Sample records for polyurethane elastomers based

  1. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties

    PubMed Central

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C

    2014-01-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and 1H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was −47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress–strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4–9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. PMID:24812276

  2. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    PubMed

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2014-09-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility.

    PubMed

    Dawlee, S; Jayabalan, Muthu

    2011-10-01

    Biofunctionally active and inherently radiopaque polymers are the emerging need for biomedical applications. Novel segmented polyurethane elastomer with inherent radiopacity was prepared using aliphatic chain extender 2,3-diiodo-2-butene-1,4-diol, polyol polytetramethylene glycol and 4,4'-methylenebis(phenyl isocyanate) (MDI) for blood compatible applications. Aliphatic polyurethane was also prepared using hexamethylene diisocyanate for comparison. X-ray analysis of the polyurethanes revealed good radiopacity even at a relatively low concentration of 3% iodine in aromatic polyurethane and 10% in aliphatic polyurethane. The polyurethanes also possessed excellent thermal stability. MDI-based polyurethane showed considerably higher tensile strength than the analogous HDI-based polyurethane. MDI-based aromatic polyurethane exhibited a dynamic surface morphology in aqueous medium, resulting in the segregation of hydrophilic domains which was more conducive to anti-thrombogenic properties. The polyurethane was cytocompatible with L929 fibroblast cells, non-hemolytic, and possessed good blood compatibility.

  4. Preparation and properties of adjacency crosslinked polyurethane-urea elastomers

    NASA Astrophysics Data System (ADS)

    Wu, Yuan; Cao, Yu-Yang; Wu, Shou-Peng; Li, Zai-Feng

    2012-12-01

    Adjacency crosslinked polyurethane-urea (PUU) elastomers with different crosslinking density were prepared by using hydroxyl-terminated liquid butadiene-nitrile (HTBN), toluene diisocyanate (TDI) and chain extender 3,5-dimethyl thio-toluene diamine (DMTDA) as raw materials, dicumyl peroxide (DCP) as initiator, and N,N'-m-phenylene dimaleimide (HVA-2) as the crosslinking agent. The influences of the crosslinking density and temperature on the structure and properties of such elastomers were investigated. The crosslinking density of PUU elastomer was tested by the NMR method. It is found that when the content of HVA-2 is 1.5%, the mechanical properties of polyurethane elastomer achieve optimal performance. By testing thermal performance of PUU, compared with linear PUU, the thermal stability of the elastomers has a marked improvement. With the addition of HVA-2, the loss factor tan δ decreases. FT-IR spectral studies of PUU elastomer at various temperatures were performed. From this study, heat-resistance polyurethane could be prepared, and the properties of PUU at high temperature could be improved obviously.

  5. Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment

    PubMed Central

    Kojio, Ken; Furukawa, Mutsuhisa; Nonaka, Yoshiteru; Nakamura, Sadaharu

    2010-01-01

    Mechanical properties of thermoplastic polyurethane elastomers based on either polyether or polycarbonate (PC)-glycols, 4,4’-dipheylmethane diisocyanate (1,1’-methylenebis(4-isocyanatobenzene)), 1,4-butanediol, were controlled by restriction of crystallization of polymer glycols. For the polyether glycol based-polyurethane elastomers (PUEs), poly(oxytetramethylene) glycol (PTMG), and PTMG incorporating dimethyl groups (PTG-X) and methyl side groups (PTG-L) were employed as a polymer glycol. For the PC-glycol, the randomly copolymerized PC-glycols with hexamethylene (C6) and tetramethylene (C4) units between carbonate groups with various composition ratios (C4/C6 = 0/100, 50/50, 70/30 and 90/10) were employed. The degree of microphase separation and mechanical properties of both the PUEs were investigated using differential scanning calorimetry, dynamic viscoelastic property measurements and tensile testing. Mechanical properties could be controlled by changing the molar ratio of two different monomer components. PMID:28883371

  6. Blended Polyurethane and Tropoelastin as a Novel Class of Biologically Interactive Elastomer

    PubMed Central

    Wise, Steven G.; Liu, Hongjuan; Yeo, Giselle C.; Michael, Praveesuda L.; Chan, Alex H.P.; Ngo, Alan K.Y.; Bilek, Marcela M.M.; Bao, Shisan

    2016-01-01

    Polyurethanes are versatile elastomers but suffer from biological limitations such as poor control over cell attachment and the associated disadvantages of increased fibrosis. We address this problem by presenting a novel strategy that retains elasticity while modulating biological performance. We describe a new biomaterial that comprises a blend of synthetic and natural elastomers: the biostable polyurethane Elast-Eon and the recombinant human tropoelastin protein. We demonstrate that the hybrid constructs yield a class of coblended elastomers with unique physical properties. Hybrid constructs displayed higher elasticity and linear stress–strain responses over more than threefold strain. The hybrid materials showed increased overall porosity and swelling in comparison to polyurethane alone, facilitating enhanced cellular interactions. In vitro, human dermal fibroblasts showed enhanced proliferation, while in vivo, following subcutaneous implantation in mice, hybrid scaffolds displayed a reduced fibrotic response and tunable degradation rate. To our knowledge, this is the first example of a blend of synthetic and natural elastomers and is a promising approach for generating tailored bioactive scaffolds for tissue repair. PMID:26857114

  7. Preparation and demonstration of poly(dopamine)-triggered attapulgite-anchored polyurethane as a high-performance rod-like elastomer to reinforce soy protein-isolated composites

    NASA Astrophysics Data System (ADS)

    Zhao, Shujun; Wen, Yingying; Wang, Zhong; Kang, Haijiao; Li, Jianzhang; Zhang, Shifeng; Ji, Yong

    2018-06-01

    Nanophase modification is an effective path to improve composite properties, however, it remains a great challenge to increase the mechanical strength of the modified materials without sacrificing elongation and toughness. This study presents a novel and efficient design for interface anchoring of a waterborne polyurethane (WPU) elastomer with attapulgite (ATP) triggered by poly(dopamine) (PDA) formation due to self-polymerization of the dopamine moieties. The WPU-PDA-ATP (WDA) rod-like elastomer served as an active enhancer for a soy protein isolate (SPI)-based composite to facilitate multiple interactions between SPI and the elastomer. As expected, the PDA layer was coated onto ATP, inducing the nanofiller to successfully anchor onto the WPU elastomer, as confirmed by solid-state 13C NMR, XPS, and ATR-FTIR results. Compared with the control SPI-based film, the tensile strength and toughness increased by 145.6% and 118.3% respectively by introducing WDA rod-like elastomer. The water resistance and thermal stability of the prepared SPI composites were also favorable. The proposed approach represents an efficient way to utilize high-performance elastomer in biobased materials to concurrently enhance strength and toughness.

  8. Highly stretchable nanoalginate based polyurethane elastomers.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2013-06-20

    Highly stretchable elastomeric samples based on cationic polyurethane dispersions-sodium alginate nanoparticles (CPUD/SA) were prepared by the solution blending of sodium alginate and aqueous polyurethane dispersions. CPUDs were synthesized by step growth polymerization technique using N-methyldiethanolamine (MDEA) as a source of cationic emulsifier. The chemical structure and thermal-mechanical properties of these systems were characterized using FTIR and DMTA, respectively. The presence of nanoalginate particles including nanobead and nanorod particles were proved by SEM and EDX. It was observed that thermal properties of composites increased with increasing SA content. All prepared samples were known as thermoplastic-elastomers with high percentages of elongation. Excellent compatibility of prepared nanocomposites was proved by the DMTA data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Vas deferens occlusion by percutaneous injection of polyurethane elastomer plugs: clinical experience and reversibility.

    PubMed

    Zhao, S C

    1990-05-01

    A non-incision method of vas occlusion based on the percutaneous injection of polyurethane elastomer solution to form plugs is described. The results are based on clinical experience in 12,000 men in which only 56 cases of minor complications were recorded. Follow-up of 500 men for up to 3 years demonstrated an azoospermia rate of 98%. Plugs have been removed from 86 men and, to date, 51 have made their wives pregnant. In those from which the plugs have been removed for more than 1 year (n = 31), the pregnancy rate is 100%.

  10. Response of Polyurethane to Shock Waves: An Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Rao, Keshava Subba; Thanganayaki, N.; Kumara, H. K. T.; Reddy, K. P. J.

    Formation of polyurethane (PU) in vacuum environment and controlling density of polyurethane foams are the present day challenges. Polyurethane exists in numerous forms ranging from flexible to rigid and lightweight foams to tough, stiff elastomers [1]. PU can be used to produce lightweight foams for insulation or hard rubber used as wheels to transport heavy loads and it can be used in high pressure applications. The largest volumes of commercial PU elastomers are made from toluene diisocyanate (TDI) or diphenylmethane-4, 4'-diisocyanate (MDI) [2]. Linear polyurethanes can be processed into final products by any of the standard thermoplastic processes (injection molding, extrusion, thermoforming) as well as by low pressure cast processes in presence of catalysts. Tin, tetrabutyl titanate and zirconium chelates are few effective catalysts used to produce polyurethane for particular application [3]. Thermoset elastomers are formed due to irreversible cross-links, when polymers are chemically cured. Highly porous biodegradable PU was synthesized by thermally induced phase separation technique used in tissue engineering and also in bio-degradable based fluids [4]. Properties of PU like hardness, stress/strain modulus, tear strength etc, was determine using ASTM (American Society for Testing and Materials) standard methods. PU possesses extremely high mechanical properties, excellent abrasion, tear and extrusion resistance. It has outstanding low-temperature limit (-600C) and high temperature limit up to (1500C).

  11. A simple approach for morphology tailoring of alginate particles by manipulation ionic nature of polyurethanes.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2014-05-01

    A number of different ionic aqueous polyurethane dispersions (PUDs) were synthesized based on NCO-terminated prepolymers. Two different anionic and cationic polyurethane samples were synthesized using dimethylol propionic acid and N-methyldiethanolamine emulsifiers, respectively. Then, proper amounts of PUDs and sodium alginate were mixed to obtain a number of aqueous polyurethane dispersions-sodium alginate (PUD/SA) elastomers. The chemical structure, thermal, morphological, thermo-mechanical and mechanical properties, and hydrophilicity content of the prepared samples were studied by FTIR, EDX, DSC, TGA, SEM, DMTA, tensile testing and contact angle techniques. The cationic polyurethanes and their blends with sodium alginate showed excellent miscibility and highly stretchable properties, while the samples containing anionic polyurethanes and alginate illustrated a poor compatibility and no significant miscibility. The morphology of alginate particles shifted from nanoparticles to microparticles by changing the nature of PUDs from cationic to anionic types. The final cationic elastomers not only showed better mechanical properties but also were formulated easier than anionic samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Isocyanate-Free Elastomers as Replacements for Isocyanate-Cured Polyurethanes (Briefing Charts)

    DTIC Science & Technology

    2015-08-20

    Polyurethanes (Briefing Charts) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Josiah T. Reams, Andrew J...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Isocyanate-Free Elastomers as Replacements for Isocyanate-cured Polyurethanes ...paints, foams , sealants, and adhesives that also represent a significant source of occupational health risk for DoD and DOE. DISTRIBUTION A:  Approved

  13. Investigation into reversion of polyurethane encapsulants

    NASA Technical Reports Server (NTRS)

    Lynch, C. R.

    1973-01-01

    The effect of high humidity (95% RH) at 60 C, 70 C, 85 C and 100 C on the solid-to-liquid reversion of polyurethane elastomers (used for potting electrical connectors and conformal coating printed circuit boards) was investigated. Hardness measurements were conducted on eleven elastomers to track reversion for a 101-day period. The primary purpose of the tests was to provide data to predict service life for the polyurethane elastomers. This was not accomplished as the hardness did not deteriorate rapidly enough at the lower test temperatures. The tests did determine that the potting and coating materials most widely used on the S-1C Program are susceptible to reversion but appear adequate for service in the S-1C environment.

  14. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate.

    PubMed

    Zia, Khalid Mahmood; Anjum, Sohail; Zuber, Mohammad; Mujahid, Muhammad; Jamil, Tahir

    2014-05-01

    The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Polymer compositions and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Scott D.; Willkomm, Wayne R.

    The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.

  16. Polymer compositions and methods

    DOEpatents

    Allen, Scott D.; Willkomm, Wayne R.

    2016-09-27

    The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.

  17. Phase separated microstructure and dynamics of polyurethane elastomers under strain

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Padsalgikar, Ajay; Runt, James

    The molecular mobility of polyurethane elastomers is of the utmost importance in establishing physical properties for uses ranging from automotive tires and shoe soles to more sophisticated aerospace and biomedical applications. In many of these applications, chain dynamics as well as mechanical properties under external stresses/strains are critical for determining ultimate performance. In order to develop a more complete understanding of their mechanical response, we explored the effect of uniaxial strain on the phase separated microstructure and molecular dynamics of the elastomers. We utilize X-ray scattering to investigate soft segment and hard domain orientation, and broadband dielectric spectroscopy for interrogation of the dynamics. Uniaxial deformation is found to significantly perturb the phase-separated microstructure and chain orientation, and results in a considerable slowing down of the dynamics of the elastomers. Attenuated total reflectance Fourier transform infrared spectroscopy measurements of the polyurethanes under uniaxial deformation are also employed and the results are quantitatively correlated with mechanical tensile tests and the degree of phase separation from small-angle X-ray scattering measurements.

  18. Composite magnetorheological elastomers as dielectrics for plane capacitors: Effects of magnetic field intensity

    NASA Astrophysics Data System (ADS)

    Balasoiu, Maria; Bica, Ioan

    The fabrication of composite magnetorheological elastomers (MRECs) based on silicone rubber, carbonyl iron microparticles (10% vol.) and polyurethane elastomer doped with 0%, 10% and 20% volume concentration TiO2 microparticles is presented. The obtained MRECs have the shape of thin foils and are used as dielectric materials for manufacturing plane capacitors. Using the plane capacitor method and expression of capacitance as a function of magnetic field intensity, combined with linear elasticity theory, the static magnetoelastic model of the composite is obtained and analyzed.

  19. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oilmore » produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  20. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    USDA-ARS?s Scientific Manuscript database

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  1. Unidirectional fibers and polyurethane elastomer matrix based composites synthesis and properties. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chakar, A.

    1984-01-01

    A study of the properties and manufacturing techniques for long-fiber reinforced elastomeric composites for flexible and damping structural materials is presented. Attention is given to the usage of polyurethane in the matrix to obtain plastic elastomeric matrices and vitreous transition temperatures which vary from -80 C to 10 C, as well as assure good fiber adhesion. Various polyurethane formulations synthesized from diisocyanate prepolymers are examined in terms of mechanical and thermal properties. The principal reinforcing fiber selected is a unidirectional glass cloth.

  2. Rapid solution casting under vacuum of very thick sheets of a segmented polyurethane elastomer

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1981-01-01

    A technique has been developed for rapidly casting from solution under vacuum smooth, bubble-free, clear-white and uniformly thick (about 0.20 cm) sheets of a segmented polyurethane elastomer. The casting is carried out from dimethylformamide solutions inside temperature-controlled air-circulated ovens in order to minimize the establishment of thermal gradients throughout the casting solution. The technique produces quality sheets in 9 days, compared with 40-45 days for an inferior film produced in open pans.

  3. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  4. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE PAGES

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; ...

    2016-07-12

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  5. Magnetically-tunable rebound property for variable elastic devices made of magnetic elastomer and polyurethane foam

    NASA Astrophysics Data System (ADS)

    Oguro, Tsubasa; Endo, Hiroyuki; Kawai, Mika; Mitsumata, Tetsu

    2017-12-01

    A device consisting of a phase of magnetic elastomer, a phase of polyurethane foam (PUF), and permanent magnet was fabricated and the stress-strain curves for the two-phase magnetic elastomer were measured by a uniaxial compression measurement. A disk of magnetic elastomer was adhered on a disk of PUF by an adhesive agent. The PUF thickness was varied from 1 mm to 5 mm while the thickness of magnetic elastomers was constant at 5 mm. The stress at a strain of 0.15 for the two-phase magnetic elastomers was evaluated in the absence and in the presence of a magnetic field of 410 mT. The stress at 0 mT decreased remarkably with the PUF thickness due to the deformation of the PUF phase. On the other hand, the stress at 410 mT slightly decreased with the thickness; however, it kept high values even at high thickness. When the PUF thickness was 5 mm, the maximum stress increment with 45 times to the off-field stress was observed. An experiment using ping-pong balls demonstrated that the coefficient of restitution for the two-phase magnetic elastomers can be dramatically altered by the magnetic field.

  6. Deposition of Electrically Conductive Coatings on Castable Polyurethane Elastomers by the Flame Spraying Process

    NASA Astrophysics Data System (ADS)

    Ashrafizadeh, H.; McDonald, A.; Mertiny, P.

    2016-02-01

    Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.

  7. Alginate based polyurethanes: A review of recent advances and perspective.

    PubMed

    Zia, Khalid Mahmood; Zia, Fatima; Zuber, Mohammad; Rehman, Saima; Ahmad, Mirza Nadeem

    2015-08-01

    The trend of using biopolymers in combination with synthetic polymers was increasing rapidly from last two or three decades. Polysaccharide based biopolymers especially starch, cellulose, chitin, chitosan, alginate, etc. found extensive applications for different industrial uses, as they are biocompatible, biodegradable, bio-renewable resources and chiefly environment friendly. Segment block copolymer character of polyurethanes that endows them a broad range of versatility in terms of tailoring their properties was employed in conjunction with various natural polymers resulted in modified biomaterials. Alginate is biodegradable, biocompatible, bioactive, less toxic and low cost anionic polysaccharide, as a part of structural component of bacteria and brown algae (sea weed) is quite abundant in nature. It is used in combination with polyurethanes to form elastomers, nano-composites, hydrogels, etc. that especially revolutionized the food and biomedical industries. The review summarized the development in alginate based polyurethanes with their potential applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Thermoplastic Polyurethanes with Isosorbide Chain Extender

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javni, Ivan; Bilic, Olivera; Bilic, Nikola

    2015-12-15

    Isosorbide, a renewable diol derived from starch, was used alone or in combination with butane diol (BD) as the chain extender in two series of thermoplastic polyurethanes (TPU) with 50 and 70% polytetramethylene ether glycol (PTMEG) soft segment concentration (SSC), respectively. In the synthesized TPUs, the hard segment composition was systematically varied in both series following BD/isosorbide molar ratios of 100 : 0; 75 : 25; 50 : 50; 25 : 75, and 0 : 100 to examine in detail the effect of chain extenders on properties of segmented polyurethane elastomers with different morphologies. We found that polyurethanes with 50%more » SSC were hard elastomers with Shore D hardness of around 50, which is consistent with assumed co-continuous morphology. Polymers with 70% SSC displayed lower Shore A hardness of 74–79 (Shore D around 25) as a result of globular hard domains dispersed in the soft matrix. Insertion of isosorbide increased rigidity, melting point and glass transition temperature of hard segments and tensile strength of elastomers with 50% SSC. These effects were weaker or non-existent in 70% SSC series due to the short hard segments and low content of isosorbide. We also found that the thermal stability was lowered by increasing isosorbide content in both series.« less

  9. Thermal Degradation Studies of Polyurethane/POSS Nanohybrid Elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewicki, J P; Pielichowski, K; TremblotDeLaCroix, P

    2010-03-05

    Reported here is the synthesis of a series of Polyurethane/POSS nanohybrid elastomers, the characterization of their thermal stability and degradation behavior at elevated temperatures using a combination of Thermal Gravimetric Analysis (TGA) and Thermal Volatilization Analysis (TVA). A series of PU elastomers systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterized using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increase the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation ofmore » the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a {approx}30 C increase in onset degradation temperature. Furthermore, characterization of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.« less

  10. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application.

    PubMed

    Dandeniyage, Loshini S; Gunatillake, Pathiraja A; Adhikari, Raju; Bown, Mark; Shanks, Robert; Adhikari, Benu

    2017-08-31

    Mixed macrodiol based siloxane poly(urethane-urea)s (SiPUU) having number average molecular weights in the range 87-129 kDa/mol were synthesized to give elastomers with high tensile and tear strengths required to fabricate artificial heart valves. Polar functional groups were introduced into the soft segment to improve the poor segmental compatibility of siloxane polyurethanes. This was achieved by linking α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane) (PDMS) or poly(hexamethylene oxide) (PHMO) macrodiols with either 4,4'-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI) prior to polyurethane synthesis. The hard segment was composed of MDI, and a 1:1 mixture of 1,3-bis(4-hydroxybutyl)-1,1,3,3-tetramethyldisiloxane and 1,2-ethylene diamine. We report the effect of urethane linkers in soft segments on properties of the SiPUU. PHMO linked with either MDI or IPDI produced SiPUU with the highest tensile and tear strengths. Linking PDMS hardly affected the tensile strength; however, the tear strength was improved. The stress-strain curves showed no plastic deformation region typically observed for conventional polyurethanes indicating good creep resistance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  11. Post-processing flame-retardant for polyurethane

    NASA Technical Reports Server (NTRS)

    Monaghan, P.; Sidman, K. R.

    1980-01-01

    Treatment of polyurethane form with elastomer formulation after processing makes foam fire resistant without compromising physical properties. In testing, once ignition source is removed, combustion stops. Treatment also prevents molten particle formation, generates no smoke or toxic gases in fire, and does not deteriorate under prolonged exposure to Sun.

  12. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures

    NASA Astrophysics Data System (ADS)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-06-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.

  13. Hencky's model for elastomer forming process

    NASA Astrophysics Data System (ADS)

    Oleinikov, A. A.; Oleinikov, A. I.

    2016-08-01

    In the numerical simulation of elastomer forming process, Henckys isotropic hyperelastic material model can guarantee relatively accurate prediction of strain range in terms of large deformations. It is shown, that this material model prolongate Hooke's law from the area of infinitesimal strains to the area of moderate ones. New representation of the fourth-order elasticity tensor for Hencky's hyperelastic isotropic material is obtained, it possesses both minor symmetries, and the major symmetry. Constitutive relations of considered model is implemented into MSC.Marc code. By calculating and fitting curves, the polyurethane elastomer material constants are selected. Simulation of equipment for elastomer sheet forming are considered.

  14. Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes.

    PubMed

    Shahrousvand, Mohsen; Mir Mohamad Sadeghi, Gity; Salimi, Ali

    2016-12-01

    The cells as a tissue component need to viscoelastic, biocompatible, biodegradable, and wettable extracellular matrix for their biological activity. In this study, in order to prepare biomedical polyurethane elastomers with good mechanical behavior and biodegradability, a series of novel polyester-polyether- based polyurethanes (PUs) were synthesized using a two-step bulk reaction by melting pre-polymer method, taking 1,4-Butanediol (BDO) as chain extender, hexamethylene diisocyanate as the hard segment, and poly (tetramethylene ether) glycol (PTMEG) and poly (ε-caprolactone diol) (PCL-Diol) as the soft segment without a catalyst. The soft to the hard segment ratio was kept constant in all samples. Polyurethane characteristics such as thermal and mechanical properties, wettability and water adsorption, biodegradability, and cellular behavior were changed by changing the ratio of polyether diol to polyester diol composition in the soft segment. Our present work provides a new procedure for the preparation of engineered polyurethanes in surface properties and biodegradability, which could be a good candidate for bone, cartilage, and skin tissue engineering.

  15. Development of a Cavitation Erosion Resistant Advanced Material System

    DTIC Science & Technology

    2005-11-01

    Sheet EPD M results .............................................................................. 47 Figure 5.11 - EPDM rubber samples, sheet (left...Testing The long test times of EPDM rubber and other durable elastomer samples created a need for overnight testing capability. In the original test setup...seals, adhesives and molded flexible parts. Common examples of elastomers include natural and synthetic rubber , silicone, neoprene, EPDM , polyurethane

  16. Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers.

    PubMed

    Wisse, Eva; Spiering, A J H; van Leeuwen, Ellen N M; Renken, Raymond A E; Dankers, Patricia Y W; Brouwer, Linda A; van Luyn, Marja J A; Harmsen, Martin C; Sommerdijk, Nico A J M; Meijer, E W

    2006-12-01

    The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in terms of mechanical properties, processibility and histocompatibility. Comparison of the data with those obtained from the structurally related poly(urethane urea) 1 revealed that the difference in hard segment structure does not significantly affect the potency for application as a biomaterial. Nevertheless, the small differences in hard block composition had a strong effect on the molecular recognition properties of the hydrogen bonding segments. High selectivity was found for poly(urea) 2 in which bisureidobutylene-functionalized azobenzene dye 3 was selectively incorporated while bisureidopentylene-functionalized azobenzene dye 4 was completely released. In contrast, the incorporation of both dyes in poly(urethane urea) 1 led in both cases to their gradual release in time. Thermal analysis of the polymers in combination with variable temperature infrared experiments indicated that the hard blocks in 1 showed a sharp melting point, whereas those in 2 showed a very broad melting trajectory. This suggests a more precise organization of the hydrogen bonding segments in the hard blocks of poly(urea) 2 compared to poly(urethane urea) 1 and explains the results from the molecular recognition experiments. Preliminary results revealed that a bisureidobutylene-functionalized GRGDS peptide showed more supramolecular interaction with the PCL-based poly(urea), containing the bisureidobutylene recognition unit, as compared to HMW PCL, lacking this recognition unit.

  17. Tribology and Friction of Soft Materials: Mississippi State Case Study

    DTIC Science & Technology

    2010-03-18

    elastomers , foams, and fabrics. B. Develop internal state variable (ISV) material model. Model will be calibrated using database and verified...Rubbers Natural rubber Santoprene (Vulcanized Elastomer ) Styrene Butadiene Rubber (SBR) Foams Polypropylene Foam Polyurethane Foam Fabrics Kevlar...Axially symmetric model PC Disk PC Numerical Implementation in FEM Codes Experiment SEM Optical methods ISV Model Void Nucleation FEM Analysis

  18. The fracture energy and some mechanical properties of a polyurethane elastomer.

    NASA Technical Reports Server (NTRS)

    Mueller, H. K.; Knauss, W. G.

    1971-01-01

    The energy required to form a unit of new surface in the fracture of a polyurethane elastomer is determined. The rate sensitivity of the material has been reduced by swelling it in toluene. This paper primarily describes the experimental work of measuring the lower limit of the fracture energy. With this value and the creep compliance as a basis, the rate dependence of fracture energy for the unswollen material has been determined. It is thus shown that the dependence of the fracture energy on the rate of crack propagation can be explained by energy dissipation around the tip of the crack. Good agreement between the theoretically and experimentally determined relationships for the rate-sensitive fracture energy is demonstrated.

  19. Plate-Impact Measurements of a Select Model Poly(urethane urea) Elastomer

    DTIC Science & Technology

    2013-06-01

    experiments, and data for polyurea (dashed line) are also included for comparison. .....................................8 List of Tables Table 1...6 1 1. Introduction High-performance polyurea elastomers have recently gained considerable interest throughout the U.S. Department of...studies on high-strain-rate mechanical deformation and modeling (3, 6–11), wherein most are focused on a commercial polyurea . The commercial polyureas

  20. Influence of Microstructure on Micro-/Nano-Mechanical Measurements of Select Model Transparent Poly(urethane urea) Elastomers

    DTIC Science & Technology

    2012-12-17

    results. Furthermore, instrumented impact indentation is also utilized for elucidation of dynamic damping characteristics in these PUUs. REPORT... characteristics in these PUUs. Published by Elsevier Ltd. 1. Introduction Elastomers are versatile materials that are vital to a broad range of...industrial, medical, and military applications, particularly in the areas of coating, adhesives, foams , and composite structures [1]. More specifically, high

  1. The Shock and Vibration Digest. Volume 18, Number 1

    DTIC Science & Technology

    1986-01-01

    polyurethanes reduced the loss factor and emphasized the correlation between molecular storage modulus by increasing the length of the structure and...one tempera- static deformations. He gave storage and loss ture/frequency range is difficult with copoly- moduli for a carbon black filled and an...has been described (18). The shear loss author states that the frequency dependence of and storage moduli of a void-filled polyurethane the elastomers

  2. Dielectric and Electromechanical Properties of Polyurethane and Polydimethylsiloxane Blends and their Nanocomposites

    NASA Astrophysics Data System (ADS)

    Cakmak, Enes

    Conventional means of converting electrical energy to mechanical work are generally considered too noisy and bulky for many contemporary technologies such as microrobotic, microfluidic, and haptic devices. Dielectric electroactive polymers (D-EAPs) constitude a growing class of electroactive polymers (EAP) that are capable of producing mechanica work induced by an applied electric field. D-EAPs are considered remarkably efficient and well suited for a wide range of applications, including ocean-wave energy harvesters and prosthetic devices. However, the real-world application of D-EAPs is very limited due to a number of factors, one of which is the difficulty of producing high actuation strains at acceptably low electric fields. D-EAPs are elastomeric polymers and produce large strain response induced by external electric field. The electromechanical properties of D-EAPs depend on the dielectric properties and mechanical properties of the D-EAP. In terms of dielectric behavior, these actuators require a high dielectric constant, low dielectric loss, and high dielectric strength to produce an improved actuation response. In addition to their dielectric properties, the mechanical properties of D-EAPs, such as elastic moduli and hysteresis, are also of importance. Therefore, material properties are a key feature of D-EAP technology. DE actuator materials reported in the literature cover many types of elastomers and their composites formed with dielectric fillers. Along with polymeric matrix materials, various ceramic, metal, and organic fillers have been employed in enhancing dielectric behavior of DEs. This work describes an effort to characterize elastomer blends and composites of different matrix and dielectric polymer fillers according to their dielectric, mechanical, and electromechanical responses. This dissertation focuses on the development and characterization of polymer-polymer blends and composites from a high-k polyurethane (PU) and polydimethylsiloxane (PDMS) elastomers. Two different routes were followed with respect to elastomer processing: The first is a simple solution blending of the two types of elastomers, and the second is based on preparation of composites from PU nanofiber webs and PDMS elastomer. Both the blends and the nanofiber web composites showed improved dielectric and actuation characteristics.

  3. Magnetostrictive and mechanical properties of Terfenol-D composites based on polymer

    NASA Astrophysics Data System (ADS)

    Rodríguez, C.; Cuevas, J. M.; Orue, I.; Vilas, J. L.; Barandiarán, J. M.; Fernandez-Gubieda, M. L.; Leon, L. M.

    2007-07-01

    Several composites, with outstanding magnetostrictive properties, have been synthesized combining a polyurethane base elastomer, with polycrystalline powders of Terfenol-D with a preferential orientation obtained by curing the material in a magnetic field. The morphology of the polymer matrix can be modified by changing the ratio of the hard /soft segment (F) of the polyurethane from 0.6 to 1.5. The influence of the morphology in the magnetostrictive response, for different composites, has been studied by following the storage modulus, E', in DMTA analysis. The magnetostrictive response has been studied as a function of Terfenol-D particle size and distribution (0-300, 212-300, 106-212, 0-38 μm), as well as a function of the content of the magnetostrictive particles in the composite. The highest response (about 1390 ppm) was obtained for a F=1.5 polyurethane and 50% wt of Terfenol-D of 212-300 μm particle size, oriented with a magnetic field of 0.5 T.

  4. Electrostrictive Graft Elastomers and Applications

    NASA Technical Reports Server (NTRS)

    Su, J.; Harrison, J. S.; St.Clair, T. L.; Bar-Cohen, Y.; Leary, S.

    1999-01-01

    Efficient actuators that are lightweight, high performance and compact are needed to support telerobotic requirements for future NASA missions. In this work, we present a new class of electromechanically active polymers that can potentially be used as actuators to meet many NASA needs. The materials are graft elastomers that offer high strain under an applied electric field. Due to its higher mechanical modulus, this elastomer also has a higher strain energy density as compared to previously reported electrostrictive polyurethane elastomers. The dielectric, mechanical and electromechanical properties of this new electrostrictive elastomer have been studied as a function of temperature and frequency. Combined with structural analysis using x-ray diffraction and differential scanning calorimetry on the new elastomer, structure-property interrelationship and mechanisms of the electric field induced strain in the graft elastomer have also been investigated. This electroactive polymer (EAP) has demonstrated high actuation strain and high mechanical energy density. The combination of these properties with its tailorable molecular composition and excellent processability makes it attractive for a variety of actuation tasks. The experimental results and applications will be presented.

  5. Polyurethanes from fluoroalkyl propyleneglycol polyethers

    NASA Technical Reports Server (NTRS)

    Trischler, F. D. (Inventor)

    1969-01-01

    A description is given of highly stable polyurethane polymers prepared by reacting a polyether with a diisocyanate. Compounded stocks of these polymers may be shaped and cured in conventional equipment used in the rubber industry. The solutions are dispersed gels prepared from the polymers and may be used for forming supported or unsupported films for coating fabrics or solid surfaces, and for forming adhesive bonds between a wide variety of plastics, elastomers, fabrics, metals, wood, leather, ceramics and the like.

  6. Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S. G.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1976-01-01

    Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc.

  7. Highly Sensitive, Transparent, and Durable Pressure Sensors Based on Sea-Urchin Shaped Metal Nanoparticles.

    PubMed

    Lee, Donghwa; Lee, Hyungjin; Jeong, Youngjun; Ahn, Yumi; Nam, Geonik; Lee, Youngu

    2016-11-01

    Highly sensitive, transparent, and durable pressure sensors are fabricated using sea-urchin-shaped metal nanoparticles and insulating polyurethane elastomer. The pressure sensors exhibit outstanding sensitivity (2.46 kPa -1 ), superior optical transmittance (84.8% at 550 nm), fast response/relaxation time (30 ms), and excellent operational durability. In addition, the pressure sensors successfully detect minute movements of human muscles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation of highly fluorinated diols containing ether linkages.

    NASA Technical Reports Server (NTRS)

    Rochow, S. E.; Stump, E. C., Jr.

    1970-01-01

    Hydroxy-terminated perfluoroethers and polyurethane resins derived from ethers have outstanding chemical resistance and good thermal properties. They can be used as potting compounds, coatings, and seals. The hydroxy-terminated ethers serve as intermediates in the synthesis of highly fluorinated elastomers and adhesives.

  9. Multiple-length-scale deformation analysis in a thermoplastic polyurethane

    PubMed Central

    Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.

    2015-01-01

    Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945

  10. Tunable Elastomers with an Antithrombotic Component for Cardiovascular Applications.

    PubMed

    Stahl, Alexander M; Yang, Yunzhi Peter

    2018-05-31

    This study reports the development of a novel family of biodegradable polyurethanes for use as tissue engineered cardiovascular scaffolds or blood-contacting medical devices. Covalent incorporation of the antiplatelet agent dipyridamole into biodegradable polycaprolactone-based polyurethanes yields biocompatible materials with improved thromboresistance and tunable mechanical strength and elasticity. Altering the ratio of the dipyridamole to the diisocyanate linking unit and the polycaprolactone macromer enables control over both the drug content and the polymer cross-link density. Covalent cross-linking in the materials achieves significant elasticity and a tunable range of elastic moduli similar to that of native cardiovascular tissues. Interestingly, the cross-link density of the polyurethanes is inversely related to the elastic modulus, an effect attributed to decreasing crystallinity in the more cross-linked polymers. In vitro characterization shows that the antiplatelet agent is homogeneously distributed in the materials and is released slowly throughout the polymer degradation process. The drug-containing polyurethanes support endothelial cell and vascular smooth muscle cell proliferation, while demonstrating reduced levels of platelet adhesion and activation, supporting their candidacy as promising substrates for cardiovascular tissue engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Flame resistant elastic elastomeric fiber

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Massucco, A. A.; Sidman, K. R.

    1974-01-01

    Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene.

  12. Design and Fabrication of an Elastomer Test Machine.

    DTIC Science & Technology

    1988-05-01

    provided by the Army Materials Technology Laboratories, were tested with the ETM at U.C.N.W. RUBBER 15 TP14AX 15 NAT25A 15 SBR26 NBR 6 FIBREGLASS REINFORCED...stationary, tilted and rotational) are comparable with 0001 AM and 0001 AN samples. SAMPLE NBR 62 This is a matt black, rubber based sample described as a... RUBBER 0001 AM 0001 AN 0001 AE -6- POLYURETHANE ECP 1 S ECP 2 Morbay 2690 Budd 20 1080 (Polyester) ) Gallagher Corporation A8 (Polyester) ) All

  13. Dynamics of supersonic microparticle impact on elastomers revealed by real–time multi–frame imaging

    PubMed Central

    Veysset, David; Hsieh, Alex J.; Kooi, Steven; Maznev, Alexei A.; Masser, Kevin A.; Nelson, Keith A.

    2016-01-01

    Understanding high–velocity microparticle impact is essential for many fields, from space exploration to medicine and biology. Investigations of microscale impact have hitherto been limited to post–mortem analysis of impacted specimens, which does not provide direct information on the impact dynamics. Here we report real–time multi–frame imaging studies of the impact of 7 μm diameter glass spheres traveling at 700–900 m/s on elastomer polymers. With a poly(urethane urea) (PUU) sample, we observe a hyperelastic impact phenomenon not seen on the macroscale: a microsphere undergoes a full conformal penetration into the specimen followed by a rebound which leaves the specimen unscathed. The results challenge the established interpretation of the behaviour of elastomers under high–velocity impact. PMID:27156501

  14. Elastomeric fluorinated polyurethane coatings for nontoxic fouling control.

    PubMed

    Brady, Robert F; Aronson, Carl L

    2003-04-01

    Nontoxic antifouling coatings have been investigated for many years as possible successors to toxic antifouling paints. Polymers containing fluorine or silicone have been tested and each has been shown to be partially effective for different reasons. This paper describes a new coating which combines the best features of fluorinated and silicone coatings and is non-toxic. Four fluorinated elastomers were prepared and tested for fouling resistance during a full fouling season. The surface energy and mechanical properties of each polymer were measured and correlated to fouling performance. One of the elastomers was shown to foul slowly, clean easily, be durable in the marine environment and organisms bonded to it only weakly. The surface energy, elastic modulus, and thickness of the elastomer may be varied as desired over wide ranges to meet differing performance requirements.

  15. Characterization of a resorbable poly(ester urethane) with biodegradable hard segments.

    PubMed

    Dempsey, David K; Robinson, Jennifer L; Iyer, Ananth V; Parakka, James P; Bezwada, Rao S; Cosgriff-Hernandez, Elizabeth M

    2014-01-01

    The rapid growth of regenerative medicine and drug delivery fields has generated a strong need for improved polymeric materials that degrade at a controlled rate into safe, non-cytotoxic by-products. Polyurethane thermoplastic elastomers offer several advantages over other polymeric materials including tunable mechanical properties, excellent fatigue strength, and versatile processing. The variable segmental chemistry in developing resorbable polyurethanes also enables fine control over the degradation profile as well as the mechanical properties. Linear aliphatic isocyanates are most commonly used in biodegradable polyurethane formulations; however, these aliphatic polyurethanes do not match the mechanical properties of their aromatic counterparts. In this study, a novel poly(ester urethane) (PEsU) synthesized with biodegradable aromatic isocyanates based on glycolic acid was characterized for potential use as a new resorbable material in medical devices. Infrared spectral analysis confirmed the aromatic and phase-separated nature of the PEsU. Uniaxial tensile testing displayed stress-strain behavior typical of a semi-crystalline polymer above its Tg, in agreement with calorimetric findings. PEsU outperformed aliphatic PCL-based polyurethanes likely due to the enhanced cohesion of the aromatic hard domains. Accelerated degradation of the PEsU using 0.1 M sodium hydroxide resulted in hydrolysis of the polyester soft segment on the surface, reduced molecular weight, surface cracking, and a 30% mass loss after four weeks. Calorimetric studies indicated a disruption of the soft segment crystallinity after incubation which corresponded with a drop in initial modulus of the PEsU. Finally, cytocompatibility testing with 3T3 mouse fibroblasts exhibited cell viability on PEsU films comparable to a commercial poly(ether urethane urea) after 24 h followed by 85% cell viability at 72 h. Overall, this new resorbable polyurethane shows strong potential for use in wide range of biomedical applications.

  16. Thermal Decomposition Model Development of EN-7 and EN-8 Polyurethane Elastomers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keedy, Ryan Michael; Harrison, Kale Warren; Cordaro, Joseph Gabriel

    Thermogravimetric analysis - gas chromatography/mass spectrometry (TGA- GC/MS) experiments were performed on EN-7 and EN-8, analyzed, and reported in [1] . This SAND report derives and describes pyrolytic thermal decomposition models for use in predicting the responses of EN-7 and EN-8 in an abnormal thermal environment.

  17. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials. © 2014 Wiley Periodicals, Inc.

  18. Formation of free radicals during mechanical degradation of elastomers.

    NASA Technical Reports Server (NTRS)

    Devries, K. L.; Williams, M. L.; Roylance, D. K.

    1971-01-01

    Solithane 113 (an amorphous polyurethane elastomer) was prepared by curing equal proportions of castor oil and trifunctional isocyanate for 6 hr 45 min at 170 F. The sample material was mechanically degraded by grinding below and above its glass transition point at liquid nitrogen and room temperatures. The EPR spectra of ground samples were recorded and the number of free radicals were determined by a computer double-integration of the recorded spectra and by a comparison of the values with those of a standard material. Curves of EPR spectra suggest that different molecular mechanisms may be active in degradation of this material below and above its glass transition temperature.

  19. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration

    PubMed Central

    Hafeman, Andrea E.; Li, Bing; Yoshii, Toshitaka; Zienkiewicz, Katarzyna; Davidson, Jeffrey M.; Guelcher, Scott A.

    2013-01-01

    Purpose The purpose of this work was to investigate the effects of triisocyanate composition on the biological and mechanical properties of biodegradable, injectable polyurethane scaffolds for bone and soft tissue engineering. Methods Scaffolds were synthesized using reactive liquid molding techniques, and were characterized in vivo in a rat subcutaneous model. Porosity, dynamic mechanical properties, degradation rate, and release of growth factors were also measured. Results Polyurethane scaffolds were elastomers with tunable damping properties and degradation rates, and they supported cellular infiltration and generation of new tissue. The scaffolds showed a two-stage release profile of platelet-derived growth factor, characterized by a 75% burst release within the first 24 h and slower release thereafter. Conclusions Biodegradable polyurethanes synthesized from triisocyanates exhibited tunable and superior mechanical properties compared to materials synthesized from lysine diisocyanates. Due to their injectability, biocompatibility, tunable degradation, and potential for release of growth factors, these materials are potentially promising therapies for tissue engineering. PMID:18516665

  20. Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly

    PubMed Central

    Chen, Jing; Guo, Baolin; Eyster, Thomas W.; Ma, Peter X.

    2015-01-01

    Biomedical electroactive elastomers with a modulus similar to that of soft tissues are highly desirable for muscle, nerve, and other soft tissue replacement or regeneration, but have rarely been reported. In this work, superiorly stretchable electroactive polyurethane-urea elastomers were designed based on poly(lactide), poly(ethylene glycol), and aniline trimer (AT). A strain at break higher than 1600% and a modulus close to soft tissues was achieved from these copolymers. The mechanisms of super stretchability of the copolymer were systematically investigated. Crystallinity, chemical cross-linking, ionic cross-linking and hard domain formation were examined using differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) measurements and transmission electron microscopy (TEM). The sphere-like hard domains self-assembled from AT segments were found to provide the crucial physical interactions needed for the novel super elastic material formation. These super stretchable copolymers were blended with conductive fillers such as polyaniline nanofibers and nanosized carbon black to achieve a high electric conductivity of 0.1 S/cm while maintaining an excellent stretchability and a modulus similar to that of soft tissues (lower than 10 MPa). PMID:26692638

  1. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis and physico-mechanical properties for two series of linear polyurethane elastomers built from polyol polyesters which contain bio-based o-hydroxytetradecanoic acid (o-HOC14) repeat units. Varied quantities of o-HOC14 was converted by a condensation polymerization catalyzed by titanium tetraisopropoxide (Ti[OiPr]4) to polyester polyol with Mn around 2K. By end-cap the polyols with excess amount of 1,4-butanediol, low number of carbonyl end group can be achieved so that the polyols can be further used as soft segment of thermoplastic polyurethanes (TPU). We have studied the thermo-mechanical properties of two-series polyurethanes with different polyester polyols or polyester polyols mixtures. With increasing amount of o-HOC14 content in the soft segment polyols of polyurethanes, tensile strength of the polyurethanes kept increasing from 30MPa to 470MPa while at the same time their elongation ratio decreased from 900% to 300%. Their mechanical behavior shifted from elastomer to semi-crystalline plastic. In the second section about polyether polyurethanes, PC14-OH and poly(tetrahydrofuran) mixtures were used as soft segment in linear polyurethane elastomer synthesis. Similar thermal and mechanical property changing trends were observed with increasing amount of PC14-OH up to 30 wt% of total soft segments. In this study, the functions of PC14-OH in thermoplastic polyurethane elastomers were identified, and there are several benefits of incorporating this long chain fatty acid. In the third study, seven amphiphilic alternating oligopeptides were synthesized via chemo-enzymatic routes. Four proteases (papain, bromelain, alpha-chymotrypsin, and trypsin) were evaluated to determine their efficiency in synthesizing alternating peptides. The first series is hydrophobic-anionic alternating oligopeptides targeting for self assembly smart material design. So far, beta-sheet secondary structure of the anionic alternating oligopeptides was not observed very clearly at low pH comparing to the cationic alternating oligopeptides (KL)x, which is probably due to the short chain length of the oligopeptides. Combination of cationic and anionic alternating oligopeptides has been tested by (KL)x and (LD)x mixtures at 1:1 weight ratio, beta-sheet secondary structure started to appear at neutral pH. The preliminary CD results of the mixtures have shown the potential to manipulate self assembly behavior at different pHs. The second series is alternating oligo(Lys-Trp) targeting for antimicrobial agent design. The alternating (KW)x was successfully synthesized by alpha-chymotrypsin in mixed solvent medium. Chain length of (KW)x can be varied when using different mixed solvent medium. In order to increase the solubility of (KW)x-OEt, C-terminal ethyl ester moiety was modified by reaction with ethylene diamine. Antimicrobial activities of (KW)x with different chain lengths have been tested against E.coli and S. aureus. Our work utilizes a simplified synthetic method to prepare alternating peptides at the cost of chain length uniformity. However, (KW)x-OEt (n=3--6) alternating peptide mixtures still possesses quite good antimicrobial activity while the preparation method is much more easier and greener, which means this method is more economical and environmental friendly. Moreover, the adjustment of reaction conditions and proteases can successfully enhance the control over KW alternating peptide chain length to better achieve more antimicrobial active products. (Abstract shortened by UMI.).

  2. Chemiluminescence as a condition monitoring method for thermal aging and lifetime prediction of an HTPB elastomer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, Kenneth Todd; Minier, Leanna M. G.; Celina, Mathias C.

    Chemiluminescence (CL) has been applied as a condition monitoring technique to assess aging related changes in a hydroxyl-terminated-polybutadiene based polyurethane elastomer. Initial thermal aging of this polymer was conducted between 110 and 50 C. Two CL methods were applied to examine the degradative changes that had occurred in these aged samples: isothermal 'wear-out' experiments under oxygen yielding initial CL intensity and 'wear-out' time data, and temperature ramp experiments under inert conditions as a measure of previously accumulated hydroperoxides or other reactive species. The sensitivities of these CL features to prior aging exposure of the polymer were evaluated on the basismore » of qualifying this method as a quick screening technique for quantification of degradation levels. Both the techniques yielded data representing the aging trends in this material via correlation with mechanical property changes. Initial CL rates from the isothermal experiments are the most sensitive and suitable approach for documenting material changes during the early part of thermal aging.« less

  3. Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents

    NASA Astrophysics Data System (ADS)

    Ma, Dai-Wei; Zhu, Rong; Wang, Yi-Yu; Zhang, Zong-Rui; Wang, Xin-Yu

    2015-12-01

    In this paper, polyurethane (PU) materials with different contents of hard segment (20%, 25%, 30%) were prepared based on hexamethylene diisocyanate and polycarbonate diols by solution polymerization. The obtained polycarbonate-urethane (PCU) elastomers were characterized by very good hydrophobic property and excellent resistance to hydrolysis. Hemolysis, recalification time and platelet-rich plasma adhesion were used to evaluate the blood compatibility of the materials. L929 cells cultured with leach liquor of these PU membranes were selected to perform the cytotoxicity experiments. The results indicate that the hemolysis rates of PU membranes are all less than 5%, which can meet the requirement of the national standards for biomaterials. However, compared with 20% and 30% groups, the recalification time of the sample containing 25% hard segment is longer, while the number of platelet adhesion is less. Additionally, cells cultured in the leach liquor of PU membranes with 25% hard segment proliferated relatively more thriving, meaning that this proportion of the material has the lowest cytotoxicity.

  4. Thermal and mechanical properties of reduced graphene oxide/polyurethane nanocomposite.

    PubMed

    Pokharel, Pashupati; Lee, Dai Soo

    2014-08-01

    Reduced graphene oxide (RGO) based polyurethane (PU) nanocomposites have been successfully prepared without using solvent by in-situ polymerization. RGO was derived from microwave (MW) irradiation of graphite oxide (GO) powder prepared by a modified Hummer's method. A minimum amount of poly(tetramethylene glycol) (PTMEG) was added during the dispersion of RGO in a solvent to stabilize the graphene sheets and to prevent RGO from the restacking after the removal of the solvent. After the reaction of RGO with 4,4'-diphenylmethane diisocyanate (MDI), we obtained the concentrate of RGO in MDI with a minimum amount of PTMEG. Our method facilitated the fine dispersion of RGO in PU elastomers and improved the interfacial strength between RGO and PU. With the incorporation of 2.0 wt% of RGO, the tensile strength and Young's modulus of the PU nanocomposites increased by 30% and 50%, respectively without sacrificing the elongation at break. It was found that the crystalline portion of hard segments of the PU was lowered by the RGO in the nanocomposites.

  5. High-linearity piezoresistive response of mechanically strong graphene-based elastomer

    NASA Astrophysics Data System (ADS)

    Yuanzheng, Luo; Buyin, Li; Xiaoqi

    2017-05-01

    Traditional additive-free graphene bulk materials based on mono- three dimensional(3D) graphene networks type are fragile in most cases, which is unfavorable for their potential applications. Here we present compressible graphene foams (CGF) with superior properties endowed by the hierarchical porous structure, which taking graphene sheets as an inorganic embedding material and polyurethane sponge (PUS) as a polymer open-framework. The preparation process utilized a dip-coating method associated with directional freezing followed by lyophilization. The as-synthesized CGF not only possess a combination of ultralow density and excellent electrical conductivity, but it also can withstand large strains (>99%) without permanent deformation or fracture. We believe that these sponge/graphene embeddable multifunctional nanocomposites will expand practical applications of graphene monolith in the future.

  6. Biocompatible polyurethane/thiacalix[4]arenes functionalized Fe3O4 magnetic nanocomposites: Synthesis and properties.

    PubMed

    Mohammadi, Abbas; Barikani, Mehdi; Lakouraj, Moslem Mansour

    2016-09-01

    In this study, a series of magnetic polyurethane/Fe3O4 elastomer nanocomposites were prepared by covalently embedding novel thiacalix[4]arenes (TC4As) functionalized Fe3O4 nanoparticles (TC4As-Fe3O4) which contain macrocycles with reactive hydroxyl groups. Surface functionalization of Fe3O4 nanoparticles with TC4As macrocycles as unique reactive surface modifier not only gives specific characteristics to Fe3O4 nanoparticles but also improves the interphase interaction between nanoparticles and the polyurethane matrices through covalent attachment of polymer chains to nanoparticle surfaces. The novel synthesized TC4As-Fe3O4 nanoparticles were characterized by FTIR, XRD, TGA, VSM and SEM analysis. Furthermore, the effect of functionalization of Fe3O4 nanoparticles on the various properties of resulting nanocomposites was studied by XRD, TGA, DMTA, SEM, and a universal tensile tester. It was found that the functionalization of nanoparticles with TC4As affords better mechanical and thermal properties to polyurethane nanocomposites in comparison with unmodified nanoparticles. The SEM analysis showed finer dispersion of TC4As-Fe3O4 nanoparticles than unmodified Fe3O4 nanoparticles within the polyurethane matrices, which arising from formation of covalent bonding between TC4As functionalized Fe3O4 nanoparticles and polyurethane matrices. Moreover, the investigation of in vitro biocompatibility of novel nanocomposites showed that these samples are excellent candidate for biomedical use. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when themore » orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.« less

  8. Dynamics of uniaxially oriented elastomers using dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Hyungki; Fragiadakis, Daniel; Martin, Darren; Runt, James

    2009-03-01

    We summarize our initial dielectric spectroscopy investigation of the dynamics of oriented segmented polyurethanes and crosslinked polyisoprene elastomers. A specially designed uniaxial stretching rig is used to control the draw ratio, and the electric field is applied normal to the draw direction. For the segmented PUs, we observe a dramatic reduction in relaxation strength of the soft phase segmental process with increasing extension ratio, accompanied by a modest decrease in relaxation frequency. Crosslinking of the polyisoprene was accomplished with dicumyl peroxide and the dynamics of uncrosslinked and crosslinked versions are investigated in the undrawn state and at different extension ratios. Complimentary analysis of the crosslinked PI is conducted with wide angle X- ray diffraction to examine possible strain-induced crystallization, DSC, and swelling experiments. Quantitative analysis of relaxation strengths and shapes as a function of draw ratio will be discussed.

  9. Localized gene delivery using antibody tethered adenovirus from polyurethane heart valve cusps and intra-aortic implants.

    PubMed

    Stachelek, S J; Song, C; Alferiev, I; Defelice, S; Cui, X; Connolly, J M; Bianco, R W; Levy, R J

    2004-01-01

    The present study investigated a novel approach for gene therapy of heart valve disease and vascular disorders. We formulated and characterized implantable polyurethane films that could also function as gene delivery systems through the surface attachment of replication defective adenoviruses using an anti-adenovirus antibody tethering mechanism. Our hypothesis was that we could achieve site-specific gene delivery to cells interacting with these polyurethane implants, and thereby demonstrate the potential for intravascular devices that could also function as gene delivery platforms for therapeutic vectors. Previous research by our group has demonstrated that polyurethane elastomers can be derivatized post-polymerization through a series of chemical reactions activating the hard segment amide groups with alkyl bromine residues, which can enable a wide variety of subsequent chemical modifications. Furthermore, prior research by our group investigating gene delivery intravascular stents has shown that collagen-coated balloon expandable stents can be configured with anti-adenovirus antibodies via thiol-based chemistry, and can then tether adenoviral vectors at doses that lead to high levels of localized arterial neointima expression, but with virtually no distal spread of vector. Thus, we sought to create two-device configurations for our investigations building on this previous research. (1) Polyurethane films coated with Type I collagen were thiol activated to permit covalent attachment of anti-adenovirus antibodies to enable gene delivery via vector tethering. (2) We also formulated polyurethane films with direct covalent attachment of anti-adenovirus antibodies to polyurethane hard segments derivatized with alkyl-thiol groups, thereby also enabling tethering of replication-defective adenoviruses. Both formulations demonstrated highly localized and efficient transduction in cell culture studies with rat arterial smooth muscle cells. In vivo experiments with collagen-coated polyurethane films investigated an abdominal aorta implant model in pigs using a button configuration that simulated the blood contacting environment of a vascular graft. One week explants of the collagen-coated polyurethane films demonstrated 14.3+/-2.5% of neointimal cells on the surface of the implant transduced with green fluorescent protein - adenovirus (AdGFP) vector loadings of 1 x 10(8) PFU. PCR studies demonstrated no detectable vector DNA in blood or distal organs. Similarly, polyurethane films with direct attachment of antivector antibodies to the surface were used in sheep pulmonary valve leaflet replacement studies, simulating the blood contacting environment of a prosthetic heart valve cusp. Polyurethane films with antibody tethered AdGFP vector (10(8) PFU) demonstrated 25.1+/-5.7% of attached cells transduced in these 1 week studies, with no detectable vector DNA in blood or distal organs. In vivo GFP expression was confirmed with immunohistochemistry. It is concluded that site-specific intravascular delivery of adenoviral vectors for gene therapy can be achieved with polyurethane implants utilizing the antivector antibody tethering mechanism.

  10. Clear Castable Polyurethane Elastomer for Fabrication of Microfluidic Devices

    PubMed Central

    Domansky, Karel; Leslie, Daniel C.; McKinney, James; Fraser, Jacob P.; Sliz, Josiah D.; Hamkins-Indik, Tiama; Hamilton, Geraldine A.; Bahinski, Anthony; Ingber, Donald E.

    2013-01-01

    Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules. PMID:23954953

  11. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications.

    PubMed

    Hung, Kun-Che; Tseng, Ching-Shiow; Hsu, Shan-Hui

    2014-10-01

    Biodegradable materials that can undergo degradation in vivo are commonly employed to manufacture tissue engineering scaffolds, by techniques including the customized 3D printing. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. So far, there is no investigation on water-based 3D printing for synthetic materials. In this study, the water dispersion of elastic and biodegradable polyurethane (PU) nanoparticles is synthesized, which is further employed to fabricate scaffolds by 3D printing using polyethylene oxide (PEO) as a viscosity enhancer. The surface morphology, degradation rate, and mechanical properties of the water-based 3D-printed PU scaffolds are evaluated and compared with those of polylactic-co-glycolic acid (PLGA) scaffolds made from the solution in organic solvent. These scaffolds are seeded with chondrocytes for evaluation of their potential as cartilage scaffolds. Chondrocytes in 3D-printed PU scaffolds have excellent seeding efficiency, proliferation, and matrix production. Since PU is a category of versatile materials, the aqueous 3D printing process developed in this study is a platform technology that can be used to fabricate devices for biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Indoor air pollution evaluation with emphasize on HDI and biological assessment of HDA in the polyurethane factories.

    PubMed

    Mirmohammadi, Mirtaghi; Hakimi Ibrahim, M; Ahmad, Anees; Kadir, Mohd Omar Abdul; Mohammadyan, M; Mirashrafi, S B

    2010-06-01

    Today, many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them which is widely used in the polyurethane factories is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Hexamethylene diamine (HDA) is metabolite of hexamethylene diisocyanate (HDI). It is an excretory material by worker's urine who is exposed to HDI. Around 100 air samples were collected from five defined factories by midget impinger which contained dimethyl sulfoxide absorbent as a solvent and tryptamine as reagent. Samples were analyzed by high-performance liquid chromatography with EC\\UV detector using NIOSH 5522 method of sampling. Also, 50 urine samples collected from workers were also analyzed using William's biological analysis method. The concentration of HDI into all air samples were more than 88 microg/m(3), and they have shown high concentration of pollutant in the workplaces in comparison with NIOSH standard, and all of the workers' urine were contaminated by HDA. The correlation and regression test were used to obtain statistical model for HDI and HDA, which is useful for the prediction of diisocyanates pollution situation in the polyurethane factories.

  13. A new design concept for wrist arthroplasty.

    PubMed

    Shepherd, D E T; Johnstone, A

    2005-01-01

    The wrist joint is frequently affected by arthritis, which leads to pain, loss of function and ultimately deformity. Various designs of wrist arthroplasty have been introduced to attempt to relieve pain and provide a functional range of motion. The first generation of wrist implant was a one-piece silicone elastomer. Later generations have designs that have two parts that articulate against each other. However, wrist implants have not achieved the same clinical success to date, compared with hip and knee implants, and there is a high revision rate associated with them. This paper describes a new design concept for wrist arthroplasty, based around the idea of combining the principles of an articulating implant with that of a flexible elastomer implant. The design consists of assembling a radial, carpal/metacarpal, plate and flexible parts together. The radial and carpal/metacarpal parts are to be made from ultra high molecular weight polyethylene. The bearing surfaces of the radial and carpal/metacarpal parts articulate against the flat surfaces of the plate, made from cobalt chrome molybdenum alloy. The radius on the bearing surface of the radial part enables flexion/extension, while the radius on the carpal/metacarpal surface enables radial/ulnar deviation. The articulation of the carpal/metacarpal part against the plate also allows for rotation as well as flexion/extension. The flexible part, made from Elast-Eon, which is a silicone polyurethane elastomer, is inserted through the hole of the plate and into the holes of the radial and carpal/metacarpal parts.

  14. Preparation and Properties of Polyurethane and Polyurethaneurea Elastomers from Methylene Bis(4-Cyclohexylisocyanate).

    DTIC Science & Technology

    1983-10-01

    EMILY A. MCHUGH , RICHARD W. MATTON, MARK A. CLEAVES, DANIEL P. MACK, and NATHANIEL S. SCHNEIDER POLYMER RESEARCH DIVISION Octoer 1983 DT’C E’’ i 0...AUTHOR(e) S. CONTRACT OR GRANT NUMBER(O) Catherine A. Byrne, Emily A. McHugh , Richard W. Matton, Mark A. Cleaves, Daniel P. Mack,* and Nathaniel S...impregnated Poly-plating, Inc. see text electroless nickel 4610 Westover Rd. Westover Industrial Air Park Chicopee, MA 01022 Plasm-deposited Dr. N. Morosoff

  15. Impregnation of soft biological specimens with thermosetting resins and elastomers.

    PubMed

    von Hagens, G

    1979-06-01

    A new method for impregnation of biological specimens with thermosetting resins and elastomers is described. The method has the advantage that the original relief of the surface is retained. The impregnation is carried out by utilizing the difference between the high vapor tension of the intermedium (e.g., methylene chloride) and the low vapor tension of the solution to be polymerized. After impregnation, the specimen is subject to polymerization conditions without surrounding embedding material. The optical and mechanical properties can be selected by proper choice from various kinds of resins and different procedures, for example, by complete or incomplete impregnation. Acrylic resins, polyester resins, epoxy resins, polyurethanes and silicone rubber have been found suitable for the method. Excellent results have been obtained using transparent silicone rubber since after treatment the specimens are still flexible and resilient, and have retained their natural appearance.

  16. Degradable Segmented Polyurethane Elastomers for Bone Tissue Engineering: Effect of Polycaprolactone Content

    PubMed Central

    Kavlock, Katherine D.; Whang, Kyumin; Guelcher, Scott A.; Goldstein, Aaron S.

    2016-01-01

    Segmented polyurethanes (PURs) – consisting of degradable poly(α-hydroxy ester) soft segments and amino acid-derived chain extenders – are biocompatible elastomers with tunable mechanical and degradative properties suitable for a variety of tissue engineering applications. In this study, a family of linear PURs synthesized from poly(ε-caprolactone) (PCL) diol, 1,4-diisocyanobutane and tyramine with theoretical PCL contents of 65 to 80 wt% were processed into porous foam scaffolds and evaluated for their ability to support osteoblastic differentiation in vitro. Differential scanning calorimetry and mechanical testing of the foams indicated increasing polymer crystallinity and compressive modulus with increasing PCL content. Next, bone marrow stromal cells (BMSCs) were seeded into PUR scaffolds – as well as poly(lactic-co-glycolic acid) (PLGA) scaffolds – and maintained under osteogenic conditions for 14 and 21 days. Analysis of cell number indicated a systematic decrease in cell density with increasing PUR stiffness at both 14 and 21 days in culture. However, at these same time points the relative mRNA expression for the bone-specific proteins osteocalcin and the growth factors bone morphogenetic protein-2 and vascular endothelial growth factor gene expression were similar among the PURs. Finally, prostaglandin E2 production, alkaline phosphatase activity, and osteopontin mRNA expression were highly elevated on the most-crystalline PUR scaffold as compared to the PLGA and PUR scaffolds. These results suggest that both the modulus and crystallinity of the PUR scaffolds influence cell proliferation and the expression of osteoblastic proteins. PMID:22304961

  17. Injectable Polyurethane Composite Scaffolds Delay Wound Contraction and Support Cellular Infiltration and Remodeling in Rat Excisional Wounds

    PubMed Central

    Adolph, Elizabeth J.; Hafeman, Andrea E.; Davidson, Jeffrey M.; Nanney, Lillian B.; Guelcher, Scott A.

    2011-01-01

    Injectable scaffolds present compelling opportunities for wound repair and regeneration due to their ability to fill irregularly shaped defects and deliver biologics such as growth factors. In this study, we investigated the properties of injectable polyurethane biocomposite scaffolds and their application in cutaneous wound repair using a rat excisional model. The scaffolds have a minimal reaction exotherm and clinically relevant working and setting times. Moreover, the biocomposites have mechanical and thermal properties consistent with rubbery elastomers. In the rat excisional wound model, injection of settable biocomposite scaffolds stented the wounds at early time points, resulting in a regenerative rather than a scarring phenotype at later time points. Measurements of wound width and thickness revealed that the treated wounds were less contracted at day 7 compared to blank wounds. Analysis of cell proliferation and apoptosis showed that the scaffolds were biocompatible and supported tissue ingrowth. Myofibroblast formation and collagen fiber organization provided evidence that the scaffolds have a positive effect on extracellular matrix remodeling by disrupting the formation of an aligned matrix under elevated tension. In summary, we have developed an injectable biodegradable polyurethane biocomposite scaffold that enhances cutaneous wound healing in a rat model. PMID:22105887

  18. Evaluation and prediction of long term space environmental effects on non-metallic materials

    NASA Technical Reports Server (NTRS)

    Shepic, J. A.

    1980-01-01

    The effects of prolonged spacecraft materials were determined and the results compared with predicted behavior. The adhesion and dielectric properties of poly-thermaleze and therm-amid magnet wire insulation were studied. The tensile properties of Lexan, polyurethane, polyethelyne, lucite, and nylon were studied well as the flexure and tensile characteristic of Adlock 851, a phenolic laminate. The volume resistivity of Cho-seal, a conductive elastomer was also a examined. Tables show the time exposed at thermal vacuum, and the high, low, and average MPA and KSI.

  19. Poly(dimethylsiloxane)-Polyurethane Elastomers: Synthesis and Properties of Segmented Copolymers and Related Zwitterionomers.

    DTIC Science & Technology

    1984-11-01

    8217-niethylenediphenylene diisocyanate (MDI) which was chain extended with either 1,4-butanediol (BD) or N -me thyl diethanol ami ne . - g.. ( MDEA ). The MDEA -extended...and then vacuum distilled. Tetrahydrofuran %S 9 4 (Aldrich) was dehydrated over calcium hydride. N -methyldiethanolamne ( MDEA ) (Aldrich) at 97 percent...2CM 2- N -CM2CH OH or MOCH 2CM 2CM2CM2OH MDEA B -EL-MTPS-( -MDI-BD--K-DI-+- TI x or nI X Schem~e 1. Synthetic sche-me for polysiloxa-e-pclyurethane

  20. Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications

    PubMed Central

    Yildirimer, Lara; Buanz, Asma; Gaisford, Simon; Malins, Edward L.; Remzi Becer, C.; Moiemen, Naiem; Reynolds, Gary M.; Seifalian, Alexander M.

    2015-01-01

    Biodegradable elastomers are a popular choice for tissue engineering scaffolds, particularly in mechanically challenging settings (e.g. the skin). As the optimal rate of scaffold degradation depends on the tissue type to be regenerated, next-generation scaffolds must demonstrate tuneable degradation patterns. Previous investigations mainly focussed on the integration of more or less hydrolysable components to modulate degradation rates. In this study, however, the objective was to develop and synthesize a family of novel biodegradable polyurethanes (PUs) based on a poly(ε-caprolactone urea)urethane backbone integrating polyhedral oligomeric silsesquioxane (POSS-PCLU) with varying amounts of hard segments (24%, 28% and 33% (w/v)) in order to investigate the influence of hard segment chemistry on the degradation rate and profile. PUs lacking POSS nanoparticles served to prove the important function of POSS in maintaining the mechanical structures of the PU scaffolds before, during and after degradation. Mechanical testing of degraded samples revealed hard segment-dependent modulation of the materials’ viscoelastic properties, which was attributable to (i) degradation-induced changes in the PU crystallinity and (ii) either the presence or absence of POSS. In conclusion, this study presents a facile method of controlling degradation profiles of PU scaffolds used in tissue engineering applications. PMID:26463421

  1. Radiation-induced changes affecting polyester based polyurethane binder

    NASA Astrophysics Data System (ADS)

    Pierpoint, Sujita Basi

    The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion of the primary alkyl radical to the allyl species, prompt trans-vinylene production in tetramethylene units, and hydrogen atom abstraction by alkyl radicals on neighboring chains. The production of unsaturation is substantiated by the EPR studies. Finally, a free radical mechanism is proposed for the production of cross-linking in polyester polyurethane.

  2. Impact fragmentation of polyurethane and polypropylene cylinder

    NASA Astrophysics Data System (ADS)

    Kishimura, Hiroaki; Noguchi, Daisuke; Preechasupanya, Worrayut; Matsumoto, Hitoshi

    2013-11-01

    The impact fragmentation of a bulk polyurethane elastomer (PU) and polypropylene (PP) cylinder have been investigated using a Cu plate projectile launched by a propellant gun at a velocity of 0.53-1.4 km/s. A projectile drills into a PU sample and forms a cavity in the sample. A small number of tiny fragments are formed. When the projectile smashes in at 1.4 km/s, the PU cylinder bursts and PU fragments form. On the other hand, a brittle fracture occurs on the PP cylinder. The mass of fragments from the PU sample generated at a lower impact velocity is distributed in the lognormal form, whereas the mass of fragments from the PU sample generated by a 1.4 km/s impact follows a power-law distribution. The fragment mass distribution of the PP sample generated at a lower impact velocity obeys the power-law form, whereas that generated at a higher impact velocity follows the lognormal form.

  3. The Production of Solid Dosage Forms from Non-Degradable Polymers.

    PubMed

    Major, Ian; Fuenmayor, Evert; McConville, Christopher

    2016-01-01

    Non-degradable polymers have an important function in medicine. Solid dosage forms for longer term implantation require to be constructed from materials that will not degrade or erode over time and also offer the utmost biocompatibility and biostability. This review details the three most important non-degradable polymers for the production of solid dosage forms - silicone elastomer, ethylene vinyl acetate and thermoplastic polyurethane. The hydrophobic, thermoset silicone elastomer is utilised in the production of a broad range of devices, from urinary catheter tubing for the prevention of biofilm to intravaginal rings used to prevent HIV transmission. Ethylene vinyl acetate, a hydrophobic thermoplastic, is the material of choice of two of the world's leading forms of contraception - Nuvaring® and Implanon®. Thermoplastic polyurethane has such a diverse range of building blocks that this one polymer can be hydrophilic or hydrophobic. Yet, in spite of this versatility, it is only now finding utility in commercialised drug delivery systems. Separately then one polymer has a unique ability that differentiates it from the others and can be applied in a specific drug delivery application; but collectively these polymers provide a rich palette of material and drug delivery options to empower formulation scientists in meeting even the most demanding of unmet clinical needs. Therefore, these polymers have had a long history in controlled release, from the very beginning even, and it is pertinent that this review examines briefly this history while also detailing the state-of-the-art academic studies and inventions exploiting these materials. The paper also outlines the different production methods required to manufacture these solid dosage forms as many of the processes are uncommon to the wider pharmaceutical industry.

  4. Effect of Powder Size and Shape on the SLS Processability and Mechanical Properties of a TPU Elastomer

    NASA Astrophysics Data System (ADS)

    Dadbakhsh, Sasan; Verbelen, Leander; Vandeputte, Tom; Strobbe, Dieter; Van Puyvelde, Peter; Kruth, Jean-Pierre

    This work investigates the influence of powder size/shape on selective laser sintering (SLS) of a thermoplastic polyurethane (TPU) elastomer. It examines a TPU powder which had been cryogenically milled in two different sizes; coarse powder (D50∼200μm) with rough surfaces in comparison with a fine powder (D50∼63μm) with extremely fine flow additives. It is found that the coarse powder coalesces at lower temperatures and excessively smokes during the SLS processing. In comparison, the fine powder with flow additives is better processable at significantly higher powder bed temperatures, allowing a lower optimum laser energy input which minimizes smoking and degradation of the polymer. In terms of mechanical properties, good coalescence of both powders lead to parts with acceptable shear-punch strengths compared to injection molded parts. However, porosity and degradation from the optimum SLS parameters of the coarse powder drastically reduce the tensile properties to about one-third of the parts made from the fine powders as well as those made by injection molding (IM).

  5. The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

    PubMed Central

    Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin

    2011-01-01

    The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962

  6. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.

    PubMed

    Chen, Jing; Dong, Ruonan; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-12-30

    It remains a challenge to develop electroactive and elastic biomaterials to mimic the elasticity of soft tissue and to regulate the cell behavior during tissue regeneration. We designed and synthesized a series of novel electroactive and biodegradable polyurethane-urea (PUU) copolymers with elastomeric property by combining the properties of polyurethanes and conducting polymers. The electroactive PUU copolymers were synthesized from amine capped aniline trimer (ACAT), dimethylol propionic acid (DMPA), polylactide, and hexamethylene diisocyanate. The electroactivity of the PUU copolymers were studied by UV-vis spectroscopy and cyclic voltammetry. Elasticity and Young's modulus were tailored by the polylactide segment length and ACAT content. Hydrophilicity of the copolymer films was tuned by changing DMPA content and doping of the copolymer. Cytotoxicity of the PUU copolymers was evaluated by mouse C2C12 myoblast cells. The myogenic differentiation of C2C12 myoblasts on copolymer films was also studied by analyzing the morphology of myotubes and relative gene expression during myogenic differentiation. The chemical structure, thermal properties, surface morphology, and processability of the PUU copolymers were characterized by NMR, FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and solubility testing, respectively. Those biodegradable electroactive elastic PUU copolymers are promising materials for repair of soft tissues such as skeletal muscle, cardiac muscle, and nerve.

  7. Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent

    NASA Astrophysics Data System (ADS)

    An, Suyeong; Kim, Byoungsoo; Lee, Jonghwi

    2017-07-01

    Porous materials with surprisingly diverse structures have been utilized in nature for many functional purposes. However, the structures and applications of porous man-made polymer materials have been limited by the use of processing techniques involving foaming agents. Herein, we demonstrate for the first time the outstanding hardness and modulus properties of an elastomer that originate from the novel processing approach applied. Polyurethane films of 100-μm thickness with biomimetic ordered porous structures were prepared using directional melt crystallization of a solvent and exhibited hardness and modulus values that were 6.8 and 4.3 times higher than those of the random pore structure, respectively. These values surpass the theoretical prediction of the typical model for porous materials, which works reasonably well for random pores but not for directional pores. Both the ordered and random pore structures exhibited similar porosities and pore sizes, which decreased with increasing solution concentration. This unexpectedly significant improvement of the hardness and modulus could open up new application areas for porous polymeric materials using this relatively novel processing technique.

  8. Collagenase-labile polyurethane urea synthesis and processing into hollow fiber membranes.

    PubMed

    Fu, Hui-Li; Hong, Yi; Little, Steven R; Wagner, William R

    2014-08-11

    As a means to stimulate wound healing, a hollow fiber membrane system might be placed within a wound bed to provide local and externally regulated controlled delivery of regenerative factors. After sufficient healing, it would be desirable to triggerably degrade these fibers as opposed to pulling them out. Accordingly, a series of enzymatically degradable thermoplastic elastomers was developed as potential hollow fiber base material. Polyurethane ureas (PUUs) were synthesized based on 1, 4-diisocyanatobutane, polycaprolactone (PCL) diol and polyethylene glycol (PEG) at different molar fractions as soft segments, and collagenase-sensitive peptide GGGLGPAGGK-NH2 as a chain extender (defined as PUU-CLxEGy-peptide, where x and y are the respective molar percents). In these polymers, PEG in the polymer backbone decreased tensile strengths and initial moduli of solvent-cast films in the wet state, while increasing water absorption. Collagenase degradation was observed at 75% relative PEG content in the soft segment. Control PUUs with putrescine or nonsense peptide chain extenders did not degrade acutely in collagenase. Conduits electrospun from PUU-CL25EG75-peptide and PUU-CL50EG50-peptide exhibited appropriate mechanical strength and sustained release of a model protein from the tube lumen for 7 days. Collapse of PUU-CL25EG75-peptide tubes occurred after collagenase degradation for 3 days. In conclusion, through molecular design, synthesis and characterization, a collagenase-labile PUU-CL25EG75-peptide polymer was identified that exhibited the desired traits of triggerable lability, processability, and the capacity to act as a membrane to facilitate controlled protein release.

  9. Synthesis and Characterization of Elastin-Mimetic Hybrid Polymers with Multiblock, Alternating Molecular Architecture and Elastomeric Properties

    PubMed Central

    Grieshaber, Sarah E.; Farran, Alexandra J. E.; Lin-Gibson, Sheng; Kiick, Kristi L.; Jia, Xinqiao

    2009-01-01

    We are interested in developing elastin–mimetic hybrid polymers (EMHPs) that capture the multiblock molecular architecture of tropoelastin as well as the remarkable elasticity of mature elastin. In this study, multiblock EMHPs containing flexible synthetic segments based on poly(ethylene glycol) (PEG) alternating with alanine-rich, lysine-containing peptides were synthesized by step-growth polymerization using α,ω-azido-PEG and alkyne-terminated AKA3KA (K = lysine, A = alanine) peptide, employing orthogonal click chemistry. The resulting EMHPs contain an estimated three to five repeats of PEG and AKA3KA and have an average molecular weight of 34 kDa. While the peptide alone exhibited α-helical structures at high pH, the fractional helicity for EMHPs was reduced. Covalent cross-linking of EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residue in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 MPa when hydrated. The mechanical properties of xEMHP are comparable to a commercial polyurethane elastomer (Tecoflex SG80A) under the same conditions. In vitro toxicity studies showed that while the soluble EMHPs inhibited the growth of primary porcine vocal fold fibroblasts (PVFFs) at concentrations ≥0.2 mg/mL, the cross-linked hybrid elastomers did not leach out any toxic reagents and allowed PVFFs to grow and proliferate normally. The hybrid and modular approach provides a new strategy for developing elastomeric scaffolds for tissue engineering. PMID:19763157

  10. Surface modified and medicated polyurethane materials capable of controlling microorganisms causing foot skin infection in athletes.

    PubMed

    Gnanasundaram, Saraswathy; Ranganathan, Mohan; Das, Bhabendra Nath; Mandal, Asit Baran

    2013-02-01

    Foot odor and foot infection are major problems of athletes and persons with hyperhidrosis. Many shoes especially sports shoes have removable cushion insoles/foot beds for foot comfort. Polyurethane (PU) foam and elastomer have been used as cushion insole in shoes. In the present work, new insole materials based on porous viscoelastic PU sheets having hydrophilic property and antimicrobial drug coating to control foot infection and odor were developed. Bacteria and fungus that are causing infection and bad odor of the foot of athletes were isolated by microbial cell culturing of foot sweat. The surface of porous viscoelastic PU sheets was modified using hydrophilic polymers and coated with antimicrobial agent, silver sulfadiazine (SS). The surface modified PU sheets were characterized using ATR-FTIR, TGA, DSC, SEM, contact angle measurement and water absorption study. Results had shown that modified PU sheets have hydrophilicity greater than that of original PU sheet. FTIR spectra and SEM pictures confirmed modification of PU surface with hydrophilic polymers and coating with SS. Minimum inhibitory concentration studies indicated that SS has activity on all isolated bacteria of athletic foot sweat. The maximum inhibition was found for Pseudomonas (20mm) followed by Micrococci (17 mm), Diphtheroids (16 mm) and Staphylococci (12 mm). During perspiration of foot the hydrophilic polymers on PU surface will swell and release SS. Future work will confirm the application of these materials as inserts in athletic shoes. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Stable Polyurethane Coatings for Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1983-01-01

    Alkane-based polyurethanes resist deterioration while maintaining good dielectric properties. Weight loss after prolonged immersion in hot water far less for alkane-based polyurethanes than for more common ether based polyurethanes, at any given oxygen content. Major uses of polyurethanes are as connector potting materials and conformal coatings for printed circuit boards.

  12. Spontaneous wettability patterning via creasing instability

    PubMed Central

    Chen, Dayong; McKinley, Gareth H.; Cohen, Robert E.

    2016-01-01

    Surfaces with patterned wettability contrast are important in industrial applications such as heat transfer, water collection, and particle separation. Traditional methods of fabricating such surfaces rely on microfabrication technologies, which are only applicable to certain substrates and are difficult to scale up and implement on curved surfaces. By taking advantage of a mechanical instability on a polyurethane elastomer film, we show that wettability patterns on both flat and curved surfaces can be generated spontaneously via a simple dip coating process. Variations in dipping time, sample prestress, and chemical treatment enable independent control of domain size (from about 100 to 500 μm), morphology, and wettability contrast, respectively. We characterize the wettability contrast using local surface energy measurements via the sessile droplet technique and tensiometry. PMID:27382170

  13. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  14. Using AFM Force Curves to Explore Properties of Elastomers

    ERIC Educational Resources Information Center

    Ferguson, Megan A.; Kozlowski, Joseph J.

    2013-01-01

    polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…

  15. Treatment to Control Adhesion of Silicone-Based Elastomers

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.

  16. Tissue Response to, and Degradation Rate of, Photocrosslinked Trimethylene Carbonate-Based Elastomers Following Intramuscular Implantation

    PubMed Central

    Timbart, Laurianne; Tse, Man Yat; Pang, Stephen C.; Amsden, Brian G.

    2010-01-01

    Cylindrical elastomers were prepared through the UV-initiated crosslinking of terminally acrylated, 8,000 Da star-poly(trimethylene carbonate-co-ε-caprolactone) and star-poly(trimethylene carbonate-co-d,l-lactide). These elastomers were implanted intramuscularly into the hind legs of male Wistar rats to determine the influence of the comonomer on the weight loss, tissue response, and change in mechanical properties of the elastomer. The elastomers exhibited only a mild inflammatory response that subsided after the first week; the response was greater for the stiffer d,l-lactide-containing elastomers. The elastomers exhibited weight loss and sol content changes consistent with a bulk degradation mechanism. The d,l-lactide-containing elastomers displayed a nearly zero-order change in Young’s modulus and stress at break over the 30 week degradation time, while the ε-caprolactone-containing elastomers exhibited little change in modulus or stress at break.

  17. Elastomers in mud motors for oil field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrik, J.

    1997-08-01

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Resultsmore » of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.« less

  18. Evaluation of the cytotoxicity of elastomeric ligatures after sterilisation with 0.25% peracetic acid.

    PubMed

    Pithon, Matheus Melo; dos Santos, Rogerio Lacerda; Judice, Renata Lima Pasini; de Assuncao, Paulo Sergio; Restle, Luciana

    2013-11-01

    Sterilisation using peracetic acid (PAA) has been advocated for orthodontic elastic bands. However, cane-loaded elastomeric ligatures can also become contaminated during processing, packaging, and manipulation before placement in the oral cavity and are therefore susceptible, and possible causes, of cross-contamination. To test the hypothesis that 0.25% peracetic acid (PAA), following the sterilisation of elastomers, influences the cytotoxicity of elastomeric ligatures on L929 cell lines. Four hundred and eighty silver elastomeric ligatures were divided into 4 groups of 120 ligatures to produce, Group TP (latex natural, bulk pack, TP Orthodontics), Group M1 (Polyurethane, bulk pack, Morelli), Group M2 (Polyurethane, cane-loaded, Morelli) and Group U (Polyurethane, cane-loaded, Uniden). Of the 120 ligatures in each group, 100 were sterilised in 0.25% PAA at time intervals (N = 20) of 1 hour, 2 hours, 3 hours, 4 hours and 5 hours. The 20 remaining elastomeric ligatures in each group were not sterilised and served as controls. Cytotoxicity was assessed using L929 cell lines and a dye-uptake method. Analysis of variance (ANOVA), followed by the Tukey post hoc test (p < 0.05) determined statistical relevance. There was a significant difference between TP, Morelli and Uniden elastomerics (p < 0.05), but no difference between the two types of Morelli elastomerics at the 1 hour time interval. In addition, there was a significant difference between Group CC and the other groups assessed, except between Groups CC and TP at the 1 hour time interval. The non-sterilised elastomeric ligatures showed similar cell viability to that observed after 1 hour of standard sterilisation. PAA did not significantly influence the cytotoxicity of elastomeric ligatures after a sterilisation time of 1 hour and is therefore recommended for clinical use.

  19. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties.

    PubMed

    Ma, Zuwei; Hong, Yi; Nelson, Devin M; Pichamuthu, Joseph E; Leeson, Cory E; Wagner, William R

    2011-09-12

    Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800-1400%) and high tensile strength (30-60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M(n) and PVLCL 6000 M(n)), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.

  20. Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings

    DTIC Science & Technology

    2015-04-01

    ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use in Composites and...copyright notation hereon. ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use...4. TITLE AND SUBTITLE Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  1. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    NASA Astrophysics Data System (ADS)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  2. The Current State of Silicone-Based Dielectric Elastomer Transducers.

    PubMed

    Madsen, Frederikke B; Daugaard, Anders E; Hvilsted, Søren; Skov, Anne L

    2016-03-01

    Silicone elastomers are promising materials for dielectric elastomer transducers (DETs) due to their superior properties such as high efficiency, reliability and fast response times. DETs consist of thin elastomer films sandwiched between compliant electrodes, and they constitute an interesting class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material development is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower driving voltages. In this review, the current state of silicone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects of the elastomer are taken into account, namely dielectric losses, lifetime and the very often ignored polymer network integrity and stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Starch-based bio-elastomers functionalized with red beetroot natural antioxidant.

    PubMed

    Tran, Thi Nga; Athanassiou, Athanassia; Basit, Abdul; Bayer, Ilker S

    2017-02-01

    Red beetroot (RB) powder was incorporated into starch-based bio-elastomers to obtain flexible biocomposites with tunable antioxidant properties. Starch granules within the bio-elastomers affected the release of the antioxidant molecule betanin in the RB powder. The bio-elastomers were hydrophobic and resisted dissolution in water, hence the release of betanin was due to diffusion rather than polymer matrix disintegration. Hydrophobicity was maintained even after water immersion. Released betanin demonstrated highly efficient antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(+)). RB powder was also found to increase the Young's modulus of the bio-elastomers without compromising their elongation ability. Infrared spectral analysis indicated weak interactions through hydrogen bonding among starch granules, RB powder and PDMS polymer within the bio-elastomers. Hence, as a simple but intelligent biomaterial consisting of mainly edible starch and RB powder the present bio-elastomers can be used in active packaging for a variety of pharmaceutical, medical, and food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sustainable Elastomers from Renewable Biomass.

    PubMed

    Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing

    2017-07-18

    Sustainable elastomers have undergone explosive growth in recent years, partly due to the resurgence of biobased materials prepared from renewable natural resources. However, mounting challenges still prevail: How can the chemical compositions and macromolecular architectures of sustainable polymers be controlled and broadened? How can their processability and recyclability be enabled? How can they compete with petroleum-based counterparts in both cost and performance? Molecular-biomass-derived polymers, such as polymyrcene, polymenthide, and poly(ε-decalactone), have been employed for constructing thermoplastic elastomers (TPEs). Plant oils are widely used for fabricating thermoset elastomers. We use abundant biomass, such as plant oils, cellulose, rosin acids, and lignin, to develop elastomers covering a wide range of structure-property relationships in the hope of delivering better performance. In this Account, recent progress in preparing monomers and TPEs from biomass is first reviewed. ABA triblock copolymer TPEs were obtained with a soft middle block containing a soybean-oil-based monomer and hard outer blocks containing styrene. In addition, a combination of biobased monomers from rosin acids and soybean oil was formulated to prepare triblock copolymer TPEs. Together with the above-mentioned approaches based on block copolymers, multigraft copolymers with a soft backbone and rigid side chains are recognized as the first-generation and second-generation TPEs, respectively. It has been recently demonstrated that multigraft copolymers with a rigid backbone and elastic side chains can also be used as a novel architecture of TPEs. Natural polymers, such as cellulose and lignin, are utilized as a stiff, macromolecular backbone. Cellulose/lignin graft copolymers with side chains containing a copolymer of methyl methacrylate and butyl acrylate exhibited excellent elastic properties. Cellulose graft copolymers with biomass-derived polymers as side chains were further explored to enhance the overall sustainability. Isoprene polymers were grafted from a cellulosic backbone to afford Cell-g-polyisoprene copolymers. Via cross-linking of these graft copolymers, human-skin-mimic elastomers and high resilient elastomers with a well-defined network structure were achieved. The mechanical properties of these resilient elastomers could be finely controlled by tuning the cellulose content. As isoprene can be produced by engineering of microorganisms, these elastomers could be a renewable alternative to petroleum products. In summary, triblock copolymer and graft copolymer TPEs with biomass components, skin-mimic elastomers, high resilient biobased elastomers, and engineering of macromolecular architectures for elastomers are discussed. These approaches and design provide us knowledge on the potential to make sustainable elastomers for various applications to compete with petroleum-based counterparts.

  5. Fabrication and viscoelastic characteristics of waste tire rubber based magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Ubaidillah; Choi, H. J.; Mazlan, S. A.; Imaduddin, F.; Harjana

    2016-11-01

    In this study, waste tire rubber (WTR) was successfully converted into magnetorheological (MR) elastomer via high-pressure and high-temperature reclamation. The physical and rheological properties of WTR based MR elastomers were assessed for performance. The revulcanization process was at the absence of magnetic fields. Thus, the magnetizable particles were allowed to distribute randomly. To confirm the particle dispersion in the MR elastomer matrix, an observation by scanning electron microscopy was used. The magnetization saturation and other magnetic properties were obtained through vibrating sample magnetometer. Rheological properties including MR effect were examined under oscillatory loadings in the absence and presence of magnetic fields using rotational rheometer. The WTR based MR elastomer exhibited tunable intrinsic properties under presentation of magnetic fields. The storage and loss modulus, along with the loss factor, changed with increases in frequency and during magnetization. Interestingly, a Payne effect phenomenon was seen in all samples during dynamic swept strain testing. The Payne effect was significantly increased with incremental increases in the magnetic field. This phenomenon was interpreted as the process of formation-destruction-reformation undergone by the internal network chains in the MR elastomers.

  6. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  7. Operation tools with dielectric elastomer pressure sensors

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Müller, Dominik; Ehrlich, Johannes

    2017-04-01

    New sensors based on dielectric elastomers have recently been shown to exhibit high sensitivity for compression loads. The basic design of these sensors exhibits two profiled surfaces coated with electrode layers between which an elastomer film with the counter-electrode is confined. All components of the sensor are prepared with silicone whose stiffness can be varied in a wide range. Depending on the details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression, the elastomer profiles are deformed and the electrode layers on the elastomer profiles and in the elastomer film approach each other. Beside the detection of pressure, such sensors can also be used for operation tools in human-machine interfaces. To demonstrate this potential, a touch pad with six pressure-sensitive fields is presented. The corresponding sensors integrated in the touch fields detect the exerted forces of the finger, show them on a display and control the brightness of some LEDs. As a second example, the integration of sensor-based control fields on an automotive steering wheel is shown. Finally, the sensors can also be used in fabrics to control arbitrary functions of wearable electronic devices.

  8. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing.

    PubMed

    Patel, Dinesh K; Sakhaei, Amir Hosein; Layani, Michael; Zhang, Biao; Ge, Qi; Magdassi, Shlomo

    2017-04-01

    Stretchable UV-curable (SUV) elastomers can be stretched by up to 1100% and are suitable for digital-light-processing (DLP)-based 3D-printing technology. DLP printing of these SUV elastomers enables the direct creation of highly deformable complex 3D hollow structures such as balloons, soft actuators, grippers, and buckyball electronical switches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.

  10. The Effect of Plant Source on the Structural Properties of Lignin-based Polyurethane Blends

    NASA Astrophysics Data System (ADS)

    Lang, Jason; Dadmun, Mark

    The development of polyurethane materials based on incorporating lignin from a variety of plant sources (softwood, hardwood, and non-wood) were synthesized. Further experiments study the physical properties of the resulting lignin-based polyurethane as a function of the lignin structure, which varies with plant source. Here, we report the effect that internal crosslinking of the lignin structure has on the modulus, hardness, glass transition temperature, and thermal decomposition of the synthesized lignin-based polyurethane composites. The lignins used in this work were a softwood kraft lignin, hardwood lignosulfonate, and a wheat straw soda lignin. The lignin, acting as a polyol and the hardblock segment, reacts with TDI-endcapped PPG (2,300 MN) as the rubbery softblock component to produce lignin-based polyurethanes with varying lignin content (10, 20, 30, 40, 50, and 60 wt%). Results show that the wheat straw lignin provides the superior mechanical properties and thermal resistance. These properties are correlated to the two-phase morphology of the resultant polyurethane.

  11. Synthesis, characterization and applications of new photocurable and biodegradable elastomers

    NASA Astrophysics Data System (ADS)

    Liu, Jinrong

    Biodegradable elastomers have attracted a great deal of interest due to their potential applications in the biomedical field. Based on the advantages of the photocuring method, a new series of photocurable and biodegradable elastomers were designed. By using step growth polymerization, polyester liquids with different composition and molecular weights were synthesized. After endcapping with methacrylate groups, these liquids can be easily fabricated into completely amorphous elastomers by UV exposure for 1 min at room conditions. The prepared elastomers presented a wide range of mechanical properties (G = 0.1-10 MPa) and a fast degradation rate (16% after 5 week incubation in PBS). The in vitro and in vivo biocompatibility studies of the elastomers indicated that these elastomers were good candidates as tissue engineering scaffolds. Meanwhile, the functionality of these photocurable elastomers was expanded by incorporation of amine containing monomers, and new elastomers were prepared to explore their potential as drug carrier systems. Monodispersed elastomeric particles were fabricated out of these amine containing materials by PRINT(TM) technology. These particles showed pH sensitive drug release of Doxorubicin (a hydrophobic drug model) and Minocycline chloride (a hydrophilic drug model), and the release profiles can be further tuned by the incorporation of a disulfide crosslinker.

  12. Facile preparation of antibacterial, highly elastic silvered polyurethane nanofiber fabrics using silver carbamate and their dermal wound healing properties.

    PubMed

    Hong, Suk-Min; Kim, Jong-Wan; Knowles, Jonathan C; Gong, Myoung-Seon

    2017-02-01

    In this study, polycarbonate diol/isosorbide-based antibacterial polyurethane nanofiber fabrics containing Ag nanoparticles were prepared by electrospinning process. Bio-based highly elastic polyurethane was prepared from hexamethylene diisocyanate and isosorbide/polycarbonate diol (8/2) by a simple one-shot bulk polymerization. Ag nanoparticles were formed using simple thermal reduction of silver 2-ethylhexylcarbamate at 120℃. The structural and morphological properties of polyurethane/Ag nanofibers were characterized by X-ray diffraction and scanning electron microscopy. The polyurethane nanofiber fabrics were flexible, with breaking strains from 355% to 950% under 7.28 to 23.1 MPa tensile stress. The antibacterial effects of the treated polyurethane/Ag fabrics against Staphylococcus aureus and methicillin resistant Staphylococcus aureus were examined and found to be excellent. Cell proliferation using the immortalized human keratinocyte HaCaT cell line was performed in order to determine cell viability in the presence of polyurethane and polyurethane/Ag fabrics, showing cytocompatiblility and a lack of toxicity.

  13. Temperature- and pH-responsive nanoparticles of biocompatible polyurethanes for doxorubicin delivery.

    PubMed

    Wang, Anning; Gao, Hui; Sun, Yanfang; Sun, Yu-long; Yang, Ying-Wei; Wu, Guolin; Wang, Yinong; Fan, Yunge; Ma, Jianbiao

    2013-01-30

    A series of temperature- and pH-responsive polyurethanes based on hexamethylene diisocyanate (HDI) and 4,4'-diphenylmethane diisocyanate (MDI) were synthesized by a coupling reaction with bis-1,4-(hydroxyethyl) piperazine (HEP), N-methyldiethanolamine (MDEA) and N-butyldiethanolamine (BDEA), respectively. The chemical structure, molecular weight, thermal property and crystallization properties were characterized by Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) spectroscopy. The resulting polyurethanes were then used to prepare nanoparticles either by direct dispersion method or dialysis method. Their pH and temperature responsibilities were evaluated by optical transmittance and size measurement in aqueous media. Interestingly, HDI-based and MDI-based polyurethanes exhibited different pH and temperature responsive properties. Nanoparticles based on HDI-HEP and HDI-MDEA were temperature-responsive, while MDI-based biomaterials were not. All of them showed pH-sensitive behavior. The possible responsive mechanism was investigated by (1)H NMR spectroscopy. The cytotoxicity of the polyurethanes was evaluated using methylthiazoletetrazolium (MTT) assay in vitro. It was shown that the HDI-based polyurethanes were non-toxic, and could be applied to doxorubicin (DOX) encapsulation. The experimental results indicated that DOX could be efficiently encapsulated into polyurethane nanoparticles and uptaken by Huh-7 cells. The loaded DOX molecules could be released from the drug-loaded polyurethane nanoparticles upon pH and temperature changes, responsively. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Thermodynamics and instability of dielectric elastomer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Liwu; Liu, Yanju; Leng, Jinsong; Mu, Tong

    2017-04-01

    Dielectric elastomer is a kind of typical soft active material. It can deform obviously when subjected to an external voltage. When a dielectric elastomer with randomly oriented dipoles is subject to an electric field, the dipoles will rotate to and align with the electric field. The polarization of the dielectric elastomer may be saturated when the voltage is high enough. When subjected to a mechanical force, the end-to-end distance of each polymer chain, which has a finite contour length, will approach the finite value, reaching a limiting stretch. On approaching the limiting stretch, the elastomer stiffens steeply. Here, we develop a thermodynamic constitutive model of dielectric elastomers undergoing polarization saturation and strain-stiffening, and then investigate the stability (electromechanical stability, snap-through stability) and voltage induced deformation of dielectric elastomers. Analytical solution has been obtained and it reveals the marked influence of the extension limit and polarization saturation limit on its instability. The developed thermodynamic constitutive model and simulation results would be helpful in future to the research of dielectric elastomer based high-performance transducers.

  15. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  16. Modeling and control of a dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian

    2016-04-01

    The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.

  17. Defense Industrial Base Capabilities Study: Protection

    DTIC Science & Technology

    2004-12-01

    Polyurethane Foam (RPF). 2) The Department should establish an Industrial Base Investment Fund to provide better on-ramps for production-ready...Sweep; − Rigid Polyurethane Foam (RPF). RECOMMENDATION 2 The Department should establish an Industrial Base Investment Fund (IBIF) to provide...Reactive RF Jamming 15. Expendable Programmable Acoustic Decoy 16. Rigid Polyurethane Foam 17. Towed Fabric Balloon Pressure Sweep 18. Chemical

  18. Indentation of a stretched elastomer

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Crosby, Alfred J.; Cai, Shengqiang

    2017-10-01

    Indentation has been intensively used to characterize mechanical properties of soft materials such as elastomers, gels, and soft biological tissues. In most indentation measurements, residual stress or stretch which can be commonly found in soft materials is ignored. In this article, we aim to quantitatively understand the effects of prestretches of an elastomer on its indentation measurement. Based on surface Green's function, we analytically derive the relationship between indentation force and indentation depth for a prestretched Neo-Hookean solid with a flat-ended cylindrical indenter as well as a spherical indenter. In addition, for a non-equal biaxially stretched elastomer, we obtain the equation determining the eccentricity of the elliptical contacting area between a spherical indenter and the elastomer. Our results clearly demonstrate that the effects of prestretches of an elastomer on its indentation measurement can be significant. To validate our analytical results, we further conduct correspondent finite element simulations of indentation of prestretched elastomers. The numerical results agree well with our analytical predictions.

  19. Fiber-reinforced dielectric elastomer laminates with integrated function of actuating and sensing

    NASA Astrophysics Data System (ADS)

    Li, Tiefeng; Xie, Yuhan; Li, Chi; Yang, Xuxu; Jin, Yongbin; Liu, Junjie; Huang, Xiaoqiang

    2015-04-01

    The natural limbs of animals and insects integrate muscles, skins and neurons, providing both the actuating and sensing functions simultaneously. Inspired by the natural structure, we present a novel structure with integrated function of actuating and sensing with dielectric elastomer (DE) laminates. The structure can deform when subjected to high voltage loading and generate corresponding output signal in return. We investigate the basic physical phenomenon of dielectric elastomer experimentally. It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the electromechanical behavior of the structure.

  20. Roofing research and standards development: Fourth volume. ASTM special technical publication 1349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, T.J.; Rossiter, W.J. Jr.

    1999-07-01

    As the roofing industry has stabilized, a broad variety of roof systems have found general acceptance by the building owners, architects, engineers, contractors, and others who select and install roofs. These roof systems include those based on conventional built-up membranes using glass and synthetic reinforcements, synthetic polymeric membranes using elastomers and thermoplastics, polymer-modified membranes, and sprayed polyurethane foam. ASTM Committee D8 on Roofing, Waterproofing, and Bituminous Materials has contributed significantly in many important ways to the roofing community's stabilization including issuing standard specifications to assist consumers in the selection and use of these systems. This is not surprising, as itmore » has always been among the purpose of D8 to provide standards to assist in the selection and use of low-sloped and steep roofing. The Committee's scope includes development of standards associated with application, inspection, maintenance, and analyses. Some of the issues facing the roofing community today--for example, enhanced system durability, better methods of material characterization, environmental impact, recycling of materials and systems, industry conversation to the S.I. system metric--readily fall within D8's scope. The availability of sound standard can contribute to the resolution of many of these issues.« less

  1. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    PubMed Central

    Takahata, Kenichi; Gianchandani, Yogesh B.

    2008-01-01

    This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. PMID:27879824

  2. Poly (ricinoleic acid) based novel thermosetting elastomer.

    PubMed

    Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi

    2008-01-01

    A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%.

  3. Influence of reaction condition on viscosity of polyurethane modified epoxy based on glycerol monooleate

    NASA Astrophysics Data System (ADS)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-01-01

    Polyurethane modified epoxy based on glycerol monooleate (PME-GMO) was synthesized. GMO as polyol for synthesis of PME-GMO was synthesized via Fisher Esterification between oleic acid from palm oil and glycerol by using sulfuric acid as catalyst with time variation i.e. 3, 4, 5 and 6 hours at 160°C. Characterizations of GMO were carried out by analysis of acid number, hydroxyl value and FTIR. The data show that the conversion of oleic acid to ester compound is directly proportional with the increasing of reaction time but the enhancement is not significant after 3 hours. Furthermore, GMO product was used as polyol for modification of epoxy with polyurethane. Modification of epoxy with polyurethane was performed by reacted epoxy, tolonate and GMO simultaneously in one step. In this research, the reaction condition was varied i.e. time reaction (0.5; 1; 1.5; 2; 2.5 hours), composition of polyurethane used (10%, 20% toward epoxy) and rasio of tolonate and GMO (NCO/OH ratio) as component of polyurethane (1.5 and 2.5). Characterization of polyurethane modified epoxy based on glycerol (PME-GMO) was conducted by viscosity and FTIR analysis. The viscosity of PME-GMO increased with increasing of reaction time, polyurethane composition and NCO/OH ratio.

  4. Localised strain sensing of dielectric elastomers in a stretchable soft-touch musical keyboard

    NASA Astrophysics Data System (ADS)

    Xu, Daniel; Tairych, Andreas; Anderson, Iain A.

    2015-04-01

    We present a new sensing method that can measure the strain at different locations in a dielectric elastomer. The method uses multiple sensing frequencies to target different regions of the same dielectric elastomer to simultaneously detect position and pressure using only a single pair of connections. The dielectric elastomer is modelled as an RC transmission line and its internal voltage and current distribution used to determine localised capacitance changes resulting from contact and pressure. This sensing method greatly simplifies high degree of freedom systems and does not require any modifications to the dielectric elastomer or sensing hardware. It is demonstrated on a multi-touch musical keyboard made from a single low cost carbon-based dielectric elastomer with 4 distinct musical tones mapped along a length of 0.1m. Loudness was controlled by the amount of pressure applied to each of these 4 positions.

  5. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    PubMed Central

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  6. Structure-property studies of thermoplastic and thermosetting polyurethanes using palm and soya oils-based polyols.

    PubMed

    Mohammed, Issam Ahmed; Al-Mulla, Emad Abbas Jaffar; Kadar, Nurul Khizien Abdul; Ibrahim, Mazlan

    2013-01-01

    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.

  7. Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber

    NASA Astrophysics Data System (ADS)

    An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol

    2010-04-01

    Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).

  8. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane.

    PubMed

    Zhang, Taolin; Zhou, Xiaodong; Yang, Lizhong

    2016-03-05

    This work investigated experimentally and theoretically the fire hazards of thermal-insulation materials used in diesel locomotives under different radiation heat fluxes. Based on the experimental results, the critical heat flux for ignition was determined to be 6.15 kW/m² and 16.39 kW/m² for pure polyurethane and aluminum-polyurethane respectively. A theoretical model was established for both to predict the fire behaviors under different circumstances. The fire behavior of the materials was evaluated based on the flashover and the total heat release rate (HRR). The fire hazards levels were classified based on different experimental results. It was found that the fire resistance performance of aluminum-polyurethane is much better than that of pure-polyurethane under various external heat fluxes. The concentration of toxic pyrolysis volatiles generated from aluminum-polyurethane materials is much higher than that of pure polyurethane materials, especially when the heat flux is below 50 kW/m². The hazard index HI during peak width time was proposed based on the comprehensive impact of time and concentrations. The predicted HI in this model coincides with the existed N-gas and FED models which are generally used to evaluate the fire gas hazard in previous researches. The integrated model named HNF was proposed as well to estimate the fire hazards of materials by interpolation and weighted average calculation.

  9. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane

    PubMed Central

    Zhang, Taolin; Zhou, Xiaodong; Yang, Lizhong

    2016-01-01

    This work investigated experimentally and theoretically the fire hazards of thermal-insulation materials used in diesel locomotives under different radiation heat fluxes. Based on the experimental results, the critical heat flux for ignition was determined to be 6.15 kW/m2 and 16.39 kW/m2 for pure polyurethane and aluminum-polyurethane respectively. A theoretical model was established for both to predict the fire behaviors under different circumstances. The fire behavior of the materials was evaluated based on the flashover and the total heat release rate (HRR). The fire hazards levels were classified based on different experimental results. It was found that the fire resistance performance of aluminum-polyurethane is much better than that of pure-polyurethane under various external heat fluxes. The concentration of toxic pyrolysis volatiles generated from aluminum-polyurethane materials is much higher than that of pure polyurethane materials, especially when the heat flux is below 50 kW/m2. The hazard index HI during peak width time was proposed based on the comprehensive impact of time and concentrations. The predicted HI in this model coincides with the existed N-gas and FED models which are generally used to evaluate the fire gas hazard in previous researches. The integrated model named HNF was proposed as well to estimate the fire hazards of materials by interpolation and weighted average calculation. PMID:28773295

  10. Bio-based rigid polyurethane foam from liquefied products of wood in the presence of polyhydric alcohols

    Treesearch

    Zhifeng Zheng; Hui Pan; Yuanbo Huang; Chung Y. Hse

    2011-01-01

    Rigid polyurethane foams were prepared from the liquefied wood polyols, which was obtained by the liquefaction of southern pine wood in the presence of polyhydric alcohols with sulfuric acid catalyst by using microwave-assistant as an energy source. The properties of liquefied biomass-based polyols and the rigid polyurethane foams were investigated. The results...

  11. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    PubMed

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.

    PubMed

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Elastomer actuators: systematic improvement in properties by use of composite materials

    NASA Astrophysics Data System (ADS)

    Molberg, Martin; Leterrier, Yves; Plummer, Christopher J. G.; Löwe, Christiane; Opris, Dorina M.; Clemens, Frank; Månson, Jan-Anders E.

    2010-04-01

    Dielectric elastomer actuators (DEAs) have attracted increasing attention over the last few years owing to their outstanding properties, e.g. their large actuation strains, high energy density, and pliability, which have opened up a wide spectrum of potential applications in fields ranging from microengineering to medical prosthetics. There is consequently a huge demand for new elastomer materials with improved properties to enhance the performance of DEAs and to overcome the limitations associated with currently available materials, such as the need for high activation voltages and the poor long-term stability. The electrostatic pressure that activates dielectric elastomers can be increased by higher permittivity of the elastomer and thus may lead to lower activation voltages. This has led us to consider composite elastomeric dielectrics based on thermoplastic elastomers or PDMS, and conductive polyaniline or ceramic (soft doped PZT) powder fillers. The potential of such materials and strategies to counter the adverse effects of increased conductivity and elastic modulus are discussed.

  14. Fast-responding bio-based shape memory thermoplastic polyurethanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan

    Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less

  15. Fast-responding bio-based shape memory thermoplastic polyurethanes

    DOE PAGES

    Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan; ...

    2017-05-31

    Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less

  16. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.

    PubMed

    Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan

    2017-07-14

    Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.

  17. Sustained Release Drug Delivery Applications of Polyurethanes.

    PubMed

    Lowinger, Michael B; Barrett, Stephanie E; Zhang, Feng; Williams, Robert O

    2018-05-09

    Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  18. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yong; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Ge, Jianhua

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm)more » were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.« less

  19. Development of a soft untethered robot using artificial muscle actuators

    NASA Astrophysics Data System (ADS)

    Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian

    2017-04-01

    Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.

  20. Water-free synthesis of polyurethane foams using highly reactive diisocyanates derived from 5-hydroxymethylfurfural.

    PubMed

    Neumann, Christopher N D; Bulach, Winfried D; Rehahn, Matthias; Klein, Roland

    2011-09-01

    This paper reports on the synthesis of a new highly reactive diisocyanate monomer based on hydroxymethylfurfural. It further describes its catalyst-free conversion to linear-chain thermoplastic polyurethanes as well as to cross-linked polyurethane foams. In addition, a novel strategy for the synthesis of polyurethane foams without the necessity of using water is developed. Nitrogen is utilized herein as blowing agent which is formed during Curtius rearrangement of a new furan based carboxylic azide into its corresponding diisocyanate. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermoresponsive Polyurethane Bearing Oligo(Ethylene Glycol) as Side Chain Without Polyol at Polymer Backbone Achieved Excellent Hydrophilic and Hydrophobic Switching.

    PubMed

    Aoki, Daisuke; Ajiro, Hiroharu

    2018-06-13

    In order to prepare thermoresponsive polyurethane gels, a novel polyurethane bearing oligo(ethylene glycol) (OEG) as the side chain is successfully synthesized with hexamethylene diisocyanate and OEG tartrate ester. The aqueous solution of the polyurethane shows sharp and clear lower critical solution temperature behavior at 34 °C. Furthermore, a hydrogel based on the same polyurethane is also successfully prepared using glycerol as the crosslinker. This polyurethane hydrogel including 10 mol% of glycerol presents a large swelling ratio change between 4 °C and 37 °C from 250% to 40%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Molecular simulation of fibronectin adsorption onto polyurethane surfaces

    USDA-ARS?s Scientific Manuscript database

    Polyethylene glycol-based polyurethanes have been widely used in biomedical applications, however are prone to swelling. A natural polyol, castor oil can be incorporated into these polyurethanes to control the degree of the swelling, which alters mechanical properties and protein adsorption characte...

  3. Preparation of non-metals properties for data base

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The development of non-metallic material properties data bases is discussed. The data bases consist of the non-metallic material classes of adhesives, adhesive/sealants, plastics, and elastomers. A specifications data base was also developed to incorporate material specifications data as a supplement to the Elastomers Data Base. Examples of the forms used are provided to show the properties of the materials which appear in the data base.

  4. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    PubMed

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  5. Model For Bending Actuators That Use Electrostrictive Graft Elastomers

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji; Harrison, Joycelyn S.

    2001-01-01

    Recently, it was reported that an electrostrictive graft elastomer exhibits large electric field-induced strain (4%). Combined with its high mechanical modulus, the elastomer can offer very promising electromechanical properties, in terms of output mechanical energy density, for an electroactive polymeric material. Therefore, it has been considered as one of the candidates that can be used in high performance, low mass actuation devices in many aerospace applications. Various bilayer- based bending actuators have been designed and fabricated. An analytic model based on beam theory in the strength of materials has been derived for the transverse deflection, or curvature, and the longitudinal strain of the bi-layer beam. The curvature and strain are functions of the applied voltage and the thickness, width, and Young s modulus of the active and passive layers. The model can be used to optimize the performance of electrostrictive graft elastomer-based actuators to meet the requirements of various applications. In this presentation, optimization and sensitivity studies are applied to the bending performance of such actuators.

  6. Multifunctional cationic polyurethanes designed for non-viral cancer gene therapy.

    PubMed

    Cheng, Jian; Tang, Xin; Zhao, Jie; Shi, Ting; Zhao, Peng; Lin, Chao

    2016-01-01

    Nano-polyplexes from bioreducible cationic polymers have a massive promise for cancer gene therapy. However, the feasibility of cationic polyurethanes for non-viral gene therapy is so far not well studied. In this work, a linear cationic polyurethane containing disulfide bonds, urethane linkages and protonable tertiary amino groups was successfully generated by stepwise polycondensation reaction between 2,2'-dithiodiethanol bis(p-nitrophenyl carbonate) and 1,4-bis(3-aminopropyl)piperazine (BAP). We confirmed that the cationic polyurethane (denoted as PUBAP) displayed superior gene delivery properties to its cationic polyamide analogue, thus causing higher in vitro transfection efficiency in MCF-7 and SKOV-3 cells. Besides, further folate-PEGylation and hydrophobic deoxycholic acid (DCA) conjugation to amino-containing PUBAP can be conducted to afford multifunctional polyurethane gene delivery system. After optimization, folate-decorated nano-polyplexes from the PUBAP conjugated with 8 folate-PEG chains and 12 DCA residues exhibited superb colloidal stability under physiological conditions, and performed rapid uptake via folate receptor-mediated endocytosis, efficient intracellular gene release and nucleus translocation into SKOV-3 cells in vitro and in vivo. Importantly, PUBAP based polyplexes possess low cytotoxicity as a result of PUBAP biodegradability. Therefore, marked growth inhibition of SKOV-3 tumor xenografted in Balb/c nude mice was achieved with negligible side effects on the mouse health after intravenous administration of PUBAP based polyplexes with a therapeutic plasmid encoding for TNF-related apoptosis-inducing ligand. This work provides a new insight into biomedical application of bio-responsive polyurethanes for cancer therapy. In this study, we have confirmed that disulfide-based cationic polyurethane presents a new non-viral vector for gene transfer and cancer gene therapy. The significance of this work includes: (1) design and synthesis of a group of novel disulfide-based cationic polyurethane by non-isocyanate chemistry; (2) comparative study of transfection activity between cationic polyurethanes and cationic polyamides; (3) feasibility of bioreducible cationic polyurethanes for in vivo cancer gene therapy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Formulation, Preparation, and Characterization of Polyurethane Foams

    ERIC Educational Resources Information Center

    Pinto, Moises L.

    2010-01-01

    Preparation of laboratory-scale polyurethane foams is described with formulations that are easy to implement in experiments for undergraduate students. Particular attention is given to formulation aspects that are based on the main chemical reactions occurring in polyurethane production. This allows students to develop alternative formulations to…

  8. The effect of negative pressure wound therapy with antibacterial dressings or antiseptics on an in vitro wound model.

    PubMed

    Matiasek, J; Domig, K J; Djedovic, G; Babeluk, R; Assadian, O

    2017-05-02

    The aim of this study was to investigate the bacterial bioburden in experimental in vitro wounds during the application of conventional negative pressure wound therapy (NPWT), with and without antimicrobial dressings (polyhexanide, silver), against NPWT instillation of octenidine. Experimental wounds produced in an in vitro porcine wound model were homogenously contaminated with bacterial suspension and treated with NPWT and different options. Group A: non-antimicrobial polyurethane foam dressing; group B: antimicrobial polyurethane foam dressing containing silver; group C: antimicrobial gauze dressing containing polyhexanide; group D: non-antimicrobial polyurethane foam dressing intermittently irrigated with octenidine; group E: negative control (non-antimicrobial polyurethane foam dressing without NPWT). Standard biopsies were harvested after 24 and 28 hours. This study demonstrated that the use of NPWT with intermitted instillation of octenidine (group D) or application of silver-based polyurethane foam dressings (group B) is significantly superior against Staphylococcus aureus colonisation in experimental wounds compared with non-antimicrobial polyurethane foam dressing (group A) after 48 hours. Surprisingly, the polyhexanide-based dressing (group C) used in this model showed no statistical significant effect compared with the control group (group E) after 24 or 48 hours of treatment. Both intermitted instillation of octenidine and silver-based dressings in standard NPWT were significantly superior compared with non-antimicrobial polyurethane foam dressings or PHMB coated gauze dressing after 48 hours.

  9. Toxicity of Pyrolysis Gases from Elastomers

    NASA Technical Reports Server (NTRS)

    Hilado, Carlos J.; Kosola, Kay L.; Solis, Alida N.; Kourtides, Demetrius A.; Parker, John A.

    1977-01-01

    The toxicity of the pyrolysis gases from six elastomers was investigated. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acryltonitrile rubber exhibited the greatest toxicity under these test conditions; carbon monoxide was not found in sufficient concentrations to be the primary cause of death.

  10. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment.

    PubMed

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-12-16

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor.

  11. Volume phase transitions of cholesteric liquid crystalline gels.

    PubMed

    Matsuyama, Akihiko

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  12. Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications

    PubMed Central

    Pantone, Vincenzo; Laurenza, Amelita Grazia; Annese, Cosimo; Fracassi, Francesco; Fini, Paola; Nacci, Angelo; Russo, Antonella; Fusco, Caterina

    2017-01-01

    Polyurethane-resin doming is currently one of the fastest growing markets in the field of industrial graphics and product identification. Semi-rigid bio-based polyurethanes were prepared deriving from soybean oil as a valuable alternative to fossil materials for digital doming and applied to digital mosaic technology. Bio-resins produced can favorably compete with the analogous fossil polymers, giving high-quality surface coatings (ascertained by SEM analyses). In addition, polyurethane synthesis was accomplished by using a mercury- and tin-free catalyst (the commercially available zinc derivative K22) bringing significant benefits in terms of cost efficiency and eco-sustainability. PMID:28773208

  13. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  14. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  15. High friction on ice provided by elastomeric fiber composites with textured surfaces

    NASA Astrophysics Data System (ADS)

    Rizvi, R.; Naguib, H.; Fernie, G.; Dutta, T.

    2015-03-01

    Two main applications requiring high friction on ice are automobile tires and footwear. The main motivation behind the use of soft rubbers in these applications is the relatively high friction force generated between a smooth rubber contacting smooth ice. Unfortunately, the friction force between rubber and ice is very low at temperatures near the melting point of ice and as a result we still experience automobile accidents and pedestrian slips and falls in the winter. Here, we report on a class of compliant fiber-composite materials with textured surfaces that provide outstanding coefficients of friction on wet ice. The fibrous composites consist of a hard glass-fiber phase reinforcing a compliant thermoplastic polyurethane matrix. The glass-fiber phase is textured such that it is aligned transversally and protruding out of the elastomer surface. Our analysis indicates that the exposed fiber phase exhibits a "micro-cleat" effect, allowing for it to fracture the ice and increase the interfacial contact area thereby requiring a high force to shear the interface.

  16. Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers.

    PubMed

    Roh, Eun; Hwang, Byeong-Ung; Kim, Doil; Kim, Bo-Yeong; Lee, Nae-Eung

    2015-06-23

    Interactivity between humans and smart systems, including wearable, body-attachable, or implantable platforms, can be enhanced by realization of multifunctional human-machine interfaces, where a variety of sensors collect information about the surrounding environment, intentions, or physiological conditions of the human to which they are attached. Here, we describe a stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate ( PSS). This sensor, which can detect small strains on human skin, was created using environmentally benign water-based solution processing. We attributed the tunability of strain sensitivity (i.e., gauge factor), stability, and optical transparency to enhanced formation of percolating networks between conductive SWCNTs and PEDOT phases at interfaces in the stacked PU-PEDOT:PSS/SWCNT/PU-PEDOT:PSS structure. The mechanical stability, high stretchability of up to 100%, optical transparency of 62%, and gauge factor of 62 suggested that when attached to the skin of the face, this sensor would be able to detect small strains induced by emotional expressions such as laughing and crying, as well as eye movement, and we confirmed this experimentally.

  17. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-06-07

    We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than <1.5% RSD variation (n = 50). In contrast, plasticized poly(vinyl chloride), polystyrene, and poly(acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision.

  18. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  19. Material Evaluation of an Elastomer, Epoxy and Lightweight Concrete Rail Attachment System for Direct Fixation Light Rail Applications

    NASA Astrophysics Data System (ADS)

    Swarner, Benjamin R.

    Sound Transit plans to extend its current light rail system, which runs along the I-5 corridor in Seattle, Washington, across the I-90 Homer Hadley floating bridge as part of a project to connect the major city centers in the region. But, no light rail has ever crossed a floating bridge due to several unique engineering challenges. One of these challenges is attaching the rails to the existing bridge deck without drilling into the bridge pontoons. This research program was developed to test and analyze a direct fixation method that uses lightweight concrete plinths and an elastomer-epoxy system to attach the rails to the bridge deck. The elastomer used was a two-part, pourable elastomer with cork particles intermixed to alter the mechanical properties of the material. A lightweight concrete mixture was analyzed for use in the plinths, and system tests investigated the system response under tensile, compressive and shear loading. The shear response of the system was examined further under varying loading conditions including different surface preparations, elastomer thicknesses, strain-rates and after freeze-thaw conditioning. Experimental data was examined for trends based on these parameters to best characterize the system, and the elastomer was evaluated in the context of modern elastomer research.

  20. Computational predictions of the tensile properties of electrospun fiber meshes: effect of fiber diameter and fiber orientation

    PubMed Central

    Stylianopoulos, Triantafyllos; Bashur, Chris A.; Goldstein, Aaron S.; Guelcher, Scott A.; Barocas, Victor H.

    2008-01-01

    The mechanical properties of biomaterial scaffolds are crucial for their efficacy in tissue engineering and regenerative medicine. At the microscopic scale, the scaffold must be sufficiently rigid to support cell adhesion, spreading, and normal extracellular matrix deposition. Concurrently, at the macroscopic scale the scaffold must have mechanical properties that closely match those of the target tissue. The achievement of both goals may be possible by careful control of the scaffold architecture. Recently, electrospinning has emerged as an attractive means to form fused fiber scaffolds for tissue engineering. The diameter and relative orientation of fibers affect cell behavior, but their impact on the tensile properties of the scaffolds has not been rigorously characterized. To examine the structure-property relationship, electrospun meshes were made from a polyurethane elastomer with different fiber diameters and orientations and mechanically tested to determine the dependence of the elastic modulus on the mesh architecture. Concurrently, a multiscale modeling strategy developed for type I collagen networks was employed to predict the mechanical behavior of the polyurethane meshes. Experimentally, the measured elastic modulus of the meshes varied from 0.56 to 3.0 MPa depending on fiber diameter and the degree of fiber alignment. Model predictions for tensile loading parallel to fiber orientation agreed well with experimental measurements for a wide range of conditions when a fitted fiber modulus of 18 MPa was used. Although the model predictions were less accurate in transverse loading of anisotropic samples, these results indicate that computational modeling can assist in design of electrospun artificial tissue scaffolds. PMID:19627797

  1. In vitro analysis of polyurethane foam as a topical hemostatic agent.

    PubMed

    Broekema, Ferdinand I; van Oeveren, Wim; Zuidema, Johan; Visscher, Susan H; Bos, Rudolf R M

    2011-04-01

    Topical hemostatic agents can be used to treat problematic bleedings in patients who undergo surgery. Widely used are the collagen- and gelatin-based hemostats. This study aimed to develop a fully synthetic, biodegradable hemostatic agent to avoid exposure to animal antigens. In this in vitro study the suitability of different newly developed polyurethane-based foams as a hemostatic agent has been evaluated and compared to commonly used agents. An experimental in vitro test model was used in which human blood flowed through the test material. Different modified polyurethane foams were compared to collagen and gelatin. The best coagulation was achieved with collagen. The results of the polyurethane foam improved significantly by increasing the amount of polyethylene glycol. Therefore, the increase of the PEG concentration seems a promising approach. Additional in vivo studies will have to be implemented to assess the application of polyurethane foam as a topical hemostatic agent.

  2. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  3. Novel non-cytotoxic, bioactive and biodegradable hybrid materials based on polyurethanes/TiO2 for biomedical applications.

    PubMed

    González-García, Dulce M; Téllez Jurado, L; Jiménez-Gallegos, R; Rodríguez-Lorenzo, Luis M

    2017-06-01

    Titanium compounds have demonstrated great interfacial properties with biological tissues whereas a wide variety of polyurethanes have also been successfully probed in medical applications. However, studies about hybrids based on polyurethanes/TiO 2 for medical applications are scarce. The aim of this work is to design novel biodegradable hybrid materials based on polyurethanes/TiO 2 (80% organic-20% inorganic) and to perform a preliminary study of the potential applications in bone regeneration. The hybrids have been prepared by a sol-gel reaction using titanium isopropoxide as precursor of the inorganic component and polyurethane as the organic one. A series of polyurethanes has been prepared using different polyesters glycol succinate as soft segment, and 1,6-diisocyanatohexane (HDI) and butanediol (BD) as linear hard segment. The spectroscopy techniques used allow to confirm the formation of the required polyurethanes by the identification of bands related to carboxylic groups (COOH), and the amine groups (NH), and also the TiOH bonds and the bonds related to the interconnected network between the inorganic and the organic components from hybrids. The results from SEM/EDS show a homogeneous distribution of the inorganic component into the organic matrix. The nontoxic character of the hybrid (H400) was probed using MG-63 cell line with over 90% of cell viability. Finally, the formation of a hydroxyapatite layer in the material surface after 21days of soaking in SBF shows the bioactive character. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fabrication of polysiloxane-modified polyurethane sponge as low-cost organics/water separation and selective absorption material.

    PubMed

    Cui, Zhengshan; He, Wanxia; Liu, Jun; Wei, Wei; Jiang, Liang; Huang, Jun; Lv, Xiaomeng

    2016-10-01

    Through sol-gel and dip-coating processes, commercial polyurethane sponge modified by polysiloxane was fabricated under low temperature (60 °C) and atmosphere. The contact angle of the obtained polysiloxane/polyurethane sponge is 145 ± 5°. Hence, the polysiloxane/polyurethane sponge could float on water and selectively absorb organics from the surface of the water, indicating simultaneous properties of hydrophobicity and oleophilicity. The absorbent maximum value is 50-150 times of its own weight. The polysiloxane/polyurethane sponge exhibited excellent recyclability, which could be reused by squeezing the sponge due to its high mechanical stability and flexibility. Thermogravimetry-differential thermal analysis test indicated that the polysiloxane/polyurethane sponge exhibited good thermal stability and the stable contact angle of samples tested under increasing temperature indicated its good weather resistance. Due to the commercial property of polyurethane sponge and easy-handling of polysiloxane, the polysiloxane/polyurethane sponge can be easily scaled up to recover a large-area oil spill in water and further work based on the designed equipment has been under consideration.

  5. Manufacturing of Liquid-Embedded Elastomers for Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca; Majidi, Carmel; Weaver, James; Wood, Robert

    2013-03-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. As the demand for increased elasticity of electrical components heightens, the challenges for functionality revert to basic questions of fabrication, materials, and design. Several designs for soft sensory skins (including strain, pressure and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. This talk will highlight new ``soft MEMS'' manufacturing techniques based on wetting behavior between gallium-indium alloys and elastomers with varying microtextured surface topography. Supported by Harvard MRSEC and the Wyss Institute

  6. Design of a rotary dielectric elastomer actuator using a topology optimization method based on pairs of curves

    NASA Astrophysics Data System (ADS)

    Wang, Nianfeng; Guo, Hao; Chen, Bicheng; Cui, Chaoyu; Zhang, Xianmin

    2018-05-01

    Dielectric elastomers (DE), known as electromechanical transducers, have been widely used in the field of sensors, generators, actuators and energy harvesting for decades. A large number of DE actuators including bending actuators, linear actuators and rotational actuators have been designed utilizing an experience design method. This paper proposes a new method for the design of DE actuators by using a topology optimization method based on pairs of curves. First, theoretical modeling and optimization design are discussed, after which a rotary dielectric elastomer actuator has been designed using this optimization method. Finally, experiments and comparisons between several DE actuators have been made to verify the optimized result.

  7. Intrinsically radiopaque polyurethanes with chain extender 4,4'-isopropylidenebis [2-(2,6-diiodophenoxy)ethanol] for biomedical applications.

    PubMed

    Dawlee, S; Jayabalan, M

    2015-05-01

    Radiopaque polyurethanes are used for medical applications as it allows post-operative assessment of the biomaterial devices using X-ray. Inherently, radiopaque polyurethanes based on polytetramethylene glycol (PTMG), polypropylene glycol, 4,4'-methylenebis(phenyl isocyanate), and a new iodinated chain extender 4,4'-isopropylidenebis[2-(2,6-diiodophenoxy)ethanol] with flexible spacers were synthesized and characterized. The iodinated polyurethanes were clear, optically transparent, and had high molecular weights. The polyurethanes also possessed excellent radiopacity and high thermal stability. The biocompatibility of the most promising iodinated polyurethane was evaluated both in vitro (cytotoxicity evaluation by direct contact and MTT assay, using L929 mouse fibroblast cells) and in vivo (toxicology studies in rabbits and subcutaneous implantation in rats). The material was nontoxic and well tolerated by the animals. Thus, these radiopaque and transparent polyurethanes are expected to have potential for various biomedical applications. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor

    PubMed Central

    Sul, Onejae; Lee, Seung-Beck

    2017-01-01

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm−1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree−1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP−1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm. PMID:28878166

  9. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor.

    PubMed

    Choi, Eunsuk; Sul, Onejae; Lee, Seung-Beck

    2017-09-06

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm −1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree −1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP −1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm.

  10. Inflated dielectric elastomer actuator for eyeball's movements: fabrication, analysis and experiments

    NASA Astrophysics Data System (ADS)

    Liu, Yanju; Shi, Liang; Liu, Liwu; Zhang, Zhen; Leng, Jinsong

    2008-03-01

    Bio-mimetic actuators are inspired to the human or animal organ and they are aimed at replicating actions exerted by the main organic muscles. We present here an inflated dielectric Electroactive Polymer actuator based on acrylic elastomer aiming at mimicing the ocular muscular of the human eye. Two sheets of polyacrylic elastomer coated with conductive carbon grease are sticked to a rotatable backbone, which function like an agonist-antagonist configuration. When stimulating the two elastomer sheets separately, the rotatable mid-arc of the actuator is capable of rotating from -50° to 50°. Experiments shows that the inflated actuator, compared with uninflated one, performs much bigger rotating angle and more strengthened. Connected with the actuator via an elastic tensive line, the eyeball rotates around the symmetrical axes. The realization of more accurate movements and emotional expressions of our native eye system is the next step of our research and still under studied. This inflated dielectric elastomer actuator shows as well great potential application in robofish and adaptive stucture.

  11. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment

    PubMed Central

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor. PMID:26671673

  12. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols.

    PubMed

    Luo, Xiaogang; Xiao, Yuqin; Wu, Qiangxian; Zeng, Jian

    2018-04-25

    Development of biodegradable polyurethane materials is the most promising in the wider context of the "greening" of industrial chemistry. To tackle this challenge, a novel biodegradable polyurethane foam from all bioresource-based polyols (lignin and soy oil-derived polyols) and polymeric methyldiphenyl diisocyanate (pMDI) have been synthesized via a one-pot and self-rising process. All these foam samples have the internal cellular morphology and microstructure. FTIR result exhibits characteristic peaks of polyurethane, and indicates covalent bonds between soy-based polyurethane and lignin, and the lignin powders can react with pMDI via active -H and -CNO. In addition, hydrogen bonding also plays an important role in forming the 3D structures. These interactions and chemical bonds made the prepared foam samples form the 3D macromolecular structure with improved mechanical, thermal, and biodegradable properties. The reaction process is time-saving and cost-effective as it requires no blowing agent and minimum processing steps, while exploring the potential of using the higher content of nature bioresource constituents. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Optimization of shape control of a cantilever beam using dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Mao, Boyong; Huang, Gangting; Wu, Qichen; Xie, Shilin; Xu, Minglong

    2018-05-01

    Dielectric elastomer (DE) is a kind of smart soft material that has many advantages such as large deformation, fast response, lightweight and easy synthesis. These features make dielectric elastomer a suitable material for actuators. This article focuses on the shape control of a cantilever beam by using dielectric elastomer actuators. The shape control equation in finite element formulation of the cantilever beam partially covered with dielectric elastomer actuators is derived based on the constitutive equation of dielectric elastomer material by using Hamilton principle. The actuating forces produced by dielectric elastomer actuators depend on the number of layers, the position and the actuation voltage of dielectric elastomer actuators. First, effects of these factors on the shape control accuracy when one pair or multiple pairs of actuators are employed are simulated, respectively. The simulation results demonstrate that increasing the number of actuators or the number of layers can improve the control effect and reduce the actuation voltages effectively. Second, to achieve the optimal shape control effect, the position of the actuators and the drive voltages are all determined using a genetic algorithm. The robustness of the genetic algorithm is analyzed. Moreover, the implications of using one pair and multiple pairs of actuators to drive the cantilever beam to the expected shape are investigated. The results demonstrate that a small number of actuators with optimal placement and optimal voltage values can achieve the shape control of the beam effectively. Finally, a preliminary experimental verification of the control effect is carried out, which shows the correctness of the theoretical method.

  14. Effect of heating rate on toxicity of pyrolysis gases from some elastomers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Kosola, K. L.; Solis, A. N.

    1977-01-01

    The effect of heating rate on the toxicity of the pyrolysis gases from six elastomers was investigated, using a screening test method. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acrylonitrile rubber exhibited the greatest toxicity under these test conditions, and carbon monoxide was not found in sufficient concentrations to be the primary cause of death.

  15. Polyurethane-covered mammary implants: a 12-year experience.

    PubMed

    Gasperoni, C; Salgarello, M; Gargani, G

    1992-10-01

    Polyurethane-covered mammary implants are the implants of choice in aesthetic and reconstructive mammary surgery. These implants give very good results in regard to breast contour and consistency, and have a very low complication rate. We present our 12-year experience using polyurethane-covered prostheses. We place the implant mostly in the subglandular or subcutaneous site, and their capsular contracture rate is extremely low (3.3%). Based on our experience, we also review the other complications and side effects occurring with polyurethane prostheses and discuss them in detail.

  16. Biodegradation Of thermoplastic polyurethanes from vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Thermoplastic urethanes based on polyricinoleic acid soft segments and MDI/BD hard segments with varied soft segment concentration were prepared. Soft segment concentration was varied fro, 40 to 70 wt %. Biodegradation was studied by respirometry. Segmented polyurethanes with soft segments based ...

  17. Life prediction of expulsion bladders through fatigue test and fold strain analysis

    NASA Technical Reports Server (NTRS)

    Chu, H. N.; Unterberg, W.

    1972-01-01

    Cycle life data are presented in terms of true maximum strain for four metals, two plastics, and two elastomers. The Coffin-Manson fatigue theory was applied for metals and plastics, and cut-growth fatigue theory for elastomers. The data are based on measurements made at room and elevated temperatures. It was found that double folds give rise to far severer folding strains than do simple folds. It was also found that, except for the elastomers, all the bladder materials develop surface cracks due to double folds after only one cycle. The findings indicate that metals, which are bets for premeation resistance, are worst for fatigue resistance, and vice versa for elastomers. The intermediate plastics were found to be unsatisfactory for both permeation and fatigue resistance for missions of extended duration.

  18. Added value of lignin as lignin-based hybrid polyurethane for a compatibilizing agent

    NASA Astrophysics Data System (ADS)

    Ilmiati, S.; Haris Mustafa, J.; Yaumal, A.; Hanum, F.; Chalid, M.

    2017-07-01

    As biomass-based material, lignin contains abundant hydroxyl groups promising to be used as chain extender in building hybrid polyurethanes. Consisting of polyehtylene glycol (PEG) content as hydrophobic part and lignin as hydrophilic part, the hybrid PU is expected to be as a novel compatibilizing agent in new materials production such as polyblends and composites. The hybrid PU was synthesized via two reaction stages, viz. pre-polyurethanization through reacting 4,4'-Methylenebis (Cyclohexyl Isocyanate) (HMDI) and PEG as polyol, and chain extention through adding lignin in the pre-polyurethanization system. The composition effect of lignin in hybrid PU syntehsis, to chemical structure corelated to hydrophobic to hydrophilic ratio, thermal and morphological properties, was evaluated by measuring NMR, FTIR, DSC, TGA and FE-SEM. The experiments showed that addition of lignin was able to extend the pre-polyurethane into hybrid polyurethane and to increase the lignin/polyol ratio in the hybrid polyurethanes, which were indicated by NMR and FTIR Analysis. And change of the ratio lead to increase the glass transition from 60.9 until 62.1°C and degradation temperature from 413.9 until 416.0°C. Observation of the morphology implied that addition of lignin gave more agglomerations. A Further investigation for this characterization study should be focused on a feasibility for this modified lignin as a novel compatibilizing agent.

  19. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG.

    PubMed

    Mei, Tingzhen; Zhu, Yonghe; Ma, Tongcui; He, Tao; Li, Linjing; Wei, Chiju; Xu, Kaitian

    2014-09-01

    A series of alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on poly(L-lactic acid) (PLA) and poly(ethylene glycol) (PEG) were synthesized. The differences of PULA-alt/ran-PEG chemical structure, molecular weight, distribution, thermal properties, mechanical properties and static contact angle were systematically investigated. The PULA-alt/ran-PEG polyurethanes exhibited low T(g) (-47.3 ∼ -34.4°C), wide mechanical properties (stress σ(t): 4.6-32.6 MPa, modulus E: 11.4-323.9 MPa and strain ε: 468-1530%) and low water contact angle (35.4-51.4°). Scanning electron microscope (SEM) observation showed that PULA-alt-PEG film displays rougher and more patterned surface morphology than PULA-ran-PEG does, due to more regular structures of PULA-alt-PEG. Hydrolytic degradation shows that degradation rate of random block polyurethane series PULA-ran-PEG is higher than the alternating counterpart PULA-alt-PEG. PLA segment degradation is faster than urethane linkage and PEG segment almost does not degrade in the buffer solution. Platelet adhesion study showed that all the polyurethanes possess excellent hemocompatibility. The cell culture assay revealed that PULA-alt/ran-PEG polyurethanes were cell inert and unfavorable for the attachment of rat glial cell due to the hydrophilic characters of the materials. © 2013 Wiley Periodicals, Inc.

  20. Degradability in vitro of polyurethanes based on synthetic atactic poly[(R,S)-3-hydroxybutyrate].

    PubMed

    Brzeska, J; Janeczek, H; Janik, H; Kowalczuk, M; Rutkowska, M

    2015-01-01

    The aim of the present study was to determine the degradability of aliphatic polyurethanes, based on a different amount of synthetic, atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB), in hydrolytic (phosphate buffer) and oxidative (H2O2/CoCl2) solutions. The soft segments were built with atactic poly[(R,S)-3-hydroxybutyrate] and polycaprolactone or polyoxytetramethylenediols, whereas hard segments were the reaction product of 4,4'-methylenedicyclohexyl diisocyanate and 1,4-butanediol.The selected properties - density and morphology of polymer surfaces - which could influence the sensitivity of polymers to degradation processes - were analyzed.The analysis of molecular mass (GPC), thermal properties (DSC) and the sample weight changes were undertaken to estimate the degree of degradability of polymer samples after incubation in environments studied.Investigated polyurethanes were amorphous with the very low amount of crystalline phases of hard segments.The polyurethane synthesized with a poly[(R,S)-3-hydroxybutyrate] and polyoxytetramethylenediol at a molar ratio of NCO:OH=3.7:1 (prepolymer step) appeared as the most sensitive for both degradative solutions. Its weight and molecular mass losses were the highest in comparison to other investigated polyurethanes.It could be expected that playing with the amount of poly[(R,S)-3-hydroxybutyrate] in polyurethane synthesis the rate of polyurethane degradation after immersion in living body would be modeled.

  1. Exploratory study on the effects of novel diamine curing agents and isocyanate precursors on the properties of new epoxy and urethane adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. G.

    1976-01-01

    The effects of novel aromatic diamine structures on the adhesive properties of epoxy and polyurethane adhesives were studied. Aromatic diamines based on benzophenone and diphenyl-methane isomers were evaluated as curing agents for epoxy resins and benzophenone and diphenyl-methane based diamine isomers were evaluated as curing agents for polyurethane adhesives. Polyurethane adhesives were prepared based on m, m prime-diisocyanato-diphenyl-methane and m, m prime-diisocyanato-benzophenone. The m, m prime-diisocayanato-diphenyl-methane based adhesive had properties comparable to state-of-the-art adhesives. The m, m prime-diisocyanato-benzophenone based adhesive was extremely reactive.

  2. Starch based polyurethanes: A critical review updating recent literature.

    PubMed

    Zia, Fatima; Zia, Khalid Mahmood; Zuber, Mohammad; Kamal, Shagufta; Aslam, Nosheen

    2015-12-10

    Recent advancements in material science and technology made it obvious that use of renewable feed stock is the need of hour. Polymer industry steadily moved to get rid of its dependence on non-renewable resources. Starch, the second largest occurring biomass (renewable) on this planet provides a cheap and eco-friendly way to form huge variety of materials on blending with other biodegradable polymers. Specific structural versatility design for individual application and tailor-made properties have established the polyurethane (PU) as an important and popular class of synthetic biodegradable polymers. Blending of starch with polyurethane is relatively a developing area in PU chemistry but with lot of attraction for researchers. Herein, various starch based polyurethane materials including blends, grafts, copolymers, composites and nano-composites, as well as the prospects and latest developments are discussed. Additionally, an overview of starch based polymeric materials, including their potential applications are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Flexible and stretchable electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Shea, Herbert R.

    2013-02-01

    Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.

  4. Mechanical Response of Elastomers to Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Munoz, B. C.; Jolly, M. R.

    1996-01-01

    Elastomeric materials represent an important class of engineering materials, which are widely used to make components of structures, machinery, and devices for vibration and noise control. Elastomeric material possessing conductive or magnetic properties have been widely used in applications such as conductive and magnetic tapes, sensors, flexible permanent magnets, etc. Our interest in these materials has focussed on understanding and controlling the magnitude and directionality of their response to applied magnetic fields. The effect of magnetic fields on the mechanical properties of these materials has not been the subject of many published studies. Our interest and expertise in controllable fluids have given us the foundation to make a transition to controllable elastomers. Controllable elastomers are materials that exhibit a change in mechanical properties upon application of an external stimuli, in this case a magnetic field. Controllable elastomers promise to have more functionality than conventional elastomers and therefore could share the broad industrial application base with conventional elastomers. As such, these materials represent an attractive class of smart materials, and may well be a link that brings the applications of modern control technologies, intelligent structures and smart materials to a very broad industrial area. This presentation will cover our research work in the area of controllable elastomers at the Thomas Lord Research Center. More specifically, the presentation will discuss the control of mechanical properties and mathematical modeling of the new materials prepared in our laboratories along with experiments to achieve adaptive vibration control using the new materials.

  5. One-Pot Conversion of Epoxidized Soybean Oil (ESO) into Soy-Based Polyurethanes by MoCl₂O₂ Catalysis.

    PubMed

    Pantone, Vincenzo; Annese, Cosimo; Fusco, Caterina; Fini, Paola; Nacci, Angelo; Russo, Antonella; D'Accolti, Lucia

    2017-02-21

    An innovative and eco-friendly one-pot synthesis of bio-based polyurethanes is proposed via the epoxy-ring opening of epoxidized soybean oil (ESO) with methanol, followed by the reaction of methoxy bio-polyols intermediates with 2,6-tolyl-diisocyanate (TDI). Both synthetic steps, methanolysis and polyurethane linkage formation, are promoted by a unique catalyst, molybdenum(VI) dichloride dioxide (MoCl₂O₂), which makes this procedure an efficient, cost-effective, and environmentally safer method amenable to industrial scale-up.

  6. Energy conversion in magneto-rheological elastomers

    NASA Astrophysics Data System (ADS)

    Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves

    2017-12-01

    Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm-3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed.

  7. Energy conversion in magneto-rheological elastomers

    PubMed Central

    Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves

    2017-01-01

    Abstract Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm-3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed. PMID:29152013

  8. Graphene and water-based elastomers thin-film composites by dip-moulding.

    PubMed

    Iliut, Maria; Silva, Claudio; Herrick, Scott; McGlothlin, Mark; Vijayaraghavan, Aravind

    2016-09-01

    Thin-film elastomers (elastic polymers) have a number of technologically significant applications ranging from sportswear to medical devices. In this work, we demonstrate that graphene can be used to reinforce 20 micron thin elastomer films, resulting in over 50% increase in elastic modulus at a very low loading of 0.1 wt%, while also increasing the elongation to failure. This loading is below the percolation threshold for electrical conductivity. We demonstrate composites with both graphene oxide and reduced graphene oxide, the reduction being undertaken in-situ or ex-situ using a biocompatible reducing agent in ascorbic acid. The ultrathin films were cast by dip moulding. The transparency of the elastomer films allows us to use optical microscopy image and confirm the uniform distribution as well as the conformation of the graphene flakes within the composite.

  9. Mechanical design handbook for elastomers. [the design of elastomer dampers for application in rotating machinery

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Zorzi, E.

    1981-01-01

    A comprehensive guide for the design of elastomer dampers for application in rotating machinery is presented. Theoretical discussions, a step by step procedure for the design of elastomer dampers, and detailed examples of actual elastomer damper applications are included. Dynamic and general physical properties of elastomers are discussed along with measurement techniques.

  10. Collapse of triangular channels in a soft elastomer

    NASA Astrophysics Data System (ADS)

    Tepáyotl-Ramírez, Daniel; Lu, Tong; Park, Yong-Lae; Majidi, Carmel

    2013-01-01

    We extend classical solutions in contact mechanics to examine the collapse of channels in a soft elastomer. These channels have triangular cross-section and collapse when pressure is applied to the surrounding elastomer. Treating the walls of the channel as indenters that penetrate the channel base, we derive an algebraic mapping between pressure and cross-sectional area. These theoretical predictions are in strong agreement with results that we obtain through finite element analysis and experimental measurements. This is accomplished without data fitting and suggests that the theoretical approach may be generalized to a broad range of cross-sectional geometries in soft microfluidics.

  11. Novel dielectric elastomer structure of soft robot

    NASA Astrophysics Data System (ADS)

    Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Liu, Junjie; Jin, Yongbin; Li, Tiefeng

    2015-04-01

    Inspired from the natural invertebrates like worms and starfish, we propose a novel elastomeric smart structure. The smart structure can function as a soft robot. The soft robot is made from a flexible elastomer as the body and driven by dielectric elastomer as the muscle. Finite element simulations based on nonlinear field theory are conducted to investigate the working condition of the structure, and guide the design of the smart structure. The effects of the prestretch, structural stiffness and voltage on the performance of the smart structure are investigated. This work can guide the design of soft robot.

  12. Toughness augmentation by fibrillation and yielding in nanostructured blends with recycled polyurethane as a modifier

    NASA Astrophysics Data System (ADS)

    Reghunadhan, Arunima; Datta, Janusz; Kalarikkal, Nandakumar; Haponiuk, Jozef T.; Thomas, Sabu

    2018-06-01

    In the present paper, we have carefully investigated the morphology and fracture mechanism of the recycled polyurethane (RPU)/epoxy blend system. The second phase (RPU) added to the epoxy resin has a positive effect on the overall mechanical properties. Interestingly, the recycled polymer has a remarkable effect on the fracture toughness of epoxy resin. The mechanism behind the fracture toughness improvement up on the addition of RPU was found to be very similar to that of the incorporation of hyperbranched polymers in epoxy resin. Brittle to ductile fracture was clear in the case of higher loadings such as 20 and 40 phr of RPU in the epoxy resin. The mechanism behind improvement of fracture toughness was found to fibrillation of the RPU phase which was evidenced by the fracture morphology. In fact the force applied to the epoxy matrix was effectively transferred to the added RPU phase due to its strong interaction with the epoxy phase. This effective transfer of force to the RPU phase protects the epoxy matrix without catastrophic failure and we observed 44% increase in G1C values at an addition of 40 phr RPU. This results in the extensive fibrillation of RPU which causes the generation of new surfaces. Thus the impact energy has been fully utilized by the RPU phase. The mechanism is termed as simultaneous reinforcing and toughening and normally reported as a result of cavitations and yielding. SEM, HRTEM and AFM analyses clearly demonstrated the fibrillated morphology of the fracture surface and the formation of nanostructures. This report is first of its kind in the case of both epoxy modification and the elastomer toughening.

  13. Physical Training Methods For Mine Rescuers In 2015

    NASA Astrophysics Data System (ADS)

    Marin, Laurentiu; Pavel, Topala; Marin, Catalina Daniela; Sandu, Teodor

    2015-07-01

    Research and development activities presented were aimed at obtaining a nanocomposite polyurethane matrix with special anti-wear, anti-slip and fire-resistant properties. Research and development works were materialized by obtaining polyurethane nanocomposite matrix, by its physico-chemical modification in order to give the desired technological properties and by characterization of the obtained material. Polyurethane nanocomposite matrix was obtained by reacting a PETOL 3 type polyetherpolyol (having a molecular weight of 5000 UAM) with a diisocyanate under well-established reaction conditions. Target specific technological properties were obtained by physical and chemical modification of polyurethane nanocomposite matrix. The final result was getting a pellicle material based on modified nanocomposite polyurethane, with anti-wear, anti-slip and fire-resistant properties, compatible with most substrates encountered in civil and industrial construction: wood, concrete, metal.

  14. Photocrosslinkable biodegradable elastomers based on cinnamate-functionalized polyesters.

    PubMed

    Zhu, Congcong; Kustra, Stephen R; Bettinger, Christopher J

    2013-07-01

    Synthetic biodegradable elastomers are an emerging class of materials that play a critical role in supporting innovations in bioabsorbable medical implants. This paper describes the synthesis and characterization of poly(glycerol-co-sebacate)-cinnamate (PGS-CinA), a biodegradable elastomer based on hyperbranched polyesters derivatized with pendant cinnamate groups. PGS-CinA can be prepared via photodimerization in the absence of photoinitiators using monomers that are found in common foods. The resulting network exhibits a Young's modulus of 50.5-152.1kPa and a projected in vitro degradation half-life time between 90 and 140days. PGS-CinA elastomers are intrinsically cell-adherent and support rapid proliferation of fibroblasts. Spreading and proliferation of fibroblasts are loosely governed by the substrate stiffness within the range of Young's moduli in PGS-CinA networks that were prepared. The thermo-mechanical properties, biodegradability and intrinsic support of cell attachment and proliferation suggest that PGS-CinA networks are broadly applicable for use in next generation bioabsorable materials including temporary medical devices and scaffolds for soft tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids.

    PubMed

    Liu, Ting; Liu, Mengmeng; Dou, Su; Sun, Jiangman; Cong, Zifeng; Jiang, Chunyan; Du, Chunhua; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-03-27

    A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel-elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.

  16. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG).

    PubMed

    Li, Linjing; Liu, Xiangyu; Niu, Yuqing; Ye, Jianfu; Huang, Shuiwen; Liu, Chao; Xu, Kaitian

    2017-07-01

    Alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on biodegradable poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were prepared. Results showed that alternating block polyurethane gives higher crystal degree, higher mechanical properties, more patterned and rougher surface than the random counterpart, due to the regular and controlled structure. Water absorptions of the polyurethanes were in the range of 620 to 780%. Cytocompatibility of the amphiphilic block polyurethanes (PU) (water static angle 41.4°-61.8°) was assessed by CCK-8 assay using human embryonic kidney (HEK293) cells. Wound healing evaluation of the PU foam scaffolds was carried out by full-thickness SD rat model experiment, with medical gauze as control. It was found that the skin of rat in PU groups was fully covered with new epithelium without any significant adverse reactions and PU dressings give much rapid and better healing than medical gauze. Histological examination revealed that PU dressings suppress the infiltration of inflammatory cells and accelerate fibroblast proliferation. It was also demonstrated that PULA-alt-PEG exhibits obvious better healing effect than PULA-ran-PEG does. This study has demonstrated that without further modification, plain alternating block polyurethane scaffold would help wound recovery efficiently. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1200-1209, 2017. © 2016 Wiley Periodicals, Inc.

  17. Facile preparation of mussel-inspired polyurethane hydrogel and its rapid curing behavior.

    PubMed

    Sun, Peiyu; Wang, Jing; Yao, Xiong; Peng, Ying; Tu, Xiaoxiong; Du, Pengfei; Zheng, Zhen; Wang, Xinling

    2014-08-13

    A facile method was found to incorporate a mussel-inspired adhesive moiety into synthetic polymers, and mussel mimetic polyurethanes were developed as adhesive hydrogels. In these polymers, a urethane backbone was substituted for the polyamide chain of mussel adhesive proteins, and dopamine was appended to mimic the adhesive moiety of adhesive proteins. A series of mussel mimetic polyurethanes were created through a step-growth polymerization based on hexamethylene diisocyanate as a hard segment, PEG having different molecular weights as a soft segment, and lysine-dopamine as a chain extender. Upon a treatment with Fe(3+), the aqueous mussel mimetic polyurethane solutions can be triggered by pH adjustment to form adhesive hydrogels instantaneously; these materials can be used as injectable adhesive hydrogels. Upon a treatment with NaIO4, the mussel mimetic polyurethane solutions can be cured in a controllable period of time. The successful combination of the unique mussel-inspired adhesive moiety with a tunable polyurethane structure can result in a new kind of mussel-inspired adhesive polymers.

  18. Dielectric elastomers with novel highly-conducting electrodes

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Uhl, Detlev

    2013-04-01

    Beside the characteristics of the elastomer material itself, the performance of dielectric elastomers in actuator, sensor as well as generator applications depends also on the properties of the electrode material. Various electrode materials based on metallic particles dispersed in a silicone matrix were manufactured and investigated. Anisotropic particles such as silver-coated copper flakes and silver-coated glass flakes were used for the preparation of the electrodes. The concentration of the metallic particles and the thickness of the electrode layers were varied. Specific conductivities derived from resistance measurements reached about 100 S/cm and surmount those of the reference materials based on graphite and carbon black by up to three orders of magnitude. The high conductivities of the new electrode materials can be maintained even at very large stretch deformations up to 200 %.

  19. Apparatus, system, and method for providing fabric-elastomer composites as pneumatic actuators

    DOEpatents

    Martinez, Ramses V.; Whitesides, George M.

    2017-10-25

    Soft pneumatic actuators based on composites consisting of elastomers with embedded sheet or fiber structures (e.g., paper or fabric) that are flexible but not extensible are described. On pneumatic inflation, these actuators move anisotropically, based on the motions accessible by their composite structures. They are inexpensive, simple to fabricate, light in weight, and easy to actuate. This class of structure is versatile: the same principles of design lead to actuators that respond to pressurization with a wide range of motions (bending, extension, contraction, twisting, and others). Paper, when used to introduce anisotropy into elastomers, can be readily folded into three-dimensional structures following the principles of origami; these folded structures increase the stiffness and anisotropy of the elastomeric actuators, while keeping them light in weight.

  20. Synthesis and Thermal Analysis of Nano-Aluminum/Fluorinated Polyurethane Elastomeric Composites for Structural Energetics.

    PubMed

    Zhang, Xianyu; Kim, Jin Seuk; Kwon, Younghwan

    2017-04-01

    Here we describe the synthesis of polyurethane (PU)-based energetic nanocomposites loaded with nano-aluminum (n-Al) particles. The energetic nanocomposite was prepared by polyurethane reaction of poly(glycidyl azide-co-tetramethylene glycol) (PGT) prepolymers and IPDI/N-100 isocyanates with simultaneous catalyst-free azide-alkyne Click reaction in the presence of n-Al. Initial study carried out with various n-Al/fluorinated PGT blends and demonstrated the potential of fluorinated PGT prepolymer for an energetic PU matrix. Thermal analysis of n-Al/fluorinated PGT-based PU energetic nanocomposite was performed using DSC and TGA.

  1. Microscopic and macroscopic instabilities in finitely strained porous elastomers

    NASA Astrophysics Data System (ADS)

    Michel, J. C.; Lopez-Pamies, O.; Ponte Castañeda, P.; Triantafyllidis, N.

    2007-05-01

    The present work is an in-depth study of the connections between microstructural instabilities and their macroscopic manifestations—as captured through the effective properties—in finitely strained porous elastomers. The powerful second-order homogenization (SOH) technique initially developed for random media, is used for the first time here to study the onset of failure in periodic porous elastomers and the results are compared to more accurate finite element method (FEM) calculations. The influence of different microgeometries (random and periodic), initial porosity, matrix constitutive law and macroscopic load orientation on the microscopic buckling (for periodic microgeometries) and macroscopic loss of ellipticity (for all microgeometries) is investigated in detail. In addition to the above-described stability-based onset-of-failure mechanisms, constraints on the principal solution are also addressed, thus giving a complete picture of the different possible failure mechanisms present in finitely strained porous elastomers.

  2. Data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers prepared from amino-terminated polydimethylsiloxanes and polydimethyl-methyl-phenyl-siloxane-copolymers.

    PubMed

    Riehle, Natascha; Götz, Tobias; Kandelbauer, Andreas; Tovar, Günter E M; Lorenz, Günter

    2018-06-01

    This article contains data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers (PSUs) and is related to the research article entitled "Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application" (Riehle et al., 2018) [1]. These elastomers were prepared by a two-step polyaddition using the aliphatic diisocyanate 4,4'-Methylenbis(cyclohexylisocyanate) (H 12 MDI), a siloxane-based chain extender 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (APTMDS) and amino-terminated polydimethylsiloxanes (PDMS) or polydimethyl-methyl-phenyl-siloxane-copolymers (PDMS-Me,Ph), respectively. (More details about the synthesis procedure and the reaction scheme can be found in the related research article (Riehle et al., 2018) [1]). Amino-terminated polydimethylsiloxanes with varying molecular weights and PDMS-Me,Ph-copolymers were prepared prior by a base-catalyzed ring-chain equilibration of a cyclic siloxane and the endblocker APTMDS. This DiB article contains a procedure for the synthesis of the base catalyst tetramethylammonium-3-aminopropyl-dimethylsilanolate and a generic synthesis procedure for the preparation of a PDMS having a targeted number average molecular weight M ¯ n of 3000 g mol -1 . Molecular weights and the amount of methyl-phenyl-siloxane within the polysiloxane-copolymers were determined by 1 H NMR and 29 Si NMR spectroscopy. The corresponding NMR spectra and data are described in this article. Additionally, this DiB article contains processed data on in line and off line FTIR-ATR spectroscopy, which was used to follow the reaction progress of the polyaddition by showing the conversion of the diisocyanate. All relevant IR band assignments of a polydimethylsiloxane-urea spectrum are described in this article. Finally, data on the tensile properties and the mechanical hysteresis-behaviour at 100% elongation of PDMS-based polyurea-elastomers are shown in dependence to the PDMS molecular weight.

  3. Thermal Stability of Aqueous Polyurethanes Depending on the Applied Catalysts

    PubMed Central

    Cakic, Suzana; Nikolic, Goran; Lacnjevac, Caslav; Gligoric, Miladin; Stamenkovic, Jakov; Rajkovic, Milos B.; Barac, Miroljub

    2006-01-01

    The thermal stability of aqueous polyurethanes has been measured applying the thermogravimetric analysis. The aqueous polyurethanes (aqPUR) with catalysts of different selectivity have been studied by use of the dynamic method. To obtain degradations of 0.025, 0.05, and 0.10, employing the dynamic method, the heating rates of 0.5, 1, 2, 5, and 10 °C min-1 have been used in the range of 30-500 °C. Using the more selective catalysts in the aqueous polyurethanes, the total resulting time of the decompositon has been on the increase at all degrees of the degradation and at the particular starting temperature. This paper shows that the dynamic method based on the thermogravimetric analysis can be used to assess the thermal stability of the aqueous polyurethanes using the catalysts of different selectivity.

  4. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  5. Degradability of cross-linked polyurethanes based on synthetic polyhydroxybutyrate and modified with polylactide.

    PubMed

    Brzeska, Joanna; Morawska, Magda; Sikorska, Wanda; Tercjak, Agnieszka; Kowalczuk, Marek; Rutkowska, Maria

    2017-01-01

    In many areas of application of conventional non-degradable cross-linked polyurethanes (PUR), there is a need for their degradation under the influence of specific environmental factors. It is practiced by incorporation of sensitive to degradation compounds (usually of natural origin) into the polyurethane structure, or by mixing them with polyurethanes. Cross-linked polyurethanes (with 10 and 30%wt amount of synthetic poly([ R,S ]-3-hydroxybutyrate) (R,S-PHB) in soft segments) and their physical blends with poly([d,l]-lactide) (PDLLA) were investigated and then degraded under hydrolytic (phosphate buffer solution) and oxidative (CoCl 2 /H 2 O 2 ) conditions. The rate of degradation was monitored by changes of samples mass, morphology of surface and their thermal properties. Despite the small weight losses of samples, the changes of thermal properties of polymers and topography of their surface indicated that they were susceptible to gradual degradation under oxidative and hydrolytic conditions. Blends of PDLLA and polyurethane with 30 wt% of R,S -PHB in soft segments and PUR/PDLLA blends absorbed more water and degraded faster than polyurethane with low amount of R,S -PHB.

  6. Soy-based UV resistant polyurethane pultruded composites.

    DOT National Transportation Integrated Search

    2012-02-01

    Aliphatic polyurethane (PU) nanocomposites were synthesized using organically modified nanoclays. X-Ray diffraction results : confirmed good exfoliation of nanoclay particles in the PU resin system. With the addition of just 1% of nanoclay in the bas...

  7. Hugoniot-based equations of state for two filled EPDM rubbers

    NASA Astrophysics Data System (ADS)

    Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.

    2014-05-01

    Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.

  8. Electrothermal actuation based on carbon nanotube network in silicone elastomer

    NASA Astrophysics Data System (ADS)

    Chen, L. Z.; Liu, C. H.; Hu, C. H.; Fan, S. S.

    2008-06-01

    The authors report an electrothermal actuator, which is fabricated by involving carbon nanotube network into the silicone elastomer. The actuators exhibit excellent performances as good as normal dielectric elastomer actuators while working under much lower voltages (e.g., 1.5Vmm-1). They are longitudinal actuators and there is no need for stacking or rolling sheets of materials. In addition, they can satisfy the demand of different voltage applications ranging from dozens of voltages to thousands of voltages by using different carbon nanotube loading composites. Visible maximal strain of 4.4% occurs at an electric power intensity around 0.03Wmm-3.

  9. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  10. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    PubMed

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  11. Novel electrode-elastomer combinations for improved performance and application of dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    Dielectric elastomers are the most promising technology for mimicking human muscles in terms of strain, stress, and work density, etc. Actuators have been fabricated based on different design concepts and configurations for applications in robotics, prosthetic devices, medical implants, pumps, and valves. However, to date these actuators have experienced high rates of failure caused by electrical shorting of the compliant electrodes through the elastomer film during electrical breakdown, which has prevented their practical application. In this thesis, single walled carbon nanotube (SWNT) thin films were employed as compliant electrodes for dielectric elastomers to reduce the rate of failure. Thanks to the high aspect ratio of the SWNTs, the electrodes maintain substantial conductance at high biaxial strains. 3M VHB acrylics can be actuated up to 200% area strain with SWNT electrodes, this matches the performance of actuators with carbon grease electrodes. During uni-directional stretching, SWNT electrodes can maintain surface conductivity up to 700% linear strain. SWNT electrodes can experience a self-clearing process under high voltage discharging and electrically isolate the electrodes around the breakdown sites when breakdown events happen. With conventional dielectric elastomer electrode materials such as carbon grease and carbon black, a single breakdown event results in a permanent loss in the actuator's functionality. In contrast, for SWNT electrodes, the SWNTs around the breakdown site will be degraded and become non-conductive. The non-conductive area expands outward until the high voltage discharging stops. As such, the opposing electrodes are prevented from coming into contact with each other and forming an electrical short and the breakdown site is electrically isolated from the remainder of the active area. Despite the existence of the breakdown sites, the dielectric elastomer will resume its functionality and avoid permanent failure. Thus, dielectric elastomers with self-clearable SWNT electrodes will be self-healable. Due to the non-uniform surface morphology of SWNT thin films as well as their low turn-on voltage for field emission, corona discharging tends to occur on the electrode surface, even without the presence of a breakdown site through the film. The corona discharging will damage the SWNT electrodes, especially in the regions where the nanotube density is low. This in turn causes the dielectric elastomer to gradually lose its function. By applying a thin coating of dielectric oil on the SWNT electrodes, the corona discharging will be quenched. Dielectric elastomers with self-clearable SWNT electrodes combined with a dielectric oil coating show much longer lifetime and more stable operation. Thus, the SWNT self-clearable electrodes endow dielectric elastomers with fault-tolerance, high dielectric breakdown strength and long lifetime actuation. For examples, VHB acrylic elastomer can achieve 340 V/mum dielectric strength and 20x longer actuation. A dielectric strength of 270 V/mum and longer than 300 minutes of continuous actuation with 50% area strain have also obtained with silicone elastomers. This addition of self-clearable fault-tolerant electrodes to dielectric elastomers transducers improves the manufacturing yield and operational reliability of these artificial muscles and pushes them closer to commercialization.

  12. A semi-phenomenological model to predict the acoustic behavior of fully and partially reticulated polyurethane foams

    NASA Astrophysics Data System (ADS)

    Doutres, Olivier; Atalla, Noureddine; Dong, Kevin

    2013-02-01

    This paper proposes simple semi-phenomenological models to predict the sound absorption efficiency of highly porous polyurethane foams from microstructure characterization. In a previous paper [J. Appl. Phys. 110, 064901 (2011)], the authors presented a 3-parameter semi-phenomenological model linking the microstructure properties of fully and partially reticulated isotropic polyurethane foams (i.e., strut length l, strut thickness t, and reticulation rate Rw) to the macroscopic non-acoustic parameters involved in the classical Johnson-Champoux-Allard model (i.e., porosity ϕ, airflow resistivity σ, tortuosity α∝, viscous Λ, and thermal Λ' characteristic lengths). The model was based on existing scaling laws, validated for fully reticulated polyurethane foams, and improved using both geometrical and empirical approaches to account for the presence of membrane closing the pores. This 3-parameter model is applied to six polyurethane foams in this paper and is found highly sensitive to the microstructure characterization; particularly to strut's dimensions. A simplified micro-/macro model is then presented. It is based on the cell size Cs and reticulation rate Rw only, assuming that the geometric ratio between strut length l and strut thickness t is known. This simplified model, called the 2-parameter model, considerably simplifies the microstructure characterization procedure. A comparison of the two proposed semi-phenomenological models is presented using six polyurethane foams being either fully or partially reticulated, isotropic or anisotropic. It is shown that the 2-parameter model is less sensitive to measurement uncertainties compared to the original model and allows a better estimation of polyurethane foams sound absorption behavior.

  13. Development of New Elastomers and Elastic Nanocomposites from Plant Oils

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Wool, Richard

    2006-03-01

    Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.

  14. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.

    PubMed

    Li, Guangyao; Li, Dandan; Niu, Yuqing; He, Tao; Chen, Kevin C; Xu, Kaitian

    2014-03-01

    Polyurethanes with regular and controlled block arrangement, i.e., alternating block polyurethanes (abbreviated as PUCL-alt-PEG) based on poly(ε-caprolactone) (PCL-diol) and poly(ethylene glycol) (PEG) was prepared via selectively coupling reaction between PCL-diol and diisocyanate end-capped PEG. Chemical structure, molecular weight, distribution, and thermal properties were systematically characterized by FTIR, (1)H NMR, GPC, DSC, and TGA. Hydrophilicity was studied by static contact angle of H2O and CH2I2. Film surface was observed by scanning electron microscope (SEM) and atomic force microscopy, and mechanical properties were assessed by universal test machine. Results show that alternating block polyurethanes give higher crystal degree, higher mechanical properties, and more hydrophilic and rougher (deep ravine) surface than their random counterpart, due to regular and controlled structure. Platelet adhesion illustrated that PUCL-alt-PEG has better hemocompatibility and the hemacompatibility was affected significantly by PEG content. Excellent hemocompatibility was obtained with high PEG content. CCK-8 assay and SEM observation revealed much better cell compatibility of fibroblast L929 and rat glial cells on the alternating block polyurethanes than that on random counterpart. Alternating block polyurethane PUC20-a-E4 with optimized composition, mechanical, surface properties, hemacompatibility, and highest cell growth and proliferation was achieved for potential use in nerve regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  15. Characterization of thermal destruction behavior of hybrid composites based on polyoxymethylene, ethylene-octene copolymer impact modifier and ZnO nanofiller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meri, Remo Merijs; Zicans, Janis; Abele, Agnese

    Hybrid polymer nanocomposites, composed of polyoxymethylene (POM), ethylene octene copolymer (EOC) and plasma synthesized tetrapod shaped zinc oxide (ZnO), were prepared by using melt compounding. The content of EOC in the POM based composites was varied between 10 and 50 mass %, while the content of ZnO was constant (2 mass %). Thermal behaviour of POM based systems was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. The influence of the elastomer content and/or ZnO addition on the thermal stability of POM based systems was evaluated. The influence of the α-octene content in the elastomer on themore » thermal decomposition behaviour of POM and its nanocomposites with ZnO was also evaluated. Results of thermogravimetric analysis showed that, by rising either the elastomer or ZnO content, thermal stability of the investigated POM composites was increased. The modifying effect of EOC17 in respect of thermal resistance was somewhat larger than that of EOC38 because of the smaller amount of tertiary carbon atoms in the macromolecular structure of the former elastomer. Improved thermal resistance of ZnO containing POM based composites was because of impermeable structure the inorganic nanofiller allowing decrease gas exchange rate and facilitating non-combustible gases, such as CO{sub 2}, stay in the zone of burning. Addition of ZnO have a potential to influence structure of the polymer blend matrix itself by improving its barrier characteristics.« less

  16. Designed drug-release systems having various breathable polyurethane film-backed hydrocolloid acrylated adhesive layers for moisture healing.

    PubMed

    Chang, Ching-Hsien; Liu, Hsia-Wei; Huang, Ching-Cheng

    2014-01-01

    A series of designed drug-release systems were prepared and established for clear moisture healing. These systems were designed to have an interpenetrating polymer network (IPN) structure, which contained a breathable polyurethane film, hydrocolloidlayer, and polyacrylate adhesive layer. Breathable polyurethane film (2000 g/m(2)/24 hr) with high moisture permeability was employed as a base for new drug-release systems or wound dressings. All drug-release systems having a polyurethane film-backed hydrocolloid acrylated adhesive layer showed an increase of water uptakes with increasing time. After 114 hours, high water uptakes of drug-release systems with 20% hydrocolloid components were observed in the values of 160, 1100, and 1870% for different additional hydrocolloid components of carboxymethylcellulose, sodium alginate, and carbomer U10, respectively. New drug-release systems of polyurethane film-backed hydrocolloid/adhesive layers could be designed and established for wound care managements.

  17. Mechanical Design Handbook for Elastomers

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Zorzi, E.

    1986-01-01

    Mechanical Design Handbook for Elastomers reviews state of art in elastomer-damper technology with particular emphasis on applications of highspeed rotor dampers. Self-contained reference but includes some theoretical discussion to help reader understand how and why dampers used for rotating machines. Handbook presents step-by-step procedure for design of elastomer dampers and detailed examples of actual elastomer damper applications.

  18. Green waste cooking oil-based rigid polyurethane foam

    NASA Astrophysics Data System (ADS)

    Enderus, N. F.; Tahir, S. M.

    2017-11-01

    Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.

  19. Multifunctional Graphene-Silicone Elastomer Nanocomposite, Method of Making the Same, and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Pan, Shuyang (Inventor); Aksay, Ilhan A. (Inventor)

    2018-01-01

    A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 wt %, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 sq m/g to 2630 sq m2/g; and a method for producing the nanocomposite and uses thereof.

  20. Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water

    PubMed Central

    Zhou, Xing; Fang, Changqing; Lei, Wanqing; Du, Jie; Huang, Tingyi; Li, Yan; Cheng, Youliang

    2016-01-01

    Water plays important roles in organic reactions such as polyurethane synthesis, and the aqueous solution environment affects polymer morphology and other properties. This paper focuses on the morphology and surface properties of waterborne polyurethane resulting from the organic reaction in water involving different forms (solid and liquid), temperatures and aqueous solutions. We provide evidence from TEM observations that the appearance of polyurethane nanoparticles in aqueous solutions presents diverse forms, including imperfect spheres, perfect spheres, perfect and homogenous spheres and tubes. Based on the results on FTIR, GPC, AFM and XRD experiments, we suggest that the shape of the nanoparticles may be decided by the crimp degree (i.e., the degree of polyurethane chains intertangling in the water environment) and order degree, which are determined by the molecular weight (Mn) and hydrogen bonds. Meanwhile, solid water and high-temperature water can both reduce hard segments that gather on the polyurethane film surface to reduce hydrophilic groups and produce a soft surface. Our findings show that water may play key roles in aqueous polymer formation and bring order to molecular chains. PMID:27687001

  1. The In Vivo Pericapsular Tissue Response to Modern Polyurethane Breast Implants.

    PubMed

    Frame, James; Kamel, Dia; Olivan, Marcelo; Cintra, Henrique

    2015-10-01

    Polyurethane breast implants were first introduced by Ashley (Plast Reconstr Surg 45:421-424, 1970), with the intention of trying to reduce the high incidence of capsular contracture associated with smooth shelled, high gel bleed, silicone breast implants. The sterilization of the polyurethane foam in the early days was questionable. More recently, ethylene oxide (ETO)-sterilized polyurethane has been used in the manufacturing process and this has been shown to reduce the incidence of biofilm. The improved method of attachment of polyurethane onto the underlying high cohesive gel, barrier shell layered, silicone breast implants also encourages bio-integration. Polyurethane covered, cohesive gel, silicone implants have also been shown to reduce the incidence of other problems commonly associated with smooth or textured silicone implants, especially with reference to displacement, capsular contracture, seroma, reoperation, biofilm and implant rupture. Since the introduction of the conical polyurethane implant (Silimed, Brazil) into the United Kingdom in 2009 (Eurosurgical, UK), we have had the opportunity to review histology taken from the capsules of polyurethane implants in three women ranging from a few months to over 3 years after implantation. All implants had been inserted into virgin subfascial, extra-pectoral planes. The results add to the important previously described histological findings of Bassetto et al. (Aesthet Plast Surg 34:481-485, 2010). Five distinct layers are identified and reasons for the development of each layer are discussed. Breast capsule around polyurethane implants, in situ for fifteen and 20 years, has recently been obtained and analysed in Brazil, and the histology has been incorporated into this study. After 20 years, the polyurethane is almost undetectable and capsular contracture may appear. These findings contribute to our understanding of polyurethane implant safety, and give reasoning for a significant reduction in clinical capsular contracture rate, up to 10 years after implantation, compared to contemporary silicone implants. A more permanent matrix equivalent to polyurethane may be the solution for reducing long-term capsular contracture. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  2. Coating processes for increasing the moisture resistance of polyurethane baffle material

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Sawko, P.

    1974-01-01

    An investigation was conducted with the objective to improve the hydrolytic stability of reticulated polyurethane baffle material. This material is used in fuel tanks of aircraft and ground vehicles. The most commonly used foam of this type is hydrolytically unstable. Potential moisture barrier coatings which were evaluated include Parylene, epoxy-polysulfide, polyether based polyurethanes, polysulfides, polyolefin rubbers, and several other materials. Parylene coatings of at least 0.2 mil were found to provide the greatest improvement in hydrolytic stability.

  3. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanolmore » blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.« less

  4. Airborne ultrasonic transducer using polymer-based elastomer with high output-to-weight ratio

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2015-08-01

    With the properties of low density, low elastic modulus, and low mechanical loss, poly(phenylene sulfide) (PPS) is a suitable material as the elastomer in an airborne ultrasonic transducer for generating large vibration velocity. In this study, we design and fabricate a transducer composed of a PPS-based longitudinal vibrator and a PPS-based disk of 0.3 mm thickness to obtain high-intensity ultrasound. The rated sound pressure at a distance of 300 mm reached 38.9 Pa (125 dB, 0 dB re. 0.02 mPa) when the frequency and voltage were 58.90 kHz and 20 V. The weight of this transducer is 6.3 g. The ratio of the sound pressure to the weight of the prototype transducer is 1.8 times larger than that of the commercial transducer. The experimental results indicate that PPS is a good substitute for metal as the elastomer for manufacturing airborne ultrasonic transducers with a high output-to-weight ratio.

  5. Numerical tool for SMA material simulation: application to composite structure design

    NASA Astrophysics Data System (ADS)

    Chemisky, Yves; Duval, Arnaud; Piotrowski, Boris; Ben Zineb, Tarak; Tahiri, Vanessa; Patoor, Etienne

    2009-10-01

    Composite materials based on shape memory alloys (SMA) have received growing attention over these last few years. In this paper, two particular morphologies of composites are studied. The first one is an SMA/elastomer composite in which a snake-like wire NiTi SMA is embedded into an elastomer ribbon. The second one is a commercial Ni47Ti44Nb9 which presents elastic-plastic inclusions in an NiTi SMA matrix. In both cases, the design of such composites required the development of an SMA design tool, based on a macroscopic 3D constitutive law for NiTi alloys. Two different strategies are then applied to compute these composite behaviors. For the SMA/elastomer composite, the macroscopic behavior law is implemented in commercial FEM software, and for the Ni47Ti44Nb9 a scale transition approach based on the Mori-Tanaka scheme is developed. In both cases, simulations are compared to experimental data.

  6. Mechanical and Morphological Effect of Plant Based Antimicrobial Solutions on Maxillofacial Silicone Elastomer.

    PubMed

    Tetteh, Sophia; Bibb, Richard J; Martin, Simon J

    2018-05-30

    The objective of this study was to determine the effect of plant based antimicrobial solutions specifically tea tree and Manuka oil on facial silicone elastomers. The purpose of this in vitro study was to evaluate the effect of disinfection with plant extract solution on mechanical properties and morphology on the silicone elastomer. Test specimens were subjected to disinfection using tea tree oil, Manuka oil and the staphylococcus epidermidis bacteria. Furthermore, a procedure duration was used in the disinfection process to simulate up to one year of usage. Over 500 test specimens were fabricated for all tests performed namely hardness, elongation, tensile, tear strength tests, visual inspection and lastly surface characterization using SEM. A repeated measures ANOVA revealed that hardness and elongation at break varied significantly over the time period, whereas this was not observed in the tear and tensile strength parameters of the test samples.

  7. Shape-memory effect of nanocomposites based on liquid-crystalline elastomers

    NASA Astrophysics Data System (ADS)

    Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.

    2016-05-01

    In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.

  8. Polysiloxane-based luminescent elastomers prepared by thiol-ene "click" chemistry.

    PubMed

    Zuo, Yujing; Lu, Haifeng; Xue, Lei; Wang, Xianming; Wu, Lianfeng; Feng, Shengyu

    2014-09-26

    Side-chain vinyl poly(dimethylsiloxane) has been modified with mercaptopropionic acid, methyl 3-mercaptopropionate, and mercaptosuccinic acid. Coordinative bonding of Eu(III) to the functionalized polysiloxanes was then carried out and crosslinked silicone elastomers were prepared by thiol-ene curing reactions of these composites. All these europium complexes could be cast to form transparent, uniform, thin elastomers with good flexibility and thermal stability. The networks were characterized by FTIR, NMR, UV/Vis, and luminescence spectroscopy as well as by scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The europium elastomer luminophores exhibited intense red light at 617 nm under UV excitation at room temperature due to the (5)D0 →(7)F2 transition in Eu(III) ions. The newly synthesized luminescent materials offer many advantages, including the desired mechanical flexibility. They cannot be dissolved or fused, and so they have potential for use in optical and electronic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delpassand, M.S.

    The power section of a mud driven progressing cavity drill motors consists of a steel rotor shaped with an external helix rotating within a stationary tube with a molded helical elastomeric lining (stator). Operating temperature of the elastomer lining is an important parameter that affects the stator life. Motor operating conditions such as down hole temperature, torque, differential pressure, and speed determine the elastomer temperature. This paper presents an analysis technique to predict stator elastomer temperature as a function of the motor`s operating parameters. A non-linear finite element analysis technique is used to predict the stator temperature. Physical and mechanicalmore » properties of the elastomer are measured, using laboratory equipment such as Monsanto`s RPA2000 dynamic analyzer and BFGoodrich model (II) flexometer. Boundary conditions of the finite element model are defined based on the down hole temperature, differential pressure, and the motor`s speed. Results of the finite element analysis are compared with laboratory test data to verify the accuracy of the analysis.« less

  10. The shape-memory effect in ionic elastomers: fixation through ionic interactions.

    PubMed

    González-Jiménez, Antonio; Malmierca, Marta A; Bernal-Ortega, Pilar; Posadas, Pilar; Pérez-Aparicio, Roberto; Marcos-Fernández, Ángel; Mather, Patrick T; Valentín, Juan L

    2017-04-19

    Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.

  11. Replica molding-based nanopatterning of tribocharge on elastomer with application to electrohydrodynamic nanolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiang; Peer, Akshit; Cho, In Ho

    Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less

  12. Replica molding-based nanopatterning of tribocharge on elastomer with application to electrohydrodynamic nanolithography

    DOE PAGES

    Li, Qiang; Peer, Akshit; Cho, In Ho; ...

    2018-03-02

    Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less

  13. Multifunctional Graphene-Silicone Elastomer Nanocomposite, Method of Making the Same, and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Pan, Shuyang (Inventor); Prud'Homme, Robert K. (Inventor)

    2016-01-01

    A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 weight percentage, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 square meters per gram to 2630 square meters per gram; and a method for producing the nanocomposite and uses thereof.

  14. Self-consuming materials

    DOEpatents

    Thoma, Steven G.; Grubelich, Mark C; Celina, Mathias C.; Vaughn, Mark R.; Knudsen, Steven D.

    2017-05-23

    A self-consuming structure is disclosed that is formed from a self-consuming composition based on an epoxy or polyurethane having fuel and/or oxidizer molecularly dispersed and/or as particulates in the epoxy or polyurethane. The composition may be used to form self-consuming structural components.

  15. Investigation on the mechanical properties of palm-based flexible polyurethane foam

    NASA Astrophysics Data System (ADS)

    On, Ahmad Zuhdi Mohd; Badri, Khairiah Haji

    2015-09-01

    A series of modification polyurethane (PU) system was prepared by introducing palm kernel based polyol (PKO-p) to progressively replaced commercial polyether polyol from petrochemical based material. This paper describes the effect of PKO-p on the physical-mechanical properties of polyurethane foams. Stress-strain analysis in tensile mode was conducted with physicochemical analysis by performing Fourier transform infrared (FTIR). The morphological studies were observed by the optical microscope. The foam showed an increment on the modulus up to 458.3kPa as more incorporation of PKO-p introduced to the system. In contrast, tensile strength of PU foam depicted the highest up to 162 kPa at 60:40. The elongation at break showed decrement as the composition of the renewable polyol increased to a ratio 60/40 of PKO-p to petrochemical based polyol.

  16. Theory of liquid crystal elastomers and polymer networks : Connection between neoclassical theory and differential geometry.

    PubMed

    Nguyen, Thanh-Son; Selinger, Jonathan V

    2017-09-01

    In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

  17. Dielectric elastomer memory

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  18. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    PubMed

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites.

    PubMed

    Gabriel, Laís P; Santos, Maria Elizabeth M Dos; Jardini, André L; Bastos, Gilmara N T; Dias, Carmen G B T; Webster, Thomas J; Maciel Filho, Rubens

    2017-01-01

    In this work, thermoset polyurethane composites were prepared by the addition of hydroxyapatite nanoparticles using the reactants polyol polyether and an aliphatic diisocyanate. The polyol employed in this study was extracted from the Euterpe oleracea Mart. seeds from the Amazon Region of Brazil. The influence of hydroxyapatite nanoparticles on the structure and morphology of the composites was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), thermal properties were analyzed by thermogravimetry analysis (TGA), and biological properties were studied by in vitro and in vivo studies. It was found that the addition of HA nanoparticles promoted fibroblast adhesion while in vivo investigations with histology confirmed that the composites promoted connective tissue adherence and did not induce inflammation. In this manner, this study supports the further investigation of bio-based, polyurethane/hydroxyapatite composites as biocompatible scaffolds for numerous tissue engineering applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A Recipe for Soft Fluidic Elastomer Robots

    PubMed Central

    Marchese, Andrew D.; Katzschmann, Robert K.

    2015-01-01

    Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes. PMID:27625913

  1. A Recipe for Soft Fluidic Elastomer Robots.

    PubMed

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  2. 75 FR 39664 - Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe... specialty elastomer manufacturing and distribution facility of Materials Science Technology, Inc., located... and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...

  3. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay

    PubMed Central

    Asefnejad, Azadeh; Khorasani, Mohammad Taghi; Behnamghader, Aliasghar; Farsadzadeh, Babak; Bonakdar, Shahin

    2011-01-01

    Background Biodegradable polyurethanes have found widespread use in soft tissue engineering due to their suitable mechanical properties and biocompatibility. Methods In this study, polyurethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and a copolymer of 1,4-butanediol as a chain extender. Polyurethane scaffolds were fabricated by a combination of liquid–liquid phase separation and salt leaching techniques. The effect of the NCO:OH ratio on porosity content and pore morphology was investigated. Results Scanning electron micrographs demonstrated that the scaffolds had a regular distribution of interconnected pores, with pore diameters of 50–300 μm, and porosities of 64%–83%. It was observed that, by increasing the NCO:OH ratio, the average pore size, compressive strength, and compressive modulus increased. L929 fibroblast and chondrocytes were cultured on the scaffolds, and all samples exhibited suitable cell attachment and growth, with a high level of biocompatibility. Conclusion These biodegradable polyurethane scaffolds demonstrate potential for soft tissue engineering applications. PMID:22072874

  4. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    PubMed

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The effect of elastomer chain length on properties of silicone-modified polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Ezzell, S.

    1981-01-01

    A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.

  6. On a Minimum Problem in Smectic Elastomers

    NASA Astrophysics Data System (ADS)

    Buonsanti, Michele; Giovine, Pasquale

    2008-07-01

    Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress.

  7. Mini-RPV Launch System Conceptual Study

    DTIC Science & Technology

    1978-12-01

    are discussed later. Although shock cord has not found extensive use in aerospace in recent years, the technology of elastomers and braids has advanced...considerably beyond the off-the-shelf material (MIL-C-5651B) on which this study is based. Special elastomers , such as silicone rubber, and braid ...STUDIES .... .......... 36 7.1 Elastic, Concept 1-1 ... ............ 36 7.1.1 Introduction ...... ....... ... 36 7.1.2 Elastomeric (Shock Cord), Concept I

  8. The Effect of Postmastectomy Radiation Therapy on Breast Implants: Material Analysis on Silicone and Polyurethane Prosthesis.

    PubMed

    Lo Torto, Federico; Relucenti, Michela; Familiari, Giuseppe; Vaia, Nicola; Casella, Donato; Matassa, Roberto; Miglietta, Selenia; Marinozzi, Franco; Bini, Fabiano; Fratoddi, Ilaria; Sciubba, Fabio; Cassese, Raffaele; Tombolini, Vincenzo; Ribuffo, Diego

    2018-05-17

    The pathogenic mechanism underlying capsular contracture is still unknown. It is certainly a multifactorial process, resulting from human body reaction, biofilm activation, bacteremic seeding, or silicone exposure. The scope of the present article is to investigate the effect of hypofractionated radiotherapy protocol (2.66 Gy × 16 sessions) both on silicone and polyurethane breast implants. Silicone implants and polyurethane underwent irradiation according to a hypofractionated radiotherapy protocol for the treatment of breast cancer. After irradiation implant shells underwent mechanical, chemical, and microstructural evaluation by means of tensile testing, infrared spectra in attenuated total reflectance mode, nuclear magnetic resonance, and field emission scanning electron microscopy. At superficial analysis, irradiated silicone samples show several visible secondary and tertiary blebs. Polyurethane implants showed an open cell structure, which closely resembles a sponge. Morphological observation of struts from treated polyurethane sample shows a more compact structure, with significantly shorter and thicker struts compared with untreated sample. The infrared spectra in attenuated total reflectance mode spectra of irradiated and control samples were compared either for silicon and polyurethane samples. In the case of silicone-based membranes, treated and control specimens showed similar bands, with little differences in the treated one. Nuclear magnetic resonance spectra on the fraction soluble in CDCl3 support these observations. Tensile tests on silicone samples showed a softer behavior of the treated ones. Tensile tests on Polyurethane samples showed no significant differences. Polyurethane implants seem to be more resistant to radiotherapy damage, whereas silicone prosthesis showed more structural, mechanical, and chemical modifications.

  9. Elastin: a representative ideal protein elastomer.

    PubMed Central

    Urry, D W; Hugel, T; Seitz, M; Gaub, H E; Sheiba, L; Dea, J; Xu, J; Parker, T

    2002-01-01

    During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension. PMID:11911774

  10. Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques

    PubMed Central

    Jeong, Jin-Oh; Park, Jong-Seok; Lim, Youn-Mook

    2016-01-01

    Polyurethane (PU) is the fifth most common polymer in the general consumer market, following Polypropylene (PP), Polyethylene (PE), Polyvinyl chloride (PVC), and Polystyrene (PS), and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR). Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA) and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques. PMID:28773561

  11. Experimental and failure analysis of the prosthetic finger joint implants

    NASA Astrophysics Data System (ADS)

    Naidu, Sanjiv H.

    Small joint replacement arthroplasty of the hand is a well accepted surgical procedure to restore function and cosmesis in an individual with a crippled hand. Silicone elastomers have been used as prosthetic material in various small hand joints for well over three decades. Although the clinical science aspects of silicone elastomer failure are well known, the physical science aspects of prosthetic failure are scant and vague. In the following thesis, using both an animal model, and actual retrieved specimens which have failed in human service, experimental and failure analysis of silicone finger joints are presented. Fractured surfaces of retrieved silicone trapezial implants, and silicone finger joint implants were studied with both FESEM and SEM; the mode of failure for silicone trapezium is by wear polishing, whereas the finger joint implants failed either by fatigue fracture or tearing of the elastomer, or a combination of both. Thermal analysis revealed that the retrieved elastomer implants maintained its viscoelastic properties throughout the service period. In order to provide for a more functional and physiologic arthroplasty a novel finger joint (Rolamite prosthesis) is proposed using more recently developed thermoplastic polymers. The following thesis also addresses the outcome of the experimental studies of the Rolamite prosthesis in a rabbit animal model, in addition to the failure analysis of the thermoplastic polymers while in service in an in vivo synovial environment. Results of retrieved Rolamite specimens suggest that the use for thermoplastic elastomers such as block copolymer based elastomers in a synovial environment such as a mammalian joint may very well be limited.

  12. Characterization of poly(L-lactide/Propylene glycol) based polyurethane films using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Manap, Siti Munirah; Ahmad, Azizan; Anuar, Farah Hannan

    2016-11-01

    A polyurethane films consisting of PLLA, PPG and PLLA-PPG were prepared using solution casting method. Three types of polyurethane were prepared: PPLA:PMDI, PPG:PMDI and PLLA-PPG:PMDI in the presence of polymeric diphenylmethane diisocyanate (PMDI) as the coupling agent and catalyst, Sn(Oct)2. The aim of this research was to improve the physicals properties of PLLA and PPG homopolymers through copolymerization between the two polymers. The homopolymers and polyurethane films were characterized using ATR-FTIR spectroscopy. Chemical reaction between PLLA, PPG and PMDI before and after the reaction were confirmed by observing the shifting of wavenumber for the carbonyl and ether group. Other than that, the additional band for N-H after the reaction indicated that the reaction was successful.

  13. Surface topography study of prepared 3D printed moulds via 3D printer for silicone elastomer based nasal prosthesis

    NASA Astrophysics Data System (ADS)

    Abdullah, Abdul Manaf; Din, Tengku Noor Daimah Tengku; Mohamad, Dasmawati; Rahim, Tuan Noraihan Azila Tuan; Akil, Hazizan Md; Rajion, Zainul Ahmad

    2016-12-01

    Conventional prosthesis fabrication is highly depends on the hand creativity of laboratory technologist. The development in 3D printing technology offers a great help in fabricating affordable and fast yet esthetically acceptable prostheses. This study was conducted to discover the potential of 3D printed moulds for indirect silicone elastomer based nasal prosthesis fabrication. Moulds were designed using computer aided design (CAD) software (Solidworks, USA) and converted into the standard tessellation language (STL) file. Three moulds with layer thickness of 0.1, 0.2 and 0.3mm were printed utilizing polymer filament based 3D printer (Makerbot Replicator 2X, Makerbot, USA). Another one mould was printed utilizing liquid resin based 3D printer (Objet 30 Scholar, Stratasys, USA) as control. The printed moulds were then used to fabricate maxillofacial silicone specimens (n=10)/mould. Surface profilometer (Surfcom Flex, Accretech, Japan), digital microscope (KH77000, Hirox, USA) and scanning electron microscope (Quanta FEG 450, Fei, USA) were used to measure the surface roughness as well as the topological properties of fabricated silicone. Statistical analysis of One-Way ANOVA was employed to compare the surface roughness of the fabricated silicone elastomer. Result obtained demonstrated significant differences in surface roughness of the fabricated silicone (p<0.01). Further post hoc analysis also revealed significant differences in silicone fabricated using different 3D printed moulds (p<0.01). A 3D printed mould was successfully prepared and characterized. With surface topography that could be enhanced, inexpensive and rapid mould fabrication techniques, polymer filament based 3D printer is potential for indirect silicone elastomer based nasal prosthesis fabrication.

  14. Reversibly pH-responsive polyurethane membranes for on-demand intravaginal drug delivery.

    PubMed

    Kim, Seungil; Chen, Yufei; Ho, Emmanuel A; Liu, Song

    2017-01-01

    To provide better protection for women against sexually transmitted infections, on-demand intravaginal drug delivery was attempted by synthesizing reversibly pH-sensitive polyether-polyurethane copolymers using poly(ethylene glycol) (PEG) and 1,4-bis(2-hydroxyethyl)piperazine (HEP). Chemical structure and thermo-characteristics of the synthesized polyurethanes were confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 1 H-nuclear magnetic resonance ( 1 H-NMR), and melting point testing. Membranes were cast by solvent evaporation method using the prepared pH-sensitive polyurethanes. The impact of varying pH on membrane swelling and surface morphology was evaluated via swelling ratio change and scanning electron microscopy (SEM). The prepared pH-responsive membranes showed two times higher swelling ratio at pH 4 than pH 7 and pH-triggered switchable surface morphology change. The anionic anti-inflammatory drug diclofenac sodium (NaDF) was used as a model compound for release studies. The prepared pH-responsive polyurethane membranes allowed continuous NaDF release for 24h and around 20% release of total NaDF within 3h at pH 7 but little-to-no drug release at pH 4.5. NaDF permeation across the prepared membranes demonstrated a reversible pH-responsiveness. The pH-responsive polyurethane membranes did not show any noticeable negative impact on vaginal epithelial cell viability or induction of pro-inflammatory cytokine production compared to controls. Overall, the non-cytotoxic HEP-based pH-responsive polyurethane demonstrated its potential to be used in membrane-based implants such as intravaginal rings to achieve on-demand "on-and-off" intravaginal drug delivery. A reversible and sharp switch between "off" and "on" drug release is achieved for the first time through new pH-sensitive polyurethane membranes, which can serve as window membranes in reservoir-type intravaginal rings for on-demand drug delivery to prevent sexually transmitted infections (STIs). Close to zero drug release occurs at the normal vaginal pH (4.5) for minimal side effects. Drug release is only triggered by elevation of pH to 7 during heterosexual intercourse. The reversibly sharp and fast "on-and-off" switch arises from the creative incorporation of a pH-sensitive monomer in the soft segment of polyurethane. This polyurethane biomaterial holds great potential to better protect women who are generally at higher risk and are more vulnerable to STIs. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...

  16. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...

  17. High-damping-performance magnetorheological material for passive or active vibration control

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Yang, Ke; Yan, Hongwei; Yuan, Xiaodong; Xu, Yangguang

    2016-10-01

    Optical assembly and alignment system plays a crucial role for the construction of high-power or high-energy laser facility, which attempts to ignite fusion reaction and go further to make fusion energy usable. In the optical assembly and alignment system, the vibration control is a key problem needs to be well handled and a material with higher damping performance is much desirable. Recently, a new kind of smart magneto-sensitive polymeric composite material, named magnetorheological plastomer (MRP), was synthesized and reported as a high-performance magnetorheological material and this material has a magneto-enhanced high-damping performance. The MRP behaves usually in an intermediate state between fluid-like magnetorheological fluid and solid-like magnetorheological elastomer. The state of MRP, as well as the damping performance of MRP, can be tuned by adjusting the ratio of hard segments and soft segments, which are ingredients to synthesize the polymeric matrix. In this work, a series of MRP are prepared by dispersing micron-sized, magneto-sensitive carbonyl iron powders with related additives into polyurethane-based, magnetically insensitive matrix. It is found that the damping performance of MRP depends much on magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. Especially, the damping capacity of MRP can be tuned in a large range by adjusting external magnetic field. It is promising that the MRP will have much application in passive and active vibration control, such as vibration reduction in optical assembly and alignment system, vibration isolation or absorption in vehicle suspension system, etc.

  18. Preparation of eugenol-based polyurethane

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Luo, Fang; Cheng, Chuanjie

    2018-03-01

    The regenerative eugenol was used as the starting material to prepare diol species by two steps, with a total yield of 28%. Furthermore, the prepared diol reacts with 1,6-hexadiisocyanate(HDI) to afford the corresponding polyurethane (PU). The structure of intermediates and PU are characterized by 1H-NMR or IR.

  19. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    PubMed

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  20. Dielectric elastomer actuators used for pneumatic valve technology

    NASA Astrophysics Data System (ADS)

    Giousouf, Metin; Kovacs, Gabor

    2013-10-01

    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications.

  1. Soft Polydimethylsiloxane Elastomers from Architecture-driven Entanglement Free Design

    PubMed Central

    Cai, Li-Heng; Kodger, Thomas E.; Guerra, Rodrigo E.; Pegoraro, Adrian F.; Rubinstein, Michael; Weitz, David A.

    2015-01-01

    We fabricate soft, solvent-free polydimethylsiloxane (PDMS) elastomers by crosslinking bottlebrush polymers rather than linear polymers. We design the chemistry to allow commercially available linear PDMS precursors to deterministically form bottlebrush polymers, which are simultaneously crosslinked, enabling a one-step synthesis. The bottlebrush architecture prevents the formation of entanglements, resulting in elastomers with precisely controllable elastic moduli from ~1 to ~100 kPa, below the intrinsic lower limit of traditional elastomers. Moreover, the solvent-free nature of the soft PDMS elastomers enables a negligible contact adhesion compared to commercially available silicone products of similar stiffness. The exceptional combination of softness and negligible adhesiveness may greatly broaden the applications of PDMS elastomers in both industry and research. PMID:26259975

  2. Fracture and healing of elastomers: A phase-transition theory and numerical implementation

    NASA Astrophysics Data System (ADS)

    Kumar, Aditya; Francfort, Gilles A.; Lopez-Pamies, Oscar

    2018-03-01

    A macroscopic theory is proposed to describe, explain, and predict the nucleation and propagation of fracture and healing in elastomers undergoing arbitrarily large quasistatic deformations. The theory, which can be viewed as a natural generalization of the phase-field approximation of the variational theory of brittle fracture of Francfort and Marigo (1998) to account for physical attributes innate to elastomers that have been recently unveiled by experiments at high spatio-temporal resolution, rests on two central ideas. The first one is to view elastomers as solids capable to undergo finite elastic deformations and capable also to phase transition to another solid of vanishingly small stiffness: the forward phase transition serves to model the nucleation and propagation of fracture while the reverse phase transition models the possible healing. The second central idea is to take the phase transition to be driven by the competition between a combination of strain energy and hydrostatic stress concentration in the bulk and surface energy on the created/healed new surfaces in the elastomer. From an applications point of view, the proposed theory amounts to solving a system of two coupled and nonlinear PDEs for the deformation field and an order parameter, or phase field. A numerical scheme is presented to generate solutions for these PDEs in N = 2 and 3 space dimensions. This is based on an efficient non-conforming finite-element discretization, which remains stable for large deformations and elastomers of any compressibility, together with an implicit gradient flow solver, which is able to deal with the large changes in the deformation field that can ensue locally in space and time from the nucleation of fracture. The last part of this paper is devoted to presenting sample simulations of the so-called Gent-Park experiment. Those are confronted with recent experimental results for various types of silicone elastomers.

  3. Effects of the Acrylic Polyol Structure and the Selectivity of the Employed Catalyst on the Performance of Two-Component Aqueous Polyurethane Coatings

    PubMed Central

    Cakic, Suzana; Lacnjevac, Caslav; Stamenkovic, Jakov; Ristic, Nikola; Takic, Ljiljana; Barac, Miroljub; Gligoric, Miladin

    2007-01-01

    Two kinds of aqueous acrylic polyols (single step and multi step synthesis type) have been investigated for their performance in the two-component aqueous polyurethane application, by using more selective catalysts. The aliphatic polyfunctional isocyanates based on hexamethylen diisocyanates have been employed as suitable hardeners. The complex of zirconium, commercially known as K-KAT®XC-6212, and manganese (III) complexes with mixed ligands based on the derivative of maleic acid have been used as catalysts in this study. Both of the aqueous polyols give good results, in terms of application and hardness, when elevated temperatures and more selective catalysts are applied. A more selective catalyst promotes the reaction between the isocyanate and polyol component. This increases the percentage of urethane bonds and the degree of hardness in the films formed from the two components of aqueous polyurethane lacquers. The polyol based on the single step synthesis route is favourable concerning potlife and hardness. The obtained results show that the performance of the two-component aqueous polyurethane coatings depends on the polymer structure of the polyols as well as on the selectivity of the employed catalyst.

  4. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji

    2013-11-27

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H)more » at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.« less

  5. Evaluation of DNA damage and cytotoxicity of polyurethane-based nano- and microparticles as promising biomaterials for drug delivery systems

    NASA Astrophysics Data System (ADS)

    Caon, Thiago; Zanetti-Ramos, Betina Giehl; Lemos-Senna, Elenara; Cloutet, Eric; Cramail, Henri; Borsali, Redouane; Soldi, Valdir; Simões, Cláudia Maria Oliveira

    2010-06-01

    The in vitro cytotoxicity and DNA damage evaluation of biodegradable polyurethane-based micro- and nanoparticles were carried out on animal fibroblasts. For cytotoxicity measurement and primary DNA damage evaluation, MTT and Comet assays were used, respectively. Different formulations were tested to evaluate the influence of chemical composition and physicochemical characteristics of particles on cell toxicity. No inhibition of cells growth surrounding the polyurethane particles was observed. On the other hand, a decrease of cell viability was verified when the anionic surfactant sodium dodecyl sulfate (SDS) was used as droplets stabilizer of monomeric phase. Polyurethane nanoparticles stabilized with Tween 80 and Pluronic F68 caused minor cytotoxic effects. These results indicated that the surface charge plays an important role on cytotoxicity. Particles synthesized from MDI displayed a higher cytotoxicity than those synthesized from IPDI. Size and physicochemical properties of the particles may explain the higher degree of DNA damage produced by two tested formulations. In this way, a rational choice of particles' constituents based on their cytotoxicity and genotoxicity could be very useful for conceiving biomaterials to be used as drug delivering systems.

  6. Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Chul

    2017-10-01

    The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.

  7. Synthesis of Transesterified Palm Olein-Based Polyol and Rigid Polyurethanes from this Polyol.

    PubMed

    Arniza, Mohd Zan; Hoong, Seng Soi; Idris, Zainab; Yeong, Shoot Kian; Hassan, Hazimah Abu; Din, Ahmad Kushairi; Choo, Yuen May

    Transesterification of palm olein with glycerol can increase the functionality by introducing additional hydroxyl groups to the triglyceride structure, an advantage compared to using palm olein directly as feedstock for producing palm-based polyol. The objective of this study was to synthesize transesterified palm olein-based polyol via a three-step reaction: (1) transesterification of palm olein, (2) epoxidation and (3) epoxide ring opening. Transesterification of palm olein yielded approximately 78 % monoglyceride and has an hydroxyl value of approximately 164 mg KOH g -1 . The effect of formic acid and hydrogen peroxide concentrations on the epoxidation reaction was studied. The relationships between epoxide ring-opening reaction time and residual oxirane oxygen content and hydroxyl value were monitored. The synthesized transesterified palm olein-based polyol has hydroxyl value between 300 and 330 mg KOH g -1 and average molecular weight between 1,000 and 1,100 Da. On the basis of the hydroxyl value and average molecular weight of the polyol, the transesterified palm olein-based polyol is suitable for producing rigid polyurethane foam, which can be designed to exhibit desirable properties. Rigid polyurethane foams were synthesized by substituting a portion of petroleum-based polyol with the transesterified palm olein-based polyol. It was observed that by increasing the amount of transesterified palm olein-based polyol, the core density and compressive strength were reduced but at the same time the insulation properties of the rigid polyurethane foam were improved.

  8. Soft-Matter Printed Circuit Board with UV Laser Micropatterning.

    PubMed

    Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel

    2017-07-05

    When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe 2 O 3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.

  9. Investigation on the performance of a viscoelastic dielectric elastomer membrane generator.

    PubMed

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E

    2015-04-21

    Dielectric elastomer generators (DEGs), as a recent transduction technology, harvest electrical energy by scavenging mechanical energy from diverse sources. Their performance is affected by various material properties and failure modes of the dielectric elastomers. This work presents a theoretical analysis on the performance of a dielectric elastomer membrane generator under equi-biaxial loading conditions. By comparing our simulation results with the experimental observations existing in the literature, this work considers the fatigue life of DE-based devices under cyclic loading for the first time. From the simulation results, it is concluded that the efficiency of the DEG can be improved by raising the deforming rate and the prescribed maximum stretch ratio, and applying an appropriate bias voltage. However, the fatigue life expectancy compromises the efficiency improvement of the DEG. With the consideration of the fatigue life, applying an appropriate bias voltage appears to be a more desirable way to improve the DEG performance. The general framework developed in this work is expected to provide an increased understanding on the energy harvesting mechanisms of the DEGs and benefit their optimal design.

  10. Development of procedures for calculating stiffness and damping properties of elastomers. Part 3: The effects of temperature, dissipation level and geometry

    NASA Technical Reports Server (NTRS)

    Smalley, A. J.; Tessarzik, J. M.

    1975-01-01

    Effects of temperature, dissipation level and geometry on the dynamic behavior of elastomer elements were investigated. Force displacement relationships in elastomer elements and the effects of frequency, geometry and temperature upon these relationships are reviewed. Based on this review, methods of reducing stiffness and damping data for shear and compression test elements to material properties (storage and loss moduli) and empirical geometric factors are developed and tested using previously generated experimental data. A prediction method which accounts for large amplitudes of deformation is developed on the assumption that their effect is to increase temperature through the elastomers, thereby modifying the local material properties. Various simple methods of predicting the radial stiffness of ring cartridge elements are developed and compared. Material properties were determined from the shear specimen tests as a function of frequency and temperature. Using these material properties, numerical predictions of stiffness and damping for cartridge and compression specimens were made and compared with corresponding measurements at different temperatures, with encouraging results.

  11. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE PAGES

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...

    2017-07-31

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  12. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  13. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.

    PubMed

    Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin

    2006-12-01

    A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 microm and coated silicon oil has a very high viscosity (10,000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.

  14. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin

    2006-12-01

    A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 µm and coated silicon oil has a very high viscosity (10 000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.

  15. Contact compliance effects in the frictional response of bioinspired fibrillar adhesives

    PubMed Central

    Piccardo, Marco; Chateauminois, Antoine; Fretigny, Christian; Pugno, Nicola M.; Sitti, Metin

    2013-01-01

    The shear failure and friction mechanisms of bioinspired adhesives consisting of elastomer arrays of microfibres terminated by mushroom-shaped tips are investigated in contact with a rigid lens. In order to reveal the interplay between the vertical and lateral loading directions, experiments are carried out using a custom friction set-up in which normal stiffness can be made either high or low when compared with the stiffness of the contact between the fibrillar adhesive and the lens. Using in situ contact imaging, the shear failure of the adhesive is found to involve two successive mechanisms: (i) cavitation and peeling at the contact interface between the mushroom-shaped fibre tip endings and the lens; and (ii) side re-adhesion of the fibre's stem to the lens. The extent of these mechanisms and their implications regarding static friction forces is found to depend on the crosstalk between the normal and lateral loading directions that can result in contact instabilities associated with fibre buckling. In addition, the effects of the viscoelastic behaviour of the polyurethane material on the rate dependence of the shear response of the adhesive are accounted for. PMID:23554349

  16. Rapidly Responsive and Flexible Chiral Nematic Cellulose Nanocrystal Composites as Multifunctional Rewritable Photonic Papers with Eco-Friendly Inks.

    PubMed

    Wan, Hao; Li, Xiaofeng; Zhang, Liang; Li, Xiaopeng; Liu, Pengfei; Jiang, Zhiguo; Yu, Zhong-Zhen

    2018-02-14

    Rapidly responsive and flexible photonic papers are manufactured by coassembly of cellulose nanocrystals (CNCs) and waterborne polyurethane (WPU) latex for fully taking advantage of the chiral nematic structure of CNCs and the flexibility of WPU elastomer. The resulting CNC/WPU composite papers exhibit not only tunable iridescent colors by adjusting the helical pitch size, but also instant optical responses to water and wet gas, ascribed to the easy chain movement of the elastomeric WPU that does not restrict the fast water absorption-induced swelling of CNCs. By choosing water or NaCl aqueous solutions as inks, the colorful patterns on the CNC/WPU photonic paper can be made temporary, durable, or even disguisable. In addition, the photonic paper is simultaneously rewritable for all these three types of patterns, and the disguisable patterns, which are invisible at normal times and show up under stimuli, exhibit a quick reveal conversion just by exhaling on the paper. The rewritability, rapid responsibility, easy fabrication, and the eco-friendly nature of the inks make the flexible photonic paper/ink combination highly promising in sensors, displays, and photonic circuits.

  17. Development of dopant-free conductive bioelastomers

    PubMed Central

    Xu, Cancan; Huang, Yihui; Yepez, Gerardo; Wei, Zi; Liu, Fuqiang; Bugarin, Alejandro; Tang, Liping; Hong, Yi

    2016-01-01

    Conductive biodegradable materials are of great interest for various biomedical applications, such as tissue repair and bioelectronics. They generally consist of multiple components, including biodegradable polymer/non-degradable conductive polymer/dopant, biodegradable conductive polymer/dopant or biodegradable polymer/non-degradable inorganic additives. The dopants or additives induce material instability that can be complex and possibly toxic. Material softness and elasticity are also highly expected for soft tissue repair and soft electronics. To address these concerns, we designed a unicomponent dopant-free conductive polyurethane elastomer (DCPU) by chemically linking biodegradable segments, conductive segments, and dopant molecules into one polymer chain. The DCPU films which had robust mechanical properties with high elasticity and conductivity can be degraded enzymatically and by hydrolysis. It exhibited great electrical stability in physiological environment with charge. Mouse 3T3 fibroblasts survived and proliferated on these films exhibiting good cytocompatibility. Polymer degradation products were non-toxic. DCPU could also be processed into a porous scaffold and in an in vivo subcutaneous implantation model, exhibited good tissue compatibility with extensive cell infiltration over 2 weeks. Such biodegradable DCPU with good flexibility and elasticity, processability, and electrical stability may find broad applications for tissue repair and soft/stretchable/wearable bioelectronics. PMID:27686216

  18. Systematic review of the effectiveness of polyurethane-coated compared with textured silicone implants in breast surgery.

    PubMed

    Duxbury, Paula J; Harvey, James R

    2016-04-01

    Silicone gel implants are used worldwide for breast augmentation and breast reconstruction. Textured silicone implants are the most commonly placed implant, but polyurethane-coated implants are increasingly being used in an attempt to ameliorate the long-term complications associated with implant insertion. This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Electronic searches of MEDLINE, EMBASE, the Cochrane Library and www.ClinicalTrials.gov were undertaken in March 2014 using keywords. Following data extraction, 18 studies were included in the review, including four core studies of textured silicone implants and five studies reporting outcomes for polyurethane-coated silicone implants. There are no clear data reporting revision rates in patients treated with polyurethane implants. In the primary reconstructive setting, capsular contracture rates with silicone implants are 10-15% at 6 years, whilst studies of polyurethane implants report rates of 1.8-3.4%. In the primary augmentation setting, core studies show a capsular contracture rate of 2-15% at 6 years compared with 0.4-1% in polyurethane-coated implants; however, the polyurethane studies are limited by their design and poor follow-up. The use of polyurethane implants should be considered a safe alternative to textured silicone implants. It is likely that an implant surface does influence short- and long-term outcomes; however, the extent of any benefit cannot be determined from the available evidence base. Future implant studies should target the short- and long-term benefits of implant surfacing by procedure with defined outcome measures; a head-to-head comparison would help clarify outcomes. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. New dielectric elastomers with improved properties for energy harvesting and actuation

    NASA Astrophysics Data System (ADS)

    Stiubianu, George; Bele, Adrian; Tugui, Codrin; Musteata, Valentina

    2015-02-01

    New materials with large value for dielectric constant were obtained by using siloxane and chemically modified lignin. The modified lignin does not act as a stiffening filler material for the siloxane but acts as bulk filler, preserving the softness and low value of Young's modulus specific for silicones. The measured values for dielectric constant compare positively with the ones for previously tested dielectric elastomers based on siloxane rubber or acrylic rubber loaded with ceramic nanoparticles. The new materials use the well-known silicone chemistry and lignin which is available worldwide in large amounts as a by-product of pulp and paper industry, making its manufacturing affordable. The prepared dielectric elastomers were tested for possible applications for wave, wind and kinetic body motion energy harvesting. Siloxane, lignin, dielectric

  20. Benzophenone as a photoprobe of polymer films

    NASA Astrophysics Data System (ADS)

    Levin, Peter P.; Efremkin, Alexei F.; Khudyakov, Igor V.

    2017-09-01

    The review article is devoted to kinetics of fast reactions following photoexcitation of benzophenone in polymer films. We observed three processes by ns laser flash photolysis in elastomers: (i) decay of a triple state of benzophenone with hydrogen abstraction from polymer matrix, (ii) formation and decay of geminate radical pairs, (iii) cross-termination of the formed radicals in the polymer bulk. Application of external magnetic field (MF) of B = 0.2 T essentially affects recombination of geminate (G-) and a bimolecular recombination of free radicals, which escaped polymer cage (F-pairs). Theoretical calculation of MF effects on G- and F-pairs is in agreement with corresponding experimental data. Elongation of elastomer leads to an unexpected observation: recombination in the bulk becomes slower. An explanation of this phenomenon based on elastomer free volume Vf approach was suggested.

  1. Thermoplastic polyurethanes with controlled morphology based on methylenediphenyldiisocyanate/isosorbide/butanediol hard segments: Thermoplastic polyurethanes with controlled morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javni, Ivan; Bilić, Olivera; Bilić, Nikola

    2015-06-30

    Isosorbide, a cyclic, rigid and renewable diol was used as a chain extender in two series of thermoplastic polyurethanes. Isosorbide was used in combination with butane diol or alone to examine the effects on polyurethane morphology. Two series of materials were prepared -one with dispersed hard domains in the matrix of polytetramethylene ether glycol soft segments of molecular weight 1400 (at 70% soft segment concentration-SSC) and the other with co-continuous soft and hard phases at 50% SSC. Morphology of materials was studied by optical and atomic force microscopy, as well as with ultra small angle x-ray scattering (USAXS). The radiusmore » of spherical hard domains, correlation lengths, mean separation distances and boundary layer thickness were measured as a function of isosorbide content.« less

  2. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  3. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  4. A new class of magnetorheological elastomers based on waste tire rubber and the characterization of their properties

    NASA Astrophysics Data System (ADS)

    Ubaidillah; Imaduddin, Fitrian; Li, Yancheng; Amri Mazlan, Saiful; Sutrisno, Joko; Koga, Tsuyoshi; Yahya, Iwan; Choi, Seung-Bok

    2016-11-01

    This paper proposes a new type of magnetorheological elastomer (MRE) using rubber from waste tires and describes its performance characteristics. In this work, scrap tires were utilized as a primary matrix for the MRE without incorporation of virgin elastomers. The synthesis of the scrap tire based MRE adopted a high-temperature high-pressure sintering technique to achieve the reclaiming of vulcanized rubber. The material properties of the MRE samples were investigated through physical and viscoelastic examinations. The physical tests confirmed several material characteristics—microstructure, magnetic, and thermal properties-while the viscoelastic examination was conducted with a laboratory-made dynamic compression apparatus. It was observed from the viscoelastic examination that the proposed MRE has magnetic-field-dependent properties of the storage modulus, loss modulus, and loss tangent at different excitation frequencies and strain amplitudes. Specifically, the synthesized MRE showed a high zero field modulus, a reasonable MR effect under maximum applied current, and remarkable damping properties.

  5. Sorption of Triangular Silver Nanoplates on Polyurethane Foam

    NASA Astrophysics Data System (ADS)

    Furletov, A. A.; Apyari, V. V.; Garshev, A. V.; Volkov, P. A.; Tolmacheva, V. V.; Dmitrienko, S. G.

    2018-02-01

    The sorption of triangular silver nanoplates on polyurethane foam is investigated as a procedure for creating a nanocomposite sensing material for subsequent use in optical means of chemical analysis. Triangular silver nanoplates are synthesized and characterized, and a simple sorption technique for the formation of a composite material based on these nanoplates is proposed.

  6. Applications of pressure-sensitive dielectric elastomer sensors

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Ocak, Deniz; Ehrlich, Johannes

    2016-04-01

    Dielectric elastomer sensors for the measurement of compression loads with high sensitivity are described. The basic design of the sensors exhibits two profiled surfaces between which an elastomer film is confined. All components of the sensor were prepared with silicone whose stiffness can be varied in a wide range. Depending on details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression and electrode layers on the elastomer profiles and in the elastomer film approach each other. Different designs of the pressure sensor give rise to very different sensor characteristics in terms of the dependence of electric capacitance on compression force. Due to their inherent flexibility, the pressure sensors can be used on compliant substrates such as seats or beds or on the human body. This gives rise to numerous possible applications. The contribution describes also some examples of possible sensor applications. A glove was equipped with various sensors positioned at the finger tips. When grabbing an object with the glove, the sensors can detect the gripping forces of the individual fingers with high sensitivity. In a demonstrator of the glove equipped with seven sensors, the capacitances representing the gripping forces are recorded on a display. In another application example, a lower limb prosthesis was equipped with a pressure sensor to detect the load on the remaining part of the leg and the load is displayed in terms of the measured capacitance. The benefit of such sensors is to detect an eventual overload in order to prevent possible pressure sores. A third example introduces a seat load sensor system based on four extended pressure sensor mats. The sensor system detects the load distribution of a person on the seat. The examples emphasize the high performance of the new pressure sensor technology.

  7. Development of electroactive nanofibers based on thermoplastic polyurethane and poly(o-ethoxyaniline) for biological applications.

    PubMed

    Cruz, Karina Ferreira Noronha; Formaggio, Daniela Maria Ducatti; Tada, Dayane Batista; Cristovan, Fernando Henrique; Guerrini, Lilia Müller

    2017-02-01

    Electroactive nanofibers based on thermoplastic polyurethane (TPU) and poly(alkoxy anilines) produced by electrospinning has been explored for biomaterials applications. The thermoplastic polyurethane is a biocompatible polymer with good mechanical properties. The production of TPU nanofibers requires the application of high voltage during electrospinning in order to prepare uniform mats due to its weak ability to elongate during the process. To overcome this limitation, a conductive polymer can be incorporated to the process, allowing generates mats without defects. In this study, poly(o-ethoxyaniline) POEA doped with dodecylbenzene sulfonic acid (DBSA) was blended with thermoplastic polyurethane (TPU) by solution method. Films were produced by casting and nanofibers were prepared by electrospinning. The effect of the POEA on morphology, distribution of diameter and cell viability of the nanofibers was evaluated. The results demonstrated that the incorporation of POEA in TPU provided to the mats a suitable morphology for cellular growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 601-607, 2017. © 2016 Wiley Periodicals, Inc.

  8. Quasi-static axisymmetric eversion hemispherical domes made of elastomers

    NASA Astrophysics Data System (ADS)

    Kabrits, Sergey A.; Kolpak, Eugeny P.

    2016-06-01

    The paper considers numerical solution for the problem of quasi-static axisymmetric eversion of a spherical shell (hemisphere) under action of external pressure. Results based on the general nonlinear theory of shells made of elastomers, proposed by K. F. Chernykh. It is used two models of shells based on the hypotheses of the Kirchhoff and Timoshenko, modified K.F. Chernykh for the case of hyperelastic rubber-like material. The article presents diagrams of equilibrium states of eversion hemispheres for both models as well as the shape of the shell at different points in the diagram.

  9. Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of silicone-based polyurethanes.

    PubMed

    Cosgriff-Hernandez, Elizabeth; Tkatchouk, Ekaterina; Touchet, Tyler; Sears, Nick; Kishan, Alysha; Jenney, Christopher; Padsalgikar, Ajay D; Chen, Emily

    2016-07-01

    Although silicone-based polyurethanes have demonstrated increased oxidative stability, there have been conflicting reports of the long-term hydrolytic stability of Optim™ and PurSil(®) 35 based on recent temperature-accelerated hydrolysis studies. The goal of the current study was to identify in vitro-in vivo correlations to determine the relevance of this accelerated in vitro model for predicting clinical outcomes. Temperature-accelerated hydrolytic aging of three commonly used cardiac lead insulation materials, Optim™, Elasthane™ 55D, Elasthane™ 80A, and a related silicone-polyurethane, PurSil(®) 35, was performed. After 1 year at 85°C, similar losses in Mn and Mz were observed for the poly(ether urethanes), but an increase in Mz loss as compared to Mn loss was observed for the silicone-based polyurethanes. A similar trend of increased Mz loss as compared to Mn loss was observed in explanted Optim™ leads after 2-3 years; however, no statistically significant Mn loss was detected between 2-3 and 7-8 years of implantation. Given this preferential loss of high molecular weight chains, it was hypothesized that the observed differences between the polyurethanes were due to allophanate dissociation rather than backbone chain scission. Following full dissociation of the small percentage of allophanates in vivo, the observed molecular weight stability and proven clinical performance of Optim™ was attributed to the well-documented stability of the urethane bond under physiological conditions. This allophanate dissociation reaction is incompatible with the first order mechanism proposed in previous temperature-accelerated hydrolysis studies and may be the reason for the model's inaccurate prediction of significant and progressive molecular weight loss in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1805-1816, 2016. © 2016 Wiley Periodicals, Inc.

  10. Artificial muscles of dielectric elastomers attached to artificial tendons of functionalized carbon fibers

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2014-03-01

    Dielectric elastomers are soft actuation materials with promising applications in robotics and biomedical de- vices. In this paper, a bio-inspired artificial muscle actuator with artificial tendons is developed for robotic arm applications. The actuator uses dielectric elastomer as artificial muscle and functionalized carbon fibers as artificial tendons. A VHB 4910 tape is used as the dielectric elastomer and PDMS is used as the bonding material to mechanically connect the carbon fibers to the elastomer. Carbon fibers are highly popular for their high electrical conductivities, mechanical strengths, and bio-compatibilities. After the acid treatments for the functionalization of carbon fibers (500 nm - 10 μm), one end of carbon fibers is spread into the PDMS material, which provides enough bonding strength with other dielectric elastomers, while the other end is connected to a DC power supply. To characterize the actuation capability of the dielectric elastomer and electrical conductivity of carbon fibers, a diaphragm actuator is fabricated, where the carbon fibers are connected to the actuator. To test the mechanical bonding between PDMS and carbon fibers, specimens of PDMS bonded with carbon fibers are fabricated. Experiments have been conducted to verify the actuation capability of the dielectric elastomer and mechanical bonding of PDMS with carbon fibers. The energy efficiency of the dielectric elastomer increases as the load increases, which can reach above 50%. The mechanical bonding is strong enough for robotic arm applications.

  11. Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers

    DTIC Science & Technology

    2006-07-27

    Final report to the Office of Naval Research on the Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers ...Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers 5b. GRANT NUMBER N000 14-1-0400 5c. PROGRAM ELEMENT...Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers Principal Investigator K. Ravi-Chandar Organization The University

  12. Development of Low-Friction Elastomers for Stern-Tube Bearings.

    DTIC Science & Technology

    1980-07-31

    Systems Command/ Washington, D.C. 20362 1 4. MONITORSI A -GENCY AME & AOORESS(lI diferent frome Controlling Office) Is. SECURITY CLASS. (of this report...low friction and possibly low wear for seawater-lubricated sliding applications. Limited work has been done in industry on adding solid and/or liquid...lubricants to the elastomers during compounding. Not much data have tsA. been published due to the proprietary nature of the work ; but, based on what

  13. Spring roll dielectric elastomer actuators for a portable force feedback glove

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Lochmatter, Patrick; Kunz, Andreas; Kovacs, Gabor

    2006-03-01

    Miniature spring roll dielectric elastomer actuators for a novel kinematic-free force feedback concept were manufactured and experimentally characterized. The actuators exhibited a maximum blocking force of 7.2 N and a displacement of 5 mm. The theoretical considerations based on the material's incompressibility were discussed in order to estimate the actuator behavior under blocked-strain activation and free-strain activation. One prototype was built for the demonstration of the proposed force feedback concept.

  14. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells

    PubMed Central

    Liu, Xinyue; Tang, Tzu-Chieh; Tham, Eléonore; Yuk, Hyunwoo; Lin, Shaoting; Lu, Timothy K.; Zhao, Xuanhe

    2017-01-01

    Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel–elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel–elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices. PMID:28202725

  15. A New Strategy to Prepare Polymer-based Shape Memory Elastomers.

    PubMed

    Song, Shijie; Feng, Jiachun; Wu, Peiyi

    2011-10-04

    A new strategy that utilizes the microphase separation of block copolymer and phase transition of small molecules for preparing polymer-based shape memory elastomer has been proposed. According to this strategy, a novel kind of shape memory elastomer comprising styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and paraffin has been prepared. Because paraffins are midblock-selective molecules for SEBS, they will preferentially enter and swell EB blocks supporting paraffins as an excellent switch phase for shape memory effect. Microstructures of SEBS/paraffin composites have been characterized by transmission electron microscopy, polarized light microscopy, and differential scanning calorimetry. The composites demonstrate various phase morphologies with regard to different paraffin loading. It has been found that under low paraffin loading, all the paraffins precisely embed in and swell EB-rich domains. While under higher loading, part of the paraffins become free and a larger-scaled phase separation has been observed. However, within wide paraffin loadings, all composites show good shape fixing, shape recovery performances, and improved tensile properties. Compared to the reported methods for shape memory elastomers preparation, this method not only simplifies the fabrication procedure from raw materials to processing but also offers a controllable approach for the optimization of shape memory properties as well as balancing the rigidity and softness of the material. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of tulle on the mechanical properties of a maxillofacial silicone elastomer.

    PubMed

    Gunay, Yumushan; Kurtoglu, Cem; Atay, Arzu; Karayazgan, Banu; Gurbuz, Cihan Cem

    2008-11-01

    The purpose of this research was to investigate if physical properties could be improved by incorporating a tulle reinforcement material into a maxillofacial silicone elastomer. A-2186 silicone elastomer was used in this study. The study group consisted of 20 elastomer specimens incorporated with tulle and fabricated in dumbbell-shaped silicone patterns using ASTM D412 and D624 standards. The control group consisted of 20 elastomer specimens fabricated without tulle. Tensile strength, ultimate elongation, and tear strength of all specimens were measured and analyzed. Statistical analyses were performed using Mann-Whitney U test with a statistical significance at 95% confidence level. It was found that the tensile and tear strengths of tulle-incorporated maxillofacial silicone elastomer were higher than those without tulle incorporation (p < 0.05). Therefore, findings of this study suggested that tulle successfully reinforced a maxillofacial silicone elastomer by providing it with better mechanical properties and augmented strength--especially for the delicate edges of maxillofacial prostheses.

  17. Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles

    NASA Astrophysics Data System (ADS)

    Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.

    2017-03-01

    Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.

  18. Chemical speciation of polyurethane polymers by soft-x-ray spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rightor, E.G.; Hitchcock, A.P.; Urquhart, S.G.

    1997-04-01

    Polyurethane polymers are a versatile class of materials which have numerous applications in modern life, from automotive body panels, to insulation, to household furnishings. Phase segregation helps to determine the physical properties of several types of polyurethanes. Polymer scientists believe that understanding the connections between formulation chemistry, the chemical nature of the segregated phases, and the physical properties of the resulting polymer, would greatly advance development of improved polyurethane materials. However, the sub-micron size of segregated features precludes their chemical analysis by existing methods, leaving only indirect means of characterizing these features. For the past several years the authors havemore » been developing near edge X-ray absorption spectromicroscopy to study the chemical nature of individual segregated phases. Part of this work has involved studies of molecular analogues and model polymers, in conjunction with quantum calculations, in order to identify the characteristic near edge spectral transitions of important chemical groups. This spectroscopic base is allowing the authors to study phase segregation in polyurethanes by taking advantage of several unique capabilities of scanning transmission x-ray microscopy (STXM) - high spatial resolution ({approximately} 0.1 {mu}m), high spectral resolution ({approximately}0.1 eV at the C 1s edge), and the ability to record images and spectra with relatively low radiation damage. The beamline 7.0 STXM at ALS is being used to study microtomed sections or cast films of polyurethanes. Based on the pioneering work of Ade, Kirz and collaborators at the NSLS X-1A STXM, it is clear that scanning X-ray transmission microscopy using soft X-rays can provide information about the chemical origin of phase segregation in radiation-sensitive materials on a sub-micron scale. This information is difficult or impossible to obtain by other means.« less

  19. Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO{sub 2}/SiO{sub 2} multilayered microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Yong; Zhou Yuming, E-mail: ymzhou@seu.edu.cn; Ge Jianhua

    Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO{sub 2}/SiO{sub 2} was characterized by FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8-14 {mu}m) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO{sub 2}/SiO{sub 2} exhibited clearly multilayered core-shell construction. The infrared emissivity values reduced along with the increase of covering layers thus provedmore » that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO{sub 2}/SiO{sub 2} multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value. - Graphical Abstract: Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. Highlights: > Optically active polyurethane based on tyrosine was used for the modification of nanoparticles. > LPU/TiO{sub 2}/SiO{sub 2} multilayered core-shell microspheres were prepared and characterized. > Interfacial interactions and secondary structure affected the infrared emissivity of composite.« less

  20. Co-extruded mechanically tunable multilayer elastomer laser

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Mao, Guilin; Andrews, James; Singer, Kenneth; Baer, Eric; Hiltner, Anne; Song, Hyunmin; Shakya, Bijayandra

    2011-04-01

    We have fabricated and studied mechanically tunable elastomer dye lasers constructed in large area sheets by a single-step layer-multiplying co-extrusion process. The laser films consist of a central dye-doped (Rhodamine-6G) elastomer layer between two 128-layer distributed Bragg reflector (DBR) films comprised of alternating elastomer layers with different refractive indices. The central gain layer is formed by folding the coextruded DBR film to enclose a dye-doped skin layer. By mechanically stretching the elastomer laser film from 0% to 19%, a tunable miniature laser source was obtained with ˜50 nm continuous tunability from red to green.

  1. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials.

    PubMed

    Kossivas, Fotis; Angeli, S; Kafouris, D; Patrickios, C S; Tzagarakis, V; Constantinides, C

    2012-06-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)-sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of three-dimensional tissue-mimicking models of cardiac anatomy from 2D MR images using rapid prototyping manufacturing processes was developed. For synthesized elastomers, doping strategies with two different concentrations of the MRI contrast agent Dotarem allowed independent and concurrent control of the imaging characteristics (contrast and relaxivity) during the synthetic process for increased contrast agent absorption, with tremendous potential for non-destructive in vivo use and applications to cardiovascular and cerebrovascular diseases.

  2. Synthesis of perfluoroalkylether triazine elastomers

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Korus, R. A.

    1980-01-01

    A method of perfluoroalkylether triazine elastomer synthesis is described. To form an elastomer, the resultant polymer is heated in a closed oven at slightly reduced pressures for 1-day periods at 100, 130 and 150 C. A high-molecular-weight perfluoroalkylether triazine elastomer is produced that exhibits thermal and oxidative stability. This material is potentially useful in applications such as high-temperature seals, 'O' rings, and wire enamels.

  3. Asymmetric Dielectric Elastomer Composite Material

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  4. 78 FR 25946 - Hardwood and Decorative Plywood From the People's Republic of China: Antidumping Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ..., ultra-violet light cured polyurethanes, oil or oil-modified or water based polyurethanes, wax, epoxy... obscure the grain, texture or markings of wood include, but are not limited to, paper, aluminum, high... to the CBP. See Notice of Final Determination of Sales at Less Than Fair Value, and Negative...

  5. Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.

    PubMed

    Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G; Verduzco, Rafael

    2016-02-06

    LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs - polysiloxane-based and epoxy-based - are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus.

  6. Design of Xylose-Based Semisynthetic Polyurethane Tissue Adhesives with Enhanced Bioactivity Properties.

    PubMed

    Balcioglu, Sevgi; Parlakpinar, Hakan; Vardi, Nigar; Denkbas, Emir Baki; Karaaslan, Merve Goksin; Gulgen, Selam; Taslidere, Elif; Koytepe, Suleyman; Ates, Burhan

    2016-02-01

    Developing biocompatible tissue adhesives with high adhesion properties is a highly desired goal of the tissue engineering due to adverse effects of the sutures. Therefore, our work involves synthesis, characterization, adhesion properties, protein adsorption, in vitro biodegradation, in vitro and in vivo biocompatibility properties of xylose-based semisynthetic polyurethane (NPU-PEG-X) bioadhesives. Xylose-based semisynthetic polyurethanes were developed by the reaction among 4,4'-methylenebis(cyclohexyl isocyanate) (MCI), xylose and polyethylene glycol 200 (PEG). Synthesized polyurethanes (PUs) showed good thermal stability and high adhesion strength. The highest values in adhesion strength were measured as 415.0 ± 48.8 and 94.0 ± 2.8 kPa for aluminum substrate and muscle tissue in 15% xylose containing PUs (NPU-PEG-X-15%), respectively. The biodegradation of NPU-PEG-X-15% was also determined as 19.96 ± 1.04% after 8 weeks of incubation. Relative cell viability of xylose containing PU was above 86%. Moreover, 10% xylose containing NPU-PEG-X (NPU-PEG-X-10%) sample has favorable tissue response, and inflammatory reaction between 1 and 6 weeks implantation period. With high adhesiveness and biocompatibility properties, NPU-PEG-X can be used in the medical field as supporting materials for preventing the fluid leakage after abdominal surgery or wound closure.

  7. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    PubMed

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modification of HTPB-based polyurethane with temperature-sensitive poly(N-isopropyl acrylamide) for biomaterial usage.

    PubMed

    Yang, Jen Ming; Yang, Shu Jyuan; Lin, Hao Tzu; Chen, Jan Kan

    2007-01-01

    Hydroxyl-terminated polybutadiene (HTPB)-based polyurethane with dimethyol propionic acid (DPA) as chain extender was synthesized by solution polymerization. The HTPB-based polyurethane was modified by UV radiation with N-isopropyl acrylamide monomer to get poly(N-isopropyl acrylamide)-modified polyurethane (PUDPANIPAAm). The cohesive energy (E(coh)), molar volume (V), solubility parameter (delta), molecular weight (W(M)), volume per gram (V(g)), and the density (1/V(g)) of PUDPANIPAAm were calculated by group contribution methods. To evaluate the application of PUDPANIPAAm for wound dressing and transplantation of cell sheet, the measurement of water content, water vapor transmission rate, and gas permeation on the PUDPANIPAAm membrane was evaluated. The biocompatibility of these membranes, cell adhesion, and proliferation assay were conducted in the cell culture. The effect of thermosensitivity of poly(N-isopropyl acrylamide) on cell detachment was also evaluated in the primary study. The results showed that these PUDPANIPAAm membranes are thermosensitive. The modification of PU with poly(N-isopropyl acrylamide) reduced the water vapor transmission rate and permeability of gas through PUDPANIPAAm membrane. PUDPANIPAAm membranes could support cell adhesion and growth. Owing to the thermosensitive nature of poly(N-isopropyl acrylamide), the relative cell numbers detached from PUDPANIPAAm membranes were larger than those detached from the polystyrene dish. 2006 Wiley Periodicals, Inc.

  9. DS2 Container and Weatherproofing Study

    DTIC Science & Technology

    1990-12-01

    compatible with polyurethane based coating systems in general? Is it compatible with alkyd -based coatings? 10. How well do the labels placed on the...of the (older) alkyd enamel and (more recently) polyurethane camouflage coatings, leading eventually to seepage of the DS2. A shrink-wrap overpack...by John Wiley and Sons, Inc., Vol. 2, pp. 118- 119; Vol. 4, p. 3 and pp. 284-295; Vol. I, p. 133. 8. Fiber Composite Hybrid Materials, N.L. Hancox

  10. Computational model of deformable lenses actuated by dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Tongqing; Cai, Shengqiang; Wang, Huiming; Suo, Zhigang

    2013-09-01

    A recent design of deformable lens mimics the human eye, adjusting its focal length in response to muscle-like actuation. The artificial muscle is a membrane of a dielectric elastomer subject to a voltage. Here, we calculate the coupled and inhomogeneous deformation of the lens and the dielectric elastomer actuator by formulating a nonlinear boundary-value problem. We characterize the strain-stiffening elastomer with the Gent model and describe the voltage-induced deformation using the model of ideal dielectric elastomer. The computational predictions agree well with experimental data. We use the model to explore the space of parameters, including the prestretch of the membrane, the volume of the liquid in the lens, and the size of the dielectric elastomer actuator relative to the lens. We examine how various modes of failure limit the minimum radius of curvature.

  11. Computational modeling of electromechanical instabilities in dielectric elastomers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Harold

    2016-04-01

    Dielectric elastomers are a class of soft, active materials that have recently gained significant interest due to the fact that they can be electrostatically actuated into undergoing extremely large deformations. An ongoing challenge has been the development of robust and accurate computational models for elastomers, particularly those that can capture electromechanical instabilities that limit the performance of elastomers such as creasing, wrinkling, and snap-through. I discuss in this work a recently developed finite element model for elastomers that is dynamic, nonlinear, and fully electromechanically coupled. The model also significantly alleviates volumetric locking due that arises due to the incompressible nature of the elastomers, and incorporates viscoelasticity within a finite deformation framework. Numerical examples are shown that demonstrate the performance of the proposed method in capturing electromechanical instabilities (snap-through, creasing, cratering, wrinkling) that have been observed experimentally.

  12. The Synergize effect of Chain extender to Phosporic acid catalyst to the ultimate property of Soy-Polyurethane

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2016-04-01

    The polyurethanes (PUs) foam were made from vegetable oil; a soybean based polyol. The foams were categorized into flexible and semi rigid. This research is manufacturally designed polyurethane foams by a process requiring the reaction of mixture of 2, 4- and 2, 6-Toluene di Isocyanate isomers, soy polyol in the presence of other ingredients. The objective of this work was to functionalized soy-polyol using phosporic acid catalyst and chain extender, study their collaborative reaction in producing ultimate property of PU foam. Correlates the foam morphology images in accordance to mechanical properties of foams.

  13. Effect of the chemical structure of the polymer matrix on the properties of foam polyurethanes at low temperatures

    NASA Astrophysics Data System (ADS)

    Yakushin, V. A.; Stirna, U. K.; Zhmud', N. P.

    1999-07-01

    The dependence of physical and mechanical properties of oligoether-based foam polyurethanes on the molecular mass (Mc) of polymer chains between the nodes of the polymer network and on the content of rigid segments in the polymer is investigated at 293 and 98K. The values of Mc at which the foam plastics have the best mechanical properties at low temperatures are determined. The content of rigid segments in the polymer at which foam polyurethanes have the best combination of the linear thermal expansion coefficient and mechanical properties in tension at a temperature of 98K is found.

  14. A fiber-reinforced composite prosthesis restoring a lateral midfacial defect: a clinical report.

    PubMed

    Kurunmäki, Hemmo; Kantola, Rosita; Hatamleh, Muhanad M; Watts, David C; Vallittu, Pekka K

    2008-11-01

    This clinical report describes the use of a glass fiber-reinforced composite (FRC) substructure to reinforce the silicone elastomer of a large facial prosthesis. The FRC substructure was shaped into a framework and embedded into the silicone elastomer to form a reinforced facial prosthesis. The prosthesis is designed to overcome the disadvantages associated with traditionally fabricated prostheses; namely, delamination of the silicone of the acrylic base, poor marginal adaptation over time, and poor simulation of facial expressions.

  15. Synthesis and Characterization of Ionically Crosslinked Elastomers

    DTIC Science & Technology

    2015-05-12

    SECURITY CLASSIFICATION OF: In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the thermomechanical...subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO...Ionically Crosslinked Elastomers Report Title In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the

  16. Synthesis of Polyurethanes Membranes from Rubber Seed Oil and Methylene Diphenyl Diisocyanates (MDI)

    NASA Astrophysics Data System (ADS)

    Marlina; Nurman, S.; Saleha, S.; Fitriani; Thanthawi, I.

    2017-03-01

    Rubber seed oil and methylene diphenyl diisocyanates (MDI) based polyurethane membrane has been prepared in this study. The main objective of this research is manufacture of polyurethane membranes from avocado seed oil, as a filter of this membrane use as a filter of metals from water such as mercury (Hg). In this study, the polyurethane membrane had been synthesized by varying compositions of rubber seed oil and MDI, with ratios of 10:0.2; 10:0.4; 10:0.6; 10:0.8; 10:1.0; 10:1.2; 10:1.4; 10:1.6; 10:1.8 and 10:2.0 (v/w) at 80°C and 170°C as polymerization and curing temperatures, respectively. Optimum polyurethane membrane was obtained at rubber seed oil: MDI 10: 0.8 v/w, it was dry, non-sticky, smooth and blackish brown. The membrane flux was 5,8307 L / m2.h.bar and rejection factor was 35,3015 %. The results of characterization indicated the formation of urethane bonds (NH at 3480 cm-1, C=O at 1620 cm-1, CN at 1374 cm-1, -OC-NH- at 1096 cm-1 and no -NCO at 2270 cm-1), the value of Tg was 55°C. The polyurethane membrane which treated at the optimum treatment conditions were used to the filter of metals from water such as mercury (Hg).

  17. Highly fluorinated polyurethanes

    NASA Technical Reports Server (NTRS)

    Stump, E. C., Jr.; Rochow, S. E. (Inventor)

    1972-01-01

    New polyurethanes containing a high degree of fluorine atoms are reported. The presence of the fluorine atoms in the polyurethane resins provides material having good thermal stability and chemical resistance. These polyurethanes are derived from a new hydroxy-terminated perfluoro polyether. The hydroxy terminated material is reacted with a diisocyanate to produce the polyurethanes. The polyurethanes can be used to form seals, coatings, potting material, hoses and the like.

  18. Replication of the nano-scale mold fabricated with focused ion beam

    NASA Astrophysics Data System (ADS)

    Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.

    2004-12-01

    Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.

  19. Modelling of the mechanical behavior of a polyurethane finger interphalangeal joint endoprosthesis after surface modification by ion implantation

    NASA Astrophysics Data System (ADS)

    Beliaev, A.; Svistkov, A.; Iziumov, R.; Osorgina, I.; Kondyurin, A.; Bilek, M.; McKenzie, D.

    2016-04-01

    Production of biocompatible implants made of polyurethane treated with plasma is very perspective. During plasma treatment the surface of polyurethane acquires unique physic-chemical properties. However such treatment may change the mechanical properties of polyurethane which may adversely affect the deformation behaviour of the real implant. Therefore careful study of the mechanical properties of the plasma-modified polyurethane is needed. In this paper, experimental observations of the elastic characteristics of plasma treated polyurethane and modelling of the deformation behaviour of polyurethane bio-implants are reported.

  20. Adjustable Membrane Mirrors Incorporating G-Elastomers

    NASA Technical Reports Server (NTRS)

    Chang, Zensheu; Morgan, Rhonda M.; Xu, Tian-Bing; Su, Ji; Hishinuma, Yoshikazu; Yang, Eui-Hyeok

    2008-01-01

    Lightweight, flexible, large-aperture mirrors of a type being developed for use in outer space have unimorph structures that enable precise adjustment of their surface figures. A mirror of this type includes a reflective membrane layer bonded with an electrostrictive grafted elastomer (G-elastomer) layer, plus electrodes suitably positioned with respect to these layers. By virtue of the electrostrictive effect, an electric field applied to the G-elastomer membrane induces a strain along the membrane and thus causes a deflection of the mirror surface. Utilizing this effect, the mirror surface figure can be adjusted locally by individually addressing pairs of electrodes. G-elastomers, which were developed at NASA Langley Research Center, were chosen for this development in preference to other electroactive polymers partly because they offer superior electromechanical performance. Whereas other electroactive polymers offer, variously, large strains with low moduli of elasticity or small strains with high moduli of elasticity, G-elastomers offer both large strains (as large as 4 percent) and high moduli of elasticity (about 580 MPa). In addition, G-elastomer layers can be made by standard melt pressing or room-temperature solution casting.

  1. The influence of chemical structure on thermal properties and surface morphology of polyurethane materials.

    PubMed

    Brzeska, Joanna; Morawska, Magda; Heimowska, Aleksandra; Sikorska, Wanda; Wałach, Wojciech; Hercog, Anna; Kowalczuk, Marek; Rutkowska, Maria

    2018-01-01

    The surface morphology and thermal properties of polyurethanes can be correlated to their chemical composition. The hydrophilicity, surface morphology, and thermal properties of polyurethanes (differed in soft segments and in linear/cross-linked structure) were investigated. The influence of poly([ R , S ]-3-hydroxybutyrate) presence in soft segments and blending of polyurethane with polylactide on surface topography were also estimated. The linear polyurethanes (partially crystalline) had the granular surface, whereas the surface of cross-linked polyurethanes (almost amorphous) was smooth. Round aggregates of polylactide un-uniformly distributed in matrix of polyurethane were clearly visible. It was concluded that some modification of soft segment (by mixing of poly([ R , S ]-3-hydroxybutyrate) with different polydiols and polytriol) and blending of polyurethanes with small amount of polylactide influence on crystallinity and surface topography of obtained polyurethanes.

  2. [Modern polyurethanes in cardiovascular surgery].

    PubMed

    Gostev, A A; Laktionov, P P; Karpenko, A A

    Currently, there is great clinical demand for synthetic tissue-engineered cardiovascular prostheses with good long-term patency. Polyurethanes belong to the class of polymers with excellent bio- and hemocompatibility. They are known to possess good mechanical properties, but are prone to processes of degradation in conditions of functioning in living organisms. Attempts at solving this problem have resulted in the development of various new subclasses of polyurethanes such as thermoplastic polyether polyurethanes, polyurethanes with a silicone segment, polycarbonate polyurethanes and nanocomposite polyurethanes. This was accompanied and followed by offering a series of new technologies of production of implantable medical devices such as vascular grafts, heart valves and others. In the presented review, we discuss biological and mechanical properties of modern subclasses of polyurethanes, as well as modern methods of manufacturing implantable medical devices made of polyurethanes, especially small-diameter vascular prostheses.

  3. Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer.

    PubMed

    Han, Ying; Kiat-amnuay, Sudarat; Powers, John M; Zhao, Yimin

    2008-12-01

    Contemporary silicone-based elastomeric prostheses tend to degrade over time because of the effect of mechanical loading. Little has been reported on how the mechanical properties of a maxillofacial prosthetic elastomer may be affected by the addition of nanosized oxide particles used as an opacifier. The purpose of this study was to evaluate the effect of different concentrations of nanosized oxides of various composition on the mechanical properties of a commercially available silicone elastomer. Nanosized oxides (Ti, Zn, or Ce) were added in various concentrations (0.5%, 1.0%, 1.5%, 2.0%, 2.5%, or 3.0% by weight) to a commercial silicone elastomer (A-2186), commonly used for fabricating extraoral maxillofacial prostheses. Silicone elastomer A-2186 without nanosized oxides served as a control group. Specimens (n=5) were polymerized according to manufacturer's recommendations and tested for tensile strength (ASTM D412) and tear strength (ASTM D624), and percent elongation in a universal testing machine. Uniformity of particle dispersion within the processed elastomer was assessed using scanning electron microscopic imaging. For each property, a 2-way ANOVA was performed evaluating the effect of oxide type and strength, and Fisher's PLSD test was used for pairwise comparisons (alpha=.05). SEM examination indicated that all 3 nanosized oxides distribute evenly throughout the silicone specimens, except for the 3.0% group, which are partly agglomerated. The 2.0% and 2.5% groups of all nanosized oxides demonstrated significantly higher tensile and tear strengths and percent elongation (P<.001) than the control group. CeO(2) had significantly lower tensile strength than TiO2 and ZnO (P<.05). The ZnO group had significantly higher tear strength than TiO(2) and CeO(2) (P <.05). Most of specimens became somewhat harder when compared with the control group. CeO(2) group had significantly higher Shore A hardness than TiO(2) and ZnO (P<.001). There was no significant difference of percent elongation among the type of nanosized oxides. Incorporation of Ti, Zn, or Ce nano-oxides at concentrations of 2.0% and 2.5% improved the overall mechanical properties of the silicone A-2186 maxillofacial elastomer.

  4. Toward a predictive model for elastomer seals

    NASA Astrophysics Data System (ADS)

    Molinari, Nicola; Khawaja, Musab; Sutton, Adrian; Mostofi, Arash

    Nitrile butadiene rubber (NBR) and hydrogenated-NBR (HNBR) are widely used elastomers, especially as seals in oil and gas applications. During exposure to well-hole conditions, ingress of gases causes degradation of performance, including mechanical failure. We use computer simulations to investigate this problem at two different length and time-scales. First, we study the solubility of gases in the elastomer using a chemically-inspired description of HNBR based on the OPLS all-atom force-field. Starting with a model of NBR, C=C double bonds are saturated with either hydrogen or intramolecular cross-links, mimicking the hydrogenation of NBR to form HNBR. We validate against trends for the mass density and glass transition temperature for HNBR as a function of cross-link density, and for NBR as a function of the fraction of acrylonitrile in the copolymer. Second, we study mechanical behaviour using a coarse-grained model that overcomes some of the length and time-scale limitations of an all-atom approach. Nanoparticle fillers added to the elastomer matrix to enhance mechanical response are also included. Our initial focus is on understanding the mechanical properties at the elevated temperatures and pressures experienced in well-hole conditions.

  5. A description of the mechanical behavior of composite solid propellants based on molecular theory

    NASA Technical Reports Server (NTRS)

    Landel, R. F.

    1976-01-01

    Both the investigation and the representation of the stress-strain response (including rupture) of gum and filled elastomers can be based on a simple functional statement. Internally consistent experiments are used to sort out the effects of time, temperature, strain and crosslink density on gum rubbers. All effects are readily correlated and shown to be essentially independent of the elastomer when considered in terms of non-dimensionalized stress, strain and time. A semiquantitative molecular theory is developed to explain this result. The introduction of fillers modifies the response, but, guided by the framework thus provided, their effects can be readily accounted for.

  6. Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.

    PubMed

    Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana

    2016-12-01

    Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Swellable elastomers under constraint

    NASA Astrophysics Data System (ADS)

    Lou, Yucun; Robisson, Agathe; Cai, Shengqiang; Suo, Zhigang

    2012-08-01

    Swellable elastomers are widely used in the oilfield to seal the flow of downhole fluids. For example, when a crack appears in self-healing cement, the liquid in the surroundings flows into the crack and permeates into the cement, causing small particles of elastomers in the cement to swell, resulting in the blocking of the flow. Elastomers are also used as large components in swellable packers, which can swell and seal zones in the borehole. In these applications, the elastomers swell against the constraint of stiff materials, such as cement, metal, and rock. The pressure generated by the elastomer against the confinement is a key factor that affects the quality of the sealing. This work develops a systematic approach to predict the magnitude of the pressure in such components. Experiments are carried out to determine the stress-stretch curve, free swelling ratio, and confining pressure. The data are interpreted in terms of a modified Flory-Rehner model.

  8. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.

    PubMed

    Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel

    2015-11-01

    Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Self-Calibrating, Variable-Flow Pumping System

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  10. Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties.

    PubMed

    Li, Yang; Ren, Hongfeng; Ragauskas, Arthur J

    2011-08-01

    Novel rigid polyurethane nanocomposite foams have been prepared by the polymerization of a sucrose-based polyol, a glycerol-based polyol and polymeric diphenylmethane diisocyanate in the presence of cellulose whiskers. Varying amounts of sulfuric acid hydrolyzed cellulose whiskers (0.25, 0.50, 0.75 and 1.00 wt%) prepared from a commercial fully bleached softwood kraft pulp were incorporated to investigate the effect of its dosage on the mechanical and thermal properties of polyurethane nanocomposites. Fourier transform infrared spectra of the nanocomposite foams suggested that additional hydrogen bonds were developed and crosslinking occurred between the hydroxyl groups of cellulose whiskers and isocyanate groups which increased the phase separation of soft and hard segments in the polyurethane. The closed cells of control foam and nanocomposite foams were homogeneously dispersed and the cell sizes were approximately 350 microm in diameter as observed by scanning electron microscope. A substantial improvement of mechanical properties at low whisker content (< or = 1.00 wt%) was obtained, especially the compressive strength and modulus at 1.00 wt% whiskers content which were increased by 269.7% and 210.0%, respectively. Thermal stability of the nanocomposites was also enhanced as determined by differential scanning calorimetry and thermogravimetric analysis.

  11. Sodium hydrogen carbonate as an alternative blowing agent in the preparation of palm-based polyurethane foam

    NASA Astrophysics Data System (ADS)

    Shakir, Amira Shakim Abdul; Badri, Khairiah Haji; Hua, Chia Chin

    2016-11-01

    An environmental-friendly blowing agent has been used to fabricate flexible polyurethane (PU) foam. Polyurethane foam was prepared from palm kernel oil-based monoester polyol (PKO-p) via prepolymerization method. Acetone has been used as solvent in this study. The developed polyurethane foam was characterized using tensile, differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TGA), optical microscope and drop shape analyzer. The mechanical properties of the PU-reference (PU-R) and PU-NaHCO3 foam was analyzed by tensile using ASTM D 3574-01. From the results, the elongation of PU- NaHCO3 shows reduction to 26.3 % compared to PU-R. The DSC showed two glass transition temperatures in all samples that belonged to the PU-R and PU-NaHCO3. TGA revealed that the incorporation of sodium hydrogen carbonate into the PU system did not show significant difference as compared to the control PU. The morphology of both PU was investigated using optical microscope. Contact angle has been measured to determine the hydrophobicity of the PU. The PU- NaHCO3 exhibited an increase in contact angle (93.1°).

  12. High-Aspect-Ratio Ridge Structures Induced by Plastic Deformation as a Novel Microfabrication Technique.

    PubMed

    Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua

    2016-09-14

    Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.

  13. Electrostrictive Graft Elastomers

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor); St.Clair, Terry L. (Inventor)

    2003-01-01

    An electrostrictive graft elastomer has a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules. The polar graft moieties have been rotated by an applied electric field, e.g., into substantial polar alignment. The rotation is sustained until the electric field is removed. In another embodiment, a process for producing strain in an elastomer includes: (a) providing a graft elastomer having a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules; and (b) applying an electric field to the graft elastomer to rotate the polar graft moieties, e.g., into substantial polar alignment.

  14. A soft flying robot driven by a dielectric elastomer actuator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Yingxi; Zhang, Hui; Godaba, Hareesh; Khoo, Boo Cheong; Zhu, Jian

    2017-04-01

    Modern unmanned aerial vehicles are gaining promising success because of their versatility, flexibility, and minimized risk of operations. Most of them are normally designed and constructed based on hard components. For example, the body of the vehicle is generally made of aluminum or carbon fibers, and electric motors are adopted as the main actuators. These hard materials are able to offer reasonable balance of structural strength and weight. However, they exhibit apparent limitations. For instance, such robots are fragile in even small clash with surrounding objects. In addition, their noise is quite high due to spinning of rotors or propellers. Here we aim to develop a soft flying robot using soft actuators. Due to its soft body, the robot can work effectively in unstructured environment. The robot may also exhibit interesting attributes, including low weight, low noise, and low power consumption. This robot mainly consists of a dielectric elastomer balloon made of two layers of elastomers. One is VHB (3M), and the other is natural rubber. The balloon is filled with helium, which can make the robot nearly neutral. When voltage is applied to either of the two dielectric elastomers, the balloon expands. So that the buoyance can be larger than the robot's weight, and the robot can move up. In this seminar, we will show how to harness the dielectric breakdown of natural rubber to achieve giant deformation of this soft robot. Based on this method, the robot can move up effectively in air.

  15. From ‘petal effect’ to ‘lotus effect’ on the highly flexible Silastic S elastomer microstructured using a fluorine based reactive ion etching process

    NASA Astrophysics Data System (ADS)

    Frankiewicz, Christophe; Zoueshtiagh, Farzam; Talbi, Abdelkrim; Streque, Jérémy; Pernod, Philippe; Merlen, Alain

    2014-11-01

    A fluorine-based reactive ion etching (RIE) process has been applied on a new family of silicone elastomers named ‘Silastic S’ for the first time. Excellent mechanical properties are the principal advantage of this elastomer. The main objective of this study was (i) to develop a new process with an electrodeposited thin Nickel (Ni) layer as a mask to obtain a more precise pattern transfer for deep etching (ii) to investigate the etch rates and the etch profiles obtained under various plasma conditions (gas mixture ratios and pressure). The resulting process exhibits etch rates that range from 20 µm h-1 to 40 µm h-1. The process was optimized to obtain anisotropic profiles of the edges. Finally, it is shown that (iii) the wetting contact angle could be easily modified with this process from 103° to 162°, with a hysteresis that ranges from 2° to 140°. The process is, at present, the only reported solution to reproduce the ‘petal effect’ (high contact angle hysteresis value) on a highly flexible substrate. A possibility to control the contact angle hysteresis from the ‘petal effect’ to the ‘lotus effect’ (low contact angle hysteresis value) has been investigated to allow a precise control on the required energy to pin or unpin the contact line of water droplets. This opens multiple possibilities to exploit this elastomer in many microfluidics applications.

  16. How does the molecular network structure influence PDMS elastomer wettability?

    NASA Astrophysics Data System (ADS)

    Melillo, Matthew; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from medical devices to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - microfluidic devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, end-group chemical functionality, and the extent of dilution of the curing mixture on the mechanical and surface properties of end-linked PDMS networks. The gel and sol fractions, storage and loss moduli, liquid swelling ratios, and water contact angles have all been shown to vary greatly based on the aforementioned variables. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have confirmed theories predicting the relationships between modulus and swelling. Furthermore, we have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient microfluidics and other PDMS-based materials that involve the transport of liquids.

  17. Reduced graphene oxide filled poly(dimethyl siloxane) based transparent stretchable, and touch-responsive sensors

    NASA Astrophysics Data System (ADS)

    Ponnamma, Deepalekshmi; Sadasivuni, Kishor Kumar; Cabibihan, John-John; Yoon, W. Jong; Kumar, Bijandra

    2016-04-01

    The ongoing revolution in touch panel technology and electronics demands the need for thin films, which are flexible, stretchable, conductive, and highly touch responsive. In this regard, conductive elastomer nanocomposites offer potential solutions for these stipulations; however, viability is limited to the poor dispersion of conductive nanomaterials such as graphene into the matrix. Here, we fabricated a reduced graphene oxide (rGO) and poly(dimethylsiloxane) (PDMS) elastomer based transparent and flexible conductive touch responsive film by dispersing rGO honeycombs uniformly into PDMS elastomer through an ionic liquid (IL) modification. Pursuing a simple, scalable, and safe method of solution casting, this provides a versatile and creative design of a transparent and stretchable rGO/IL-PDMS capacitive touch responsive, where rGO acts as a sensing element. This transparent film with ˜70% transmittance exhibits approximately a five times faster response in comparison to rGO/PDMS film, with negligible degradation over time. The performance of this touch screen film is expected to have applications in the emerging field of foldable electronics.

  18. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    NASA Astrophysics Data System (ADS)

    Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.

    2014-10-01

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K <0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  19. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    PubMed Central

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  20. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.

    PubMed

    Zhu, Lei; Zhang, Yuanzheng; Ji, Yali

    2017-06-01

    Poly(1,8-octanediol citrate) (POC) is a recently developed biodegradable crosslinked elastomer that possesses good cytocompatibility and matchable mechanical properties to soft tissues. However, the thermosetting characteristic reveals a big challenge to manufacture its porous scaffold. Herein, POC elastomer was electrospun into fiber mat using poly(L-lactic acid) (PLLA) as a spinnable carrier. The obtained POC/PLLA fiber mats were characterized by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), uniaxial tensile test, static-water-contact-angle, thermal analysis, in vitro degradation and biocompatibility test. It was found that the fibrous structure could be formed so long as the POC pre-polymer's content was no more than 50 wt%. The presence of elastic POC component not only strengthened the fiber mats but also toughened the fiber mats. The hydrophilicity of 50/50 fiber mat significantly improved. In vitro degradation rate of POC based fiber mats was much faster than that of pure PLLA. Cyto- and histo-compatibility tests confirmed that the POC/PLLA fiber mats had good biocompatibility for potential applications in soft tissue engineering.

  1. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wissman, J., E-mail: jwissman@andrew.cmu.edu; Finkenauer, L.; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theorymore » based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.« less

  2. Reduced graphene oxide filled poly(dimethyl siloxane) based transparent stretchable, and touch-responsive sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponnamma, Deepalekshmi; Sadasivuni, Kishor Kumar; Cabibihan, John-John

    The ongoing revolution in touch panel technology and electronics demands the need for thin films, which are flexible, stretchable, conductive, and highly touch responsive. In this regard, conductive elastomer nanocomposites offer potential solutions for these stipulations; however, viability is limited to the poor dispersion of conductive nanomaterials such as graphene into the matrix. Here, we fabricated a reduced graphene oxide (rGO) and poly(dimethylsiloxane) (PDMS) elastomer based transparent and flexible conductive touch responsive film by dispersing rGO honeycombs uniformly into PDMS elastomer through an ionic liquid (IL) modification. Pursuing a simple, scalable, and safe method of solution casting, this provides amore » versatile and creative design of a transparent and stretchable rGO/IL-PDMS capacitive touch responsive, where rGO acts as a sensing element. This transparent film with ∼70% transmittance exhibits approximately a five times faster response in comparison to rGO/PDMS film, with negligible degradation over time. The performance of this touch screen film is expected to have applications in the emerging field of foldable electronics.« less

  3. A Soft Parallel Kinematic Mechanism.

    PubMed

    White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca

    2018-02-01

    In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.

  4. Effects of Carbon Black and the Presence of Static Mechanical Strain on the Swelling of Elastomers in Solvent

    PubMed Central

    Ch’ng, Shiau Ying; Andriyana, Andri; Tee, Yun Lu; Verron, Erwan

    2015-01-01

    The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material’s ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored. PMID:28787977

  5. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process.

    PubMed

    Cregut, Mickael; Bedas, M; Durand, M-J; Thouand, G

    2013-12-01

    Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive. © 2013.

  6. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    PubMed

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  7. A modelling approach for the heterogeneous oxidation of elastomers

    NASA Astrophysics Data System (ADS)

    Herzig, A.; Sekerakova, L.; Johlitz, M.; Lion, A.

    2017-09-01

    The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry's law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side, further diffusion of oxygen into the material is described by a model based on Fick's law, which is modified by a reaction term. The evolved diffusion-reaction equation depends on the ageing temperature as well as on the progress of ageing and is able to describe diffusion-limited oxidation.

  8. Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation.

    PubMed

    Dutta, Suvangshu; Karak, Niranjan; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2009-12-01

    Epoxy modified Mesua ferrea L. seed oil (MFLSO) based polyurethane nanocomposites with different weight % of clay loadings (1%, 2.5% and 5%) have been evaluated as biocompatible materials. The nanocomposites were prepared by ex situ solution technique under high mechanical shearing and ultrasonication at room temperature. The partially exfoliated nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The mechanical properties such as tensile strength and scratch hardness were improved 2 and 5 times, respectively by nanocomposites formation. Even the impact resistance improved a little. The thermostability of the nanocomposites was enhanced by about 40 degrees C. Biodegradation study confirmed 5-10 fold increase in biodegradation rate for the nanocomposites compared to the pristine polymers. All the nanocomposites showed non-cytotoxicity as evident from RBC hemolysis inhibition observed in anti-hemolytic assay carried over the sterilized films. The study reveals that the epoxy modified MFLSO based polyurethane nanocomposites deserve the potential to be applicable as biomaterials.

  9. Theoretical Studies of Nonuniform Orientational Order in Liquid Crystals and Active Particles

    NASA Astrophysics Data System (ADS)

    Duzgun, Ayhan

    I investigate three systems that exhibit complex patterns in orientational order, which are controlled by geometry interacting with the dynamics of phase transitions, metastability, and activity. 1. Liquid Crystal Elastomers: Liquid-crystal elastomers are remarkable materials that combine the elastic properties of cross-linked polymer networks with the anisotropy of liquid crystals. Any distortion of the polymer network affects the nematic order of the liquid crystal, and, likewise, any change in the magnitude or direction of the nematic order influences the shape of the elastomer. When elastomers are prepared without any alignment, they develop disordered polydomain structures as they are cooled into the nematic phase. To model these polydomain structures, I develop a dynamic theory for the isotropic-nematic transition in elastomers. 2. Active Brownian Particles: Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. I perform Langevin dynamics simulations and analytic calculations to explore how systems cross over from equilibrium to active behavior as the activity is increased. Based on these results, I calculate how the pressure depends on wall curvature, and hence make analytic predictions for the motion of curved tracers and other effects of confinement in active matter systems. 3. Skyrmions in Liquid Crystals: Skyrmions are localized topological defects in the orientation of an order parameter field, without a singularity in the magnitude of the field. For many years, such defects have been studied in the context of chiral liquid crystals--for example, as bubbles in a confined cholesteric phase or as double-twist tubes in a blue phase. More recently, skyrmions have been investigated extensively in the context of chiral magnets. In this project, I compare skyrmions in chiral liquid crystals with the analogous magnetic defects. Through simulations based on the nematic order tensor, I model both isolated skyrmions and periodic defect lattices.

  10. Synthesis and characterization of polyurethane/CdS-SiO 2 nanocomposites via ultrasonic process

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhou, Yu-Ming; Nan, Qiu-Li; Ye, Xiao-Yun; Sun, Yan-Qing; Wang, Zhi-Qiang; Zhang, Shi-Ming

    2008-12-01

    In this study, the high-intensity ultrasound was applied in the preparation of chiral polyurethane/CdS-SiO 2 nanocomposites. The polyurethane/CdS-SiO 2 nanocomposites were analyzed by powder X-ray diffraction, thermogravimetric analysis (TGA), TEM and SEM. The results indicated that the heat stability of the nanocomposites was improved in the presence of CdS-SiO 2 core-shell nanoparticles. The infrared emissivity (8-14 μm) study revealed that the nanocomposites possessed much lower infrared values compared with those of the neat polymers and nanoparticles, respectively. A possible mechanism of ultrasonic induced composite reaction was proposed based on the experimental results.

  11. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    NASA Astrophysics Data System (ADS)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  12. Development of procedures for calculating stiffness and damping of elastomers in engineering applications, part 7

    NASA Technical Reports Server (NTRS)

    Rieger, A.; Zorzi, E.

    1980-01-01

    An elastomer shear damper was designed, tested, and compared with the performance of the T 55 power turbine supported on the production engine roller bearing support. The Viton 70 shear damper was designed so that the elastomer damper could be interchanged with the production T 55 power turbine roller bearing support. The results show that the elastomer sheer dampener permitted stable operation of the power turbine to the maximum operating speed of 16,000 rpm.

  13. Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs.

    PubMed

    Shahrousvand, Ehsan; Shahrousvand, Mohsen; Ghollasi, Marzieh; Seyedjafari, Ehsan; Jouibari, Iman Sahebi; Babaei, Amir; Salimi, Ali

    2017-09-01

    Biocompatible and biodegradable polyurethanes (PUs) based on polycaprolactone diol (PCL) were prepared and filled with cellulose nanowhiskers (CNWs) obtained from wastepaper. The incorporated polyurethane nanocomposites were used to prepare foamed scaffolds with bimodal cell sizes through solvent casting/particulate leaching method. Sodium chloride and sugar porogens were also prepared to fabricate the scaffolds. The mechanical and thermal properties of PU/CNW nanocomposites were investigated. Incorporation of different CNWs resulted in various structures with tunable mechanical properties and biodegradability. All bimodal foam nanocomposites were biodegradable and also non-cytotoxic as revealed by MTT assay using SNL fibroblast cell line. PU/CNW foam scaffolds were used for osteogenic differentiation of human mesenchymal stem cells (hMSCs). Based on the results, such PU/CNW nanocomposites could support proliferation and osteogenic differentiation of hMSCs in three-dimensional synthetic extracellular matrix (ECM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In vitro investigation of friction at the interface between bone and a surgical instrument.

    PubMed

    Parekh, Jugal; Shepherd, Duncan E T; Hukins, David W L; Hingley, Carl; Maffulli, Nicola

    2013-06-01

    This study investigated the friction between surgical instruments and bone to aid improvements to instrument design. The bases of orthopaedic surgical instruments are usually made of metal, especially stainless steel. Silicone elastomer was chosen as an alternate biocompatible material, which would be compliant on the bone surface when used as the base of an instrument. The coefficient of static friction was calculated at the bone/material interface in the presence of a synthetic solution that had a comparable viscosity to that of blood, to assess the friction provided by each base material. Three types of silicone elastomers with different hardnesses (Shore A hardness 23, 50 and 77) and three distinct stainless steel surfaces (obtained by spark erosion, sand blasting and surface grinding) were used to assess the friction provided by the materials on slippery bone. The bone specimens were taken from the flattest region of the femoral shaft of a bovine femur; the outer surfaces of the specimens were kept intact. In general, the stainless steel surfaces exhibited higher values of coefficient of static friction, compared to the silicone elastomer samples. The stainless steel surface finished by spark erosion (surface roughness Ra  = 8.9 ± 1.6 µm) had the highest coefficient value of 0.74 ± 0.04. The coefficient values for the silicone elastomer sample with the highest hardness (Dow Corning Silastic Q7-4780, Shore A hardness 77) was not significantly different to values provided by the stainless steel surface finished by sand blasting (surface roughness Ra  = 2.2 ± 0.1 µm) or surface grinding (surface roughness Ra  = 0.1 ± 0.0 µm). Based on the results of this study, it is concluded that silicone could be a potentially useful material for the design of bases of orthopaedic instruments that interface with bone.

  15. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  16. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  17. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  18. Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds.

    PubMed

    Hernández-Córdova, R; Mathew, D A; Balint, R; Carrillo-Escalante, H J; Cervantes-Uc, J M; Hidalgo-Bastida, L A; Hernández-Sánchez, F

    2016-08-01

    Biomaterial scaffolds are a key part of cardiac tissue engineering therapies. The group has recently synthesized a novel polycaprolactone based polyurethane-urea copolymer that showed improved mechanical properties compared with its previously published counterparts. The aim of this study was to explore whether indirect three-dimensional (3D) printing could provide a means to fabricate this novel, biodegradable polymer into a scaffold suitable for cardiac tissue engineering. Indirect 3D printing was carried out through printing water dissolvable poly(vinyl alcohol) porogens in three different sizes based on a wood-stack model, into which a polyurethane-urea solution was pressure injected. The porogens were removed, leading to soft polyurethane-urea scaffolds with regular tubular pores. The scaffolds were characterized for their compressive and tensile mechanical behavior; and their degradation was monitored for 12 months under simulated physiological conditions. Their compatibility with cardiac myocytes and performance in novel cardiac engineering-related techniques, such as aggregate seeding and bi-directional perfusion, was also assessed. The scaffolds were found to have mechanical properties similar to cardiac tissue, and good biocompatibility with cardiac myocytes. Furthermore, the incorporated cells preserved their phenotype with no signs of de-differentiation. The constructs worked well in perfusion experiments, showing enhanced seeding efficiency. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1912-1921, 2016. © 2016 Wiley Periodicals, Inc.

  19. A Direct Quantitative Agar-Plate Based Assay for Analysis of Pseudomonas protegens PF-5 Degradation of Polyurethane Films (Postprint)

    DTIC Science & Technology

    2014-10-02

    Journal article published in International Biodeterioration & Biodegradation 95 (2014) 311-319. The U.S. Government is joint author of the work and...SUBJECT TERMS pseudomonas biofilms, polyurethane, biodegradation , FTIR spectroscopy, citrate, impranil 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...International Biodeterioration & Biodegradation 95 (2014) 311e319Contents lists avaiInternational Biodeterioration & Biodegradation journal homepage

  20. Slip resistance of industrial floor surfaces: development of an elastomer suited to in-situ measurement.

    PubMed

    Leclercq, S; Saulnier, H

    2001-01-01

    Slips contribute to 12% of occupational accidents. A slip resistant floor is a mean to prevent slipping accidents occurring in workshops. Floor slip resistance is often evaluated by measuring a friction index, proportional to the force opposing slipping of a reference elastomer on the floor surface under test. When implementing a portable appliance, slip resistance measurements carried out on lubricated floors were not stabilized. The authors advanced the hypothesis of oil impregnating the elastomer. A new elastomer suited to in-situ measurement has been developed to achieve stable measuring conditions. This study highlights the fact that the nature and characteristics of a reference elastomer must be specified when slip resistance measurements are carried out.

  1. Giant voltage-induced deformation of a dielectric elastomer under a constant pressure

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian

    2014-09-01

    Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we investigate the performance of a dielectric elastomer actuator, which is coupled with water. The experiments demonstrate that the membrane of a dielectric elastomer can achieve a giant voltage-induced area strain of 1165%, when subject to a constant pressure. Both theory and experiment show that the pressure plays an important role in determining the electromechanical behaviour. The experiments also suggest that the dielectric elastomer actuators, when coupled with liquid, may suffer mechanical instability and collapse after a large amount of liquid is enclosed by the membrane. This failure mode needs to be taken into account in designing soft actuators.

  2. Platelet adhesion and human umbilical vein endothelial cell cytocompatibility of biodegradable segmented polyurethanes prepared with 4,4'-methylene bis(cyclohexyl isocyanate), poly(caprolactone) diol and butanediol or dithioerythritol as chain extenders.

    PubMed

    Chan-Chan, L H; Vargas-Coronado, R F; Cervantes-Uc, J M; Cauich-Rodríguez, J V; Rath, R; Phelps, E A; García, A J; San Román Del Barrio, J; Parra, J; Merhi, Y; Tabrizian, M

    2013-08-01

    Biodegradable segmented polyurethanes were prepared with poly(caprolactone) diol as a soft segment, 4,4'-methylene bis(cyclohexyl isocyanate) (HMDI) and either butanediol or dithioerythritol as chain extenders. Platelet adhesion was similar in all segmented polyurethanes studied and not different from Tecoflex® although an early stage of activation was observed on biodegradable segmented polyurethane prepared with dithioerythritol. Relative viability was higher than 80% on human umbilical vein endothelial cells in contact with biodegradable segmented polyurethane extracts after 1, 2 and 7 days. Furthermore, both biodegradable segmented polyurethane materials supported human umbilical vein endothelial cell adhesion, spreading, and viability similar to Tecoflex® medical-grade polyurethane. These biodegradable segmented polyurethanes represent promising materials for cardiovascular applications.

  3. Control of elasticity in cast elastomeric shock/vibration isolators

    NASA Technical Reports Server (NTRS)

    Owens, L.; Bright, C.

    1974-01-01

    Elasticity is determined by isolators physical dimensions and by type of elastomer used. Once elastomer is selected and cast between two concentric tubes of device, isolator elasticity will remain fixed. Isolators having same dimensions can be built to different elasticity requirements using same elastomer.

  4. Frequency-domain trade-offs for dielectric elastomer generators

    NASA Astrophysics Data System (ADS)

    Zanini, Plinio; Rossiter, Jonathan M.; Homer, Martin

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are an emerging energy harvesting technology based on a the cyclic stretching of a rubber-like membrane. However, most design processes do not take into account different excitation frequencies; thus limits the applicability studies since in real-world situations forcing frequency is not often constant. Through the use of a practical design scenario we use modeling and simulation to determine the material frequency response and, hence, carefully investigate the excitation frequencies that maximize the performance (power output, efficiency) of DEGs and the factors that influence it.

  5. Performance of Subscale Docking Seals Under Simulated Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Smith, Ian M.; Daniels, Christopher C.

    2008-01-01

    A universal docking system is being developed by the National Aeronautics and Space Administration (NASA) to support future space exploration missions to low Earth orbit (LEO), to the moon, and to Mars. The candidate docking seals for the system are a composite design consisting of elastomer seal bulbs molded into the front and rear sides of a metal ring. The test specimens were subscale seals with two different elastomer cross-sections and a 12-in. outside diameter. The seal assemblies were mated in elastomer seal-on-metal plate and elastomer seal-on-elastomer seal configurations. The seals were manufactured from S0383-70 silicone elastomer compound. Nominal and off-nominal joint configurations were examined. Both the compression load required to mate the seals and the leak rate observed were recorded while the assemblies were subjected to representative docking system operating temperatures of -58, 73, and 122 F (-50, 23, and 50 C). Both the loads required to fully compress the seals and their leak rates were directly proportional to the test temperature.

  6. Elastomer mounted rotors - An alternative for smoother running turbomachinery

    NASA Technical Reports Server (NTRS)

    Tecza, J. A.; Jones, S. W.; Smalley, A. J.; Cunningham, R. E.; Darlow, M. S.

    1979-01-01

    This paper describes the design of elastomeric bearing supports for a rotor built to simulate the power turbine of an advanced gas turbine engine which traverses two bending critical speeds. The elastomer dampers were constructed so as to minimize rotor dynamic response at the critical speeds. Results are presented of unbalance response tests performed with two different elastomer materials. These results showed that the resonances on the elastomer-mounted rotor were well damped for both elastomer materials and showed linear response to the unbalance weights used for response testing. Additional tests were performed using solid steel supports at either end (hand-mounted), which resulted in drastically increased sensitivity and nonlinear response, and with steel supports in one end of the rotor and the elastomer at the other, which yielded results which were between the soft- and hard-mounted cases. It is concluded that elastomeric supports are a viable alternative to other methods of mounting flexible rotors, that damping was well in excess of predictions and that elastomeric supports are tolerant of small rotor misalignments.

  7. Equilibrium swelling of elastomeric materials in solvent environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.F.

    1990-03-01

    The equilibrium swelling of silicones, fluorosilicones, VITON and ethylene-propylene-diene (EPDM) elastomers in an environment of the jet fuel JP4 was investigated. The volume of silicone and DPDM elastomers increased by approximately 100% when they were placed in a saturated environment of JP4. Conversely, the volume of the fluorosilicone elastomer increased by approximately 15% and that of VITON less than 1%. In acetone, a commonly used solvent, the equilibrium swelling of VITON and the fluorosilicone elastomer was excessive, on the order of 100%, wheras the silicone and EPDM elastomers exhibited small changes in dimensions. Reasons for these observations are discussed inmore » detail. We also present a simple scheme by which one may, qualitatively, determine the dimensional stability of these elastomers in different solvents if the cohesive energy density of the solvent, which is readily available in a number of handbooks, is known. We also evaluated the vulnerability of some commonly used engineering thermoplastics to JP4. The results are tabulated. 13 refs., 6 figs., 3 tab.« less

  8. Thermal degradation behavior and X-ray diffraction studies of chitosan based polyurethane bio-nanocomposites using different diisocyanates.

    PubMed

    Javaid, Muhammad Asif; Rizwan, Muhammad; Khera, Rasheed Ahmad; Zia, Khalid Mahmood; Saito, Kei; Zuber, Muhammad; Iqbal, Javed; Langer, Peter

    2018-05-29

    Five different samples of chitosan based polyurethane bio-nanocomposites (PUBNCs) were synthesized by step growth polymerization technique. Five different diisocyanates were used by keeping hydroxyl terminated polybutadiene (HTPB)/1,4-butane diol (1,4-BDO)/chitosan (CS) and montmorillonite (MMT) clay ratios constant (PUR1-PUR5). For comparative studies, PUR-6 was prepared without CS and clay components. Molecular characterizations of polyurethane (PU) films were carried out by FTIR and NMR which was found to have confirmatory evidence of the proposed structures. X-ray diffraction angles (2θ), d-spacing and intensities of chitosan based samples (PUR1-PUR5) and PUR-6 indicated that crystalline behavior of PUBNCs is influenced by varying diisocyanate structures. TGA/DTA results revealed that chitosan increased thermal stability of PU samples; it also enhanced the mechanical strength and decreased the glass transition temperature (T g ) of all the samples. Based on the above mentioned facts this study suggests the best usage of PUs according to the operational and environmental conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Near-infrared light-controlled tunable grating based on graphene/elastomer composites

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua

    2018-02-01

    A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.

  10. Stacked dielectric elastomer actuator (SDEA): casting process, modeling and active vibration isolation

    NASA Astrophysics Data System (ADS)

    Li, Zhuoyuan; Sheng, Meiping; Wang, Minqing; Dong, Pengfei; Li, Bo; Chen, Hualing

    2018-07-01

    In this paper, a novel fabrication process of stacked dielectric elastomer actuator (SDEA) is developed based on casting process and elastomeric electrode. The so-fabricated SDEA benefits the advantages of homogenous and reproducible properties as well as little performance degradation after one-year use. A coupling model of SDEA is established by taking into consideration of the elastomeric electrode and the calculated results agree with the experiments. Based on the model, we attain the method to optimize the SDEA’s parameters. Finally, the SDEA is used as an isolator in active vibration isolation system to verify the feasibility in dynamic application. And the experiment results show a great prospect for SDEA in such application.

  11. 21 CFR 177.2400 - Perfluorocarbon cured elastomers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Perfluorocarbon cured elastomers. 177.2400 Section 177.2400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... as Components of Articles Intended for Repeated Use § 177.2400 Perfluorocarbon cured elastomers...

  12. 21 CFR 177.2400 - Perfluorocarbon cured elastomers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorocarbon cured elastomers. 177.2400 Section 177.2400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... as Components of Articles Intended for Repeated Use § 177.2400 Perfluorocarbon cured elastomers...

  13. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOEpatents

    Jody, Bassam; Daniels, Edward; Libera, Joseph A.

    1999-01-01

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam.

  14. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOEpatents

    Jody, B.; Daniels, E.; Libera, J.A.

    1999-03-16

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam. 4 figs.

  15. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  16. Chemically defined, ultrasoft PDMS elastomers with selectable elasticity for mechanobiology

    PubMed Central

    Heinrichs, Viktor; Dieluweit, Sabine; Stellbrink, Jörg; Pyckhout-Hintzen, Wim; Hersch, Nils; Richter, Dieter

    2018-01-01

    Living animal cells are strongly influenced by the mechanical properties of their environment. To model physiological conditions ultrasoft cell culture substrates, in some instances with elasticity (Young's modulus) of only 1 kPa, are mandatory. Due to their long shelf life PDMS-based elastomers are a popular choice. However, uncertainty about additives in commercial formulations and difficulties to reach very soft materials limit their use. Here, we produced silicone elastomers from few, chemically defined and commercially available substances. Elastomers exhibited elasticities in the range from 1 kPa to 55 kPa. In detail, a high molecular weight (155 kg/mol), vinyl-terminated linear silicone was crosslinked with a multifunctional (f = 51) crosslinker (a copolymer of dimethyl siloxane and hydrosilane) by a platinum catalyst. The following different strategies towards ultrasoft materials were explored: sparse crosslinking, swelling with inert silicone polymers, and, finally, deliberate introduction of dangling ends into the network (inhibition). Rheological experiments with very low frequencies led to precise viscoelastic characterizations. All strategies enabled tuning of stiffness with the lowest stiffness of ~1 kPa reached by inhibition. This system was also most practical to use. Biocompatibility of materials was tested using primary cortical neurons from rats. Even after several days of cultivation no adverse effects were found. PMID:29624610

  17. Statistical analysis of magnetically soft particles in magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Gundermann, T.; Cremer, P.; Löwen, H.; Menzel, A. M.; Odenbach, S.

    2017-04-01

    The physical properties of magnetorheological elastomers (MRE) are a complex issue and can be influenced and controlled in many ways, e.g. by applying a magnetic field, by external mechanical stimuli, or by an electric potential. In general, the response of MRE materials to these stimuli is crucially dependent on the distribution of the magnetic particles inside the elastomer. Specific knowledge of the interactions between particles or particle clusters is of high relevance for understanding the macroscopic rheological properties and provides an important input for theoretical calculations. In order to gain a better insight into the correlation between the macroscopic effects and microstructure and to generate a database for theoretical analysis, x-ray micro-computed tomography (X-μCT) investigations as a base for a statistical analysis of the particle configurations were carried out. Different MREs with quantities of 2-15 wt% (0.27-2.3 vol%) of iron powder and different allocations of the particles inside the matrix were prepared. The X-μCT results were edited by an image processing software regarding the geometrical properties of the particles with and without the influence of an external magnetic field. Pair correlation functions for the positions of the particles inside the elastomer were calculated to statistically characterize the distributions of the particles in the samples.

  18. Model photo-responsive elastomers based on the self-assembly of side group liquid crystal triblock copolymers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kurji, Zuleikha; Kornfield, Julia A.; Kuzyk, Mark G.

    2015-10-01

    We report the synthesis of azobenzene-containing coil-liquid crystal-coil triblock copolymers that form uniform and highly reproducible elastomers by self-assembly. To serve as actuators to (non-invasively) steer a fiber optic, for example in deep brain stimulation, the polymers are designed to become monodomain "single liquid crystal" elastomers during the fiber-draw process and to have a large stress/strain response to stimulation with either light or heat. A fundamental scientific question that we seek to answer is how the interplay between the concentration of photoresponsive mesogens and the proximity to the nematic-isotropic transition governs the sensitivity of the material to stimuli. Specifically, a matched pair of polymers, one with ~5% azobenzene-containing side groups (~95% cyanobiphenyl side groups) and the other with 100% cyanobiphenyl side groups were synthesized from identical triblock pre-polymers (with polystyerene end blocks and 1,2-polybutadiene midblocks). These can be blended in various ratios to prepare a series of elastomers that are precisely matched in terms of the backbone length between physical crosslinks (because each polymer is derived from the same pre-polymer), while differing in % azobenzene side groups, allowing the effect of concentration of photoresponsive groups to be unambiguously determined.

  19. Natural Rubber Nanocomposite with Human-Tissue-Like Mechanical Characteristic

    NASA Astrophysics Data System (ADS)

    Murniati, Riri; Novita, Nanda; Sutisna; Wibowo, Edy; Iskandar, Ferry; Abdullah, Mikrajuddin

    2017-07-01

    The blends of synthetic rubber and natural rubber with nanosilica were prepared using a blending technique in presence of different filler volume fraction. The effect of filler on morphological and mechanical characteristics was studied. Utilization of human cadaver in means of medical study has been commonly used primarily as tools of medical teaching and training such as surgery. Nonetheless, human cadaver brought inevitable problems. So it is necessary to find a substitute material that can be used to replace cadavers. In orthopaedics, the materials that resemble in mechanical properties to biological tissues are elastomers such as natural rubber (latex) and synthetic rubber (polyurethanes, silicones). This substitution material needs to consider the potential of Indonesia to help the development of the nation. Indonesia is the second largest country producer of natural rubber in the world. This paper aims to contribute to adjusting the mechanical properties of tissue-mimicking materials (TMMs) to the recommended range of biological tissue value and thus allow the development of phantoms with greater stability and similarity to human tissues. Repeatability for the phantom fabrication process was also explored. Characteristics were then compared to the control and mechanical characteristics of different human body part tissue. Nanosilica is the best filler to produce the best nanocomposite similarities with human tissue. We produced composites that approaching the properties of human internal tissues.

  20. Real-time dynamics of high-velocity micro-particle impact

    NASA Astrophysics Data System (ADS)

    Veysset, David; Hsieh, Alex; Kooi, Steve; Maznev, Alex A.; Tang, Shengchang; Olsen, Bradley D.; Nelson, Keith A.

    High-velocity micro-particle impact is important for many areas of science and technology, from space exploration to the development of novel drug delivery platforms. We present real-time observations of supersonic micro-particle impacts using multi-frame imaging. In an all optical laser-induced projectile impact test, a monolayer of micro-particles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the micro-particles into free space with speeds up to 1.0 km/s. The particles are monitored during the impact on the target with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution as short as 3 ns. In particular, we investigated the high-velocity impact deformation response of poly(urethane urea) (PUU) elastomers to further the fundamental understanding of the molecular influence on dynamical behaviors of PUUs. We show the dynamic-stiffening response of the PUUs and demonstrate the significance of segmental dynamics in the response. We also present movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics. The results will provide an impetus for modeling high-velocity microscale impact responses and high strain rate deformation in polymers, gels, and other materials.

  1. Synthesis and characterization of segmented poly(esterurethane urea) elastomers for bone tissue engineering

    PubMed Central

    Kavlock, Katherine D.; Pechar, Todd W.; Hollinger, Jeffrey O.; Guelcher, Scott A.; Goldstein, Aaron S.

    2007-01-01

    Segmented polyurethanes have been used extensively in implantable medical devices, but their tunable mechanical properties make them attractive for examining the effect of biomaterial modulus on engineered musculoskeletal tissue development. In this study a family of segmented degradable poly(esterurethane urea)s (PEUURs) were synthesized from 1,4-diisocyanatobutane, a poly(ε-caprolactone) (PCL) macrodiol soft segment and a tyramine-1,4-diisocyanatobutane-tyramine chain extender. By systematically increasing the PCL macrodiol molecular weight from 1100 to 2700 Da, the storage modulus, crystallinity and melting point of the PCL segment were systematically varied. In particular, the melting temperature, Tm, increased from 21 to 61°C and the storage modulus at 37°C increased from 52 to 278 MPa with increasing PCL macrodiol molecular weight, suggesting that the crystallinity of the PCL macrodiol contributed significantly to the mechanical properties of the polymers. Bone marrow stromal cells were cultured on rigid polymer films under osteogenic conditions for up to 14 days. Cell density, alkaline phosphatase activity, and osteopontin and osteocalcin expression were similar among PEUURs and comparable to poly(D,L-lactic-coglycolic acid). This study demonstrates the suitability of this family of PEUURs for tissue engineering applications, and establishes a foundation for determining the effect of biomaterial modulus on bone tissue development. PMID:17418651

  2. BONE REGENERATION AFTER DEMINERALIZED BONE MATRIX AND CASTOR OIL (RICINUS COMMUNIS) POLYURETHANE IMPLANTATION

    PubMed Central

    Leite, Fábio Renato Manzolli; Ramalho, Lizeti Toledo de Oliveira

    2008-01-01

    Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial. PMID:19089203

  3. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 4: Testing of elastomers under a rotating load. [resonance testing

    NASA Technical Reports Server (NTRS)

    Darlow, M. S.; Smalley, A. J.

    1977-01-01

    A test rig designed to measure stiffness and damping of elastomer cartridges under a rotating load excitation is described. The test rig employs rotating unbalance in a rotor which runs to 60,000 RPM as the excitation mechanism. A variable resonant mass is supported on elastomer elements and the dynamic characteristics are determined from measurements of input and output acceleration. Five different cartridges are considered: three of these are buttons cartridges having buttons located in pairs, with 120 between each pair. Two of the cartridges consist of 360 elastomer rings with rectangular cross-sections. Dynamic stiffness and damping are measured for each cartridge and compared with predictions at different frequencies and different strains.

  4. Electrically activated artificial muscles made with liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen

    2000-06-01

    Composites of monodomain nematic liquid crystal elastomers and a conducting material distributed within their network are shown to exhibit large deformations, i.e. contraction, expansion, bending with strains of over 200% and appreciable force, by Joule heating through electrical activation. The electrical activation of the conducting material induces a rapid Joule heating in the sample leading to a nematic to isotropic phase transition where the elastomer of dimensions 32 mm x 7 mm x 0.4 mm contracted in less than a second. The cooling process, isotropic to nematic transition where the elastomer expands back to its original length, was slow and took 8 seconds. The material studied here is a highly novel liquid crystalline co-elastomer, invented and developed by Heino Finkelmann and co-workers at Albert-Ludwigs-Universitaet in Freiburg, Germany. The material is such that in which the mesogenic units are in both the side chains and the main chains of the elastomer. This co-elastomer was then mechanically loaded to induce a uniaxial network anisotropy before the cross-linking reaction was completed. These samples were then made into a composite with a conducting material such as dispersed silver particles or graphite fibers. The final samples was capable of undergoing more than 200% reversible strain in a few seconds.

  5. Comparison of Adhesion and Retention Forces for Two Candidate Docking Seal Elastomers

    NASA Technical Reports Server (NTRS)

    Hartzler, Brad D.; Panickar, Marta B.; Wasowski, Janice L.; Daniels, Christopher C.

    2011-01-01

    To successfully mate two pressurized vehicles or structures in space, advanced seals are required at the interface to prevent the loss of breathable air to the vacuum of space. A critical part of the development testing of candidate seal designs was a verification of the integrity of the retaining mechanism that holds the silicone seal component to the structure. Failure to retain the elastomer seal during flight could liberate seal material in the event of high adhesive loads during undocking. This work presents an investigation of the force required to separate the elastomer from its metal counter-face surface during simulated undocking as well as a comparison to that force which was necessary to destructively remove the elastomer from its retaining device. Two silicone elastomers, Wacker 007-49524 and Esterline ELASA-401, were evaluated. During the course of the investigation, modifications were made to the retaining devices to determine if the modifications improved the force needed to destructively remove the seal. The tests were completed at the expected operating temperatures of -50, +23, and +75 C. Under the conditions investigated, the comparison indicated that the adhesion between the elastomer and the metal counter-face was significantly less than the force needed to forcibly remove the elastomer seal from its retainer, and no failure would be expected.

  6. An Investigation of Mechanically Tunable and Nanostructured Polymer Scaffolds for Directing Human Mesenchymal Stem Cell Development

    NASA Astrophysics Data System (ADS)

    Jaafar, Israd Hakim

    This work investigated the use of biomedically relevant, polymer substrates for in vitro human mesenchymal stem cell (hMSC)-substrate surface interaction. Two materials were identified: (i) Poly(glycerol-sebacate) (PGS), a novel biocompatible and biodegradable thermosetting rubber-like elastomer, and (ii) injection molded polystyrene (PS). PGS was selected because it has tunable mechanical properties within the range of biological tissue, and thus provides a useful model to determine the types of substrate mechanical cues that would elicit specific hMSC lineage specification and possible differentiation outcomes. PS is a relevant material for in vitro cell-substrate surface interaction analysis since it is typically the base material of cell culture dishes. Both these materials have also shown micro to nanoscale molding capabilities. Hence these materials would also serve as a model in determining topographical properties (and related mechanical properties) at the dimension-scale of the extracellular environment that modulates hMSC state and fate. The work characterized, designed, and manufactured substrates made of these materials, for in vitro hMSC culture. Micro/nanoscale PGS and PS surface features were manufactured using silicon (Si) based tooling technology. The response of hMSCs to PGS substrates of various Young.s moduli was examined. hMSC response to a nanoscale array of PS pegs was also investigated. PGS was observed to be a semi-crystalline thermosetting elastomer that is fully amorphous above 35°C. The material acquired increasing stiffness and density of photoresist-coated with increasing levels of curing temperature and duration of cure. hMSCs were observed to respond differently on PGS with elastic modulii of 0.11, 1.11, and 2.30 MPa. The cells spread and proliferate more, and develop a stretched cytoskeleton on the stiffer substrates. On the softest substrate (0.11 MPa) the cells developed a branched and filopodia-rich morphology with a diffused actin cytoskeleton. PGS and a variety of other typical polymeric substrates such as poly(urethane) PU, poly(L-lactide-co-epsilon-caprolactone) PLCL, and poly(lactic-co-glycolic acid) PLGA, were found to produce its own fluorescence emission during fluorescence based imaging, which interfered in immunocytochemical (ICC) imaging and analysis of fluorescently labeled biomolecule structures of cells contacting these materials. The study successfully quenched this light interference by using Sudan Black, dye B (SB). Both PGS and PS sub-micron features and nanoscale peg arrays were successfully manufactured using Si based tooling technology. Cultures of hMSC on arrays of a nanopegged PS surface (400 nm diameter, 800 nm center-center, ˜ 200 nm high) revealed several interesting phenomena. The cells were observed to adhere to, migrate over, undergo mitosis, and interact over the nanopegged PS surface. The cells exhibited unique morphology in comparison to those cultured on commercial PS Petri dishes, and on flat injection molded PS templates. hMSCs on the nanopegs appear rounded, less spread out, and more motile with a filopodia-rich morphology.

  7. Polyurethane retainers for ball bearings

    NASA Technical Reports Server (NTRS)

    Christy, R. I.

    1973-01-01

    Evaluation of a new ball bearing retainer material is reported. A special composite polyurethane foam ball retainer has been developed that has virtually zero wear, is chemically inert to hydrocarbon lubricants, and stores up to 60 times as much lubricant per unit volume as the most commonly used retainer material, cotton phenolic. This new retainer concept shows promise of years of ball bearing operation without reoiling, based on life testing in high vacuum.

  8. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds

    PubMed Central

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2011-01-01

    Background This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. Conclusion This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation. PMID:22072883

  9. Traveling wave ultrasonic motor using polymer-based vibrator

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-01-01

    With the characteristics of low density, low elastic modulus, and low mechanical loss, poly(phenylene sulfide) (PPS) is a promising material for fabricating lightweight ultrasonic motors (USMs). For the first time, we used PPS to fabricate an annular elastomer with teeth and glued a piece of piezoelectric-ceramic annular disk to the bottom of the elastomer to form a vibrator. To explore for a material suitable for the rotor surface coming in contact with the PPS-based vibrator, several disk-shaped rotors made of different materials were fabricated to form traveling wave USMs. The polymer-based USM rotates successfully as the conventional metal-based USMs. The experimental results show that the USM with the aluminum rotor has the largest torque, which indicates that aluminum is the most suitable for the rotor surface among the tested materials.

  10. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes

    NASA Astrophysics Data System (ADS)

    de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.

    2018-07-01

    We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.

  11. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  12. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  13. Theory Of Dewetting In A Filled Elastomer Under Stress

    NASA Technical Reports Server (NTRS)

    Peng, Steven T. J.

    1993-01-01

    Report presents theoretical study of dewetting between elastomeric binder and filler particles of highly filled elastomer under multiaxial tension and resulting dilatation of elastomer. Study directed toward understanding and predicting nonlinear stress-vs.-strain behavior of filled elastomeric rocket propellant, also applicable to rubber in highly loaded tire or in damping pad.

  14. Development of polyurethanes for bone repair.

    PubMed

    Marzec, M; Kucińska-Lipka, J; Kalaszczyńska, I; Janik, H

    2017-11-01

    The purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity of polyurethanes. Interaction with various cells, behavior in vivo and current strategies in enhancing bioactivity of polyurethanes are described. The discussion on the incorporation of biomolecules and growth factors, surface modifications, and obtaining polyurethane-ceramics composites strategies is held. The main emphasis is placed on the progress of polyurethane applications in bone regeneration, including bone void fillers, shape memory scaffolds, and drug carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enhancement of the electromechanical transduction properties of a silicone elastomer by blending with a conjugated polymer

    NASA Astrophysics Data System (ADS)

    Carpi, F.; Gallone, G.; Galantini, F.; De Rossi, D.

    2008-03-01

    The need for high driving electric fields currently limits the diffusion of dielectric elastomer actuation in some areas of potential application, especially in the case of biomedical disciplines. A reduction of the driving fields may be achieved with new elastomers offering intrinsically superior electromechanical properties. So far, most of attempts in this direction have been focused on composites between elastomer matrixes and high-permittivity ceramic fillers, yielding to limited results. In this work, the electromechanical response of a silicone rubber (poly-dimethyl-siloxane) was improved by blending, rather than loading, the elastomer with a highly polarizable conjugated polymer (undoped poly-hexyl-thiophene). Very low percentages (1-6 wt%) of poly-hexyl-thiophene yielded both an increase of the dielectric permittivity and an unexpected reduction of the tensile elastic modulus. Both these factors contributed to a remarkable increase of the electromechanical response, which reached a maximum at 1 wt% content of conjugated polymer. This approach may lead to the development of new types of improved dielectric elastomers for actuation.

  16. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.

    2015-08-01

    The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.

  17. Vibrotactile display for mobile applications based on dielectric elastomer stack actuators

    NASA Astrophysics Data System (ADS)

    Matysek, Marc; Lotz, Peter; Flittner, Klaus; Schlaak, Helmut F.

    2010-04-01

    Dielectric elastomer stack actuators (DESA) offer the possibility to build actuator arrays at very high density. The driving voltage can be defined by the film thickness, ranging from 80 μm down to 5 μm and driving field strength of 30 V/μm. In this paper we present the development of a vibrotactile display based on multilayer technology. The display is used to present several operating conditions of a machine in form of haptic information to a human finger. As an example the design of a mp3-player interface is introduced. To build up an intuitive and user friendly interface several aspects of human haptic perception have to be considered. Using the results of preliminary user tests the interface is designed and an appropriate actuator layout is derived. Controlling these actuators is important because there are many possibilities to present different information, e.g. by varying the driving parameters. A built demonstrator is used to verify the concept: a high recognition rate of more than 90% validates the concept. A characterization of mechanical and electrical parameters proofs the suitability of dielectric elastomer stack actuators for the use in mobile applications.

  18. Study on a new self-sensing magnetorheological elastomer bearing

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhou, Mengjiao; Wang, Minglian; Yang, Ping-an

    2018-06-01

    The complexity of a semi-active vibration isolation system results in the difficulty of realizing its role on impact load effectively. Thus, a new self-sensing bearing based on modified anisotropic magnetorheological elastomer (MRE) is proposed in this study. This self-sensing bearing was fabricated by dispersed multi-walled carbon nanotubes and carbonyl iron particles into polydimethylsiloxane matrix under a magnetic field. The working conditions of the bearing were analyzed and decoupled. An optimal structure size of the bearing was selected and used for setting up the experiment test system. The self-sensing characteristic of the MRE bearing under the multi-field coupling of load and magnetic fields was then investigated by this test system. Results showed that the resistance of the modified MRE, in which a preload was applied by the bearing, could change approximately 28%-56% under extrusion force, mechanical force, and external magnetic field. The vibration isolation performance was tested based on the self-sensing characteristic. The bearing had excellent mechanical properties, which could reduce at least 30% of vibration. Thus, the modified MRE of the magnetorheological elastomer bearing could be simultaneously used as an actuator and a sensor.

  19. Modeling Electronic Skin Response to Normal Distributed Force

    PubMed Central

    Seminara, Lucia

    2018-01-01

    The reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride) piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first evaluated how a distributed normal force (Hertzian distribution) is transmitted to an extended PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq’s half-space assumption is used to get a qualitative picture and extensive FEM simulations allow determination of the quantitative response for the actual finite elastomer layer. The ultimate use of the present model is to estimate the electrical sensor output from a measure of a basic mechanical action at the skin surface. However this requires that the PVDF piezoelectric coefficient be known a-priori. This was not the case in the present investigation. However, the numerical model has been used to fit experimental data from a real skin prototype and to estimate the sensor piezoelectric coefficient. It turned out that this value depends on the preload and decreases as a result of PVDF aging and fatigue. This framework contains all the fundamental ingredients of a fully predictive model, suggesting a number of future developments potentially useful for skin design and validation of the fabrication technology. PMID:29401692

  20. Modeling Electronic Skin Response to Normal Distributed Force.

    PubMed

    Seminara, Lucia

    2018-02-03

    The reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride) piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first evaluated how a distributed normal force (Hertzian distribution) is transmitted to an extended PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq's half-space assumption is used to get a qualitative picture and extensive FEM simulations allow determination of the quantitative response for the actual finite elastomer layer. The ultimate use of the present model is to estimate the electrical sensor output from a measure of a basic mechanical action at the skin surface. However this requires that the PVDF piezoelectric coefficient be known a-priori. This was not the case in the present investigation. However, the numerical model has been used to fit experimental data from a real skin prototype and to estimate the sensor piezoelectric coefficient. It turned out that this value depends on the preload and decreases as a result of PVDF aging and fatigue. This framework contains all the fundamental ingredients of a fully predictive model, suggesting a number of future developments potentially useful for skin design and validation of the fabrication technology.

  1. Toughening elastomers with sacrificial bonds and watching them break.

    PubMed

    Ducrot, Etienne; Chen, Yulan; Bulters, Markus; Sijbesma, Rint P; Creton, Costantino

    2014-04-11

    Elastomers are widely used because of their large-strain reversible deformability. Most unfilled elastomers suffer from a poor mechanical strength, which limits their use. Using sacrificial bonds, we show how brittle, unfilled elastomers can be strongly reinforced in stiffness and toughness (up to 4 megapascals and 9 kilojoules per square meter) by introducing a variable proportion of isotropically prestretched chains that can break and dissipate energy before the material fails. Chemoluminescent cross-linking molecules, which emit light as they break, map in real time where and when many of these internal bonds break ahead of a propagating crack. The simple methodology that we use to introduce sacrificial bonds, combined with the mapping of where bonds break, has the potential to stimulate the development of new classes of unfilled tough elastomers and better molecular models of the fracture of soft materials.

  2. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  3. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  4. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  5. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  6. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  7. 40 CFR 721.8095 - Silylated polyurethane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Silylated polyurethane. 721.8095... Substances § 721.8095 Silylated polyurethane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a silylated polyurethane (PMN P-95-1356) is...

  8. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or...

  9. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or...

  10. 40 CFR 63.8782 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...

  11. 40 CFR 63.8782 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...

  12. 40 CFR 63.8782 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...

  13. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam production—diisocyanate emissions. Each new and existing slabstock affected source shall comply...

  14. 40 CFR 63.8782 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...

  15. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam production—diisocyanate emissions. Each new and existing slabstock affected source shall comply...

  16. 40 CFR 63.8782 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...

  17. Switchable adhesion for wafer-handling based on dielectric elastomer stack transducers

    NASA Astrophysics Data System (ADS)

    Grotepaß, T.; Butz, J.; Förster-Zügel, F.; Schlaak, H. F.

    2016-04-01

    Vacuum grippers are often used for the handling of wafers and small devices. In order to evacuate the gripper, a gas flow is created that can harm the micro structures on the wafer. A promising alternative to vacuum grippers could be adhesive grippers with switchable adhesion. There have been some publications of gecko-inspired adhesive devices. Most of these former works consist of a structured surface which adheres to the object manipulated and an actuator for switching the adhesion. Until now different actuator principles have been investigated, like smart memory alloys and pneumatics. In this work for the first time dielectric elastomer stack transducers (DEST) are combined with a structured surface. DESTs are a promising new transducer technology with many applications in different industry sectors like medical devices, human-machine-interaction and soft robotics. Stacked dielectric elastomer transducers show thickness contraction originating from the electromechanical pressure of two compliant electrodes compressing an elastomeric dielectric when a voltage is applied. Since DESTs and the adhesive surfaces previously described are made of elastomers, it is self-evident to combine both systems in one device. The DESTs are fabricated by a spin coating process. If the flat surface of the spinning carrier is substituted for example by a perforated one, the structured elastomer surface and the DEST can be fabricated in one process. By electrical actuation the DEST contracts and laterally expands which causes the gecko-like cilia to adhere on the object to manipulate. This work describes the assembly and the experimental results of such a device using switchable adhesion. It is intended to be used for the handling of glass wafers.

  18. Polyurethane membranes for surgical gown applications

    NASA Astrophysics Data System (ADS)

    Ukpabi, Pauline Ozoemena

    The Occupational Safety and Health Administration (OSHA) recently issued a directive requiring all employers to supply personnel protective equipment to employees who are at risk of exposure to blood or other potentially infectious body fluids. For the healthcare worker, a wide variety of surgical gowns is available commercially but there are concerns over their barrier effectiveness and/or wearer comfort. To successfully create a barrier fabric which combines resistance to fluid penetration with comfort, a complete understanding of the relationship between membrane structure and functional properties is required. In this study, we investigated the surface properties of hydrophilicity and hydrophobicity in polyurethane membranes intended for use in surgical gowns. The polyurethane membranes were grafted with side chains of varying lengths, polyethylene glycol (PEG) being used for the hydrophilic modifications and perfluoroalkyl compounds (a monofunctional acid and a difunctional amino alcohol) for the hydrophobic modifications. The hydrophilic treatment was intended to improve the comfort properties of monolithic membranes without adversely affecting their barrier properties. The hydrophobic treatment, on the other hand, was intended to improve the fluid repellency and hence barrier properties of microporous membranes without adversely affecting their comfort properties. Reflection infrared spectroscopy showed that fluorine was successfully grafted onto the polyurethane backbone during the hydrophobic modification, but was not sensitive enough to detect PEG grafting in leached polyethylene glycol-treated polyurethanes. X-ray photoelectron spectroscopy showed that the perfluoroalkylated polyurethanes contained up to 40% fluorine on their surfaces and the PEG-treated polyurethanes showed an increase in their C-O content over the unmodified polyurethane. Scanning electron microscopy not only showed that perfluoroalkylation yielded polyurethane membranes with very rough surfaces compared to the unmodified membrane, it also showed varying degrees of surface roughness on the perfluoroalkylated polyurethanes depending on whether the monofunctional acid or the difunctional amino alcohol was used as modifier. The PEG-treated samples exhibited smooth surfaces under the SEM. Perfluoroalkylation yielded samples with slightly higher contact angles than the untreated polyurethane while the PEG treatment resulted in polyurethanes with lower contact angles than the untreated polyurethane. The perfluoroalkylated materials were more thermally stable than the unmodified polyurethanes.

  19. Ethylene-propylene-diene monomer (EPDM) and fluorocarbon (FKM) elastomers in the geothermal environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwood, H.J.

    1983-07-01

    Thermal and hydrolytic processes that are likely to occur when hydrocarbon and fluorocarbon elastomers are subjected to geothermal conditions are discussed. Polyhydrocarbon backbones have good chemical resistance, but many cross-links present in cured polyhydrocarbons can be hydrolyzed under geothermal conditions. Perfluorinated elastomers have excellent thermal and hydrolytic stability, although they are potentially susceptible to hydrolytic degradation. The cross-links present in cured perfluorocarbon elastomers are probably also susceptible to hydrolysis under severe conditions. It seems that improvements can be made in geothermal seals if they can be cured by processes that yield chemically stable cross-links.

  20. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol

    NASA Astrophysics Data System (ADS)

    Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.

    2016-07-01

    Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

  1. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  2. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  3. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  4. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  5. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  6. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for slabstock flexible polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam...

  7. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or operator of a new...

  8. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Standards for slabstock flexible polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam...

  9. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or operator of a new...

  10. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or operator of a...

  11. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Standards for slabstock flexible polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam...

  12. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or operator of a...

  13. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or operator of a new...

  14. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or operator of a...

  15. Elastomer Compound Developed for High Wear Applications

    NASA Technical Reports Server (NTRS)

    Crawford, D.; Feuer, H.; Flanagan, D.; Rodriguez, G.; Teets, A.; Touchet, P.

    1993-01-01

    The U.S. Army is currently spending 300 million dollars per year replacing rubber track pads. An experimental rubber compound has been developed which exhibits 2 to 3 times greater service life than standard production pad compounds. To improve the service life of the tank track pads various aspects of rubber chemistry were explored including polymer, curing and reinforcing systems. Compounds that exhibited superior physical properties based on laboratory data were then fabricated into tank pads and field tested. This paper will discuss the compounding studies, laboratory data and field testing that led to the high wear elastomer compound.

  16. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  17. Magnetorheological behavior of magnetoactive elastomers filled with bimodal iron and magnetite particles

    NASA Astrophysics Data System (ADS)

    Sorokin, Vladislav V.; Stepanov, Gennady V.; Shamonin, Mikhail; Monkman, Gareth J.; Kramarenko, Elena Yu

    2017-03-01

    Magnetoactive elastomers (MAE) based on soft silicone matrices, filled with various proportions of large diameter (approximately 50 μm) iron and small diameter (approximately 0.5 μm) magnetite particles are synthesized. Their rheological behavior in homogeneous magnetic fields up to 600 mT is studied in detail. The addition of small magnetite particles facilitates fabrication of uniformly distributed magnetic elastomer composites by preventing aggregation and sedimentation of large particles during curing. It is shown that using the proposed bimodal filler particles it is possible to tailor various magnetorheological (MR) properties which can be useful for different target applications. In particular, either absolute or relative magnetorheological effects can be tuned. The value of the damping factor as well as the range of deformation amplitudes for the linear viscoelastic regime can be chosen. The interdependencies between different MR properties of bimodal MAEs are considered. The results are discussed in the model framework of particle network formation under the simultaneous influence of external magnetic fields and mechanical deformation.

  18. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less

  19. A variable stiffness dielectric elastomer actuator based on electrostatic chucking.

    PubMed

    Imamura, Hiroya; Kadooka, Kevin; Taya, Minoru

    2017-05-14

    Dielectric elastomer actuators (DEA) are one type of promising artificial muscle; however, applications of bending-type DEA for robotic end-effectors may be limited by their low stiffness and ability to resist external loads without buckling. Unimorph DEA can produce large out-of-plane deformation suitable for use as robotic end effectors; however, design of such actuators for large displacement comes at the cost of low stiffness and blocking force. This work proposes and demonstrates a variable stiffness dielectric elastomer actuator (VSDEA) consisting of a plurality of unimorph DEA units operating in parallel, which can exhibit variable electrostatic chucking to modulate the structure's bending stiffness. The unimorph DEA units are additively manufactured using a high-resolution pneumatic dispenser, and VSDEA comprising various numbers of units are assembled. The performance of the DEA units and VSDEA are compared to model predictions, exhibiting a maximum stiffness change of 39.2×. A claw actuator comprising two VSDEA and weighing 0.6 grams is demonstrated grasping and lifting a 10 gram object.

  20. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    DOE PAGES

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu; ...

    2016-11-01

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less

  1. Poly(diol-co-citrate)s as Novel Elastomeric Perivascular Wraps for the Reduction of Neointimal Hyperplasia

    PubMed Central

    Serrano, M. Concepcion; Vavra, Ashley K.; Jen, Michele; Hogg, Melissa E.; Murar, Jozef; Martinez, Janet; Keefer, Larry K.; Ameer, Guillermo A.; Kibbe, Melina R.

    2014-01-01

    The synthesis of poly(diol-co-citrate) elastomers that are biocompatible with vascular cells and can modulate the kinetics of the NO release based on the diol of selection is reported. NO-mediated cytostatic or cytotoxic effects can be controlled depending on the NO dose and the exposure time. When implanted in vivo in a rat carotid artery injury model, these materials demonstrate a significant reduction of neointimal hyperplasia. This is the first report of a NO-releasing polymer fabricated in the form of an elastomeric perivascular wrap for the treatment of neointimal hyperplasia. These elastomers also show promise for other cardiovascular pathologies where NO-based therapies could be beneficial. PMID:21341372

  2. Polyurethane-Coated Breast Implants Revisited: A 30-Year Follow-Up

    PubMed Central

    Castel, Nikki; Soon-Sutton, Taylor; Deptula, Peter; Flaherty, Anna

    2015-01-01

    Background Polyurethane coating of breast implants has been shown to reduce capsular contracture in short-term follow-up studies. This 30-year study is the longest examination of the use of polyurethane-coated implants and their correlation with capsular contracture. Methods This study evaluates the senior surgeon's (F.D.P.) experience with the use of polyurethane-coated implants in aesthetic breast augmentation in 382 patients over 30 years. Follow-up evaluations were conducted for six months after surgery. After the six-month follow-up period, 76 patients returned for reoperation. The gross findings, histology, and associated capsular contracture were noted at the time of explantation. Results No patient during the six-month follow-up period demonstrated capsular contracture. For those who underwent reoperation for capsular contracture, Baker II/III contractures were noted nine to 10 years after surgery and Baker IV contractures were noted 12 to 21 years after surgery. None of the explanted implants had macroscopic evidence of polyurethane, which was only found during the first five years after surgery. The microscopic presence of polyurethane was noted in all capsules up to 30 years after the original operation. Conclusions An inverse correlation was found between the amount of polyurethane coating on the implant and the occurrence of capsular contracture. Increasingly severe capsular contracture was associated with a decreased amount of polyurethane coating on the surface of the implants. No contracture occurred in patients whose implants showed incomplete biodegradation of polyurethane, as indicated by the visible presence of polyurethane coating. We recommend research to find a non-toxic, non-biodegradable synthetic material as an alternative to polyurethane. PMID:25798390

  3. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam... emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines...

  4. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam... emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines...

  5. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam... emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines...

  6. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new uses...

  7. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam...

  8. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or... polyurethane foam process, with the following exception. Diisocyanates may be used to flush the mixhead and...

  9. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam...

  10. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam...

  11. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or... polyurethane foam process, with the following exception. Diisocyanates may be used to flush the mixhead and...

  12. A multilayered polyurethane foam technique for skin graft immobilization.

    PubMed

    Nakamura, Motoki; Ito, Erika; Kato, Hiroshi; Watanabe, Shoichi; Morita, Akimichi

    2012-02-01

    Several techniques are applicable for skin graft immobilization. Although the sponge dressing is a popular technique, pressure failure near the center of the graft is a weakness of the technique that can result in engraftment failure. To evaluate the efficacy of a new skin graft immobilization technique using multilayered polyurethane foam in vivo and in vitro. Twenty-six patients underwent a full-thickness skin graft. Multiple layers of a hydrocellular polyurethane foam dressing were used for skin graft immobilization. In addition, we created an in vitro skin graft model that allowed us to estimate immobilization pressure at the center and edges of skin grafts of various sizes. Overall mean graft survival was 88.9%. In the head and neck region (19 patients), mean graft survival was 93.6%. Based on the in vitro outcomes, this technique supplies effective pressure (<30 mmHg) to the center region of the skin graft. This multilayered polyurethane foam dressing is simple, safe, and effective for skin graft immobilization. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  13. Elastomer Filled With Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Forest, Craig R.

    2004-01-01

    Experiments have shown that composites of a silicone elastomer with single-wall carbon nanotubes (SWNTs) are significantly stronger and stiffer than is the unfilled elastomer. The large strengthening and stiffening effect observed in these experiments stands in contrast to the much smaller strengthening effect observed in related prior efforts to reinforce epoxies with SWNTs and to reinforce a variety of polymers with multiple-wall carbon nanotubes (MWNTs). The relative largeness of the effect in the case of the silicone-elastomer/SWNT composites appears to be attributable to (1) a better match between the ductility of the fibers and the elasticity of the matrix and (2) the greater tensile strengths of SWNTs, relative to MWNTs. For the experiments, several composites were formulated by mixing various proportions of SWNTs and other filling materials into uncured RTV-560, which is a silicone adhesive commonly used in aerospace applications. Specimens of a standard "dog-bone" size and shape for tensile testing were made by casting the uncured elastomer/filler mixtures into molds, curing the elastomer, then pressing the specimens from a "cookie-cutter" die. The results of tensile tests of the specimens showed that small percentages of SWNT filler led to large increases in stiffness and tensile strength, and that these increases were greater than those afforded by other fillers. For example, the incorporation of SWNTs in a proportion of 1 percent increased the tensile strength by 44 percent and the modulus of elasticity (see figure) by 75 percent. However, the relative magnitudes of the increases decreased with increasing nanotube percentages because more nanotubes made the elastomer/nanotube composites more brittle. At an SWNT content of 10 percent, the tensile strength and modulus of elasticity were 125 percent and 562 percent, respectively, greater than the corresponding values for the unfilled elastomer.

  14. Elastomer Reinforced with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  15. Polymer-dispersed liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  16. An in-vitro evaluation of silicone elastomer latex for topical drug delivery.

    PubMed

    Li, L C; Vu, N T

    1995-06-01

    A silicone elastomer latex was evaluated as a topical drug-delivery system. With the addition of a fumed silica and the removal of water, the latex produced elastomeric solid films. The water vapour permeability of the solid film was found to be a function of the film composition. An increase in silica content and the incorporation of a water-soluble component, PEG 3350, rendered the silicone elastomer-free film even more permeable to water vapour. The release of hydrocortisone from the elastomer film can be described by a matrix-diffusion-controlled mechanism. Drug diffusion is thought to occur through the hydrophobic silicone polymer network and the hydrated hydrophilic silica region in the film matrix. Silicone elastomer film with a higher silica content exhibited a faster drug-release rate. The addition of PEG 3350 to the film further enhanced the drug-release rate.

  17. Development of procedures for calculating stiffness and damping of elastomers in engineering applications. Part 5: Elastomer performance limits and the design and test of an elastomer damper

    NASA Technical Reports Server (NTRS)

    Tecza, J. A.; Darlow, M. S.; Smalley, A. J.

    1979-01-01

    Tests were performed on elastomer specimens of the material polybutadiene to determine the performance limitations imposed by strain, temperature, and frequency. Three specimens were tested: a shear specimen, a compression specimen, and a second compression specimen in which thermocouples were embedded in the elastomer buttons. Stiffness and damping were determined from all tests, and internal temperatures were recorded for the instrumented compression specimen. Measured results are presented together with comparisons between predictions of a thermo-viscoelastic analysis and the measured results. Dampers of polybutadiene and Viton were designed, built, and tested. Vibration measurements were made and sensitivity of vibration to change in unbalance was also determined. Values for log decrement were extracted from the synchronous response curves. Comparisons were made between measured sensitivity to unbalance and log decrement and predicted values for these quantities.

  18. Evaluation of selected elastomer O-ring pump seals for service at the Wilsonville, Alabama, Advanced Coal Liquefaction Research and Development Facility. [Ethylenepropylenediene monomer compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skena, C.C.; Keiser, J.R.

    1986-08-01

    Previous laboratory tests of elastomer O-rings in coal liquefaction solvents conducted at L'Garde, Inc., indicated that certain ethylenepropylenediene monomer (EPDM) compounds provided the best performance when a backup ring was used to limit swelling. Before service testing in a pump at the Wilsonville, Alabama, Advanced Coal Liquefaction Research and Development Facility, tests of six selected elastomers in the appropriate Wilsonville-produced solvent were conducted at Oak Ridge National Laboratory (ORNL). The ORNL tests measured the elastomers' changes in cross section, weight, density, and relative flexibility. Although two perfluoroelastomers showed less degradation of most properties during these tests, it was decided tomore » proceed with service testing of two EPDM elastomers because of their much lower cost. 5 refs., 14 figs., 7 tabs.« less

  19. t-Butyl-Oxycarbonylated Diamines as Building Blocks for Isocyanate-Free Polyurethane/Urea Dispersions and Coatings.

    PubMed

    Ma, Shuang; Zhang, Huiyi; Sablong, Rafaël J; Koning, Cor E; van Benthem, Rolf A T M

    2018-05-01

    t-Butyl-oxycarbonylated diamines ("di-Boc-carbamates") are investigated as dicarbamate monomers for diamine/dicarbamate polymerizations. Polyureas (PUs) and polyurethanes (PURs) with high molecular weights are prepared from stoichiometric polymerizations of diamines or diols with N-N'-di-t-butyl-oxycarbonyl isophorone diamine (DiBoc-IPDC) using KOt-Bu as a catalyst, while gelation is observed when an excess of DiBoc-IPDC is used with respect to the diamines or diols. Stable dispersions are obtained from PUs and PURs with 3,3'-diamino-N-methyldipropylamine (DMDPA) as internal dispersing agent. The corresponding PU-based coatings exhibit superior mechanical properties and solvent resistances compared to the polyurethane urea coatings synthesized from diols, DiBoc-IPDC, and DMDPA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The effect of nanofiber based filter morphology on bacteria deactivation during water filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lev, Jaroslav; Kalhotka, Libor; Mikula, Premysl; Korinkova, Radka; Sambaer, Wannes; Zatloukal, Martin

    2013-04-01

    Procedures permitting to prepare homogeneous functionalized nanofibre structures based on polyurethanes modified by phthalocyanines (PCs) by employing a suitable combination of variables during the electrospinning process are presented. Compared are filtration and bacteria deactivation properties of open and planar nanostructures with PCs embedded into polyurethane chain by a covalent bond protecting the release of active organic compound during the filtration process. Finding that the morphology of functionalized nanofibre structures have an effect on bacterial growth was confirmed by microbiological and physico-chemical analyses, such as the inoculation in a nutrient agar culture medium and flow cytometry.

  1. Studies on in vitro biostability and blood compatibility of polyurethane potting compound based on aromatic polymeric MDI for extracorporeal devices.

    PubMed

    Hridya, V K; Jayabalan, M

    2009-12-01

    Polyurethane potting compound based on aromatic isocyanurate of polymeric MDI, poly propylene glycol (PPG400) and trimethylol propane (TMP) has significant favourable properties, good pot life and setting characteristics. The cured potting compound of this formulation has appreciable thermal stability and mechanical properties. In vitro biostability of cured potting compound has been found to be excellent without any significant degradation in simulated physiological media and chemical environment. Studies on blood-material interaction and cytotoxicity reveal in vitro blood compatibility and compatibility with cells of this potting compound.

  2. Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release.

    PubMed

    Omrani, Ismail; Babanejad, Niloofar; Shendi, Hasan Kashef; Nabid, Mohammad Reza

    2017-01-01

    Polyurethanes are important class of biomaterials that are extensively used in medical devices. In spite of their easy synthesis, polyurethanes that are fully degradable in response to the intracellular reducing environment are less explored for controlled drug delivery. Herein, a novel glutathione degradable waterborne polyurethane (WPU) nanocarrier for redox triggered intracellular delivery of a model lipophilic anticancer drug, doxorubicin (DOX) is reported. The WPU was prepared from polyaddition reaction of isophorone diisocyanate (IPDI) and a novel linear polyester polyol involving disulfide linkage, disulfide labeled chain extender, dimethylolpropionic acid (DMPA) using dibutyltin dilaurate (DBTDL) as a catalyst. The resulting polyurethane self-assembles into nanocarrier in water. The dynamic light scattering (DLS) measurements and scanning electron microscope (SEM) revealed fast swelling and disruption of nanocarriers under an intracellular reduction-mimicking environment. The in vitro release studies showed that DOX was released in a controlled and redox-dependent manner. MTT assays showed that DOX-loaded WPU had a high in vitro antitumor activity in both HDF noncancer cells and MCF- 7 cancer cells. In addition, it is found that the blank WPU nanocarriers are nontoxic to HDF and MCF-7 cells even at a high concentration of 2mg/mL. Hence, nanocarriers based on disulfide labeled WPU have appeared as a new class of biocompatible and redox-degradable nanovehicle for efficient intracellular drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Surface immobilization of heparin on functional polyisobutylene-based thermoplastic elastomer as a potential artificial vascular graft

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Bo; Li, Kang; Xiang, Dong; Zhang, Min; Yang, Dan; Zhang, Jin-Han; Mao, Jing; Wang, Hao; Guo, Wen-Li

    2018-07-01

    Polyisobutylene-based thermoplastic elastomer (TPE) is a new soft biomaterial. Hydroxyl functional dendritic polyisobutylene-based TPEs (arb-SIBS-OH), which satisfy the design requirements for small-diameter vascular substitutes, were synthesized by controlled carbocationic polymerization. Creep property, which is the destructive weakness of polyisobutylene-based TPEs, was significantly improved with the formation of a "double network" promoted by branched structure and microphase separation. Compatibility of arb-SIBS-OH with rabbit blood was markedly enhanced by modifying heparin grafted from these hydroxyl functional groups. Application of "click chemistry" to immobilize heparin on arb-SIBS-OH surface was apparently effective in enhancing the bioactivity of heparin. Immobilized heparin, which directly bonded by ester bonds, was more likely to form multi-point binding on arb-SIBS-OH surface. This process hindered the accessibility of the heparin active sequence to antithrombin.

  4. Ethylene/acrylic elastomers (EAE): sealing application candidates for the automotive industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.; Ginn, A.

    1979-01-01

    EAE, based on experimental elastomers developed by Du Pont and called ''Vamac'' (formerly ''MPE''), are ethylene/methyl acrylate copolymers compounded with appropriate plasticizers, fillers, and other additives. They function satisfactorily at -54/sup 0/ to +177/sup 0/C and have excellent tensile strength, elongation, and resistance to compression set, corrosion, tear, and weathering. They show good resistance to automatic transmission fluids, engine oil, some gear lubricants and hydrocarbon greases, water, engine coolants, and dilute acids and bases, but should not be used with gasoline, concentrated acids, high-pressure steam, automotive brake fluids, phosphate ester-based hydraulic fluids, diester-based synthetic lubricants, or chlorinated hydrocarbons. They needmore » no solid-lubricant or antiwear additives, but special mold-release preparations are necessary. They should be useful as seals for the transmission front pump, the clutch, and the engine front crankshaft and possibly for other sealing and nonseal applications (e.g., spark-plug boots).« less

  5. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.

  6. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic centimeter), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic centimeter. Projectile incidence angles examined included 0 degrees, 45 degrees , and 60 degrees from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.

  7. [The research of biodegradation of a composite material used in reconstructive and reparative surgery of maxillofacial area].

    PubMed

    Malanchuk, V O; Astapenko, O O; Halatenko, N A; Rozhnova, R A

    2013-09-01

    Dates about the research of biodegradation of epoxy-polyurethane composite material used in reconstructive and reparative surgery of maxillofacial area are reflected in the article. Was founded: 1) notable biodegradation of species from epoxy-polyurethane composition in the term of observation up to 6 months was not founded. That testifies their preservation of physical and mechanical properties. 2) founded, that in species from epoxy-polyurethane composition, which contain levamisole, processes of biodegradation are faster then in species from pure epoxy-polyurethane composition and in species from epoxy-polyurethane composition with hydroxyapatite; 3) material from epoxy-polyurethane composition, which contains levamisole and hydroxyapatite, stays in biological environment in small quantity of petty fragments during the incubation in term of 2 years. So, it biodegrades practically totally. Authors suggest on the basis of achieved information, that the use of epoxy-polyurethane constructions that biodegrade, is pertinently in reconstructive maxillofacial surgery.

  8. Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Kjeer, Peter; Clarke, David R.

    2018-03-01

    When a voltage is applied to a percolative, mechanically compliant mat of carbon nanotubes (CNTs) on a smooth elastomer bilayer attached to an ITO coated glass substrate, the in-line optical transmittance decreases with increasing voltage. Two regimes of behavior have been identified based on optical scattering, bright field optical microscopy, and confocal optical microscopy. In the low field regime, the electric field produces a spatially inhomogeneous surface deformation of the elastomer that causes local variations in optical refraction and modulates the light transmittance. The spatial variation is associated with the distribution of the CNTs over the surface. At higher fields, above a threshold voltage, an array of pits in the surface form by a nucleation and growth mechanism and these also scatter light. The formation of pits, and creases, in the thickness of the elastomer, is due to a previously identified electro-mechanical surface instability. When the applied voltage is decreased from its maximum, the transmittance returns to its original value although there is a transmittance hysteresis and a complicated time response. When the applied voltage exceeds the threshold voltage, there can be remnant optical contrast associated with creasing of the elastomer and the recovery time appears to be dependent on local jamming of CNTs in areas where the pits formed. A potential application of this work as an electrically tunable privacy window or camouflaging devices is demonstrated.

  9. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam production—HAP ABA equipment leaks. Each owner or operator of a new or existing slabstock affected...

  10. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam production—HAP ABA equipment leaks. Each owner or operator of a new or existing slabstock affected...

  11. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a...

  12. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a new or existing...

  13. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a...

  14. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected...

  15. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane foam production—HAP ABA emissions from the production line. (a) Each owner or...

  16. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  17. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  18. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected...

  19. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a new or existing...

  20. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam production—source-wide emission limitation. Each owner or operator of a new or existing slabstock...

  1. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  2. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane foam production—HAP ABA emissions from the production line. (a) Each owner or...

  3. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam production—source-wide emission limitation. Each owner or operator of a new or existing slabstock...

  4. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a new or existing...

  5. Sulfur Mustard Penetration of Thermoplastic Elastomers

    DTIC Science & Technology

    2008-10-01

    blend of polypropylene and finely dispersed, highly vulcanised EPDM rubber [4]. However its exact composition is a trade secret. The Santoprene grade... rubber or silicone rubber . Compared to thermoplastic elastomers, these thermosetting elastomers are expensive and difficult to process. Therefore a...the last few decades, CBR respirators have generally been manufactured from either butyl rubber (as in the British and Australian S10), or silicone

  6. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents.

    PubMed

    Serrano, M Concepción; Gutiérrez, María C; Jiménez, Ricardo; Ferrer, M Luisa; del Monte, Francisco

    2012-01-14

    Poly(octanediol-co-citrate) elastomers containing high loading of lidocaine were synthesized at temperatures below 100 °C by means of using deep eutectic mixtures of 1,8-octanediol and lidocaine. The preservation of lidocaine integrity resulted in high-capacity drug-eluting elastomers. This journal is © The Royal Society of Chemistry 2012

  7. Self-healing of optical functions by molecular metabolism in a swollen elastomer

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Nishimura, Tatsuya; Sakiyama, Kohei; Inagaki, Sota

    2012-12-01

    Optical functions of organic dyes, e.g., fluorescence or photochromism, tend to degrade by light irradiation, which causes a short lifetime of photonic devices. Self-healing of optical functions is attainable by metabolizing bleached molecules with nonirradiated ones. A polydimethylsiloxane elastomer provides a useful matrix for dye molecules, since its flexible structure with nano-sized intermolecular spaces allows dye diffusion from a reservoir to an operation region. Swelling the elastomer with a suitable solvent promotes both dissolution and diffusion of dye molecules. This self-healing function was demonstrated by an experiment in which a photochromic elastomer exhibited improved durability against a repeated coloring-decoloring process.

  8. The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Wu, Mei-Ling; Chen, Lien-Wen

    2009-01-01

    In this paper, we study the defect bands of a 1D phononic crystal consisting of aluminum (Al) and polymethyl methacrylate (PMMA) layers with a dielectric elastomer (DE) defect layer. The plane wave expansion (PWE) method and supercell calculation are used to calculate the band structure and the defect bands. The transmission spectra are obtained using the finite element method (FEM). Since the thickness of the dielectric elastomer defect layer is controlled by applying an electric voltage, the frequencies of the defect bands can be tuned. A narrow pass band filter can be developed and designed by using the dielectric elastomer.

  9. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Study of mechanical and thermal properties of soy flour elastomers

    NASA Astrophysics Data System (ADS)

    Allen, Kendra Alicia

    Bio-based plastics are becoming viable alternatives to petroleum-based plastics because they decrease dependence on petroleum derivatives and are more environmentally friendly. Raw materials such as soy flour are widely available, low cost, lightweight, stiffness and have high strength characteristics, but weak interfacial adhesion between the soy flour and the polymer poses a challenge. In this study, soy flour was utilized as a filler in thermoplastic elastomer composites. A surface modification called acetylation was investigated at soy flour concentrations of 10 wt%, 15 wt% and 20 wt%. The mechanical properties of the composites were then compared to that of elastomers without a filler. Chemical characterization of the acetylated soy flour was attempted in order to understand what occurs during the reaction and after completion. In the range of tests, soy flour loadings were observed to be inversely proportional to tensile strength for both the untreated and treated soy flour. However, the acetylated soy flour at 10 wt% concentration performed comparable to that of the neat rubber and resulted in an increase in tensile strength. Unexpectedly, the acetylation reaction increased elongation, which reduced stress within the composite and is believed to increase the adhesion of the soy flour to that of the elastomer. In the nuclear magnetic resonance (SS-NMR), the intensity for the treated soy flour was larger than that of the untreated soy flour for the acetyl groups that were attached to the soy flour, particularly, the carbonyl function group next to the deprotonated oxygen and the methyl group next to the carbonyl. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicated that the acetylated soy flour is slightly more thermally stable than the untreated soy flour. The treated soy flour also increased the decomposition temperature of the composite.

  11. Tissue Anisotropy Modeling Using Soft Composite Materials.

    PubMed

    Chanda, Arnab; Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.

  12. Tissue Anisotropy Modeling Using Soft Composite Materials

    PubMed Central

    Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications. PMID:29853996

  13. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications

    PubMed Central

    Tan, A. C. W.; Polo‐Cambronell, B. J.; Provaggi, E.; Ardila‐Suárez, C.; Ramirez‐Caballero, G. E.; Baldovino‐Medrano, V. G.

    2017-01-01

    Abstract In the current study, we present the synthesis of novel low cost bio‐polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR‐FTIR, and X‐ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in‐vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co‐polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non‐toxic to the cells. This study opens an avenue for using low cost bio‐polyurethane based on castor oil and glycerol for biomedical applications. PMID:29159831

  14. 100% Solids Polyurethane Sequestration Coating

    DTIC Science & Technology

    2014-04-11

    Distribution Unlimited 100% Solids Polyurethane Sequestration Coating The views, opinions and/or findings contained in this report are those of the...Papers published in non peer-reviewed journals: 100% Solids Polyurethane Sequestration Coating Report Title Report developed under Topic #CBD13-101...Final Technical Report Contract #: W911NF-13-P-0010 Proposal #: 63958CHSB1 Project: 100% Solids Polyurethane Sequestration Coating

  15. Stacking Nematic Elastomers for Artificial Muscle Applications

    DTIC Science & Technology

    2006-04-01

    nematic to isotropic phase transition. In this eport, a new approach is introduced by layering liquid crystal elastomer films to create thermally...actuated stacks. A heating element and thermally onductive grease embedded between elastomer films provide a means for rapid internal heat application...voltage application, stacks composed f two 100 m-thick films and a single heating element produce 18% strain between contracted and relaxed states. In

  16. Synthesis and characterization of novel thermoplastic elastomers employing polyhedral oligomeric silsesquioxane physical crosslinks

    NASA Astrophysics Data System (ADS)

    Seurer, Bradley

    Polyhedral oligomeric silsesquioxanes (POSS) are molecularly precise isotropic particles with average diameters of 1-2 nm. A typical T 8 POSS nanoparticle has an inorganic Si8O12 core surrounded by eight aliphatic or aromatic groups attached to the silicon vertices of the polyhedron promoting solubility in conventional solvents. Previously, efficient synthetic methods have been developed whereby one of the aliphatic groups on the periphery is substituted by a functional group capable of undergoing either homo- or copolymerization. In the current investigations, preparative methods for the chemical incorporation of POSS macromonomers in a series elastomers have been developed. Analysis of the copolymers using WAXD reveals that pendant POSS groups off the polymer backbones aggregate, and can crystallize as nanocrystals. From both line-broadening of the diffraction maxima, and also the oriented diffraction in a drawn material, the individual POSS sub-units are crystallizing as anisotropically shaped crystallites. The formation of POSS particle aggregation is strongly dependent on the nature of the polymeric matrix and the POSS peripheral group. X-ray studies show aggregation of POSS in ethylene-propylene elastomers occurred only with a phenyl periphery, whereas POSS particles with isobutyl and ethyl peripheries disperse within the polymer matrix. By altering the polymer matrix to one containing chain repulsive fluorine units, aggregation is observed with both the phenyl and isobutyl peripheries. Altering the polymer chain to poly(dimethylcyclooctadiene), POSS aggregates with isobutyl, ethyl, cyclopentyl, and phenyl peripheries. The formation of POSS nanocrystals increases the mechanical properties of these novel thermoplastic elastomers, including an increase in the tensile storage modulus and formation of a rubbery plateau region. Tensile tests of these elastomers show an increase in elastic modulus with increasing POSS loading. The elongation at break was as high as 720%. Cyclic tensile test show some hysteresis of the elastomers. However, the curves show Mullins effect behavior, commonly seen in elastomers. Elastomers with POSS dispersion, however, show poor mechanical properties. These results demonstrate the novel material property gains by the incorporation and aggregation of POSS in thermoplastic elastomers, as well as the influence of the POSS periphery.

  17. WATER STABILITY OF FILLED ELASTOMERS,

    DTIC Science & Technology

    ELECTRICAL INSULATION, *BUTYL RUBBER , ELASTOMERS, STABILITY, STABILITY, HYDROLYSIS, CURING AGENTS, ADDITIVES, WATER, ABSORPTION, THICKNESS, ELECTRICAL RESISTANCE, LEAKAGE(ELECTRICAL), DIFFUSION, TALC, ELECTRIC CABLES.

  18. Improved lignin polyurethane properties with Lewis acid treatment.

    PubMed

    Chung, Hoyong; Washburn, Newell R

    2012-06-27

    Chemical modification strategies to improve the mechanical properties of lignin-based polyurethanes are presented. We hypothesized that treatment of lignin with Lewis acids would increase the concentration of hydroxyl groups available to react with diisocyanate monomers. Under the conditions used, hydrogen bromide-catalyzed modification resulted in a 28% increase in hydroxyl group content. Associated increases in hydrophilicity of solvent-cast thin films were also recorded as evidenced by decreases in water contact angle. Polyurethanes were then prepared by first preparing a prepolymer based on mixtures of toluene-2,4-diisocyanate (TDI) and unmodified or modified lignin, then polymerization was completed through addition of polyethylene glycol (PEG), resulting in mass ratios of TDI:lignin:PEG of 43:17:40 in the compositions investigated here. The mixture of TDI and unmodified lignin resulted in a lignin powder at the bottom of the liquid, suggesting it did not react directly with TDI. However, a homogeneous solution resulted when TDI and the hydrogen bromide-treated lignin were mixed, suggesting demethylation indeed increased reactivity and resulted in better integration of lignin into the urethane network. Significant improvements in mechanical properties of modified lignin polyurethanes were observed, with a 6.5-fold increase in modulus, which were attributed to better integration of the modified lignin into the covalent polymer network due to the higher concentration of hydroxyl groups. This research indicates that chemical modification strategies can lead to significant improvements in the properties of lignin-based polymeric materials using a higher fraction of an inexpensive lignin monomer from renewable resources and a lower fraction an expensive, petroleum-derived isocyanate monomer to achieve the required material properties.

  19. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers.

    PubMed

    Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram

    2014-09-01

    Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil.

    PubMed

    Arévalo, Fabian; Uscategui, Yomaira L; Diaz, Luis; Cobo, Martha; Valero, Manuel F

    2016-11-01

    In the present study, polyurethane materials were obtained from castor oil, polycaprolactone and isophorone diisocyanate by incorporating different concentrations of chitosan (0.5, 1.0 and 2.0% w/w) as an additive to improve the mechanical properties and the biological activity of polyurethanes. The polyurethanes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, stress/strain fracture tests and swelling analysis, and the hydrophilic character of the surface was determined by contact angle trials. The objectives of the study were to evaluate the effect of the incorporation of chitosan on the changes of the physico-chemical and mechanical properties and the in vitro biological activity of the polyurethanes. It was found that the incorporation of chitosan enhances the ultimate tensile strength of the polyurethanes and does not affect the strain at fracture in polyurethanes with 5% w/w of polycaprolactone and concentrations of chitosan ranging from 0 to 2% w/w. In addition, PCL5-Q-PU formulations and their degradation products did not affect cell viability of L929 mouse fibroblast and 3T3, respectively. Polyurethane formulations showed antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The results of this study have highlighted the potential biomedical application of this polyurethanes related to soft and cardiovascular tissues. © The Author(s) 2016.

Top