (iii) human plasma. To the best of the authors' knowledge, this is the first report on the corrosion of Ti in human plasma. The electrochemical measurements are based on electrochemical impedance spectrometry. Impedance spectra were interpreted on the basis of the equivalent-circuit approach and estimates of the time-variation of oxide film thickness and resistance were computed. Surface Raman spectroscopy was used to characterise the structure of as-anodised and corroded TiO(2) films: the effects of phosphate and organic incorporation were highlighted. EIS and surface Raman measurements have demonstrated that the corrosion resistance of the oxide films formed on Ti is strongly affected by the presence of biomolecules in the chloride- and phosphate-based aqueous solution. In particular, ovalbumin increases corrosion performance and human plasma is found to be remarkably more aggressive in comparison to SBF. These results suggest some caution in extrapolating corrosion results obtained

  19. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  20. Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording.

    PubMed

    Samoni, Sara; Vigo, Valentina; Reséndiz, Luis Ignacio Bonilla; Villa, Gianluca; De Rosa, Silvia; Nalesso, Federico; Ferrari, Fiorenza; Meola, Mario; Brendolan, Alessandra; Malacarne, Paolo; Forfori, Francesco; Bonato, Raffaele; Donadio, Carlo; Ronco, Claudio

    2016-04-08

    Studies have demonstrated a positive correlation between fluid overload (FO) and adverse outcomes in critically ill patients. The present study aims at defining the impact of hyperhydration on the Intensive Care Unit (ICU) mortality risk, comparing Bioelectrical Impedance Vector Analysis (BIVA) assessment with cumulative fluid balance (CFB) recording. We performed a prospective, dual-centre, clinician-blinded, observational study of consecutive patients admitted to ICU with an expected length of ICU stay of at least 72 hours. During observational period (72-120 hours), CFB was recorded and cumulative FO was calculated. At the admission and daily during the observational period, BIVA was performed. We considered FO between 5% and 9.99% as moderate and a FO ≥ 10% as severe. According to BIVA hydration scale of lean body mass, patients were classified as normohydrated (>72.7%-74.3%), mild (>71%-72.7%), moderate (>69%-71%) and severe (≤ 69%) dehydrated and mild (>74.3%-81%), moderate (>81%-87%) and severe (>87%) hyperhydrated. Two multivariate logistic regression models were performed: the ICU mortality was the response variable, while the predictor variables were hyperhydration, measured by BIVA (BIVA model), and FO (FO model). A p-value <0.05 was considered to indicate statistical significance. One hundred and twenty-five patients were enrolled (mean age 64.8 ± 16.0 years, 65.6% male). Five hundred and fifteen BIVA measurements were performed. The mean CFB recorded at the end of the observational period was 2.7 ± 4.1 L, while the maximum hydration of lean body mass estimated by BIVA was 83.67 ± 6.39%. Severe hyperhydration measured by BIVA was the only variable found to be significantly associated with ICU mortality (OR 22.91; 95% CI 2.38-220.07; p < 0.01). The hydration status measured by BIVA seems to predict mortality risk in ICU patients better than the conventional method of fluid balance recording. Moreover, it appears to be safe, easy to use and

  1. Fungal polysaccharides.

    PubMed

    San-Blas, G; Suzuki, S; Hearn, V; Pinel, C; Kobayashi, H; Mendez, C; Niño, G; Nishikawa, A; San-Blas, F; Shibata, N

    1994-01-01

    Fungal polysaccharides are cell wall components which may act as antigens or as structural substrates. As antigens, the role of mannans in Saccharomyces cerevisiae and Candida albicans, and of glycoproteins in Aspergillus fumigatus are discussed. Analyses on beta-glucan synthetase in Paracoccidioides brasiliensis and the inhibitory effect of Hansenula mrakii killer toxin on beta-glucan biosynthesis are also considered.

  2. BNP at discharge in acute heart failure patients: is it all about volemia? A study using impedance cardiography to assess fluid and hemodynamic status.

    PubMed

    Pimenta, Joana; Paulo, Cristiana; Mascarenhas, Joana; Gomes, André; Azevedo, Ana; Rocha-Gonçalves, Francisco; Bettencourt, Paulo

    2010-11-19

    Besides hemodynamic parameters, several other variables have been associated to B-type natriuretic peptide (BNP) levels. Limited knowledge on BNP determinants in acute heart failure (HF) can undermine the interpretation of BNP levels. To identify predictors of BNP levels, we evaluated 163 hospitalized acute HF patients. Thoracic fluid content (TFC) and hemodynamic parameters were measured by impedance cardiography at discharge. Patients were followed-up for 60 days for the occurrence of death/hospital admission. Median discharge BNP levels were 659.3 pg/ml. In multivariable linear regression analysis, TFC (β=0.043, 95% CI 0.024-0.062 per U/kΩ, p<0.001) was a powerful predictor of BNP levels, independently of known markers of HF severity like severe systolic dysfunction and discharge New York Heart Association class. Other independent predictors were: new onset HF, albumin, and body mass index. Sex, left cardiac work index, stroke index, hemoglobin, renal failure and discharge furosemide and lisinopril doses were associated to BNP only in univariate analysis. During follow-up, 45 (27.6%) patients were hospitalized or died. TFC (HR=1.047 (1.016-1.080) per U/kΩ increase, p=0.003) and BNP (HR=1.003 (1.001-1.004) per 10 pg/ml increase, p<0.001) were univariate predictors of the outcome, but in multivariate Cox regression analysis, only BNP was independently associated with prognosis. Discharge BNP levels in acute HF patients reflected volemia and disease severity. Persistently high BNP levels during hospitalization should raise the possibility of remaining congestion, which could negatively influence prognosis. The utility of BNP as prognostic marker in HF may reside on its ability to reflect multiple underlying pathophysiological disturbances. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  4. Enzymatic Modifications of Polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Polysaccharides are often modified chemically in order to improve its properties or to impart specific characteristics. Indeed quite a few commercial products are based on modified polysaccharides. In this talk, I shall describe a new set of modified polysaccharides based on enzymatic reactions. ...

  5. Journal bearing impedance descriptions for rotordynamic applications

    NASA Technical Reports Server (NTRS)

    Childs, D.; Moes, H.; Van Leeuwen, H.

    1976-01-01

    The paper deals with the development of analytic descriptions for plain circumferentially-symmetric fluid journal bearings, which are suitable for use in rotor dynamic analysis. The bearing impedance vector is introduced, which defines the bearing reaction force components as a function of the bearing motion. Impedances are derived directly for the Ocvirk (short) and Sommerfeld (long) bearings, and the relationships between the impedance vector and the more familiar mobility vector are developed and used to derive analytic impedance for finite-length bearings. The static correctness of the finite-length cavitating impedance is verified. Analytic stiffness and damping coefficient definitions are derived in terms of an impedance vector for small motion around an equilibrium position and demonstrated for the finite-length cavitating impedance. Nonlinear transient rotordynamic simulations are presented for the short pi and 2-pi impedances and the finite-length cavitating impedance. It is shown that finite-length impedance yields more accurate results for substantially less computer time than the short-bearing numerical-pressure-integration approach.

  6. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  7. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  8. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  9. Pretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model.

    PubMed

    Gremonprez, Félix; Descamps, Benedicte; Izmer, Andrei; Vanhove, Christian; Vanhaecke, Frank; De Wever, Olivier; Ceelen, Wim

    2015-10-06

    Cytoreductive surgery combined with intraperitoneal chemotherapy (IPC) is currently the standard treatment for selected patients with peritoneal carcinomatosis of colorectal cancer. However, especially after incomplete cytoreduction, disease progression is common and this is likely due to limited tissue penetration and efficacy of intraperitoneal cytotoxic drugs. Tumor microenvironment-targeting drugs, such as VEGF(R) and PDGFR inhibitors, can lower the heightened interstitial fluid pressure in tumors, a barrier to drug delivery. Here, we investigated whether tumor microenvironment-targeting drugs enhance the effectiveness of intraperitoneal chemotherapy. A mouse xenograft model with two large peritoneal implants of colorectal cancer cells was developed to study drug distribution and tumor physiology during intraperitoneal Oxaliplatin perfusion. Mice were treated for six days with either Placebo, Imatinib (anti-PDGFR, daily), Bevacizumab (anti-VEGF, twice) or Pazopanib (anti-PDGFR, -VEGFR; daily) followed by intraperitoneal oxaliplatin chemotherapy. Bevacizumab and Pazopanib significantly lowered interstitial fluid pressure, increased Oxaliplatin penetration (assessed by laser ablation inductively coupled plasma mass spectrometry) and delayed tumor growth of peritoneal implants (assessed by MRI). Our findings suggest that VEGF(R)-inhibition may improve the efficacy of IPC, particularly for patients for whom a complete cytoreduction might not be feasible.

  10. The Association of Hydration Status with Physical Signs, Symptoms and Survival in Advanced Cancer—The Use of Bioelectrical Impedance Vector Analysis (BIVA) Technology to Evaluate Fluid Volume in Palliative Care: An Observational Study

    PubMed Central

    Mayland, Catriona R.; Mason, Stephen; Cox, Trevor F.; Varro, Andrea; Ellershaw, John

    2016-01-01

    Background Hydration in advanced cancer is a controversial area; however, current hydration assessments methods are poorly developed. Bioelectrical impedance vector analysis (BIVA) is an accurate hydration tool; however its application in advanced cancer has not been explored. This study used BIVA to evaluate hydration status in advanced cancer to examine the association of fluid status with symptoms, physical signs, renal biochemical measures and survival. Materials and methods An observational study of 90 adults with advanced cancer receiving care in a UK specialist palliative care inpatient unit was conducted. Hydration status was assessed using BIVA in addition to assessments of symptoms, physical signs, performance status, renal biochemical measures, oral fluid intake and medications. The association of clinical variables with hydration was evaluated using regression analysis. A survival analysis was conducted to examine the influence of hydration status and renal failure. Results The hydration status of participants was normal in 43 (47.8%), 'more hydrated' in 37 (41.1%) and 'less hydrated' in 10 (11.1%). Lower hydration was associated with increased symptom intensity (Beta = -0.29, p = 0.04) and higher scores for physical signs associated with dehydration (Beta = 10.94, p = 0.02). Higher hydration was associated with oedema (Beta = 2.55, p<0.001). Median survival was statistically significantly shorter in 'less hydrated' patients (44 vs. 68 days; p = 0.049) and in pre-renal failure (44 vs. 100 days; p = 0.003). Conclusions In advanced cancer, hydration status was associated with clinical signs and symptoms. Hydration status and pre-renal failure were independent predictors of survival. Further studies can establish the utility of BIVA as a standardised hydration assessment tool and explore its potential research application, in order to inform the clinical management of fluid balance in patients with advanced cancer. PMID:27673684

  11. Polysaccharide-Based Vaccines

    NASA Astrophysics Data System (ADS)

    Santana, Violeta Fernández; Balbin, Yury Valdés; Calderón, Janoi Chang; Icart, Luis Peña; Verez-Bencomo, Vicente

    Capsular polysaccharides (CPS) and lipopolysaccharides from bacteria are employed for the production of vaccines against human diseases. Initial development of CPS as a vaccine was followed by the development and introduction of conjugate polysaccharide-protein vaccines. The principles leading to both developments are reviewed.

  12. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  13. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, Margaret S.; Lail, Jason C.

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  14. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function

    PubMed Central

    Limoli, Dominique H.; Jones, Christopher J.; Wozniak, Daniel J.

    2015-01-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms. PMID:26185074

  15. Polysaccharide biological response modifiers.

    PubMed

    Leung, M Y K; Liu, C; Koon, J C M; Fung, K P

    2006-06-15

    Biological response modifiers (BRMs) are substances which augment immune response. BRMs can be cytokines which are produced endogenously in our body by immune cells or derivatives of bacteria, fungi, brown algae, Aloe vera and photosynthetic plants. Such exogeneous derivatives (exogeneous BRMs) can be nucleic acid (CpG), lipid (lipotechoic acid), protein or polysaccharide in nature. The receptors for these exogeneous BRMs are pattern recognition receptors. The binding of exogeneous BRMs to pattern recognition receptors triggers immune response. Exogenous BRMs have been reported to have anti-viral, anti-bacterial, anti-fungal, anti-parasitic, and anti-tumor activities. Among different exogeneous BRMs, polysaccharide BRMs have the widest occurrence in nature. Some polysaccharide BRMs have been tested for their therapeutic properties in human clinical trials. An overview of current understandings of polysaccharide BRMs is summarized in this review.

  16. Uronic polysaccharide degrading enzymes.

    PubMed

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide.

  17. Anisotropic Artificial Impedance Surfaces

    NASA Astrophysics Data System (ADS)

    Quarfoth, Ryan Gordon

    Anisotropic artificial impedance surfaces are a group of planar materials that can be modeled by the tensor impedance boundary condition. This boundary condition relates the electric and magnetic field components on a surface using a 2x2 tensor. The advantage of using the tensor impedance boundary condition, and by extension anisotropic artificial impedance surfaces, is that the method allows large and complex structures to be modeled quickly and accurately using a planar boundary condition. This thesis presents the theory of anisotropic impedance surfaces and multiple applications. Anisotropic impedance surfaces are a generalization of scalar impedance surfaces. Unlike the scalar version, anisotropic impedance surfaces have material properties that are dependent on the polarization and wave vector of electromagnetic radiation that interacts with the surface. This allows anisotropic impedance surfaces to be used for applications that scalar surfaces cannot achieve. Three of these applications are presented in this thesis. The first is an anisotropic surface wave waveguide which allows propagation in one direction, but passes radiation in the orthogonal direction without reflection. The second application is a surface wave beam shifter which splits a surface wave beam in two directions and reduces the scattering from an object placed on the surface. The third application is a patterned surface which can alter the scattered radiation pattern of a rectangular shape. For each application, anisotropic impedance surfaces are constructed using periodic unit cells. These unit cells are designed to give the desired surface impedance characteristics by modifying a patterned metallic patch on a grounded dielectric substrate. Multiple unit cell geometries are analyzed in order to find the setup with the best performance in terms of impedance characteristics and frequency bandwidth.

  18. Robust impedance shaping telemanipulation

    SciTech Connect

    Colgate, J.E.

    1993-08-01

    When a human operator performs a task via a bilateral manipulator, the feel of the task is embodied in the mechanical impedance of the manipulator. Traditionally, a bilateral manipulator is designed for transparency; i.e., so that the impedance reflected through the manipulator closely approximates that of the task. Impedance shaping bilateral control, introduced here, differs in that it treats the bilateral manipulator as a means of constructively altering the impedance of a task. This concept is particularly valuable if the characteristic dimensions (e.g., force, length, time) of the task impedance are very different from those of the human limb. It is shown that a general form of impedance shaping control consists of a conventional power-scaling bilateral controller augmented with a real-time interactive task simulation (i.e., a virtual environment). An approach to impedance shaping based on kinematic similarity between tasks of different scale is introduced and illustrated with an example. It is shown that an important consideration in impedance shaping controller design is robustness; i.e., guaranteeing the stability of the operator/manipulator/task system. A general condition for the robustness of a bilateral manipulator is derived. This condition is based on the structured singular value ({mu}). An example of robust impedance shaping bilateral control is presented and discussed.

  19. Impedance measurements for detecting pathogens attached to antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2004-12-28

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  20. Network asymptotics for high contrast impedance tomography

    SciTech Connect

    Borcea, L.; Papanicolaou, G.C.; Berryman, J.G.

    1996-05-01

    Fluid contaminant plumes underground are often electrically conducting and, therefore, can be imaged using electrical impedance tomography. The authors introduce an output least-squares method for impedance tomography problems that have regions of high conductivity surrounded by regions of lower conductivity. The high conductivity is modeled on network approximation results from an asymptotic analysis and its recovery is based on this model. The smoothly varying part of the conductivity is recovered by a linearization process as is usual. The authors present the results of several numerical experiments that illustrate the performance of the method.

  1. Overview Of Impedance Sensors

    NASA Astrophysics Data System (ADS)

    Abele, John E.

    1989-08-01

    Electrical impedance has been one of the many "tools of great promise" that physicians have employed in their quest to measure and/or monitor body function or physiologic events. So far, the expectations for its success have always exceeded its performance. In simplistic terms, physiologic impedance is a measure of the resistance in the volume between electrodes which changes as a function of changes in that volume, the relative impedance of that volume, or a combination of these two. The history and principles of electrical impedance are very nicely reviewed by Geddes and Baker in their textbook "Principles of Applied Biomedical Instrumentation". It is humbling, however, to note that Cremer recorded variations in electrical impedance in frog hearts as early as 1907. The list of potential applications includes the measurement of thyroid function, estrogen activity, galvanic skin reflex, respiration, blood flow by conductivity dilution, nervous activity and eye movement. Commercial devices employing impedance have been and are being used to measure respiration (pneumographs and apneamonitors), pulse volume (impedance phlebographs) and even noninvasive cardiac output.

  2. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  3. Intrathoracic impedance monitor alarm in a patient with cardiac resynchronisation therapy and advanced lung carcinoma.

    PubMed

    Cvijić, Marta; Zižek, David; Antolič, Bor; Zupan, Igor

    2013-01-01

    The intrathoracic impedance monitor system measures impedance between the device case and the right ventricular coil and reflects intrathoracic fluid status. It is used to detect early volume overload in patients with chronic heart failure. We report a case of inappropriate activation of the intrathoracic impedance monitor alarm in a patient with epidermoid lung cancer and pleural carcinosis.

  4. Viscofying properties of corn fiber gum with various polysaccharides

    USDA-ARS?s Scientific Manuscript database

    The effect of corn fiber gum (CFG) on the aqueous solutions of a series of widely-used commercial polysaccharides has been studied by rheological techniques using stress synergism index to evaluate its viscosifying action. Though CFG solution exhibited Newtonian fluid behaviour with a very low vis...

  5. Calculating impedance vibrator antennas

    NASA Astrophysics Data System (ADS)

    Eminov, S. I.

    2017-07-01

    The technique of analytical reversal of a hypersingular equation is used to solve the equation of an impedance vibrator antenna. A numerical method for solving the equation is developed, and its efficiency is demonstrated.

  6. Surface Roughness Impedance

    SciTech Connect

    Stupakov, Gennady

    2000-12-21

    The next generation of linac-based free electron lasers will use very short bunches with a large peak current. For such beams, the impedance caused by submicron imperfections in the vacuum beam tube may generate an additional energy spread within the bunch. A review of two mechanisms of the roughness impedance is given with the emphasis on the importance of the high-aspect ratio property of the real surface roughness.

  7. Impedance Spectroscopy of Human Blood

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Bernal, José J.; Sosa, Modesto A.; Villagómez, Julio C.; Palomares, Pascual

    2004-09-01

    The blood is one of the corporal fluids more used with analytical purposes. When the blood is extracted, immediately it is affected by agents that act on it, producing transformations in its elements. Among the effects of these transformations the hemolysis phenomenon stands out, which consists of the membrane rupture and possible death of the red blood cells. The main purpose of this investigation was the quantification of this phenomenon. A Solartron SI-1260 Impedance Spectrometer was used, which covers a frequency range of work from 1 μHz to 10 MHz, and its accuracy has been tested in the accomplishment of several applications. Measurements were performed on 3 mL human blood samples, from healthy donors. Reactive strips for sugar test of 2 μL, from Bayer, were used as electrodes, which allow gathering a portion of the sample, to be analyzed by the spectrometer. Preliminary results of these measurements are presented.

  8. CAPSULAR POLYSACCHARIDE OF AZOTOBACTER AGILIS.

    PubMed

    COHEN, G H; JOHNSTONE, D B

    1964-12-01

    Cohen, Gary H. (University of Vermont, Burlington), and Donald B. Johnstone. Capsular polysaccharide of Azotobacter agilis. J. Bacteriol. 88:1695-1699. 1964.-Capsular polysaccharide from Azotobacter agilis strain 132 was recovered from washed cells by alkaline digestion. The polysaccharide was purified by centrifugation, repeated alcohol precipitation, Sevag deproteinization, and treatment with ribonuclease and charcoal-cellulose. Methods of isolation and purification appeared to provide a polymer showing no evidence of heterogeneity when examined by chemical and physical methods. Colorimetric, paper chromatographic, and enzymatic analyses on both intact and acid-hydrolyzed polysaccharide indicated that the polymer contained galactose and rhamnose at a molar ratio of approximately 1.0:0.7. A sialic acid-like component was also present in the polysaccharide. The study shows significant differences in the chemical composition of the extra-cellular polysaccharide of A. agilis and that of A. vinelandii. This adds further biochemical evidence for the right of these species to independent status.

  9. Feasibility of Bioelectrical Impedance Spectroscopy Measurement before and after Thoracentesis

    PubMed Central

    Weyer, Sören; Pauly, Karolin; Napp, Andreas; Dreher, Michael; Leonhardt, Steffen; Marx, Nikolaus; Schauerte, Patrick; Mischke, Karl

    2015-01-01

    Background. Bioelectrical impedance spectroscopy is applied to measure changes in tissue composition. The aim of this study was to evaluate its feasibility in measuring the fluid shift after thoracentesis in patients with pleural effusion. Methods. 45 participants (21 with pleural effusion and 24 healthy subjects) were included. Bioelectrical impedance was analyzed for “Transthoracic,” “Foot to Foot,” “Foot to Hand,” and “Hand to Hand” vectors in low and high frequency domain before and after thoracentesis. Healthy subjects were measured at a single time point. Results. The mean volume of removed pleural effusion was 1169 ± 513 mL. The “Foot to Foot,” “Hand to Hand,” and “Foot to Hand” vector indicated a trend for increased bioelectrical impedance after thoracentesis. Values for the low frequency domain in the “Transthoracic” vector increased significantly (P < 0.001). A moderate correlation was observed between the amount of removed fluid and impedance change in the low frequency domain using the “Foot to Hand” vector (r = −0.7). Conclusion. Bioelectrical impedance changes in correlation with the thoracic fluid level. It was feasible to monitor significant fluid shifts and loss after thoracentesis in the “Transthoracic” vector by means of bioelectrical impedance spectroscopy. The trial is registered with Registration Numbers IRB EK206/11 and NCT01778270. PMID:25861647

  10. Impeded Dark Matter

    SciTech Connect

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy; Wang, Xiao-Ping; Xue, Wei

    2016-12-12

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  11. Impeded Dark Matter

    DOE PAGES

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy; ...

    2016-12-12

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may evenmore » be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.« less

  12. Impeded Dark Matter

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-12-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario "Impeded Dark Matter". We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  13. Polysaccharides: Occurrence, Significance, and Properties

    NASA Astrophysics Data System (ADS)

    Bemiller, James N.

    Polysaccharides are properties present significance in all living organisms where they carry out one or more of their diverse functions. While there is no specific category or definition of a complex polysaccharide, most are structurally complex. Polysaccharides contain 1-5 different monosaccharide (sugar) units. The different sugar units may have different anomeric configurations and/or be joined by different glycosidic linkages. Polysaccharides may be linear or branched. Branches may be short saccharide units on a linear backbone or the molecule may have a branch-on-branch structure; in either case, the branches may be isolated or clustered. Polysaccharides may contain non-carbohydrate groups. Esters or cyclic acetal groups, when present, can be removed by appropriate treatments. All polysaccharides are polydisperse, i. e., are present in a range of molecular weights rather than having a single molecular weight. Most are polymolecular, i. e., differ in fine structure from molecule to molecule. So most polysaccharides can be said to be structurally complex. They may be attached to protein molecules or to other polysaccharide molecules. They are solvated by water. Most dissolve in aqueous systems, especially if they are alkaline. Polysaccharides can be depolymerized by acids and heat, specific enzymes, and high pH systems following oxidation. Their hydroxyl groups can be esterified (acylated), etherified (alkylated), and oxidized. Amino groups can be acylated (and deacylated). Carboxyl groups can be converted into esters, amides, and amines. Structural modification makes the molecules even more complex and polymolecular and, perhaps, polydisperse.

  14. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  15. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  16. Body Fluids Monitor

    NASA Technical Reports Server (NTRS)

    Siconolfi, Steven F. (Inventor)

    2000-01-01

    Method and apparatus are described for determining volumes of body fluids in a subject using bioelectrical response spectroscopy. The human body is represented using an electrical circuit. Intra-cellular water is represented by a resistor in series with a capacitor; extra-cellular water is represented by a resistor in series with two parallel inductors. The parallel inductors represent the resistance due to vascular fluids. An alternating, low amperage, multifrequency signal is applied to determine a subject's impedance and resistance. From these data, statistical regression is used to determine a 1% impedance where the subject's impedance changes by no more than 1% over a 25 kHz interval. Circuit component, of the human body circuit are determined based on the 1% impedance. Equations for calculating total body water, extra-cellular water, total blood volume, and plasma volume are developed based on the circuit components.

  17. Iodine-Catalyzed Polysaccharide Esterification

    USDA-ARS?s Scientific Manuscript database

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  18. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  19. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  20. Implantable Impedance Plethysmography

    PubMed Central

    Theodor, Michael; Ruh, Dominic; Ocker, Martin; Spether, Dominik; Förster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term. PMID:25123467

  1. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  2. Polysaccharides of the red algae.

    PubMed

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed.

  3. Polysaccharides from Extremophilic Microorganisms

    NASA Astrophysics Data System (ADS)

    Nicolaus, B.; Moriello, V. Schiano; Lama, L.; Poli, A.; Gambacorta, A.

    2004-02-01

    Several marine thermophilic strains were analyzed for exopolysaccharide production. The screening process revealed that a significant number of thermophilic microorganisms were able to produce biopolymers, and some of them also revealed interesting chemical compositions. We have identified four new polysaccharides from thermophilic marine bacteria, with complex primary structures and with different repetitive units: a galacto-mannane type from strain number 4004 and mannane type for the other strains. The thermophilic Bacillus thermantarcticus produces two exocellular polysaccharides (EPS 1, EPS 2) that give the colonies a typical mucous character. The exopolysaccharide fraction was produced with all substrates assayed, although a higher yield 400 mg liter-1 was obtained with mannose as carbon and energy source. NMR spectra confirmed that EPS 1 was a heteropolysaccharide of which the repeating unit was constituted by four different α-D-mannoses and three different β-D-glucoses. It seems to be close to some xantan polymers. EPS 2 was a mannan. Four different α-D-mannoses were found as the repeating unit. Production and chemical studies of biopolymers produced by halophilic archaea, Haloarcula species were also reported.

  4. Why were polysaccharides necessary?

    PubMed

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, 'compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  5. Why Were Polysaccharides Necessary?

    NASA Astrophysics Data System (ADS)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  6. Polysaccharides and bacterial plugging

    SciTech Connect

    Fogler, H.S.

    1991-11-01

    Before any successful application of Microbial Enhanced Oil Recovery process can be realized, an understanding of the cells' transport and retentive mechanisms in porous media is needed. Cell transport differs from particle transport in their ability to produce polysaccharides, which are used by cells to adhere to surfaces. Cell injection experiments have been conducted using Leuconostoc cells to illustrate the importance of cellular polysaccharide production as a transport mechanism that hinders cell movement and plugs porous media. Kinetic studies of the Leuconostoc cells, carried out to further understand the plugging rates of porous media, have shown that the cells' growth rates are approximately equal when provided with monosaccharide (glucose and fructose) or sucrose. The only difference in cell metabolism is the production of dextran when sucrose is supplied as a carbon source. Experimentally it has also been shown that the cells' growth rate is weakly dependent upon the sucrose concentration in the media, and strongly dependent upon the concentration of yeast extract. The synthesis of cellular dextran has been found to lag behind cell generation, thus indicating that the cells need to reach maturity before they are capable of expressing the detransucrase enzyme and synthesizing insoluble dextran. Dextran yields were found to be dependent upon the sucrose concentration in the media. 10 refs., 9 figs., 9 tabs.

  7. Prediction of All-Cause Mortality Based on the Direct Measurement of Intrathoracic Impedance.

    PubMed

    Zile, Michael R; Sharma, Vinod; Johnson, James W; Warman, Eduardo N; Baicu, Catalin F; Bennett, Tom D

    2016-01-01

    Intrathoracic impedance-derived OptiVol fluid index calculated using implanted devices has been shown to predict mortality; direct measurements of impedance have not been examined. We hypothesized that baseline measured impedance predicts all-cause mortality; changes in measured impedance result in a change in the predicted mortality; and the prognostic value of measured impedance is additive to the calculated OptiVol fluid index. A retrospective analysis of 146,238 patients within the Medtronic CareLink database with implanted devices was performed. Baseline measured impedance was determined using daily values averaged from month 6 to 9 after implant and were used to divide patients into tertiles: group L = low impedance, ≤ 65 ohms; group M = medium impedance, 66 to 72 ohms; group H = high impedance, ≥ 73 ohms. Change in measured impedance was determined from values averaged from month 9 to 12 post implant compared with the 6- to 9-month values. OptiVol fluid index was calculated using published methods. All-cause mortality was assessed beginning 9 months post implant; changes in mortality was assessed beginning 12 months post implant. Baseline measured impedance predicted all-cause mortality; 5-year mortality for group L was 41%, M was 29%, and H was 25%, P < 0.001 among all groups. Changes in measured impedance resulted in a change in the predicted mortality; the prognostic value of measured impedance was additive to the OptiVol fluid index. Direct measurements of intrathoracic impedance using an implanted device can be used to stratify patients at varying mortality risk. © 2015 American Heart Association, Inc.

  8. Prediction of All-Cause Mortality Based on the Direct Measurement of Intrathoracic Impedance

    PubMed Central

    Zile, Michael R.; Sharma, Vinod; Johnson, James W.; Warman, Eduardo N.; Baicu, Catalin F.; Bennett, Tom D.

    2015-01-01

    Background Intrathoracic impedance-derived OptiVol fluid index calculated using implanted devices has been shown to predict mortality; direct measurements of impedance have not been examined. We hypothesized that baseline measured impedance predicts all-cause mortality; changes in measured impedance result in a change in the predicted mortality; and the prognostic value of measured impedance is additive to the calculated OptiVol fluid index. Methods and Results A retrospective analysis of 146,238 patients within the Medtronic CareLink data base with implanted devices was performed. Baseline measured impedance was determined using daily values averaged from month 6 to 9 post implant and were used to divide patients into tertiles; Group L= Low Impedance: ≤ 65 ohms, M= Medium Impedance: 66–72 ohms, H= High Impedance: ≥ 73 ohms. Change in measured impedance was determined from values averaged from month 9 to 12 post implant compared to the 6 to 9 month values. OptiVol fluid index was calculated using published methods. All-cause mortality was assessed beginning 9 months post implant; changes in mortality beginning 12 months post implant. Baseline measured impedance predicted all-cause mortality; 5 year mortality for group L was 41%, M was 29%, H was 25%, p < 0.001 among all groups. Changes in measured impedance resulted in a change in the predicted mortality; the prognostic value of measured impedance was additive to the OptiVol fluid index. Conclusions Direct measurements of intrathoracic impedance using an implanted device can be used to stratify patients at varying mortality risk. PMID:26699393

  9. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases

    PubMed Central

    Frandsen, Kristian E. H.; Simmons, Thomas J.; Dupree, Paul; Poulsen, Jens-Christian N.; Hemsworth, Glyn R.; Ciano, Luisa; Johnston, Esther M.; Tovborg, Morten; Johansen, Katja S.; von Freiesleben, Pernille; Marmuse, Laurence; Fort, Sébastien; Cottaz, Sylvain; Driguez, Hugues; Henrissat, Bernard; Lenfant, Nicolas; Tuna, Floriana; Baldansuren, Amgalanbaatar; Davies, Gideon J.; Leggio, Leila Lo; Walton, Paul H.

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes which oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here the first structural determination of an LPMO–oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains. PMID:26928935

  10. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  11. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2016-07-12

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  12. Impedance Measurement Box

    SciTech Connect

    Christophersen, Jon

    2011-01-01

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  13. Impedance Measurement Box

    SciTech Connect

    Morrison, William

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  14. Polysaccharide enhances Radix Saposhnikoviae efficacy through inhibiting chromones decomposition in intestinal tract

    PubMed Central

    Yang, Jing-Ming; Jiang, Hua; Dai, Hong-Liang; Wang, Zi-Wei; Jia, Gui-Zhi; Meng, Xiang-Cai

    2016-01-01

    Vegetative but not reproductive stage of Saposhnikovia divaricate (Turxz.) schischk possesses pharmacological activities. However, our recent study showed that reproductive S. divaricate supplemented with polysaccharide showed evidently elevated pharmacological activities and increased cimifugin content in rat serum. The aims of present study were to assess the influence of polysaccharides on the chromones pharmacological activities in Radix Saposhnikoviae (RS), the dried root of vegetative stage of S. divaricate, and to explore the underlying mechanisms. Only cimifugin was detected in the plasma of chromone treated animals and RS polysaccharide significantly increased the plasma content of cimifugin. It was shown that neither cimifugin absorption nor glycoside components transformation in simulated digestive fluid was affected by RS polysaccharide. However, a significant promotion of transformation of cimifugin to more stable prime-O-glucosylcimifugin (PGCN) by RS polysaccharide, and a protective effect of polysaccharide on chromone components were observed in small intestine solutions. Meanwhile, RS polysaccharide produced a significant elevation of cimifugin and PGCN concentration in vivo. Based on these findings, we concluded that RS polysaccharide could greatly increase the content of cimifugin, which might be related to its degradation-proof effect on cimifugin, via transforming cimifugin to comparatively more stable PGCN and spatial structure protection. PMID:27595868

  15. Acoustic ground impedance meter

    NASA Astrophysics Data System (ADS)

    Zuckerwar, A. J.

    1981-12-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  16. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1983-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholtz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented. Previously announced in STAR as N82-17476

  17. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  18. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  19. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  20. A threading receptor for polysaccharides

    NASA Astrophysics Data System (ADS)

    Mooibroek, Tiddo J.; Casas-Solvas, Juan M.; Harniman, Robert L.; Renney, Charles M.; Carter, Tom S.; Crump, Matthew P.; Davis, Anthony P.

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (Ka up to 19,000 M-1), and is shown—by nuclear Overhauser effect spectroscopy—to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules.

  1. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    NASA Astrophysics Data System (ADS)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  2. Superlubricity of a natural polysaccharide from the alga Porphyridium sp.

    NASA Astrophysics Data System (ADS)

    Gourdon, Delphine; Lin, Qi; Israelachvili, Jacob

    2005-03-01

    Using a surface forces apparatus we have studied the adhesive and lubrication forces of mica surfaces separated by a molecularly-thin, sub-nanometer, film of a high molecular weight (2.6 MDa) naturally occurring anionic polysaccharide adsorbed from aqueous solution. The adhesion and friction forces of the biopolymer were monitored as a function of time, shearing distance and driving velocity under a large range of compressive loads. Although the thickness of the confined biopolymer was <1 nm, the friction was ultra-low (coefficient of friction = 0.015) at pressures up to 100 atm and over 4 decades of velocity with no wear. Complementary atomic force microscopy imaging in solution shows that the biopolymer adsorbs well to the mica surface but remains mobile and easily dragged upon shearing. The good adsorption of this polysaccharide to negatively charged surfaces, its low friction, its robustness (high-load carrying capacity and wear protection), as well as the weak (logarithmic) dependency of the friction on the sliding velocity make it, or this class of polyelectrolytes, excellent candidates for use in water-based lubricant fluids and as potential additives to synovial fluid in joints and other biolubricating fluids. The physical reasons for the tribological properties of this polysaccharide will be discussed.

  3. RF impedance measurement calibration

    SciTech Connect

    Matthews, P.J.; Song, J.J.

    1993-02-12

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references.

  4. Introduction to Electrochemical Impedance

    DTIC Science & Technology

    1994-02-24

    in polar coordinates and Z’ and Z" in Cartesian coordinates. Algebra has a special way of expressing "two-component numbers" as complex numbers. This...test is a small batch file that invokes a BASICA program and loads P STAT.BAS program in it. By replacing test with atwill, the program at-will will be...SYSTEM. This will end the BASICA program, return the computer to DOS and consequently, return to Z-PLOT. Petr Vantsek Introduction to impedance 55 23

  5. Outdoor ground impedance models.

    PubMed

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  6. Preparation of polysaccharides from wax gourd.

    PubMed

    Huang, Gangliang; Tan, Jiantao; Tan, Xianchun; Peng, Daquan

    2011-08-01

    Preparation of polysaccharides from the wax gourd was studied. The crude polysaccharides were extracted by ethanol precipitation, and deproteinized by the hydrochloric acid method. The deproteinized polysaccharides were separated by column chromatography to obtain the pure polysaccharides. The pure polysaccharides have a β-D-pyranosidic bond, and their molecular weight distribution is about 22,500. It was indicated that the final product had much more purity by IR spectrum analysis, UV absorption spectrum analysis, and phenol-sulfuric acid method, respectively. It was proved that wax gourd polysaccharides were composed of rhamnose, xylose, arabinose, mannose, glucose, and galactose by thin layer chromatography.

  7. Impedance Study for BEPC Separator

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Tang, Chuanxiang

    1997-05-01

    This paper focuses on the impedance studies for the separator. The impedance measurement results show that the shunt impedances of trapped modes in the separator are very small, and find that the load connected to the plates can damp some modes. The field distributions of these modes are also presented. Its wake is also calculated by using 3-D MAFIA. The relations between its wake with separator length, separator width, and etc are studied in detail.

  8. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  9. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  10. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  11. The Antioxidant Activities of Natural Polysaccharides.

    PubMed

    Huang, Gangliang; Mei, Xinya; Hu, Jinchuan

    2017-01-01

    The natural polysaccharides contain plant polysaccharides, animal polysaccharides and microbial polysaccharides. They are a kind of biological macromolecules with immune regulation, anti-tumor, anti-radiation, anti-inflammation, anti-fatigue and anti-aging effects. These effects are related to their antioxidant properties. The action mechanisms of antioxidation and scavenging free radicals for natural polysaccharides were reviewed. The recent research progresses and our work on antioxidant properties of polysaccharides and their derivatives were summarized. At last, the existing problems of antioxidant polysaccharides were analyzed, and the development prospects were also presented. It is important to study the antioxidant activities of polysaccharides and their derivatives for the development of natural antioxidants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Impedance characteristics of normal oesophageal motor function.

    PubMed

    Nguyen, Huan N; Domingues, Gerson R; Winograd, Ron; Koppitz, Patrick; Lammert, Frank; Silny, Jiri; Matern, Siegfried

    2003-07-01

    To obtain detailed data about the correlation between oesophageal peristalsis and bolus transport for clinical oesophageal motility testing. Oesophageal motility testing was performed in 25 healthy subjects by using the newly developed technique of concurrent impedancometry and manometry. Parameters of oesophageal motility and bolus transport as well as the correlation between transit and motility were analysed after swallowing saline or yogurt. Detailed data about bolus transport and oesophageal motility could be obtained during a single investigation step. Air was observed in front of the bolus in 76% of the swallows. Resting baseline impedance was significantly higher in the oesophagus than in the stomach (2832+/-118 Omega vs 688+/-119 Omega). The deglutitive impedance gradient was 222+/-26 Omega for saline and 482+/-38 Omega for yogurt. Bolus propagation velocity and bolus transit time as impedance parameters of bolus transport discriminated fluid from semisolid bolus (4.0+/-0.1 cm/s vs 3.2+/-0.1 cm/s and 9.9+/-0.2 s vs 11.5+/-0.2 s, for saline vs yogurt), while contraction wave amplitude as a manometry parameter of oesophageal motor function did not (91.4+/-7.5 mmHg vs 80.7+/-9.4 mmHg, for saline vs yogurt). There was a poor correlation between bolus propagation velocity and contraction wave amplitude. Impedance parameters of normal oesophageal motor function have been characterized. Impedancometry and manometry provide different but complementary data about oesophageal motor function. Concurrent impedancometry and manometry allows detailed monitoring of oesophageal motility and bolus transit, which may open new perspectives for comprehensive oesophageal motility testing.

  13. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  14. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  15. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  16. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  17. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  18. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  19. Electromagnetic scattering by impedance structures

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1987-01-01

    The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.

  20. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  1. Measuring impedance in congestive heart failure: Current options and clinical applications

    PubMed Central

    Tang, W. H. Wilson; Tong, Wilson

    2011-01-01

    Measurement of impedance is becoming increasingly available in the clinical setting as a tool for assessing hemodynamics and volume status in patients with heart failure. The 2 major categories of impedance assessment are the band electrode method and the implanted device lead method. The exact sources of the impedance signal are complex and can be influenced by physiologic effects such as blood volume, fluid, and positioning. This article provides a critical review of our current understanding and promises of impedance measurements, the techniques that have evolved, as well as the evidence and limitations regarding their clinical applications in the setting of heart failure management. PMID:19249408

  2. POLYSACCHARIDE STORAGE AND GROWTH EFFICIENCY IN RUMINOCOCCUS ALBUS

    PubMed Central

    Hungate, R. E.

    1963-01-01

    Hungate, R. E. (University of California, Davis). Polysaccharide storage and growth efficiency in Ruminococcus albus. J. Bacteriol. 86:848–854. 1963.—Ruminococcus albus strain RAM requires biotin, p-aminobenzoic acid, pyridoxamine, isovalerate, isobutyrate, 2-methylbutyrate, and either cysteine or sulfide. Rumen fluid and casein hydrolysate improve growth but are not essential. Up to 35% iodophilic polysaccharide is stored in cells from batch cultures and 17% in a continuous culture on a 10-hr cycle. The storage product is a polymer of glucose resembling starch. The yield of cells in continuous culture, corrected for stored starch, averaged 102 mg per mmole of cellobiose fermented to waste products. It is postulated that nine high-energy phosphates are derived from each cellobiose molecule. Conversions providing this number are discussed. PMID:14066484

  3. POLYSACCHARIDE STORAGE AND GROWTH EFFICIENCY IN RUMINOCOCCUS ALBUS.

    PubMed

    HUNGATE, R E

    1963-10-01

    Hungate, R. E. (University of California, Davis). Polysaccharide storage and growth efficiency in Ruminococcus albus. J. Bacteriol. 86:848-854. 1963.-Ruminococcus albus strain RAM requires biotin, p-aminobenzoic acid, pyridoxamine, isovalerate, isobutyrate, 2-methylbutyrate, and either cysteine or sulfide. Rumen fluid and casein hydrolysate improve growth but are not essential. Up to 35% iodophilic polysaccharide is stored in cells from batch cultures and 17% in a continuous culture on a 10-hr cycle. The storage product is a polymer of glucose resembling starch. The yield of cells in continuous culture, corrected for stored starch, averaged 102 mg per mmole of cellobiose fermented to waste products. It is postulated that nine high-energy phosphates are derived from each cellobiose molecule. Conversions providing this number are discussed.

  4. Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Retter, Utz; Lohse, Heinz

    Non-steady-state measuring techniques are known to be extremely suitable for the investigation of the electrode kinetics of more complex electrochemical systems. Perturbation of the electrochemical system leads to a shift of the steady state. The rate at which it proceeds to a new steady state depends on characteristic parameters (reaction rate constants, diffusion coefficients, charge transfer resistance, double-layer capacity). Due to non-linearities caused by the electron transfer, low-amplitude perturbation signals are necessary. The small perturbation of the electrode state has the advantage that the solutions of relevant mathematical equations used are transformed in limiting forms that are normally linear. Impedance spectroscopy represents a powerful method for investigation of electrical properties of materials and interfaces of conducting electrodes. Relevant fields of application are the kinetics of charges in bulk or interfacial regions, the charge transfer of ionic or mixed ionic-ionic conductors, semiconducting electrodes, the corrosion inhibition of electrode processes, investigation of coatings on metals, characterisation of materials and solid electrolyte as well as solid-state devices.

  5. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  6. Polysaccharide-modified synthetic polymeric biomaterials.

    PubMed

    Baldwin, Aaron D; Kiick, Kristi L

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. (c) 2010 Wiley Periodicals, Inc.

  7. Electrical Impedance Spectroscopy of Microchannel-Nanochannel Interface Devices

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Park, Sinwook; Yossifon, Gilad

    2013-05-01

    We report experimental verification of the depression of the slope in the Warburg branch of the electrochemical impedance spectrum using a fabricated microchannel-nanochannel device. This was previously theoretically predicted to occur with increasing dc bias voltage as a result of nanochannel electro-osmotic flow and provides an example of the influence of net fluid flow on electrokinetic transport. The dominant influence of nanochannel polarization in the kHz range of the impedance response is also demonstrated experimentally. This latter effect may be significant in both fundamental electrokinetics of micronanochannel devices as well as in practical molecular sensing applications.

  8. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    SciTech Connect

    Richardson, John G

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  9. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  10. Scattering patterns of dihedral corner reflectors with impedance surface impedances

    NASA Astrophysics Data System (ADS)

    Balanis, Constantine A.; Griesser, Timothy; Liu, Kefeng

    The radar cross section patterns of lossy dihedral corner reflectors are calculated using a uniform geometrical theory of diffraction for impedance surfaces. All terms of up to third order reflections are considered for patterns in the principal plane. The surface waves are included whenever they exist for reactive surface impedances. The dihedral corner reflectors examined have right, obtuse, and acute interior angles, and patterns over the entire 360 deg azimuthal plane are calculated. The surface impedances can be different on the four faces of the dihedral corner reflector; however, the surface impedance must be uniform over each face. Computed cross sections are compared with a moment method technique for a dielectric/ferrite absorber coating on a metallic corner reflector. The analysis of the dihedral corner reflector is important because it demonstrates many of the important scattering contributors of complex targets including both interior and exterior wedge diffraction, half-plane diffraction, and dominant multiple reflections and diffractions.

  11. Scattering patterns of dihedral corner reflectors with impedance surface impedances

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy; Liu, Kefeng

    1988-01-01

    The radar cross section patterns of lossy dihedral corner reflectors are calculated using a uniform geometrical theory of diffraction for impedance surfaces. All terms of up to third order reflections are considered for patterns in the principal plane. The surface waves are included whenever they exist for reactive surface impedances. The dihedral corner reflectors examined have right, obtuse, and acute interior angles, and patterns over the entire 360 deg azimuthal plane are calculated. The surface impedances can be different on the four faces of the dihedral corner reflector; however, the surface impedance must be uniform over each face. Computed cross sections are compared with a moment method technique for a dielectric/ferrite absorber coating on a metallic corner reflector. The analysis of the dihedral corner reflector is important because it demonstrates many of the important scattering contributors of complex targets including both interior and exterior wedge diffraction, half-plane diffraction, and dominant multiple reflections and diffractions.

  12. Measurement of hand volume by bioelectrical impedance spectroscopy.

    PubMed

    Ward, L C; Dylke, E S; Kilbreath, S L

    2012-06-01

    Assessment of lymphedema is frequently based upon measuring the increase in volume of the affected region compared to that of a comparable unaffected region. This requires methods that can measure the volume of body regions that are not only accurate and sensitive but also suitable for use in clinical practice. To date, bioimpedance spectroscopy has been used to measure volume increase due to lymphedema in whole arms but excluding the hand. We report here an impedance-based method for the measurement of hand volume. Impedance measurement electrodes were located on the dorsum of the hand, with the sense electrodes at the level of ulnar styloid and metacarpal-phalangeal joint of the third finger and current drive electrodes on the forearm and at the nail bed of the third finger. The impedances of the hands of 50 participants were measured and hand volumes computed. These were compared with the hand volumes measured by perometry. The region of the hand defined by the impedance measurements was determined, both in vivo and using a hand phantom. The region of the hand measured by the impedance technique was limited to the palmar volume (i.e., excluding the thumb). Palmar volumes computed from impedance measurements were significantly correlated (r=0.88) with those measured by perometry but were, on average, 8% larger. The impedance technique was sufficiently sensitive to detect the change in hand volume elicited by decrease in vascular volume due to blood draining from the hand on elevation. An impedance technique was developed that has the potential to measure the change in hand volume when affected by lymphedema. Bioimpedance spectroscopy has the advantage over currently used perometric or water displacement techniques in that it can measure specifically the change in extracellular fluid, including lymph, rather than simply total hand volume.

  13. Polysaccharides templates for assembly of nanosilver.

    PubMed

    Emam, Hossam E; Ahmed, Hanan B

    2016-01-01

    Polysaccharides are particularly attractive in biomedical applications due to its biodegradability and biocompatibility. In addition to its ecofriendly effects and easy processing into different hydrogel shapes, made polysaccharides used on a large scale as suitable media for preparation of silver nanoparticles (AgNPs). In spite of, most of polysaccharides are water insoluble, but it has shown to be quite efficient capping agents and/or nanoreactor matrices for production of AgNPs. Several methods have been developed to get the benefit of multi-functionality for polysaccharides' macromolecules in preparation of AgNPs. Therefore, recently, preparation of nanosilver using different polysaccharides have been the focus of an exponentially increasing number of works devoted to develop nanocomposites by blending AgNPs with different polysaccharides matrices. The current review represents a wide survey for the published studies which interested in using of polysaccharides in nanosilver preparations.

  14. Reactanceless synthesized impedance bandpass amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1985-01-01

    An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.

  15. [Impedance cardiography, a method to evaluate quantitatively cardiac output? Comparison with the Fick principle (author's transl)].

    PubMed

    Betz, R; Bastanier, C K; Mocellin, R

    1977-01-01

    In 36 children without shunts nearly 280 electrical impedance measurements were carried out in order to estimate the accuracy of the impedance cardiography as a means of calculating output. During evaluation up to 22 combinations of test conditions and possibilities of evaluation per child were tested. As a reference method the Fick Principle was used. The reproducibility of impedance measurements showed itself to be high, but no agreement of the results by impedance cardigraphy and corresponding values by the Fick method could be found. Some reasons give rise to suppose that impedance cardiography only reflects changes in the intrathoracic fluid level occurring during heart action from which because of formal reasons no interference should be drawn about the original cardiac output. Besides physical arguments tell against the possibility of picking up these volume-changes quantitatively by analyzing transthoracic electrical impedance.

  16. Bioelectrical impedance analysis in the clinical management of a pregnant woman undergoing dialysis.

    PubMed

    Takeuchi, K; Murata, K; Funaki, K; Fujita, I; Hayakawa, Y; Morita, H

    2000-01-01

    We report a case of successful pregnancy in a woman who was initially diagnosed with renal failure in mid-pregnancy. She was started on hemodialysis, and her fluid balance was serially monitored with bioelectrical impedance analysis. Her body weight decreased and bioelectrical impedance values increased, along with resolution of pulmonary edema in the process of the removal of excessive fluid retention with hemodialysis. The bioelectrical impedance values decreased immediately after the usual dose of oral ritodrine was administered, partly because producing sodium and water retention by ritodrine were enhanced in the setting of fluid imbalances. This decrease preceded the onset of pulmonary edema, while no changes were noted in maternal body weight before hemodialysis. These results suggest that the serial measurement of bioelectrical impedance values enables more reliable and earlier detection of abnormal water retention in pregnant women undergoing dialysis than the effect of body weight changes.

  17. A model of end-expiratory lung impedance dependency on total extracellular body water

    NASA Astrophysics Data System (ADS)

    Suchomel, J.; Sobota, V.

    2013-04-01

    Electrical impedance tomography (EIT) is an attractive method for clinical monitoring of patients during mechanical ventilation. This study evaluates lung impedance measurements using Dräger PulmoVista 500 EIT system on an animal model. Mechanically ventilated model was created. Vital signs were monitored as well as mechanical ventilation parameters. Extracellular fluid balance and blood volume were handled as follows: 30-40% of total blood volume were removed and returned back, 0.5 to 1 litre of Ringer's solution was injected afterwards. The quantity of injected fluids was recorded for each animal. During this process thoracic electrical impedance measurement was performed. Recorded data from PulmoVista 500 EIT system were analysed using the official Dräger EIT Data Analysis Tool. The dependency of end-expiratory lung impedance on the change of fluid balance was observed. The relation between end-expiratory (minimum impedance value) frames and changes of fluid balance is shown. Preliminary results strongly support the expectation that electrical impedance of thorax can be affected by total extracellular fluid change.

  18. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  19. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  20. The fluid-compensated cement bond log

    SciTech Connect

    Nayfeh, T.H.; Leslie, H.D.; Wheelis, W.B.

    1984-09-01

    An experimental and numerical wave mechanics study of cement bond logs demonstrated that wellsite computer processing can now segregate wellbore fluid effects from the sonic signal response to changing cement strength. Traditionally, cement logs have been interpreted as if water were in the wellbore, without consideration of wellbore fluid effects. These effects were assumed to be negligible. However, with the increasing number of logs being run in completion fluids such as CaCl/sub 2/, ZnBr/sub 2/, and CaBr/sub 2/, large variations in cement bond logs became apparent. A Schlumberger internal paper showing that bond log amplitude is related to the acoustic impedance of the fluid in which the tool is run led to a comprehensive study of wellbore fluid effects. Numerical and experimental models were developed simulating wellbore geometry. Measurements were conducted in 5-, 7-, and 95/8-in. casings by varying the wellbore fluid densities, viscosities, and fluid types (acoustic impedance). Parallel numerical modeling was undertaken using similar parameters. The results showed that the bond log amplitude varied dramatically with the wellbore fluid's acoustic impedance; for example, there was a 70 percent increase in the signal amplitude for 11.5-lb/ gal CaCl/sub 2/ over the signal amplitude in water. This led to the development of a Fluid-Compensated Bond log that corrects the amplitude for acoustic impedance of varying wellbore fluids, thereby making the measurements more directly related to the cement quality.

  1. Marine Polysaccharides in Pharmaceutical Applications: An Overview

    PubMed Central

    Laurienzo, Paola

    2010-01-01

    The enormous variety of polysaccharides that can be extracted from marine plants and animal organisms or produced by marine bacteria means that the field of marine polysaccharides is constantly evolving. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of micro-organisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. Following an overview of the current knowledge on marine polysaccharides, with special attention to potential pharmaceutical applications and to more recent progress on the discovering of new polysaccharides with biological appealing characteristics, this review will focus on possible strategies for chemical or physical modification aimed to tailor the final properties of interest. PMID:20948899

  2. [Experimental study on electrical impedance properties of human hepatoma cells].

    PubMed

    Fang, Yun; Tang, Zhiyuan; Zhang, Qian; Zhao, Xin; Ma, Qing

    2014-10-01

    The AC impedance of human hepatoma SMMC-7721 cells were measured in our laboratory by Agilent 4294A impedance analyzer in the frequency range of 0.01-100 MHz. And then the effect of hematocrit on electrical impedance characteristics of hepatoma cells was observed by electrical impedance spectroscopy, Bode diagram, Nyquist diagram and Nichols diagram. The results showed that firstly, there is a frequency dependence, i.e., the increment of real part and the imaginary part of complex electrical impedance (δZ', δZ"), the increment of the amplitude modulus of complex electrical impedance (δ[Z *]) and phase angle (δθ) were all changed with the increasing frequency. Secondly, it showed cell volume fraction (CVF) dependence, i. e. , the increment of low-frequency limit (δZ'0, δ[Z*] 0), peak (δZ"(p), δθ(p)), area and radius (Nyquist diagram, Nichols diagram) were all increased along with the electric field frequency. Thirdly, there was the presence of two characteristic frequencies: the first characteristic frequency (f(c1)) and the second characteristic frequency (f(c2)), which were originated respectively in the polarization effects of two interfaces that the cell membrane and extracellular fluid, cell membrane and cytoplasm. A conclusion can be drawn that the electrical impedance spectroscopy is able to be used to observe the electrical characteristics of human hepatoma cells, and therefore this method can be used to investigate the electrophysiological mechanisms of liver cancer cells, and provide research tools and observation parameters, and it also has important theoretical value and potential applications for screening anticancer drugs.

  3. Impedance studies - Part 4: The APS impedance budget

    SciTech Connect

    1988-07-01

    This note will wrap up the numerical results that were obtained in our calculations of the wake potentials, the loss factors, and the impedances for a variety of structures in the APS storage ring. It consists of five sections and one appendix. Section 1 is an introduction. Section 2 summarizes the hand calculations. The computer calculations are the subject 1 of Section 3. Section 4 discusses several tests in our numerical methods. Section 5 presents the APS impedance budget, along with some discussion. The appendix contains the figures of the structures, the longitudinal/transverse wake potentials and the real/imaginary part of the impedances of various sorts of geometries that have been included in the budget.

  4. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  5. Comparison of segmental with whole-body impedance measurements in peritoneal dialysis patients.

    PubMed

    Nescolarde, Lexa; Doñate, Teresa; Piccoli, Antonio; Rosell, Javier

    2008-09-01

    Segmental impedance measurements were obtained using nine electrode configurations in 21 male patients undergoing peritoneal dialysis PD before and after the fluid drainage. For each segment we analyzed the impedance Z and the impedance divided by the height H of the patient Z/H. Our objective was to compare different segmental measurements with whole-body measurements in peritoneal dialysis. The Wilcoxon test was used to analyze the change in impedance produced by a PD session. Pearson or Spearman correlation coefficients were used for continuous or discrete variables, respectively. Statistical significance was set at P<0.05. Similar results were obtained for Z and Z/H. The correlation coefficients between the real R and imaginary X(c) parts of segmental impedances after drainage were within the expected range for healthy population (0.46-0.70), but not before drainage for the abdomen (0.34) and the upper part of the leg (0.24). The correlation between the real part of whole-body and the real part of longitudinal segments in the limbs was high (r=0.807-0.879). Furthermore, the imaginary part of whole-body showed a high correlation with the imaginary part of all longitudinal segments (r=0.856-0.931). The high contribution of arm and leg impedances in the whole-body impedance produced high correlation between whole-body and segmental measurements in legs and arms. In agreement with other previous studies, a significant increase of the arm resistance was detected after fluid drainage. The drainage of fluids in PD patients produced significant changes in the measured real parts of impedance in all measured segments, but only the measurement in the abdomen showed a significant positive correlation (r=0.533) with the extracted fluid volume. This low correlation indicates that the individual assessment of fluid volumes using segmental measurements will be highly inaccurate.

  6. [Monitoring cervical dilatation by impedance].

    PubMed

    Salvat, J; Lassen, M; Sauze, C; Baud, S; Salvat, F

    1992-01-01

    Several different physics procedures have been tried to mechanize the recording of partograms. Can a measure of impedance of tissue Z using potential difference V, according to Ohm's law V = Z1, and 1 is a constant, be correlated with a measure of cervical dilatation using vaginal examination? This was our hypothesis. The tissue impedance meter was made to our design and applied according to a bipolar procedure. Our work was carried out on 28 patients. 10 patients were registered before labour started in order to test the apparatus and to record the impedance variations without labour taking place, and 18 patients were registered in labour to see whether there was any correlation. The level of impedance in the cervix without labour was 302.7 Ohms with a deviation of 8.2. Using student's t tests it was found that there was a significant correlation (p less than 0.001) in four measurements between the impedance measure and measures obtained by extrapolating the degrees of dilatation calculated from vaginal examination. This is a preliminary study in which we have defined the conditions that are necessary to confirm these first results and to further develop the method.

  7. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions.

    PubMed

    Stokes, Jason R; Macakova, Lubica; Chojnicka-Paszun, Agnieszka; de Kruif, Cornelis G; de Jongh, Harmen H J

    2011-04-05

    Aqueous lubrication is currently at the forefront of tribological research due to the desire to learn and potentially mimic how nature lubricates biotribological contacts. We focus here on understanding the lubrication properties of naturally occurring polysaccharides in aqueous solution using a combination of tribology, adsorption, and rheology. The polysaccharides include pectin, xanthan gum, gellan, and locus bean gum that are all widely used in food and nonfood applications. They form rheologically complex fluids in aqueous solution that are both shear thinning and elastic, and their normal stress differences at high shear rates are found to be characteristic of semiflexible/rigid molecules. Lubrication is studied using a ball-on-disk tribometer with hydrophobic elastomer surfaces, mimicking biotribological contacts, and the friction coefficient is measured as a function of speed across the boundary, mixed, and hydrodynamic lubrication regimes. The hydrodynamic regime, where the friction coefficient increases with increasing lubricant entrainment speed, is found to depend on the viscosity of the polysaccharide solutions at shear rates of around 10(4) s(-1). The boundary regime, which occurs at the lowest entrainment speeds, depends on the adsorption of polymer to the substrate. In this regime, the friction coefficient for a rough substrate (400 nm rms roughness) is dependent on the dry mass of polymer adsorbed to the surface (obtained from surface plasmon resonance), while for a smooth substrate (10 nm rms roughness) the friction coefficient is strongly dependent on the hydrated wet mass of adsorbed polymer (obtained from quartz crystal microbalance, QCM-D). The mixed regime is dependent on both the adsorbed film properties and lubricant's viscosity at high shear rates. In addition, the entrainment speed where the friction coefficient is a minimum, which corresponds to the transition between the hydrodynamic and mixed regime, correlates linearly with the ratio

  8. Advances on Bioactive Polysaccharides from Medicinal Plants.

    PubMed

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  9. Uncertainties in Transfer Impedance Calculations

    NASA Astrophysics Data System (ADS)

    Schippers, H.; Verpoorte, J.

    2016-05-01

    The shielding effectiveness of metal braids of cables is governed by the geometry and the materials of the braid. The shielding effectiveness can be characterised by the transfer impedance of the metal braid. Analytical models for the transfer impedance contain in general two components, one representing diffusion of electromagnetic energy through the metal braid, and a second part representing leakage of magnetic fields through the braid. Possible sources of uncertainties in the modelling are inaccurate input data (for instance, the exact size of the braid diameter or wire diameter are not known) and imperfections in the computational model. The aim of the present paper is to estimate effects of variations of input data on the calculated transfer impedance.

  10. Microfabricated thin film impedance sensor & AC impedance measurements.

    PubMed

    Yu, Jinsong; Liu, Chung-Chiun

    2010-01-01

    Thin film microfabrication technique was employed to fabricate a platinum based parallel-electrode structured impedance sensor. Electrochemical impedance spectroscopy (EIS) and equivalent circuit analysis of the small amplitude (±5 mV) AC impedance measurements (frequency range: 1 MHz to 0.1 Hz) at ambient temperature were carried out. Testing media include 0.001 M, 0.01 M, 0.1 M NaCl and KCl solutions, and alumina (∼3 μm) and sand (∼300 μm) particulate layers saturated with NaCl solutions with the thicknesses ranging from 0.6 mm to 8 mm in a testing cell, and the results were used to assess the effect of the thickness of the particulate layer on the conductivity of the testing solution. The calculated resistances were approximately around 20 MΩ, 4 MΩ, and 0.5 MΩ for 0.001 M, 0.01 M, and 0.1 M NaCl solutions, respectively. The presence of the sand particulates increased the impedance dramatically (6 times and 3 times for 0.001 M and 0.1 M NaCl solutions, respectively). A cell constant methodology was also developed to assess the measurement of the bulk conductivity of the electrolyte solution. The cell constant ranged from 1.2 to 0.8 and it decreased with the increase of the solution thickness.

  11. Microfabricated Thin Film Impedance Sensor & AC Impedance Measurements

    PubMed Central

    Yu, Jinsong; Liu, Chung-Chiun

    2010-01-01

    Thin film microfabrication technique was employed to fabricate a platinum based parallel-electrode structured impedance sensor. Electrochemical impedance spectroscopy (EIS) and equivalent circuit analysis of the small amplitude (±5 mV) AC impedance measurements (frequency range: 1 MHz to 0.1 Hz) at ambient temperature were carried out. Testing media include 0.001 M, 0.01 M, 0.1 M NaCl and KCl solutions, and alumina (∼3 μm) and sand (∼300 μm) particulate layers saturated with NaCl solutions with the thicknesses ranging from 0.6 mm to 8 mm in a testing cell, and the results were used to assess the effect of the thickness of the particulate layer on the conductivity of the testing solution. The calculated resistances were approximately around 20 MΩ, 4 MΩ, and 0.5 MΩ for 0.001 M, 0.01 M, and 0.1 M NaCl solutions, respectively. The presence of the sand particulates increased the impedance dramatically (6 times and 3 times for 0.001 M and 0.1 M NaCl solutions, respectively). A cell constant methodology was also developed to assess the measurement of the bulk conductivity of the electrolyte solution. The cell constant ranged from 1.2 to 0.8 and it decreased with the increase of the solution thickness. PMID:22219690

  12. [Evaluation of orthostatic regulation by saddle support test using thoracic impedance].

    PubMed

    Gugova, F K; Lapin, V V

    2002-01-01

    We investigated 21 healthy volunteers (10 males and 11 females, mean age 23 +/- 4 years). All the subjects have undergone two 20 min head-up tilt tests using tilt table "TRI W.G. inc." (USA): the first with footplate support and the second with bicycle saddle. Thoracic electrical impedance was measured using impedance cardiography according to Kubicek et al. The protocols included an initial period of 20 min of supine rest while baseline thoracic impedance, blood pressure and heart rate were recorded and then followed by a tilt to 65 degrees. Changes of impedance were measured at min 1, 2, 3, 5, 7, 10, 15, 20 after the procedure. Women had higher values of thoracic impedance both at rest and during the tilt test than men. The value of impedance of the chest negatively correlated with the body mass index. We suppose that an increase of impedance more than 15% may be related with pathological venous pooling. Thoracic impedance may be used to monitor changes of thoracic fluid volumes with posture and possibly to assess orthostatic regulation. The contribution of leg muscles in orthostatic regulation does not reflect values of thoracic impedance.

  13. Ratcheting fluid with geometric anisotropy

    NASA Astrophysics Data System (ADS)

    Thiria, Benjamin; Zhang, Jun

    2015-02-01

    We investigate a mechanism that effectively transports fluids using vibrational motion imposed onto fluid boundary with anisotropy. In our experiment, two asymmetric, sawtooth-like structures are placed facing each other and form a corrugated fluid channel. This channel is then forced to open and close periodically. Under reciprocal motion, fluid fills in the gap during the expansion phase of the channel and is then forced out during contraction. Since the fluid experiences different impedances when flowing in different directions, the stagnation point that separates flows of two directions changes within each driving period. As a result, fluid is transported unidirectionally. This ratcheting effect of fluid is demonstrated through our measurements and its working principle discussed in some detail.

  14. Impedance cardiography: a potential monitor for hemodialysis.

    PubMed

    Wynne, Julie L; Ovadje, Leo O; Akridge, Chaltsy M; Sheppard, Samuel W; Vogel, Robert L; Van de Water, Joseph M

    2006-06-01

    Impedance cardiography (ICG) technology has improved dramatically, and at least one device now can give a measurement of fluid status by using thoracic fluid content (TFC), along with cardiac output (CO) and cardiac index (CI). With a built-in sphygmomanometer cuff, it can also provide blood pressure (BP) and systemic vascular resistance index (SVRI). A currently available small portable ICG that provides reliable measures of fluid status could be an ideal noninvasive monitor for hemodialysis (HD), with the potential of helping avoid significant hemodynamic instability during HD. A case series of patients with chronic renal failure was studied while undergoing HD using ICG (BioZ, CardioDynamics, Int. Corp., San Diego, CA). Parameters recorded at 15-min intervals included TFC, CI, BP (systolic, diastolic, and mean arterial), SVRI, and heart rate. Using the Pearson method, the percentage changes in each of the parameters during the HD session were correlated to the amount of fluid removed (FR), normalized to body weight. Forty-one patients were enrolled, but six patients were excluded due to incomplete data; therefore, 35 patients (13 men and 22 women) formed the basis of the analysis. The age range was 28 to 87 (mean 55.1 +/- 16.1) years. The amount of FR was 2.88 +/- 1.13 L (37.3 +/- 14.6 ml/kg). TFC decreased in all patients during the HD session (average reduction 12.7 +/- 8 kohms(-1)); whereas all other hemodynamic parameters showed both increases and decreases. The correlation of change in TFC with FR was moderate (r = 0.579, P = 0.0003); other hemodynamic parameters showed a poor correlation with FR. Neither the standard hemodynamic parameters nor the ICG device's special parameters were able to identify the five patients in this series who experienced significant hemodynamic instability or intradialytic hypotension. TFC, measured easily and noninvasively using ICG, correlates with the amount of fluid removed during HD. In comparison with the other hemodynamic

  15. Journal and Wave Bearing Impedance Calculation Software

    NASA Technical Reports Server (NTRS)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  16. Impact of bolus volume on small intestinal intra-luminal impedance in healthy subjects

    PubMed Central

    Nguyen, Nam Q; Bryant, Laura K; Burgstad, Carly M; Fraser, Robert J; Sifrim, Daniel; Holloway, Richard H

    2010-01-01

    AIM: To assess the impact of bolus volume on the characteristics of small intestinal (SI) impedance signals. METHODS: Concurrent SI manometry-impedance measurements were performed on 12 healthy volunteers to assess the pattern of proximal jejunal fluid bolus movement over a 14 cm-segment. Each subject was given 34 boluses of normal saline (volume from 1 to 30 mL) via the feeding tube placed immediately above the proximal margin of the studied segment. A bolus-induced impedance event occurred if there was > 12% impedance drop from baseline, over ≥ 3 consecutive segments within 10 s of bolus injection. A minor or major impedance event was defined as a duration of impedance drop < 60 s or ≥ 60 s, respectively. RESULTS: The minimum volume required for a detectable SI impedance event was 2 mL. A direct linear relationship between the SI bolus volume and the occurrence of impedance events was noted until SI bolus volume reached 10 mL, a volume which always produced an impedance flow event. There was a moderate correlation between the bolus volume and the duration of impedance drop (r = 0.63, P < 0.0001) and the number of propagated channels (r = 0.50, P < 0.0001). High volume boluses were associated with more major impedance events (≥ 10 mL boluses = 63%, 3 mL boluses = 17%, and < 3 mL boluses = 0%, P = 0.02). CONCLUSION: Bolus volume had an impact on the type and length of propagation of SI impedance events and a threshold of 2 mL is required to produce an event. PMID:20440856

  17. Acoustic Ground-Impedance Meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  18. The Aberdeen Impedance Imaging System.

    PubMed

    Kulkarni, V; Hutchison, J M; Mallard, J R

    1989-01-01

    The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal.

  19. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  20. Bioactive polysaccharides and gut microbiome (abstract)

    USDA-ARS?s Scientific Manuscript database

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  1. Solution NMR spectroscopy of food polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Many polysaccharides are allowed for direct food use, where they serve a number of useful functions. In addition to possibly being a source of calories, a food polysaccharide may be a dietary fiber, bulking agent, crystallization inhibitor, thickener, encapsulant, gelling agent, foam and emulsion s...

  2. Polysaccharide Based Hydrogels for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Leone, Gemma; Barbucci, Rolando

    Polysaccharide based hydrogels for their physico-chemical and biological properties can be used as scaffolds for soft tissue regneration and as vehicles for drug controlled release. For both these applications, Hyaluronan shows optimal characteristics even though its quick enzymatic degradability makes this natural polysaccharide unsuitable for applications which require prolonged presence in the human organism.

  3. Calibration of electrical impedance tomography

    SciTech Connect

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  4. Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1M HCl solution.

    PubMed

    Mobin, Mohammad; Rizvi, Marziya

    2017-03-15

    Polysaccharide from Plantago ovata was investigated for its inhibition characteristics for carbon steel corrosion in 1M HCl. The mucilage of the Plantago is comprised of a highly branched polysaccharide, arabinosyl (galaturonic acid) rhamnosylxylan (AX), which is mainly responsible for the corrosion inhibition of the carbon steel. The techniques that were used to assess the inhibition and adsorption properties of the AX in the acid solution are gravimetric method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-vis spectroscopy and FTIR. Thermodynamic and activation parameters revealed that the spontaneous adsorption of AX on carbon steel was mixed type and predominantly chemical in nature. Quantum chemical analysis supports the proposed mechanism of inhibition. AX from Plantago could serve as a green corrosion inhibitor for the carbon steel in hydrochloric medium with good inhibition efficiency but low risk of environmental pollution.

  5. Unexplored possibilities of all-polysaccharide composites.

    PubMed

    Simkovic, Ivan

    2013-06-20

    Composites made solely from polysaccharides are mostly ecological because they can degrade without leaving behind ecologically harmful residues, in contrast to composites which contain synthetic polymers. Herein, the following groups of all-polysaccharide composites (APCs) are discussed: an all-cellulose group that includes cotton composites, cellulose combined with other polysaccharides, as well as those based on chitin/chitosan, heparin, hyaluronan, xylan, glucomannan, pectin, xyloglucan, arabinan, starch, carrageenan, alginate, galactan as one of the components in combination with other polysaccharides. They can be used in medical, paper, food, packing, textile, electronic, mechanical engineering and other applications. The composites were tested for absorptivity, biodegradability, crystallinity, rheology, and mechanical, optical, separation, gelling, pasting, film-forming, adhesive, antimicrobial properties, as well as water vapor permeability, water repellency, dye uptake, and fire-retardancy. Except for food applications, composites based on more than two types of polysaccharides have rarely been used and many possible combinations remain unexplored.

  6. Polysaccharides in colon-specific drug delivery.

    PubMed

    Sinha, V R; Kumria, R

    2001-08-14

    Natural polysaccharides are now extensively used for the development of solid dosage forms for delivery of drug to the colon. The rationale for the development of a polysaccharide based delivery system for colon is the presence of large amounts of polysaccharidases in the human colon as the colon is inhabited by a large number and variety of bacteria which secrete many enzymes e.g. beta-D-glucosidase, beta-D-galactosidase, amylase, pectinase, xylanase, beta-D-xylosidase, dextranase, etc. Various major approaches utilizing polysaccharides for colon-specific delivery are fermentable coating of the drug core, embedding of the drug in biodegradable matrix, formulation of drug-saccharide conjugate (prodrugs). A large number of polysaccharides have already been studied for their potential as colon-specific drug carrier systems, such as chitosan, pectin, chondroitin sulphate, cyclodextrin, dextrans, guar gum, inulin, amylose and locust bean gum. Recent efforts and approaches exploiting these polysaccharides in colon-specific drug delivery are discussed.

  7. Thin film of biocompatible polysaccharides

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Lavalle, Philippe; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2003-03-01

    The layer-by-layer deposition method proposed by Decher et al. (1991) is a very simple and versatile method used to build thin films. These films are of interest for bioengineering because of their unique properties and of the possible insertion of bioactive molecules. We present here the peculiar properties of a new kind of film formed with natural biopolymers, namely hyaluronan (HA)and chitosan (CHI). The films may be used as biomimetic substrates to control bacterial and cell adhesion. These polysaccharides are of particular interest because they are biodegradable, non toxic, and can be found in various tissues. Hyaluronan is also a natural ligand for a numerous type of cells through the CD44 receptor. Chitosan has already largely been used for its biological and anti-microbial properties. (CHI/HA) films were built in acidic pH at different ionic strength. The buildup was followed in situ by optical waveguide lightmode spectroscopy (OWLS), quartz crystal microbalance, streaming potential measurements and atomic force microscopy. The kinetics of adsorption and desorption of the polyelectrolytes depended on the ionic strength. Small islands were initially present on the surface which grew by mutual coalescence until becoming a flat film. The films were around 200 nm in thickness. These results suggest that different types of thin films constituted of polysaccharides can be built on any type of surface. These films are currently investigated toward their cell adhesion and bacterial adhesion properties.

  8. Some stable reconstruction algorithms for electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Berryman, J. G.

    1991-07-01

    An impedance camera or what is now more commonly called electrical impedance tomography -- attempts to image the electrical impedance (or just the conductivity) distribution inside a body using electrical measurements on its boundary. The method has been used successfully in both biomedical and geophysical applications but the analysis of optimal reconstruction algorithms is still progressing. The most common application is monitoring the influx or efflux of a highly conducting fluid (such as brine in a porous rock or blood in the human body) through the volume being imaged. For biomedical applications, this method does not have the resolution of radiological methods, but is is comparatively safe and inexpensive and therefore provides a valuable alternative when continuous monitoring of a patient or process is desired. The following discussion is intended first to summarize the physics of electrical impedance tomography, then to provide a few details of the data analysis and forward modeling requirements, and finally to outline some of the reconstruction algorithms that have proven to be most useful in practice. Pointers to the literature are provided throughout this brief narrative and the reader is encouraged to explore the references for more complete discussions of the variations issues raised here.

  9. Transthoracic electrical impedance: artifacts associated with electrode movement.

    PubMed

    Hull, E T; Irie, T; Heemstra, H; Wildevuur, R H

    1978-01-01

    The applicability of transthoracic impedance measurements for estimating thoracic fluid volume and tidal volume is limited by large variations associated with electrode movement, repeated application of electrodes and inter-individual differences. These sources of variation were studied with a four-electrode impedance-measuring device in anaesthetized dogs. Electrode movement artifacts affecting both the resting expiratory value of impedance (Zo) and the respiratory change of impedance (deltaZ/VT) could be largely eliminated by rigidly fixing the distances between the current-supplying and the potential-sensing electrodes. The reproducibility of Zo and deltaZ/VT was found to be affected adversely by local conductivity changes in the skin induced by repeated removal of the glued electrodes. Inter-individual variations in Zo and deltaZ/VT correlated with the thickness of thoracic subcutaneous fat (r = 0.86) and thoracic circumference (r = -0.95) respectively. Correction for these sources of inter-individual variation allowed the standard deviations of Zo and deltaZ/VT to be reduced from 18% to 7% and from 51% to 17% of their respective mean values.

  10. Impedance of pistons on a two-layer medium in a planar infinite rigid baffle.

    PubMed

    Hassan, Scott E

    2007-07-01

    An integral transform technique is used to develop a general solution for the impedance of rigid pistons acting on a two-layer medium. The medium consists of a semi-infinite acoustic fluid on a viscoelastic thick plate in a rigid infinite baffle. The stresses acting on the planar baffle, as a result of piston motion, are determined using theory of linear elasticity and are therefore unrestricted in terms of applicable frequency range. The special case of a circular piston is considered and expressions for the self-and mutual impedances are developed and evaluated numerically. Numerical results are compared with classical piston impedance functions and finite-element model results. At low frequencies (k(0)a<1), the self-impedances vary significantly from the classical piston impedance functions due to the shear properties of the viscoelastic medium. In the midfrequency range (1impedances vary from the classical piston impedance functions for moderate viscoelastic layer thicknesses (0.5impedances associated with pistons on a two-layer medium generally exhibit an increased decay, as a function of separation distance, over the classical results.

  11. Tapping mode microwave impedance microscopy

    SciTech Connect

    Lai, K.

    2010-02-24

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results.

  12. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  13. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral blood...

  14. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral blood...

  15. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of the...

  16. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral blood...

  17. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral blood...

  18. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral blood...

  19. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of the...

  20. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of the...

  1. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of the...

  2. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of the...

  3. Enzymatic method for improving the injectability of polysaccharides

    DOEpatents

    Griffith, William L.; Compere, Alicia L.; Holleman, James W.

    1982-01-01

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  4. Impedance-matched Marx generators

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; LeChien, K. R.; Mazarakis, M. G.; Savage, M. E.; Stoltzfus, B. S.; Austin, K. N.; Breden, E. W.; Cuneo, M. E.; Hutsel, B. T.; Lewis, S. A.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Reisman, D. B.; Sceiford, M. E.; Wisher, M. L.

    2017-04-01

    We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs). The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with L C time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22 -Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19 -Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.

  5. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  6. Vacuum Ultraviolet Action Spectroscopy of Polysaccharides

    NASA Astrophysics Data System (ADS)

    Enjalbert, Quentin; Brunet, Claire; Vernier, Arnaud; Allouche, Abdul-Rahman; Antoine, Rodolphe; Dugourd, Philippe; Lemoine, Jérôme; Giuliani, Alexandre; Nahon, Laurent

    2013-08-01

    We studied the optical properties of gas-phase polysaccharides (maltose, maltotetraose, and maltohexaose) ions by action spectroscopy using the coupling between a quadrupole ion trap and a vacuum ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility (France) in the 7 to 18 eV range. The spectra provide unique benchmarks for evaluation of theoretical data on electronic transitions of model carbohydrates in the VUV range. The effects of the nature of the charge held by polysaccharide ions on the relaxation processes were also explored. Finally the effect of isomerization of polysaccharides (with melezitose and raffinose) on their photofragmentation with VUV photons is presented.

  7. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  8. Serogroup quantitation of multivalent polysaccharide and polysaccharide-conjugate meningococcal vaccines from China.

    PubMed

    Cook, Matthew C; Gibeault, Sabrina; Filippenko, Vasilisa; Ye, Qiang; Wang, Junzhi; Kunkel, Jeremy P

    2013-07-01

    The active components of most meningococcal vaccines are four antigenic serogroup capsular polysaccharides (A, C, Y, W135). The vaccines, monovalent or multivalent mixtures of either free polysaccharides or polysaccharides conjugated to antigenic carrier proteins, may be in liquid or lyophilised formulations, with or without excipients. Acid hydrolysis and chromatographic methods for serogroup quantitation, which were previously optimised and qualified using polysaccharide-based standards and a narrow range of real vaccines, are here challenged with multiple lots of a broad assortment of additional multivalent polysaccharide-based meningococcal vaccine products. Centrifugal filtration successfully removed all interfering lactose excipient without loss of polysaccharides to allow for the determination of Y and W135 serogroups. Replicate operations by three different analysts indicated high method reproducibility. Results indicated some lot-to-lot and product-to-product variations. However, all vaccines were within general specifications for each serogroup polysaccharide, with the exception of all lots of one polysaccharide vaccine - which by these methods were found to be deficient in the serogroup A component only. These robust techniques are very useful for the evaluation of antigen content and consistency of manufacture. The deformulation, hydrolysis and chromatographic methods may be adaptable for the evaluation of other types of polysaccharide-based vaccines.

  9. Polysaccharide-based Nanoparticles for Gene Delivery.

    PubMed

    Huh, Myung Sook; Lee, Eun Jung; Koo, Heebeom; Yhee, Ji Young; Oh, Keun Sang; Son, Sohee; Lee, Sojin; Kim, Sun Hwa; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-04-01

    Nanoparticles based on nanotechnology and biotechnology have emerged as efficient carriers for various biopharmaceutical agents including proteins and genes. In particular, polysaccharides have attracted interest of many researchers in the drug delivery field due to their advantages such as biocompatibility, biodegradability, low toxicity, and ease of modification. A number of polysaccharides including chitosan, hyaluronic acid, and dextran, and their derivatives have been widely used as polymeric backbones for the formation of nanoparticles, which can be provided as valuable gene delivery carriers. In this review, we introduce the chemical and physical natures of different polysaccharides particularly used in biomedical applications, and then discuss recent progress in the development of polysaccharide-based nanoparticles for gene delivery.

  10. NMR analysis of compositional heterogeneity in polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Many copolysaccharides are compositionally heterogeneous, and the composition determined by the usual analytical or spectroscopic methods provides only an average value. For some polysaccharides, the NMR data contain copolymer sequence information, such as diad, triad, and tetrad sequence intensiti...

  11. Interaction between gut immunity and polysaccharides.

    PubMed

    Huang, Xiaojun; Nie, Shaoping; Xie, Mingyong

    2017-09-22

    The human gut is colonized with a vast and diverse microbial ecosystem, and these bacteria play fundamental roles in the well being of our bodies. Gut-associated lymphoid tissues, the largest mucosal immune system, should never be overlooked for their profound effect in maintaining the host immunity. Therefore, we discussed the relationship between gut immunity and host health, primarily from two aspects: the homeostasis of gut microbiota, and the function of gut-associated lymphoid tissues. Polysaccharides, widely concerned as bioactive macromolecules in recent centuries, have been proved to benefit the intestinal health. Dietary polysaccharides can improve the ratio of probiotics, regulate the intestinal microenvironment like decreasing the gut pH, and stimulate the macrophages or lymphocytes in gut tissues to fight against diseases like cancer. Based on various experimental and clinical evidence, the impacts of dietary polysaccharides on intestinal health are summarized, in order to reveal the possible immunomodulatory mechanisms of polysaccharides.

  12. The influence of hydroalcoholic media on the performance of Grewia polysaccharide in sustained release tablets.

    PubMed

    Nep, E I; Mahdi, M H; Adebisi, A O; Dawson, C; Walton, K; Bills, P J; Conway, B R; Smith, A M; Asare-Addo, K

    2017-10-30

    Co-administration of drugs with alcohol can affect the plasma concentration of drugs in patients. It is also known that the excipients used in the formulation of drugs may not always be resistant to alcohol. This study evaluates effect of varying alcohol concentrations on theophylline release from two grades of Grewia mollis polysaccharides. X-ray microtomography showed that native polysaccharide formulation compacts were not homogenous after the mixing process resulting in its failure in swelling studies. Removal of starch from the native polysaccharide resulted in homogenous formulation compacts resistant to damage in high alcoholic media in pH 6.8 (40%v/v absolute ethanol). Destarched polymer compacts had a significantly higher hardness (375N) than that of the native polysaccharide (82N) and HPMC K4M (146N). Dissolution studies showed similarity at all levels of alcohol tested (f2=57-91) in simulated gastric media (pH 1.2). The dissolution profiles in the simulated intestinal fluids were also similar (f2=60-94), with the exception of the native polysaccharide in pH 6.8 (40%v/v absolute ethanol) (f2=43). This work highlights the properties of Grewia polysaccharide as a matrix former that can resist high alcoholic effects therefore; it may be suitable as an alternative to some of the commercially available matrix formers with wider applications for drug delivery as a cheaper alternative in the developing world. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. CAPSULAR POLYSACCHARIDE OF AZOTOBACTER AGILIS1

    PubMed Central

    Cohen, Gary H.; Johnstone, Donald B.

    1964-01-01

    Cohen, Gary H. (University of Vermont, Burlington), and Donald B. Johnstone. Capsular polysaccharide of Azotobacter agilis. J. Bacteriol. 88:1695–1699. 1964.—Capsular polysaccharide from Azotobacter agilis strain 132 was recovered from washed cells by alkaline digestion. The polysaccharide was purified by centrifugation, repeated alcohol precipitation, Sevag deproteinization, and treatment with ribonuclease and charcoal-cellulose. Methods of isolation and purification appeared to provide a polymer showing no evidence of heterogeneity when examined by chemical and physical methods. Colorimetric, paper chromatographic, and enzymatic analyses on both intact and acid-hydrolyzed polysaccharide indicated that the polymer contained galactose and rhamnose at a molar ratio of approximately 1.0:0.7. A sialic acid-like component was also present in the polysaccharide. The study shows significant differences in the chemical composition of the extra-cellular polysaccharide of A. agilis and that of A. vinelandii. This adds further biochemical evidence for the right of these species to independent status. Images PMID:14240959

  14. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  15. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2004-02-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  16. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-06-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  17. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2005-01-17

    This project aimed at developing a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GTI. GTI proposed to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment

  18. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2002-08-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  19. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-10-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  20. Bilateral Impedance Control For Telemanipulators

    NASA Technical Reports Server (NTRS)

    Moore, Christopher L.

    1993-01-01

    Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.

  1. Impedance spectroscopy of food mycotoxins

    NASA Astrophysics Data System (ADS)

    Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.

    2012-01-01

    A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.

  2. MEMS-based adaptive impedance matching network

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashok

    2003-07-01

    The architecture level design of an impedance matching network is presented for the global system for mobile communication radio frequency (GSM RF) power amplifier module used in a typical cellular handset. Designs for the low and high output impedance of the power amplifier and 50 Ω antenna impedance are considered. Impedance matching network design is presented for a typical low output impedance (Z = 2-j*0.4 Ω) of the power amplifier and 50 Ω antenna impedance and is made adaptive for high output impedance (Z = 7+j*2 Ω). It is shown that the network can be made adaptive to varying output requirements of the power amplifier by tuning the network capacitance toward the antenna end. The architecture level design of a 25 Ω antenna impedance is also presented and shown that that the impedance matching network can be made adaptive, which would require the use of MEMS switches. The adaptive impedance matching networks can be implemented in a passive integration technology with post-processing for MEMS components.

  3. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio.

    PubMed

    Lukaski, Henry C; Kyle, Ursula G; Kondrup, Jens

    2017-09-01

    Malnutrition affects prognosis in many groups of patients. Although screening tools are available to identify adults at risk for poor nutritional status, a need exists to improve the assessment of malnutrition by identifying the loss of functional tissues that can lead to frailty, compromised physical function, and increased risk of morbidity and mortality, particularly among hospitalized and ill patients and older adults. Bioimpedance analysis (BIA) offers a practical approach to identify malnutrition and prognosis by assessing whole-body cell membrane quality and depicting fluid distribution for an individual. Two novel applications of BIA afford opportunities to safely, rapidly, and noninvasively assess nutritional status and prognosis. One method utilizes single-frequency phase-sensitive measurements to determine phase angle, evaluate nutritional status, and relate it to prognosis, mortality, and functional outcomes. Another approach uses the ratio of multifrequency impedance values to indicate altered fluid distribution and predict prognosis. Use of basic BIA measurements, independent of use of regression prediction models and assumptions of constant chemical composition of the fat-free body, enables new options for practical assessment and clinical evaluation of impaired nutritional status and prognosis among hospitalized patients and elders that potentially can contribute to improved patient care and clinical outcomes. However, these novel applications have some technical and physiological limitations that should be considered.

  4. On the applicability of fluidic flexible matrix composite variable impedance materials for prosthetic and orthotic devices

    NASA Astrophysics Data System (ADS)

    Philen, M.

    2009-10-01

    The applicability of variable impedance fluidic flexible matrix composites (F2MC) is investigated for development of prosthetic and orthotic devices. The F2MC material is an innovative combination of high performance composite tubes containing high bulk modulus fluids. The new material system can potentially achieve a change in stiffness of several orders of magnitude through valve control. The F2MC material system is investigated in this research through analytical studies for active impedance control for load transfer reduction in transtibial prosthetic sockets and impedance joint control for ankle-foot orthoses (AFO). Preliminary analysis results indicate that the variable modulus system can reduce the load transfer between the limb and transtibial socket and can provide impedance tailoring for improving foot-slap in an AFO.

  5. In vitro evaluation of the mucoadhesive properties of polysaccharide-based nanoparticulate oral drug delivery systems.

    PubMed

    Chayed, Siwar; Winnik, Françoise M

    2007-03-01

    Impedance quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) measurements were performed in order to assess the mucoadhesive properties of hydrophobically modified (HM) derivatives of dextran (DEX), with an average molecular weight of 10,000 Da, and of hydroxypropylcellulose (HPC), with an average molecular weight of 80,000 Da. The measurements involved (1) treatment of a hydrophobic surface with bovine submaxillary gland mucin (BSM) under various pH conditions (2.0-8.0) and (2) treatment of the BSM layer with buffer solutions of the amphiphilic polysaccharides (pH 3.0 and 7.0). Control measurements were carried out with DEX, HPC, and chitosan (CH) used as a model mucoadhesive polymer. All HM-polysaccharides were shown to adsorb onto a BSM layer, the extent of adsorption increasing with increasing hydrophobicity of the samples. Under the same conditions, HPC and CH interacted with the BSM layer, but DEX showed no affinity to BSM. All the results suggest that HM-polysaccharide micellar systems have the potential of enhancing the bioavailability of poorly adsorbed drugs in peroral delivery.

  6. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex.

    PubMed

    Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong

    2013-09-01

    Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides.

  7. Structural analysis of cell wall polysaccharides using PACE

    SciTech Connect

    Mortimer, Jennifer C.

    2017-01-01

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  8. Preparation Methods and Antioxidant Activities of Polysaccharides and Their Derivatives.

    PubMed

    Mei, Xinya; Yi, Chengkun; Huang, Gangliang

    2017-01-01

    In recent years, the antioxidant effects of polysaccharides have become a hot spot in the field of polysaccharide research. Herein, the action mechanisms of polysaccharide antioxidation and scavenging free radicals were analyzed. The research progresses on the preparation methods and antioxidant properties of polysaccharides and their derivatives were summarized. Investigating the antioxidant activities of polysaccharides and their derivatives can find useful polysaccharides and their derivatives, which have great potential as natural antioxidants used in functional foods or medicines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Viscoelastic properties of levan polysaccharides

    NASA Astrophysics Data System (ADS)

    Noll, Kenneth; Rende, Deniz; Ozisik, Rahmi; Toksoy-Oner, Ebru

    2014-03-01

    Levan is a naturally occurring polysaccharide that is composed of β-D-fructofuranose units with β(2-6) linkages between fructose rings. It is synthesized by the action of a secreted levansucrase (EC 2.4.1.10) that converts sucrose into the levan externally (exopolysaccharide). Levan is a homopolysaccharide that is non-toxic, water soluble,, and has anti-tumor activity and low immunological response. Therefore, levan presents great potential to be used as a novel functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Despite these favorable properties, levan has a moderately low mechanical properties and poor film forming capability. In the current study, the agglomeration behavior of levan in water and in saline solutions was investigated at 298 and 310 K by dynamic light scattering and transmission electron microscopy (TEM). The viscoelastic properties of neat and oxidized levan films were studied via nanoindentation experiments in the quasi-static and dynamic modes The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232.

  10. Mycoplasma polysaccharide protects against complement

    PubMed Central

    Bolland, Jeffrey R.; Simmons, Warren L.; Daubenspeck, James M.

    2012-01-01

    Although they lack a cell wall, mycoplasmas do possess a glycocalyx. The interactions between the glycocalyx, mycoplasmal surface proteins and host complement were explored using the murine pathogen Mycoplasma pulmonis as a model. It was previously shown that the length of the tandem repeat region of the surface lipoprotein Vsa is associated with susceptibility to complement-mediated killing. Cells producing a long Vsa containing about 40 repeats are resistant to complement, whereas strains that produce a short Vsa of five or fewer repeats are susceptible. We show here that the length of the Vsa protein modulates the affinity of the M. pulmonis EPS-I polysaccharide for the mycoplasma cell surface, with more EPS-I being associated with mycoplasmas producing a short Vsa protein. An examination of mutants that lack EPS-I revealed that planktonic mycoplasmas were highly susceptible to complement killing even when the Vsa protein was long, demonstrating that both EPS-I and Vsa length contribute to resistance. In contrast, the mycoplasmas were resistant to complement even in the absence of EPS-I when the cells were encased in a biofilm. PMID:22504437

  11. Herbal polysaccharides and cough reflex.

    PubMed

    Nosalova, Gabriela; Fleskova, Dana; Jurecek, Ludovit; Sadlonova, Vladimira; Ray, Bimalendu

    2013-06-01

    In the last decades plant substances have become a leading form of treatment of many respiratory symptoms, including cough. It has been shown that compounds purified form polysaccharides from Adhatoda vasica, Withania somnifera, and Glycyrrhiza glabra have various biological activities, such as antioxidant, anti-inflammatory, immunomodulating, antispasmodic action, or antiallergic properties, and they often act as cough suppressants. This work demonstrates new natural substitutes for synthetic antitussives whose application is associated with numerous adverse effects. We investigated pharmacodynamic characteristics of arabinogalacatan samples extracted from A. vasica, W. somnifera, and G. glabra. These extracts showed the ability to reduce citric acid-induced cough in awake guinea pigs after oral administration in a dose of 50mg/kg. The strongest antitussive effect (81%) was found after application of the extract from G. glabra. There was a 67% cough suppression with A. vasica and 61% with W. somnifera, which was comparable with the antitussive activity of codeine (62%). Copyright © 2013. Published by Elsevier B.V.

  12. EXTRACELLULAR POLYSACCHARIDES OF AZOTOBACTER VINELANDII1

    PubMed Central

    Cohen, Gary H.; Johnstone, Donald B.

    1964-01-01

    Cohen, Gary H. (University of Vermont, Burlington), and Donald B. Johnstone. Extracellular polysaccharides of Azotobacter vinelandii. J. Bacteriol. 88:329–338. 1964.—Extracellular polysaccharides synthetized by Azotobacter vinelandii strains 155, 102, and 3A were shown to be carboxylic acid heteropolysaccharides of apparent high molecular weight. Cells were grown in a nitrogen-free, mineral broth medium with 2% sucrose. Extracellular slime was recovered by centrifugation and purified by repeated alcohol precipitation and Sevag deproteinization. Capsular polysaccharide was recovered from washed cells by mild alkaline digestion. Methods of isolation and purification appeared to provide polysaccharide showing no evidence of heterogeneity when examined by chemical and physical methods. Infrared analysis of purified slime from the three strains suggested fundamental structural similarities. Colorimetric, paper chromatographic, and enzymatic analyses on both intact and acid-hydrolyzed slime polysaccharide indicated that the polymers contained in common galacturonic acid, [α] d-glucose, and rhamnose at a ratio of approximately 43:2:1, as well as a hexuronic acid lactone, probably mannurono-lactone. However, as shown by chemical and infrared analysis, minor differences did exist; namely, slime from strain 155 and 102 contained o-acetyl groups, whereas slime from strain 3A contained none. A sialic acid-like component (1.5% of dry weight of the polysaccharide, calculated as N-acetyl neuraminic acid), was found only in the slime of strain 155. Capsular polysaccharide composition closely resembled that for slime. It is of interest that the major slime components were identical whether the energy source provided for the cells was sucrose, glucose, fructose, or ethanol. PMID:14203348

  13. Electrical Impedance Tomography of Breast Cancer

    DTIC Science & Technology

    2005-06-01

    SUBJECT TERMS Diagnosis of Metastatic Cancer, Magnetic Resonance Imaging, Electrical Impedance Imaging, Electrical Impedance Scanning, MRI current...1) To develop and optimize the necessary hardware and software for Magnetic Resonance Electrical Impedance Tomography (MREIT) and interface it with...of Magnetic Resonance in Medicine (ISMRM) conference and included in the appendix for reference. 2.2.2. Second Year: A series of new phantom studies

  14. Impedance signature of pharyngeal gaseous reflux.

    PubMed

    Kawamura, Osamu; Bajaj, Shailesh; Aslam, Muhammad; Hofmann, Candy; Rittmann, Tanya; Shaker, Reza

    2007-01-01

    Pharyngeal impedance changes induced by various pharyngeal reflux events have not been characterized. To characterize pharyngeal impedance changes induced by participant-perceived belching events. We systematically evaluated pharyngeal impedance and pH changes related to 453 belch events in 11 gastroesophageal reflux disease, 10 reflux attributed-laryngitis patients and 16 controls. Of 453 belch events, 362 were analyzable. Of these, 72% occurred within 10 s, 93% within 20 s, 99% within 30 s and 100% within 40 s of the time that participants marked a belch event. In 15% impedance changes in the pharynx preceded, in 12% they were simultaneous and in 73% they occurred after the start of the impedance change in the proximal esophagus. Time interval between the two events ranged between 0.4+/-0.03 and 0.7+/-0.1 s. In all, there were three types of belch-induced impedance changes: (a) impedance increase, (b) impedance decrease and (c) multiphasic. Twenty percent of impedance events associated with belching had less than 50% change from baseline, whereas in 51% changes exceeded or were equal to 50%. Among events with a drop in pharyngeal impedance, only two satisfied the criteria for the liquid reflux event. Pharyngeal ventilation of gastric gaseous content seems to have a unique impedance signature. During pharyngeal gas reflux events, impedance changes may start before or after proximal esophageal changes. Belching may induce negative pharyngeal changes that do not meet the criteria for liquid reflux. These findings need to be taken into consideration in the analysis of pharyngeal reflux events.

  15. Non-invasive measurement of micro-area skin impedance in vivo

    NASA Astrophysics Data System (ADS)

    Li, Dachao; Liang, Wenshuai; Liu, Tongkun; Yu, Haixia; Xu, Kexin

    2011-12-01

    Volume measurement of interstitial fluid transdermally extracted is important in continuous glucose monitoring instrument. The volume of transdermally extracted interstitial fluid could be determined by a skin permeability coefficient. If the skin impedance which is the indicator of skin permeability coefficient can be accurately measured, the volume of interstitial fluid can be calculated based on the relationship between the indicator and the skin permeability coefficient. The possibility of using the skin impedance to indicate the skin permeability coefficient is investigated. A correlation model between the skin impedance and the skin permeability coefficient is developed. A novel non-invasive method for in vivo, real-time, and accurate measurement of skin impedance within a micro skin area is brought forward. The proposed measurement method is based on the theory that organisms saliva and interstitial fluid are equipotential. An electrode is put on the surface of a micro skin area and another one is put in the mouth to be fully contacted with saliva of an animal in the experiments. The electrode in mouth is used to replace the implantable subcutaneous electrode for non-invasive measurement of skin impedance in vivo. A biologically compatible AC current with amplitude of 100mv and frequency of 10Hz is applied to stimulate the micro skin area by the two electrodes. And then the voltage and current between the two electrodes are measured to calculate the skin impedance within a micro skin area. The measurement results by electrode in mouth are compared with the results by subcutaneous electrode in animal experiments and they are consistent so the proposed measurement method is verified well. The effect of moisture and pressure for the measurement is also studied in the paper.

  16. Research on autotransformer short-circuit impedance

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Li, Yan

    2017-04-01

    Short-circuit impedance is an important technical parameters of power transformers, which will affect the efficiency, cost, mechanical strength of transformer. In this paper, the conventional winding arrangement of the high-impedance autotransformer is improved, and the short-circuit impedance of the new-type autotransformer is calculated and analyzed by the engineering leakage flux method and the finite element method respectively, and compared with the measured value. The results show that the impedance value that calculated by finite element method is closer to the measured value.

  17. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.

  18. Electrical Impedance Tomography of Electrolysis

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686

  19. On Impedance Spectroscopy of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Uchaikin, V. V.; Sibatov, R. T.; Ambrozevich, A. S.

    2016-10-01

    Supercapacitors are often characterized by responses measured by methods of impedance spectroscopy. In the frequency domain these responses have the form of power-law functions or their linear combinations. The inverse Fourier transform leads to relaxation equations with integro-differential operators of fractional order under assumption that the frequency response is independent of the working voltage. To compare long-term relaxation kinetics predicted by these equations with the observed one, charging-discharging of supercapacitors (with nominal capacitances of 0.22, 0.47, and 1.0 F) have been studied by means of registration of the current response to a step voltage signal. It is established that the reaction of devices under study to variations of the charging regime disagrees with the model of a homogeneous linear response. It is demonstrated that relaxation is well described by a fractional stretched exponent.

  20. Electrical impedance tomography of electrolysis.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.

  1. Biochemical properties of polysaccharides from black pepper.

    PubMed

    Chun, Hyug; Shin, Dong Hoon; Hong, Bum Shik; Cho, Won Dai; Cho, Hong Yon; Yang, Han Chul

    2002-09-01

    The purified polysaccharides from Piper nigrum were prepared as follows: a hot water extract of pepper seeds was fractionated by ultrafiltration with a 5-kDa-membrane cartridge. A fraction with 5 kDa or bigger molecules was successively purified by open column chromatography on DEAE-Toyopearl 650C and Bio-gel P-60 with each active fraction, resulting in PN-Ib and PN-IIa, purified anti-complementary polysaccharides. None of the anti-complementary activity of any polysaccharide was changed by pronase digestion or polymyxin B treatment, but they were decreased by periodate oxidation. Analysis of component sugar and molecular mass determination of the anti-complementary polysaccharides indicated that PN-Ib with an average molecular mass of 21 kDa contained 88.5% glucose and other negligible minor monosaccharides, while PN-IIa showed a different monosaccharide composition, which contained a significant proportion of galactose, arabinose, galacturonic acid and rhamnose. The molar ratio of galactose and arabinose of PN-IIa (48 kDa) was 1.93:1. PN-1 did not react with beta-glucosyl Yariv reagent, however, PN-IIa did react, which indicated that PN-IIa might be an arabinogalactan. Based upon these results, the usefulness of purified anti-complementary polysaccharides from Piper nigrum is suggested as a supplement for immune enhancement.

  2. Structural studies of CV-70 polysaccharide.

    PubMed

    Scamparini, A; Mariuzzo, D; Fujihara, H; Jacobusi, R; Vendruscolo, C

    1997-08-01

    The goal of this paper is the characterization of the chemical structure of the water-soluble polysaccharide, CV-70, produced by bacteria Beijerinckia sp. Beijerinckia sp. is a genus of gram-negative, aerobic bacteria, usually found in sugar cane root. The CV-70 polysaccharide was produced in a fermentation medium containing 5% sucrose as the carbon source, tryptose and salts, at 25 degrees C [1]. The polysaccharide was hydrolyzed with 2 N trifluoroacetic acid at 100 degrees C for 16 h, purified, and analyzed by HPLC. Index of refraction was used for the detection of sugars. For GC-MS analysis, the CV-70 polysaccharide was derivatized through methylation and acetylation. Together with the GC-MS data, periodate oxidation studies were used to determine the possible glucosidic linkages. Carbon-13 NMR studies were carried out with hydrolyzed and silylated samples. Glucose, galactose and fucose were identified as the components in the CV-70 polysaccharide, in a 3:1:3 ratio.

  3. Coacervation and precipitation in polysaccharide-protein systems.

    PubMed

    Comert, Fatih; Malanowski, Alexander J; Azarikia, Fatemeh; Dubin, Paul L

    2016-05-14

    Precipitation poses a consistent problem for the growing applications of biopolymer coacervation, but the relationship between the two types of phase separation is not well understood. To clarify this relationship, we studied phase separation as a function of pH and ionic strength, in three systems of proteins with anionic polysaccharides: β-lactoglobulin (BLG)/hyaluronic acid (HA); BLG/tragacanthin (TG); and monoclonal antibody (mAb)/HA. We found that coacervation and precipitation are intrinsically different phenomena, responsive to different factors, but their simultaneity (for example with changing pH) may be confused with transitions from one state to another. We propose that coacervate does not literally turn into precipitate, but rather that both coacervate and precipitate are in equilibrium with free protein and polyanion, so that dissolution of one and formation of the other can overlap in time. While protein-polyanion complexes must achieve neutrality for coacervation, precipitation only requires tight binding which leads to the expulsion of counterions and water molecules. The pH-dependence of phase separation, considered in terms of protein and polyion charge, revealed that the electrostatic magnitude of the protein's polymer-binding site ("charge patch") plays a key role in the strength of interaction. These findings were supported by the inhibition of precipitation, seen when the bulky side chains of TG impede close protein-polymer interactions.

  4. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    DOEpatents

    Stephens, David S [Stone Mountain, GA; Gudlavalleti, Seshu K [Kensington, MD; Tzeng, Yih-Ling [Atlanta, GA; Datta, Anup K [San Diego, CA; Carlson, Russell W [Athens, GA

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  5. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  6. Ice nucleation activity of polysaccharides

    NASA Astrophysics Data System (ADS)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  7. Intracardiac impedance after cardiac resynchronization therapy is a novel predictor for worsening of heart failure.

    PubMed

    Suzuki, Hitoshi; Nodera, Minoru; Kamioka, Masashi; Kaneshiro, Takashi; Kamiyama, Yoshiyuki; Takeishi, Yasuchika

    2017-02-08

    Intrathoracic impedance measured by cardiac resynchronization therapy (CRT) varies because several factors other than pulmonary congestion may affect this parameter. Therefore, we hypothesized that changes in intracardiac impedance between the right and left ventricular leads would be more accurate to identify worsening heart failure in patients with CRT. The study enrolled 21 patients with CRT defibrillator (15 males, 70 ± 12 years). During the follow-up period (12 ± 7 months), the subjects experienced 37 fluid index threshold (60 ohm-days) crossing events. These events were divided into two groups whether hospitalization due to worsening heart failure was required (group-H, n = 14) or not (group-NH, n = 23). Based on the intracardiac impedance at the beginning of increasing fluid index (BI) and the crossing of 60 ohm-days (CI), the rate of impedance change (BI-CI/BI) was estimated. Then, the time elapsed from BI to CI (T) was evaluated. We calculated the rate of intracardiac impedance change per day (BI-CI/BI × T) in each group. The rate of intrathoracic impedance change per day was also determined using the same method. The median rate of intracardiac impedance change per day was 0.27 (IQR 0.22-0.54) %/day in group-H, and 0 (IQR 0-0.08) %/day in group-NH with a significant difference (P < 0.0001), whereas the rate of intrathoracic impedance change per day was similar between the two groups. By receiver operating characteristic curve for identification of hospitalization due to worsening heart failure, the best cutoff value of the rate of intracardiac impedance change per day was 0.20%/day (sensitivity 92%, specificity 88%, and AUC 0.98). In contrast, the best cutoff value of the rate of intrathoracic impedance change per day was 0.19%/day (sensitivity 86%, specificity 43%, and AUC 0.68). These results suggest that increased rate of change of decreasing intracardiac impedance measured by CRT is a novel useful predictor for

  8. Learning from microbial strategies for polysaccharide degradation.

    PubMed

    Hemsworth, Glyn R; Déjean, Guillaume; Davies, Gideon J; Brumer, Harry

    2016-02-01

    Complex carbohydrates are ubiquitous in all kingdoms of life. As major components of the plant cell wall they constitute both a rich renewable carbon source for biotechnological transformation into fuels, chemicals and materials, and also form an important energy source as part of a healthy human diet. In both contexts, there has been significant, sustained interest in understanding how microbes transform these substrates. Classical perspectives of microbial polysaccharide degradation are currently being augmented by recent advances in the discovery of lytic polysaccharide monooxygenases (LPMOs) and polysaccharide utilization loci (PULs). Fundamental discoveries in carbohydrate enzymology are both advancing biological understanding, as well as informing applications in industrial biomass conversion and modulation of the human gut microbiota to mediate health benefits.

  9. Influence of polysaccharides on wine protein aggregation.

    PubMed

    Jaeckels, Nadine; Meier, Miriam; Dietrich, Helmut; Will, Frank; Decker, Heinz; Fronk, Petra

    2016-06-01

    Polysaccharides are the major high-molecular weight components of wines. In contrast, proteins occur only in small amounts in wine, but contribute to haze formation. The detailed mechanism of aggregation of these proteins, especially in combination with other wine components, remains unclear. This study demonstrates the different aggregation behavior between a buffer and a model wine system by dynamic light scattering. Arabinogalactan-protein, for example, shows an increased aggregation in the model wine system, while in the buffer system a reducing effect is observed. Thus, we could show the importance to examine the behavior of wine additives under conditions close to reality, instead of simpler buffer systems. Additional experiments on melting points of wine proteins reveal that only some isoforms of thaumatin-like proteins and chitinases are involved in haze formation. We can confirm interactions between polysaccharides and proteins, but none of these polysaccharides is able to prevent haze in wine. Copyright © 2016. Published by Elsevier Ltd.

  10. Recalcitrant polysaccharide degradation by novel oxidative biocatalysts.

    PubMed

    Dimarogona, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2013-10-01

    The classical hydrolytic mechanism for the degradation of plant polysaccharides by saprophytic microorganisms has been reconsidered after the recent landmark discovery of a new class of oxidases termed lytic polysaccharide monooxygenases (LPMOs). LPMOs are of increased biotechnological interest due to their implication in lignocellulosic biomass decomposition for the production of biofuels and high-value chemicals. They act on recalcitrant polysaccharides by a combination of hydrolytic and oxidative function, generating oxidized and non-oxidized chain ends. They are copper-dependent and require molecular oxygen and an external electron donor for their proper function. In this review, we present the recent findings concerning the mechanism of action of these oxidative enzymes and identify issues and questions to be addressed in the future.

  11. Antioxidant activity of medicinal plant polysaccharides.

    PubMed

    Kardosová, A; Machová, E

    2006-07-01

    Eleven polysaccharides have been isolated from the leaves of Arctium lappa var. herkules, Aloe barbadensis, Althaea officinalis var. robusta, Plantago lanceolata var. libor, aerial parts and roots of Rudbeckia fulgida var. sullivantii, stems of Mahonia aquifolium, and peach-tree (Prunus persica) gum exudates. The polysaccharides were investigated for their ability to inhibit peroxidation of soyabean lecithin liposomes by OH radicals. The highest inhibition was found with glucuronoxylans of A. officinalis var. robusta and P. lanceolata var. libor, aerial parts. Their antioxidant activity accounted for approximately 69% of the activity of the reference compound alpha-tocopherol. The activity of eight polysaccharides ranged from 20 to 45%, while the fructofuranan from P. lanceolata var. libor roots was practically inactive.

  12. Cellular immunity to Bacteroides fragilis capsular polysaccharide

    PubMed Central

    1982-01-01

    The polysaccharide capsule of Bacteroides fragilis has been shown to be important in the virulence of the organism. The capsular polysaccharide (CP) of B. fragilis has been extensively purified. Using a murine model of intraabdominal abscess formation, we have been able to demonstrate cellular immunity to the capsular polysaccharide of B. fragilis. Immunization of C57BL/10J mice with the CP over 5 wk prevents abscess formation when the mice are challenged with B. fragilis intraperitoneally. This immunity can be transferred to naive mice with spleen cells from immune animals. The immune cells bear Thy-1.2 and Ly- 2.2 antigens. The immune response has been shown to be antigen specific, but not H-2 restricted. The possibility that these immune cells are suppressor T cells is discussed. The experimental system presented provides a model for the examination of the cellular interactions responsible for abscess formation and the cellular response to bacterial pathogens. PMID:6174672

  13. Beam impedance of a split cylinder

    SciTech Connect

    Lambertson, G.

    1990-04-01

    A common geometry for position electrodes at moderately low frequencies is the capacitive pickup consisting of a diagonally- divided cylinder that encloses the beam trajectory. For the simplified system here, a relatively direct approach will given the longitudinal and transverse beam impedances (Z{parallel}and Z{perpendicular}) at low frequencies. This paper discusses the determination of this impedance.

  14. Possibilities of electrical impedance tomography in gynecology

    NASA Astrophysics Data System (ADS)

    V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.

    2013-04-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  15. Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.

    PubMed

    Ravi, Karthik; Katzka, David A

    2016-09-01

    The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology.

  16. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  17. Transverse impedance localization using intensity dependent optics

    SciTech Connect

    Calaga,R.; Arduini, G.; Metral, E.; Papotti, G.; Quatraro, D.; Rumolo, G.; Salvant, B.; Tomas, R.

    2009-05-04

    Measurements of transverse impedance in the SPS to track the evolution over the last few years show discrepancies compared to the analytical estimates of the major contributors. Recent measurements to localize the major sources of the transverse impedance using intensity dependent optics are presented. Some simulations using HEADTAIL to understand the limitations of the reconstruction and related numerical aspects are also discussed.

  18. Behind the (impedance) baseline in children.

    PubMed

    Salvatore, S; Salvatoni, A; Van Steen, K; Ummarino, D; Hauser, B; Vandenplas, Y

    2014-01-01

    Impedance baseline is a new parameter recently related to esophageal integrity. The aim of this study was to assess the effect of different factors on impedance baseline in pediatric patients. We analyzed the impedance baseline of 800 children with symptoms of gastroesophageal reflux. Mean impedance baseline was automatically calculated throughout 24-hour tracings. The presence of different age groups and of esophagitis was evaluated. Unpaired t-test, Spearman rank correlation, polynomial, and regression plot were used for statistical analysis. Age-related percentile curves were created. We considered a P-value<0.05 as statistically significant. Impedance baseline was significantly (P<0.001) lower in younger compared to older children up to 48 months. The mean increase of baseline per month was much higher in the first 36 months of life (47.5 vs. 2.9 Ohm in Channel 1 and 29.9 vs. 2.3 Ohm in Channel 6, respectively) than in older ages. Patients with esophagitis showed significantly decreased impedance baseline (P<0.05). Infants (especially in the first months of life) and young children present a significantly lower impedance baseline compared to older children both in proximal and distal esophagus. The presence of esophagitis may also determine a decreased impedance baseline regardless of the age of the patients.

  19. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  20. LHC Kicker Beam-Impedance Calculation

    SciTech Connect

    Lambertson, G.R.

    1998-10-01

    Longitudinal and transverse beam impedances are calculated for the injection kickers designed for use in the CERN large hadron col- Iider. These combine the contributions of a ceramic beam tube with conducting stripes and a traveling-wave kicker magnet. The results show peak impedances of 1300 ohm longitudinal and 8 Mfl/m trans- verse for four units per ring.

  1. [Component analysis on polysaccharides in exocarp of Ginkgo biloba].

    PubMed

    Song, G; Xu, A; Chen, H; Wang, X

    1997-09-01

    This paper reports the content and component analysis on polysaccharides in exocarp of Ginkgo biloba. The results show that the content of total saccharides is 89.7%; content of polysaccharides is 84.6%; content of reductic saccharides is 5.1%; the polysaccharides are composed of glucose, fructose, galactose and rhamnose.

  2. Structural health monitoring using piezoelectric impedance measurements.

    PubMed

    Park, Gyuhae; Inman, Daniel J

    2007-02-15

    This paper presents an overview and recent advances in impedance-based structural health monitoring. The basic principle behind this technique is to apply high-frequency structural excitations (typically greater than 30kHz) through surface-bonded piezoelectric transducers, and measure the impedance of structures by monitoring the current and voltage applied to the piezoelectric transducers. Changes in impedance indicate changes in the structure, which in turn can indicate that damage has occurred. An experimental study is presented to demonstrate how this technique can be used to detect structural damage in real time. Signal processing methods that address damage classifications and data compression issues associated with the use of the impedance methods are also summarized. Finally, a modified frequency-domain autoregressive model with exogenous inputs (ARX) is described. The frequency-domain ARX model, constructed by measured impedance data, is used to diagnose structural damage with levels of statistical confidence.

  3. Use of Electrical Impedance Tomography to Monitor Regional Cerebral Edema during Clinical Dehydration Treatment

    PubMed Central

    Hu, Shi-Jie; Li, Xia; Xu, Can-Hua; Wang, Bing; Yang, Bin; Tang, Meng-Xing; Dong, Xiu-Zhen; Fei, Zhou; Shi, Xue-Tao

    2014-01-01

    Objective Variations of conductive fluid content in brain tissue (e.g. cerebral edema) change tissue impedance and can potentially be measured by Electrical Impedance Tomography (EIT), an emerging medical imaging technique. The objective of this work is to establish the feasibility of using EIT as an imaging tool for monitoring brain fluid content. Design a prospective study. Setting In this study EIT was used, for the first time, to monitor variations in cerebral fluid content in a clinical model with patients undergoing clinical dehydration treatment. The EIT system was developed in house and its imaging sensitivity and spatial resolution were evaluated on a saline-filled tank. Patients 23 patients with brain edema. Interventions The patients were continuously imaged by EIT for two hours after initiation of dehydration treatment using 0.5 g/kg intravenous infusion of mannitol for 20 minutes. Measurement and Main Results Overall impedance across the brain increased significantly before and after mannitol dehydration treatment (p = 0.0027). Of the all 23 patients, 14 showed high-level impedance increase and maintained this around 4 hours after the dehydration treatment whereas the other 9 also showed great impedance gain during the treatment but it gradually decreased after the treatment. Further analysis of the regions of interest in the EIT images revealed that diseased regions, identified on corresponding CT images, showed significantly less impedance changes than normal regions during the monitoring period, indicating variations in different patients' responses to such treatment. Conclusions EIT shows potential promise as an imaging tool for real-time and non-invasive monitoring of brain edema patients. PMID:25474474

  4. Effect of charge density of polysaccharides on self-assembled intragastric gelation of whey protein/polysaccharide under simulated gastric conditions.

    PubMed

    Zhang, Sha; Zhang, Zhong; Vardhanabhuti, Bongkosh

    2014-08-01

    This study focuses on the behavior of mixed protein and polysaccharides with different charge densities under simulated gastric conditions. Three types of polysaccharides, namely, guar gum, xanthan gum and carrageenan (neutral, medium negatively, and highly negatively charged, respectively) were selected for heating together with whey protein isolate (WPI) at a biopolymer ratio ranging from 0.01 to 0.1. Upon mixing with simulated gastric fluid (SGF), all WPI-guar gum samples remained soluble, whereas WPI-xanthan gum and WPI-carrageenan at biopolymer ratio higher than 0.01 led to self-assembled intragastric gelation immediately after mixing with SGF. The mechanism behind the intragastric gelation is believed to be the cross-linking between oppositely charged protein and polysaccharides when pH was reduced to below the pI of the protein. Higher biopolymer ratio led to a higher degree of intermolecular interaction, which tends to form stronger gel. More negatively charged carrageenan also formed a stronger gel than xanthan gum. SDS-PAGE results show that the digestibility of protein was not affected by the presence of guar gum as well as xanthan gum and carrageenan at biopolymer ratio lower than 0.02. However, intragastric gel formed by WPI-xanthan gum and WPI-carrageenan at biopolymer ratio higher than 0.02 significantly slows down the digestion rate of protein, which could potentially be used to delay gastric emptying and promote satiety.

  5. Passive, wireless transduction of electrochemical impedance across thin-film microfabricated coils using reflected impedance.

    PubMed

    Baldwin, Alex; Yu, Lawrence; Pratt, Madelina; Scholten, Kee; Meng, Ellis

    2017-09-25

    A new method of wirelessly transducing electrochemical impedance without integrated circuits or discrete electrical components was developed and characterized. The resonant frequency and impedance magnitude at resonance of a planar inductive coil is affected by the load on a secondary coil terminating in sensing electrodes exposed to solution (reflected impedance), allowing the transduction of the high-frequency electrochemical impedance between the two electrodes. Biocompatible, flexible secondary coils with sensing electrodes made from gold and Parylene C were microfabricated and the reflected impedance in response to phosphate-buffered saline solutions of varying concentrations was characterized. Both the resonant frequency and impedance at resonance were highly sensitive to changes in solution conductivity at the secondary electrodes, and the effects of vertical separation, lateral misalignment, and temperature changes were also characterized. Two applications of reflected impedance in biomedical sensors for hydrocephalus shunts and glucose sensing are discussed.

  6. Latex agglutination: diagnose the early cryptococcus neoformans test of capsular polysaccharide antigen.

    PubMed

    Wang, Huanrong; Yuan, Xueqian; Zhang, Lifeng

    2015-01-01

    This paper aims to discuss the early diagnosis value of latex agglutination test in Cryptococcal meningitis. The cerebrospinal fluid (CSF) of 112 patients with definite Cryptococcal meningitis and 26 patients with tubercular meningitis and virus meningitis were collected, latex agglutination test is adopted to detect Cryptococcal capsular polysaccharide antigen. Then it was compared with fungal culture and direct microscopy method for evaluating the sensitivity and specificity of the diagnosis. The sensitivity of three methods including latex agglutination test, fungal culture and direct microscopy was 91.1%,69.6% and 73.2% respectively. The specificity of latex agglutination test was 96.0%, 100% and 100% respectively. That latex agglutination test to detect Cryptococcal capsular polysaccharide antigen could be taken as the early diagnostic method of Cryptococcus neoformans meningitis.

  7. Characteristics and Rheological Properties of Polysaccharide Nanoparticles from Edible Mushrooms (Flammulina velutipes).

    PubMed

    Wang, Wenhang; Li, Cong; Du, Guanhua; Zhang, Xiuling; Zhang, Hongjie

    2017-03-01

    Nanotechnology has become relevant in the food-related industries, and edible mushrooms can be a potential raw material for providing satisfied edible nanomaterial. In this study, by following 3 different pretreatments (hot water or cold alkali or hot alkali) insoluble polysaccharide nanoparticles were prepared from Flammulina velutipes by wet milling and high pressure homogenization and their properties were investigated. The resultant nanoparticles were characterized by SEM, GC-MS (for its main compositions), FTIR, XRD, and TG. The 1 wt% nanoparticle dispersions presented non-Newtonian, shear-thinning fluids with the viscosity in an increasing order for the hot water < cold alkali < hot alkali. Moreover, the dynamical rheological results showed differences of storage (G') and loss (G″) moduli of these particle dispersions. It was concluded that the Flammulina velutipes-derived polysaccharides nanoparticles have great potential applications in the food industry, for example, as emulsifiers, reinforcement agents, and bioactive carriers.

  8. Understanding Artifacts in Impedance Spectroscopy

    DOE PAGES

    Veal, B. W.; Baldo, P. M.; Paulikas, A. P.; ...

    2014-11-22

    Four-terminal measurements of impedance spectra have long been troubled by the presence of high frequency artifacts that typically indicate unphysically large inductive behavior. In this paper, we follow up on the observation of Fleig et al., that voltage and current are necessarily measured in different locations of the potentiostat circuit, and that, typically, the electrometer input is a virtual ground. In this case, the capacitance of coaxial cables that connect sample electrodes to the potentiostat provides a high frequency conduction path to ground, so that some of the current that passes through the sample bypasses the electrometer. In four-electrode measurements,more » this mechanism produces the observed inductive artifacts. We examine a variety of simulated samples, with calculations compared to measurements of relevant circuits, to quantitatively investigate the nature of the artifacts. Model results agree with measurements when the leakage capacitances are properly included in the circuit analyses. With understanding of the origin of the inductive artifacts, the four-electrode method can be effectively utilized, enabling a combination of two-, three- and four-electrode measurements to be used to best advantage. Finally, using this combination of electrode configurations, temperature dependent measurements of SrTiO3, Y2O3-stabilized ZrO2, and In2O3 films deposited on YSZ substrates are presented.« less

  9. Impedance matching at arterial bifurcations.

    PubMed

    Brown, N

    1993-01-01

    Reflections of pulse waves will occur in arterial bifurcations unless the impedance is matched continuously through changing geometric and elastic properties. A theoretical model is presented which minimizes pulse wave reflection through bifurcations. The model accounts for the observed linear changes in area within the bifurcation, generalizes the theory to asymmetrical bifurcations, characterizes changes in elastic properties from parent to daughter arteries, and assesses the effect of branch angle on the mechanical properties of daughter vessels. In contradistinction to previous models, reflections cannot be minimized without changes in elastic properties through bifurcations. The theoretical model predicts that in bifurcations with area ratios (beta) less than 1.0 Young's moduli of daughter vessels may be less than that in the parent vessel if the Womersley parameter alpha in the parent vessel is less than 5. Larger area ratios in bifurcations are accompanied by greater increases in Young's moduli of branches. For an idealized symmetric aortic bifurcation (alpha = 10) with branching angles theta = 30 degrees (opening angle 60 degrees) Young's modulus of common iliac arteries relative to that of the distal abdominal aorta has an increase of 1.05, 1.68 and 2.25 for area ratio of 0.8, 1.0 and 1.15, respectively. These predictions are consistent with the observed increases in Young's moduli of peripheral vessels.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Understanding Artifacts in Impedance Spectroscopy

    SciTech Connect

    Veal, B. W.; Baldo, P. M.; Paulikas, A. P.; Eastman, J. A.

    2014-11-22

    Four-terminal measurements of impedance spectra have long been troubled by the presence of high frequency artifacts that typically indicate unphysically large inductive behavior. In this paper, we follow up on the observation of Fleig et al., that voltage and current are necessarily measured in different locations of the potentiostat circuit, and that, typically, the electrometer input is a virtual ground. In this case, the capacitance of coaxial cables that connect sample electrodes to the potentiostat provides a high frequency conduction path to ground, so that some of the current that passes through the sample bypasses the electrometer. In four-electrode measurements, this mechanism produces the observed inductive artifacts. We examine a variety of simulated samples, with calculations compared to measurements of relevant circuits, to quantitatively investigate the nature of the artifacts. Model results agree with measurements when the leakage capacitances are properly included in the circuit analyses. With understanding of the origin of the inductive artifacts, the four-electrode method can be effectively utilized, enabling a combination of two-, three- and four-electrode measurements to be used to best advantage. Finally, using this combination of electrode configurations, temperature dependent measurements of SrTiO3, Y2O3-stabilized ZrO2, and In2O3 films deposited on YSZ substrates are presented.

  11. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems.

    PubMed

    Haratake, Mamoru; Takahira, Ekuko; Yoshida, Sakura; Osei-Asante, Samuel; Fuchigami, Takeshi; Nakayama, Morio

    2013-07-01

    Supported phospholipid bilayer membranes on polysaccharide-based cationic polymer beads (cationic group: -[OCH2CH(OH)CH2]2N(+)(CH3)3·X(-), 45-165 μm in diameter) were prepared using small unilamellar vesicles from mixtures of phosphatidylserine (PS) and phosphatidylcholine (PC). Confocal fluorescence microscopic observations with a fluorescent membrane probe (N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine) revealed that the phospholipid molecules in the phospholipid-bead complexes were along the outer surface of the beads. The fluidity of the phospholipid bilayer membranes in the PS/PC-bead complexes was investigated by the fluorescence recovery after photobleaching (FRAP) technique. The lateral diffusion coefficients (D) for the PS/PC-bead complexes were lower than that for the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles without solid supports. Such less fluid membranes in the complexes appeared to be due to the immobilization of the phospholipid bilayer membranes by electrostatic attractive forces between PS and the bead. The D values for the PS/PC-bead complexes were dependent on the phospholipid composition; the PS(100 mol%)/PC(0 mol%)-bead complex had the least fluid membranes among the PS/PC-bead complexes tested in this study. The phospholipid bilayer membranes formed on the polysaccharide-based cationic polymer beads were much more fluid than those on a polystyrene-based one. Furthermore, such fluid phospholipid bilayer membranes formed on the polysaccharide-based cationic polymer bead were maintained for 10 days, even though the complex sample was stood in plain buffer (pH 8.5) at ambient temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Impedance spectra of hot, dry silicate minerals and rocks: qualitative interpretation of spectra

    USGS Publications Warehouse

    Huebner, J.S.; Dillenburg, R.G.

    1995-01-01

    Impedance spectroscopy helps distinguish the contributions that grain interiors and grain boundaries make to electrical resistance of silicate minerals and rocks. Olivine, orthopyroxene, clinopyroxenes, and both natural and synthetic clinopyroxenite were measured. A network of electrical elements is presented for use in interpreting impedance spectra and conductive paths in hot or cold, wet or dry, minerals and rocks at any pressure. In dry rocks, a series network path predominates; in wet rocks, aqueous pore fluid and crystals both conduct. Finite resistance across the sample-electrode interface is evidence that electronic charge carriers are present at the surface, and presumably within, the silicate minerals and rocks measured. -from Authors

  13. Electrical impedance imaging in two-phase, gas-liquid flows: 1. Initial investigation

    NASA Technical Reports Server (NTRS)

    Lin, J. T.; Ovacik, L.; Jones, O. C.

    1991-01-01

    The determination of interfacial area density in two-phase, gas-liquid flows is one of the major elements impeding significant development of predictive tools based on the two-fluid model. Currently, these models require coupling of liquid and vapor at interfaces using constitutive equations which do not exist in any but the most rudimentary form. Work described herein represents the first step towards the development of Electrical Impedance Computed Tomography (EICT) for nonintrusive determination of interfacial structure and evolution in such flows.

  14. Polysaccharide-based strategies for heart tissue engineering.

    PubMed

    Silva, Amanda K A; Juenet, Maya; Meddahi-Pellé, Anne; Letourneur, Didier

    2015-02-13

    Polysaccharides are abundant biomolecules in nature presenting important roles in a wide variety of living systems processes. Considering the structural and biological functions of polysaccharides, their properties have raised interest for tissue engineering. Herein, we described the latest advances in cardiac tissue engineering mediated by polysaccharides. We reviewed the data already obtained in vitro and in vivo in this field with several types of polysaccharides. Cardiac injection, intramyocardial in situ polymerization strategies, and scaffold-based approaches involving polysaccharides for heart tissue engineering are thus discussed.

  15. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  16. Estimates of Acausal Joint Impedance Models

    PubMed Central

    Perreault, Eric J.

    2013-01-01

    Estimates of joint or limb impedance are commonly used in the study of how the nervous system controls posture and movement, and how that control is altered by injury to the neural or musculoskeletal systems. Impedance characterizes the dynamic relationship between an imposed perturbation of joint position and the torques generated in response. While there are many practical reasons for estimating impedance rather than its inverse, admittance, it is an acausal representation of the limb mechanics that can lead to difficulties in interpretation or use. The purpose of this study was to explore the acausal nature of nonparametric estimates of joint impedance representations to determine how they are influenced by common experimental and computational choices. This was accomplished by deriving discrete-time realizations of first-and second-order derivatives to illustrate two key difficulties in the physical interpretation of impedance impulse response functions. These illustrations were provided using both simulated and experimental data. It was found that the shape of the impedance impulse response depends critically on the selected sampling rate, and on the bandwidth and noise characteristics of the position perturbation used during the estimation process. These results provide important guidelines for designing experiments in which nonparametric estimates of impedance will be obtained, especially when those estimates are to be used in a multistep identification process. PMID:22907963

  17. Bacillus subtilis biofilm induction by plant polysaccharides

    PubMed Central

    Beauregard, Pascale B.; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-01-01

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant. PMID:23569226

  18. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  19. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  20. Extraction and characterization of sugar beet polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Sugar Beet Pulp (SBP), contains 65 to 80% (dry weight) of potentially valuable polysaccharides. We separated SBP into three fractions. The first fraction, extracted under acid conditions, was labeled pectin, the second was comprised of two sub fractions solubilized under alkaline conditions and wa...

  1. Capsular polysaccharide of Clostridium perfringens Hobbs 10.

    PubMed

    Lee, L; Cherniak, R

    1974-02-01

    A capsular polysaccharide was isolated from a strain of Clostridium perfringens Hobbs 10 type A by cold-water extraction of whole, heavily encapsulated cells. The water-soluble polymer was isolated by alcohol precipitation and purified by treatment with chloroform-butanol, cetytrimethylammonium bromide, and column gel permeation chromatography by using Bio-Gel A-5m agarose. The formation of a single precipitin line, when the isolated polysaccharide was reacted with its homologous antisera by double diffusion in gel, was considered a criterion of immunochemical purity. The purified polymer appeared as a single peak when eluted from diethylaminoethyl-Sephadex with a linear gradient of NaCl. The polysaccharide was composed of glucose, galactose, galactosamine, and iduronic acid in a molar ratio of 4.1:5.1.7:1, respectively. These constituents accounted for 83% of the dry weight. The polysaccharide appeared to have a molecular weight of 40,000 and exhibited aggregation up to 120,000. A trace of peptide material could not be removed during purification.

  2. Capsular Polysaccharide of Clostridium perfringens Hobbs 10

    PubMed Central

    Lee, Linda; Cherniak, Robert

    1974-01-01

    A capsular polysaccharide was isolated from a strain of Clostridium perfringens Hobbs 10 type A by cold-water extraction of whole, heavily encapsulated cells. The water-soluble polymer was isolated by alcohol precipitation and purified by treatment with chloroform-butanol, cetytrimethylammonium bromide, and column gel permeation chromatography by using Bio-Gel A-5m agarose. The formation of a single precipitin line, when the isolated polysaccharide was reacted with its homologous antisera by double diffusion in gel, was considered a criterion of immunochemical purity. The purified polymer appeared as a single peak when eluted from diethylaminoethyl-Sephadex with a linear gradient of NaCl. The polysaccharide was composed of glucose, galactose, galactosamine, and iduronic acid in a molar ratio of 4.1:5.1.7:1, respectively. These constituents accounted for 83% of the dry weight. The polysaccharide appeared to have a molecular weight of 40,000 and exhibited aggregation up to 120,000. A trace of peptide material could not be removed during purification. PMID:4361293

  3. Anticorrosive Microbial Polysaccharides: Structure-Function Relationships

    USDA-ARS?s Scientific Manuscript database

    Water-soluble microbial polysaccharides are often implicated in biofilm formation and are believed to mediate cell-cell aggregation and adhesion to surfaces. Generally, biofilm formation is considered harmful or undesirable, as it leads to increased drag, plugging of pores, dimished heat transfer, ...

  4. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  5. Structure-function relationships of immunostimulatory polysaccharides: A review.

    PubMed

    Ferreira, Sónia S; Passos, Cláudia P; Madureira, Pedro; Vilanova, Manuel; Coimbra, Manuel A

    2015-11-05

    Immunostimulatory polysaccharides are compounds capable of interacting with the immune system and enhance specific mechanisms of the host response. Glucans, mannans, pectic polysaccharides, arabinogalactans, fucoidans, galactans, hyaluronans, fructans, and xylans are polysaccharides with reported immunostimulatory activity. The structural features that have been related with such activity are the monosaccharide and glycosidic-linkage composition, conformation, molecular weight, functional groups, and branching characteristics. However, the establishment of structure-function relationships is possible only if purified and characterized polysaccharides are used and selective structural modifications performed. Aiming at contributing to the definition of the structure-function relationships necessary to design immunostimulatory polysaccharides with potential for preventive or therapeutical purposes or to be recognized as health-improving ingredients in functional foods, this review introduces basic immunological concepts required to understand the mechanisms that rule the potential claimed immunostimulatory activity of polysaccharides and critically presents a literature survey on the structural features of the polysaccharides and reported immunostimulatory activity.

  6. Polysaccharide-producing bacteria isolated from paper machine slime deposits.

    PubMed

    Rättö, M; Suihko, M-L; Siika-aho, M

    2005-03-01

    Development of novel enzymatic methods for slime deposit control in paper mills requires knowledge of polysaccharide-producing organisms and the polysaccharide structures present in deposits. In this work, 27 polysaccharide-producing bacteria were isolated from slime samples collected from different parts of a paper machine. Most of the isolates produced polysaccharides in liquid culture and nine of them were selected for production of polysaccharides for characterisation. The selected isolates belonged to seven different genera: Bacillus, Brevundimonas, Cytophaga, Enterobacter, Klebsiella, Paenibacillus and Starkeya. Using ribotyping, partial 16S rDNA sequencing, physiological tests and fatty acid analysis, four of the nine isolates: Bacillus cereus, Brevundimonas vesicularis, K. pneumoniae and P. stellifer were identified to the species level. Production of polysaccharides by the selected isolates varied between 0.07 and 1.20 g L(-1), the highest amount being produced by B. vesicularis. The polysaccharides were heteropolysaccharides with varying proportions of galactose, glucose mannose, rhamnose fucose and uronic acids.

  7. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  8. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE.

    SciTech Connect

    HAHN,H.; DAVINO,D.

    2002-06-02

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit.

  9. Summary of the impedance working group

    SciTech Connect

    Chao, A.W.

    1995-05-01

    The impedance working group concentrated on the LHC design during the workshop. They look at the impedance contributions of liner, beam position monitors, shielded bellows, experimental chambers, superconducting cavities, recombination chambers, space charge, kickers, and the resistive wall. The group concluded that the impedance budgeting and the conceptual designs of the vacuum chamber components looked basically sound. It also noted, not surprisingly, that a large amount of studies are to be carried out further, and it ventured to give a partial list of these studies.

  10. Impedance match for Stirling type cryocoolers

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Luo, Ercang; Wang, Xiaotao; Wu, Zhanghua

    Impedance match in Stirling type cryocoolers is important for the compressor efficiency and available acoustic power. This paper generalizes the basic principles concerning the efficiency and acoustic power output of the linear compressor. Starting from basic governing equations and mainly from the viewpoint of energy balance, the physical mechanisms behind the principles are clearly shown. Specially, this paper focuses on the impedance match for an existing compressor, where the current limit and displacement limit should also be taken into consideration when selecting a suitable impedance. Some case studies based on a commercial compressor are also provided for a deep understanding.

  11. Linearly tapered slot antenna impedance characteristics

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1995-01-01

    The paper presents for the first time an experimental technique to de-embed the input impedance of a LTSA from the measured reflection coefficient. The results show that the input impedance is dependent on the semi-flare angle and the length of the LTSA. The Re(Z(sub in)) is large when the electrical length of the LTSA is small and is on the order of few thousand ohms. However for an electrically large LTSA the Re(Z(sub in)) is in the range of 55 to 130 ohms. These results have potential applications in the design of broad band impedance matching networks for LTSA.

  12. Wearable impedance monitoring system for dialysis patients.

    PubMed

    Bonnet, S; Bourgerette, A; Gharbi, S; Rubeck, C; Arkouche, W; Massot, B; McAdams, E; Montalibet, A; Jallon, P

    2016-08-01

    This paper describes the development and the validation of a prototype wearable miniaturized impedance monitoring system for remote monitoring in home-based dialysis patients. This device is intended to assess the hydration status of dialysis patients using calf impedance measurements. The system is based on the low-power AD8302 component. The impedance calibration procedure is described together with the Cole parameter estimation and the hydric volume estimation. Results are given on a test cell to validate the design and on preliminary calf measurements showing Cole parameter variations during hemodialysis.

  13. Insect sound production: transduction mechanisms and impedance matching.

    PubMed

    Bennet-Clark, H C

    1995-01-01

    The chain of sound production in insects can be summarised as: (1) muscle power-->(2) mechanical vibration of the sound-producing structure-->(3) acoustic loading of this source-->(4) sound radiation. At each link (-->) optimal impedance matching is desirable but, to meet other acoustic requirements, each stage has special properties. The properties of sound waves are discussed in the context of impedance matching between sources of different sizes or configurations and the surrounding fluid medium. Muscles produce high pressures over small areas, but sound sources produce low pressures over large areas. Link 1-->2 requires a change in the force: area ratio between the muscle and the sound source. Because the source size is necessarily small, sounds tend to be produced at a higher frequency than that of the driving muscle contraction, so link 1-->2 may involve a frequency multiplication mechanism. This can also be regarded as a mechanism of impedance matching between the aqueous muscle and the structure from which the insect produces sound. Stage 2 typically involves a resonant structure that determines the song frequency and is excited by link 1-->2. If link 2-->3 provides good impedance matching, the mechanical resonance is likely to be damped, with loss of song purity. So it is desirable for the stage 2 resonance to be sustained by coherent excitation and for the acoustic loading (link 2-->3) to maintain the dominant frequency between stages 2 and 4. Examples where this occurs are cricket wings and cicadas. At stage 3, the source size or configuration should allow impedance matching between the sound source (3) and its load (4). A variety of acoustic devices are exploited, leading to loud, efficient sound production. Examples that use resonant loads, tuned to the insects' song frequency, are the burrows of mole crickets and the abdomens of cicadas. Overall, the mechanisms of sound production of many insects are capable of producing songs of high species

  14. Fluid Physics

    NASA Image and Video Library

    2002-12-12

    These are video microscope images of magnetorheological (MR) fluids, illuminated with a green light. Those on Earth, left, show the MR fluid forming columns or spikes structures. On the right, the fluids in microgravity aboard the International Space Station (ISS), formed broader columns.

  15. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  16. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  17. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

  18. Transverse impedances of cavities and collimators

    SciTech Connect

    Kheifets, S.A.; Bane, K.L.F.; Bizek, H.

    1987-03-01

    Field matching has been used to compute the transverse impedance of simple, cylindrically symmetric, perfectly conducting structures, the subregions of which are separated by radial cuts. The method is briefly described, and some early results are presented. (LEW)

  19. Adaptive impedance control of redundant manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.; Seraji, H.

    1990-01-01

    A scheme for controlling the mechanical impedance of the end-effector of a kinematically redundant manipulator is presented. The proposed control system consists of two subsystems: an adaptive impedance controller which generates the Cartesian-space control input F (is a member of Rm) required to provide the desired end-effector impedance characteristics, and an algorithm that maps this control input to the joint torque T (is a member of Rn). The F to T map is constructed so that the robot redundancy is utilized to improve either the kinematic or dynamic performance of the robot. The impedance controller does not require knowledge of the complex robot dynamic model or parameter values for the robot, the payload, or the environment, and is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme is very general and is computationally efficient for on-line implementation.

  20. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng; Tirkas, Panayiotis A.

    1993-01-01

    During the period of this research project, a comprehensive study of pyramidal horn antennas was conducted. Full-wave analytical and numerical techniques were developed to analyze horn antennas with or without impedance surfaces. Based on these full-wave analytic techniques, research was conducted on the use of impedance surfaces on the walls of the horn antennas to control the antenna radiation patterns without a substantial loss of antenna gain. It was found that the use of impedance surfaces could modify the antenna radiation patterns. In addition to the analytical and numerical models, experimental models were also constructed and they were used to validate the predictions. Excellent agreement between theoretical predictions and the measured data was obtained for pyramidal horns with perfectly conducting surfaces. Very good comparisons between numerical and experimental models were also obtained for horns with impedance surfaces.

  1. Characterizing an improved broad band impedance

    SciTech Connect

    Chao, A.

    2000-03-06

    A phenomenological model of broadband impedance containing two free parameters has been recently proposed. This paper attempts to assign physical characterizations to these free parameters by relating them to the geometric dimensions of a stand-alone cavity structure.

  2. Surface impedance of transversely moving microwave ferrite

    NASA Astrophysics Data System (ADS)

    Mueller, R. S.

    1990-01-01

    A theoretical study was made of the surface impedance Z for an electromagnetic transverse magnetic wave from free space on a magnetized ferrite surface moving normal to the plane of incidence. It was found convenient to decompose the surface impedance into two transfer impedances, Z1 and Z2, which relate the hybrid reflected amplitudes to the amplitude of the incident wave. The surface impedance does not vary much with respect to the angle of incidence, so only the case of normal incidence (θi = 0°) was evaluated. Resonant poles at ƒc, [ƒc(ƒc + ƒm)]1/2, and ƒc + ƒm dominate the frequency characteristics of Z1 and Z2. The frequencies ƒc andƒm are the precessional frequency and magnetization frequency, respectively.

  3. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    SciTech Connect

    Zhao, Yanlin; Wang, Mi; Yao, Jun

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles

  4. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.

    PubMed

    Justin, Gusphyl; Nasir, Mansoor; Ligler, Frances S

    2011-05-01

    A four-electrode impedance-based microfluidic device has been designed with tunable sensitivity for future applications to the detection of pathogens and functionalized microparticles specifically bound to molecular recognition molecules on the surface of a microfluidic channel. In order to achieve tunable sensitivity, hydrodynamic focusing was employed to confine the electric current by simultaneous introduction of two fluids (high- and low-conductivity solutions) into a microchannel at variable flow-rate ratios. By increasing the volumetric flow rate of the low-conductivity solution (sheath fluid) relative to the high-conductivity solution (sample fluid), increased focusing of the high-conductivity solution over four coplanar electrodes was achieved, thereby confining the current during impedance interrogation. The hydrodynamic and electrical properties of the device were analyzed for optimization and to resolve issues that would impact sensitivity and reproducibility in subsequent biosensor applications. These include variability in the relative flow rates of the sheath and sample fluids, changes in microchannel dimensions, and ionic concentration of the sample fluid. A comparative analysis of impedance measurements using four-electrode versus two-electrode configurations for impedance measurements also highlighted the advantages of using four electrodes for portable sensor applications.

  5. Effect of shear on duct wall impedance.

    NASA Technical Reports Server (NTRS)

    Goldstein, M.; Rice, E.

    1973-01-01

    The solution to the equation governing the propagation of sound in a uniform shear layer is expressed in terms of parabolic cylinder functions. This result is used to develop a closed-form solution for acoustic wall impedance which accounts for both the duct liner and the presence of a boundary layer in the duct. The effective wall impedance can then be used as the boundary condition for the much simpler problem of sound propagation in uniform flow.

  6. Electrical Impedance Tomography of Breast Cancer

    DTIC Science & Technology

    2004-06-01

    Resonance Research Systems, Guildford, UK) that has broadband RF transmit and receive channels. A 16 leg, quadrature, high-pass birdcage coil with 10...metastatic cancer, magnetic resonance imaging, 43 electrical impedance imaging, electrical impedance scanning, MRI 16. PRICE CODE current density imaging...tissue with high spatial resolution, by using it in conjunction with Magnetic Resonance Imaging (MRI) to improve diagnostic accuracy of screening. For

  7. Acoustic Impedance Measurement for Underground Surfaces.

    NASA Astrophysics Data System (ADS)

    Cockcroft, Paul William

    Available from UMI in association with The British Library. Requires signed TDF. This thesis investigates the measurement of acoustic impedance for surfaces likely to be found in underground coal mines. By introducing the concepts of industrial noise, the effects of noise on the ear and relevant legislation the need for the protection of workers can be appreciated. Representative acoustic impedance values are vital as input for existing computer models that predict sound levels in various underground environments. These enable the mining engineer to predict the noise level at any point within a mine in the vicinity of noisy machinery. The concepts of acoustic intensity and acoustic impedance are investigated and different acoustic impedance measurement techniques are detailed. The possible use of either an impedance tube or an intensity meter for these kinds of measurements are suggested. The problems with acoustic intensity and acoustic impedance measurements are discussed with reference to the restraints that an underground environment imposes on any measurement technique. The impedance tube method for work in an acoustics laboratory is shown and the theory explained, accompanied by a few representative results. The use of a Metravib intensity meter in a soundproof chamber to gain impedance values is explained in detail. The accompanying software for the analysis of the two measured pressure signals is shown as well as the actual results for a variety of test surfaces. The use of a Nagra IV-SJ tape recorder is investigated to determine the effect of recording on the measurement and subsequent analysis of the input signals, particularly with reference to the phase difference introduced between the two simultaneous pressure signals. The subsequent use of a Norwegian Electronic intensity meter, including a proposal for underground work, is shown along with results for tests completed with this piece of equipment. Finally, recommendations are made on how to link up

  8. Inversion of elastic impedance for unconsolidated sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Elastic properties of gas-hydrate-bearing sediments are important for quantifying gas hydrate amounts as well as discriminating the gas hydrate effect on velocity from free gas or pore pressure. This paper presents an elastic inversion method for estimating elastic properties of gas-hydrate-bearing sediments from angle stacks using sequential inversion of P-wave impedance from the zero-offset stack and S-wave impedance from the far-offset stack without assuming velocity ratio.

  9. Acoustic impedance measurements of pulse tube refrigerators

    NASA Astrophysics Data System (ADS)

    Iwase, Takashi; Biwa, Tetsushi; Yazaki, Taichi

    2010-02-01

    Complex acoustic impedance is determined in a prototype refrigerator that can mimic orifice-type, inertance-type, and double inlet-type pulse tube refrigerators from simultaneous measurements of pressure and velocity oscillations at the cold end. The impedance measurements revealed the means by which the oscillatory flow condition in the basic pulse tube refrigerator is improved by additional components such as a valve and a tank. The working mechanism of pulse tube refrigerators is explained based on an electrical circuit analogy.

  10. CSR Impedance for Non-Ultrarelativistic Beams

    SciTech Connect

    Li, Rui; Tsai, Cheng Y.

    2015-09-01

    For the analysis of the coherent synchrotron radiation (CSR)-induced microbunching gain in the low energy regime, such as when a high-brightness electron beam is transported through a low-energy merger in an energy-recovery linac (ERL) design, it is necessary to extend the CSR impedance expression in the ultrarelativistic limit to the non-ultrarelativistic regime. This paper presents our analysis of CSR impedance for general beam energies.

  11. Impedance Analysis of Surface-Bound Biomembranes

    DTIC Science & Technology

    1990-06-08

    and identify by block numb (i FIELD GROUP SUB-GROLm--- AC Impedance, Biomembranes, Lipid, Electrod\\) ’CBiosensor - O ( S. &-’te ,,• J ABSTRACT...Instit-ute 57 Union St., Worcester, MA 01608 ABSTRACTElcchria isThe impedance of different electrode substratesElcharacteriz l biomemance atnactuses fomed ...T10 2), indium/tin oxide (ITO) and platinum electrodes that have been "primed" by covalent attachment of long-chained alkyl groups . The electroes were

  12. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.

    PubMed

    Bernabini, Catia; Holmes, David; Morgan, Hywel

    2011-02-07

    The sensitivity of a microfluidic impedance flow cytometer is governed by the dimensions of the sample analysis volume. A small volume gives a high sensitivity, but this can lead to practical problems including fabrication and clogging of the device. We describe a microfluidic impedance cytometer which uses an insulating fluid to hydrodynamically focus a sample stream of particles suspended in electrolyte, through a large sensing volume. The detection region consists of two pairs of electrodes fabricated within a channel 200 µm wide and 30 µm high. The focussing technique increases the sensitivity of the system without reducing the dimensions of the microfluidic channel. We demonstrate detection and discrimination of 1 µm and 2 µm diameter polystyrene beads and also Escherichia coli. Impedance data from single particles are correlated with fluorescence emission measured simultaneously. Data are also compared with conventional flow cytometry and dynamic light scattering: the coefficient of variation (CV) of size is found to be comparable between the systems.

  13. Electric impedance tomography for monitoring volume and size of the urinary bladder.

    PubMed

    Leonhardt, Steffen; Cordes, Axel; Plewa, Harry; Pikkemaat, Robert; Soljanik, Irina; Moehring, Klaus; Gerner, Hans J; Rupp, Rüdiger

    2011-12-01

    A novel non-invasive technique for monitoring fluid content in the human bladder is described. Specifically, a precommercial electric impedance tomograph (EIT) was applied to measure and visualize impedance changes in the lower torso due to changes in bladder volume. Preliminary measurements were conducted during routine urodynamic tests of nine male paraplegic patients, in whom a contrast agent was slowly infused into the bladder for diagnostic purposes. In some patients, a good correlation between bladder volume and EIT measurements was found, whereas in others the correlation was still good but inverted, presumably due to a poor electrode positioning. These preliminary results indicate that a sufficiently accurate finite element modeling of the impedance distribution in the abdomen, and proper electrode positioning aids, are important prerequisites to enable this technology to be used for routine measurement of bladder volume.

  14. Antenna impedance matching with neural networks.

    PubMed

    Hemminger, Thomas L

    2005-10-01

    Impedance matching between transmission lines and antennas is an important and fundamental concept in electromagnetic theory. One definition of antenna impedance is the resistance and reactance seen at the antenna terminals or the ratio of electric to magnetic fields at the input. The primary intent of this paper is real-time compensation for changes in the driving point impedance of an antenna due to frequency deviations. In general, the driving point impedance of an antenna or antenna array is computed by numerical methods such as the method of moments or similar techniques. Some configurations do lend themselves to analytical solutions, which will be the primary focus of this work. This paper employs a neural control system to match antenna feed lines to two common antennas during frequency sweeps. In practice, impedance matching is performed off-line with Smith charts or relatively complex formulas but they rarely perform optimally over a large bandwidth. There have been very few attempts to compensate for matching errors while the transmission system is in operation and most techniques have been targeted to a relatively small range of frequencies. The approach proposed here employs three small neural networks to perform real-time impedance matching over a broad range of frequencies during transmitter operation. Double stub tuners are being explored in this paper but the approach can certainly be applied to other methodologies. The ultimate purpose of this work is the development of an inexpensive microcontroller-based system.

  15. Bioelectric Impedance Analysis in the Diagnosis of Vesicoureteral Reflux

    PubMed Central

    Bayram, Meral Torun; Alaygut, Demet; Turkmen, Mehmet; Soylu, Alper; Kavukcu, Salih

    2015-01-01

    Background: Vesicoureteral reflux (VUR) is a common abnormality of the urinary tract in childhood. Objectives: As urine enters the ureters and renal pelvis during voiding in vesicoureteral reflux (VUR), we hypothesized that change in body water composition before and after voiding may be less different in children with VUR. Patients and Methods: Patients were grouped as those with VUR (Group 1) and without VUR (Group 2). Bioelectric impedance analysis was performed before and after voiding, and third space fluid (TSF) (L), percent of total body fluid (TBF%), extracellular fluid (ECF%), and intracellular fluid (ICF%) were recorded. After change of TSF, TBF, ECF, ICF (ΔTSF, ΔTBF%, ΔECF%, ΔICF%), urine volume (mL), and urine volume/body weight (mL/kg) were calculated. Groups 1 and 2 were compared for these parameters. In addition, pre- and post-voiding body fluid values were compared in each group. Results: TBF%, ECF%, ICF%, and TSF in both pre- and post-voiding states and ΔTBF%, ΔECF%, ΔICF%, and ΔTSF after voiding were not different between groups. However, while post-voiding TBF%, ECF% was significantly decreased in Group 1 (64.5 ± 8.1 vs 63.7 ± 7.2, P = 0.013 for TBF%), there was not post-voiding change in TSF in the same group. On the other hand, there was also a significant TSF decrease in Group 2. Conclusions: Bladder and ureter can be considered as the third space. Thus, we think that BIA has been useful in discriminating children with VUR as there was no decreased in patients with VUR, although there was decreased TSF in patients without VUR. However, further studies are needed to increase the accuracy of this hypothesis. PMID:26396698

  16. Electrorheological fluids

    SciTech Connect

    Adolf, D.; Anderson, R.; Garino, T.; Halsey, T.C.; Hance, B.; Martin, J.E.; Odinek, J.

    1996-10-01

    An Electrorheological fluid is normally a low-viscosity colloidal suspension, but when an electric field is applied, the fluid undergoes a reversible transition to a solid, being able to support considerable stress without yield. Commercial possibilities for such fluids are enormous, including clutches, brakes, valves,shock absorbers, and stepper motors. However, performance of current fluids is inadequate for many proposed applications. Our goal was to engineer improved fluids by investigating the key technical issues underlying the solid-phase yield stress and the liquid to solid switching time. Our studies focused on field-induced interactions between colloidal particles that lead to solidification, the relation between fluid structure and performance (viscosity, yield stress), and the time evolution of structure in the fluid as the field is switched on or off.

  17. α-Amylase-assisted extraction of polysaccharides from Panax ginseng.

    PubMed

    Sun, Lin; Wu, Di; Ning, Xin; Yang, Guang; Lin, Ziheng; Tian, Meihong; Zhou, Yifa

    2015-04-01

    In this paper, α-amylase-assisted extraction was used to isolate the polysaccharide that remained in hot water-extracted ginseng. The yield of the polysaccharide was 9.0%, almost equal to that of the hot water-extracted polysaccharide. Using anion exchange and gel permeation chromatography, the polysaccharide was fractionated into a neutral polysaccharide fraction and six pectic fractions. The neutral fraction accounted for 76% of the polysaccharide and contained both amylopectin and amylose. The pectic polysaccharide fractions were identified to be arabinogalactan, type-I rhamnogalacturonan and homogalacturonan-type pectin by high-performance liquid chromatography, Fourier transform-infrared and nuclear magnetic resonance analysis. Structural and lymphocyte proliferation activity results showed that these polysaccharides were different from those extracted by hot water, indicating that ginseng contains complex polysaccharides with diverse structures, which results in its diverse pharmacological activities. The α-amylase-assisted extraction is a novel method for preparing ginseng polysaccharides and could be applied toward the further study and exploration of ginseng. These findings provide technical and theoretical support for ginseng pharmacology.

  18. Polysaccharide structure of tetrasporic red seaweed Tichocarpus crinitus.

    PubMed

    Byankina Barabanova, A O; Sokolova, E V; Anastyuk, S D; Isakov, V V; Glazunov, V P; Volod'ko, A V; Yakovleva, I M; Solov'eva, T F; Yermak, I M

    2013-10-15

    Sulfated polysaccharide isolated from tetrasporic plants of Tichocarpus crinitus was investigated. The polysaccharide was isolated by two methods: with water extraction at 80 °C (HT) and with a mild alkaline extraction (AE). The extracted polysaccharides were presented by non-gelling ones only, while galactose and 3,6-AG were the main monosaccharides, at the same time amount of 3,6-AG in AE polysaccharides was the similar to that of HT. According to methods of spectroscopy and mass spectrometry, the polysaccharide from tetrasporic T. crinitus contains main blocks of 1,3-linked β-D-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl while 6-sulfated 4-linked galactopyranosyl resudies are randomly distributed along the polysaccharide chain. The alkaline treatment of HT polysaccharide results in obtaining polysaccharide with regular structure that composed of alternating 1,3-linked β-D-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl residues. Native polysaccharide (HT) possessed both high anticoagulant and antiplatelet activity measured by fibrin clotting and platelet aggregation induced by collagen. This activity could be connected with peculiar chemical structure of HT polysaccharide which has high sulfation degree and contains also 3,6-anhydrogalactose in the polymer chain.

  19. Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide.

    PubMed

    Nakamura, Michiko; Miura, Sayaka; Takagaki, Akiko; Nanjo, Fumio

    2017-05-01

    Crude tea polysaccharide (crude TPS) was prepared from instant green tea by ethanol precipitation followed by ultrafiltration membrane treatment and its effects on blood lipid, liver lipid, and fecal lipid levels were examined with Sprague-Dawley rats fed a high-fat diet. Although crude TPS showed no effects on the serum lipid levels, it suppressed the liver lipid accumulation and increased the fecal excretion of dietary fat. Then, the structural features of crude TPS were investigated. After separation of crude TPS by DEAE-cellulose and gel-filtration column chromatography, two kinds of neutral tea polysaccharides (NTPS-LP and NTPS-HH) and an acidic polysaccharide (ATPS-MH) were obtained. According to monosaccharide composition, methylation, and NMR analyses, NTPS-LP, NPTS-HH, and ATPS-MH were presumed to be starch, arabinogalactan with β-1,3-linked galactosyl backbone blanched at position 6 and with 1,5-linked arabinofuranosyl residues, and α-1,4-linked galacturonic acid backbone with arabinogalactan region, respectively.

  20. Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage.

    PubMed

    Gao, Zhenzhen; Liu, Kuanhui; Tian, Weijun; Wang, Hongchao; Liu, Zhenguang; Li, Youying; Li, Entao; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Wang, Deyun; Hu, Yuanliang

    2015-07-01

    The effects of two selenizing polysaccharides (sCAP2 and sGPS6) on immune function of murine peritoneal macrophages taking two non-selenizing polysaccharides (CAP and GPS) and modifier Na2SeO3 as control. In vitro test, the changes of selenizing polysaccharides, non-selenizing polysaccharides and Na2SeO3 on murine macrophages function were evaluated by phagocytosis and nitric oxide (NO) secretion tests. In vivo test, the mice were injected respectively with 0.2, 0.4 and 0.6 mg of sCAP2, sGPS6, CAP and GPS, or Na2SeO3 80 μg or normal saline 0.4 mL. The peritoneal macrophages were collected and cultured to determine the contents of TNF-α, IL-6 and IL-10 in supernatants by enzyme-linked immunosorbent assay. The results showed that sCAP2 and sGPS6 could significantly promote the phagocytosis and secretion of NO and three cytokines of macrophages in comparison with CAP and GPS. sCAP2 possessed the strongest activity. This indicates that selenylation modification can further improve the immune-enhancing activity of polysaccharide, and sCAP2 could be as a new immunopotentiator.

  1. Bioelectrical impedance vector analysis to evaluate relative hydration status.

    PubMed

    Bozzetto, Sara; Piccoli, Antonio; Montini, Giovanni

    2010-02-01

    The objective was to present our clinical experience with bioelectrical impedance vector analysis (BIVA). Forty-six patients with chronic kidney disease (CKD) without oedema, 21 oedematous nephrotic children and 15 in remission from nephrotic syndrome were studied. The age range was 2-14 years. Data were obtained with the vector bioelectric impedance analysis method (Piccoli's RXc graph with 95% confidence ellipses) and compared with normal paediatric values. The mean vector position differs significantly among the groups of evaluated patients (Hotelling T(2) test, p < 0.05). Mean vector position along the 45 degrees direction (major axis of ellipses) indicates a progressive increase in body fluid volume from patients with CKD stage IV to stages II-III to patients in remission from nephrotic syndrome to oedematous subjects. We observed a progressive vector lengthening in children with severe renal disease (separate 95% confidence ellipse). This pattern indicates relative dehydration. BIVA represents a useful clinical tool that is able to detect changes in hydration.

  2. POLYPEPTIDE AND POLYSACCHARIDE PROCESSING IN HYPERTHERMOPHILIC MICROORGANISMS

    SciTech Connect

    KELLY, ROBERT M.

    2008-12-22

    This project focused on the microbial physiology and biochemistry of heterotrophic hyperthermophiles with respect to mechanisms by which these organisms process polypeptides and polysaccharides under normal and stressed conditions. Emphasis is on two model organisms, for which completed genome sequences are available: Pyrococcus furiosus (growth Topt of 98°C), an archaeon, and Thermotoga maritima (growth Topt of 80°C), a bacterium. Both organisms are obligately anaerobic heterotrophs that reduce sulfur facultatively. Whole genome cDNA spotted microarrays were used to follow transcriptional response to a variety of environmental conditions in order to identify genes encoding proteins involved in the acquisition, synthesis, processing and utilization of polypeptides and polysaccharides. This project provided new insights into the physiological aspects of hyperthermophiles as these relate to microbial biochemistry and biological function in high temperature habitats. The capacity of these microorganisms to produce biohydrogen from renewable feedstocks makes them important for future efforts to develop biofuels.

  3. Antihypertensive activity of polysaccharide from Crassostrea gigas.

    PubMed

    Wang, Ting; Ding, Jie; Li, Haibo; Xiang, Jingjing; Wen, Ping; Zhang, Qin; Yin, Linliang; Jiang, Wei; Shen, Caie

    2016-02-01

    Water-soluble polysaccharide was extracted from Crassostrea gigas by hydrolysis with flavourzyme and filtered, ultrafiltered and precipitated using absolute ethanol. Sugar composition analysis performed on the C. gigas polysaccharide (CGP) by high performance liquid chromatography indicated that it was comprised primarily of glucose, and its molecular weight was determined using a TSK-GEL G5000PW column to be ∼3.413×10(6) Da. Next, the antihypertensive activity of CGP was evaluated in rats. Hypertension model Wistar rats were divided into three groups and intragastrically treated with physiological saline (negative control group), CGP (treatment group), and captopril (positive control group). CGP treatment led to significant decrease in both systolic and diastolic pressures in the hypertension model Wistar rats. Furthermore, the antihypertensive effect of CGP was comparable with that of captopril. Thus, CGP has antihypertensive effects and can potentially be used as a therapeutic agent for hypertension. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Identification of Bacillus anthracis by Using Monoclonal Antibody to Cell Wall Galactose-N-Acetylglucosamine Polysaccharide

    DTIC Science & Technology

    1990-02-01

    which appear to be directed to an epitope associated with the galactose-N-acetyl-D- glucosamine polysaccharide. Both demonstrated specificity in their...liquid composed primarily of D-galactose and N-acetyl-D-glu - R medium (28) buffered with 50 mM Tris hydrochloride , pH cosamine (12, 13) (Gal-NAG...Ascites fluid (5 ml) was dialyzed (Cel-Line Associates, Inc., Newfield, N.J.). Suspensions against 20 mM Tris hydrochloride (pH 8.0) for 18 to 20 h, were

  5. Immunogenic properties of Klebsiella pneumoniae type 2 capsular polysaccharide.

    PubMed Central

    Robert, A; Jouin, H; Fournier, J M

    1986-01-01

    The immunoprotective activity of Klebsiella pneumoniae K2 cell surface preparations and purified capsular polysaccharide was tested in mice. The 50% protective dose (PD50), expressed as capsular polysaccharide content, was 2 ng for cell surface preparations and 50 ng for purified capsular polysaccharide. Both preparations lost their immunoprotective activity after alkali treatment. Immune sera were raised in rabbits immunized with cell surface preparations. The precipitating and hemagglutinating capacity of these antisera was tested against either purified capsular polysaccharide or alkali-treated capsular polysaccharide. No difference was observed between the reactivity of the antisera against each antigen. The protective activity of these sera was tested on mice in passive transfer experiments, before and after absorption with either purified capsular polysaccharide or alkali-treated capsular polysaccharide. The sera lost their protective activity after absorption with purified capsular polysaccharide and after absorption with alkali-treated capsular polysaccharide. These experiments show that the difference in immunoprotective activity of cell surface preparations, purified capsular polysaccharide, and alkali-treated capsular polysaccharide is not due to a difference in their antigenic determinants. Cell surface preparations and purified capsular polysaccharide were fractionated by gel filtration on Sepharose 4B and by ultracentrifugation on cesium chloride density gradients. Three forms of capsular polysaccharide have been characterized. (i) A form of capsular polysaccharide with a very high protective activity (PD50 = 2 ng) that copurified with protein and lipopolysaccharide and was characterized by a low coefficient of distribution (Kd = 0.20) and a low density (1.5 to 1.6 g/cm3). (ii) A form of capsular polysaccharide with an intermediate protective activity (PD50 = 50 ng), contamined by less than 3% protein and 1% lipopolysaccharide, with a Kd of 0.35, and

  6. Plasma Impedance Obtained by Poynting's Theorem and MHD Theory

    SciTech Connect

    Farias, E. E.; Cavalcanti, G. H.; Borges, F. O.; Santiago, M. A. M

    2006-12-04

    Using fluid equations to model an electron and ion plasma combined with the complex Poynting's theorem for harmonic fields, the expression for the resistance and plasma reactance could be obtained to some simple plasma diode configurations. Theses expressions take into account the plasma parameters and the dimensions of plasma discharge channel and they are important as a guide to change or adjust the experimental conditions in such way to obtain a new plasma impedance in order to emphasize some plasma response. The theoretical model must both, take into account the experimental conditions of plasma production and excitation and equilibrium plasma. We applied the method to a collisionless field free plasma and other that obeys the Drude's model.

  7. Synergistic interaction between TS-polysaccharide and hyaluronic acid: implications in the formulation of eye drops.

    PubMed

    Uccello-Barretta, Gloria; Nazzi, Samuele; Zambito, Ylenia; Di Colo, Giacomo; Balzano, Federica; Sansò, Marco

    2010-08-16

    An interaction between tamarind seed polysaccharide (TSP) and hyaluronic acid (HA) in aqueous solution has been ascertained. Various TSP/HA mixtures have been studied as the basis for the development of a potential excipient for eye drops synergistically improved over those of the separate polymers. Information about the nature of interpolymer interactions, and their dependence on TSP/HA ratios were obtained by NMR spectroscopy in solution. Superior mucin affinity of TSP/HA mixtures with respect to the single polysaccharides was assessed by NMR proton selective relaxation rate measurements. The mucoadhesivity of the TSP/HA (3/2) mixture, evaluated in vitro by NMR or viscometry, and in vivo by its mean and maximum residence time in rabbit precorneal area, is stronger than that of the component polysaccharides or the TSP/HA mixtures of different composition. TSP/HA (3/2) is little viscous and well tolerated by rabbit eyes. It stabilizes the tear film, thereby prolonging the residence of ketotifen fumarate and diclofenac sodium in tear fluid, but is unable to permeabilize the cornea. In conclusion, mucoadhesivity is responsible for the TSP/HA (3/2) synergistic enhancement of either extra- or intra-ocular drug bioavailability.

  8. Baseline impedance measured during high-resolution esophageal impedance manometry reliably discriminates GERD patients.

    PubMed

    Ravi, K; Geno, D M; Vela, M F; Crowell, M D; Katzka, D A

    2017-05-01

    Baseline impedance measured with ambulatory impedance pH monitoring (MII-pH) and a mucosal impedance catheter detects gastroesophageal reflux disease (GERD). However, these tools are limited by cost or patient tolerance. We investigated whether baseline impedance measured during high-resolution impedance manometry (HRIM) distinguishes GERD patients from controls. Consecutive patients with clinical HRIM and MII-pH testing were identified. Gastroesophageal reflux disease was defined by esophageal pH <4 for ≥5% of both the supine and total study time, whereas controls had an esophageal pH <4 for ≤3% of the study performed off PPI. Baseline impedance was measured over 15 seconds during the landmark period of HRIM and over three 10 minute intervals during the overnight period of MII-pH. Among 29 GERD patients and 26 controls, GERD patients had a mean esophageal acid exposure time of 22.7% compared to 1.2% in controls (P<.0001). Mean baseline impedance during HRIM was lower in GERD (1061 Ω) than controls (2814 Ω) (P<.0001). Baseline mucosal impedance measured during HRIM and MII-pH correlated (r=0.59, P<.0001). High-resolution esophageal manometry baseline impedance had high diagnostic accuracy for GERD, with an area under the curve (AUC) of 0.931 on receiver operating characteristics (ROC) analysis. A HRIM baseline impedance threshold of 1582 Ω had a sensitivity of 86.2% and specificity of 88.5% for GERD, with a positive predictive value of 89.3% and negative predictive value of 85.2%. Baseline impedance measured during HRIM can reliably discriminate GERD patients with at least moderate esophageal acid exposure from controls. This diagnostic tool may represent an accurate, cost-effective, and less invasive test for GERD. © 2016 John Wiley & Sons Ltd.

  9. Contact impedance of grounded and capacitive electrodes

    NASA Astrophysics Data System (ADS)

    Hördt, Andreas; Weidelt, Peter; Przyklenk, Anita

    2013-04-01

    The contact impedance of electrodes determines how much current can be injected into the ground for a given voltage. If the ground is very resistive, capacitive electrodes may be an alternative to galvanic coupling. The impedance of capacitive electrodes is often estimated with the assumption that the halfspace is an ideal conductor. Over resistive ground at high frequencies, however, the contact impedance will depend on the electrical properties, i.e. electrical conductivity and permittivity, of the subsurface. Here, we review existing equations for the resistance of a galvanically coupled, spherical electrode in a fullspace, and extend the theory to the general case of a sphere in a spherically layered fullspace. We then develop a method to calculate the impedance of a spherical disc over a homogeneous halfspace. We carry out modelling studies to demonstrate the consistency of the algorithms and to assess under which conditions the determination of the electrical parameters from the impedance may be feasible. For a capacitively coupled electrode, the common assumption of an ideally conducting fullspace (or halfspace) breaks down if the displacement currents in the fullspace become as large as the conduction currents. For a moderately resistive medium with 1000 Ωm this is the case for frequencies larger than 100 kHz. The transition from a galvanically coupled disc to a disc in the air is continuous as function of distance. However, depending on the electrical parameters and frequency, the impedance may vary by several orders of magnitude within a few nanometers distance or less. We derive a simple equation to assess under which conditions the impedance is independent of the electrode height, which may be important for determining subsurface permittivity and conductivity in cases where control on the exact geometry is difficult. Our theory is consistent with measured data obtained in a sandbox in the laboratory.

  10. Microbial extracellular polysaccharides and plagioclase dissolution

    NASA Astrophysics Data System (ADS)

    Welch, S. A.; Barker, W. W.; Banfield, J. F.

    1999-05-01

    Bytownite feldspar was dissolved in batch reactors in solutions of starch (glucose polymer), gum xanthan (glucose, mannose, glucuronic acid), pectin (poly-galacturonic acid), and four alginates (mannuronic and guluronic acid) with a range of molecular weights (low, medium, high and uncharacterized) to evaluate the effect of extracellular microbial polymers on mineral dissolution rates. Solutions were analyzed for dissolved Si and Al as an indicator of feldspar dissolution. At neutral pH, feldspar dissolution was inhibited by five of the acid polysaccharides, gum xanthan, pectin, alginate low, alginate medium, alginate high, compared to an organic-free control. An uncharacterized alginate substantially enhanced both Si and Al release from the feldspar. Starch, a neutral polysaccharide, had no apparent effect. Under mildly acidic conditions, initial pH ≈ 4, all of the polymers enhanced feldspar dissolution compared to the inorganic controls. Si release from feldspar in starch solution exceeded the control by a factor of three. Pectin and gum xanthan increased feldspar dissolution by a factor of 10, and the alginates enhanced feldspar dissolution by a factor of 50 to 100. Si and Al concentrations increased with time, even though solutions were supersaturated with respect to several possible secondary phases. Under acidic conditions, initial pH ≈ 3, below the pK a of the carboxylic acid groups, dissolution rates increased, but the relative increase due to the polysaccharides is lower, approximately a factor of two to ten. Microbial extracellular polymers play a complex role in mineral weathering. Polymers appear to inhibit dissolution under some conditions, possibly by irreversibly binding to the mineral surfaces. The extracellular polysaccharides can also enhance dissolution by providing protons and complexing with ions in solution.

  11. Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.

    PubMed

    Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D

    2001-10-01

    The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.

  12. A Study of Impedance Relationships in Dual Frequency PECVD Process Plasma

    NASA Astrophysics Data System (ADS)

    Keil, Douglas; Augustyniak, Edward; Sakiyama, Yukinori; Pecvd/Ald Team

    2016-09-01

    Commercial plasma process reactors are commonly operated with a very limited suite of on-board plasma diagnostics. However, as process demands advance so has the need for detailed plasma monitoring and diagnosis. The VI probe is one of the few instruments commonly available for this task. We present a study of voltage, current, impedance and phase trends acquired by off-the-shelf VI probes in Dual Frequency (DF) 400 kHz/13.56MHz capacitively-coupled plasma (CCP) as typically used for Plasma Enhanced Chemical Vapor Deposition (PECVD). These plasmas typically operate at pressures from 1 to 5 Torr and at RF power levels of 3 W/cm2. Interpretation of DF VI probe impedance trends is challenging. Non-linear interactions are known to exist in plasma impedance scaling with low and high frequency RF power. Simple capacitive sheath models typically do not simultaneously reproduce the impedance observed at each drive frequency. This work will compare VI probe observed DF CCP impedance tends with plasma fluid simulation. Also explored is the agreement seen with sheath models presently available in the literature. Prospects for the creation of useful equivalent circuit models is also discussed.

  13. LDV measurement of bird ear vibrations to determine inner ear impedance and middle ear power flow

    NASA Astrophysics Data System (ADS)

    Muyshondt, Pieter G. G.; Pires, Felipe; Dirckx, Joris J. J.

    2016-06-01

    The mechanical behavior of the middle ear structures in birds and mammals is affected by the fluids in the inner ear (IE) that are present behind the oval window. In this study, the aim was to gather knowledge of the acoustic impedance of the IE in the ostrich, to be able to determine the effect on vibrations and power flow in the single-ossicle bird middle ear for future studies. To determine the IE impedance, vibrations of the ossicle were measured for both the quasi-static and acoustic stimulus frequencies. In the acoustic regime, vibrations were measured with a laser Doppler vibrometer and electromagnetic stimulation of the ossicle. The impedance of the inner ear could be determined by means of a simple RLC model in series, which resulted in a stiffness reactance of KIE = 0.20.1012 Pa/m3, an inertial impedance of MIE = 0.652.106 Pa s2/m3, and a resistance of RIE = 1.57.109 Pa s/m. The measured impedance is found to be considerably smaller than what is found for the human IE.

  14. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    SciTech Connect

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  15. Immunoregulatory activities of polysaccharides from mung bean.

    PubMed

    Yao, Yang; Zhu, Yingying; Ren, Guixing

    2016-03-30

    Ultrasonic treatment was performed on water-extractable polysaccharides from the seed of mung beans. Purified by anion-exchange and gel filtration chromatography, MWP-1' and MWP-2' were obtained. Average molecular weights (Mws) of MWP-1' and MWP-2' were 68.4 kDa, and 52.4 kDa, respectively. Monosaccharides components analysis indicated that MWP-1' was composed of Rha, Ara, Man and Gal in a molar percent of 0.4:2.6:5.3:0.7. MWP-2' was composed of Ara, Man, Gal and Glc in a molar percent of 0.5:1.4:2.1:0.4. In vitro study showed that both polysaccharides samples were able to stimulate the production of secretory molecules (NO, TNF-α and IL-6) of RAW264.7 murine macrophages in a dosage dependent manner. MWP-2' seemed to be the most potent and induced significantly higher the NO production. These findings suggest that the ultrasonic treatment polysaccharides isolated in our study have immune potentiation effects on macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Marine Origin Polysaccharides in Drug Delivery Systems.

    PubMed

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-02-05

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  17. Ultrafine polysaccharide nanofibrous membranes for water purification.

    PubMed

    Ma, Hongyang; Burger, Christian; Hsiao, Benjamin S; Chu, Benjamin

    2011-04-11

    Ultrafine polysaccharide nanofibers (i.e., cellulose and chitin) with 5-10 nm diameters were employed as barrier layers in a new class of thin-film nanofibrous composite (TFNC) membranes for water purification. In addition to concentration, the viscosity of the polysaccharide nanofiber coating suspension was also found to be affected by the pH value and ionic strength. When compared with two commercial UF membranes (PAN10 and PAN400), 10-fold higher permeation flux with above 99.5% rejection ratio were achieved by using ultrafine cellulose nanofibers-based TFNC membranes for ultrafiltration of oil/water emulsions. The very high surface-to-volume ratio and negatively charged surface of cellulose nanofibers, which lead to a high virus adsorption capacity as verified by MS2 bacteriophage testing, offer further opportunities in drinking water applications. The low cost of raw cellulose/chitin materials, the environmentally friendly fabrication process, and the impressive high-flux performance indicate that such ultrafine polysaccharide nanofibers-based TFNC membranes can surpass conventional membrane systems in many different water applications.

  18. Marine Origin Polysaccharides in Drug Delivery Systems

    PubMed Central

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  19. Rheological studies of polysaccharides for skin scaffolds.

    PubMed

    Almeida, Nalinda; Mueller, Anja; Hirschi, Stanley; Rakesh, Leela

    2014-05-01

    Polysaccharide hydrogels are good candidates for skin scaffolds because of their inherent biocompatibility and water transport properties. In the current study, hydrogels were made from a mixture of four polysaccharides: xanthan gum, konjac gum, iota-carrageenan, and kappa-carrageenan. Gel formation, strength, and structure of these polysaccharides were studied using rheological and thermal techniques. All gel samples studied were strong gels at all times because of the gradual water loss. However, after 12 h of storage, elastic (G') and loss (G'') moduli of hydrogel mixture containing all the ingredients is of one to two orders of magnitude greater than that of mixtures not containing either xanthan gum or iota-carrageenan, which confirmed the varied levels of gel strength. This is mainly due to the rate of water loss in each of these mixtures, resulting in gels of varying structures and dynamic moduli over a period of time. Iota-carrageenan and xanthan gum differ in their effect on gel strength and stability in combination with konjac gum and kappa-carrageenan.

  20. The diversity of Klebsiella pneumoniae surface polysaccharides

    PubMed Central

    Heinz, Eva; Wyres, Kelly L.; Ellington, Matthew J.; Kowarik, Michael; Holt, Kathryn E.; Thomson, Nicholas R.

    2016-01-01

    Klebsiella pneumoniae is considered an urgent health concern due to the emergence of multi-drug-resistant strains for which vaccination offers a potential remedy. Vaccines based on surface polysaccharides are highly promising but need to address the high diversity of surface-exposed polysaccharides, synthesized as O-antigens (lipopolysaccharide, LPS) and K-antigens (capsule polysaccharide, CPS), present in K. pneumoniae. We present a comprehensive and clinically relevant study of the diversity of O- and K-antigen biosynthesis gene clusters across a global collection of over 500 K. pneumoniae whole-genome sequences and the seroepidemiology of human isolates from different infection types. Our study defines the genetic diversity of O- and K-antigen biosynthesis cluster sequences across this collection, identifying sequences for known serotypes as well as identifying novel LPS and CPS gene clusters found in circulating contemporary isolates. Serotypes O1, O2 and O3 were most prevalent in our sample set, accounting for approximately 80 % of all infections. In contrast, K serotypes showed an order of magnitude higher diversity and differ among infection types. In addition we investigated a potential association of O or K serotypes with phylogenetic lineage, infection type and the presence of known virulence genes. K1 and K2 serotypes, which are associated with hypervirulent K. pneumoniae, were associated with a higher abundance of virulence genes and more diverse O serotypes compared to other common K serotypes. PMID:28348868

  1. Nanofiltration of polysaccharides from Agaricus subrufescens.

    PubMed

    Camelini, C M; Rezzadori, K; Benedetti, S; Proner, M C; Fogaça, L; Azambuja, A A; Giachini, A J; Rossi, M J; Petrus, J C C

    2013-12-01

    A simplified submerged airlift cultivation was established for the production of biomass from Agaricus subrufescens. In this work, soluble polysaccharides extracted from fungal mycelium, fruiting bodies, and the residual culture media were concentrated by nanofiltration. Total and high molar mass polysaccharides and soluble solids were determined in the concentrate for the three extracts. Additionally, the permeate flow, the influences of temperature and pressure, and the resistance to the permeate flow during filtration were also evaluated. Ayield of 5.5 g/L of biomass with 35%glucose conversion was obtained when 0.5 g/L of initial inoculum was employed. Average specific speed of growth was 0.4/day, with biomass productivity of about 0.76 g/(L day). Nanofiltration has yielded polysaccharide increases of 85, 82, and 92% in the extracts from fruiting bodies, mycelium, and liquid media, respectively. A reduction in the permeate flow was observed during filtration, and it was compensated by higher pressures and temperatures. The higher resistance to the permeate flux was caused by polarization due to concentration (polarized gel layer), reaching values of 88% for the culture media. Maximal resistance caused by the membrane reached values of 40% for the extract from the fruiting bodies. On the other hand, resistance caused by fouling was responsible for less than 3.5%. In conclusion, nanofiltration is efficient to concentrate these functional compounds extracted from A. subrufescens and can, therefore, be applied in different biotechnological areas.

  2. Polysaccharide Nanosystems for Future Progress in Cardiovascular Pathologies

    PubMed Central

    Silva, Amanda Karine Andriola; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Natural polysaccharides have received a lot of attention in the biomedical field. Indeed, sources of polysaccharides, extracted or produced from plants, bacteria, fungi or algae, are diverse and renewable. Moreover, recent progresses in polysaccharide chemistry and nanotechnologies allow elaborating new dedicated nanosystems. Polysaccharide-based nanosystems may be designed for interacting in several biological processes. In particular, the atherothrombotic pathology is highly concerned by polysaccharide-mediated recognition. Atherothrombotic diseases, regardless of the anatomical localization, remain the main causes of morbidity and mortality in the industrialized world. This review intends to provide an overview on polysaccharide-based nanosystems as drug delivery systems and targeted contrast agents for molecular imaging with an emphasis on the treatment and imaging of cardiovascular pathologies. PMID:24723980

  3. Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis.

    PubMed

    White, A P; Gibson, D L; Collinson, S K; Banser, P A; Kay, W W

    2003-09-01

    Lipopolysaccharide (LPS) O polysaccharide was identified as the principle factor impeding intercellular formation of intact thin aggregative fimbriae (Tafi) in Salmonella enterica serovar Enteritidis. The extracellular nucleation-precipitation assembly pathway for these organelles was investigated by quantifying fimbrial formation between deltaagfA (AgfA recipient) and deltaagfB (AgfA donor) cells harboring mutations in LPS (galE::Tn10) and/or cellulose (deltabcsA) synthesis. Intercellular complementation could be detected between deltaagfA and deltaagfB strains only when both possessed the galE mutation. LPS O polysaccharide appears to be an impenetrable barrier to AgfA assembly between cells but not within individual cells. The presence of cellulose did not restrict Tafi formation between cells. Transmission electron microscopy of w+ S. enterica serovar Enteritidis 3b cells revealed diffuse Tafi networks without discernible fine structure. In the absence of cellulose, however, individual Tafi fibers were clearly visible, appeared to be occasionally branched, and showed the generally distinctive appearance described for Escherichia coli K-12 curli. A third extracellular matrix component closely associated with cellulose and Tafi was detected on Western blots by using immune serum raised to whole, purified Tafi aggregates. Cellulose was required to tightly link this material to cells. Antigenically similar material was also detected in S. enterica serovar Typhimurium and one diarrheagenic E. coli isolate. Preliminary analysis indicated that this material represented an anionic, extracellular polysaccharide that was distinct from colanic acid. Therefore, Tafi in their native state appear to exist as a complex with cellulose and at least one other component.

  4. Evaluation of Phosphorylated Psyllium Seed Polysaccharide as a Release Retardant

    PubMed Central

    Rao, Monica R. P.; Warrier, Deepa U.; Rao, Shivani H.

    2015-01-01

    The aim of the present study was to modify psyllium seed polysaccharide and evaluate the modified polysaccharide as release retardant in tablets employing ciprofloxacin hydrochloride as model drug. Studies on polysaccharide from psyllium husk has been reported but no work has been reported on characterization and modification of the polysaccharide present in the psyllium (Plantago ovata) seed and the use of the modified polysaccharide as a release retardant in tablets. In this study, the seed gum was modified using sodium trimetaphosphate as crosslinking agent. Sustained release matrix tablets of ciprofloxacin hydrochloride were prepared by wet granulation using various drug-polymer ratios. The polymers investigated were psyllium polysaccharide, phosphorylated psyllium polysaccharide and widely used release retardant hydroxypropyl methylcellulose K100M. The tablets were evaluated for hardness, friability, drug content, swelling profile and in vitro dissolution studies. The matrix tablets containing 1:3 proportion of drug-phosphorylated psyllium polysaccharide was found to have higher hardness as compared to tablets containing 1:1 and 1:2 proportions. The results of swelling behavior in water showed that the tablets containing 1:3 drug:phosphorylated psyllium polysaccharide ratio had swelling comparable to that of tablets containing 1:3 drug:hydroxypropyl methylcellulose ratio. The in vitro dissolution studies shows that the dissolution rate was retarded from 98.41 to 37.6% in 6 h with increase in concentration of phosphorylated psyllium polysaccharide from 100 to 300 mg. Formulations containing psyllium polysaccharide showed complete drug release in 8 h whereas those formulated with phosphorylated psyllium polysaccharide exhibited extended drug release over the 12 h period. Drug release kinetic studies revealed that drug release followed Korsmeyer-Peppas model. PMID:26798177

  5. Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology.

    PubMed

    Seulki Lee; Squillace, Gabriel; Smeets, Christophe; Vandecasteele, Marianne; Grieten, Lars; de Francisco, Ruben; Van Hoof, Chris

    2015-08-01

    A new technique to monitor the fluid status of congestive heart failure (CHF) patients in the hospital is proposed and verified in a clinical trial with 8 patients. A wearable Bio-impedance (BioZ) sensor allows a continuous localized measurement which can be complement clinical tools in the hospital. Thanks to the multi-parametric approach and correlation analysis with clinical reference, BioZ is successfully shown as a promising parameter for continuous and wearable CHF patient monitoring application.

  6. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  7. Antenna pattern control using impedence surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng

    1991-01-01

    During this research period, September 16, 1990 to March 15, 1991, a design method for selecting a low-loss impedance material coating for a horn antenna pattern control has been developed. This method and the stepped waveguide technique can be employed to accurately compute the electromagnetic wave phenomenon inside the transition region of the horn antenna, with or without the impedance surfaces, from the feed to the radiating aperture. For moment method solutions of the electric and magnetic current distributions on the radiating aperture and the outer surface of the horn antenna, triangular surface-patch modes are introduced to replace the sinusoidal surface-patch modes as expansion and testing functions to provide a more physical expansion of the current distributions. In the synthesis problem, a numerical optimization process is formulated to minimize the error function between the desired waveguide modes and the modes provided by the horn transition with impedance surfaces. Since the modes generated by the horn transition with impedance surface are computed by analytical techniques, the computational error involved in the synthesis of the antenna pattern is minimum. Therefore, the instability problem can be avoided. A preliminary implementation of the techniques has demonstrated that the developed theory of the horn antenna pattern control using the impedance surfaces is realizable.

  8. Antibacterial and antiviral study of dialdehyde polysaccharides

    NASA Astrophysics Data System (ADS)

    Song, Le

    Concerns for microbial contamination and infection to the general population, especially the spread of drug-resistant microorganisms, have greatly increased. Polymeric biocides have been found to be a feasible strategy to inactivate drug-resistant bacteria. However, current polymeric biocide systems involve multi-step chemical reactions and they are not cost-effective. Desirable antimicrobial systems need to be designed to be environmentally friendly, broad-spectrum effective against microorganisms, flexible for various delivery methods and economically affordable. We demonstrated that dialdehyde polysaccharides (including dialdehyde starch and dialdehdye cellulose) were broad-spectrum polymeric biocides against gram-positive/negative bacteria, bacteriophages and human virus. These polymers can be easily converted from starch and cellulose through one-step periodate oxidation. Destructions of microorganism by dialdehyde polysaccharides have been achieved in aqueous suspension or by solid surface contact. The dialdehdye functions of dialdehdye polysaccharides were found to be the dominant action against microorganism. The reactivity of the dialdehyde functionality was found to be pH-dependent as well as related to the dispersion of dialdehyde polysaccharides. Degradation of dialdehyde starch during cooking was confirmed. Degradation of dialdehyde starch was more liable in alkaline condition. Carboxylic acid and conjugated aldehyde functionalities were the two main degradation products, confirmed from the spectroscopic studies. The pH effect on the polysaccharide structure and the corresponding antimicrobial activity was very complicated. No decisive conclusions could be obtained from this study. Liner inactivation kinetics was found for dialdehyde starch aqueous suspension against bacteria. This linear inactivation kinetics was derived from the pseudo-first chemical reaction between the dialdehyde starch and the bacteria. The established inactivation kinetics was

  9. The fluid-compensated cement bond log

    SciTech Connect

    Nayfeh, T.H.; Wheelis, W.B. Jr.; Leslie, H.D.

    1986-08-01

    Simulations of cement bond logging (CBL) have shown that wellbore fluid effects can be segregated from sonic-signal response to changing cement strengths. Traditionally, the effects have been considered negligible and the CBL's have been interpreted as if water were in the wellbore. However, large variations in CBL's have become apparent with the increasing number of logs run in completion fluids, such as CaCl/sub 2/, ZnBr/sub 2/, and CaBr/sub 2/. To study wellbore fluid effects, physical and numerical models were developed that simulated the wellbore geometry. Measurements were conducted in 5-, 7-, and 9 5/8-in. casings for a range of wellbore fluid types and for both densities and viscosities. Parallel numerical modeling used similar parameters. Results show that bond-log amplitudes varied dramatically with the wellbore fluid acoustic impedance-i.e., there was a 70% increase in signal amplitudes for 11.5 lbm/gal (1370-kg/m/sup 3/) CaCl/sub 2/ over the signal amplitude in water. This led to the development of a fluid-compensated bond log that corrects the amplitude for acoustic impedance of various wellbore fluids, thereby making the measurements more directly related to the cement quality.

  10. Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial

    SciTech Connect

    Altimiras, Carles Parlavecchio, Olivier; Joyez, Philippe; Vion, Denis; Roche, Patrice; Esteve, Daniel; Portier, Fabien

    2013-11-18

    We report the efficient coupling of a 50  Ω microwave circuit to a high impedance conductor. We use an impedance transformer consisting of a λ/4 co-planar resonator whose inner conductor contains an array of superconducting quantum interference devices (SQUIDs), providing it with a tunable lineic inductance L∼80 μ{sub 0}, resulting in a characteristic impedance Z{sub C}∼1 kΩ. The impedance matching efficiency is characterized by measuring the shot noise power emitted by a dc biased tunnel junction connected to the resonator. We demonstrate matching to impedances in the 15 to 35 kΩ range with bandwidths above 100 MHz around a resonant frequency tunable between 4 and 6 GHz.

  11. Lung Impedance Contributions to the Total Impedance based on a FDM Model and Lead Field Theory.

    PubMed

    Patterson, Robert; Yang, Fei

    2005-01-01

    Predicting tissue resistivity is of significance in medical diagnosis due to the fact that disease induces related tissue resistivity change. Studies have shown that the lung and tissues tumors reflect significant impedance change with disease states. It is hypothesized that the impedance measurement with the largest contribution from the organ of interest will result in less error. In this paper, we determined the percentage contribution of the lung impedance to the total impedance for five different external electrode configurations using a high resolution finite difference model (FDM) of the thorax along with lead field theory. The electrode combinations showed a contribution by the lungs of approximately 20% of the total impedance. Many configurations showed contributions of 15%. The results also showed that each lung could be isolated from the opposite lung.

  12. Polysaccharide based Copolymers as Supramolecular Systems in Biomedical Applications.

    PubMed

    Célia Monteiro de Paula, Regina; Andrade Feitosa, Judith Pessoa; Beserra Paula, Haroldo César

    2015-01-01

    Polysaccharides are natural polymers, obtained from a large variety of sources ranging from fungi to more complex organisms such as birds and whales. Their use for pharmaceutical and biomedical applications has been the subject of numerous researches by the world´s academia. Polysaccharide chemical/physical modifications leading to graft copolymers are discussed in this review, focusing on those nanosystems that are potential candidates for drug delivery applications. Therefore, this review focuses on the biomedical application of polysaccharide based copolymers, particularly as nanocarriers. Copolymer of polysaccharides such as alginate, cellulose, chitosan, dextran, guar, hyaluronic acid, pullulan and starch as drug delivery nanocarriers will be discussed.

  13. [Improvement on microwave technology of extracting polysaccharide from yacon leaves].

    PubMed

    Li, Jing-wei; Liu, Jian; Yang, Yong; Zheng, Ming-min; Rong, Ting-zhao

    2007-11-01

    According to the extraction ratio of polysaccharide in yacon leaves, the comparison between microwave extraction and traditional hot water extraction was conducted, and the two-factor and three-level experiment on the microwave extraction of polysaccharide from yacon leaves was investigated. The result showed that the extraction ratio of polysaccharide by using microwave extraction was better than that by using traditional hot water extraction. Moreover, according to the result of variance analysis and multiple comparison, the optimum conditions for extraction of polysaccharide by using microwave technology from yacon leaves were as follows: 280W microwave power for 2 times and 15 minutes at every time.

  14. Transthoracic Electrical Impedance in Cases of High-altitude Hypoxia

    PubMed Central

    Roy, Sujoy B.; Balasubramanian, V.; Khan, M. R.; Kaushik, V. S.; Manchanda, S. C.; Guha, S. K.

    1974-01-01

    Changes in transthoracic electrical impedance (T.E.I.) due to high-altitude hypoxia (3,658 m) have been measured in 20 young, healthy Indian soldiers. They were first studied at sea level (198 m) and then rapidly transported by air to 3,658 m, where they were studied daily from day 1 to day 5 and then on days 8 and 10. The mean (±S.D.) T.E.I. at sea level (34·6±0·6Ω) fell sharply to 29·6±0·8Ω, 30·3±0·9Ω, and 30·5±1·1Ω on days 1, 2, and 3 (P <0·001) and levelled off at 31·5±0·7Ω on day 10, which was comparable to the mean value obtained in 13 persons permanently resident at high altitude (32·2±0·7Ω). Five sea-level residents who had acute mountain sickness (A.M.S.) or high-altitude pulmonary oedema (H.A.P.O.) had a still lower mean value (22·5±1·1Ω). One normal healthy subject who at sea level had a T.E.I. of 34·7Ω developed H.A.P.O. when the T.E.I. fell to 21·1Ω. Ninety minutes after the administration of 80 mg of intravenous frusemide the value increased to 35·5Ω. In another subject with A.M.S. who received 40 mg of frusemide intravenously the T.E.I. rose from 21·9 to 33·2Ω. Since the study was non-invasive the changes in impedance could not be correlated objectively with alterations in either pulmonary blood volume or pulmonary extravascular water space. In the subject, however, with x-ray evidence of H.A.P.O. and a low T.E.I. intravenous frusemide produced a marked rise in T.E.I. together with clearing of the chest x-ray picture within 24 hours, indicating an inverse relationship between impedance and thoracic fluid volume. It is suggested that with further objective verification in man the measurement of T.E.I. may be a potentially promising technique for the early detection of increased pulmonary fluid volume. ImagesFIG. 3FIG. 4 PMID:4416705

  15. Acoustic impedance studies in Triassic reservoirs in the Netherlands - application to development and exploration

    SciTech Connect

    Griffiths, M.; Ford, J.

    1995-08-01

    Simple and cost effective seismic forward modelling techniques have been used in conjunction with petrophysical and geological data to provide an integrated approach to understanding the seismic response of Triassic gas reservoirs onshore and offshore Netherlands. Analysis shows that for the Volpriehausen Sandstone in the offshore sector a relationship exists between reservoir acoustic impedance and porosity such that an increase in porosity leads to a decrease in acoustic impedance. Data can be sub-divided on the basis of fluid fill and cementation with trends for both gas and water cases. Regression analysis has defined the optimum relationship for each fluid case and these relationships have been used to predict the acoustic impedance profiles for a variety of reservoir scenarios. Modelling shows that the highest seismic amplitudes and the greatest relative amplitude variation with fluid fill are related to high porosity reservoir. In the onshore sector, analysis for the Roet Sandstone has shown that even small scale variations in reservoir properties can be recorded within the detail of the seismic response. Results from seismic forward modelling compare with amplitude variations observed in real data and suggest that, within the limitations of the dataset and methodology, the technique can be used to predict reservoir attributes from the seismic response. So far, the technique has been sucessfully applied to both exploration and field development projects.

  16. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  17. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  18. Longitudinal impedance of single frog muscle fibers

    PubMed Central

    1975-01-01

    The longitudinal impedance of single skeletal muscle fibers has been measured from1 to 10,000 Hz in an oil gap apparatus which forces current to flow longitudinally down the fiber. The impedance observed is purely resistive in some fibers from the semitendinosus muscle and in two fibers from the sartorius muscle. In other fibers from the semitendinosus muscle a small phase shift is observed. The mean value of the maximum phase shift observed from all fibers is 1.07 degrees. The artifacts associated with the apparatus and method are examined theoretically and it is shown that one of the likely artifacts could account for the small phase observed. It is concluded that the longitudinal impedance of skeletal muscle fibers is essentially resistive and that little, if any, longitudinal current crosses the membranes of the sarcoplasmic reticulum. PMID:1078575

  19. Plasma Diagnostics by Antenna Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Baker, K. D.; Pound, E.; Jensen, M. D.

    1993-01-01

    The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described.

  20. ac impedance of the carbon monofluoride electrode

    NASA Astrophysics Data System (ADS)

    Suchanski, M. R.

    1985-09-01

    The ac impedance of carbon monofluoride (CF) half-cells and Li/CF batteries that contain 1M LiBF4/4-butyrolactone electrolyte was measured as a function of state of charge. The nonfaradaic components of the CF half-cell impedance were resolved with the aid of a one-dimensional macroscopic treatment of a porous electrode. The values of the nonfaradaic components and their variation with charge withdrawn provide information concerning the nature of cathode discharge products, the degree of tortuosity in the cathode and separator matrices, and the cathode failure mechanism. The CF electrode capacitance, as measured by the low frequency quadrature impedance, can serve as a semiquantitative measure of battery state of charge under certain conditions.

  1. Propagation of waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1974-01-01

    A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.

  2. Direct adaptive impedance control of manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Seraji, H.; Glass, K.

    1991-01-01

    An adaptive scheme for controlling the end-effector impedance of robot manipulators is presented. The proposed control system consists of three subsystems: a simple filter which characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller which produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics, and it is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a very general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter.

  3. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.

    PubMed

    García-Sánchez, P; Ramos, A; Green, N G; Morgan, H

    2008-09-02

    An array of microelectrodes covered in an electrolyte and energized by a traveling-wave potential produces net movement of the fluid. Arrays of platinum microelectrodes of two different characteristic sizes have been studied. For both sizes of arrays, at low voltages (<2 V pp) the electrolyte flow is in qualitative agreement with the linear theory of ac electroosmosis. At voltages above a threshold, the direction of fluid flow is reversed. The electrical impedance of the electrode-electrolyte system was measured after the experiments, and changes in the electrical properties of the electrolyte were observed. Measurements of the electrical current during pumping of the electrolyte are also reported. Transient behaviors in both electrical current and fluid velocity were observed. The Faradaic currents probably generate conductivity gradients in the liquid bulk, which in turn give rise to electrical forces. These effects are discussed in relation to the fluid flow observations.

  4. Anisotropy of human muscle via non invasive impedance measurements. Frequency dependence of the impedance changes during isometric contractions

    NASA Astrophysics Data System (ADS)

    Kashuri, Hektor

    In this thesis we present non invasive muscle impedance measurements using rotatable probes extending the work done by Aaron et al. (1997) by measuring not only the real part of the impedance but the imaginary part as well. The results reveal orientations of underlying muscle fibers via minima in resistance and reactance versus angle curves, suggesting this method as potentially useful for studying muscle properties in clinical and physiological research. Calculations of the current distribution for a slab of material with anisotropic conductivity show that the current distribution depends strongly on the separation of two current electrodes and as well as on its conducting anisotropy. Forearm muscle impedance measurements at 50 kHz done by Shiffman et al. (2003) had shown that both resistance (R) and reactance (X) increase during isometric contraction. We have extended these measurements in the 3 to 100 kHz range and we found that resistance (R) and reactance (X) both increase and their changes increased or decreased at frequency dependent rates. Analysis based on circuit models of changes in R and X during the short contraction pulses showed that the extra cellular fluid resistance increased by 3.9 +/- 1.4 %, while the capacitance increased by 5.6 +/- 2 %. For long contraction pulses at very low frequencies: (1) there was practically no change in R during contraction, which implies that these changes are due to cellular membrane or intracellular effects with the extra cellular water component not participating, and (2) in post contraction stage there were no morphological changes which means that drifts in R can only be due to physiological changes. Following Shiffman et al. (2003) we measured impedance changes of R and X during a triangular shaped pulse of force generated via isometric forearm muscle contraction at 50 kHz. We measured these changes in 3-100 kHz frequency range for a stair case pulse of forces and the results showed that they are frequency

  5. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  6. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  7. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  8. Impedance Scaling for Small Angle Transitions

    SciTech Connect

    Stupakov, G.; Bane, Karl; Zagorodnov, I.; /DESY

    2010-10-27

    Based on the parabolic equation approach to Maxwell's equations we have derived scaling properties of the high frequency impedance/short bunch wakefields of structures. For the special case of small angle transitions we have shown the scaling properties are valid for all frequencies. Using these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings. We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and found that the scaling works well. In modern ring-based light sources one often finds insertion devices having extremely small vertical apertures (on the order of millimeters) to allow for maximal undulator fields reaching the beam. Such insertion devices require that there be beam pipe transitions from these small apertures to the larger cross-sections (normally on the order of centimeters) found in the rest of the ring. The fact that there may be many such transitions, and that these transitions introduce beam pipe discontinuities very close to the beam path, means that their impedance will be large and, in fact, may dominate the impedance budget of the entire ring. To reduce their impact on impedance, the transitions are normally tapered gradually over a long distance. The accurate calculation of the impedance or wakefield of these long transitions, which are typically 3D objects (i.e. they do not have cylindrical symmetry), can be quite a challenging numerical task. In this report we present a method of obtaining the impedance of a long, small angle transition from the calculation of a scaled, shorter one. Normally, the actual calculation is obtained from a time domain simulation of the wakefield in the structure, where the impedance can be obtained by performing a Fourier transform. We shall see that the scaled calculation reduces the computer time and memory requirements

  9. CO 2 sensor studied by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wierzbicka, M.; Pasierb, P.; Rekas, M.

    2007-01-01

    Electrochemical impedance spectroscopy (EIS) was applied to study the effect of heat treatment conditions (temperature and time of heating) on electrical properties of electrochemical gas sensors. The use of EIS method allowed observing the effect of undesirable chemical reaction in electrochemical cells (sensors) by the detection of change of electrical properties at the very early stage of such reaction. Addition of barium carbonate to lithium carbonate resulted in long-term stabilization of electrical properties of the system carbonate phase solid electrolyte. It was found that impedance spectra of the cell: carbonate|Au|YSZ|Pt with inner Au electrode provided the most useful information about reactivity progress between both phases.

  10. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  11. Immunomodulatory dietary polysaccharides: a systematic review of the literature

    PubMed Central

    2010-01-01

    Background A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. Methods Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. Results We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. Conclusions Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor mushroom improved survival and

  12. Base hydrolysis of phosphodiester bonds in pneumococcal polysaccharides.

    PubMed

    Pujar, Narahari S; Huang, Ngan Fong; Daniels, Christopher L; Dieter, Lance; Gayton, Marshall G; Lee, Ann L

    2004-09-01

    A comprehensive study of the base hydrolysis of all phosphodiester bond-containing capsular polysaccharides of the 23-valent pneumococcal vaccine is described here. Capsular polysaccharides from serotypes 6B, 10A, 17F, 19A, 19F, and 20 contain a phosphodiester bond that connects the repeating units in these polysaccharides (also referred to as backbone phosphodiester bonds), and polysaccharides from serotypes 11A, 15B, 18C, and 23F contain a phosphodiester bond that links a side chain to their repeating units. Molecular weight measurements of the polysaccharides, using high performance size exclusion chromatography with tandem multiangle laser light scattering and refractive index detection, was used to evaluate the kinetics of hydrolysis. The measurement of molecular weight provides a high degree of sensitivity in the case of small extents of reaction, thus allowing reliable measurements of the kinetics over short times. Pseudo-first-order rate constants for these polysaccharides were estimated using a simple model that accounts for the polydispersity of the starting sample. It was found that the relative order of backbone phosphodiester bond instability due to base hydrolysis was 19A > 10A > 19F > 6B > 17F, 20. Degradation of side-chain phosphodiester bonds was not observed, although the high degree of sensitivity in measurements is lost in this case, due to the low contribution of the side chains to the total polysaccharide molecular weight. In comparison with literature data on pneumococcal polysaccharide 6A, 19A was found to be the more labile, and hence appears to be the most labile pneumococcal polysaccharide studied to date. The rate of hydrolysis increased at higher pH and in the presence of divalent cation, but the extent was lower than expected based on similar data on RNA. Finally, the differences in the phosphodiester bond stabilities were analyzed by considering stereochemical factors in these polysaccharides. These results also provide a framework

  13. Solomonseal Polysaccharide and Sulfated Codonopsis pilosula Polysaccharide Synergistically Resist Newcastle Disease Virus

    PubMed Central

    Liu, Cui; Chen, Jin; Li, Entao; Fan, Qiang; Wang, Deyun; Zhang, Cunshuai; Li, Peng; Li, Xiuping; Chen, Xingying; Qiu, Shulei; Gao, Zhenzhen; Li, Hongquan; Hu, Yuanliang

    2015-01-01

    Five combinations of three ratios (PS9-sPS1, PS7-sPS3 and PS6-sPS4) were prepared with polysaccharide (PS) and sulfated polysaccharide (sPS). The antiviral activities of these compounds were subsequently compared in vitro using the MTT assay, observation of the virus structure and immunofluorescence. The results demonstrated that SP9-sCP1, CP7-sCA3, EP7-sAP3, CA9-sEP1 and EP7-sCA3 presented higher activities, and SP9-sCP1 displayed the highest virus inhibition rate and clearly killed the virus and inhibited viral antigen expression. In an in vivo test, 28-day-old chickens were challenged with Newcastle disease virus (NDV) and were administered the five drug combinations. On day 14 after the challenge, the morbidity, mortality and cure rate in each group were calculated. The results indicated that SP9-sCP1 presented the lowest morbidity and mortality and the highest cure rate. These results indicate that Solomonseal polysaccharide and sulfated Codonopsis pilosula polysaccharide synergistically resist NDV. Moreover, SP9-sCP1 had the highest efficacy and may be used as a new antiviral drug. PMID:25692886

  14. Impedance spectroscopy of changes in skin-electrode impedance induced by motion.

    PubMed

    Cömert, Alper; Hyttinen, Jari

    2014-11-18

    The motion artifact is an ever-present challenge in the mobile monitoring of surface potentials. Skin-electrode impedance is investigated as an input parameter to detect the motion artifact and to reduce it using various methods. However, the impact of the used impedance measurement frequency on the relationship between measured impedance and the motion artifact and the relationship between the impedance and the motion is not well understood. In this paper, for the first time, we present the simultaneous measurement of impedance at 8 current frequencies during the application of controlled motion to the electrode at monitored electrode mounting force. Three interwoven frequency groupings are used to obtain a spectrum of 24 frequencies between 25 Hz and 1 MHz for ten volunteers. Consequently, the surface potential and one channel of ECG are measured from the electrode subject to controlled motion. The signals are then analyzed in time and frequency domain. The results show that the different frequencies of impedance measurements do not reflect the motion in the same manner. The best correlation between impedance and the applied motion was seen at impedance current frequencies above 17 kHz. For resistance this relationship existed for frequencies above 11 kHz, Reactance did not show good time domain correlation, but had good frequency domain correlation at frequencies higher than 42 kHz. Overall, we found that the impedance signal correlated well with the applied motion; however impedance had lower correlation to actual motion artifact signal. Based on our results, we can conclude that the current frequency used for the impedance measurement has a great effect on the relationship of the measurement to the applied motion and its relationship with the resulting motion artifact. Therefore, when flat textile contact biopotential electrodes are used, frequencies higher than 17 kHz are best suited for impedance measurements intended for the estimation of electrode

  15. Rheology and characteristics of sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata.

    PubMed

    Shao, Ping; Qin, Minpu; Han, Longfei; Sun, Peilong

    2014-11-26

    The rheological characteristics of polysaccharides which were extracted and separated from Ulva fasciata (UFP) were investigated in aqueous solutions under conditions of concentration, temperature, solution pH and salt concentrations. It was described by the power-law model with a consistency index (k) and a flow behavior index (n). The rheology results showed UFP exhibited as a shear-thickening fluid and a possible mechanism was proposed to explain this phenomenon that might be the collapse of UFP necklace-type structures. UFP characteristics were evaluated by determining the chemical analysis and zeta potential. The findings indicated UFP may consist of partially ulvan, as the results were in accordance with the ulvan structure. Additionally, a rod-climbing effect and cold-set gelation were observed in the UFP semidilute solution. Therefore, the cold-set gelling properties and unique shear-thickening fluid properties in this work could be valuable for the exploration of U. fasciata as a new source of water-soluble gelling polysaccharides.

  16. Explicit expressions of impedances and wake functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2010-10-01

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  17. Explicit Expressions of Impedances and Wake Functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2012-06-11

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  18. ELECTRIC IMPEDANCE OF NITELLA DURING ACTIVITY

    PubMed Central

    Cole, Kenneth S.; Curtis, Howard J.

    1938-01-01

    The changes in the alternating current impedance which occur during activity of cells of the fresh water plant Nitella have been measured with the current flow normal to the cell axis, at eight frequencies from 0.05 to 20 kilocycles per second, and with simultaneous records of the action potential under the impedance electrodes. At each frequency the resting cell was balanced in a Wheatstone bridge with a cathode ray oscillograph, and after electrical stimulation at one end of the cell, the changes in the complex impedance were determined from the bridge unbalance recorded by motion pictures of the oscillograph figure. An extension of the previous technique of interpretation of the transverse impedance shows that the normal membrane capacity of 0.9 µf./cm.2 decreases about 15 per cent without change of phase angle, while the membrane resistance decreases from 105 ohm cm.2 to about 500 ohm cm.2 during the passage of the excitation wave. This membrane change occurs during the latter part of the rising phase of the action potential, and it is shown that the membrane electromotive force remains unchanged until nearly the same time. The part of the action potential preceding these membrane changes is probably a passive fall of potential ahead of a partial short circuit. PMID:19873091

  19. Electrical Impedance Tomography Technology (EITT) Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  20. Continuous differential impedance spectroscopy of single cells

    PubMed Central

    Nevill, J. Tanner; Lee, Luke P.; Morgan, Hywel

    2009-01-01

    A device for continuous differential impedance analysis of single cells held by a hydrodynamic cell trapping is presented. Measurements are accomplished by recording the current from two closely-situated electrode pairs, one empty (reference) and one containing a cell. We demonstrate time-dependent measurement of single cell impedance produced in response to dynamic chemical perturbations. First, the system is used to assay the response of HeLa cells to the effects of the surfactant Tween, which reduces the impedance of the trapped cells in a concentration dependent way and is interpreted as gradual lysis of the cell membrane. Second, the effects of the bacterial pore-forming toxin, Streptolysin-O are measured: a transient exponential decay in the impedance is recorded as the cell membrane becomes increasingly permeable. The decay time constant is inversely proportional to toxin concentration (482, 150, and 30 s for 0.1, 1, and 10 kU/ml, respectively). Electronic supplementary material The online version of this article (doi:10.1007/s10404-009-0534-2) contains supplementary material, which is available to authorized users. PMID:20927185

  1. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A.; Mansure, Arthur J.

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  2. High Impedance Comparator for Monitoring Water Resistivity.

    ERIC Educational Resources Information Center

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  3. Experimental requirements for measuring pneumatochemical impedances

    NASA Astrophysics Data System (ADS)

    Millet, P.; Decaux, C.; Ngameni, R.; Guymont, M.

    2007-12-01

    Hydrogen storage remains a bottleneck process on the way to the hydrogen economy. For practical applications, metal hydride systems offer interesting features, in particular, the possibility of reversibly storing large amounts of hydrogen at low or moderate pressure. However, they still suffer from unfavorable specific energy, with mass-fraction values ranging from 0 up to 5wt% whereas transport applications require 6wt% and more. Besides this, higher sorption/desorption kinetics and better chemical stability over long-term cycling are also needed. This is why many studies are carried out in the research community on hydride-forming systems, to develop new materials meeting these requirements. Development and optimization of metal hydride reactors require coupled thermodynamic and kinetic characterization of metal-hydrogen systems. In particular, it is necessary to analyze the kinetics in terms of reaction mechanism, in order to identify the different steps of commonly observed multistep reaction paths, and to measure their individual rate parameters. By analyzing hydriding kinetics in the frequency (Fourier) domain, pneumatochemical impedance spectroscopy (PIS) now offers the possibility of measuring experimental impedances and identifying reaction steps. However, measurement of such impedances is indirect and nontrivial. The purpose of this paper is to detail the experimental requirements needed for correctly measuring gas-phase impedance diagrams. In particular, practical conditions of data sampling and data treatment are described. Experimental results obtained with the model LaNi5-H2(g ) system are presented to illustrate the potentialities of PIS analysis.

  4. Prostate Cancer Detection Using Composite Impedance Metric.

    PubMed

    Khan, Shadab; Mahara, Aditya; Hyams, Elias S; Schned, Alan R; Halter, Ryan J

    2016-12-01

    Prostate cancer (PCa) recurrences are often predicted by assessing the status of surgical margins (SM)- positive surgical margins (PSM) increase the chances of biochemical recurrence by 2-4 times which may lead to PCa recurrence. To this end, an electrical impedance acquisition system with a microendoscopic probe was employed in an ex-vivo study of human prostates. This system measures the tissue bioimpedance over a range of frequencies (1 kHz to 1MHz), and computes a number of Composite Impedance Metrics (CIM). A classifier trained using CIM data can be used to classify tissue as benign or cancerous. The system was used to collect the impedance spectra from 14 excised prostates, which were obtained from men undergoing radical prostatectomy, for a total of 23 cancerous and 53 benign measurements. The data revealed statistically significant (p < 0.05) differences in the impedance properties of the benign and tumorous tissues, and among the measurements taken on the apical, base, and lateral surface of the prostate. Further, in the leave-one-patient-out cross validation, a maximum predictive accuracy of 90.79% was achieved by combining high frequency CIM phase data to train a support vector machine classifier with a radial basis function kernel. The observations are consistent with the physiology and morphology of benign and malignant prostate tissue. CIMs were found to be an effective tool in distinguishing benign from cancerous tissues.

  5. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  6. High Impedance Comparator for Monitoring Water Resistivity.

    ERIC Educational Resources Information Center

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  7. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  8. Generalized impedances and wakes in asymmetric structures

    SciTech Connect

    Heifets, S.; Wagner, A.; Zotter, B.

    1998-01-01

    In rotationally structures, the dominant m = 0 longitudinal impedance does not depend on the offsets of either the leading or the trailing particles, while the dominant m = 1 transverse impedance is proportional to the offset of the leading particles, while it is still independent of the offsets of the trailing ones. This behavior is no longer true in rotationally non-symmetric structures, where in general all impedances depend on the offsets of both the leading and the trailing particles. The same behavior is shown by wake functions and wake potentials. The concept of generalized impedances or generalized wake functions must be used to calculate the effect of leading particles on trailing ones with different offsets, each described by two transverse coordinates. This dependence of wake potentials on four additional parameters (two for each offset) would make their use very cumbersome. Fortunately, it was found that the transverse wake potentials can be separated into superpositions of dipolar components, which are proportional to the offset of the leading bunch, and quadrupolar components, which are proportional to the offset of the trailing particles. Higher multipole components are much smaller, and can be neglected for most structures without rotational symmetry. In this report, the authors derive analytical expressions for these multipolar components, which permits estimates of the size of the neglected terms. In particular, when structures have one or two transverse symmetry planes, the expressions simplify and explain the behavior of wake potentials which had been computed for rotationally non-symmetric structures.

  9. Electrical impedance spectroscopy and diagnosis of tendinitis.

    PubMed

    Yoon, Kisung; Lee, Kyeong Woo; Kim, Sang Beom; Han, Tai Ryoon; Jung, Dong Keun; Roh, Mee Sook; Lee, Jong Hwa

    2010-02-01

    There have been a number of studies that investigate the usefulness of bioelectric signals in diagnoses and treatment in the medical field. Tendinitis is a musculoskeletal disorder with a very high rate of occurrence. This study attempts to examine whether electrical impedance spectroscopy (EIS) can detect pathological changes in a tendon and find the exact location of the lesion. Experimental tendinitis was induced by injecting collagenase into one side of the patellar tendons in rabbits, while the other side was used as the control. After measuring the impedance in the tendinitis and intact tendon tissue, the dissipation factor was computed. The real component of impedance and the dissipation factor turned out to be lower in tendinitis than in intact tissues. Moreover, the tendinitis dissipation factor spectrum showed a clear difference from that of the intact tendon, indicating its usefulness as a tool for detecting the location of the lesion. Pathologic findings from the tissues that were obtained after measuring the impedance confirmed the presence of characteristics of tendinitis. In conclusion, EIS is a useful method for diagnosing tendinitis and detecting the lesion location in invasive treatment.

  10. Impedance matching between ventricle and load.

    PubMed

    Piene, H

    1984-01-01

    Impedance matching in the cardiovascular system is discussed in light of two models of ventricle and load: a Thevenin equivalent consisting of a hydromotive pressure source and an internal, source resistance and compliance in parallel; and a time-varying compliance filled from a constant pressure source and ejecting into a load of three components, a central resistor, a compliance, and a peripheral resistance. According to the Thevenin analog, the energy source and the load are matched when the load resistance is T/t times the internal source resistance (T is total cycle length, t is systolic time interval). Both from this model and from the variable compliance model it appears that optimum matching between source and load depends on the compliance of the Windkessel, as low compliance shifts the matching load resistance to a low value. Animal experiments (isolated cat hearts) indicated that both left and right ventricles at normal loads work close to their maxima of output hydraulic power, and, according to experiments in the right ventricle, maximum power output is related to load resistance and compliance as predicted by the above models. From an experimentally determined relationship among instantaneous ventricular pressure and volume (right ventricle of isolated cat hearts), an optimum load impedance was calculated on the basis of the assumption that the ratio between stroke work and static, potential energy developed in the ventricular cavity is maximum. The optimum load impedance found by this procedure closely resembles the normal input impedance of the cat lung vessel bed.

  11. Energy-storage of a prescribed impedance

    NASA Technical Reports Server (NTRS)

    Smith, W. E.

    1969-01-01

    General mathematical expression found for energy storage shows that for linear, passive networks there is a minimum possible energy storage corresponding to a prescribed impedance. The electromagnetic energy storage is determined at different excitation frequencies through analysis of the networks terminal and reactance characteristics.

  12. Esophageal function testing: beyond manometry and impedance.

    PubMed

    Mittal, Ravinder K

    2014-10-01

    Manometry and impedance provide only surrogate information regarding longitudinal wall function and are focused on contractile amplitude and lumen content. Ultrasound imaging provides a unique perspective of esophageal function by providing important information regarding longitudinal muscle contraction. Laser Doppler assessment of perfusion may be an important complementary tool to assess abnormal wall blood perfusion as a possible mechanism of pain. Published by Elsevier Inc.

  13. Landau damping with high frequency impedance

    SciTech Connect

    Blaskiewicz,M.

    2009-05-04

    Coupled bunch longitudinal stability in the presence of high frequency impedances is considered. A frequency domain technique is developed and compared with simulations. The frequency domain technique allows for absolute stability tests and is applied to the problem of longitudinal stability in RHIC with the new 56 MHz RF system.

  14. Real-time impedance analysis of host cell response to meningococcal infection.

    PubMed

    Slanina, H; König, A; Claus, H; Frosch, M; Schubert-Unkmeir, A

    2011-01-01

    Measuring cell proliferation and cell death during bacterial infection involves performing end-point assays that represent the response at a single time point. A new technology from Roche Applied Science and ACEA Biosciences allows continuous monitoring of cells in real-time using specialized cell culture microplates containing micro-electrodes. The xCELLigence system enables continuous measurement and quantification of cell adhesion, proliferation, spreading, cell death and detachment, thus creating a picture of cell function during bacterial infection. Furthermore, lag and log phases can be determined to estimate optimal times to infect cells. In this study we used this system to provide valuable insights into cell function in response to several virulence factors of the meningitis causing pathogen Neisseria meningitidis, including the lipopolysaccharide (LPS), the polysaccharide capsule and the outer membrane protein Opc. We observed that prolonged time of infection with pathogenic Neisseria strains led to morphological changes including cell rounding and loss of cell-cell contact, thus resulting in changed electrical impedance as monitored in real-time. Furthermore, cell function in response to 14 strains of apathogenic Neisseria spp. (N. lactamica and N. mucosa) was analyzed. In contrast, infection with apathogenic N. lactamica isolates did not change electrical impedance monitored for 48 h. Together our data show that this system can be used as a rapid monitoring tool for cellular function in response to bacterial infection and combines high data acquisition rates with ease of handling.

  15. (Lipo)polysaccharide interactions of antimicrobial peptides.

    PubMed

    Schmidtchen, Artur; Malmsten, Martin

    2015-07-01

    Due to rapidly increasing resistance development against conventional antibiotics, as well as problems associated with diseases either triggered or deteriorated by infection, antimicrobial and anti-inflammatory peptides have attracted considerable interest during the last few years. While there is an emerging understanding of the direct antimicrobial function of such peptides through bacterial membrane destabilization, the mechanisms of their anti-inflammatory function are less clear. We here summarize some recent results obtained from our own research on anti-inflammatory peptides, with focus on peptide-(lipo)polysaccharide interactions.

  16. Gut microbiota, host health, and polysaccharides.

    PubMed

    Xu, Xiaofei; Xu, Pingping; Ma, Chungwah; Tang, Jian; Zhang, Xuewu

    2013-01-01

    The intestinal microbiota is a complicated ecosystem that influences many aspects of host physiology (i.e. diet, disease development, drug metabolism, and regulation of the immune system). It also exhibits spatial patterning and temporal dynamics. In this review, the effects of internal and external (environmental) factors on intestinal microbiota are discussed. We describe the roles of the gut microbiota in maintaining intestinal and immune system homeostasis and the relationship between gut microbiota and diseases. In particular, the contributions of polysaccharides, as the most abundant diet components in intestinal microbiota and host health are presented. Finally, perspectives for research avenues relating to gut microbiota are also discussed.

  17. Methods of saccharification of polysaccharides in plants

    DOEpatents

    Howard, John; Fake, Gina

    2014-04-29

    Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.

  18. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha

    PubMed Central

    Schepetkin, Igor A.; Xie, Gang; Kirpotina, Liliya N.; Klein, Robyn A.; Jutila, Mark A.; Quinn, Mark T.

    2008-01-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average Mr of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor α, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor κB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant. PMID:18597716

  19. Structural modification of polysaccharides: A biochemical-genetic approach

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  20. A novel capsular polysaccharide from Rhizobium rubi strain DSM 30149.

    PubMed

    De Castro, Cristina; Fregolino, Eleonora; Gargiulo, Valentina; Lanzetta, Rosa; Parrilli, Michelangelo

    2008-07-07

    Rhizobium rubi, strain DSM 30149, is a Gram negative phytopathogenic bacterium which produces a linear polysaccharide with the following repeating unit: This new structure was determined by spectroscopical and chemical methods. It presents similar lipophilic features reported for another strain of R. rubi. These contrast with features already known for capsular polysaccharide species from symbiontic members of the Rhizobiaceae family, namely highly anionic polymers.

  1. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha.

    PubMed

    Schepetkin, Igor A; Xie, Gang; Kirpotina, Liliya N; Klein, Robyn A; Jutila, Mark A; Quinn, Mark T

    2008-10-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average M(r) of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor alpha, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor kappaB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant.

  2. In vitro antioxidant activity of polysaccharide from Gardenia jasminoides ellis

    USGS Publications Warehouse

    Fan, Y.; Ge, Z.; Luo, A.

    2011-01-01

    A water-soluble polysaccharide, GP, was isolated from Gardenia jasminoides Ellis through hot water extraction followed by ethanol precipitation. The in vitro free radicals scavenging tests exhibited that GP has significant scavenging abilities especially for ABTS, DPPH, and hydroxyl radicals, which suggests that the polysaccharide GP is a novel antioxidant. ?? 2011 Academic Journals.

  3. Anti-viral activity of red microalgal polysaccharides against retroviruses

    PubMed Central

    Talyshinsky, Marina M; Souprun, Yelena Y; Huleihel, Mahmoud M

    2002-01-01

    Red microalgal polysaccharides significantly inhibited the production of retroviruses (murine leukemia virus- MuLV) and cell transformation by murine sarcoma virus(MuSV-124) in cell culture. The most effective inhibitory effect of these polysaccharides against both cell transformation and virus production was obtained when the polysaccharide was added 2 h before or at the time of infection. Although, addition of the polysaccharide post-infection significantly reduced the number of transformed cells, but its effect was less marked than that obtained when the polysaccharide was added before or at the time of infection.The finding that the inhibition of cell transformation by MuSV-124 was reversible after removal of the polysaccharide suggested that microalgal polysaccharides inhibited a late step after provirus integration into the host genome. In conclusion, our findings could support the possibility that the polysaccharide may affect early steps in the virus replication cycle, such as virus absorption into the host cells, in addition to its effect on a late step after provirus integration. PMID:12204093

  4. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; hide

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  5. Wellbore fluid

    SciTech Connect

    Dorsey, D.L.; Corley, W.T.

    1983-12-27

    A clay-based or clay-free aqueous thixotropic wellbore fluid having improved fluid loss control, desirable flow characteristics and low shale sensitivity for use in drilling a well comprising water or a brine base including an effective amount of an additive comprising a crosslinked potato starch, a heteropolysaccharide derived from a carbohydrate by bacteria of the genus Xanthomonas, and hydroxyethylcellulose or carboxymethylcellulose, is disclosed. This drilling fluid has been found to be nondamaging to the formations through which the well is drilled.

  6. Fluid inflation

    SciTech Connect

    Chen, X.; Firouzjahi, H.; Namjoo, M.H.; Sasaki, M. E-mail: firouz@ipm.ir E-mail: misao@yukawa.kyoto-u.ac.jp

    2013-09-01

    In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

  7. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  8. Effect of diffusion on impedance measurements in a hydrodynamic flow focusing sensor.

    PubMed

    Nasir, Mansoor; Price, Dorielle T; Shriver-Lake, Lisa C; Ligler, Frances

    2010-10-21

    This paper investigated the effects of diffusion between non-conductive sheath and conductive sample fluids in an impedance-based biosensor. Impedance measurements were made with 2- and 4-electrode configurations. The 4-electrode design offers the advantage of impedance measurements at low frequencies (<1 kHz) without the deleterious effects of double layer impedance which are present in the 2-electrode design. Hydrodynamic flow focusing was achieved with a modified T-junction design with a smaller cross-section for the sample channel than for the focusing channel, which resulted in 2D focusing of the sample stream with just one sheath stream. By choosing a non-conductive sheath fluid and a conductive sample fluid, the electric field was confined to the focused stream. In order to utilize this system for biosensing applications, we characterized it for electrical and flow parameters. In particular, we investigated the effects of varying flow velocities and flow-rate ratios on the focused stream. Increasing flow-rate ratios reduced the cross-sectional area of the focused streams as was verified by finite element modeling and confocal microscopy. Antibody mediated binding of Escherichia coli to the electrode surface caused an increase in solution resistance at low frequencies. The results also showed that the diffusion mass transport at the interface of the two streams limited the benefits of increased flow focusing. Increasing flow velocities could be used to offset the diffusion effect. To optimize detection sensitivity, flow parameters and mass transport must be considered in conjunction, with the goal of reducing diffusion of conducting species out of the focused stream while simultaneously minimizing its cross-sectional area.

  9. Ionic liquid-assisted electrospray ionization of polysaccharides.

    PubMed

    Chang, Yu-Ling; Lee, Yuan-Chun; Yang, Wen-Bin; Chen, Chung-Hsuan

    2011-04-01

    In this work, we give the report of significant detection sensitivity improvement of electrospray ionization (ESI) mass spectra of polysaccharides by adding various ionic liquid compounds into samples. Mass spectra obtained were greatly simplified and appeared to be similar to spectra from matrix-assisted laser desorption/ionization due to the narrow charge number distribution. Mass spectra of polysaccharides with the attachment of either anion or cation of ionic liquid compounds were observed. No protonated or deprotonated polysaccharide ions were detected when ionic liquid compounds were added into samples. Little alkali-attached polysaccharide ions were observed. Ionic liquid-assisted ESI (ILA-ESI) mass spectrometry has significantly improved the detection sensitivity of large neutral polysaccharide compounds. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Methods for degrading or converting plant cell wall polysaccharides

    DOEpatents

    Berka, Randy; Cherry, Joel

    2008-08-19

    The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

  11. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    PubMed Central

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  12. Characterization of polysaccharides from Ganoderma spp. using saccharide mapping.

    PubMed

    Wu, Ding-Tao; Xie, Jing; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2013-09-12

    Polysaccharides from Ganoderma spp. and their adulterants were firstly investigated and compared using saccharide mapping, enzymatic (endo-1,3-β-D-glucanase and pectinase) digestion followed by polysaccharide analysis using carbohydrate gel electrophoresis analysis. The results showed that both 1,3-β-D-glucosidic and 1,4-α-D-galactosiduronic linkages were existed in Lingzhi (Ganoderma lucidum and Ganoderma sinense), and the similarity of polysaccharides from G. lucidum and G. sinense was high, which may contribute to rational use of Lingzhi. Different species of Ganoderma and their adulterants can be differentiated based on the saccharide mapping, which is helpful to well understand the structural characters of polysaccharides from different species of Ganoderma and to improve the quality control of polysaccharides in Lingzhi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal.

    PubMed

    Pustjens, Annemieke M; Schols, Henk A; Kabel, Mirjam A; Gruppen, Harry

    2013-11-06

    To enable structural characteristics of individual cell wall polysaccharides from rapeseed (Brassica napus) meal (RSM) to be studied, polysaccharide fractions were sequentially extracted. Fractions were analysed for their carbohydrate (linkage) composition and polysaccharide structures were also studied by enzymatic fingerprinting. The RSM fractions analysed contained pectic polysaccharides: homogalacturonan in which 60% of the galacturonic acid residues are methyl-esterified, arabinan branched at the O-2 position and arabinogalactan mainly type II. This differs from characteristics previously reported for Brassica campestris meal, another rapeseed cultivar. Also, in the alkali extracts hemicelluloses were analysed as xyloglucan both of the XXGG- and XXXG-type decorated with galactosyl, fucosyl and arabinosyl residues, and as xylan with O-methyl-uronic acid attached. The final residue after extraction still contained xyloglucan and remaining (pectic) polysaccharides next to cellulose, showing that the cell wall matrix of RSM is very strongly interconnected.

  14. Workover fluid

    SciTech Connect

    Shell, F. J.

    1985-12-17

    The high temperature water loss property of alkaline well completion and well workover fluids is improved by the addition of an effective amount of a naphthalene sulfonate formaldehyde condensate in the form of its monovalent or bivalent metal salts.

  15. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; hide

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  16. Electrorheological fluids

    SciTech Connect

    Halsey, T.C.; Martin, J.E.

    1993-10-01

    An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.

  17. Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system.

    PubMed

    Süselbeck, T; Thielecke, H; Köchlin, J; Cho, S; Weinschenk, I; Metz, J; Borggrefe, M; Haase, K K

    2005-09-01

    Newer techniques are required to identify atherosclerotic lesions that are prone to rupture. Electric impedance spectroscopy (EIS) can characterize biological tissues by measuring the electrical impedance over a frequency range. We tested a newly designed intravascular impedance catheter (IC) by measuring the impedance of different stages of atherosclerosis induced in an animal rabbit model. Six female New Zealand White rabbits were fed for 17 weeks with a 5% cholesterol-enriched diet to induce early forms of atherosclerotic plaques. All aortas were prepared from the aortic arch to the renal arteries and segments of 5-10 mm were marked by ink spots. A balloon catheter system with an integrated polyimide-based microelectrode structure was introduced into the aorta and the impedance was measured at each spot by using an impedance analyzer. The impedance was measured at frequencies of 1 kHz and 10 kHz and compared with the corresponding histomorphometric data of each aortic segment.Forty-four aortic segments without plaques and 48 segments with evolving atherosclerotic lesions could be exactly matched by the histomorphometric analysis. In normal aortic segments (P0) the change of the magnitude of impedance at 1 kHz and at 10 kHz (|Z|(1 kHz) - |Z|(10 kHz), = ICF) was 208.5 +/- 357.6 Omega. In the area of aortic segments with a plaque smaller than that of the aortic wall diameter (PI), the ICF was 137.7 +/- 192.8 Omega. (P 0 vs. P I; p = 0.52), whereas in aortic segments with plaque formations larger than the aortic wall (PII) the ICF was significantly lower -22.2 +/- 259.9 Omega. (P0 vs. PII; p = 0.002). Intravascular EIS could be successfully performed by using a newly designed microelectrode integrated onto a conventional coronary balloon catheter. In this experimental animal model atherosclerotic aortic lesions showed significantly higher ICF in comparison to the normal aortic tissue.

  18. Hyperbranched acidic polysaccharide from green tea.

    PubMed

    Yang, Liqun; Fu, Shanshan; Zhu, Xiane; Zhang, Li-Ming; Yang, Yanrui; Yang, Xiaomin; Liu, Hui

    2010-12-13

    An acidic tea polysaccharide (ALTPS), isolated from green tea ( Camellia sinensis ), was characterized as a hyperbranched glycoprotein containing the acidic heteropolysaccharide chains and the protein residues from the results of UV-vis, FTIR, one- and two-dimensional NMR, GC, GC-MS, and amino acid analyses. Solution properties of ALTPS were investigated by static and dynamic light scattering analyses and viscometry. The results indicated that the viscosity behavior of ALTPS exhibited a typical polyelectrolyte effect in distilled water, which may be avoided by adding salts. The low intrinsic viscosity of ALTPS in the solutions (8-15 mL/g) is attributed to its hyperbranched structure. By application of the polymer solution theory, it was revealed that ALTPS was present in a sphere-like conformation in the solutions as a result of the hyperbranched structure. The TEM image further confirmed that ALTPS existed in a spherical conformation in aqueous NaCl solution. Glucose was absorbed by ALTPS, which may be one of blood glucose lowering mechanisms of tea polysaccharides.

  19. Functional polysaccharides as edible coatings for cheese.

    PubMed

    Cerqueira, Miguel A; Lima, Alvaro M; Souza, Bartolomeu W S; Teixeira, José A; Moreira, Renato A; Vicente, António A

    2009-02-25

    The objective of the present study was to apply the polysaccharides from different nontraditional sources for cheese coatings. Chitosan, galactomannan from Gleditsia triacanthos, and agar from Glacilaria birdiae were tested, with different formulations and with the addition of plasticizer and corn oil. The surface properties of the cheese and the wetting capacity of the coatings on the cheese were determined. The three best solutions for each polysaccharide were chosen, further films were cast, and permeability to water vapor, oxygen, and carbon dioxide was determined, along with opacity. The solutions of G. triacanthos (formulation: 1.5% of galactomannan, 2.0% of glycerol, and 0.5% of oil) presented the best properties to coat the cheese: -38.76 mN x m(-1) for wettability; 3.24 x 10(-11) (g x (m x s x Pa)(-1)) for water vapor permeability; 0.94 x 10(-15) and 15.35 x 10(-15) (g x m(Pa x s x m(2))(-1)) for oxygen and carbon dioxide permeabilities, respectively; and opacity values of 5.27%. The O(2) consumption and CO(2) production rates of the cheese with and without coating were evaluated, showing a decrease of the respiration rates when the coating was applied. The uncoated cheese had an extensive mold growth at the surface when compared with the coated cheese. The results show that these coatings can be applied as an alternative to synthetic coatings.

  20. Production of Extracellular Polysaccharide by Zoogloea ramigera

    PubMed Central

    Norberg, Anders B.; Enfors, Sven-Olof

    1982-01-01

    In batch cultures of Zoogloea ramigera the maximum rate of exopolysaccharide synthesis occurred in a partly growth-linked process. The exopolysaccharide was attached to the cells as a capsule. The capsules were released from the cell walls after 150 h of cultivation, which caused the fermentation broth to be highly viscous. Ultrasonication could be used to release capsular polysaccharide from the microbial cell walls. Treatment performed after 48 to 66 h of cultivation revealed exopolysaccharide concentration and apparent viscosity values in accordance with values of untreated samples withdrawn after 161 h of cultivation. The yield coefficient of exopolysaccharide on the basis of consumed glucose was in the range of 55 to 60% for batch cultivations with an initial glucose concentration of 25 g liter−1. An exopolysaccharide concentration of up to 38 g liter−1 could be attained if glucose, nitrogen, and growth factors were fed into the batch culture. The oxygen consumption rate in batch fermentations reached 25 mmol of O2 liter−1 h−1 during the exopolysaccharide synthesis phase and then decreased to values below 5 mmol of O2 liter−1 h−1 during the release phase. The fermentation broth showed pseudoplastic flow behavior, and the polysaccharide was not degraded when growth had ceased. Images PMID:16346138

  1. Production of Extracellular Polysaccharide by Zoogloea ramigera.

    PubMed

    Norberg, A B; Enfors, S O

    1982-11-01

    In batch cultures of Zoogloea ramigera the maximum rate of exopolysaccharide synthesis occurred in a partly growth-linked process. The exopolysaccharide was attached to the cells as a capsule. The capsules were released from the cell walls after 150 h of cultivation, which caused the fermentation broth to be highly viscous. Ultrasonication could be used to release capsular polysaccharide from the microbial cell walls. Treatment performed after 48 to 66 h of cultivation revealed exopolysaccharide concentration and apparent viscosity values in accordance with values of untreated samples withdrawn after 161 h of cultivation. The yield coefficient of exopolysaccharide on the basis of consumed glucose was in the range of 55 to 60% for batch cultivations with an initial glucose concentration of 25 g liter. An exopolysaccharide concentration of up to 38 g liter could be attained if glucose, nitrogen, and growth factors were fed into the batch culture. The oxygen consumption rate in batch fermentations reached 25 mmol of O(2) liter h during the exopolysaccharide synthesis phase and then decreased to values below 5 mmol of O(2) liter h during the release phase. The fermentation broth showed pseudoplastic flow behavior, and the polysaccharide was not degraded when growth had ceased.

  2. Polysaccharide based edible coating on sapota fruit

    NASA Astrophysics Data System (ADS)

    Menezes, Joslin; Athmaselvi, K. A.

    2016-10-01

    Sapota fruits are highly perishable and have short shelf life at the ambient conditions. The edible coatings have been used on different agricultural products in order to extend their post harvest life. In the present study, the polysaccharide based edible coating made up of sodium alginate and pectin (2%) was studied on the shelf life of sapota fruits. The coating of the fruits is done by dipping method with two dipping time (2 and 4 min). The both control and coated sapota fruits were stored at refrigerated temperature (4±1°C). The physico-chemical analysis including acidity, total soluble solids, ascorbic acid, pH, weight loss, colour and firmness were measured on 1, 8, 15, 23 and 30th day of storage. There was significant difference (p≤0.05) in these physico-chemical parameters between control and coated sapota fruits with 2 and 4 min dipping time. The sensory analysis of control and coated sapota fruits showed that, the polysaccharide coating with 2 minutes dipping time was effective in maintaining the organoleptic properties of the fruits.

  3. Structural characterization of polysaccharides from bamboo

    NASA Astrophysics Data System (ADS)

    Kamil, Ruzaimah Nik Mohamad; Yusuf, Nur'aini Raman; Yunus, Normawati M.; Yusup, Suzana

    2014-10-01

    The alkaline and water soluble polysaccharides were isolate by sequential extractions with distilled water, 60% ethanol containing 1%, 5% and 8% NaOH. The samples were prepared at 60 °C for 3 h from local bamboo. The functional group of the sample were examined using FTIR analysis. The most precipitate obtained is from using 60% ethanol containing 8% NaOH with yield of 2.6%. The former 3 residues isolated by sequential extractions with distilled water, 60% ethanol containing 1% and 5% NaOH are barely visible after filtering with cellulose filter paper. The FTIR result showed that the water-soluble polysaccharides consisted mainly of OH group, CH group, CO indicates the carbohydrate and sugar chain. The sample weight loss was slightly decreased with increasing of temperature.

  4. Nanoengineering of vaccines using natural polysaccharides.

    PubMed

    Cordeiro, Ana Sara; Alonso, María José; de la Fuente, María

    2015-11-01

    Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity. The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers.

  5. Organized polysaccharide fibers as stable drug carriers

    PubMed Central

    Janaswamy, Srinivas; Gill, Kristin L.; Campanella, Osvaldo H.; Pinal, Rodolfo

    2013-01-01

    Many challenges arise during the development of new drug carrier systems, and paramount among them are safety, solubility and controlled release requirements. Although synthetic polymers are effective, the possibility of side effects imposes restrictions on their acceptable use and dose limits. Thus, a new drug carrier system that is safe to handle and free from side effects is very much in need and food grade polysaccharides stand tall as worthy alternatives. Herein, we demonstrate for the first time the feasibility of sodium iota-carrageenan fibers and their distinctive water pockets to embed and release a wide variety of drug molecules. Structural analysis has revealed the existence of crystalline network in the fibers even after encapsulating the drug molecules, and iota-carrageenan maintains its characteristic and reproducible double helical structure suggesting that the composites thus produced are reminiscent of cocrystals. The melting properties of iota-carrageenan:drug complexes are distinctly different from those of either drug or iota-carrageenan fiber. The encapsulated drugs are released in a sustained manner from the fiber matrix. Overall, our research provides an elegant opportunity for developing effective drug carriers with stable network toward enhancing and/or controlling bioavailability and extending shelf-life of drug molecules using GRAS excipients, food polysaccharides, that are inexpensive and non–toxic. PMID:23544530

  6. Polysaccharide components from the scape of Musa paradisiaca: main structural features of water-soluble polysaccharide component.

    PubMed

    Anjaneyalu, Y V; Jagadish, R L; Raju, T S

    1997-06-01

    Polysaccharide components present in the pseudo-stem (scape) of M. paradisiaca were purified from acetone powder of the scape by delignification followed by extraction with aqueous solvents into water soluble polysaccharide (WSP), EDTA-soluble polysaccharide (EDTA-SP), alkali-soluble polysaccharide (ASP) and alkali-insoluble polysaccharide (AISP) fractions. Sugar compositional analysis showed that WSP and EDTA-SP contained only D-Glc whereas ASP contained D-Glc, L-Ara and D-Xyl in approximately 1:1:10 ratio, respectively, and AISP contained D-Glc, L-Ara and D-Xyl in approximately 10:1:2 ratio, respectively. WSP was further purified by complexation with iso-amylalcohol and characterized by specific rotation, IR spectroscopy, Iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase and glucoamylase, and methylation linkage analysis, and shown to be a amylopectin type alpha-D-glucan.

  7. Fluid Management System (FMS) fluid systems overview

    NASA Technical Reports Server (NTRS)

    Baird, R. S.

    1990-01-01

    Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.

  8. Acoustic impedance testing for aeroacoustic applications

    NASA Astrophysics Data System (ADS)

    Schultz, Todd

    Accurate acoustic propagation models are required to characterize and subsequently reduce aircraft engine noise. These models ultimately rely on acoustic impedance measurements of candidate materials used in sound-absorbing liners. The standard two-microphone method (TMM) is widely used to estimate acoustic impedance but is limited in frequency range and does not provide uncertainty estimates, which are essential for data quality assessment and model validation. This dissertation presents a systematic framework to estimate uncertainty and extend the frequency range of acoustic impedance testing. Uncertainty estimation for acoustic impedance data using the TMM is made via two methods. The first employs a standard analytical technique based on linear perturbations and provides useful scaling information. The second uses a Monte Carlo technique that permits the propagation of arbitrarily large uncertainties. Both methods are applied to the TMM for simulated data representative of sound-hard and sound-soft acoustic materials. The results indicate that the analytical technique can lead to false conclusions about the magnitude and importance of specific error sources. Furthermore, the uncertainty in acoustic impedance is strongly dependent on the frequency and the uncertainty in the microphone locations. Next, an increased frequency range of acoustic impedance testing is investigated via two methods. The first method reduces the size of the test specimen (from 25.4 mm square to 8.5 mm square) and uses the standard TMM. This method has issues concerning specimen nonuniformity because the small specimens may not be representative of the material. The second method increases the duct cross section and, hence, the required complexity of the sound field propagation model. A comparison among all three methods is conducted for each of the three specimens: two different ceramic tubular specimens and a single degree-of-freedom liner. The results show good agreement between the

  9. Tuning electrode impedance for the electrical recording of biopotentials.

    PubMed

    Fontes, M A; de Beeck, M; Van Hoof, C; Neves, H P

    2010-01-01

    Tuning the electrode impedance through the DC biasing of iridium oxide is presented. Impedance reduction of up to two orders of magnitude was reproducibly observed in 20 microm diameter microelectrodes at a biasing of 1V.

  10. Concentric artificial impedance surface for directional sound beamforming

    NASA Astrophysics Data System (ADS)

    Song, Kyungjun; Anzan-Uz-Zaman, Md.; Kwak, Jun-Hyuk; Jung, Joo-Yun; Kim, Jedo; Hur, Shin

    2017-03-01

    Utilizing acoustic metasurfaces consisting of subwavelength resonant textures, we design an artificial impedance surface by creating a new boundary condition. We demonstrate a circular artificial impedance surface with surface impedance modulation for directional sound beamforming in three-dimensional space. This artificial impedance surface is implemented by revolving two-dimensional Helmholtz resonators with varying internal coiled path. Physically, the textured surface has inductive surface impedance on its inner circular patterns and capacitive surface impedance on its outer circular patterns. Directional receive beamforming can be achieved using an omnidirectional microphone located at the focal point formed by the gradient-impeding surface. In addition, the uniaxial surface impedance patterning inside the circular aperture can be used for steering the direction of the main lobe of the radiation pattern.

  11. Scattering by a groove in an impedance plane

    NASA Technical Reports Server (NTRS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-01-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  12. Scattering by a groove in an impedance plane

    NASA Astrophysics Data System (ADS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-09-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  13. Compressible turbulent channel flow with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with

  14. Polysaccharide Responsiveness Is Not Biased by Prior Pneumococcal-Conjugate Vaccination

    PubMed Central

    Bernth-Jensen, Jens Magnus; Søgaard, Ole Schmeltz

    2013-01-01

    Polysaccharide responsiveness is tested by measuring antibody responses to polysaccharide vaccines to diagnose for humoral immunodeficiency. A common assumption is that this responsiveness is biased by any previous exposure to the polysaccharides in the form of protein-coupled polysaccharide vaccines, such as those used in many childhood vaccination programmes. To examine this assumption, we investigated the effect of protein-coupled polysaccharide vaccination on subsequent polysaccharide responsiveness. HIV-infected adults (n = 47) were vaccinated twice with protein-coupled polysaccharides and six months later with pure polysaccharides. We measured immunoglobulin G responses against three polysaccharides present in only the polysaccharide vaccine (non-memory polysaccharides) and seven recurring polysaccharides (memory polysaccharides). Responsiveness was evaluated according to the consensus guidelines published by the American immunology societies. Impaired responsiveness to non-memory polysaccharides was more frequent than to memory polysaccharides (51% versus 28%, P = 0.015), but the individual polysaccharides did not differ in triggering sufficient responses (74% versus 77%, P = 0.53). Closer analysis revealed important shortcomings of the current evaluation guidelines. The interpreted responseś number and their specificities influenced the likelihood of impaired responsiveness in a complex manor. This influence was propelled by the dichotomous approaches inherent to the American guidelines. We therefore define a novel more robust polysaccharide responsiveness measure, the Z-score, which condenses multiple, uniformly weighted responses into one continuous variable. Using the Z-score, responsiveness to non-memory polysaccharides and memory-polysaccharides were found to correlate (R2 = 0.59, P<0.0001). We found that polysaccharide responsiveness was not biased by prior protein-coupled polysaccharide vaccination in HIV-infected adults. Studies in

  15. Impedance monitoring shows that posture and a meal influence gastro-oesophageal reflux composition and frequency.

    PubMed

    Shay, S S; Lopez, R

    2007-02-01

    Impedance monitoring determines reflux composition as liquid and/or gas, and we assess with impedance the effect of posture and a meal on reflux composition. Twenty-nine gastro-oesophageal reflux disease (GORD) patients and 10 normal volunteers underwent simultaneous impedance, manometry and pH for three 40-min periods, each 20-min upright, 10-min left side and 10-min right side. One period was fasting, and two postprandial. We found that reflux event composition on the right side was liquid-only near exclusively (93%). In contrast, 85% of reflux on the left side and 74% upright was gas-only or liquid and gas (P < 0.001). More gas-only reflux occurred fasting (80%) than postprandial (P < 0.01). Reflux composition was similar in the study groups and two postprandial periods (P > 0.25). After confirming gas reflux suppression on the right side, a pilot study assessed gastric anatomy as a cause. Five achalasia patients had fluid injected into the stomach at endoscopy, and the EG junction was submerged below liquid-only on the right side. We conclude that reflux is nearly always liquid-only on the right side where the EG junction may be below fluid. Reflux fasting is usually gas-only. Different posture and fasting times may (i) explain variations in acid exposure during pH monitoring and (ii) promote or prevent GORD symptoms.

  16. Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1beta mRNA expression in skin of burn wound-treated rats.

    PubMed

    Sui, ZhiFu; Yang, RongYa; Liu, Biao; Gu, TingMin; Zhao, Zhili; Shi, Dongfang; Chang, DongQing

    2010-08-01

    Agaricus blazei polysaccharides were analyzed by GC-MS. Results indicated that the polysaccharides contained glucose (93.87%), mannose (3.54%), and arabinose (2.25%). The compositional analysis was completed by the methylation data. These data indicated that Agaricus blazei polysaccharides are glucans. Compared to model rats, rats fed with Agaricus blazei polysaccharides showed a decrease of ratio of IL-1beta/beta-actin and IL-1beta level in skin of burn wound. Recovery rate of wound skin increased with increasing dose of polysaccharides. The results indicated that Agaricus blazei polysaccharides could be useful in promote burn wound healing.

  17. Multifrequency electrical impedance tomography using spectral constraints.

    PubMed

    Malone, Emma; Sato Dos Santos, Gustavo; Holder, David; Arridge, Simon

    2014-02-01

    Multifrequency electrical impedance tomography (MFEIT) exploits the dependence of tissue impedance on frequency to recover an image of conductivity. MFEIT could provide emergency diagnosis of pathologies such as acute stroke, brain injury and breast cancer. We present a method for performing MFEIT using spectral constraints. Boundary voltage data is employed directly to reconstruct the volume fraction distribution of component tissues using a nonlinear method. Given that the reconstructed parameter is frequency independent, this approach allows for the simultaneous use of all multifrequency data, thus reducing the degrees of freedom of the reconstruction problem. Furthermore, this method allows for the use of frequency difference data in a nonlinear reconstruction algorithm. Results from empirical phantom measurements suggest that our fraction reconstruction method points to a new direction for the development of multifrequency EIT algorithms in the case that the spectral constraints are known, and may provide a unifying framework for static EIT imaging.

  18. Impedance of a beam tube with antechamber

    SciTech Connect

    Barry, W.; Lambertson, G.R.; Voelker, F.

    1986-08-01

    A beam vacuum chamber was proposed to allow synchrotron light to radiate from a circulating electron beam into an antechamber containing photon targets, pumps, etc. To determine the impedance such a geometry would present to the beam, electromagnetic measurements were carried out on a section of chamber using for low frequencies a current-carrying wire and for up to 16 GHz, a resonance perturbation method. Because the response of such a chamber would depend on upstream and downstream restrictions of aperture yet to be determined, the resonance studies were analyzed in some generality. The favorable conclusion of these studies is that the antechamber makes practically no contribution to either the longitudinal or the transverse impedances.

  19. Automatic digital-analog impedance plethysmograph

    NASA Astrophysics Data System (ADS)

    Goy, C. B.; Mauro, K. A.; Yanicelli, L. M.; Parodi, N. F.; Gómez López, M. A.; Herrera, M. C.

    2016-04-01

    Venous occlusion plethysmography (VOP) is a traditional method widely used to assess limb blood circulation. One common mode to record VOP is by means of evaluating limb volume changes using impedance plethysmography (IP). In this paper the design and implementation of an automatic digital-analog impedance plethysmograph (ADAIP) for VOP is presented. The system is tested using precision resistances in order to calculate its repeatability. Then its global performance is assessed by means of VOP recordings on the upper and me lower limb of a healthy volunteer. The obtained repeatability was very high (95%), and the VOP recordings where the expected ones. It can be concluded that the whole system performs well and that it is suitable for automatic VOP recording.

  20. Readout electrode assembly for measuring biological impedance

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Moody, D. L., Jr. (Inventor)

    1976-01-01

    The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes.

  1. Are Patents Impeding Medical Care and Innovation?

    PubMed Central

    Gold, E. Richard; Kaplan, Warren; Orbinski, James; Harland-Logan, Sarah; N-Marandi, Sevil

    2010-01-01

    Background to the debate: Pharmaceutical and medical device manufacturers argue that the current patent system is crucial for stimulating research and development (R&D), leading to new products that improve medical care. The financial return on their investments that is afforded by patent protection, they claim, is an incentive toward innovation and reinvestment into further R&D. But this view has been challenged in recent years. Many commentators argue that patents are stifling biomedical research, for example by preventing researchers from accessing patented materials or methods they need for their studies. Patents have also been blamed for impeding medical care by raising prices of essential medicines, such as antiretroviral drugs, in poor countries. This debate examines whether and how patents are impeding health care and innovation. PMID:20052274

  2. Enhanced Method for Cavity Impedance Calculations

    SciTech Connect

    Frank Marhauser, Robert Rimmer, Kai Tian, Haipeng Wang

    2009-05-01

    With the proposal of medium to high average current accelerator facilities the demand for cavities with extremely low Higher Order Mode (HOM) impedances is increasing. Modern numerical tools are still under development to more thoroughly predict impedances that need to take into account complex absorbing boundaries and lossy materials. With the usually large problem size it is preferable to utilize massive parallel computing when applicable and available. Apart from such computational issues, we have developed methods using available computer resources to enhance the information that can be extracted from a cavities? wakefield computed in time domain. In particular this is helpful for a careful assessment of the extracted RF power and the mitigation of potential beam break-up or emittance diluting effects, a figure of merit for the cavity performance. The method is described as well as an example of its implementation.

  3. Stimuli dependent impedance of conductive magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xuan, Shouhu; Dong, Bo; Xu, Feng; Gong, Xinglong

    2016-02-01

    The structure dependent impedance of conductive magnetorheological elastomers (MREs) under different loads and magnetic fields has been studied in this work. By increasing the weight fraction of iron particles, the conductivity of the MREs increased. Dynamic mechanical measurements and synchrotron radiation x-ray computed tomography (SR-CT) were used and they provided reasons for the electrical properties changing significantly under pressure and magnetic field stimulation. The high sensitivity of MREs to external stimuli renders them suitable for application in force or magnetic field sensors. The equivalent circuit model was proposed to analyze the impedance response of MREs and it fits the experimental results very well. Each circuit component reflected the change of the inner interface under different conditions, thus relative changes in the microstructure could be distinguished. This method could be used not only to detect the structural changes in the MRE but also to provide a great deal of valuable information for the further understanding of the MR mechanism.

  4. Evaluating impedances in a Sacherer integral equation

    SciTech Connect

    Zhang, S.Y.; Weng, W.T.

    1994-08-01

    In Sacherer integral equation, the beam line density is expanded on the phase deviation {phi}, generating a Hankel spectrum, rather than on the time, which generates a Fourier spectrum. This is a natural choice to deal with the particle evolution in phase space, it however causes complications whenever the impedance corresponding to the spectrum has to be evaluated. In this article, the line density expansion on {phi} is shown to be equivalent to a beam time modulation under an acceptable condition. Therefore for a Hankel spectrum, a number of sidebands, and the corresponding impedance as well, will be involved. For wideband resonators, it is shown that the original Sacherer solution is adequate. For narrowband resonators, the solution had been compromised, therefore a modification may be needed.

  5. Sound barriers from materials of inhomogeneous impedance.

    PubMed

    Wang, Xu; Mao, Dongxing; Yu, Wuzhou; Jiang, Zaixiu

    2015-06-01

    Sound barriers are extensively used in environmental noise protection. However, when barriers are placed in parallel on opposite sides of a sound source, their performance deteriorates markedly. This paper describes a barrier made from materials of inhomogeneous impedance which lacks this drawback. The nonuniform impedance affects the way sound undergoes multiple reflections, and in the process traps acoustic energy. A proposed realization of the barrier comprises a closely spaced array of progressively tuned hollow narrow tubes which create a phase gradient. The acoustics of the barrier is theoretically examined and its superiority over conventional barriers is calculated using finite element modeling. Structural parameters of the barrier can be changed to achieve the required sound insertion loss, and the barrier has the potential to be widely used in environmental noise control.

  6. Valveless impedance micropump with integrated magnetic diaphragm.

    PubMed

    Lee, Chia-Yen; Chen, Zgen-Hui

    2010-04-01

    This study presents a planar valveless impedance-based micropump for biomedical applications comprising a lower glass substrate patterned with a copper micro-coil, a microchannel, an upper glass cover plate, and a PDMS diaphragm with an electroplated magnet on its upper surface. When a current is passed through the micro-coil, an electromagnetic force is established between the coil and the magnet. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which in turn produces a net flow. The performance of the micropump is characterized experimentally. The experimental results show that a maximum diaphragm deflection of 30 microm is obtained when the micro-coil is supplied with an input current of 0.5 A. The corresponding flow rate is found to be 1.5 microl/sec when the PDMS membrane is driven by an actuating frequency of 240 Hz.

  7. Microwave impedance imaging on semiconductor memory devices

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  8. FEM electrode refinement for electrical impedance tomography.

    PubMed

    Grychtol, Bartlomiej; Adler, Andy

    2013-01-01

    Electrical Impedance Tomography (EIT) reconstructs images of electrical tissue properties within a body from electrical transfer impedance measurements at surface electrodes. Reconstruction of EIT images requires the solution of an inverse problem in soft field tomography, where a sensitivity matrix, J, of the relationship between internal changes and measurements is calculated, and then a pseudo-inverse of J is used to update the image estimate. It is therefore clear that a precise calculation of J is required for solution accuracy. Since it is generally not possible to use analytic solutions, the finite element method (FEM) is typically used. It has generally been recommended in the EIT literature that FEMs be refined near electrodes, since the electric field and sensitivity is largest there. In this paper we analyze the accuracy requirement for FEM refinement near electrodes in EIT and describe a technique to refine arbitrary FEMs.

  9. Current injection electrodes for electrical impedance tomography.

    PubMed

    Armstrong, S; Jennings, D

    2004-08-01

    Current conveyors have been identified as a possible component within the current injection electrodes of an electrical impedance tomography system, where accurate current generation or precise measurement of the current injected is required. Several circuit configurations have been investigated through simulation to determine the most suitable to meet the specifications of the EIT system. A bipolar (floating source) circuit configuration employing the use of current conveyors has been designed, which achieves greater than 12 mA output current without saturation, over an accepted body impedance range. Simulations were performed over frequencies in excess of 1 MHz, and the output phase shift was less than 0.15 degrees up to 250 kHz, and 0.6 degrees up to 1 MHz.

  10. The frequency dependent impedance of an HVdc converter

    SciTech Connect

    Wood, A.R.; Arrillaga, J.

    1995-07-01

    A linear and direct method of determining the frequency dependent impedance of a 12 pulse HVdc converter is presented. Terms are developed for both the dc and ac side impedances of the converter, including the effect of the firing angle control system, the commutation period, and the variability of the commutation period. The impedance predictions are verified by dynamic simulation.

  11. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in...

  12. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in...

  13. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in...

  14. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in...

  15. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in...

  16. The relationship between skin maturation and electrical skin impedance.

    PubMed

    Emery, M M; Hebert, A A; Aguirre Vila-Coro, A; Prager, T C

    1991-09-01

    When performing electrophysiological testing, high electrical impedance values are sometimes found in neonates. Since excessive impedance can invalidate test results, a study was conducted to delineate the relationship between skin maturation and electrical skin impedance. This study investigated the skin impedance in 72 infants ranging from 196 to 640 days of age from conception. Regression analyses demonstrated a significant relationship between impedance and age, with the highest impedance centered around full-term gestation with values falling precipitously at time points on either side. Clinically, impedance values fall to normal levels at approximately four months following full-term gestation. Skin impedance values are low in premature infants, but rapidly increase as the age approaches that of full-term neonates. Low impedance values in premature infants are attributed to greater skin hydration which results from immature skin conditions such as 1) thinner epidermal layers particularly at the transitional and cornified layers; 2) more blood flow to the skin; and 3) higher percentage of water composition. These factors facilitate the diffusion of water vapor through the skin. As the physical barrier to skin water loss matures with gestational age, the skin impedance reaches a maximum value at full term neonatal age. After this peak, a statistically significant inverse relationship exists between electrical skin impedance and age in the first year of life. This drop in skin impedance is attributed to an increase in skin hydration as a result of the greater functional maturity of eccrine sweat glands.

  17. Estimating the Transverse Impedance in the Fermilab Recycler

    SciTech Connect

    Ainsworth, Robert; Adamson, Philip; Burov, Alexey; Kourbanis, Ioanis; Yang, Ming-Jen

    2016-06-01

    Impedance could represent a limitation of running high intensity bunches in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this, studies have been performed measuring the tune shift as a function of bunch intensity allowing the transverse impedance to be derived.

  18. Polysaccharide production by kefir grains during whey fermentation.

    PubMed

    Rimada, P S; Abraham, A G

    2001-11-01

    Fermentation of deproteinised whey with kefir grains CIDCA AGK1 was studied focusing on polysaccharide production from lactose. Kefir grains were able to acidify whey at different rates depending on the grain/whey ratio. During fermentation, kefir grains increased their weight and a water-soluble polysaccharide was released to the media. Exopolysaccharide concentration increased with fermentation time, reaching values of 57.2 and 103.4 mg/l after 5 days of fermentation in cultures with 10 and 100 g kefir grains/l, respectively. The polysaccharide fraction quantified after fermentation corresponded to the soluble fraction, because part of the polysaccharide became a component of the grain. Weight of kefir grains varied depending on the time of fermentation. Polysaccharide production was affected by temperature. Although the highest concentration of polysaccharide in the media was observed at 43 degrees C at both grain/whey ratios, the weight of the grains decreased in these conditions. In conclusion, kefir grains were able to acidify deproteinised whey, reducing lactose concentration, increasing their weight and producing a soluble polysaccharide.

  19. The immunostimulating role of lichen polysaccharides: a review.

    PubMed

    Shrestha, Gajendra; St Clair, Larry L; O'Neill, Kim L

    2015-03-01

    The immune system has capacity to suppress the development or progression of various malignancies including cancer. Research on the immunomodulating properties of polysaccharides obtained from plants, microorganisms, marine organisms, and fungi is growing rapidly. Among the various potential sources, lichens, symbiotic systems involving a fungus and an alga and/or a cyanobacterium, show promise as a potential source of immunomodulating compounds. It is well known that lichens produce an abundance of structurally diverse polysaccharides. However, only a limited number of studies have explored the immunostimulating properties of lichen polysaccharides. Published studies have shown that some lichen polysaccharides enhance production of nitrous oxide (NO) by macrophages and also alter the production levels of various proinflammatory and antiinflammatory cytokines (IL-10, IL-12, IL-1β, TNF-α, and IFN-α/β) by macrophages and dendritic cells. Although there are only a limited number of studies examining the role of lichen polysaccharides, all results suggest that lichen polysaccharides can induce immunomodulatory responses in macrophages and dendritic cells. Thus, a detailed evaluation of immunomodulatory capacity of lichen polysaccharides could provide a unique opportunity for the discovery of novel therapeutic agents.

  20. Antibiofilm Activity of Actinobacillus pleuropneumoniae Serotype 5 Capsular Polysaccharide

    PubMed Central

    Karwacki, Michael T.; Kadouri, Daniel E.; Bendaoud, Meriem; Izano, Era A.; Sampathkumar, Vandana; Inzana, Thomas J.; Kaplan, Jeffrey B.

    2013-01-01

    Cell-free extracts isolated from colony biofilms of Actinobacillus pleuropneumoniae serotype 5 were found to inhibit biofilm formation by Staphylococcus aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans, but not by A. pleuropneumoniae serotype 5 itself, in a 96-well microtiter plate assay. Physical and chemical analyses indicated that the antibiofilm activity in the extract was due to high-molecular-weight polysaccharide. Extracts isolated from a mutant strain deficient in the production of serotype 5 capsular polysaccharide did not exhibit antibiofilm activity. A plasmid harboring the serotype 5 capsule genes restored the antibiofilm activity in the mutant extract. Purified serotype 5 capsular polysaccharide also exhibited antibiofilm activity against S. aureus. A. pleuropneumoniae wild-type extracts did not inhibit S. aureus growth, but did inhibit S. aureus intercellular adhesion and binding of S. aureus cells to stainless steel surfaces. Furthermore, polystyrene surfaces coated with A. pleuropneumoniae wild-type extracts, but not with capsule-mutant extracts, resisted S. aureus biofilm formation. Our findings suggest that the A. pleuropneumoniae serotype 5 capsule inhibits cell-to-cell and cell-to-surface interactions of other bacteria. A. pleuropneumoniae serotype 5 capsular polysaccharide is one of a growing number of bacterial polysaccharides that exhibit broad-spectrum, nonbiocidal antibiofilm activity. Future studies on these antibiofilm polysaccharides may uncover novel functions for bacterial polysaccharides in nature, and may lead to the development of new classes of antibiofilm agents for industrial and clinical applications. PMID:23691104

  1. Effects of polysaccharides from Silene vulgaris on phagocytes.

    PubMed

    Popov, S V; Popova, G Y; Ovodova, R G; Bushneva, O A; Ovodov, Y S

    1999-09-01

    The effects of the polysaccharides isolated from the intact plant (pectic polysaccharides P1, P2 and P3) and from the callus (acidic arabinogalactan C1 and pectin C2) of Silene vulgaris on phagocytic activity were studied in relation to an uptaking capacity and a myeloperoxidase activity of the peripheral human neutrophils and monocytes and rat peritoneal macrophages in vitro. Both intact plant and callus polysaccharides were shown to increase uptaking capacity of peripheral phagocytes. The callus acidic arabinogalactan C1 was only found to stimulate lysosomal activity of the peripheral phagocytes. Some polysaccharides studied were established to effect on peritoneal resident macrophages. Pectins P1, P3 and C2 failed to enhance myeloperoxidase activity of the macrophages in calcium-free solution, whereas the effect of callus arabinogalactan C1 was established to be independent of extracellular calcium. Polysaccharides studied failed to influence neither complement receptor CR3- nor scavenger receptor SR-mediated adhesion of the macrophages. The data obtained demonstrate that the intact S. vulgaris and its callus may be used as sources of immunoactive polysaccharides and that pectins and weakly acidic arabinogalactan seemed to stimulate macrophages through different mechanisms. Complement receptor type 3 and scavenger receptor failed to mediate the cell activation induced by plant polysaccharides.

  2. Study of the Electrical Impedance Scanning

    DTIC Science & Technology

    2007-11-02

    exhibit conductive changes that cause an impedance variation between cancerous ant health tissues. Since there are very few commercial devices...contribute somehow in the evaluation of the parameters involved. Keywords – Electrical Transimpedance Scanning, Breast cancer I. INTRODUCTION The...Electrical Transimpedance Scanning (ETS) is a new technique, non-invasive, non-irradiant, used in the diagnosis of breast cancer . Combined with other

  3. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  4. Superconducting surface impedance under radiofrequency field

    DOE PAGES

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  5. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  6. Superconducting surface impedance under radiofrequency field

    NASA Astrophysics Data System (ADS)

    Xiao, B. P.; Reece, C. E.; Kelley, M. J.

    2013-07-01

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0 K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  7. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy.

  8. Plasma Impedance Probe: Simulations and Comparison to Sounding Rocket Mission Data

    NASA Astrophysics Data System (ADS)

    Spencer, E. A.; Patra, S.

    2013-12-01

    The RF Impedance Probe is a powerful instrument for measurement of ionospheric space plasma properties. We present the theory of the instrument, data from sounding rocket missions, and their interpretation. We will also present some electronics schemes that are used for performing the measurements. A Plasma Fluid Finite Difference Time Domain code (PF-FDTD) is used to match measured data to the fluid theory. The results from the SAL mission and STORMS mission will be discussed. Some of the new data from STORMS suggest difficulties with the fluid based approach to the theory. I will discuss a hybrid kinetic approach that is currently being developed to address the difficulties. We will also present simulations of spacecraft wake and interactions with the surrounding ionospheric plasma that effect the measurements.

  9. Enzymatic method for improving the injectability of polysaccharides. [US Patent Application

    DOEpatents

    Griffith, W.L.; Compere, A.L.; Holleman, J.W.

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  10. Force reflecting teleoperation with adaptive impedance control.

    PubMed

    Love, Lonnie J; Book, Wayne J

    2004-02-01

    Experimentation and a survey of the literature clearly show that contact stability in a force reflecting teleoperation system requires high levels of damping on the master robot. However, excessive damping increases the energy required by an operator for commanding motion. The objective of this paper is to describe a new force reflecting teleoperation methodology that reduces operator energy requirements without sacrificing stability. We begin by describing a new approach to modeling and identifying the remote environment of the teleoperation system. We combine a conventional multi-input, multi-output recursive least squares (MIMO-RLS) system identification, identifying in real-time the remote environment impedance, with a discretized representation of the remote environment. This methodology generates a time-varying, position-dependent representation of the remote environment dynamics. Next, we adapt the target impedance of the master robot with respect to the dynamic model of the remote environment. The environment estimation and impedance adaptation are executed simultaneously and in real time. We demonstrate, through experimentation, that this approach significantly reduces the energy required by an operator to execute remote tasks while simultaneously providing sufficient damping to ensure contact stability.

  11. Application of impedance spectroscopy to SOFC research

    SciTech Connect

    Hsieh, G.; Mason, T.O.; Pederson, L.R.

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  12. Interior impedance wedge diffraction with surface waves

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1988-01-01

    The exact impedance wedge solution is evaluated asymptotically using the method of steepest descents for plane wave illumination at normal incidence. Uniform but different impedances on each face are considered for both soft and hard polarizations. The asymptotic solution isolates the incident, singly reflected, multiply reflected, diffracted, and surface wave fields. Multiply reflected fields of any order are permitted. The multiply reflected fields from the exact solution are written as ratios of auxiliary Maliuzhinets functions, whereas a geometrical analysis gives the reflected fields as products of reflection coefficients. These two representations are shown to be identical in magnitude, phase and the angular range over which they exist. The diffracted field includes four Fresnel transition functions as in the perfect conductor case, and the expressions for the appropriate discontinuities at the shadow boundaries are presented. The surface wave exists over a finite angular range and only for certain surface impedances. A surface wave transition field is included to retain continuity. Computations are presented for interior wedge diffractions although the formulation is valid for both exterior and interior wedges.

  13. Bioelectrical impedance analysis of bovine milk fat

    NASA Astrophysics Data System (ADS)

    Veiga, E. A.; Bertemes-Filho, P.

    2012-12-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  14. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng

    1992-01-01

    During this research period, we have effectively transferred existing computer codes from CRAY supercomputer to work station based systems. The work station based version of our code preserved the accuracy of the numerical computations while giving a much better turn-around time than the CRAY supercomputer. Such a task relieved us of the heavy dependence of the supercomputer account budget and made codes developed in this research project more feasible for applications. The analysis of pyramidal horns with impedance surfaces was our major focus during this research period. Three different modeling algorithms in analyzing lossy impedance surfaces were investigated and compared with measured data. Through this investigation, we discovered that a hybrid Fourier transform technique, which uses the eigen mode in the stepped waveguide section and the Fourier transformed field distributions across the stepped discontinuities for lossy impedances coating, gives a better accuracy in analyzing lossy coatings. After a further refinement of the present technique, we will perform an accurate radiation pattern synthesis in the coming reporting period.

  15. Nonstarch polysaccharide hydrolysis products of soybean and canola meal protect against enterotoxigenic Escherichia coli in piglets.

    PubMed

    Kiarie, Elijah G; Slominski, Bogdan A; Krause, Denis O; Nyachoti, Charles M

    2008-03-01

    Infectious diarrhea is a major problem in both children and piglets. Enterotoxigenic Escherichia coli (ETEC) infection results in fluid and electrolyte losses in the small intestine. We investigated the effect of nonstarch polysaccharide (NSP) hydrolysis products of soybean meal (SBM) and canola meal (CM) on net absorption of fluid and solutes during ETEC infection. Products were generated by incubating SBM and CM with a blend of carbohydrase enzymes. Following incubation, slurries were centrifuged and the supernatants mixed with absolute ethanol to produce 2 product types: 80% ethanol-soluble (ES) and 80% ethanol-insoluble (EI). Products from SBM and CM were studied in 2 independent experiments in which 2 factors were investigated: product type (EI vs. ES) and time of ETEC infection (before vs. after perfusion). Pairs of small intestine segments, one noninfected and the other ETEC infected, were perfused simultaneously with different products for 7.5 h. Net absorption of fluid and solutes were determined. In both experiments, ETEC-infected segments perfused with saline control had lower (P < or = 0.05) net fluid and solute absorption compared with SBM and CM products. The interaction (P < or = 0.05) between product type and time of infection on fluid absorption was only evident for SBM, in which case perfusing ES products before infection resulted in higher fluid absorption (735 +/- 22 microL/cm2) compared with ETEC infection before perfusion (428 +/- 34 microL/cm2). In conclusion, NSP hydrolysis products of SBM and CM, particularly ES from SBM, were beneficial in maintaining fluid balance during ETEC infection, suggesting potential for controlling ETEC-induced diarrhea in piglets.

  16. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; hide

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  17. Ultrasonic fluid flow measurement method and apparatus

    DOEpatents

    Kronberg, J.W.

    1993-10-12

    An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.

  18. Ultrasonic fluid flow measurement method and apparatus

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

  19. Ultrasonic fluid flow measurement method and apparatus

    SciTech Connect

    Kronberg, J.W.

    1992-12-31

    This invention is comprised of an apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

  20. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    PubMed Central

    Jiao, Guangling; Yu, Guangli; Zhang, Junzeng; Ewart, H. Stephen

    2011-01-01

    Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans), ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application. PMID:21566795

  1. Isolation and partial characterization of immunostimulating polysaccharides from Imperata cylindrica.

    PubMed

    Pinilla, V; Luu, B

    1999-08-01

    The water-soluble crude extract prepared from Imperata cylindrica (Beauv.) was investigated for its immunomodulating activity. A set of polysaccharides with high molecular weights has been isolated by fractionation using gel filtration and anion-exchange chromatography. Each step of purification was monitored by bioassays. The presence of six monosaccharides has been established by chemical analysis. Quantitative analysis showed that the ratio of these monosaccharides differed from one polysaccharide to another. The crude extract as well as some of the purified polysaccharides enhance the proliferation of murine splenocytes.

  2. Polymethylated Polysaccharides from Mycobacterium Species Revisited*S⃞

    PubMed Central

    Jackson, Mary; Brennan, Patrick J.

    2009-01-01

    Mycobacteria produce two sets of unusual polymethylated polysaccharides, the 3-O-methylmannose polysaccharides and the 6-O-methylglucose lipopolysaccharides. Both polysaccharides localize to the cytoplasm, where they have been postulated to regulate fatty acid metabolism due to their ability to form stable 1:1 complexes with fatty acyl chains. Physiological evidence for this assumption is lacking, however. Recent advances in our knowledge of the processes underlying sugar transfer in mycobacteria, together with the availability of genome sequences and tools for the genetic manipulation of these microorganisms, have opened the way to the elucidation of the biosynthetic pathways and biological functions of these unique carbohydrates. PMID:18786916

  3. Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides

    NASA Astrophysics Data System (ADS)

    Nikonenko, N. A.; Buslov, D. K.; Sushko, N. I.; Zhbankov, R. G.

    2005-10-01

    Manifestation of stretching vibrations of glycosidic linkage in the infrared spectra of polysaccharides (native, microcrystalline, mercerized celluloses, amylose, starches) has been studied using the regularized method of deconvolution. It has been shown that the glycosidic linkage formation in the polysaccharides is characterized by the appearance of new absorption bands in the 1175-1140 cm -1 range as compared to their corresponding monomers. In the 1000-920 cm -1 region differences between the infrared spectra of polysaccharides due to the changes in the glycosidic linkage configuration have been found.

  4. Ultrasonic interferometric sensor for rheological changes of fluids

    SciTech Connect

    Balasubramaniam, Krishnan; Sethuraman, S.

    2006-08-15

    An ultrasonic interferometric sensor has been introduced for the measurement of subtle changes in the physical properties of fluids such as density, viscosity, and bulk modulus. Tone burst ultrasonic waves are generated using a single peizocrystal bonded in between two solid delay line media of slightly different lengths. One side is in contact with a reference fluid (with known properties) and the other with a fluid whose properties are to be measured. The ultrasonic waves reflect from the two solid-fluid boundaries and are received back by the peizocrystal where the interference effects are measured. The longitudinal waves were used to measure the longitudinal impedance, while shear waves were used to measure the shear impedance. Glycerin-water mixtures were used as the test material. A simple plane wave model was shown to provide satisfactory comparison with experiments. Various parameters that influence the measurement were studied.

  5. Electrochemical impedance spectroscopy of tethered bilayer membranes.

    PubMed

    Valincius, Gintaras; Meškauskas, Tadas; Ivanauskas, Feliksas

    2012-01-10

    The electrochemical impedance spectra (EIS) of tethered bilayer membranes (tBLMs) were analyzed, and the analytical solution for the spectral response of membranes containing natural or artificially introduced defects was derived. The analysis carried out in this work shows that the EIS features of an individual membrane defect cannot be modeled by conventional electrical elements. The primary reason for this is the complex nature of impedance of the submembrane ionic reservoir separating the phospholipid layer and the solid support. We demonstrate that its EIS response, in the case of radially symmetric defects, is described by the Hankel functions of a complex variable. Therefore, neither the impedance of the submembrane reservoir nor the total impedance of tBLMs can be modeled using the conventional elements of the equivalent electrical circuits of interfaces. There are, however, some limiting cases in which the complexity of the EIS response of the submembrane space reduces. In the high frequency limit, the EIS response of a submembrane space that surrounds the defect transforms into a response of a constant phase element (CPE) with the exponent (α) value of 0.5. The onset of this transformation is, beside other parameters, dependent on the defect size. Large-sized defects push the frequency limit lower, therefore, the EIS spectra exhibiting CPE behavior with α ≈ 0.5, can serve as a diagnostic criterion for the presence of such defects. In the low frequency limit, the response is dependent on the density of the defects, and it transforms into the capacitive impedance if the area occupied by a defect is finite. The higher the defect density, the higher the frequency edge at which the onset of the capacitive behavior is observed. Consequently, the presented analysis provides practical tools to evaluate the defect density in tBLMs, which could be utilized in tBLM-based biosensor applications. Alternatively, if the parameters of the defects, e.g., ion channels

  6. Polysaccharides and bacterial plugging. Final report, 1992--1993

    SciTech Connect

    Fogler, H.S.

    1995-02-01

    In situ core plugging experiments and transport experiments, using the model bacteria Leuconostoc m., have been conducted. Results demonstrated that cellular polysaccharide production increases cell distribution in porous media and caused an overall decrease in media permeability. Further, a parallel core plugging experiment was conducted and showed the feasibility of this system to divert injection fluid from high permeability zones into low permeability zones within porous media as is needed for profile modification. To implement this type of application, however, controlled placement of cells and rates of polymer production are needed. Therefore, kinetic studies were performed. A kinetic model was subsequently developed for Leuconostoc m. bacteria. This model is based on data generated from batch growth experiments and allows for the prediction of saccharide utilization, cell generation, and dextran production. These predictions can be used to develop injection strategies for field implementation. Transport and in situ growth micromodel experiments have shown how dextran allow cells to remain as clusters after cell division which enhanced cell capture and retention in porous media. Additional Damkohler experiments have been performed to determine the effects of the nutrient injection rate and nutrient concentration on the rate of porous media plugging. As shown experimentally and as predicted by a model for in situ growth, an increase in nutrient concentration and/or its injection rate will result in a faster rate of porous media plugging. Through continuum model simulations, it has been shown that the initial cell profiles play a key role on the core plugging rate. Controlling the location of the inoculating cells is thus another key factor in using bacteria for profile modification.

  7. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.

    PubMed

    Marquis, M; Davy, J; Cathala, B; Fang, A; Renard, D

    2015-02-13

    Capillary flow-based approach such as microfluidic devices offer a number of advantages over conventional flow control technology because they ensure highly versatile geometry and can be used to produce monodisperse spherical and non-spherical polymeric microparticles. Based on the principle of a flow-focusing device to emulsify the coflow of aqueous solutions in an organic phase, we were able to produce the following innovative polysaccharide hydrogel microparticles: - Janus hydrogel microparticles made of pectin–pectin (homo Janus) and pectin–alginate (hetero Janus) were produced. The efficiency of separation of the two hemispheres was investigated by confocal scanning laser microscopy (CSLM) of previously labelled biopolymers. The Janus structure was confirmed by subjecting each microparticle hemisphere to specific enzymatic degradation. As a proof of concept, free BSA or BSA grafted with dextran, were encapsulated in each hemisphere of the hetero Janus hydrogel microparticles. While BSA, free or grafted with dextran, was always confined in the alginate hemisphere, a fraction of BSA diffused from the pectin to the alginate hemisphere. Methoxy groups along the pectin chain will be responsible of the decrease of the number of attractive electrostatic interactions occurring between amino groups of BSA and carboxylic groups of pectin. - Pectin hydrogel microparticles of complex shapes were successfully produced by combining on-chip the phenomenon of gelation and water diffusion induced self-assembly, using dimethyl carbonate as continuous phase, or by deformation of the pre-gelled droplets off-chip at a fluid–fluid interface. Sphere, oblate ellipsoid, torus or mushroom-type morphologies were thus obtained. Moreover, it was established that after crossing the interface during their collect, mushroom-type microparticles did not migrate in the calcium or DMC phase but stayed at the liquid–liquid interface. These new and original hydrogel microparticles will

  8. Nutraceutical functionalities of polysaccharides from marine invertebrates.

    PubMed

    Choi, Byeong-Dae; Choi, Yeung Joon

    2012-01-01

    Many researchers are seeking functional materials from marine resources. These marine resources can be used as traditional food additives, and specifically, these are based on polysaccharides. To date, there is a big opportunity to develop new high-value added products with indispensable functional characteristics, which can be used in nutraceuticals either as additives or supplements. Also, a crossover in the pharmaceutical market may be established. Some glycosaminoglycans (GAGs) mimetic-type molecules are already being utilized in the field of nutrition as well as in the cosmetics industry. This chemical is used as a dietary supplement to maintain the structure and function of cartilages, for the relief of pain caused by osteoarthritic joints, and can also be used as an anti-inflammatory agent. Recently, in relation to the prevalence of mad cow disease and avian influenza, the production of GAGs from marine invertebrates offers new market opportunities as compared with that obtained from bovine or avian livestock.

  9. Structural diversity of lytic polysaccharide monooxygenases.

    PubMed

    Vaaje-Kolstad, Gustav; Forsberg, Zarah; Loose, Jennifer Sm; Bissaro, Bastien; Eijsink, Vincent Gh

    2017-01-10

    Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds and represent a promising resource for development of industrial enzyme cocktails for biomass processing. LPMOs show high sequence and modular diversity and are known, so far, to cleave insoluble substrates such as cellulose, chitin and starch, as well as hemicelluloses such as beta-glucan, xyloglucan and xylan. All LPMOs share a catalytic histidine brace motif to bind copper, but differ strongly when it comes to the nature and arrangement of residues on the substrate-binding surface. In recent years, the number of available LPMO structures has increased rapidly, including the first structure of an enzyme-substrate complex. The insights gained from these structures is reviewed below.

  10. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  11. Microstructure based estimation of the dynamic drag impedance of lightweight fibrous materials.

    PubMed

    Semeniuk, B P; Göransson, P

    2017-03-01

    This paper focusses on the prediction of one of the main mechanisms of acoustic attenuation, the dynamic drag impedance, of a bundle of fibres typical of lightweight fibrous porous materials. The methodology uses geometrical properties derived from microscopy, and is based on the assumption that the interaction between the shear stress fields of neighbouring fibres may be neglected in the predicted drag force of an individual fibre. An analytical procedure is discussed which provides an estimate of the drag forces acting on infinite longitudinal and transversely orientated cylinders oscillating sinusoidally in a viscous incompressible fluid of infinite extent, at rest. The frequency-dependent viscous drag forces are estimated from the shear stresses on the surface of the cylinders, and may be scaled in terms of fibre diameter distributions and orientation angles in order to predict the dynamic drag impedance of a real material. The range of validity for this modelling approach is assessed through finite element solutions of three different fibre arrangements.

  12. Broadband acoustic diode by using two structured impedance-matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Liang, Qing-Xuan; Song, Ai-Ling

    2016-07-01

    An acoustic diode (AD) is proposed and designed based on a mechanism different from the previous designs by using two structured impedance-matched acoustic metasurfaces. This AD can realize unidirectional acoustic transmission within a broad band with high transmission efficiency due to the impedance-matching condition while allowing other entities such as objects or fluids to pass freely. What is more, the backtracking waves that come from the incoming waves can be efficiently prevented and cannot disturb the source. The acoustic pressure field distribution, intensity distribution, and transmission efficiency are calculated by using the finite element method. The simulation results agree well with the theoretical predictions. Our proposed mechanism can experimentally provide a simple approach to design an AD and have potential applications in various fields such as medical ultrasound and noise insulation.

  13. Oblique impacts into low impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2009-12-01

    Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA

  14. Campylobacter Polysaccharide Capsules: Virulence and Vaccines

    PubMed Central

    Guerry, Patricia; Poly, Frédéric; Riddle, Mark; Maue, Alexander C.; Chen, Yu-Han; Monteiro, Mario A.

    2012-01-01

    Campylobacter jejuni remains a major cause of bacterial diarrhea worldwide and is associated with numerous sequelae, including Guillain Barré Syndrome, inflammatory bowel disease, reactive arthritis, and irritable bowel syndrome. C. jejuni is unusual for an intestinal pathogen in its ability to coat its surface with a polysaccharide capsule (CPS). These capsular polysaccharides vary in sugar composition and linkage, especially those involving heptoses of unusual configuration and O-methyl phosphoramidate linkages. This structural diversity is consistent with CPS being the major serodeterminant of the Penner scheme, of which there are 47 C. jejuni serotypes. Both CPS expression and expression of modifications are subject to phase variation by slip strand mismatch repair. Although capsules are virulence factors for other pathogens, the role of CPS in C. jejuni disease has not been well defined beyond descriptive studies demonstrating a role in serum resistance and for diarrhea in a ferret model of disease. However, perhaps the most compelling evidence for a role in pathogenesis are data that CPS conjugate vaccines protect against diarrheal disease in non-human primates. A CPS conjugate vaccine approach against this pathogen is intriguing, but several questions need to be addressed, including the valency of CPS types required for an effective vaccine. There have been numerous studies of prevalence of CPS serotypes in the developed world, but few studies from developing countries where the disease incidence is higher. The complexity and cost of Penner serotyping has limited its usefulness, and a recently developed multiplex PCR method for determination of capsule type offers the potential of a more rapid and affordable method. Comparative studies have shown a strong correlation of the two methods and studies are beginning to ascertain CPS-type distribution worldwide, as well as examination of correlation of severity of illness with specific CPS types. PMID:22919599

  15. The Influence of Segmental Impedance Analysis in Predicting Validity of Consumer Grade Bioelectrical Impedance Analysis Devices

    NASA Astrophysics Data System (ADS)

    Sharp, Andy; Heath, Jennifer; Peterson, Janet

    2008-05-01

    Consumer grade bioelectric impedance analysis (BIA) instruments measure the body's impedance at 50 kHz, and yield a quick estimate of percent body fat. The frequency dependence of the impedance gives more information about the current pathway and the response of different tissues. This study explores the impedance response of human tissue at a range of frequencies from 0.2 - 102 kHz using a four probe method and probe locations standard for segmental BIA research of the arm. The data at 50 kHz, for a 21 year old healthy Caucasian male (resistance of 180φ±10 and reactance of 33φ±2) is in agreement with previously reported values [1]. The frequency dependence is not consistent with simple circuit models commonly used in evaluating BIA data, and repeatability of measurements is problematic. This research will contribute to a better understanding of the inherent difficulties in estimating body fat using consumer grade BIA devices. [1] Chumlea, William C., Richard N. Baumgartner, and Alex F. Roche. ``Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectrical impedance.'' Am J Clin Nutr 48 (1998): 7-15.

  16. Wakefield and impedance studies of a liner using MAFIA

    SciTech Connect

    Chou, W.; Barts, T.

    1993-03-01

    The liner is a perforated beam tube that is coaxial with an outer bore tube. The 3D code MAFIA (version 3.1) is used to study the wakefields, impedances, and resonances of this structure. The short-range wakes and low-frequency (below the cutoff) impedances are in agreement with the theoretical model. The long-range wakes and high-frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the Superconducting Super Collider impedance budget is discussed.

  17. Wakefield and impedance studies of a liner using MAFIA

    SciTech Connect

    Chou, W.; Barts, T. )

    1993-12-25

    The liner is a perforated beam tube which is coaxial with an outer bore tube. The 3D code MAFIA version 3.1 is used to study the wakefields, impedances, and resonances of this structure. The short range wakes and low frequency (below the cutoff) impedances are in agreement with the theoretical model. The long range wakes and high frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the SSC impedance budget is discussed.

  18. Beam Impedance Study for the BESSY-II Storage Ring

    NASA Astrophysics Data System (ADS)

    Khan, S.

    1997-05-01

    The beam impedance of the BESSY-II storage ring was studied using analytical estimates, simulating wake fields with the computer code MAFIA, and measuring the impedance of several vacuum chamber elements. The main contribution to the impedance comes from the cavity HOMs. The broadband impedance from other discontinuities of the vacuum chamber was minimized as far as possible, and the impedance due to the wall resistivity was taken into account. The results of this study are presented together with estimates for single- and coupled-bunch instabilities.

  19. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    PubMed

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  20. Fault detection in railway track using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Cremins, M.; Shuai, Qi; Xu, Jiawen; Tang, J.

    2014-04-01

    In this research, piezoelectric transducers are incorporated in an impedance-based damage detection approach for railway track health monitoring. The impedance-based damage detection approach utilizes the direct relationship between the mechanical impedance of the track and electrical impedance of the piezoelectric transducer bonded. The effect of damage is shown in the change of a healthy impedance curve to an altered, damaged curve. Using a normalized relative difference outlier analysis, the occurrences of various damages on the track are determined. Furthermore, the integration of inductive circuitry with the piezoelectric transducer is found to be able to considerably increase overall damage detection sensitivity.