Science.gov

Sample records for polyvalent element-containing glasses

  1. Polyvalent immunogen

    DOEpatents

    Haynes, Barton F.; Korber, Bette T.; De Lorimier, Robert M.; Liao, Hua-Xin

    2007-02-06

    The present invention relates, generally, to a polyvalent immunogen and, more particularly, to a method of inducing neutralizing antibodies against HIV and to a polyvalent immunogen suitable for use in such a method.

  2. Polyvalent immunogen

    DOEpatents

    Haynes, Barton F.; Korber, Bette T.; De Lorimier, Robert M.

    2007-03-27

    The present invention relates, generally, to a polyvalent immunogen and, more particularly, to a method of inducing neutralizing antibodies against HIV and to a polyvalent immunogen suitable for use in such a method.

  3. Polyvalent AIDS Vaccines

    PubMed Central

    Lu, Shan; Grimes Serrano, Jill M.; Wang, Shixia

    2013-01-01

    A major hurdle in the development of a global HIV-1 vaccine is viral diversity. For close to three decades, HIV vaccine development has focused on either the induction of T cell immune responses or antibody responses, and only rarely on both components. After the failure of the STEP trial, the scientific community concluded that a T cell-based vaccine would likely not be protective if the T cell immune responses were elicited against only a few dominant epitopes. Similarly, for vaccines focusing on antibody responses, one of the main criticisms after VaxGen’s failed Phase III trials was on the limited antigen breadth included in the two formulations used. The successes of polyvalent vaccine approaches against other antigenically variable pathogens encourage implementation of the same approach for the design of HIV-1 vaccines. A review of the existing HIV-1 vaccination approaches based on the polyvalent principle is included here to provide a historical perspective for the current effort of developing a polyvalent HIV-1 vaccine. Results summarized in this review provide a clear indication that the polyvalent approach is a viable one for the future development of an effective HIV vaccine. PMID:21054250

  4. Recent advances in engineering polyvalent biological interactions.

    PubMed

    Varner, Chad T; Rosen, Tania; Martin, Jacob T; Kane, Ravi S

    2015-01-12

    Polyvalent interactions, where multiple ligands and receptors interact simultaneously, are ubiquitous in nature. Synthetic polyvalent molecules, therefore, have the ability to affect biological processes ranging from protein-ligand binding to cellular signaling. In this review, we discuss recent advances in polyvalent scaffold design and applications. First, we will describe recent developments in the engineering of polyvalent scaffolds based on biomolecules and novel materials. Then, we will illustrate how polyvalent molecules are finding applications as toxin and pathogen inhibitors, targeting molecules, immune response modulators, and cellular effectors.

  5. Recent Advances in Engineering Polyvalent Biological Interactions

    PubMed Central

    2015-01-01

    Polyvalent interactions, where multiple ligands and receptors interact simultaneously, are ubiquitous in nature. Synthetic polyvalent molecules, therefore, have the ability to affect biological processes ranging from protein–ligand binding to cellular signaling. In this review, we discuss recent advances in polyvalent scaffold design and applications. First, we will describe recent developments in the engineering of polyvalent scaffolds based on biomolecules and novel materials. Then, we will illustrate how polyvalent molecules are finding applications as toxin and pathogen inhibitors, targeting molecules, immune response modulators, and cellular effectors. PMID:25426695

  6. Mixed polyvalent-monovalent metal coating for carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Harper-Tervet, J.; Tervet, F. W.; Humphrey, M. F. (Inventor)

    1982-01-01

    An improved coating of gasification catalyst for carbon-graphite fibers is provided comprising a mixture of a polyvalent metal such as calcium and a monovalent metal such as lithium. The addition of lithium provides a lighter coating and a more flexible coating when applied to a coating of a carboxyl containing resin such as polyacrylic acid since it reduces the crosslink density. Furthermore, the presence of lithium provides a glass-like substance during combustion which holds the fiber together resulting in slow, even combustion with much reduced evolution of conductive fragments. The coated fibers are utilized as fiber reinforcement for composites.

  7. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  8. Dressed counterions: Polyvalent and monovalent ions at charged dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Kanduč, Matej; Naji, Ali; Forsman, Jan; Podgornik, Rudolf

    2011-07-01

    We investigate the ion distribution and overcharging at charged interfaces with dielectric inhomogeneities in the presence of asymmetric electrolytes containing polyvalent and monovalent ions. We formulate an effective “dressed counterion” approach by integrating out the monovalent salt degrees of freedom and show that it agrees with results of explicit Monte Carlo simulations. We then apply the dressed counterion approach within the framework of the generalized strong-coupling theory, valid for polyvalent ions at low concentrations, which enables an analytical description for salt effects as well as dielectric inhomogeneities in the limit of strong Coulomb interactions. Limitations and applicability of this theory are examined by comparing the results with simulations.

  9. [Decrease in hospitalizations due to polyvalent medical day hospital].

    PubMed

    Escobar, M A; García-Egido, A A; Carmona, R; Lucas, A; Márquez, C; Gómez, F

    2012-02-01

    The day hospital is an alternative to hospitalization. This alternative improves accessibility and comfort of the patients, and avoids hospitalizations. Nevertheless, the efficacy of the polyvalent medical day hospital in avoiding hospitalizations has not been evaluated. To analyze hospital stays avoided by the polyvalent medical day hospital of a university hospital of the Andalusian Health Service. An observational prospective study of the patients studied and/or treated in the polyvalent medical day hospital of the Hospital Universitario Puerto Real over a one year period. A total of 9640 patients were attended to, with 1413 procedures and 4921 i.v. treatments. There were 3182 visits to the priority consultation of the polyvalent medical day hospital. The most frequent consultation complaints were constitutional symptoms (15.9%) and anemia (14.5%). After the first visit, 21.5% of the patients were discharged and fewer than 3% were hospitalized. Hospitalization was avoided in 16.8% of the patients, there being a 6.0% decrease in the need for hospital beds (5.0% reduction in the internal medicine unit). Inadequate hospitalizations and 30-day readmissions decreased 93.3% and 4.2%, respectively. The most frequent diagnosis was neoplasm (26.0%), and most of the beds freed up were generated by patients diagnosed of neoplasm (26.7%). With this type of polyvalent medical day hospital, we have observed improved efficiency of health care, freeing up hospital beds by reducing hospitalizations, inadequate hospitalizations and re-admissions in the medical units involved. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  10. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    PubMed Central

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-01-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=−2, −3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules. PMID:28220770

  11. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    NASA Astrophysics Data System (ADS)

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-02-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.

  12. Aligning Provider Team Members With Polyvalent Community Health Workers.

    PubMed

    Brooks, Beth A; Davis, Sheila; Kulbok, Pamela; Frank-Lightfoot, Loraine; Sgarlata, Lisa; Poree, Shawanda

    2015-01-01

    In light of the fragmentation of health care services and the need for health promotion and disease prevention, it is time to consider the important role community health workers (CHWs) could play as part of the health care team. Globally, CHWs tend to focus on a single patient condition, resulting in fragmented, uncoordinated health care services. Polyvalent (or multimodal) CHWs can provide a comprehensive, patient-centric range of care coordination services with other members of the health care team, ultimately improving patient outcomes and decreasing the cost of care. The potential benefits of the polyvalent CHW to the health care team are not widely understood in the United States. To fill this knowledge gap, a toolkit for nurse leaders in mainstream health care settings was created. The toolkit outlines the key elements essential to a successful CHW program and offers strategies for navigating the various challenges involved when integrating this new role into existing models of care.

  13. Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches.

    PubMed

    Yu, Pingfeng; Mathieu, Jacques; Li, Mengyan; Dai, Zhaoyi; Alvarez, Pedro J J

    2015-11-20

    Many studies on phage biology are based on isolation methods that may inadvertently select for narrow-host-range phages. Consequently, broad-host-range phages, whose ecological significance is largely unexplored, are consistently overlooked. To enhance research on such polyvalent phages, we developed two sequential multihost isolation methods and tested both culture-dependent and culture-independent phage libraries for broad infectivity. Lytic phages isolated from activated sludge were capable of interspecies or even interorder infectivity without a significant reduction in the efficiency of plating (0.45 to 1.15). Two polyvalent phages (PX1 of the Podoviridae family and PEf1 of the Siphoviridae family) were characterized in terms of adsorption rate (3.54 × 10(-10) to 8.53 × 10(-10) ml/min), latent time (40 to 55 min), and burst size (45 to 99 PFU/cell), using different hosts. These phages were enriched with a nonpathogenic host (Pseudomonas putida F1 or Escherichia coli K-12) and subsequently used to infect model problematic bacteria. By using a multiplicity of infection of 10 in bacterial challenge tests, >60% lethality was observed for Pseudomonas aeruginosa relative to uninfected controls. The corresponding lethality for Pseudomonas syringae was ∼ 50%. Overall, this work suggests that polyvalent phages may be readily isolated from the environment by using different sequential hosts, and this approach should facilitate the study of their ecological significance as well as enable novel applications. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Virus inhibition induced by polyvalent nanoparticles of different sizes

    NASA Astrophysics Data System (ADS)

    Vonnemann, Jonathan; Sieben, Christian; Wolff, Christopher; Ludwig, Kai; Böttcher, Christoph; Herrmann, Andreas; Haag, Rainer

    2014-01-01

    The development of antiviral agents is one of the major challenges in medical science. So far, small monovalent molecular drugs that inhibit the late steps in the viral replication cycle, i.e., virus budding, have not worked well which emphasizes the need for alternative approaches. Polyvalently presented viral receptors, however, show potential as good inhibitors of virus-cell binding, which is the first step in the viral infection cycle. By gradually increasing the size of ligand functionalized gold nanoparticles, up to virus-like dimensions, we are now able to quantify the polyvalent enhancement of virus-cell binding inhibition and to identify varying mechanisms of virus inhibition with different efficacies: by employing a new binding assay we found that surface area-normalized polysulfated gold nanoparticles of diameters equal to and larger than the virus diameter (>50 nm) more efficiently inhibit the binding of vesicular stomatitis virus (VSV) to cells than smaller particles. On a per particle basis, larger sized gold nanoparticles were surprisingly shown to inhibit the viral infection up to two orders of magnitude more efficiently than smaller particles, which suggests different mechanisms of virus inhibition. Based on complementary electron microscopic data, we noticed that larger gold nanoparticles act as efficient cross-linkers between virions, whereas smaller gold nanoparticles decorate the surface of individual virus particles. Our systematic study accentuates the need for the design of biodegradable, virus-sized inhibitors capitalizing on polyvalent binding.The development of antiviral agents is one of the major challenges in medical science. So far, small monovalent molecular drugs that inhibit the late steps in the viral replication cycle, i.e., virus budding, have not worked well which emphasizes the need for alternative approaches. Polyvalently presented viral receptors, however, show potential as good inhibitors of virus-cell binding, which is the

  15. Polyvalent Recognition of Biopolymers:The Design of Potent Inhibitors of Anthrax Toxin

    NASA Astrophysics Data System (ADS)

    Kane, Ravi

    2007-03-01

    Polyvalency -- the simultaneous binding of multiple ligands on one entity to multiple receptors on another -- is a phenomenon that is ubiquitous in nature. We are using a biomimetic approach, inspired by polyvalency, to design potent inhibitors of anthrax toxin. Since the major symptoms and death from anthrax are due primarily to the action of anthrax toxin, the toxin is a prime target for therapeutic intervention. We describe the design of potent polyvalent anthrax toxin inhibitors, and will discuss the role of pattern matching in polyvalent recognition. Pattern-matched polyvalent inhibitors can neutralize anthrax toxin in vivo, and may enable the successful treatment of anthrax during the later stages of the disease, when antibiotic treatment is ineffective.

  16. Polyvalent vaccine approaches to combat HIV-1 diversity

    DOE PAGES

    Korber, Bette; Hraber, Peter Thomas; Wagh, Kshitij; ...

    2017-01-30

    In this study, a key unresolved challenge for developing an effective HIV-1 vaccine is the discovery of strategies to elicit immune responses that are able to cross-protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV-1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine-elicited T-cell responses, which contribute to the control of HIV-1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novelmore » vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross-reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV-1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage-based design strategies to illustrate how such in-depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.« less

  17. Cross neutralization of common Southeast Asian viperid venoms by a Thai polyvalent snake antivenom (Hemato Polyvalent Snake Antivenom).

    PubMed

    Leong, Poh Kuan; Tan, Choo Hock; Sim, Si Mui; Fung, Shin Yee; Sumana, Khomvilai; Sitprija, Visith; Tan, Nget Hong

    2014-04-01

    Snake envenomation is a serious public health threat in many rural areas of Asia and Africa. Antivenom has hitherto been the definite treatment for snake envenomation. Owing to a lack of local production of specific antivenom, most countries in these regions fully depend on foreign supplies of antivenoms. Often, the effectiveness of the imported antivenoms against local medically important species has not been validated. This study aimed to assess cross-neutralizing capacity of a recently developed polyvalent antivenom, Hemato Polyvalent Snake Antivenom (HPAV), against venoms of a common viper and some pit vipers from Southeast Asia. Neutralisation assays showed that HPAV was able to effectively neutralize lethality of the common Southeast Asian viperid venoms examined (Calloselasma, Crytelytrops, Popeia, and Daboia sp.) except for Tropidolaemus wagleri venom. HPAV also effectively neutralized the procoagulant and hemorrhagic activities of all the venoms examined, corroboratively supporting the capability of HPAV in neutralizing viperid venoms which are principally hematoxic. The study also indicated that HPAV fully prevented the occurrence of hematuria and proteinuria in mice envenomed with Thai Daboia siamensis venom but was only partially effective against venoms of Myanmar D. siamensis. Thus, HPAV appears to be useful against its homologous venoms and venoms from Southeast Asian viperids including several medically important pit vipers belonging to the Trimeresurus complex. Nevertheless, the effectiveness of HPAV as a paraspecific antivenom for treatment of viperid envenomation in Southeast Asian region requires further assessment from future clinical trials.

  18. Polyvalent choline phosphate as a universal biomembrane adhesive.

    PubMed

    Yu, Xifei; Liu, Zonghua; Janzen, Johan; Chafeeva, Irina; Horte, Sonja; Chen, Wei; Kainthan, Rajesh K; Kizhakkedathu, Jayachandran N; Brooks, Donald E

    2012-03-18

    Phospholipids in the cell membranes of all eukaryotic cells contain phosphatidyl choline (PC) as the headgroup. Here we show that hyperbranched polyglycerols (HPGs) decorated with the 'PC-inverse' choline phosphate (CP) in a polyvalent fashion can electrostatically bind to a variety of cell membranes and to PC-containing liposomes, the binding strength depending on the number density of CP groups per macromolecule. We also show that HPG-CPs can cause cells to adhere with varying affinity to other cells, and that binding can be reversed by subsequent exposure to low molecular weight HPGs carrying small numbers of PCs. Moreover, PC-rich membranes adsorb and rapidly internalize fluorescent HPG-CP but not HPG-PC molecules, which suggests that HPG-CPs could be used as drug-delivery agents. CP-decorated polymers should find broad use, for instance as tissue sealants and in the self-assembly of lipid nanostructures.

  19. Immunological responses to polyvalent canine vaccines in dogs.

    PubMed

    Miyamoto, T; Taura, Y; Une, S; Yoshitake, M; Nakama, S; Watanabe, S

    1995-04-01

    The immunological responses to commercially available polyvalent vaccines in dogs were examined. There was a tendency in decreased lymphocyte counts on day 7 in the puppy and adult dogs. There was a significant increase in the blastogenesis of lymphocytes on day 7 and 21 in puppies, whereas no significant changes were seen in the adult dogs. Delayed type hypersensitivity (DTH) responses to phytohemagglutinin (PHA) and canine parvo-virus (CPV) vaccine monitored 0, 3, 8 weeks after vaccination produced strong reactions, in particular those to CPV vaccine rose significantly after vaccination and maintained the higher responses for at least 2 months. Therefore, it is considered that vaccination is immunomodulative rather than immunosuppressive and that DTH responses to PHA and CPV vaccine are helpful to monitor non-specific and specific immune functions in vivo.

  20. Immune modulation following immunization with polyvalent vaccines in dogs.

    PubMed

    Strasser, Alois; May, Bettina; Teltscher, Andrea; Wistrela, Eva; Niedermüller, Hans

    2003-08-15

    A decline in T-cell-mediated immunity and transient state of immunosuppression after immunization has been reported in dogs. Nevertheless, dogs are still routinely vaccinated with polyvalent live vaccines and severe disease does not generally occur. In order to investigate these effects on the canine immune system and to elucidate possible mechanisms we determined the following immune parameters in the blood of 33 clinically sound German shepherd dogs before and after standard vaccination with a polyvalent vaccine against distemper, parvovirus, viral hepatitis, leptospirosis, kennel cough and rabies: white and differential blood cell count, the serum concentrations and/or activities of IL-1, IL-2, IFN-gamma, TNF-alpha, neopterin and IgG, natural killer (NK) cell activity, bactericidal activity and complement hemolytic activity, lymphocyte proliferation test (LPT) and nitroblue tetrazolium test (NBT). Our major findings were that significant postvaccinal decreases in T-cell mitogenic response to PHA and in neutrophil function and neopterin serum concentration were accompanied by simultaneous increase in plasma IgG and hemolytic complement activity. This suggests a transient shift in the balance between cell-mediated and humoral (T(H)1/T(H)2) immunity rather than immunosuppression. These results do not imply that dogs should not receive live vaccines, as the response to vaccines just seems to create a state of altered homeostasis when immunization elicits protection by humoral and cell-mediated immunity. However, these recognized compromises of immune function should be considered and vaccines still be applied only in healthy animals and strictly according to the rules and regulations given by the manufacturer.

  1. Humic colloid-borne natural polyvalent metal ions: dissociation experiment.

    PubMed

    Geckeis, H; Rabung, Th; Ngo Manh, T; Kim, J I; Beck, H P

    2002-07-01

    The natural association nature of the humic colloid-borne trace elements is investigated. Rare earth elements (REE) Th and U are chosen as naturally occurring representatives and chemical homologues for actinides of different oxidation states present in nuclear waste. Tri- and tetravalent elements in two investigated Gorleben groundwaters (Gohy-532 and -2227) almost exclusively occur as humic or fulvic colloid-borne species. Their desorption behavior from colloids is examined in the unperturbed groundwater (pH approximately 8) under anaerobic conditions (Ar/1% CO2) by addition of a chelating cation exchanger resin. Particularly, the dissociation process of naturally occurring Eu(III) in the groundwater is compared with the Eu(III) desorption from its humate complex prepared with purified Aldrich humic acid in a buffered aqueous solution at pH approximately 8. The Eu(III) dissociation from the groundwater colloids is found to be considerably slower than found for the humate complex synthesized in the laboratory. This suggests that under natural aquatic conditions the Eu(III) binding in colloids is chemically different from the simple humate complexation as observed in the laboratory experiment. The colloid characterization bythe size exclusion chromatography (SEC) and the flow field-flow fractionation (FFFF) indicates that natural colloid-borne trace elements are found predominantly in colloids of larger size (>15 nm in size), while Eu(III) in its humate complex is found mainly in colloids of hydrodynamic diameters <5 nm. The slower desorption kinetics and the larger colloid size suggest that the polyvalent metal ion binding in natural humic colloids is associated to polynucleation with other co-present trace metal ions. Radiotracer experiments reveal that isotopic equilibria with the naturally colloid-borne trace elements are not attained within a period of more than 100 days, indicating irreversible binding of at least a part of colloid-borne polyvalent trace

  2. Identification and Quantitation of the Components of Polyvalent Inactivated Influenza Virus Vaccines by Immunodiffusion

    PubMed Central

    Myers, Martin G.; Tauraso, Nicola M.

    1972-01-01

    One of the basic problems in the standardization of inactivated polyvalent influenza virus vaccines has been the determination of the relative potency of the individual strain components. The chicken cell agglutination test measures reliably the total hemagglutinin content of these vaccines. With immunodiffusion techniques, it is now possible to quantitate each strain component of polyvalent vaccines. Routine application of these techniques would serve as an interim procedure to assess antigenic potency of individual strain components of commercial vaccines until improved tests are developed. Images PMID:4624212

  3. Cross Neutralization of Afro-Asian Cobra and Asian Krait Venoms by a Thai Polyvalent Snake Antivenom (Neuro Polyvalent Snake Antivenom)

    PubMed Central

    Leong, Poh Kuan; Sim, Si Mui; Fung, Shin Yee; Sumana, Khomvilai; Sitprija, Visith; Tan, Nget Hong

    2012-01-01

    Background Snake envenomation is a serious public health threat in the rural areas of Asian and African countries. To date, the only proven treatment for snake envenomation is antivenom therapy. Cross-neutralization of heterologous venoms by antivenom raised against venoms of closely related species has been reported. The present study examined the cross neutralizing potential of a newly developed polyvalent antivenom, termed Neuro Polyvalent Snake Antivenom (NPAV). NPAV was produced by immunization against 4 Thai elapid venoms. Principal Findings In vitro neutralization study using mice showed that NPAV was able to neutralize effectively the lethality of venoms of most common Asiatic cobras (Naja spp.), Ophiophagus hannah and kraits (Bungarus spp.) from Southeast Asia, but only moderately to weakly effective against venoms of Naja from India subcontinent and Africa. Studies with several venoms showed that the in vivo neutralization potency of the NPAV was comparable to the in vitro neutralization potency. NPAV could also fully protect against N. sputatrix venom-induced cardio-respiratory depressant and neuromuscular blocking effects in anesthetized rats, demonstrating that the NPAV could neutralize most of the major lethal toxins in the Naja venom. Conclusions/Significance The newly developed polyvalent antivenom NPAV may find potential application in the treatment of elapid bites in Southeast Asia, especially Malaysia, a neighboring nation of Thailand. Nevertheless, the applicability of NPAV in the treatment of cobra and krait envenomations in Southeast Asian victims needs to be confirmed by clinical trials. The cross-neutralization results may contribute to the design of broad-spectrum polyvalent antivenom. PMID:22679522

  4. Polyvalent Adult Education Centre (An Integrated Approach to Adult Education for Workers).

    ERIC Educational Resources Information Center

    Koshy, T. A.; And Others

    A project to upgrade the vocational skills of Indian workers is presented. This project is designed to plan and develop integrated educational and training courses of various duration for workers and prospective workers, through the establishment of Polyvalent Centers. These centers are institutions providing opportunity for many-sided education…

  5. Serological response of foals to polyvalent and monovalent live-attenuated African horse sickness virus vaccines.

    PubMed

    Crafford, J E; Lourens, C W; Smit, T K; Gardner, I A; MacLachlan, N J; Guthrie, A J

    2014-06-17

    African horse sickness (AHS) is typically a highly fatal disease in susceptible horses and vaccination is currently used to prevent the occurrence of disease in endemic areas. Similarly, vaccination has been central to the control of incursions of African horse sickness virus (AHSV) into previously unaffected areas and will likely play a significant role in any future incursions. Horses in the AHSV-infected area in South Africa are vaccinated annually with a live-attenuated (modified-live virus [MLV]) vaccine, which includes a cocktail of serotypes 1, 3, 4 (bottle 1) and 2, 6-8 (bottle 2) delivered in two separate doses at least 21 days apart. In this study, the neutralising antibody response of foals immunized with this polyvalent MLV AHSV vaccine was evaluated and compared to the response elicited to monovalent MLV AHSV serotypes. Naïve foals were immunized with either the polyvalent MLV AHSV vaccine, or a combination of monovalent MLV vaccines containing individual AHSV serotypes 1, 4, 7 or 8. There was a marked and consistent difference in the immunogenicity of individual virus serotypes contained in the MLV vaccines. Specifically, foals most consistently seroconverted to AHSV-1 and responses to other serotypes were highly variable, and often weak or not detected. The serotype-specific responses of foals given the monovalent MLV vaccines were similar to those of foals given the polyvalent MLV preparation suggesting that there is no obvious enhanced immune response through the administration of a monovalent vaccine as opposed to the polyvalent vaccine.

  6. Vaccination of preterm infants by polyvalent vaccines: immunogenicity and safety- review of literature.

    PubMed

    Czajka, Hanna; Lauterbach, Ryszard; Pawlik, Dorota

    2014-01-01

    The immunization of infants against infectious diseases still raises many controversies, not only with parents, but also among physicians. This refers particularly to preterm infants. Due to the increasing popularity of polyvalent vaccines, a number of studies has recently been conducted to verify their immunogenicity and safety in preterm infants. The aim of the present paper was to review the current literature dealing with the problem in question. The following recommendations regarding the use of polyvalent vaccines in preterm infants and neonates with low birth weight can be formulated on the basis of current evidence (1). Due to sufficient immunogenicity, polyvalent vaccines can be administered to preterm infants in accordance with their calendar age (2). Booster vaccination of preterm infants after completing 12 months of age is vital for achieving complete and persistent immunity against all vaccine antigens (3). In order to reduce the risk of adverse events after the administration of a polyvalent vaccine, it is essential to carefully consider the cardiorespiratory status of preterm infants during preimmunization examination, as well as their history of any cardiorespiratory dysfunctions. In such cases administering the first dose of the vaccine in a hospital setting is strongly advised.

  7. Differential affinities of Erythrina cristagalli lectin (ECL) toward monosaccharides and polyvalent mammalian structural units.

    PubMed

    Wu, Albert M; Wu, June H; Tsai, Ming-Sung; Yang, Zhangung; Sharon, Nathan; Herp, Anthony

    2007-12-01

    Previous studies on the carbohydrate specificities of Erythrina cristagalli lectin (ECL) were mainly limited to analyzing the binding of oligo-antennary Galbeta1-->4GlcNAc (II). In this report, a wider range of recognition factors of ECL toward known mammalian ligands and glycans were examined by enzyme-linked lectinosorbent and inhibition assays, using natural polyvalent glycotopes, and a glycan array assay. From the results, it is shown that GalNAc was an active ligand, but its polyvalent structural units, in contrast to those of Gal, were poor inhibitors. Among soluble natural glycans tested for 50% molecular mass inhibition, Streptococcus pneumoniae type 14 capsular polysaccharide of polyvalent II was the most potent inhibitor; it was 2.1 x 10(4), 3.9 x 10(3) and 2.4 x 10(3) more active than Gal, tri-antennary II and monomeric II, respectively. Most type II-containing glycoproteins were also potent inhibitors, indicating that special polyvalent II and Galbeta1-related structures play critically important roles in lectin binding. Mapping all information available, it can be concluded that: [a] Galbeta1-->4GlcNAc (II) and some Galbeta1-related oligosaccharides, rather than GalNAc-related oligosaccharides, are the core structures for lectin binding; [b] their polyvalent II forms within macromolecules are a potent recognition force for ECL, while II monomer and oligo-antennary II forms play only a limited role in binding; [c] the shape of the lectin binding domains may correspond to a cavity type with Galbeta1-->4GlcNAc as the core binding site with additional one to four sugars subsites, and is most complementary to a linear trisaccharide, Galbeta1-->4GlcNAcbeta1-->6Gal. These analyses should facilitate the understanding of the binding function of ECL.

  8. Gold glyconanoparticles: synthetic polyvalent ligands mimicking glycocalyx-like surfaces as tools for glycobiological studies.

    PubMed

    Barrientos, Africa G; de la Fuente, Jesús M; Rojas, Teresa C; Fernández, Asunción; Penadés, Soledad

    2003-05-09

    A simple and versatile methodology is described for tailoring sugar-functionalised gold nanoclusters (glyconanoparticles) that have 3D polyvalent carbohydrate display and globular shapes. This methodology allows the preparation of glyconanoparticles with biologically significant oligosaccharides as well as with differing carbohydrate density. Fluorescent glyconanoparticles have been also prepared for labelling cells in biological tests. The materials are water soluble, stable under physiological conditions and present an exceptional small core size. All of them have been characterised by (1)H NMR, UV and IR spectroscopy, TEM and elemental analysis. Their highly polyvalent network can mimic glycosphingolipid clustering and interactions at the plasma membrane, providing an controlled system for glycobiological studies. Furthermore, they are useful building blocks for the design of nanomaterials.

  9. Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts

    SciTech Connect

    Akdeniz, Z. Istanbul Univ. . Dept. of Physics); Tosi, M.P. . Dipt. di Fisica Teorica Argonne National Lab., IL )

    1988-11-01

    The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudopotential radii or Zunger and Cohen. As a third alternative a classification based on Pettifor's phenomenological chemical scale of the elements is also considered. The alternative structural classification schemes that are developed from these elemental properties are generally successfully in distinguishing molten mixtures in which the available experimental evidence indicates long-lived fourfold coordination of polyvalent metal ions. In addition, Pettifor's chemical scale scheme is useful in sorting out finer details of local coordination in the liquid state. 3 figs., 71 refs.

  10. Neutralizing antibodies against feline parvoviruses in nondomestic felids inoculated with commercial inactivated polyvalent vaccines.

    PubMed

    Sassa, Yukiko; Fukui, Daisuke; Takeshi, Kouichi; Miyazawa, Takayuki

    2006-11-01

    The virus neutralization (VN) antibody titers of serum samples from 18 individuals representing 8 carnivore species vaccinated with commercial polyvalent vaccines optimized for domestic cats containing inactivated feline panleukopenia virus (FPLV) were evaluated against canine parvovirus type 2 (CPV2). In addition, the titers among 5 individuals from 4 carnivore were evaluated against antigenic variants of feline parvoviruses; FPLV, CPV2, CPV2a, CPV2b, CPV2c, mink enteritis virus type 1 (MEV1) and MEV2. The polyvalent vaccines induced cross-reactive VN titers against antigenic variants of feline parvoviruses in nondomestic felids. However, we observed very low cross-reactive VN antibody in lions and Siberian tigers, therefore we should pay attention to CPV infections in these animals even if they were vaccinated with inactivated FPLV vaccines.

  11. [Induction of polyvalent immunity against Actinobacillus pleuropneumoniae in an experimental rat model].

    PubMed

    Herrera, L; Montiel, E; Rosales, M E; Bárcenas, G; Lara, A V; Montaraz, J A

    1995-01-01

    Using an experimental model of passive immunity in the rat, the immunizing effect of live cells of Actinobacillus pleuropneumoniae serotypes 1, 3, 5, 7, 9 and 12 was tested against a challenge with serotype 1. It was observed that serotypes 5, 7 and 9 induced polyvalent immunity. Additionally, agglutinating antibodies to the homologous and heterologous serotype were titrated in the sera of immunized mothers; the results indicated that groups immunized with serotypes 5, 7 and 9 had higher titers against serotype 1.

  12. Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Knobler, Charles M.; Gelbart, William M.

    2015-08-01

    While several in vitro experiments on viral genome release have specifically studied the effects of external osmotic pressure and of the presence of polyvalent cations on the ejection of DNA from bacteriophages, few have systematically investigated how the extent of ejection is controlled by a combination of these effects. In this work we quantify the effect of osmotic pressure on the extent of DNA ejection from bacteriophage lambda as a function of polyvalent cation concentration (in particular, the tetravalent polyamine spermine). We find that the pressure required to completely inhibit ejection decreases from 38 to 17 atm as the spermine concentration is increased from 0 to 1.5 mM. Further, incubation of the phage particles in spermine concentrations as low as 0.15 mM—the threshold for DNA condensation in bulk solution—is sufficient to significantly limit the extent of ejection in the absence of osmolyte; for spermine concentrations below this threshold, the ejection is complete. In accord with recent investigations on the packaging of DNA in the presence of a condensing agent, we observe that the self-attraction induced by the polyvalent cation affects the ordering of the genome, causing it to get stuck in a broad range of nonequilibrated structures.

  13. Decrease in ciprofloxacin absorption by polyvalent metal cations is not fully attributable to chelation or adsorption.

    PubMed

    Imaoka, Ayuko; Hattori, Michiko; Akiyoshi, Takeshi; Ohtani, Hisakazu

    2014-01-01

    The drug interaction between new quinolone antibiotics (NQs) and polyvalent metal cation products, leading to a significant decrease in the absorption of NQ, is considered to be attributable to the formation of poorly absorbable chelate and physicochemical adsorption of NQs to cation products. To clarify the mechanisms of this drug interaction in detail, we investigated the effects of Al(3+) or Mg(2+) on the membrane permeation profile of ciprofloxacin (CPFX) across human colon carcinoma cell lines (Caco-2) in monolayer culture, and characterized the adsorption nature of CPFX to polyvalent metal cation products under physiological conditions. As a result, Al(3+) or Mg(2+) partially but not fully impaired the permeation of CPFX across Caco-2 monolayer up to 30% or 60% of control, respectively. Physicochemical adsorption of CPFX to cation products was not observed under physiological pH. In conclusion, two possible mechanisms investigated, the decrease in the permeability of CPFX by chelate formation and adsorption of CPFX to polyvalent metal cation products, may partially but not fully explain the extent of the drug interaction clinically observed.

  14. Cross neutralisation of Southeast Asian cobra and krait venoms by Indian polyvalent antivenoms.

    PubMed

    Leong, Poh Kuan; Tan, Nget Hong; Fung, Shin Yee; Sim, Si Mui

    2012-12-01

    Cross neutralisation of venoms by antivenom raised against closely-related species has been well documented. The spectrum of paraspecific protection of antivenom raised against Asiatic Naja and Bungarus (krait) venoms, however, has not been fully investigated. In this study, we examined the cross neutralisation of venoms from common Southeast Asian cobras and kraits by two widely used polyvalent antivenoms produced in India: Vins Polyvalent Antivenom (VPAV) and Bharat Polyvalent Antivenom (BPAV), using both in vitro and in vivo mouse protection assays. BPAV was only moderately effective against venoms of N. kaouthia (Thailand) and N. sumatrana, and either very weakly effective or totally ineffective against the other cobra and krait venoms. VPAV, on the other hand, neutralised effectively all the Southeast Asian Naja venoms tested, as well as N. naja, B. candidus and Ophiophagus hannah venoms, but the potency ranges from effective to weakly effective. In an in vivo rodent model, VPAV also neutralised the lethality of venoms from Asiatic Naja and B. candidus. In anesthetised rat studies, both antivenoms effectively protected against the N. kaouthia venom-induced cardio-respiratory depressant and neuromuscular blocking effects. Overall, our results suggest that VPAV could be used as alternative antivenom for the treatment of elapid envenomation in Southeast Asian regions including Malaysia, Thailand and certain regions of Indonesia. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  15. Remineralization of early enamel caries lesions using different bioactive elements containing toothpastes: An in vitro study.

    PubMed

    Wang, Yu; Mei, Li; Gong, Lin; Li, Jialing; He, Shaowei; Ji, Yan; Sun, Weibin

    2016-09-14

    Demineralization can be arrested or reversed when remineralization agents are applied to incipient carious or non-cavitated carious lesions. A large number of therapeutic agents including non-fluoridated products have been developed to promote enamel remineralization. This study aims to evaluate the efficacy of different bioactive elements containing toothpastes in remineralization of artificial enamel lesions. Artificial carious lesions were created on 40 human enamel slabs, and were randomly divided into four groups: (1) control group (no treatment), (2) casein phosphopeptide-amorphous calcium phosphate group (CPP-ACP, GC Tooth Mousse), (3) 8% arginine and calcium carbonate group (ACC, Colgate Sensitive Pro-Relief), (4) calcium sodium phosphosilicate group (CSP, NovaMin®). All samples were subjected to 15 days of pH-cycling. Subsequently, a one-hour acid resistance test was carried out. Surface hardness of the samples was assessed using the Knoop hardness test, and surface morphology and roughness were assessed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Data were analyzed using one-way ANOVA, Tukey's test and paired t test. The three tested toothpastes exhibited a significantly higher remineralization efficacy compared with the control group (P< 0.05 for all). After pH-cycling, the specimens treated with Colgate Sensitive Pro-Relief and NovaMin® showed a significant higher surface hardness (P< 0.001 and P= 0.03, respectively) and lower surface roughness (P< 0.05 for both) compared those treated with GC Tooth Mousse. While after the acid resistance test, all groups showed a significant loss of surface hardness (P< 0.001 for all) and significant increase of surface roughness (P< 0.05). The specimens treated with Colgate Sensitive Pro-Relief and NovaMin® still showed a significant higher surface hardness and lower surface roughness in comparison with those treated with GC Tooth Mousse (P< 0.05 for all). No significant difference was

  16. Test results for composite specimens and elements containing joints and cutouts

    NASA Technical Reports Server (NTRS)

    Sumida, P. T.; Madan, R. C.; Hawley, A. V.

    1988-01-01

    A program was conducted to develop the technology for joints and cutouts in a composite fuselage that meets all design requirements of a large transport aircraft for the 1990s. An advanced trijet derivative of the DC-10 was selected as the baseline aircraft. Design and analysis of a 30-foot-long composite fuselage barrel provided a realistic basis for the test effort. The primary composite material was Hexcel F584 resin on 12 K IM6 fiber, in tape and broadgoods form. Fiberglass broadgoods were used in E-glass and S-glass fiber form in the cutout region of some panels. Additionally, injection-molded chopped graphite fiber/PEEK was used for longeron-to-frame shear clips. The test effort included four groups of test specimens, beginning with coupon specimens of mono-layer and cross-piled laminates, progressing through increasingly larger and more complex specimens, and ending with two 4- by 5-foot curved fuselage side panels. One of the side panels incorporated a transverse skin splice, while the second included two cabin window cutouts.

  17. Preparation, standardization and in vitro safety testing of Mycobacterium nosodes (Emtact- polyvalent nosode).

    PubMed

    Joshi, Suvarna; Mukerjee, Sandeepan; Vaidya, Shashikant; Talele, Gitanjali; Chowdhary, Abhay; Shah, Rajesh

    2016-08-01

    Most of the nosodes in the homeopathic pharmacopeia have been sourced from obscure pathological material over a century ago; of which no scientific documentation is available. A method for preparation and standardization of univalent and polyvalent Mycobacterium nosodes (labeled as Emtact), using different strains of Mycobacterium tuberculosis was developed. The committee comprising microbiologists, scientist, pharmacist, homeopaths and clinicians had reviewed and approved the method of preparation of nosode. Preparation of the nosode was based on the reference in the Homeopathy Pharmacopoeia of India (HPI), group N-IV. Strains of M. tuberculosis viz. Standard strain H37Rv, multi-drug resistant (MDR) M. tuberculosis, Mycobacterium bovis (BCG vaccine) and Mycobacterium avium were identified, procured and documented. Twenty billion viable cells for each strain were taken for Original Stock Nosode (OSN). The original stock was prepared by suspending the microbial cells into water for injection (WFI) (1 ml). As per the Indian Pharmacopoeia (IP) monograph, sterility testing was done for different potencies. Polymerase Chain Reaction (PCR) was performed for 30c potency for detection of any DNA material of the source organisms. A polyvalent (multi-strain) and univalent M. tuberculosis nosodes were prepared for research and clinical use. No growth of Mycobacterium was observed in any of the samples above 5c potency. The in-vitro testing for nosode (30c) was found to be free from any organism and DNA material. Mycobacterium nosodes sourced from individual strain and polyvalent Emtact nosode in vitro testing results found to be satisfactory for its handling and utilization. The nosode seems to be safe and may be tested further in vivo to explore its therapeutic application. Copyright © 2016 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  18. Improving the safety of Staphylococcus aureus polyvalent phages by their production on a Staphylococcus xylosus strain.

    PubMed

    El Haddad, Lynn; Ben Abdallah, Nour; Plante, Pier-Luc; Dumaresq, Jeannot; Katsarava, Ramaz; Labrie, Steve; Corbeil, Jacques; St-Gelais, Daniel; Moineau, Sylvain

    2014-01-01

    Team1 (vB_SauM_Team1) is a polyvalent staphylococcal phage belonging to the Myoviridae family. Phage Team1 was propagated on a Staphylococcus aureus strain and a non-pathogenic Staphylococcus xylosus strain used in industrial meat fermentation. The two Team1 preparations were compared with respect to their microbiological and genomic properties. The burst sizes, latent periods, and host ranges of the two derivatives were identical as were their genome sequences. Phage Team1 has 140,903 bp of double stranded DNA encoding for 217 open reading frames and 4 tRNAs. Comparative genomic analysis revealed similarities to staphylococcal phages ISP (97%) and G1 (97%). The host range of Team1 was compared to the well-known polyvalent staphylococcal phages phi812 and K using a panel of 57 S. aureus strains collected from various sources. These bacterial strains were found to represent 18 sequence types (MLST) and 14 clonal complexes (eBURST). Altogether, the three phages propagated on S. xylosus lysed 52 out of 57 distinct strains of S. aureus. The identification of phage-insensitive strains underlines the importance of designing phage cocktails with broadly varying and overlapping host ranges. Taken altogether, our study suggests that some staphylococcal phages can be propagated on food-grade bacteria for biocontrol and safety purposes.

  19. Improving the Safety of Staphylococcus aureus Polyvalent Phages by Their Production on a Staphylococcus xylosus Strain

    PubMed Central

    El Haddad, Lynn; Ben Abdallah, Nour; Plante, Pier-Luc; Dumaresq, Jeannot; Katsarava, Ramaz; Labrie, Steve; Corbeil, Jacques; St-Gelais, Daniel; Moineau, Sylvain

    2014-01-01

    Team1 (vB_SauM_Team1) is a polyvalent staphylococcal phage belonging to the Myoviridae family. Phage Team1 was propagated on a Staphylococcus aureus strain and a non-pathogenic Staphylococcus xylosus strain used in industrial meat fermentation. The two Team1 preparations were compared with respect to their microbiological and genomic properties. The burst sizes, latent periods, and host ranges of the two derivatives were identical as were their genome sequences. Phage Team1 has 140,903 bp of double stranded DNA encoding for 217 open reading frames and 4 tRNAs. Comparative genomic analysis revealed similarities to staphylococcal phages ISP (97%) and G1 (97%). The host range of Team1 was compared to the well-known polyvalent staphylococcal phages phi812 and K using a panel of 57 S. aureus strains collected from various sources. These bacterial strains were found to represent 18 sequence types (MLST) and 14 clonal complexes (eBURST). Altogether, the three phages propagated on S. xylosus lysed 52 out of 57 distinct strains of S. aureus. The identification of phage-insensitive strains underlines the importance of designing phage cocktails with broadly varying and overlapping host ranges. Taken altogether, our study suggests that some staphylococcal phages can be propagated on food-grade bacteria for biocontrol and safety purposes. PMID:25061757

  20. Size-dependent inhibition of herpesvirus cellular entry by polyvalent nanoarchitectures.

    PubMed

    Ziem, B; Azab, W; Gholami, M F; Rabe, J P; Osterrieder, N; Haag, R

    2017-03-07

    Carbon-based architectures, especially graphene and its derivatives, have recently attracted much attention in the field of biomedicine and biotechnology for their use as pathogen inhibitors or biosensors. One of the major problems in the development of novel virus inhibitor systems is the adaption of the inhibitor to the size of virus particles. We here report the synthesis and biological testing of carbon-based inhibitors differing in size for evaluating the potential size effect on the inhibition of virus entry and replication. In this context, different sized nanomaterials were functionalized with polygylcerol through a "grafting from" polymerization to form new polyvalent nanoarchitectures which can operate as viral inhibitor systems after post-modification. For this purpose a polysulfation was carried out to mimic the heparan sulfates present on cell surfaces that we reasoned would compete with the binding sites of herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1), which both cause major global health issues. Our results clearly demonstrate that the inhibitory efficiency is regulated by the size of the polymeric nanomaterials and the degree of sulfation. The best inhibiting graphene sheets were ∼300 nm in size and had a degree of sulfation of ∼10%. Furthermore, it turned out that the derivatives inhibited virus infection at an early stage during entry but did not affect cell-to-cell spread. Overall, tunable polyvalent nanomaterials are promising and efficient virus entry inhibitors, which can likely be used for a broad spectrum of enveloped viruses.

  1. Polyvalent fuel treatment facility (TCP): shearing and dissolution of used fuel at La Hague facility

    SciTech Connect

    Brueziere, J.; Tribout-Maurizi, A.; Durand, L.; Bertrand, N.

    2013-07-01

    Although many used nuclear fuel types have already been recycled, recycling plants are generally optimized for Light Water Reactor (LWR) UO{sub x} fuel. Benefits of used fuel recycling are consequently restricted to those fuels, with only limited capacity for the others like LWR MOX, Fast Reactor (FR) MOX or Research and Test Reactor (RTR) fuel. In order to recycle diverse fuel types, an innovative and polyvalent shearing and dissolving cell is planned to be put in operation in about 10 years at AREVA's La Hague recycling plant. This installation, called TCP (French acronym for polyvalent fuel treatment) will benefit from AREVA's industrial feedback, while taking part in the next steps towards a fast reactor fuel cycle development using innovative treatment solutions. Feasibility studies and R/Development trials on dissolution and shearing are currently ongoing. This new installation will allow AREVA to propose new services to its customers, in particular in term of MOX fuel, Research Test Reactors fuel and Fast Reactor fuel treatment. (authors)

  2. Inhibition profiles of mono- and polyvalent FimH antagonists against 10 different Escherichia coli strains.

    PubMed

    Chalopin, T; Brissonnet, Y; Sivignon, A; Deniaud, D; Cremet, L; Barnich, N; Bouckaert, J; Gouin, S G

    2015-12-14

    Mono- and polyvalent ligands with strong affinities for the mannose-binding adhesin FimH were synthesised, and their anti-adhesive properties against ten E. coli strains were compared in two cell-based assays. The compounds were assessed against the non-pathogenic E. coli K12 and nine strains isolated by coproculture or from patients with osteoarticular infections (OIs), Crohn's disease (CD) and urinary tract infections (UTIs). The results showed that the compounds could inhibit the whole set of bacterial strains but with marked differences in terms of effective concentrations. The relative inhibitory potency of the monovalent compounds was also conserved for the ten strains and in the two assays. These results clearly suggest that a potent monovalent anti-adhesive assessed on a single E. coli strain will probably be effective on a broad range of strains and may treat diverse E. coli infections (OIs, CD and UTIs). In contrast, the polyvalent compounds showed a significant strain-dependancy in preventing E. coli attachment to intestinal cells. The multivalent antiadhesive effect may therefore vary depending on the E. coli strain tested.

  3. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    PubMed

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  4. DNA shuffling approach for recombinant polyvalent OmpAs against V. alginolyticus and E. tarda infections.

    PubMed

    Li, Hui; Chu, Xiao; Peng, Bo; Peng, Xuan-Xian

    2016-11-01

    Molecular breeding via DNA shuffling directs the evolution of vaccines with desired traits. In the present study, polyvalent OmpA vaccines were generated by DNA shuffling of five ompA genes from four species of bacteria Vibrio parahaemolyticus, V. alginolyticus, Edwardsiella tarda and Escherichia coli. First, a new hybrid OmpA was constructed using VA0764 primers and used for construction of a prokaryotic expressing library PompAs-FV containing 84 ompAs, which were validated by PCR and SDS/PAGE. Then, the 84 ompAs were used to construct a eukaryotic expressing library EompAs-FV for preparing DNA vaccines. Third, extracellular bacterium V. alginolyticus challenge post active immunization using these DNA vaccines was carried out to identify genes with high immunoprotection. Among the 84 ompAs, 17 showed higher or equal immune protection against infection caused by V. alginolyticus than control VA0764. Finally, immune protection against infection caused by intracellular bacterium Edwardsiella tarda was assessed further using the top seven out of the 17 ompAs. This led to identification of three efficient polyvalent vaccines against infections caused by the extracellular bacterium V. alginolyticus and intracellular bacterium E. tarda. In addition, we sequenced genes for understanding mechanisms of the polyvalent vaccines, but association of immune protection with mutation of gene and amino acids is not determined. These results indicate that DNA shuffling is an efficient way to develop polyvalent vaccines against microbial infections.

  5. Identification of polyvalent protective immunogens from outer membrane proteins in Vibrio parahaemolyticus to protect fish against bacterial infection.

    PubMed

    Peng, Bo; Ye, Jin-Zhou; Han, Yi; Zeng, Li; Zhang, Jian-Ying; Li, Hui

    2016-07-01

    Vaccination is one of the most effective and economic way to prevent infectious diseases in aquaculture. The development of effective vaccines, however, is still limited, especially for polyvalent vaccines, which are against multiple species. With this regard, identification of polyvalent protective immunogens, serving as polyvalent vaccines, became a key step in vaccine development. In the current study, 17 outer membrane proteins from Vibrio parahaemolyticus were identified as immunogens. Further, four of the 17 proteins including VP2309, VP0887, VPA0548 and VP1019 were characterized as efficiently protective immunogens against V. parahaemolyticus' infection through passive and active immunizations in zebrafish. Importantly, these four proteins showed cross-protective capability against infections by Aeromonas hydrophila or/and Pseudomonas fluorescens, which shared similar epitopes with V. parahaemolyticus in homology of these proteins. Further investigation showed that the expression level of the four protective immunogens elevated in response to fish plasma in a dose-dependent manner. These results indicate that the four protective immunogens are polyvalent vaccine candidates in aquaculture.

  6. Solving the Acoustic Problem in Polyvalent Hall at Mauritius: Global Design Challenge Facing Larsen and Toubro, Limited

    ERIC Educational Resources Information Center

    Sankar, Chetan S.; Raju, P. K.; Alur, Ramachandriah; Venkateswaran, Rajan; Elangovan, Rajasekar

    2011-01-01

    The architect for the Mauritius Auditorium project sat in his office at Larsen & Toubro's headquarters in Chennai, India, pondering the phone call he had just received from the vice president, Mr. K.P. Raghavan. The polyvalent hall of the conference center was about to be used to host its first rock concert in February 2005, but during a…

  7. Solving the Acoustic Problem in Polyvalent Hall at Mauritius: Global Design Challenge Facing Larsen and Toubro, Limited

    ERIC Educational Resources Information Center

    Sankar, Chetan S.; Raju, P. K.; Alur, Ramachandriah; Venkateswaran, Rajan; Elangovan, Rajasekar

    2011-01-01

    The architect for the Mauritius Auditorium project sat in his office at Larsen & Toubro's headquarters in Chennai, India, pondering the phone call he had just received from the vice president, Mr. K.P. Raghavan. The polyvalent hall of the conference center was about to be used to host its first rock concert in February 2005, but during a…

  8. Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements

    PubMed Central

    Iyer, Lakshminarayan M.; Burroughs, A. Maxwell; Anand, Swadha; de Souza, Robson F.

    2017-01-01

    ABSTRACT Intense biological conflicts between prokaryotic genomes and their genomic parasites have resulted in an arms race in terms of the molecular “weaponry” deployed on both sides. Using a recursive computational approach, we uncovered a remarkable class of multidomain proteins with 2 to 15 domains in the same polypeptide deployed by viruses and plasmids in such conflicts. Domain architectures and genomic contexts indicate that they are part of a widespread conflict strategy involving proteins injected into the host cell along with parasite DNA during the earliest phase of infection. Their unique feature is the combination of domains with highly disparate biochemical activities in the same polypeptide; accordingly, we term them polyvalent proteins. Of the 131 domains in polyvalent proteins, a large fraction are enzymatic domains predicted to modify proteins, target nucleic acids, alter nucleotide signaling/metabolism, and attack peptidoglycan or cytoskeletal components. They further contain nucleic acid-binding domains, virion structural domains, and 40 novel uncharacterized domains. Analysis of their architectural network reveals both pervasive common themes and specialized strategies for conjugative elements and plasmids or (pro)phages. The themes include likely processing of multidomain polypeptides by zincin-like metallopeptidases and mechanisms to counter restriction or CRISPR/Cas systems and jump-start transcription or replication. DNA-binding domains acquired by eukaryotes from such systems have been reused in XPC/RAD4-dependent DNA repair and mitochondrial genome replication in kinetoplastids. Characterization of the novel domains discovered here, such as RNases and peptidases, are likely to aid in the development of new reagents and elucidation of the spread of antibiotic resistance. IMPORTANCE This is the first report of the widespread presence of large proteins, termed polyvalent proteins, predicted to be transmitted by genomic parasites such as

  9. A Preventive Approach to Impetigo of Treaty Indians Using Staphylococcus Polyvalent Somatic Antigen Vaccine

    PubMed Central

    Dillenberg, H.; Waldron, M. P. D.

    1963-01-01

    In a controlled study, Greenberg's staphylococcal polyvalent somatic antigen vaccine was administered to 190 Indian volunteers of a reserve in Saskatchewan in an attempt to reduce the incidence of impetigo. An intradermal skin test dose of 0.1 ml. was given initially. Reactors were forthwith placed in a separate category, otherwise this test injection was followed by intramuscular injection of 0.25 ml. of the vaccine, repeated a second time after six weeks. One hundred and sixty-nine controls received “placebo vaccine”. Four months later the number of cases of impetigo in the vaccinated group had been reduced from 55 to 16. There was no reduction in the control group. The preventive effect waned after five months. The results of this field trial are considered encouraging. PMID:14052980

  10. Viper and cobra venom neutralization by alginate coated multicomponent polyvalent antivenom administered by the oral route.

    PubMed

    Bhattacharya, Sourav; Chakraborty, Mousumi; Mukhopadhyay, Piyasi; Kundu, P P; Mishra, Roshnara

    2014-08-01

    Snake bite causes greater mortality than most of the other neglected tropical diseases. Snake antivenom, although effective in minimizing mortality in developed countries, is not equally so in developing countries due to its poor availability in remote snake infested areas as, and when, required. An alternative approach in this direction could be taken by making orally deliverable polyvalent antivenom formulation, preferably under a globally integrated strategy, for using it as a first aid during transit time from remote trauma sites to hospitals. To address this problem, multiple components of polyvalent antivenom were entrapped in alginate. Structural analysis, scanning electron microscopy, entrapment efficiency, loading capacity, swelling study, in vitro pH sensitive release, acid digestion, mucoadhesive property and venom neutralization were studied in in vitro and in vivo models. Results showed that alginate retained its mucoadhesive, acid protective and pH sensitive swelling property after entrapping antivenom. After pH dependent release from alginate beads, antivenom (ASVS) significantly neutralized phospholipaseA2 activity, hemolysis, lactate dehydrogenase activity and lethality of venom. In ex vivo mice intestinal preparation, ASVS was absorbed significantly through the intestine and it inhibited venom lethality which indicated that all the components of antivenom required for neutralization of venom lethality were retained despite absorption across the intestinal layer. Results from in vivo studies indicated that orally delivered ASVS can significantly neutralize venom effects, depicted by protection against lethality, decreased hemotoxicity and renal toxicity caused by russell viper venom. Alginate was effective in entrapping all the structural components of ASVS, which on release and intestinal absorption effectively reconstituted the function of antivenom in neutralizing viper and cobra venom. Further research in this direction can strategize to

  11. Does the aggressive use of polyvalent antivenin for rattlesnake bites result in serious acute side effects?

    PubMed Central

    Offerman, Steven R; Smith, Timothy S; Derlet, Robert W

    2001-01-01

    Objective To determine the incidence and severity of acute side effects from the use of polyvalent antivenin in victims of rattlesnake bites. Design We retrospectively reviewed the records of all patients who presented with rattlesnake bites to a university teaching hospital during an 11-year period. From patient medical records, we extracted demographic data, clinical measurements, and outcomes during emergency department evaluation and subsequent hospitalization. Data regarding serum sickness were not collected. Outcome measures Primary outcome variables were the occurrence of immediate hypersensitivity reaction to antivenin, the type of reaction, permanent disability at hospital discharge, and mortality. Results We identified a total of 73 patients with rattlesnake bites during the study period. Bite envenomation was graded as nonenvenomated, 7 patients (10%); mild, 23 patients (32%); moderate, 32 patients (44%); and severe, 11 patients (15%). We identified 65 patients who received antivenin. Antivenin doses ranged from 1 to 30 vials per patient (mean, 12.0 ± 6.0), for a total of 777 vials. In 43 patients (66%), 10 or more vials of antivenin were given. The mean number of vials of antivenin given to each snakebite grade were as follows: mild, 8.4 (±4.0); moderate, 11.8 (±5.7); and severe, 18.7 (±6.3). No deaths, amputations, or permanent disability from snakebite occurred in the patients receiving antivenin. Acute side effects of antivenin—occurring within the first 6 hours after administration—were seen in 12 patients (18%; 95% confidence interval, 10%-30%). Acute side effects consisted solely of urticaria in all but 1 patient (2%; 95% confidence interval, 0%-8%). This patient had a history of previous antivenin reaction and required a short course of intravenous epinephrine for blood pressure support. No other complications occurred. Conclusion The administration of polyvalent Crotalidae antivenin is safe. Acute hypersensitivity, when it occurs

  12. Ranking viruses: measures of positional importance within networks define core viruses for rational polyvalent vaccine development.

    PubMed

    Anderson, Tavis K; Laegreid, William W; Cerutti, Francesco; Osorio, Fernando A; Nelson, Eric A; Christopher-Hennings, Jane; Goldberg, Tony L

    2012-06-15

    The extraordinary genetic and antigenic variability of RNA viruses is arguably the greatest challenge to the development of broadly effective vaccines. No single viral variant can induce sufficiently broad immunity, and incorporating all known naturally circulating variants into one multivalent vaccine is not feasible. Furthermore, no objective strategies currently exist to select actual viral variants that should be included or excluded in polyvalent vaccines. To address this problem, we demonstrate a method based on graph theory that quantifies the relative importance of viral variants. We demonstrate our method through application to the envelope glycoprotein gene of a particularly diverse RNA virus of pigs: porcine reproductive and respiratory syndrome virus (PRRSV). Using distance matrices derived from sequence nucleotide difference, amino acid difference and evolutionary distance, we constructed viral networks and used common network statistics to assign each sequence an objective ranking of relative 'importance'. To validate our approach, we use an independent published algorithm to score our top-ranked wild-type variants for coverage of putative T-cell epitopes across the 9383 sequences in our dataset. Top-ranked viruses achieve significantly higher coverage than low-ranked viruses, and top-ranked viruses achieve nearly equal coverage as a synthetic mosaic protein constructed in silico from the same set of 9383 sequences. Our approach relies on the network structure of PRRSV but applies to any diverse RNA virus because it identifies subsets of viral variants that are most important to overall viral diversity. We suggest that this method, through the objective quantification of variant importance, provides criteria for choosing viral variants for further characterization, diagnostics, surveillance and ultimately polyvalent vaccine development.

  13. Viper and Cobra Venom Neutralization by Alginate Coated Multicomponent Polyvalent Antivenom Administered by the Oral Route

    PubMed Central

    Bhattacharya, Sourav; Chakraborty, Mousumi; Mukhopadhyay, Piyasi; Kundu, P. P.; Mishra, Roshnara

    2014-01-01

    Background Snake bite causes greater mortality than most of the other neglected tropical diseases. Snake antivenom, although effective in minimizing mortality in developed countries, is not equally so in developing countries due to its poor availability in remote snake infested areas as, and when, required. An alternative approach in this direction could be taken by making orally deliverable polyvalent antivenom formulation, preferably under a globally integrated strategy, for using it as a first aid during transit time from remote trauma sites to hospitals. Methodology/Principal Findings To address this problem, multiple components of polyvalent antivenom were entrapped in alginate. Structural analysis, scanning electron microscopy, entrapment efficiency, loading capacity, swelling study, in vitro pH sensitive release, acid digestion, mucoadhesive property and venom neutralization were studied in in vitro and in vivo models. Results showed that alginate retained its mucoadhesive, acid protective and pH sensitive swelling property after entrapping antivenom. After pH dependent release from alginate beads, antivenom (ASVS) significantly neutralized phospholipaseA2 activity, hemolysis, lactate dehydrogenase activity and lethality of venom. In ex vivo mice intestinal preparation, ASVS was absorbed significantly through the intestine and it inhibited venom lethality which indicated that all the components of antivenom required for neutralization of venom lethality were retained despite absorption across the intestinal layer. Results from in vivo studies indicated that orally delivered ASVS can significantly neutralize venom effects, depicted by protection against lethality, decreased hemotoxicity and renal toxicity caused by russell viper venom. Conclusions/Significance Alginate was effective in entrapping all the structural components of ASVS, which on release and intestinal absorption effectively reconstituted the function of antivenom in neutralizing viper and cobra

  14. Protective Efficacy of Centralized and Polyvalent Envelope Immunogens in an Attenuated Equine Lentivirus Vaccine

    PubMed Central

    Craigo, Jodi K.; Ezzelarab, Corin; Cook, Sheila J.; Liu, Chong; Horohov, David; Issel, Charles J.; Montelaro, Ronald C.

    2015-01-01

    Lentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal model that could provide both immunogenicity and protective efficacy data. We previously reported on a live-attenuated (attenuated) equine infectious anemia (EIAV) virus vaccine, which provides 100% protection from disease after virulent, homologous, virus challenge. Further, protective efficacy demonstrated a significant, inverse, linear relationship between EIAV Env divergence and protection from disease when vaccinates were challenged with viral strains of increasing Env divergence from the vaccine strain Env. Here, we sought to comprehensively examine the protective efficacy of centralized immunogens in our attenuated vaccine platform. We developed, constructed, and extensively tested a consensus Env, which in a virulent proviral backbone generated a fully replication-competent pathogenic virus, and compared this consensus Env to an ancestral Env in our attenuated proviral backbone. A polyvalent attenuated vaccine was established for comparison to the centralized vaccines. Additionally, an engineered quasispecies challenge model was created for rigorous assessment of protective efficacy. Twenty-four EIAV-naïve animals were vaccinated and challenged along with six-control animals six months post-second inoculation. Pre-challenge data indicated the consensus Env was more broadly immunogenic than the Env of the other attenuated vaccines. However, challenge data demonstrated a significant increase in protective efficacy of the polyvalent vaccine. These findings reveal, for the first time, a consensus Env immunogen that generated a fully-functional, replication

  15. Method, instruments, and results of the determination of elements contained in Venusian rock by the Vega-2 interplanetary probe

    SciTech Connect

    Surkov, Y.A.; Dudin, A.D.; Kharyukova, V.P.; Manvelyan, O.S.; Moskaleva, L.P.; Shcheglov, O.P.

    1986-04-01

    With an x-ray fluorescent spectrometer installed in the lander of the Vega-2 interplanetary station, elements contained in Venusian rock were determined for the northern part of Terra Aphroditae. The composition proved to be most similar to that of rocks of the anorthosite-norite-troctolite (ANT) group which constitute the basis of the moon's continental crust. The determination of the abundance of basic rock-forming elements from Mg to Fe, and also of some heavier rare elements, was carried out by x-ray-radiometry with the use of instruments installed in the lander. The measuring element included three radioisotope sources (one source of plutonium-238 and two sources of iron-55), four gas-discharge proportional counters, and soil collectors in which was placed the rock material to be analyzed.

  16. On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines.

    PubMed

    Vorup-Jensen, Thomas

    2012-12-01

    Immunology often conveys the image of large molecules, either in the soluble state or in the membrane of leukocytes, forming multiple contacts with a target for actions of the immune system. Avidity names the ability of a polyvalent molecule to form multiple connections of the same kind with ligands tethered to the same surface. Polyvalent interactions are vastly stronger than their monovalent equivalent. In the present review, the functional consequences of polyvalent interactions are explored in a perspective of recent theoretical advances in understanding the thermodynamics of such binding. From insights on the structural biology of soluble pattern recognition molecules as well as adhesion molecules in the cell membranes or in their proteolytically shed form, this review documents the prominent role of polyvalent interactions in making the immune system a formidable barrier to microbial infection as well as constituting a significant challenge to the application of nanomedicines.

  17. [Evaluation of the protection efficiency of secretory antibodies in experimental Yersinia infection in guinea-pigs immunized with polyvalent vaccine against this infection].

    PubMed

    Pogorel'skiĭ, I P; Drobkov, V I

    2009-01-01

    The paper presents the results of experiments to elucidate the protection efficiency of secretory antibodies via parenteral and oral inoculation with pathogenic Yersinia in guinea pigs immunized with a polyvalent yersiniasis vaccine designed on the basis of the pseudotuberculosis microbial strain that synthesizes the F1 antigen of a plague microbe. Immunization of guinea pigs with the polyvalent yersiniasis vaccine protects experimental animals against pseudotuberculosis, intestinal yersiniasis, and plague infections.

  18. Immunological cross-reactivity and neutralization of the principal toxins of Naja sumatrana and related cobra venoms by a Thai polyvalent antivenom (Neuro Polyvalent Snake Antivenom).

    PubMed

    Leong, Poh Kuan; Fung, Shin Yee; Tan, Choo Hock; Sim, Si Mui; Tan, Nget Hong

    2015-09-01

    The low potency of cobra antivenom has been an area of concern in immunotherapy for cobra envenomation. This study sought to investigate factors limiting the neutralizing potency of cobra antivenom, using a murine model. We examined the immunological reactivity and neutralizing potency of a Thai polyvalent antivenom against the principal toxins of Naja sumatrana (Equatorial spitting cobra) venom and two related Asiatic cobra venom α-neurotoxins. The antivenom possesses moderate neutralizing potency against phospholipases A2 (P, potency of 0.98mg/mL) and moderately weak neutralizing potency against long-chain α-neurotoxins (0.26-0.42mg/mL) but was only weakly effective in neutralizing the short-chain α-neurotoxins and cardiotoxins (0.05-0.08mg/mL). The poor neutralizing potency of the antivenom on the low molecular mass short-chain neurotoxins and cardiotoxins is presumably the main limiting factor of the efficacy of the cobra antivenom. Our results also showed that phospholipase A2, which exhibited the highest ELISA reactivity and avidity, was most effectively neutralized, whereas N. sumatrana short-chain neurotoxin, which exhibited the lowest ELISA reactivity and avidity, was least effectively neutralized by the antivenom. These observations suggest that low immunoreactivity (low ELISA reactivity and avidity) is one of the reasons for poor neutralization of the cobra venom low molecular mass toxins. Nevertheless, the overall results show that there is a lack of congruence between the immunological reactivity of the toxins toward antivenom and the effectiveness of toxin neutralization by the antivenom, indicating that there are other factors that also contribute to the weak neutralization capacity of the antivenom. Several suggestions have been put forward to overcome the low efficacy of the cobra antivenom. The use of a 'proper-mix' formulation of cobra venoms as immunogen, whereby the immunogen mixture used for hyperimmunization contains a mix of various types

  19. A new structural element containing glycine-rich proteins and rhamnogalacturonan I in the protoxylem of seed plants.

    PubMed

    Ryser, Ulrich; Schorderet, Martine; Guyot, Romain; Keller, Beat

    2004-03-01

    The water pipes of elongating plant organs are the result of programmed cell death and are formed by the walls of dead and empty protoxylem elements. These protoxylem elements are passively elongated many times by the surrounding tissue before they are replaced and collapse. Well-known adaptations for this unique task include the characteristic secondary wall thickenings, forming rings and helices. A new, clearly distinct structural element containing glycine-rich proteins is now visualized for the first time, using confocal laser scanning microscopy in the mature protoxylem of elongating organs of seed plants. This structural element is arranged along the longitudinal axis of the protoxylem elements. It interconnects the secondary wall thickenings within and between protoxylem elements, as well as the protoxylem with other cell types such as xylem parenchyma cells and metaxylem elements. The structural element is stable against detergent extractions, proteinase, pectinase and cellulase hydrolysis, and is closely associated with rhamnogalacturonan-I, a pectic polysaccharide. The results clearly demonstrate that the cell wall of protoxylem cells is a highly dynamic and complex structure. The typical polysaccharide-rich primary wall of living and elongating plant cells is progressively modified and finally replaced by a protein-rich wall in the dead and passively stretched protoxylem elements. These glycine-rich walls originated early in the evolution of the seed plants as confirmed by the analysis of genomic information.

  20. Improved detection of equine antibodies against Sarcocystis neurona using polyvalent ELISAs based on the parasite SnSAG surface antigens.

    PubMed

    Yeargan, Michelle R; Howe, Daniel K

    2011-02-28

    Equine protozoal myeloencephalitis (EPM) is a common neurologic disease of horses that is caused by the apicomplexan pathogen Sarcocystis neurona. To help improve serologic diagnosis of S. neurona infection, we have modified existing enzyme-linked immunosorbent assays (ELISAs) based on the immunogenic parasite surface antigens SnSAG2, SnSAG3, and SnSAG4 to make the assays polyvalent, thereby circumventing difficulties associated with parasite antigenic variants and diversity in equine immune responses. Two approaches were utilized to achieve polyvalence: (1) mixtures of the individual recombinant SnSAGs (rSnSAGs) were included in single ELISAs; (2) a collection of unique SnSAG chimeras that fused protein domains from different SnSAG surface antigens into a single recombinant protein were generated for use in the ELISAs. These new assays were assessed using a defined sample set of equine sera and cerebrospinal fluids (CSFs) that had been characterized by Western blot and/or were from confirmed EPM horses. While all of the polyvalent ELISAs performed relatively well, the highest sensitivity and specificity (100%/100%) were achieved with assays containing the rSnSAG4/2 chimera (Domain 1 of SnSAG4 fused to SnSAG2) or using a mixture of rSnSAG3 and rSnSAG4. The rSnSAG4 antigen alone and the rSnSAG4/3 chimera (Domain 1 of SnSAG4 fused to Domain 2 of SnSAG3) exhibited the next best accuracy at 95.2% sensitivity and 100% specificity. Binding ratios and percent positivity (PP) ratios, determined by comparing the mean values for positive versus negative samples, showed that the most advantageous signal to noise ratios were provided by rSnSAG4 and the rSnSAG4/3 chimera. Collectively, our results imply that a polyvalent ELISA based on SnSAG4 and SnSAG3, whether as a cocktail of two proteins or as a single chimeric protein, can give optimal results in serologic testing of serum or CSF for the presence of antibodies against S. neurona. The use of polyvalent SnSAG ELISAs will

  1. Local Ionic Environment around Polyvalent Nucleic-Acid Functionalized Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Zwanikken, Jos; Mirkin, Chad

    2012-02-01

    Polyvalent oligonucleotide-functionalized gold nanoparticles (DNA-AuNPs) are remarkably stable in a cellular environment against degradation by nucleases, a property that was recently attributed to the local high concentration of mono- and divalent ions (Ref 1). In order to evaluate this hypothesis, we investigated the composition of the ion cloud around spherical nanoparticles that are functionalized by stiff, highly charged polyelectrolyte chains by means of classical density functional theory and molecular dynamics simulations. We developed a cell model that includes ligands explicitly and both applies over the entire relevant parameter space and is in excellent quantitative agreement with simulations (Ref 2). The ion distribution around the DNA-AuNPs as a function of DNA grafting densities and bulk ionic concentrations, as well as different sizes of nanoparticles and chains, is studied. For small particles with high DNA surface densities, we find strongly enhanced local salt concentrations, a pronounced localization of divalent ions near the surface of the nanoparticle, and a large radial component of the electric field between the ligands. Therefore, we conclude that enzyme activity in general may be heavily influenced by the local environment around DNA-AuNPs.

  2. Preclinical Development of Inactivated Rabies Virus-Based Polyvalent Vaccine Against Rabies and Filoviruses.

    PubMed

    Willet, Mallory; Kurup, Drishya; Papaneri, Amy; Wirblich, Christoph; Hooper, Jay W; Kwilas, Steve A; Keshwara, Rohan; Hudacek, Andrew; Beilfuss, Stefanie; Rudolph, Grit; Pommerening, Elke; Vos, Adriaan; Neubert, Andreas; Jahrling, Peter; Blaney, Joseph E; Johnson, Reed F; Schnell, Matthias J

    2015-10-01

    We previously described the generation of a novel Ebola virus (EBOV) vaccine based on inactivated rabies virus (RABV) containing EBOV glycoprotein (GP) incorporated in the RABV virion. Our results demonstrated safety, immunogenicity, and protective efficacy in mice and nonhuman primates (NHPs). Protection against viral challenge depended largely on the quality of the humoral immune response against EBOV GP.Here we present the extension and improvement of this vaccine by increasing the amount of GP incorporation into virions via GP codon-optimization as well as the addition of Sudan virus (SUDV) and Marburg virus (MARV) GP containing virions. Immunogenicity studies in mice indicate similar immune responses for both SUDV GP and MARV GP compared to EBOV GP. Immunizing mice with multiple antigens resulted in immune responses similar to immunization with a single antigen. Moreover, immunization of NHP with the new inactivated RABV EBOV vaccine resulted in high titer neutralizing antibody levels and 100% protection against lethal EBOV challenge when applied with adjuvant.Our results indicate that an inactivated polyvalent vaccine against RABV filoviruses is achievable. Finally, the novel vaccines are produced on approved VERO cells and a clinical grade RABV/EBOV vaccine for human trials has been produced.

  3. FMD virus isolates: the candidate strains for polyvalent vaccine development in Ethiopia.

    PubMed

    Ayelet, G; Soressa, M; Sisay, T; Belay, A; Gelaye, E; Jembere, S; Skjerve, E; Asmare, K

    2013-06-01

    The study was conducted on foot-and-mouth disease (FMD) viruses with the aim of selecting appropriate vaccinal strain to control of FMD in Ethiopia. The study was conducted in two-dimensional virus neutralization assay to determine the antigenic relationship 'r' value between the candidate vaccine strains and field isolates. A total of 21 serotype O, 7 serotype A, and 8 serotype SAT 2 FMD viruses, which were isolated from cattle and swine. A couple of isolates from each serotype were identified as vaccine candidates in the trial (O-ETH/38/2005, O-ETH/58/2008, A-ETH/7/2008, A-ETH/6/2000, SAT2-ETH/76/2009 and SAT2-ETH/64/2009). The finding revealed all the vaccine candidate depicted high antigenic similarity, above the mean "r" value, to their own serotypes in the studied serotype population except for one serotype A field isolate, A-ETH/13/1981, with "r" value=0.14 and 0.25) which is significantly lower than the minimum requirement. In general, the result indicated that these candidate vaccinal strains can be used for polyvalent vaccine production in the country. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine.

    PubMed Central

    Morton, D L; Foshag, L J; Hoon, D S; Nizze, J A; Famatiga, E; Wanek, L A; Chang, C; Davtyan, D G; Gupta, R K; Elashoff, R

    1992-01-01

    A new polyvalent melanoma cell vaccine (MCV) was administered to 136 stage IIIA and IV (American Joint Committee on Cancer) melanoma patients. Induction of cell-mediated and humoral immune responses to common melanoma-associated antigens present on autologous melanoma cells was observed in patients receiving the new MCV. This was accompanied by increased activation of tumor-infiltrating lymphocytes. Survival correlated significantly with delayed cutaneous hypersensitivity (p = 0.0066) and antibody responses to MCV (p = 0.0117). Of 40 patients with evaluable disease, nine (23%) had regressions (three complete). From our historical database of 126 stage IIIA and 1275 stage IV melanoma patients, there were no significant changes in the natural history of metastatic melanoma during the past 20 years. Univariate and multivariate analyses demonstrated prognostic significance for site of metastases (p = 0.0001) and immunotherapy with the new MCV (p = 0.0001). Overall our new MCV increased the median and 5-year survival of stage IIIA melanoma patients with regional soft tissue metastases twofold (p = 0.00024), and stage IV patients threefold (p = 0.0001) compared with previous immunotherapy and other treatments. Images FIG. 5. FIG. 5. FIG. 6. FIG. 18. FIG. 18. FIG. 19. PMID:1417196

  5. Antigenic specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in koalas (Phascolarctos cinereus).

    PubMed

    Kollipara, Avinash; Wan, Charles; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2013-02-06

    Chlamydia continues to be a major pathogen of koalas. The bacterium is associated with ocular, respiratory and urogenital tract infections and a vaccine is considered the best option to limit the decline of mainland koala populations. Over the last 20 years, efforts to develop a chlamydial vaccine in humans have focussed on the use of the chlamydial major outer membrane protein (MOMP). Potential problems with the use of MOMP-based vaccines relate to the wide range of genetic diversity in its four variable domains. In the present study, we evaluated the immune response of koalas vaccinated with a MOMP-based C. pecorum vaccine formulated with genetically and serologically diverse MOMPs. Animals immunised with individual MOMPs developed strong antibody and lymphocyte proliferation responses to both homologous as well as heterologous MOMP proteins. Importantly, we also showed that vaccine induced antibodies which effectively neutralised various heterologous strains of koala C. pecorum in an in vitro assay. Finally, we also demonstrated that the immune responses in monovalent as well as polyvalent MOMP vaccine groups were able to recognise whole chlamydial elementary bodies, illustrating the feasibility of developing an effective MOMP based C. pecorum vaccine that could protect against a range of strains. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Complete genome sequence of 285P, a novel T7-like polyvalent E. coli bacteriophage.

    PubMed

    Xu, Bin; Ma, Xiangyu; Xiong, Hongyan; Li, Yafei

    2014-06-01

    Bacteriophages are considered potential biological agents for the control of infectious diseases and environmental disinfection. Here, we describe a novel T7-like polyvalent Escherichia coli bacteriophage, designated "285P," which can lyse several strains of E. coli. The genome, which consists of 39,270 base pairs with a G+C content of 48.73 %, was sequenced and annotated. Forty-three potential open reading frames were identified using bioinformatics tools. Based on whole-genome sequence comparison, phage 285P was identified as a novel strain of subgroup T7. It showed strongest sequence similarity to Kluyvera phage Kvp1. The phylogenetic analyses of both non-structural proteins (endonuclease gp3, amidase gp3.5, DNA primase/helicase gp4, DNA polymerase gp5, and exonuclease gp6) and structural protein (tail fiber protein gp17) led to the identification of 285P as T7-like phage. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analyses verified the annotation of the structural proteins (major capsid protein gp10a, tail protein gp12, and tail fiber protein gp17).

  7. Construction and immune protection evaluation of recombinant polyvalent OmpAs derived from genetically divergent ompA by DNA shuffling.

    PubMed

    Li, Hui; Chu, Xiao; Li, Dan; Zeng, Zao-Hai; Peng, Xuan-Xian

    2016-02-01

    A wide variety of bacterial infections is a major challenge in aquaculture. Development of polyvalent vaccines that can fight against as many pathogens as possible is especially necessary. The present study uses DNA shuffling to create a new hybrid OmpA with improved cross-protection against Vibrio alginolyticus and Edwardsiella tarda through the recombination of six OmpA genes from Vibrio parahaemolyticus, V. alginolyticus, E. tarda and Escherichia coli. Out of the 43 recombinant chimeras genes constructed using VA0764 primers, EompAs-19 was demonstrated as an ideal polyvalent vaccine against infections caused V. alginolyticus and E. tarda. Compared with VA0764, OmpAs-19 had three mutations, which may be a molecular basis of EompAs-19 as an efficient polyvalent vaccine against both V. alginolyticus and E. tarda infections. These results develop a polyvalent vaccine that prevents the infections caused by extracellular and intracellular bacteria. Thus, the present study highlights the way to develop polyvalent vaccines against microbial infections by DNA shuffling.

  8. Glass sealing

    SciTech Connect

    Brow, R.K.; Kovacic, L.; Chambers, R.S.

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  9. Active specific immunotherapy with polyvalent melanoma cell vaccine for patients with in-transit melanoma metastases.

    PubMed

    Hsueh, E C; Nathanson, L; Foshag, L J; Essner, R; Nizze, J A; Stern, S L; Morton, D L

    1999-05-15

    This study was conducted to document the rate, duration, and type of objective response to active specific immunotherapy with a polyvalent melanoma cell vaccine (PMCV) for patients with in-transit melanoma metastases and to identify any acute or chronic toxic effects of PMCV treatment. An analysis was conducted of all in-transit melanoma patients seen at the John Wayne Cancer Institute in Santa Monica, California, during the period 1985-1997 who were enrolled in prospective PMCV protocols in the absence of other therapies with possible antitumor activity (n = 54). Clinical response to PMCV was assessed by standard criteria. Survival curves were estimated by the Kaplan-Meier method. Toxicity was graded according to the Eastern Cooperative Oncology Group standard. PMCV produced a 17% (9 of 54 patients) objective response rate with a 13% rate (7 of 54 patients) of complete remission (CR). The median duration of CR was >22 months. Complete response lasting more than 1 year was observed in 4 patients (7.2%); 1 patient remained in remission over 9 years. Median survival was >53 months (i.e., not reached) for responders, 42 months for nonresponders, and 53 months overall. Salvage interventions allowed reinduction with PMCV in 23 of 25 patients, who subsequently remained clinically free of disease for a median of 14 months. Overall toxicity was mild, easily tolerable, and did not significantly change the quality of life. There were no toxic deaths. PMCV can cause objective complete regression of measurable intransit metastatic melanoma with minimal toxicity, and may prolong patients' median survival.

  10. Methylsulfonyl Zn phthalocyanine: A polyvalent and powerful hydrophobic photosensitizer with a wide spectrum of photodynamic applications.

    PubMed

    İşci, Ümit; Beyreis, Marlena; Tortik, Nicole; Topal, Sevinc Z; Glueck, Michael; Ahsen, Vefa; Dumoulin, Fabienne; Kiesslich, Tobias; Plaetzer, Kristjan

    2016-03-01

    The biomedical photodynamic principle is based on the light-induced and photosensitizer-mediated killing of unwanted or harmful cells by overproduction of reactive oxygen species. Motivated by the success of photodynamic therapy (PDT) against several types of tumors, further applications of this approach are constantly identified which require the design and synthesis of novel photosensitizers with specifically tailored properties for a particular clinical application. Hydrophobic photosensitizers are currently gaining attention and hence a tetramethylsulfonyl Zn(II) phthalocyanine (2) was designed with respect to the desired photoproperties. The photodynamic potential of 2 was assessed by the determination of its photophysical and photochemical properties, and by a large range of biological tests including its phototoxicity against cancer cells and Gram(+) bacteria. Unsubstituted ZnPc was used as a reference compound for comparison purposes. Phthalocyanine 2 has a better oxygen generation and is more photostable than ZnPc. 2 is a polyvalent and powerful hydrophobic photosensitizer with a wide spectrum of photodynamic applications against cancer (tested on A431 cells) and for Gram(+) PDI. Against Staphylococcus aureus, a maximum photokilling efficiency of more than 6 log10 steps was induced by a 5μM concentration of 2, outperforming the 3 log10 criterion for an antimicrobial effect (according to the recommendation of the American Society for Microbiology) by more than three orders of magnitude. Phthalocyanine 2 has attractive photophysical and -chemical characteristics. Initial evaluation of its application in anti-tumor PDT and PDI suggest potential for further pre-clinical and clinical development of this compound. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Production of potent polyvalent antivenom against three elapid venoms using a low dose, low volume, multi-site immunization protocol.

    PubMed

    Chotwiwatthanakun, C; Pratanaphon, R; Akesowan, S; Sriprapat, S; Ratanabanangkoon, K

    2001-10-01

    The purpose of this study was to prepare a potent polyvalent antivenom against three elapids namely, the Thai cobra (Naja kaouthia, NK), the King cobra (Ophiophagus hannah, OH) and the banded krait (Bungarus fasciatus, BF). Two groups of horses were immunized. Group 1, comprising five horses, was immunized twice with a mixture of postsynaptic neurotoxins followed by an additional six immunizations with a mixture of crude venoms of the three elapids. Group 2, comprising four horses, was immunized with a mixture of crude venoms throughout the course. For the first immunization, the immunogens were emulsified in Complete Freund's adjuvant and injected using a low dose, low volume multi-site immunization protocol previously developed in this laboratory (Pratanaphon, R., Akesowan, S., Khow, O., Sriprapat, S. and Ratanabanangkoon, K. (1997) Production of highly potent horse antivenom against the Thai cobra (Naja kaouthia). Vaccine 15, 1523-1528). The second immunization was carried out with the immunogens in Incomplete Freund's adjuvant. Blood was drawn to assay the antibody titer by ELISA. Sera at the peak of ELISA titers were pooled and assayed for the median effective dose (ED(50)). The ED(50)'s of antivenom from Group 1 horses against NK, OH and BF venoms were 1.44, 0.22 and 0.23 ml serum/mg venom, respectively, while those from Group 2 horse sera were 0.88, 0.20 and 0.49 ml serum/mg venom, respectively. The potency of sera from Group 2 against BF venom was significantly higher, while the potencies against NK and OH venoms were comparable to those of the corresponding monovalent antivenoms produced under the same protocol. This potent, truly polyvalent antivenom should be useful in saving lives of victims envenomed by these elapids and the immunization protocol should be useful in the production of potent polyvalent antivenoms against other medically important elapids.

  12. Fabrication of Polyvalent Therapeutic RNA Nanoparticles for Specific Delivery of siRNA, Ribozyme and Drugs to Targeted Cells for Cancer Therapy

    PubMed Central

    Shu, Yi; Shu, Dan; Diao, Zhijuan; Shen, Guanxin; Guo, Peixuan

    2010-01-01

    Bacteriophage phi29 DNA packaging motor is geared by a six-pRNA ring. pRNA is able to form a multimeric complex and patterned superstructures via the interaction of two reengineered interlocking loops. This unique feature makes it an ideal polyvalent vehicle for nanomachine fabrication, pathogen detection, and the delivery of therapeutics. This report describes novel approaches for the fabrication of polyvalent therapeutic pRNA nanoparticles, especially tetramers for specific siRNA delivery to cancer cells and for the silencing of targeted genes. RNA 3-D design, circular permutation, folding energy alteration, and nucleotide modification were applied to generate stable RNA nanoparticles with low toxicity. Animal trials demonstrated the high efficiency of the polyvalent RNA nanoparticles in the prevention and treatment of cancer. Using such protein-free nanoparticles as therapeutic reagents would allow for long-term administration to avoid the induction of antibody due to repeated treatment for chronic diseases. PMID:21243099

  13. Late hematologic toxicity following treatment of rattlesnake envenomation with crotalidae polyvalent immune Fab antivenom.

    PubMed

    Ruha, Anne-Michelle; Curry, Steven C; Albrecht, Clay; Riley, Brad; Pizon, Anthony

    2011-01-01

    North American rattlesnake envenomations commonly produce defibrination, coagulopathy and/or thrombocytopenia, which may be reversed following treatment with Crotalidae Polyvalent Immune Fab Ovine (FabAV). Despite initial resolution with FabAV, late onset or recurrence of venom-induced hematologic effects may occur. Time at which onset of late hematotoxicity may first be detected is unknown. The purpose of this study was to identify the incidence and time of onset of recurrent or new late hypofibrinogenemia, coagulopathy, or thrombocytopenia in a cohort of rattlesnake envenomation patients seen in outpatient follow-up after treatment with FabAV, and to report hematologic outcomes in these patients. Review of 66 charts of patients with rattlesnake envenomation who were treated with FabAV, and subsequently had outpatient follow-up evaluation at least 48 h after last FabAV, was performed. Demographic information, rattlesnake and bite characteristics, dose and timing of antivenom administration, adverse events, in-patient laboratory values, length of hospital stay, and follow-up laboratory values were collected. The primary outcome parameters were recurrent or delayed onset coagulopathy, hypofibrinogenemia, or thrombocytopenia identified no sooner than 48 h after last dose of FabAV. Prior to control of the envenomation with FabAV, 42 patients (63.6%) experienced hematologic toxicity. At follow-up, 21 patients (32%) were found to have late coagulopathy, hypofibrinogenemia, or thrombocytopenia. Of twenty-three patients (35%) with more than one follow-up visit, fifteen had normal laboratory findings at the first follow-up visit. Five of these 15 patients (8% of total study group; 33% of this subgroup) with normal hematologic studies at first follow-up exhibited late hematologic toxicity at second follow-up. Severe late hematologic toxicity developed in five of 66 (8%) patients. One patient was retreated with FabAV for late severe thrombocytopenia. Recurrent and delayed

  14. False positive immunoassay for acetyl choline receptor antibody (AChR Ab) in patients exposed to polyvalent antisnake venom.

    PubMed

    Sundar, Kaushik; Venkatasubramanian, Shankar; Shanmugam, Sundar; Arthur, Preetam; Subbaraya, Ramakrishnan; Hazeena, Philo

    2017-10-15

    Acute flaccid paralysis is a neuromuscular emergency characterized by rapidly worsening weakness that evolves quickly to cause diaphragmatic failure. The challenge for the treating physician is to stabilize the patient, generate the differential diagnosis and determine the management; all in quick time. Neurotoxic snake bites have inadequate signs of inflammation and are easily missed. Myasthenic crisis, on the other hand, could be the first sign of myasthenia gravis in up to 20% of patients. Both present with acute respiratory failure and inadequate history. Two of our patients presented with similar clinical picture, and received polyvalent anti-snake venom obtained from hyperimmunised horses (Equus caballus). Both tested positive for anti-acetyl choline receptor antibody. After recovery, both patients narrated a history suggestive of neurotoxic envenomation. We later discovered that patients, who are exposed to polyvalent anti-snake venom (Equus caballus) prior to radioimmunoassay, demonstrate high titers of Anti-AChR Ab in their serum erroneously. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cross-reactivity and neutralization of Indian King cobra (Ophiophagus hannah) venom by polyvalent and monovalent antivenoms.

    PubMed

    Gowtham, Yashonandana J; Mahadeswaraswamy, Y H; Girish, K S; K, Kemparaju

    2014-07-01

    The venom of the largest venomous snake, the king cobra (Ophiophagus hannah), is still out of league for the production of therapeutic polyvalent antivenom nor it is characterized immunologically in the Indian subcontinent. In the present study, the king cobra venom is comparatively studied for the cross-reactivity/reactivity and toxicity neutralization by the locally available equine therapeutic polyvalent BSV and VB antivenoms, and monovalent antivenom (OH-IgG) prepared in rabbit. None of the two therapeutic antivenoms procured from two different firms showed any signs of cross-reactivity in terms of antigen-antibody precipitin lines in immunodouble diffusion assay; however, a weak and an insignificant cross-reactivity pattern was observed in ELISA and Western blot studies. Further, both BSV and VB antivenoms failed to neutralize proteolytic, hyaluronidase and phospholipase activities as well as toxic properties such as edema, myotoxicity and lethality of the venom. As expected, OH-IgG showed strong reactivity in immunodouble diffusion, ELISA and in Western blot analysis and also neutralized both enzyme activities as well as the toxic properties of the venom. Thus, the study provides insight into the likely measures that are to be taken in cases of accidental king cobra bites for which the Indian subcontinent is still not prepared for. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Differentiation of polyvalent bacteriophages specific to uropathogenic Proteus mirabilis strains based on the host range pattern and RFLP.

    PubMed

    Maszewska, Agnieszka; Wójcik, Ewelina; Ciurzyńska, Aneta; Wojtasik, Arkadiusz; Piątkowska, Iwona; Dastych, Jarosław; Różalski, Antoni

    2016-01-01

    Urinary tract infections (UTIs) caused by P. mirabilis are difficult to cure because of the increasing antimicrobial resistance of these bacteria. Phage therapy is proposed as an alternative infection treatment. The aim of this study was to isolate and differentiate uropathogenic P. mirabilis strain specific polyvalent bacteriophages producing polysaccharide depolymerases (PDs). 51 specific phages were obtained. The plaques of 29 bacteriophages were surrounded by halos, which indicated that they produced PDs. The host range analysis showed that, except phages 58B and 58C, the phage host range profiles differed from each other. Phages 35 and 45 infected all P. mirabilis strains tested. Another 10 phages lysed more than 90% of isolates. Among these phages, 65A, 70, 66 and 66A caused a complete lysis of the bacterial lawn formed by 62% to 78% of strains. Additionally, phages 39A and 70 probably produced PDs. The phages' DNA restriction fragment length polymorphism (RFLP) analysis demonstrated that genomes of 51 isolated phages represented 34 different restriction profiles. DNA of phage 58A seemed to be resistant to selected EcoRV endonuclease. The 33 RFLP-EcoRV profiles showed a Dice similarity index of 38.8%. 22 RFLP patterns were obtained from single phage isolates. The remaining 12 restriction profiles consisted of 2 to 4 viruses. The results obtained from phage characterization based on the pattern of phage host range in combination with the RFLP method enabled effective differentiation of the studied phages and selection of PD producing polyvalent phages for further study.

  17. Glass recycling

    SciTech Connect

    Dalmijn, W.L.; Houwelingen, J.A. van

    1995-12-31

    Glass recycling in the Netherlands has grown from 10,000 to 300,000 tonnes per annum. The various advantages and problems of the glass cycle with reference to the state of the art in the Netherlands is given. Special attention is given to new technologies for the automated sorting of cullet with detection systems. In Western Europe the recycling of glass has become a success story. Because of this, the percentage of glass cullet used in glass furnaces has increased. To meet the quality demands of the glass industry, automated sorting for the removal of stones, non-ferrous metals and other impurities had to be developed and incorporated in glass recycling plants. In Holland, Germany and other countries, the amount of glass collected has reached a level that color-sorting becomes necessary to avoid market saturation with mixed cullet. Recently, two systems for color-sorting have been developed and tested for the separation of bottles and cullet in the size range of 20--50 mm. With the increased capacity of the new glass recycling plants, 120,000--200,000 tpy, the quality systems have also to be improved and automated. These quality control systems are based on the automated sorting technology developed earlier for the glass recycling plants. The data obtained are automatically processed and printed. The sampling system and its relation to the theory of Gy will be described. Results of both developments in glass recycling plants will be described.

  18. Glass Artworks

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Several NASA technologies have played part in growth and cost containment of studio glass art, among them a foam type insulation developed to meet a need for lightweight material that would reduce flame spread in aircraft fire. Foam comes in several forms and is widely used by glass artists, chiefly as an insulator for the various types of ovens used in glass working. Another Spinoff is alumina crucibles to contain molten glass. Before alumina crucibles were used, glass tanks were made of firebrick which tended to erode under high temperatures and cause impurities; this not only improved quality but made the process more cost effective. One more NASA technology that found its way into glass art working is a material known as graphite board, a special form of graphite originally developed for rocket motor applications. This graphite is used to exact compound angles and creates molds for poured glass artworks of dramatic design.

  19. Optimization of pre-emptive isolations in a polyvalent ICU through implementation of an intervention strategy.

    PubMed

    Álvarez Lerma, F; Granado Solano, J; García Sanz, A; López Martínez, C; Herrera Sebastián, R; Salvat Cobeta, C; Rey Pérez, A; Balaguer Blasco, R M; Plasencia, V; Horcajada, J P

    2015-12-01

    Pre-emptive isolation refers to the application of contact precaution measures in patients with strongly suspected colonization by multiresistant bacteria. To assess the impact of an intervention program involving the implementation of a consensus-based protocol of pre-emptive isolation (CPPI) on admission to a polyvalent ICU of a general hospital. A comparative analysis of 2 patient cohorts was made: a historical cohort including patients in which pre-emptive isolation was established according to physician criterion prior to starting CPPI (from January 2010 to February 2011), and a prospective cohort including patients in which CPPI was implemented (from March to November 2011). CPPI included the identification and diffusion of pre-emptive isolation criteria, the definition of sampling methodology, the evaluation of results, and the development of criteria for discontinuation of pre-emptive isolation. Pre-emptive isolation was indicated by the medical staff, and follow-up was conducted by the nursing staff. Pre-emptive isolation was defined as "adequate" when at least one multiresistant bacteria was identified in any of the samples. Comparison of data between the 2 periods was made with the chi-square test for categorical variables and the Student t-test for quantitative variables. Statistical significance was set at P<.05. Among the 1,740 patients admitted to the ICU (1,055 during the first period and 685 during the second period), pre-emptive isolation was indicated in 199 (11.4%); 111 (10.5%) of these subjects corresponded to the historical cohort (control group) and 88 (12.8%) to the posterior phase after the implementation of CPPI (intervention group). No differences were found in age, APACHE II score or patient characteristics between the 2 periods. The implementation of CPPI was related to decreases in non-indicated pre-emptive isolations (29.7 vs. 6.8%, P<.001), time of requesting surveillance cultures (1.56 vs. 0.37 days, P<.001), and days of duration of

  20. Glass Research

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1985-01-01

    Research efforts span three general areas of glass science: glass refining, gel-derived glasses, and nucleation and crystallization of glasses. Gas bubbles which are present in a glass product are defects which may render the glass totally useless for the end application. For example, optical glasses, laser host glasses, and a variety of other specialty glasses must be prepared virtually defect free to be employable. Since a major mechanism of bubble removal, buoyant rise, is virtually inoperative in microgravity, glass fining will be especially difficult in space. On the other hand, the suppression of buoyant rise and the ability to perform containerless melting experiments in space allows the opportunity to carry out several unique bubble experiments in space. Gas bubble dissolution studies may be performed at elevated temperatures for large bubbles with negligible bubble motion. Also, bubble nucleation studies may be performed without the disturbing feature of heterogeneous bubble nucleation at the platinum walls. Ground based research efforts are being performed in support of these potential flight experiments.

  1. Polyvalent display of monosaccharides on ferritin protein cage nanoparticles for the recognition and binding of cell-surface lectins.

    PubMed

    Kang, Young Ji; Yang, Hyun Ji; Jeon, Sangbin; Kang, Young-Sun; Do, Yoonkyung; Hong, Sung You; Kang, Sebyung

    2014-05-01

    Carbohydrate-lectin interactions are important in many biological events. Endogenous cell-surface lectins are attractive markers for the recognition and targeting. Human ferritin protein cage nanoparticles (HFPCNs) are prepared as delivery nanoplatforms and two different types of monosaccharide derivatives; maleimido group terminated-mannopyranoside and galactopyranoside. Uniform and polyvalent displays of mannoses or galactoses on the surface of HFPCNs are achieved by using site-specific thiol-maleimide Michael-type addition. Mannose- or galactose-displaying HFPCNs recognize and tightly bind to DC-SIGN or ASGP-R lectins on the surface of the mammalian cells, DCEK or HepG2 cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. GLASS FIBER REINFORCED PLASTICS,

    DTIC Science & Technology

    Contents: Fibrous glass fillers Binders used in the glass plastic industry Method of manufacturing glass plastics and glass plastic articles Properties of fiberglass Primary areas for use of glass fibre reinforced plastics

  3. Growth and performance of Atlantic salmon, Salmo salar L., following administration of a rhabdovirus DNA vaccine alone or concurrently with an oil-adjuvanted, polyvalent vaccine.

    PubMed

    Skinner, L A; Schulte, P M; LaPatra, S E; Balfry, S K; McKinley, R S

    2008-09-01

    This research demonstrates for the first time an absence of growth-related side effects in Atlantic salmon, Salmo salar L., following the injection of a DNA vaccine alone or concurrently with a commercially available, polyvalent, oil-adjuvanted vaccine. Using weight and specific growth rate measurements, individually tagged Atlantic salmon were monitored for 2028 degree days (dd) post-vaccination. During this time, DNA-vaccinated fish did not differ in weight, length, condition factor or specific growth rate compared to unvaccinated control fish. While differences in weight were observed between unvaccinated control and concurrently vaccinated fish, there were no significant differences in weight, length, condition factor or specific growth rate between concurrently vaccinated fish and adjuvant-vaccinated fish, suggesting that only adjuvant vaccination affected growth. To further determine if concurrent injection of a DNA vaccine and a polyvalent, oil-adjuvanted vaccine had a physiological impact on the Atlantic salmon, swimming performance tests were performed at 106 dd post-vaccination with U(crit,1), U(crit,2), the U(crit) recovery ratio (RR) and the normalized RR being similar to values obtained from unvaccinated control fish. In summary, this study shows that concurrent injection of a DNA vaccine and a polyvalent, oil-adjuvanted vaccine does not negatively influence the growth or swimming performance of Atlantic salmon compared to adjuvant vaccination alone.

  4. Tempered glass

    SciTech Connect

    Bunnell, L.R.

    1991-11-01

    This document describes a demonstration for making tempered glass using minimal equipment. The demonstration is intended for a typical student of materials science, at the high school level or above. (JL)

  5. Electrochromic Glasses.

    DTIC Science & Technology

    1980-07-31

    composition where nuclear magnetic resonance, infrared and Raman spectra show a possible charge in the coordination of B. All the "borate anamolies " also...34pseudo-spins" in an amorphous matrix behaves in many ways as the elec- tric analogue of a magnetic spin glass system. We developed a model for a...boric oxide is used extensively in borosilicate glasses. An extensive body of literature utilizing nuclear magnetic resonance, infrared and Raman

  6. Preclinical assessment of the ability of polyvalent (Crotalinae) and anticoral (Elapidae) antivenoms produced in Costa Rica to neutralize the venoms of North American snakes.

    PubMed

    Arce, Viviana; Rojas, Ermila; Ownby, Charlotte L; Rojas, Gustavo; Gutiérrez, José María

    2003-06-01

    Polyvalent (Crotalinae) and anticoral (Elapidae) antivenoms produced by Instituto Clodomiro Picado, Costa Rica, were assessed for their ability to neutralize various toxic activities of the venoms of North American snakes of the genera Crotalus, Agkistrodon and Micrurus, in assays involving preincubation of venom and antivenom. When the intraperitoneal route of injection was utilized, polyvalent (Crotalinae) antivenom was effective in the neutralization of the venoms of Crotalus atrox, Crotalus adamanteus, Crotalus viridis viridis, Crotalus horridus atricaudatus, Agkistrodon contortrix contortrix and Agkistrodon piscivorus piscivorus, whereas the venom of Crotalus scutulatus was not neutralized. When the intravenous route was used, results differed depending on the "challenge dose" of venom employed. Polyvalent antivenom neutralized all venoms when mice were challenged with 2 LD(50)s of venom. When 5 LD(50)s were used, antivenom neutralized the venoms of C. atrox, C. adamanteus, C. v. viridis and C. h. atricaudatus, being ineffective in the neutralization of C. scutulatus, A. c. contortrix and A. p. piscivorus. Polyvalent antivenom was effective in the neutralization of hemorrhagic and myotoxic activities of all venoms studied. It also neutralized coagulant activity of C. adamanteus venom, whereas most of the venoms were devoid of clotting activity on plasma in vitro. Moreover, it neutralized defibrinating activity of the only three venoms that induced this effect (i.e. C. adamanteus, A. c. contortrix and A. p. piscivorus). Anticoral (Elapidae) antivenom neutralized lethality induced by the venom of Micrurus fulvius, using either the intravenous or the intraperitoneal routes of injection. Moreover, it neutralized myotoxic effect of this venom as well. It is concluded that polyvalent antivenom neutralizes lethality and other activities of most of the crotaline venoms tested. However, since it is ineffective in neutralizing the lethal effect of C. scutulatus venom

  7. Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting.

    PubMed

    Luong, Duy; Sau, Samaresh; Kesharwani, Prashant; Iyer, Arun K

    2017-04-10

    The low therapeutic index of conventional chemotherapy and poor prognosis of patients diagnosed with metastatic cancers are prompting clinicians to adopt newer strategies to simultaneously detect cancer lesions at an early stage and to precisely deliver anticancer drugs to tumor sites. In this study, we employed a novel strategy to engineer a polyvalent theranostic nanocarrier consisting of superparamagnetic iron oxide nanoparticle core (SPIONs) decorated with folic acid-polyamidoamine dendrimers surface (FA-PAMAM). In addition, a highly potent hydrophobic anticancer agent 3,4-difluorobenzylidene-curcumin (CDF) was coloaded in the FA-PAMAM dendrimer to increase its solubility and assess its therapeutic potentials. The resulting targeted nanoparticles (SPIONs@FA-PAMAM-CDF) exhibited high MR contrast. When tested on folate receptor overexpressing ovarian (SKOV3) and cervical (HeLa) cancer cells, the CDF loaded targeted nanoformulations showed higher accumulation with a better anticancer activity as compared to the nontargeted counterparts, possibly due to multivalent folate receptor binding interaction with cells overexpressing the target. The results were corroborated by observation of a larger population of cells undergoing apoptosis due to upregulation of tumor suppressor phosphatase and tensis homologue (PTEN), caspase 3, and inhibition of NF-κB in groups treated with the targeted formulations, which further confirmed the ability of the multivalent theranostic nanoparticles for simultaneous imaging and therapy of cancers.

  8. North and South American Loxosceles spiders: development of a polyvalent antivenom with recombinant sphingomyelinases D as antigens.

    PubMed

    Olvera, Alejandro; Ramos-Cerrillo, Blanca; Estévez, Judith; Clement, Herlinda; de Roodt, Adolfo; Paniagua-Solís, Jorge; Vázquez, Hilda; Zavaleta, Alfonso; Arruz, María Salas; Stock, Roberto P; Alagón, Alejandro

    2006-07-01

    We report the cloning of sphingomyelinase D (SMD) cDNA from Loxosceles reclusa, Loxosceles boneti and Loxosceles laeta into bacterial expression systems, as well as optimization of expression conditions so as to obtain soluble and active recombinant enzymes. The recombinant mature SMDs, tagged with a histidine tail at the N- or C-termini, were compared in terms of toxicity and enzymatic activity, and were used as immunogens for the production of monovalent antisera in rabbits and F(ab')(2) preparations in animals used for commercial antivenom production (horses). We performed studies on in vitro inhibition of enzymatic activity of natural venom preparations by antibodies generated against the tagged proteins. We also present and discuss the results of studies on the specific and para-specific in vivo protective potential of the rabbit and equine antibody preparations against the recombinant proteins themselves and natural venom preparations. Our conclusions support the feasibility of using recombinant SMDs for production and evaluation of polyvalent anti-Loxosceles antivenoms, and we offer data on the potential of paraspecific neutralization in the context of the antigenic groupings and the molecular phylogeny of those active SMDs for which amino acid sequence information is available.

  9. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  10. Biochemical and biological characterization of Naja kaouthia venom from North-East India and its neutralization by polyvalent antivenom

    PubMed Central

    Das, Diganta; Urs, Nanjaraj; Hiremath, Vilas; Vishwanath, Bannikuppe Sannanaik; Doley, Robin

    2013-01-01

    This study describes biochemical and biological properties of Naja kaouthia (Indian monocled cobra) venom of North-East India. The LD50 of the crude venom was found to be 0.148mg/kg and neurotoxicitic symptoms like paralysis of lower limbs and heavy difficulty in breathing at sub-lethal dose in mice was observed. The venom exhibited PLA2, indirect hemolytic and myotoxic activities but showed weak proteolytic and low direct hemolytic activities. It did not exhibit any hemorrhage when injected intradermally to mice. Anticoagulant activity was prominent when recalcification, prothrombin and activated partial thrombinplastin time were tested on platelet poor plasma. Rotem analysis of whole citrated blood in presence of venom showed delay in coagulation time and clot formation time. Fibrinogen of whole citrated blood was depleted by venom when analyzed in Sonoclot. Crude venom at 10µg and after 16hr of incubation was found to degrade α chain of fibrinogen. Neutralization study showed that Indian polyvalent antivenom could neutralize some of the biochemical and biological activities as well as its fibrinogenolytic activity. PMID:24349704

  11. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    SciTech Connect

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay

    2009-05-25

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NDELTA52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  12. Pinhole Glasses

    NASA Astrophysics Data System (ADS)

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole glasses really give better vision? Some ways to use this question for motivation in teaching optics have been discussed. For this column we include a series of experiments that students can complete using a model of the eye and demonstrate issues related to pinhole vision correction.

  13. Control of high level radioactive waste-glass melters

    SciTech Connect

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  14. Pinhole Glasses

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole…

  15. Pinhole Glasses

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole…

  16. Administration of a polyvalent mechanical bacterial lysate to elderly patients with COPD: Effects on circulating T, B and NK cells.

    PubMed

    Lanzilli, Giulia; Traggiai, Elisabetta; Braido, Fulvio; Garelli, Valentina; Folli, Chiara; Chiappori, Alessandra; Riccio, Anna Maria; Bazurro, Gyada; Agazzi, Alessia; Magnani, Alessandra; Canonica, Giorgio Walter; Melioli, Giovanni

    2013-01-01

    The modifications of the subsets of circulating lymphocytes were evaluated in a group of patients with COPD undergoing treatment with a polyvalent mechanical bacterial lysate (PMBL), a drug that is able to significantly modify the natural history of these patients. Using multicolor immune-florescence and flow cytometry, T, B subsets and NK cells were extensively studied both in the group of treated patients and in a disease and age matched controls. Despite the age, in treated patients, T and NK cells were significantly increased in numbers of circulating cells, but not in percentages, while B cells remained unmodified. CD3+4+T cells were increased in treated patients, while CD3+CD8T cells were unmodified by the treatment. Activated T cells were increased but Treg, resulted reduced both in percentage than in absolute numbers. Transitional B cells resulted increased (in percentage and in absolute numbers) in their late maturation step (T3), while only early Naïve B cells were increased by the treatment, while other naïve subpopulations were unmodified. Memory B cells were reduced in percentage (but remained unmodified as absolute numbers), while the most immature form of memory B cells was significantly increased. Finally, both switch memory B cells and plasma cells resulted unmodified by the PMBL treatment. These results clearly indicated that the administration of the PMBL, even in elderly patients with COPD, was able to induce a significant immune-stimulation and these results, at cellular level, clearly support the evidence that the mechanism of action of PMBL is strictly related to a direct effect on immune-competent cells.

  17. Preparation and characterization of novel foamed porous glass-ceramics

    SciTech Connect

    Sasmal, Nibedita; Garai, Mrinmoy; Karmakar, Basudeb

    2015-05-15

    Foamed glass-ceramics without using foaming agent have been synthesized in a novel glass system of SrO-CaO-Al{sub 2}O{sub 3}-TiO{sub 2}-B{sub 2}O{sub 3}-SiO{sub 2}-P{sub 2}O{sub 5}-M{sub x}O{sub y} (where M = Ba, Mg, La, Ce and Ni) by a simple process of powder sintering. The glass and glass-ceramics are characterized by dilatometry, differential scanning calorimetry (DSC), heating stage microscopy (HSM), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), optical microscopy and Fourier transformed infrared spectroscopy (FTIR). All the glasses formed are amorphous and the glass transition temperature and dilatometric softening temperature of these glasses are found to be in the range 673–678 °C and 706–728 °C respectively. The glasses are highly stable as indicated by the DSC evaluated glass stability parameters of the range 195–240 °C. Quantitative sintering study of glass powder compacts revealed swelling in the samples with NiO and CeO{sub 2} corresponding to a geometry change of 75 and 108% around 900 °C respectively. With reference to this finding the glass powder compacts are heated to 900 °C and the foamed glass-ceramics are obtained. Characteristic crystalline silicate phases have been identified in the XRD studies and their microstructures are recorded by FESEM. Optical microscope study of the foamed samples revealed formation of bigger foamed cavity with residual pores in samples with NiO and CeO{sub 2} in comparison to samples with BaO, MgO and La{sub 2}O{sub 3}. The mean pore diameters of the samples with NiO and CeO{sub 2} are determined to be 43 and 32 μm, and their respective porosities are 2.34 and 1.82 cm{sup 3}/g respectively. Thus NiO and CeO{sub 2} are found to be very effective to obtain foamed glass-ceramics without using foaming agent by the viscous flow sintering of fine glass powder compacts along with the reduction of the respective polyvalent ions. - Highlights: • Synthesis of foamed porous glass

  18. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (<250 µm) was mixed with water and ultrasonically dispersed by application of 100, 200, 400, 500, 1000, 1500 and 2000 J cm-3 energy. After centrifugation the supernatant was filtered and the solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less

  19. In-vitro Neurotoxicity of Two Malaysian Krait Species (Bungarus candidus and Bungarus fasciatus) Venoms: Neutralization by Monovalent and Polyvalent Antivenoms from Thailand

    PubMed Central

    Ahmad Rusmili, Muhamad Rusdi; Yee, Tee Ting; Mustafa, Mohd Rais; Othman, Iekhsan; Hodgson, Wayne C.

    2014-01-01

    Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity. PMID:24625762

  20. GlassForm

    SciTech Connect

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-day product consistency test (PCT).

  1. Cardiovascular, haematological and neurological effects of the venom of the Papua New Guinean small-eyed snake (Micropechis ikaheka) and their neutralisation with CSL polyvalent and black snake antivenoms.

    PubMed

    Tibballs, J; Kuruppu, S; Hodgson, W C; Carroll, T; Hawdon, G; Sourial, M; Baker, T; Winkel, K

    2003-11-01

    Cardiovascular and haematological effects of venom of the small-eyed Snake (Micropechis ikaheka) were examined in ventilated anaesthetised piglets. Neurotoxic effects were examined in chick biventer cervicis nerve-muscle preparations. Immunoreactivity of venom was tested against the monovalent antivenom components in a CSL Ltd Venom Detection Kit. Neutralisation was tested in vivo and in vitro with CSL Ltd polyvalent snake and Black Snake (Pseudechis australis) antivenoms. Venom in 0.1% bovine serum albumin in saline was infused into piglets in doses 1-2000 microg/kg. Pulmonary hypertension (P= 0.0007) and depression of cardiac output (P= 0.002) were observed up to 3 h after 150-160 microg/kg. The concentration of plasma free-haemoglobin increased more than 50-fold, indicating haemolysis. Neither coagulopathy nor thrombocytopenia occurred. Creatine phosphokinase and serum potassium levels did not increase suggesting absence of acute rhabdomyolysis. The venom caused post-synaptic neurotoxicty. Immunoreactivity of venom with Black Snake antivenom was observed at very high venom concentrations. Cardiovascular effects were absent and haemolysis was less after venom was pre-incubated at 37 degrees C for 30 min with polyvalent antivenom. Neutralisation by Black Snake antivenom was less effective. The neurotoxicity was neutralised by polyvalent or Black Snake antivenoms. Human envenomation may be treated with CSL Ltd polyvalent snake antivenom.

  2. Impact Strength of Glass and Glass Ceramic

    NASA Astrophysics Data System (ADS)

    Bless, Stephan; Tolman, John

    2009-06-01

    Bar impact tests, using the techniques described elsewhere in this symposium, were used to measure compressive and tensile strengths of borosilicate glass, soda lime glass, and glass ceramic. The glass ceramic was 25% crystalline spinel, furnished by Corning, Inc. There are two measures of compressive strength: the peak stress that can be transmitted in unconfined compression and the steady-state strength. For both glasses, these values were similar, being about 1.8 and 1.5 GPa, respectively. The glass ceramic was almost 50% stronger. Tensile failure in the glass and glass ceramic takes places via surface flaws, and thus tensile strength is an extrinsic---as opposed to intrinsic---property.

  3. Strength of inorganic glass

    SciTech Connect

    Kurkjian, C.R.

    1985-01-01

    This book presents information on the following topics: a look at the history of glass strength; atomistic theory of fracture; surface chemistry in relation to the strength and fracture of silicate glasses; high-speed photographic investigations of the dynamic localized loading of some oxide glasses; a correction for measurements of contact area using Newton's rings; envionmentally enhanced crack growth; fatigue in glass; behavior of flaws in fused silica fibers; fracture toughness of chalcogenide glasses and glass-ceramics; fracture analysis of glass surfaces; and fracture mechanics parameters for glasses - a compilation and correlation.

  4. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  5. IMPACT STRENGTH OF GLASS AND GLASS CERAMIC

    SciTech Connect

    Bless, S.; Tolman, J.

    2009-12-28

    Strength of glass and glass ceramic was measured with a bar impact technique. High-speed movies show regions of tensile and compressive failure. The borosilicate glass had a compressive strength of at least 2.2 GPa, and the glass ceramic at least 4 GPa. However, the BSG was much stronger in tension than GC. In ballistic tests, the BSG was the superior armor.

  6. Chemical Principles Revisited: The Chemistry of Glass.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)

  7. Chemical Principles Revisited: The Chemistry of Glass.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)

  8. Purification of anti-MUC1 antibodies by peptide mimotope affinity chromatography using peptides derived from a polyvalent phage display library.

    PubMed

    Smith, Richard G; Missailidis, Sotiris; Price, Michael R

    2002-01-05

    A polyvalent, lytic phage display system (T7Select415-1b) displaying a random peptide library has been investigated for its ability to discover novel mimotopes reactive with the therapeutic monoclonal antibody C595. Sequence analysis of enriched phage lead to the identification of a predominant sequence RNREAPRGKICS, and two other consensus sequences RXXP and RXP. The novel synthetic peptide RNREAPRGKICS was linked to beaded agarose and the performance as a mimotope affinity chromatography matrix evaluated. Antibody purified using the novel matrix was found to be of higher specific reactivity than antibody purified using the conventional epitope matrix (peptide APDTRPAPG). The RNREAPRGKICS peptide binding to C595 demonstrated a higher equilibrium association constant (K(A)=0.75 x 10(6)) than the epitope peptide (K(A)=0.16 x 10(6)). Circular dichroism showed that the novel peptide had a more highly ordered structure at 4 degrees C and room temperature, than the epitope peptide.

  9. Repairing cracked glass

    NASA Technical Reports Server (NTRS)

    Helman, D. D.; Holt, J. W.; Smiser, L. V.

    1979-01-01

    Filing procedure consisting of machined lightweight fused-silica tiles coated with thin-layer of borosilicate glass produces homogeneous seal in thin glass. Procedure is useful in repairing glass envelopes, X-ray tub windows, Dewar flasks, and similar thin glass objects.

  10. Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals.

    PubMed

    Kerisit, Sebastien; Bylaska, Eric J; Massey, Michael S; McBriarty, Martin E; Ilton, Eugene S

    2016-11-21

    Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation states (VI, V, and IV) and charge compensation schemes were varied. Simulated trajectories were used to calculate the U LIII-edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO2), and constrained the S0(2) parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to addition of one electron into the solid (-1 H(+), +1 e(-)). The ability of AIMD to model higher energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with

  11. The Effect of a Polyvalent Antivenom on the Serum Venom Antigen Levels of Naja sputatrix (Javan Spitting Cobra) Venom in Experimentally Envenomed Rabbits.

    PubMed

    Yap, Michelle Khai Khun; Tan, Nget Hong; Sim, Si Mui; Fung, Shin Yee; Tan, Choo Hock

    2015-10-01

    The treatment protocol of antivenom in snake envenomation remains largely empirical, partly due to the insufficient knowledge of the pharmacokinetics of snake venoms and the effects of antivenoms on the blood venom levels in victims. In this study, we investigated the effect of a polyvalent antivenom on the serum venom antigen levels of Naja sputatrix (Javan spitting cobra) venom in experimentally envenomed rabbits. Intravenous infusion of 4 ml of Neuro Polyvalent Snake Antivenom [NPAV, F(ab')2 ] at 1 hr after envenomation caused a sharp decline of the serum venom antigen levels, followed by transient resurgence an hour later. The venom antigen resurgence was unlikely to be due to the mismatch of pharmacokinetics between the F(ab')2 and venom antigens, as the terminal half-life and volume of distribution of the F(ab')2 in serum were comparable to that of venom antigens (p > 0.05). Infusion of an additional 2 ml of NPAV was able to prevent resurgence of the serum venom antigen level, resulting in a substantial decrease (67.1%) of the total amount of circulating venom antigens over time course of envenomation. Our results showed that the neutralization potency of NPAV determined by neutralization assay in mice may not be an adequate indicator of its capability to modulate venom kinetics in relation to its in vivo efficacy to neutralize venom toxicity. The findings also support the recommendation of giving high initial dose of NPAV in cobra envenomation, with repeated doses as clinically indicated in the presence of rebound antigenemia and symptom recurrence.

  12. Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals

    SciTech Connect

    Kerisit, Sebastien; Bylaska, Eric J.; Massey, Michael S.; McBriarty, Martin E.; Ilton, Eugene S.

    2016-11-21

    Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking, yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation state (VI, V, and IV) and charge compensation scheme (CCS) were varied. Simulated trajectories were used to calculate the U LIII-edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO2), and constrained the S02 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to injection of one electron into the solid (–1 H+, + 1 e-). The ability of AIMD to model higher-energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with

  13. Inverted glass harp

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel B.; Rosenberg, Brian J.

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions.

  14. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  15. Picture Wall (Glass Structures)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Photo shows a subway station in Toronto, Ontario, which is entirely glass-enclosed. The all-glass structure was made possible by a unique glazing concept developed by PPG Industries, Pittsburgh, Pennsylvania, one of the largest U.S. manufacturers of flat glass. In the TVS glazing system, transparent glass "fins" replace conventional vertical support members used to provide support for wind load resistance. For stiffening, silicone sealant bonds the fins to adjacent glass panels. At its glass research center near Pittsburgh, PPG Industries uses the NASTRAN computer program to analyze the stability of enclosures made entirely of glass. The company also uses NASTRAN to simulate stresses on large containers of molten glass and to analyze stress effects of solar heating on flat glass.

  16. Reaction cured glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Leiser, D. B.; Katvala, V. W. (Inventor)

    1978-01-01

    The invention relates to reaction cured glass and glass coatings prepared by reacting a compound selected from the group consisting of silicon tetraboride, silicon hexaboride, other boron silicides, boron and mixtures with a reactive glass frit composed of a porous high silica borosilicate glass and boron oxide. The glassy composites of the present invention are useful as coatings on low density fibrous porous silica insulations used as heat shields and for articles such as reaction vessels that are subjected to high temperatures with rapid heating and cooling and that require resistance to temperature and repeated thermal shock at temperatures up to about 1482C (2700PF).

  17. 6. Looking glass aircraft in the project looking glass historic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Looking glass aircraft in the project looking glass historic district. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Avenue between Comstat Drive & Nightwatch Avenue, Offutt Air Force Base, Bellevue, Sarpy County, NE

  18. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  19. Failure in glass

    NASA Technical Reports Server (NTRS)

    Keeton, S. C.

    1972-01-01

    Review of state of the art concerning glass failure mechanisms and fatigue theories discusses brittle fracture in glass, fatigue mechanisms, fatigue behavior, environmental effects on failure rate, and aging.

  20. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  1. Control of high level radioactive waste-glass melters. Part 5, Modelling of complex redox effects

    SciTech Connect

    Bickford, D.F.; Choi, A.S.

    1991-12-31

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  2. Weakly supervised glasses removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Zhou, Yisu; Wen, Lijie

    2015-03-01

    Glasses removal is an important task on face recognition, in this paper, we provide a weakly supervised method to remove eyeglasses from an input face image automatically. We choose sparse coding as face reconstruction method, and optical flow to find exact shape of glasses. We combine the two processes iteratively to remove glasses more accurately. The experimental results reveal that our method works much better than these algorithms alone, and it can remove various glasses to obtain natural looking glassless facial images.

  3. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  4. Glass in Class

    ERIC Educational Resources Information Center

    Greaves, Neville

    2005-01-01

    Glass is reviewed from fabrication to application, laying emphasis on the wide-ranging physics involved. This begins with liquids and solids and the way in which glasses are defined and can be demonstrated in the classroom. At the atomic level the regular structure of crystals and their irregular counterparts in glasses are explained through…

  5. Glass in Class

    ERIC Educational Resources Information Center

    Greaves, Neville

    2005-01-01

    Glass is reviewed from fabrication to application, laying emphasis on the wide-ranging physics involved. This begins with liquids and solids and the way in which glasses are defined and can be demonstrated in the classroom. At the atomic level the regular structure of crystals and their irregular counterparts in glasses are explained through…

  6. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  7. Infrared Transparent Selenide Glasses.

    DTIC Science & Technology

    1997-03-14

    crystalline halides, silica and fluoride glasses, and chalcogenide glasses. Crystalline halides undergo plastic deformation and are hygroscopic...mainly for applications operating at wavelengths less than 3 microns. Silicate and fluoride glasses have been developed as optical fiber amplifiers...activity. Preferred rare earths includes praseodymium, neodymium, erbium, cerium , dysprosium, holmium, thulium, terbium, ytterbium or mixtures of

  8. Apollo 17 ropy glasses

    NASA Technical Reports Server (NTRS)

    Fruland, R. M.; Morris, R. V.; Mckay, D. S.; Clanton, U. S.

    1977-01-01

    Ropy glasses are a major soil component in the Apollo 17 gray soils 74240 and 74260. These particles form a distinct morphological type characterized by a wide range of dynamic shapes with a diagnostic sorted and welded fine-grained debris coating. Apollo 17 ropy glasses show abundant evidence for shock. Shocked lithic and mineral inclusions, lack of any igneous textures, and lechatelierite, all indicate an impact origin. A striking similarity is observed between the lunar ropy glasses and the glass impact bombs (Flaedle) of the Ries Crater in Germany. A highland basaltic composition was observed for the Apollo 17 ropy glasses in contrast to the KREEP composition of ropy glasses from the Apollo 12 and Apollo 14 landing sites. Other workers have presented convincing evidence that ejecta from Tycho reached the Taurus-Littrow Valley, and these ropy glasses may represent Tycho ejecta. However, the close stratigraphic association of the ropy glasses with the greater than 3.5 b.y. old orange glass suggests the ropy glasses may be too old to be Tycho ejecta, which should be only about 100 m.y. old. If this is the case, the ropy glasses represent impact glasses from a very old impact in an unknown highlands source area.

  9. Development of an Effective Polyvalent Vaccine against both Marek's and Newcastle Diseases Based on Recombinant Marek's Disease Virus Type 1 in Commercial Chickens with Maternal Antibodies

    PubMed Central

    Sonoda, Kengo; Sakaguchi, Masashi; Okamura, Hiroshi; Yokogawa, Kenji; Tokunaga, Eiji; Tokiyoshi, Sachio; Kawaguchi, Yasushi; Hirai, Kanji

    2000-01-01

    An earlier report (M. Sakaguchi et al., Vaccine 16:472–479, 1998) showed that recombinant Marek's disease virus type 1 (rMDV1) expressing the fusion (F) protein of Newcastle disease virus (NDV-F) under the control of the simian virus 40 late promoter [rMDV1-US10L(F)] protected specific pathogen-free chickens from NDV challenge, but not commercial chickens with maternal antibodies against NDV and MDV1. In the present study, we constructed an improved polyvalent vaccine based on MDV1 against MDV and NDV in commercial chickens with maternal antibodies. The study can be summarized as follows. (i) We constructed rMDV1 expressing NDV-F under the control of the MDV1 glycoprotein B (gB) promoter [rMDV1-US10P(F)]. (ii) Much less NDV-F protein was expressed in cells infected with rMDV1-US10P(F) than in those infected with rMDV1-US10L(F). (iii) The antibody response against NDV-F and MDV1 antigens of commercial chickens vaccinated with rMDV1-US10P(F) was much stronger and faster than with rMDV1-US10L(F), and a high level of antibody against NDV-F persisted for over 80 weeks postvaccination. (iv) rMDV1-US10P(F) was readily reisolated from the vaccinated chickens, and the recovered viruses were found to express NDV-F. (v) Vaccination of commercial chickens having maternal antibodies to rMDV1-US10P(F) completely protected them from NDV challenge. (vi) rMDV1-US10P(F) offered the same degree of protection against very virulent MDV1 as the parental MDV1 and commercial vaccines. These results indicate that rMDV1-US10P(F) is an effective and stable polyvalent vaccine against both Marek's and Newcastle diseases even in the presence of maternal antibodies. PMID:10708438

  10. Oxynitride glass production procedure

    DOEpatents

    Weidner, Jerry R.; Schuetz, Stanley T.; O'Brien, Michael H.

    1991-01-01

    The invention is a process for the preparation of high quality oxynitride glasses without resorting to high pressures. Nitrogen-containing compounds such as Si.sub.3 N.sub.4 are first encapsulated in a low melting temperature glass. Particles of the encapsulated nitrogen-containing compound are mixed with other oxide glass-formers and melted in an atmosphere of flowing nitrogen and in the presence of buffering gas to form the oxynitride glass. Glasses containing up to 15 at % nitrogen have been prepared by this method.

  11. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  12. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  13. Developing photorefractive glass composites

    NASA Astrophysics Data System (ADS)

    Duignan, Jason P.; Taylor, Lesley L.; Cook, Gary

    2002-01-01

    The production of a transparent photorefractive glass composite would offer a useful alternative to bulk crystal materials. We aim to produce such a material by incorporating single domain photorefractive Fe:LiNbO3 particles into a refractive index matched glass host. This glass host is also required to be chemically compatible with the photorefractive material. This compatibility will ensure that the Fe:LiNbO3 particles added to the host glass will remain in the intended crystalline phase and not simply dissolve in the glass. Due to the high refractive index of the Fe:LiNbO3 (no equals 2.35 532 nm), producing a chemically compatible and refractive index matched glass host is technically challenging. By examining common Tellurite, Bismuthate, and Gallate glasses as a starting point and then developing new and hybrid glasses, we have succeeded in producing a chemically compatible glass host and also a refractive index matched glass host. We have produced preliminary glass composite samples which contain a large amount of Fe:LiNbO3. We are currently able to retain nearly 90% of the incorporated Fe:LiNbO3 in the correct crystalline phase, a substantial improvement over previous work conducted in this area in recent years. In this paper we present our progress and findings in this area.

  14. Acoustics of glass harmonicas

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    2004-05-01

    Glass musical instruments are probably as old as glassmaking. At least as early as the 17th century it was discovered that wine glasses, when rubbed with a wet finger, produced a musical tone. A collection of glasses played in this manner is called a glass harp. Another type of glass harmonica, called the armonica by its inventor Benjamin Franklin, employs glass bowls or cups turned by a horizontal axle, so the performer need only touch the rim of the bowls as they rotate to set them into vibration. We discuss the modes of vibration of both types of glass harmonica, and describe the different sounds that are emitted by rubbing, tapping, or bowing them. Rubbing with a wet finger tends to excite only the (2,0) mode and its harmonics through a ``stick-slip'' process, while tapping excites the other modes as well.

  15. [Assessment of Three Risk Adjustment Systems as Predictors of the Consumption of Medicines and Medical Supplies at Polyvalent Hospitalization Units. Spain].

    PubMed

    Mera Flores, Ana María; Del Busto Bonifaz, Sebastián; Bernal Sobrino, José Luis

    2016-09-26

    The use of medicines and medical supplies is a significant component of health expenditure, linked to healthcare quality and efficient resource allocation. This study aimed to evaluate three risk adjustment systems predictive power of the consumption of medicines and medical supplies at polyvalent hospitalization units (PHU). This is an observational, retrospective study of the resources utilization in PHU between 2010 and 2013. We fitted linear regression models and evaluated their goodness of fit for three different predictors: Charlson Comorbidity Index (CCI), All Patients DRG (AP-DRG) and All Patients Refined DRG (APR-DRG) relative weights, and each one of them corrected by the length of stay. We analyzed hospitalization episodes included in the Minimum Basic Data Set (MBDS) from Fuenlabrada University Hospital. Data about the use of medicines and medical supplies were obtained from pharmacy and supply chain management information systems. Significant correlation was found between the annual consumption and the predictors considered (r=0,879 for CCI; r=0,622 for AP-DRG and r=0,514 for APR-DRG). The CCI corrected by length of stay was the variable that best fit presented (Ṝ2=0,863). The best predictive ability of CCI indicates that resource utilization depends more of the concurrent presence of additional pathology than the case mix calculated for iso-resource groups.

  16. A retrospective study of use of polyvalent anti-snake venom and risk factors for mortality from snake bite in a tertiary care setting

    PubMed Central

    Pore, Shraddha M.; Ramanand, Sunita J.; Patil, Praveenkumar T.; Gore, Alka D.; Pawar, Mayur P.; Gaidhankar, Smita L.; Ghanghas, Ravi R.

    2015-01-01

    Aims: Envenomation with poisonous snakes is associated with considerable morbidity and mortality. The present study was undertaken with the objectives of assessing anti-snake venom (ASV) use, early adverse reactions to ASV, premedication and clinical outcomes in snake bite patients. Association of various risk factors (age, gender, dose of ASV, time gap between snake bite and ASV administration, use of mechanical ventilation and type of snake bite) with mortality was also assessed. Settings and Design: This retrospective study was conducted at two Tertiary Care Teaching Hospitals. Subjects and Methods: The medical records of 176 patients of snake bite with documented use of ASV were retrospectively analyzed to retrieve relevant data. Statistical Analysis: Descriptive statistics was used to express results about ASV use, early adverse reactions to ASV, premedication and clinical outcomes. Univariate and multivariate analysis was performed to find out significant risk factors associated with mortality. Results: The main indication for ASV was vasculotoxic snake bite (75%) followed by neurotoxic snake bite (16%). Mean dose of ASV was 18.63 ± 14.52 vials. Prophylactic premedication with corticosteroids alone or in combination with antihistaminic was used in more than 70% patients. Early adverse reactions to ASV were seen in 4% patients. Neurotoxic snake bite was a significant risk factor associated with mortality in multivariate analysis. Conclusions: Neurotoxic snake bite is an independent predictor of mortality in snake bite patients. Currently used polyvalent ASV may be less effective in treating neurotoxic snake bite. PMID:26069363

  17. Detection of Banana mild mosaic virus and Banana virus X by polyvalent degenerate oligonucleotide RT-PCR (PDO-RT-PCR).

    PubMed

    Teycheney, Pierre-Yves; Acina, Isabelle; Lockhart, Benham E L; Candresse, Thierry

    2007-06-01

    Viruses are important constraints to the movement and propagation of plant germplasm, especially for vegetatively propagated crops such as banana and plantain. Their control relies primarily on the use of virus-free plant material, whose production and certification requires sensitive and reliable detection methods. An existing polyvalent degenerate oligonucleotide RT-PCR (PDO-RT-PCR) assay was adapted to the detection of Banana mild mosaic virus (BanMMV) and Banana virus X, two Flexiviridae infecting Musa spp. PDO inosine-containing primers were found to be well suited to the detection of BanMMV, despite its high molecular diversity, but not to that of the highly conserved BVX, for which species-specific primers were designed. Sampling and sample processing steps were optimized in order to avoid nucleic acid purification prior to the reverse transcription step. A polyclonal anti-BanMMV antiserum was raised and successfully used for the immunocapture (IC) of BanMMV viral particles from leaf extracts, leading to the development of a PDO-IC-RT-nested PCR assay. Although the anti-BanMMV antiserum could to some extent recognize BVX viral particles, direct binding (DB) was shown to be a more efficient method for processing BVX-infected samples and a PDO-DB-RT-nested PCR assay was developed for the detection of BVX from leaf extracts.

  18. Acute hypersensitivity reaction to Crotalidae polyvalent immune Fab (CroFab) as initial presentation of galactose-α-1,3-galactose (α-gal) allergy.

    PubMed

    Rizer, Justin; Brill, Kaitlin; Charlton, Nathan; King, Joshua

    2017-08-01

    Crotalidae polyvalent immune Fab antivenom (CroFab), commonly used for the treatment of clinically significant North American crotalinae envenomation, is generally well-tolerated. A novel form of anaphylaxis due to an IgE antibody response to the mammalian oligosaccharide galactose-α-1,3-galactose (α-gal) has been established following red-meat consumption as well as IV administration of cetuximab, which contain the α-gal epitope. We present a case of α-gal allergy discovered after acute hypersensitivity reaction to FabAV. A 61-year-old healthy female was bitten on her left ankle by Agkistrodon contortrix. Given the patient's rapid progression of pain and swelling, she was given FabAV. During infusion of FabAV, she developed diffuse hives over her entire body and itching, but denied respiratory or gastrointestinal symptoms and her vital signs remained stable. The FabAV was immediately discontinued and she received intravenous diphenhydramine and famotidine with gradual resolution of symptoms. On further discussion, she denied a history of α-gal or papaya allergy but rarely ate red meat and endorsed sustaining frequent tick bites. Subsequent antibody testing was significant for an α-1,3-galactose IgE concentration of 45,000 U/L (normal <3500 U/L), confirming α-gal allergy. To our knowledge, this is the first report of FabAV hypersensitivity associated with an underlying α-gal allergy.

  19. Geographical variability of the venoms of four populations of Bothrops asper from Panama: Toxicological analysis and neutralization by a polyvalent antivenom.

    PubMed

    Vélez, Sara María; Salazar, Marcos; Acosta de Patiño, Hildaura; Gómez, Leandra; Rodriguez, Abdiel; Correa, David; Saldaña, Julio; Navarro, Deyvi; Lomonte, Bruno; Otero-Patiño, Rafael; Gutiérrez, José María

    2017-04-06

    Bothrops asper is the medically most important venomous snake in Central America. In Panama, the country having the highest incidence of snakebites in Latin America, B. asper is widely distributed throughout the country and is responsible for the vast majority of snakebites. This study was performed to analyze whether there are variations in the toxicological profile and in some biochemical parameters between the venoms of B. asper from four different regions in Panama. The venoms showed a similar profile of lethal, hemorrhagic, in vitro coagulant, defibrinogenating, edema-forming, myotoxic and indirect hemolytic activities, with subtle quantitative variations between samples of some regions. The venoms also had similar SDS-PAGE patterns and reverse phase HPLC profiles. A polyvalent antivenom manufactured in Costa Rica, and regularly used in Panama, was effective in the neutralization of lethal activity of the venoms of the four populations, with Mean Effective Doses (ED50) ranging from 5.98 to 9.72 mg venom/mL antivenom. In agreement, a widespread pattern of cross-reactivity between this antivenom and the four venoms was observed by immunoblotting. Overall, results highlight the lack of marked differences between the venoms of the various populations of B. asper in Panama, and that the antivenom from Costa Rica is effective in neutralizing lethality.

  20. Glass and glass-ceramic photonic systems

    NASA Astrophysics Data System (ADS)

    Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio

    2017-02-01

    The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.

  1. Metal Halide Optical Glasses.

    DTIC Science & Technology

    1988-01-01

    HEAVY METAL FLUORIDE GLASSES C. T. Moynihan, R. Mossadegh and S. N. Crichton Materials Engineering Department, Rensselaer Polytechnic Institute Troy...and Tesar, A. A., J. Am. Ceram. Soc., 67, p. C-164 (1984). 11. Crichton , S. N., Mossadegh, R., Schroeder, J., and Moynihan, C. T., unpublished data. 12...FLUORIDE GLASSES C. T. Moynihan, S. M. Opalka, R. Mossadegh, S. N. Crichton and A. J. Bruce Center for Glass Science and Technology Materials Engineering

  2. Diamond turning of glass

    SciTech Connect

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  3. Reversing Glass Wettability

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Smith, J. E., Jr.; Kaukler, W. F.

    1985-01-01

    Treatment reverses wettability of glassware: Liquids that normally wet glass no longer do, and those that do not wet glass are made to do so. Useful in research on container effects in nucleation and growth of secondary phase from solution. Treatment consists of spreading 3 percent (by weight) solution of silicone oil in hexane isomers over glass, drying in air, and curing at 300 degrees C in vacuum for one hour.

  4. Fibre glass induced synovitis.

    PubMed Central

    Cleland, L G; Vernon-Roberts, B; Smith, K

    1984-01-01

    Chronic synovitis developed in the dorsal extensor sheath of the hand of a 25-year-old manufacturer of fibre glass reinforced boats and surfboards . Particles found in synovial fluid aspirates were similar in morphology and elemental content to unused fibre glass and particles found in dust from the workshop floor. It was concluded that hard disc grinding required during manufacture resulted in percutaneous implantation of small glass particles, leading to chronic synovitis and effusion. Images PMID:6742919

  5. Apollo 15 green glasses.

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Reid, A. M.; Warner, J. L.; Brown, R. W.

    1973-01-01

    The samples analyzed include 28 spheres, portions of spheres, and angular fragments from soil 15101. Emerald green glasses from other soils are identical to those from 15101. The composition of the green glass is unlike that of any other major lunar glass group. The Fe content is comparable to that in mare basalts, but Ti is much lower. The Mg content is much higher than in most lunar materials analyzed to date, and the Cr content is also high. The low Al content is comparable to that of mare basalt glasses.

  6. Chalcogenide glass microsphere laser.

    PubMed

    Elliott, Gregor R; Murugan, G Senthil; Wilkinson, James S; Zervas, Michalis N; Hewak, Daniel W

    2010-12-06

    Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When varying the pump power, changes in the output spectrum suggest nonlinear and/or thermal effects have a strong effect on laser action.

  7. Drugstore Reading Glasses

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    2006-03-01

    The occasion for this paper was my reading of a paper in the February 2005 issue of TPT. As one gets older the near point of the eye begins to recede.2 This is called presbyopia.3 An alternative to purchasing glasses from an optometrist is to purchase an inexpensive pair of reading glasses in a pharmacy. The pharmacy has these glasses ordered by diopters corresponding to the strength of the lens needed for a particular presbyopic eye. The glasses are, of course, not available for myopic eyes.

  8. Photoprotection: clothing and glass.

    PubMed

    Almutawa, Fahad; Buabbas, Hanan

    2014-07-01

    Ultraviolet (UV) radiation (UVR) has well-known adverse effects on the skin and eyes. Little attention is given to physical means of photoprotection, namely glass, window films, sunglasses, and clothing. In general, all types of glass block UV-B. For UV-A, the degree of transmission depends on the type, thickness, and color of the glass. Adding window films to glass can greatly decrease the transmission of UV-A. Factors that can affect the transmission of UVR through cloth include tightness of weave, thickness, weight, type of fabrics, laundering, hydration, stretch, fabric processing, UV absorbers, color, and fabric-to-skin distance.

  9. Glass--Sand + Imagination

    NASA Astrophysics Data System (ADS)

    Kolb, Kenneth E.; Kolb, Doris K.

    2000-07-01

    Glass is older than recorded history, and yet it is as new as tomorrow! How, when, or where man first learned to make glass is not known, but we do know that the ancient Egyptians were making glass articles as early as 2,600 B.C.E. (The making of glass beads may have begun as much as 3000 years earlier.) They used it to make jewelry and luxury items, such as decorative bowls and perfume bottles, available only to the wealthy.

  10. Cholera toxin-B (ctxB) antigen expressing Salmonella Typhimurium polyvalent vaccine exerts protective immune response against Vibrio cholerae infection.

    PubMed

    Vishwakarma, Vikalp; Sahoo, Sushree Sangita; Das, Susmita; Ray, Shilpa; Hardt, Wolf-Dietrich; Suar, Mrutyunjay

    2015-04-08

    Live attenuated vaccines are cost effective approach for preventing a broad range of infectious diseases, and thus are of great interest. However, immune-defects can predispose the patient to infections by the vaccine candidate itself. So far, few live vaccine candidates have been designed specifically for immune compromised individuals. Recently, we reported a new Salmonella Typhimurium Z234-vaccine strain (Periaswamy et al., PLoS ONE 2012;7:e45433), which was specifically attenuated in the NADPH-oxidase deficient host. In the present study, the Z234-vaccine strain was further engineered to express heterologous antigen (Vibrio cholerae toxin antigen subunit-B, i.e. CtxB) with the intention of creating a vector for simultaneous protection against Cholera and Salmonellosis. The primary aim of this study was to ensure the expression of CtxB antigen by the recombinant vaccine strain Z234-pMS101. The antigen CtxB was expressed through Z234 as a fusion protein with N-terminal signal sequence of Salmonella outer protein (SopE), an effector protein from Salmonella under the control of SopE promoter. The CtxB-expressing plasmid construct pMS101 (pM968-pSopE-ctxB) was found to be stable both in vitro and in vivo. In an oral mouse infection model, the vaccine strain Z234-pMS101 efficiently colonized the host gut. The extent of protection was confirmed after challenging the immunized hosts with live V. cholerae. Vaccinated mice showed reduced gut colonization by V. cholerae. Further assessment of immunological parameters supported the possibility of conferring effective immune response by Z234-pMS101 vaccine strain. Overall, the Z234-pMS101 vaccine strain showed potential as a promising polyvalent vaccine candidate to protect against S. Typhimurium and V. cholerae infection simultaneously.

  11. Effect of preservatives on IgG aggregation, complement-activating effect and hypotensive activity of horse polyvalent antivenom used in snakebite envenomation.

    PubMed

    García, Mildred; Monge, María; León, Guillermo; Lizano, Sergio; Segura, Eduardo; Solano, Gabriela; Rojas, Gustavo; Gutiérrez, José María

    2002-06-01

    Intravenous administration of antivenoms is associated with early adverse reactions in a number of cases, but the causes of this phenomenon are still unclear. The effect of preservatives (phenol and thimerosal) on IgG aggregate and dimer formation, in vitro complement-activating effect and hypotensive activity of a whole IgG horse liquid polyvalent antivenom, produced by caprylic acid fractionation, was assessed. These parameters were studied since they have been associated with the development of early adverse reactions to the administration of antivenoms and human immunoglobulins. After a three-year storage period at 4 degrees C, antivenoms with preservatives had an increased content of IgG aggregates and dimers when compared with antivenom devoid of phenol and thimerosal. These observations correlate with a slight increment in the turbidity of preservative-containing antivenoms. The three antivenoms studied (formulation: no preservatives; with phenol and thimerosal; with thimerosal alone) activated human complement in vitro, with only minor quantitative differences among them. When antivenoms were administered as a bolus intravenous injection in rats, a rapid and prominent hypotension of short duration was observed after injection of phenol-containing antivenom, whereas such an effect was absent in antivenom free of preservative and in the one containing only thimerosal. Bolus injection of saline solution with phenol resulted in a similar hypotension, indicating that the effect is due to phenol. However, when phenol-containing antivenom was diluted 1:5 with saline solution before infusion, as occurs in the clinical use of this product, no hypotension was observed. Our results stress the need to evaluate the effects of preservatives on the physicochemical and pharmacological characteristics of antivenoms. Copyright 2002 The International Association for Biologicals. Published by Elsevier Science Ltd. All rights reserved.

  12. Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels.

    PubMed

    Kozak, J Ashot; Matsushita, Masayuki; Nairn, Angus C; Cahalan, Michael D

    2005-11-01

    The Mg2+-inhibited cation (MIC) current, believed to represent activity of TRPM7 channels, is found in lymphocytes and mast cells, cardiac and smooth muscle, and several other eukaryotic cell types. MIC current is activated during whole-cell dialysis with divalent-free internal solutions. Millimolar concentrations of intracellular Mg2+ (or other divalent metal cations) inhibit the channels in a voltage-independent manner. The nature of divalent inhibition and the mechanism of channel activation in an intact cell remain unknown. We show that the polyamines (spermine, spermidine, and putrescine) inhibit the MIC current, also in a voltage-independent manner, with a potency that parallels the number of charges. Neomycin and poly-lysine also potently inhibited MIC current in the absence of Mg2+. These same positively charged ions inhibited IRK1 current in parallel with MIC current, suggesting that they probably act by screening the head group phosphates on PIP2 and other membrane phospholipids. In agreement with this hypothesis, internal protons also inhibited MIC current. By contrast, tetramethylammonium, tetraethylammonium, and hexamethonium produced voltage-dependent block but no inhibition. We show that inhibition by internal polyvalent cations can be relieved by alkalinizing the cytosol using externally applied ammonium or by increasing pH in inside-out patches. Furthermore, in perforated-patch and cell-attached recordings, when intracellular Mg2+ is not depleted, endogenous MIC or recombinant TRPM7 currents are activated by cytosolic alkalinization and inhibited by acidification; and they can be reactivated by PIP2 following rundown in inside-out patches. We propose that MIC (TRPM7) channels are regulated by a charge screening mechanism and may function as sensors of intracellular pH.

  13. Charge Screening by Internal pH and Polyvalent Cations as a Mechanism for Activation, Inhibition, and Rundown of TRPM7/MIC Channels

    PubMed Central

    Kozak, J. Ashot; Matsushita, Masayuki; Nairn, Angus C.; Cahalan, Michael D.

    2005-01-01

    The Mg2+-inhibited cation (MIC) current, believed to represent activity of TRPM7 channels, is found in lymphocytes and mast cells, cardiac and smooth muscle, and several other eukaryotic cell types. MIC current is activated during whole-cell dialysis with divalent-free internal solutions. Millimolar concentrations of intracellular Mg2+ (or other divalent metal cations) inhibit the channels in a voltage-independent manner. The nature of divalent inhibition and the mechanism of channel activation in an intact cell remain unknown. We show that the polyamines (spermine, spermidine, and putrescine) inhibit the MIC current, also in a voltage-independent manner, with a potency that parallels the number of charges. Neomycin and poly-lysine also potently inhibited MIC current in the absence of Mg2+. These same positively charged ions inhibited IRK1 current in parallel with MIC current, suggesting that they probably act by screening the head group phosphates on PIP2 and other membrane phospholipids. In agreement with this hypothesis, internal protons also inhibited MIC current. By contrast, tetramethylammonium, tetraethylammonium, and hexamethonium produced voltage-dependent block but no inhibition. We show that inhibition by internal polyvalent cations can be relieved by alkalinizing the cytosol using externally applied ammonium or by increasing pH in inside-out patches. Furthermore, in perforated-patch and cell-attached recordings, when intracellular Mg2+ is not depleted, endogenous MIC or recombinant TRPM7 currents are activated by cytosolic alkalinization and inhibited by acidification; and they can be reactivated by PIP2 following rundown in inside-out patches. We propose that MIC (TRPM7) channels are regulated by a charge screening mechanism and may function as sensors of intracellular pH. PMID:16260839

  14. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection.

    PubMed

    Bragstad, Karoline; Vinner, Lasse; Hansen, Mette Sif; Nielsen, Jens; Fomsgaard, Anders

    2013-04-26

    The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA vaccine components. We found that pigs challenged with a virus homologous to the HA and NA DNA vaccine components were well protected from infection. In addition, heterologous challenge virus was cleared rapidly compared to the unvaccinated control pigs. Immunisation by electroporation induced HI antibodies >40 HAU/ml seven days after second vaccination. Heterologous virus challenge as long as ten weeks after last immunisation was able to trigger a vaccine antibody HI response 26 times higher than in the control pigs. The H3N2 DNA vaccine HA and NA genes also triggered an effective vaccine response with protective antibody titres towards heterologous H3N2 virus. The described influenza DNA vaccine is able to induce broadly protective immune responses even in a larger animal, like the pig, against both heterologous and homologous virus challenges despite relatively low HI titres after vaccination. The ability of this DNA vaccine to limit virus shedding may have an impact on virus spread among pigs which could possibly extend to humans as well, thereby diminishing the

  15. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    SciTech Connect

    De Jonghe, Lutgard C.; Ray, Hannah L.; Wang, Ruigang

    2008-12-03

    The structure and conductivity of cerium and lanthanum phosphate glasses and glass-ceramics were investigated. The effects of varying the metal to phosphate ratio in the glasses, doping LaP3O9 glasses with Ce, and recrystallization of CeP3O9 glasses, on the glasses' microstructure and total conductivity were investigated using XRD, SEM, and AC impedance techniques. Strong increases in conductivity occurred when the glasses were recrystallized: the conductivity of a cerium metaphosphate glass increased conductivity after recrystallization from 10-7.5 S/cm to 10-6 S/cm at 400oC.

  16. Lanthanoides in Glass and Glass Ceramics

    NASA Astrophysics Data System (ADS)

    Meinhardt, Jürgen; Kilo, Martin; Somorowsky, Ferdinand; Hopp, Werner

    2017-03-01

    Many types of glass contain lanthanoides; among them, special glass for optical applications is the one with the highest content of lanthanoides. The precise determination of the lanthanoides' concentration is performed by inductively coupled plasma-optical emission spectrometry (ICP-OES). However, up to now, there are no established standard processes guaranteeing a uniform approach to the lanthanoide analysis. The knowledge of the lanthanoides' concentrations is necessary on the microscale in some cases, especially if a suitable separation and recycling procedure is to be applied. Here, the analysis is performed by energy-dispersive X-ray (EDX) or wavelength-dispersive X-ray (WDX) analytics in the scanning electron microscope.

  17. Glasses and Contact Lenses

    MedlinePlus

    ... about special eyewear you can wear on the field. With glasses, you'll also want to find out how to clean them properly. And it helps if you have a glasses case and put them in it when you're not wearing them. The last thing you want is to sit on your ...

  18. Glasses and Contact Lenses

    MedlinePlus

    ... Real Lifesaver Kids Talk About: Coaches Glasses and Contact Lenses KidsHealth > For Kids > Glasses and Contact Lenses Print A A A What's in this ... together the way they should. But eyeglasses or contact lenses, also called corrective lenses, can help most ...

  19. Getting Started with Glass

    ERIC Educational Resources Information Center

    White, Heather

    2007-01-01

    The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety…

  20. Getting Started with Glass

    ERIC Educational Resources Information Center

    White, Heather

    2007-01-01

    The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety…

  1. Two hundred glass injuries.

    PubMed Central

    Bell, D

    1984-01-01

    Two hundred children with glass injuries were investigated; 48 were injured in falls through architectural glass and 87 by broken bottles. Nine children had serious lacerations--7 of which were sustained at home. Radiographs were important in diagnosing retained fragments but prophylactic antibiotics were unnecessary. Many injuries could have been prevented by more stringent safety measures. PMID:6465940

  2. Glass-Ampoule Breaker

    NASA Technical Reports Server (NTRS)

    Christianson, R. C.; Kaushik, Surender M.; Davis, Dennis D.

    1995-01-01

    Device breaks glass ampoule in repeatable manner and retains gaseous content so pressure of gas measured accurately. In addition, protects technician from gaseous contents, which can be hazardous. Broken glass and sample materials easily removed for disposal or analysis. Apparatus developed for use in experiments on compatibility of materials.

  3. Surface Conductive Glass.

    ERIC Educational Resources Information Center

    Tanaka, John; Suib, Steven L.

    1984-01-01

    Discusses the properties of surface-conducting glass and the chemical nature of surface-conducting stannic (tin) oxide. Also provides the procedures necessary for the preparation of surface-conducting stannic oxide films on glass substrates. The experiment is suitable for the advanced inorganic chemistry laboratory. (JN)

  4. Dramatic Stained Glass.

    ERIC Educational Resources Information Center

    Prater, Michael

    2002-01-01

    Describes an art project that is appropriate for students in fifth through twelfth grade in which they create Gothic-style stained-glass windows. Discusses how college students majoring in elementary education created stained-glass windows. Addresses how to adapt this lesson for younger students. (CMK)

  5. Polyvalent GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3GalNAcalpha1-->Ser/Thr (T alpha) as the most potent recognition factors involved in Maclura pomifera agglutinin-glycan interactions.

    PubMed

    Wu, Albert M

    2005-01-01

    The agglutinin isolated from the seeds of Maclura pomifera (MPA) recognizes a mucin-type disaccharide sequence, Galbeta1-->3GalNAc (T) on a human erythrocyte membrane. We have utilized the enzyme-linked lectinosorbent assay (ELLSA) and inhibition assay to more systematically analyze the carbohydrate specificity of MPA with glyco-recognition factors and mammalian Gal/GalNAc structural units in lectin-glycoform interactions. From the results, it is concluded that the high densities of polyvalent GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3GalNAcalpha1-->Ser/Thr (T(alpha)) glycotopes in macromolecules are the most critical factors for MPA binding, being on a nanogram basis 2.0 x 10(5), 4.6 x 10(4) and 3.9 x 10(4) more active than monovalent Gal, monomeric T and Tn glycotope, respectively. Other carbohydrate structural units in mammalian glycoconjugates, such as human blood group Sd (a+) related disaccharide (GalNAcbeta1-->4Gal) and Pk/P1 active disaccharide (Galalpha1-->4Gal) were inactive. These results demonstrate that the configurations of carbon-4 and carbon-2 are essential for MPA binding and establish the importance of affinity enhancement by high-density polyvalencies of Tn/T glycotopes in MPA-glycan interactions. The overall binding profile of MPA can be defined in decreasing order as high density of polyvalent Tn/T(alpha) (M.W. > 4.0 x 10(4)) > Tn-containing glycopeptides (M.W. < 3.0 x 10(3)) > monomeric T/Tn and P (GalNAcbeta1-->3Gal) > GalNAc > Gal > Man, L: ARA: , D: Fuc and Glc (inactive). Our findings should aid in the selection of this lectin for elucidating functions of carbohydrate chains in life processes and for applications in the biomedical sciences.

  6. Sublingual therapeutic immunization with a polyvalent bacterial preparation in patients with recurrent respiratory infections: immunomodulatory effect on antigen-specific memory CD4+ T cells and impact on clinical outcome

    PubMed Central

    Alecsandru, D; Valor, L; Sánchez-Ramón, S; Gil, J; Carbone, J; Navarro, J; Rodríguez, J J; Rodríguez-Sainz, C; Fernández-Cruz, E

    2011-01-01

    Recurrent respiratory tract infections (RRTIs) are common clinical conditions in individuals with alterations of the immune function. A prospective open pilot study in a cohort of patients with RRTIs has been performed to assess whether sublingual immunization with a polyvalent bacterial vaccine could exert an immunomodulatory effect on the antigen-specific immunological responses and have an impact on the clinical outcome. Seventeen patients with RRTIs were recruited. An oral polyvalent bacterial preparation (Bactek®) was administered to all patients daily for 6 months. Immunological assessment was performed at baseline and at the end of immunization. Immunological measurements included: T cell-specific proliferations of CD3+CD4+ and CD3+CD8+ to Bactek® antigens, total immunoglobulin levels, antibodies to pneumococcal polysaccharide and tetanus toxoid and B, T and natural killer (NK) cell subsets. There was a significant increase in the proliferative capacity of CD3+CD4+ T cells specific to Bactek® antigens at month 6 in comparison to baseline (P < 0·0001). A significant increase in total CD3+ T cells was also observed (P < 0·05). No significant differences were observed between baseline and month 6 in levels of total immunoglobulins, specific antibodies and B, T or NK cell subsets. A significant reduction in the patient's rate of RRTIs was observed compared with 1 year prior to initiation of therapy (P < 0·0001). The results demonstrate that long-term administration of a sublingual polyvalent bacterial preparation in patients with RRTIs exerts an immune stimulating effect on CD4+ T helper cell responses to bacterial antigens which could be associated with clinical benefit. PMID:21391984

  7. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  8. Photoprotection by window glass, automobile glass, and sunglasses.

    PubMed

    Tuchinda, Chanisada; Srivannaboon, Sabong; Lim, Henry W

    2006-05-01

    In daily activity, much time is spent indoors and in vehicles. Although the adverse effect of ultraviolet (UV) radiation is now well recognized and active public education programs on photoprotection have been undertaken, the role of window glass in photoprotection has been rarely addressed. It has been known for some time that window glass filters out UVB and transmits UVA and visible light. Recent developments in the glass industry have resulted in glass that provides broad UV protection without the historically associated loss of visible light transmission. Factors affecting UV-protective properties of glass are glass type, glass color, interleave between glass, and glass coating. In this article, photoprotection by window glass, automobile glass, and sunglasses is reviewed.

  9. Defense HLW Glass Degradation Model

    SciTech Connect

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  10. Effect of different glasses in glass bonded zeolite

    SciTech Connect

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-05-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing.

  11. Glass electrolyte composition

    DOEpatents

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  12. Glass electrolyte composition

    DOEpatents

    Kucera, Gene H.; Roche, Michael F.

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  13. Comparative study of the efficacy and safety of two polyvalent, caprylic acid fractionated [IgG and F(ab')2] antivenoms, in Bothrops asper bites in Colombia.

    PubMed

    Otero-Patiño, Rafael; Segura, Alvaro; Herrera, María; Angulo, Yamileth; León, Guillermo; Gutiérrez, José María; Barona, Jacqueline; Estrada, Sebastián; Pereañez, Andrés; Quintana, Juan Carlos; Vargas, Leidy J; Gómez, Juan Pablo; Díaz, Abel; Suárez, Ana María; Fernández, Jorge; Ramírez, Patricia; Fabra, Patricia; Perea, Monica; Fernández, Diego; Arroyo, Yobana; Betancur, Dalila; Pupo, Lady; Córdoba, Elkin A; Ramírez, C Eugenio; Arrieta, Ana Berta; Rivero, Alcides; Mosquera, Diana Carolina; Conrado, Nectty Lorena; Ortiz, Rosina

    2012-02-01

    The efficacy and safety of two polyvalent horse-derived antivenoms in Bothrops asper envenomings were tested in a randomized, double-blind, clinical trial performed in Colombia. Both antivenoms were manufactured from the same pool of hyperimmune plasma. Antivenom A was made of F(ab')2 fragments, generated by pepsin digestion and caprylic acid precipitation, whereas antivenom B consisted of whole IgG molecules produced by caprylic acid precipitation followed by ion-exchange chromatography. Besides the different nature of the active substance, antivenom B had higher protein concentration, slightly higher turbidity and aggregate content. No significant differences were observed in the efficacy of antivenoms. Both halted local and systemic bleeding (P = 0.40) within 6-12 h of treatment in 100% of the cases, and restored blood coagulation (P = 0.87) within 6-24 h in 84.7% of patients, and within 48 h in all of them, in agreement with restoration of plasma fibrinogen concentration. Venom concentrations in serum dropped significantly (P < 0.001), to very low levels, 1 h after antivenom infusion. Nevertheless, eight patients (11.1%), four for each antivenom, presented recurrence of venom antigenaemia at different times, from 6 to 96 h, with clinical significance (recurrent coagulopathy) only in one group B patient (2.9%). Serum creatine kinase (CK) activity was increased, as a consequence of local myonecrosis. There was no significant difference (P = 0.51) in the incidence of early adverse reactions to antivenom administration (28.9% for patients of group A and 20.6% for patients of group B), most of the reactions being mild, mainly cutaneous. The most frequent complications were cellulitis (16.7%), abscess formation (5.6%), acute renal failure (8.3%), and compartmental syndrome (5.6%). In conclusion, IgG and F(ab')2 antivenoms, prepared by caprylic acid fractionation, presented similar efficacy and safety profiles for the treatment of B. asper envenomings in Colombia

  14. Safety and cost-effectiveness of a clinical protocol implemented to standardize the use of Crotalidae polyvalent immune Fab antivenom at an academic medical center.

    PubMed

    Weant, Kyle A; Bowers, Rebecca C; Reed, Janelle; Braun, Kristopher A; Dodd, David M; Baker, Stephanie N

    2012-05-01

    To evaluate the safety and cost-effectiveness of a clinical protocol adopted in June 2006 that included a comprehensive, objective assessment of snake bite envenomations and standardized the use of Crotalidae polyvalent immune Fab antivenom (FabAV). Retrospective medical record review. Academic medical center that serves as the regional level I trauma center. Seventy-five adults treated with FabAV for snake envenomations in the emergency department between June 1, 2003, and June 1, 2009; 30 patients received treatment according to the protocol (treatment group), and 45 patients received treatment that did not adhere to the protocol (control group). Demographic and envenomation characteristics, as well as treatment details, were collected for all patients. In addition, information on quantity of FabAV vials required, length of hospital stay, and length of intensive care unit stay were compared between the treatment and control groups. In the treatment group, significantly fewer vials of FabAV were used (2.5 vs 4.727 vials, p=0.007). This decreased in usage correlated to a cost savings of approximately $2000/patient. Despite no significant difference in the severity of the envenomations between the two groups (p=0.379), the treatment group experienced a significantly shorter hospital length of stay (1.933 vs 2.791 days, p=0.030). No significant difference in the progression to fasciotomy or the development of allergic reactions was noted between the two groups. Use of a clinical protocol related to snake envenomations resulted in approximately two fewer vials of FabAV required for each patient. In addition, the treatment group experienced a shorter hospital length of stay without a corresponding increase in adverse events or envenomation progression. Data show that use of the protocol was cost-effective. The development of institution-specific multidisciplinary protocols regarding snake bite envenomations is recommended. Clinical pharmacists can play a vital role in

  15. Evaluation of head-of-bed elevation compliance in critically ill patients under mechanical ventilation in a polyvalent intensive care unit.

    PubMed

    Llaurado-Serra, M; Ulldemolins, M; Güell-Baró, R; Coloma-Gómez, B; Alabart-Lorenzo, X; López-Gil, A; Bodí, M; Rodriguez, A; Jiménez-Herrera, M F

    2015-01-01

    To evaluate head-of-bed elevation (HOBE) compliance in mechanically ventilated (MV) patients during different time periods, in order to identify factors that may influence compliance and to compare direct-observation compliance with checklist-reported compliance. A prospective observational study was carried out in a polyvalent Intensive Care Unit. All consecutive patients with MV and no contraindication for semi-recumbency were studied. HOBE was observed during four periods of one month each for one year, the first period being blinded. HOBE was measured with an electronic device three times daily. Main variables were HOBE, type of airway device, type of bed, nursing shift, day of the week and checklist-reported compliance. No patient characteristics were collected. During the four periods, 2639 observations were collected. Global HOBE compliance was 24.0%, and the median angle head-of-bed elevation (M-HOBE) was 24.0° (IQR 18.8-30.0). HOBE compliance and M-HOBE by periods were as follows: blinded period: 13.8% and 21.1° (IQR 16.3-24.4); period 1: 25.5% and 24.3° (IQR 18.8-30.2); period 2: 22.7% and 24.4° (IQR 18.9-29.6); and period 3: 31.4% and 26.7° (IQR 21.3-32.6) (p<0.001). An overestimation of 50-60% was found when comparing self-reported compliance using a checklist versus direct-observation compliance (p<0.001). Multivariate logistic regression analysis found the presence of an endotracheal tube (ET) and bed without HOBE measuring device to be independently associated to greater compliance (p<0.05). Although compliance increased significantly during the study period, it was still not optimal. Checklist-reported compliance significantly overestimated HOBE compliance. The presence of an ET and a bed without HOBE measuring device was associated to greater compliance. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  16. Efficacy of a polyvalent mastitis vaccine against Staphylococcus aureus on a dairy Mediterranean buffalo farm: results of two clinical field trials.

    PubMed

    Guccione, Jacopo; Pesce, Antonella; Pascale, Massimo; Salzano, Caterina; Tedeschi, Gianni; D'Andrea, Luigi; De Rosa, Angela; Ciaramella, Paolo

    2017-01-19

    vaccinations against S. aureus infections in MB, showing encouraging results regarding reduction in mastitis and somatic cell count; the polyvalent mastitis vaccine may be considered an additional tool for in-herd S aureus infection and should be associated to other control procedures to maximize its properties.

  17. Immune response after an experimental intramammary challenge with killed Staphylococcus aureus in cows and heifers vaccinated and not vaccinated with Startvac, a polyvalent mastitis vaccine.

    PubMed

    Piepers, S; Prenafeta, A; Verbeke, J; De Visscher, A; March, Ricard; De Vliegher, S

    2017-01-01

    An experimental trial was conducted to explore the effect of vaccination with a polyvalent vaccine against mastitis (Startvac) on the early immune response after experimental intramammary challenge with a heterologous killed Staphylococcus aureus strain. The effect of vaccination on milk production, clinical signs, quarter milk somatic cell count, milk polymorphonuclear neutrophilic leukocyte (PMN) concentration and viability, the concentration of antigen-specific antibodies [slime associated antigenic complex (SAAC) and J5] and their IgG1 and IgG2 subtypes in both serum and whey, and the antigen-specific IFN-γ, IL-4, and IL-17 production by blood lymphocytes after in vitro stimulation with S. aureus and Escherichia coli extracts were determined. A cohort of 8 clinically healthy end-term cows and heifers were conveniently selected, of which half was vaccinated with Startvac at 45 and 10 d before the expected calving date and half served as nonvaccinated control animals. At 15 d in milk, 2 contralateral quarters of each of the 8 animals were challenged with 2×10(9) cfu/mL of the formaldehyde-killed S. aureusC195strain. The 2 other quarters were infused with phosphate-buffered saline and served as control quarters. The increase in both quarter milk somatic cell count and PMN concentration and the drop in milk production after S. aureus inoculation was less pronounced in the vaccinates than in the nonvaccinates, reflecting a less severe inflammatory response. No significant differences in PMN viability between vaccinates and nonvaccinates could be demonstrated. The serum SAAC- and J5-specific antibody concentration significantly increased across the dry period in the vaccinated animals only. The whey concentration of SAAC-specific antibodies was significantly higher in vaccinates than in nonvaccinates at both 15 and 17 d in milk, independent from the challenge status of the quarters. No significant differences in the whey J5-specific antibody concentration were

  18. Glass for Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1984-01-01

    Report identifies four commercially available glasses as promising reflectors for solar concentrators. Have properties of high reflectance (80 to 96 percent), lower cost than first-surface silver metalization, and resistance to environmental forces.

  19. Glass formation in microgravity

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Day, D. E.

    1987-01-01

    An account is given of containerless glass-forming experiments conducted aboard the Space Shuttle in 1985, using a single-axis acoustic levitator furnace apparatus. An attempt was made to obtain quantitative evidence for the suppression of heterogeneous nucleation/crystallization in containerless melts under microgravity conditions, as well as to study melt homogenization in the absence of gravity-driven convection and assess the feasibility of laser fusion target glass microsphere preparation with a microgravity apparatus of the present type. A ternary calcia-gallia-silica glass thus obtained indicated a 2-3-fold increase in glass-formation tendency for this material composition in microgravity, by comparison with 1g.

  20. Seeing Glass Contractors Clearly.

    ERIC Educational Resources Information Center

    Deliberato, Jerry

    2003-01-01

    Offers seven tips for finding and working with an effective glass contractor. For example, schools should consider the company's reputation and longevity of service, and whether it has in-house engineering capabilities. (EV)

  1. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  2. Super ionic conductive glass

    DOEpatents

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  3. Super ionic conductive glass

    DOEpatents

    Susman, Sherman; Volin, Kenneth J.

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  4. Glass formation in microgravity

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Day, D. E.

    1987-01-01

    An account is given of containerless glass-forming experiments conducted aboard the Space Shuttle in 1985, using a single-axis acoustic levitator furnace apparatus. An attempt was made to obtain quantitative evidence for the suppression of heterogeneous nucleation/crystallization in containerless melts under microgravity conditions, as well as to study melt homogenization in the absence of gravity-driven convection and assess the feasibility of laser fusion target glass microsphere preparation with a microgravity apparatus of the present type. A ternary calcia-gallia-silica glass thus obtained indicated a 2-3-fold increase in glass-formation tendency for this material composition in microgravity, by comparison with 1g.

  5. Metallic glass composition

    DOEpatents

    Kroeger, Donald M.; Koch, Carl C.

    1986-01-01

    A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  6. Frangible glass canisters

    NASA Technical Reports Server (NTRS)

    Seifert, R.

    1972-01-01

    The need for a canister that can release its contents without disturbing the contents dynamically is discussed. The solution of this problem by the use of a frangible glass canister is considered. The basic theory applicable to frangible glass and the method of initiating a command flaw are discussed. A brief description of the test program and the results of a flight test are presented.

  7. Glass fiber insulation

    SciTech Connect

    Griffith, E.J.; Ngo, T.M.

    1993-06-29

    A composition for a glass fiber insulation is described comprising a loose mat of glass fibers having at least a portion of the surface coated with a water insoluble, non-hygroscopic, amorphous aluminum phosphate polymer having a molar ratio of Al[sub 2]O[sub 3] to P[sub 2]O[sub 5] of less than 1 and providing a substantial thermal resistance.

  8. Display innovations through glass

    NASA Astrophysics Data System (ADS)

    Hamilton, Lori L.

    2016-03-01

    Prevailing trends in thin, lightweight, high-resolution, and added functionality, such as touch sensing, continue to drive innovation in the display market. While display volumes grow, so do consumers’ need for portability, enhanced optical performance, and mechanical reliability. Technical advancements in glass design and process have enabled display innovations in these areas while supporting industry growth. Opportunities for further innovation remain open for glass manufacturers to drive new applications, enhanced functionality, and increased demand.

  9. Baseline LAW Glass Formulation Testing

    SciTech Connect

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  10. Method for making glass nonfogging

    DOEpatents

    Lord, David E.; Carter, Gary W.; Petrini, Richard R.

    1979-01-01

    A method for rendering glass nonfogging (to condensation fog) by sandwiching the glass between two electrodes such that the glass functions as the dielectric of a capacitor, a large alternating current (AC) voltage is applied across the electrodes for a selected time period causing the glass to absorb a charge, and the electrodes are removed. The glass absorbs a charge from the electrodes rendering it nonfogging. The glass surface is undamaged by application of the AC voltage, and normal optical properties are unaffected. This method can be applied to optical surfaces such as lenses, auto windshields, mirrors, etc., wherever condensation fog on glass is a problem.

  11. Lacerations from glass in childhood.

    PubMed Central

    Jackson, R H

    1981-01-01

    A study of 62 glass injuries to children serious enough to warrant admission to hospital showed that 30 were due to architectural glass in doors or windows and 26 of these occurred in houses. Glass bottles caused 12 injuries. Architectural glass produced more serious injuries affecting major arteries, nerves and tendons, and internal viscera. In view of the frequency and severity of architectural glass injuries in houses, safety glass in recommended for all glass doors, French windows, patio doors, and the lower parts of windows. Images FIG 1 FIG 2 FIG 3 PMID:6794836

  12. Perspective: The glass transition

    NASA Astrophysics Data System (ADS)

    Biroli, Giulio; Garrahan, Juan P.

    2013-03-01

    We provide here a brief perspective on the glass transition field. It is an assessment, written from the point of view of theory, of where the field is and where it seems to be heading. We first give an overview of the main phenomenological characteristics, or "stylised facts," of the glass transition problem, i.e., the central observations that a theory of the physics of glass formation should aim to explain in a unified manner. We describe recent developments, with a particular focus on real space properties, including dynamical heterogeneity and facilitation, the search for underlying spatial or structural correlations, and the relation between the thermal glass transition and athermal jamming. We then discuss briefly how competing theories of the glass transition have adapted and evolved to account for such real space issues. We consider in detail two conceptual and methodological approaches put forward recently, that aim to access the fundamental critical phenomenon underlying the glass transition, be it thermodynamic or dynamic in origin, by means of biasing of ensembles, of configurations in the thermodynamic case, or of trajectories in the dynamic case. We end with a short outlook.

  13. Containerless synthesis of interesting glasses

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1990-01-01

    One aspect of containerless glass experimentation was thoroughly examined: glass forming ability. It is argued that although containerless processing will abet glass formation, other ground-based methods can do the job better. However, these methods have limitations, such as sample dimensions and concomitant ability to make property measurements. Most importantly, perhaps, is the observation that glass properties are a function of preparation procedure. Thus, it seems as though there still is an argument for use of containerless processing for glass forming.

  14. On the strength of glasses

    PubMed Central

    Wisitsorasak, Apiwat; Wolynes, Peter G.

    2012-01-01

    The remarkable strength of glasses is examined using the random first order transition theory of the glass transition. The theory predicts that strength depends on elastic modulus but also on the configurational energy frozen in when the glass is prepared. The stress catalysis of cooperative rearrangements of the type responsible for the supercooled liquid’s high viscosity account quantitatively for the measured strength of a range of metallic glasses, silica, and a polymer glass. PMID:22988070

  15. Glass microsphere lubrication

    NASA Technical Reports Server (NTRS)

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  16. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    SciTech Connect

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  17. Glass matrix armor

    DOEpatents

    Calkins, Noel C.

    1991-01-01

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  18. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  19. Microexplosions in tellurite glasses

    NASA Astrophysics Data System (ADS)

    Sundaram, S. K.; Schaffer, C. B.; Mazur, E.

    Femtosecond laser pulses were used to produce localized damage in the bulk and near the surface of baseline, Al2O3-doped and La2O3-doped sodium tellurite glasses. Single or multiple laser pulses were non-linearly absorbed in the focal volume by the glass, leading to permanent changes in the material in the focal volume. These changes were caused by an explosive expansion of the ionized material in the focal volume into the surrounding material, i.e. a microexplosion. The writing of simple structures (periodic array of voxels, as well as lines) was demonstrated. The regions of microexplosion and writing were subsequently characterized using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and atomic force microscopy (AFM). Fingerprints of microexplosions (concentric lines within the region and a concentric ring outside the region), due to the shock wave generated during microexplosions, were evident. In the case of the baseline glass, no chemistry change was observed within the region of the microexplosion. However, Al2O3-doped and La2O3-doped glasses showed depletion of the dopant from the edge to the center of the region of the microexplosions, indicating a chemistry gradient within the regions. Interrogation of the bulk- and laser-treated regions using micro-Raman spectroscopy revealed no structural change due to the microexplosions and writing within these glasses.

  20. Glass strengthening and patterning methods

    SciTech Connect

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  1. Glass formation - A contemporary view

    NASA Technical Reports Server (NTRS)

    Uhlmann, D. R.

    1983-01-01

    The process of glass formation is discussed from several perspectives. Particular attention is directed to kinetic treatments of glass formation and to the question of how fast a given liquid must be cooled in order to form a glass. Specific consideration is paid to the calculation of critical cooling rates for glass formation, to the effects of nucleating heterogeneities and transients in nucleation on the critical cooling rates, to crystallization on reheating a glass, to the experimental determination of nucleation rates and barriers to crystal nucleation, and to the characteristics of materials which are most conducive to glass formation.

  2. Lattice model of glasses

    NASA Astrophysics Data System (ADS)

    Cellai, Davide; Fima, Andrzej Z.; Lawlor, Aonghus; Dawson, Kenneth A.

    2011-03-01

    Glass-forming liquids have been extensively studied in recent decades, but there is still no theory that fully describes these systems, and the diversity of treatments is in itself a barrier to understanding. Here we introduce a new simple model that (possessing both liquid-crystal and glass transition) unifies different approaches, producing most of the phenomena associated with real glasses, without loss of the simplicity that theorists require. Within the model we calculate energy relaxation, nonexponential slowing phenomena, the Kauzmann temperature, and other classical signatures. Moreover, the model reproduces a subdiffusive exponent observed in experiments of dense systems. The simplicity of the model allows us to identify the microscopic origin of glassification, leaving open the possibility for theorists to make further progress.

  3. Lattice model of glasses.

    PubMed

    Cellai, Davide; Fima, Andrzej Z; Lawlor, Aonghus; Dawson, Kenneth A

    2011-03-21

    Glass-forming liquids have been extensively studied in recent decades, but there is still no theory that fully describes these systems, and the diversity of treatments is in itself a barrier to understanding. Here we introduce a new simple model that (possessing both liquid-crystal and glass transition) unifies different approaches, producing most of the phenomena associated with real glasses, without loss of the simplicity that theorists require. Within the model we calculate energy relaxation, nonexponential slowing phenomena, the Kauzmann temperature, and other classical signatures. Moreover, the model reproduces a subdiffusive exponent observed in experiments of dense systems. The simplicity of the model allows us to identify the microscopic origin of glassification, leaving open the possibility for theorists to make further progress.

  4. Waste glass melting stages

    SciTech Connect

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600[degrees]C--1000[degrees]C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied.

  5. Waste glass melting stages

    SciTech Connect

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600{degrees}C--1000{degrees}C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied.

  6. Optical glasses and glass ceramics for large optical systems

    NASA Astrophysics Data System (ADS)

    Doehring, Thorsten; Hartmann, Peter; Morian, Hans F.; Jedamzik, Ralf

    2003-02-01

    Schott has delivered blanks for large lenses and prisms since many decades. Glass and glass ceramics objects with dimensions above 300 mm diameter or edge lengths will remain challenges for a glass manufacturer. This holds especially when the quality specifications exceed the standard level significantly. Optical glass blocks of more than half a ton have been produced with outstanding internal quality. Although the manufacturing process is well controlled there are restrictions on the availability of such objects (glass types, long process times e.g.). Implications of the glass production process are presented as a guideline for designers in order to avoid unnecessary time losses. The similarity of the production process of the glass ceramic ZERODUR to that of optical glasses results in high homogeneity with regard to the coefficient of thermal expansion as well as to the optical properties. This qualifies ZERODUR for even higher demanding applications especially when reproducibility in series production is required.

  7. Crystallization of fluorozirconate glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Doremus, Robert H.; Bruce, A. J.; Moynihan, C. T.

    1984-01-01

    The crystallization of a number of glasses of the fluorozirconate family has been studied (using powder X-ray diffraction and DSC) as a function of time and temperature of heating. The main crystalline phases were beta BaZrF6 and beta BaZr2F10. Stable and metastble transformations to the low-temperature alpha phases were also investigated. The size of crystallites in fully devitrified glasses was calculated (from line broadening of the X-ray diffraction peaks) to be about 60 nm.

  8. Transient nucleation in glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.

    1991-01-01

    Nucleation rates in condensed systems are frequently not at their steady state values. Such time dependent (or transient) nucleation is most clearly observed in devitrification studies of metallic and silicate glasses. The origin of transient nucleation and its role in the formation and stability of desired phases and microstructures are discussed. Numerical models of nucleation in isothermal and nonisothermal situations, based on the coupled differential equations describing cluster evolution within the classical theory, are presented. The importance of transient nucleation in glass formation and crystallization is discussed.

  9. Characterizing glass frits for slurries

    NASA Technical Reports Server (NTRS)

    Nakano, H. N.

    1979-01-01

    Glass frit can be mixed with consistently reproducible properties even from different batches of glass frit using technique to measure one quantity that determines integrated properties of frit for combination with given liquid.

  10. Containerless processing of fluoride glass

    NASA Technical Reports Server (NTRS)

    Doremus, Robert H.

    1990-01-01

    Ground-based experiments on glass formation, crystallization, surface tension, vaporization, and chemical durability of a zirconium-barium-lanthanum (ZBL) fluoride glass are summarized. In a container large, columnar grains grew out from the container-glass interface during cooling. The main crystalline phase was alpha BaZrF6. A ZBL glass sphere was levitated acoustically during Shuttle flight STS-11. The glass was melted and then cooled while being levitated (containerless). Crystallization in the recovered sample was very fine and mainly beta BaZr2F10, showing the influence of the container on the nucleation and microstructure of crystallization in the glass. Glass formation should be easier for a containerless glass than in a container.

  11. Containerless processing of fluoride glass

    NASA Technical Reports Server (NTRS)

    Doremus, Robert H.

    1990-01-01

    Ground-based experiments on glass formation, crystallization, surface tension, vaporization, and chemical durability of a zirconium-barium-lanthanum (ZBL) fluoride glass are summarized. In a container large, columnar grains grew out from the container-glass interface during cooling. The main crystalline phase was alpha BaZrF6. A ZBL glass sphere was levitated acoustically during Shuttle flight STS-11. The glass was melted and then cooled while being levitated (containerless). Crystallization in the recovered sample was very fine and mainly beta BaZr2F10, showing the influence of the container on the nucleation and microstructure of crystallization in the glass. Glass formation should be easier for a containerless glass than in a container.

  12. Barstow heliostat mirror glass characterization

    NASA Astrophysics Data System (ADS)

    Lind, M. A.; Buckwalter, C. Q.

    1980-09-01

    The technical analysis performed on the special run of low iron float glass for a ten megawatt solar thermal/electric pilot power plant is discussed. The topics that are addressed include the optical properties and the relative durability of the glass. Two optical parameters, solar transmittance and optical flatness, were measured as referenced in the specification and found to be better than the stated tolerances. The average solar transmittance exceeded 0.890 transmittance units. The glass also exhibited optical angular flatness deviations less than + or - 1.0 mrad as required. Both qualitative and quantitative accelerated weathering tests were performed on the glass in order to compare its durability to other soda lime float glass and alternate composition glasses of interest to the solar community. In both the quantitative leaching experiments and the more qualitative room temperature and elevated temperature water vapor exposure experiments the heliostat glass exhibited the same characteristics as the other soda lime silicate float glasses.

  13. Making Highly Pure Glass Rods

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1986-01-01

    Proposed quasi-containerless method for making glass rods or fibers minimizes contact between processing equipment and product. Method allows greater range of product sizes and shapes than achieved in experiments on containerless processing. Molten zone established in polycrystalline rod. Furnace sections separated, and glass rod solidifies between them. Clamp supports solid glass as it grows in length. Pulling clamp rapidly away from melt draws glass fiber. Fiber diameter controlled by adjustment of pulling rate.

  14. Glass and ceramics. [lunar resources

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1992-01-01

    A variety of glasses and ceramics can be produced from bulk lunar materials or from separated components. Glassy products include sintered regolith, quenched molten basalt, and transparent glass formed from fused plagioclase. No research has been carried out on lunar material or close simulants, so properties are not known in detail; however, common glass technologies such as molding and spinning seem feasible. Possible methods for producing glass and ceramic materials are discussed along with some potential uses of the resulting products.

  15. Evaluation of components of X-ray irradiated 7-valent pneumococcal conjugate vaccine and pneumococcal vaccine polyvalent and X-ray and gamma-ray irradiated acellular pertussis component of DTaP vaccine products

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rey, L.; Lee, Chi-Jen; Arciniega, Juan

    2004-09-01

    Samples of pneumococcal vaccine polyvalent, 7-valent pneumococcal conjugate vaccine, and two different diphtheria and tetanus toxoids and acellular pertussis vaccines adsorbed were irradiated with X-rays and/or gamma-rays (Co-60). Mouse IgG and IgM antibody responses (ELISA) for types 9V, 14, 18C, and 19F pneumococcal polysaccharides and conjugates indicated that the polysaccharides were more tolerant of the radiation than the conjugates. The mouse antibody response for the detoxified pertussis toxin (PT) antigen, filamentous hemagglutinin antigen (FHA), pertactin (PRN), and fimbriae types 2 and 3 (FIM) antigens for the appropriate vaccine type indicated that the antibody response was not significantly changed in the 25 kGy X-ray irradiated vaccines frozen in liquid nitrogen compared to the control vaccine.

  16. What Glass Ceiling?

    ERIC Educational Resources Information Center

    Lynch, Michael; Post, Katherine

    1996-01-01

    A recent study drawing on data from the Census Bureau and the Bureau of Labor Statistics suggests that the wage gap between men and women has virtually disappeared, and that the so-called "glass ceiling" results more from age and qualifications than from explicit discrimination. (SLD)

  17. Triad ''Metal - Enamel - Glass''

    NASA Astrophysics Data System (ADS)

    Mukhina, T.; Petrova, S.; Toporova, V.; Fedyaeva, T.

    2014-10-01

    This article shows how to change the color of metal and glass. Both these materials are self-sufficient, but sometimes used together. For example, enameling. In this case, the adhesion between metal substrate and stekloobraznae enamel layer, which was conducted on a stretching and a bend, was tested.

  18. "Stained Glass" Landscape Windows

    ERIC Educational Resources Information Center

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  19. Glass ceilings of professionalisation.

    PubMed

    Stott, Dawn L

    2016-04-01

    The term glass ceiling is a political term often used to describe an unbreakable barrier that isnot visible with the human eye, but it keeps minorities from rising up i.e. it is a barrier to minoritygroups, in the past (and sometimes still) for women, that stops them from achieving theirtrue potential.

  20. "Stained Glass" Landscape Windows

    ERIC Educational Resources Information Center

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  1. Shimmering Stained Glass.

    ERIC Educational Resources Information Center

    Simon, Gail Murray

    1998-01-01

    Presents an art lesson for fifth- and sixth-graders where they create a translucent design of colored cellophane on black paper inspired by the stained-glass windows of the Middle Ages and the artwork of Lewis Comfort Tiffany. Enables the students to become crafts people rather than just observers of the past. (CMK)

  2. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  3. Stained-Glass Pastels

    ERIC Educational Resources Information Center

    Laird, Shirley

    2009-01-01

    The author has always liked the look of stained-glass windows. Usually the designs are simplified and the shapes are easier for younger students to draw. This technique seemed to be the perfect place for her fifth-graders to try their hand at color mixing. The smaller spaces and simple shapes were just what she needed for this group. Her students…

  4. Yesterday's Trash Makes Tomorrow's "Glass"

    ERIC Educational Resources Information Center

    Wayne, Dale

    2010-01-01

    In this article, the author describes a glass art project inspired by Dale Chihuly. This project uses two-liter plastic soda bottles which are cut apart and trimmed. Applying heat using a hair dryer, the plastic curls and takes an uneven blown-glass quality. The "glass" is then painted using acrylic paint. (Contains 2 resources and 1 online…

  5. Keratopathy associated with intracorneal glass

    SciTech Connect

    Mannis, M.J.; Fiori, C.E.; Krachmer, J.H.; Rodrigues, M.M.; Pardos, G.

    1981-05-01

    A progressive nonedematous keratopathy developed in a 36-year-old patient after she was struck in the eye by glass fragments. Biopsy material that was examined by electron microscopy and electron beam microanalysis demonstrated the presence of intracorneal glass fragments, which could not be detected clinically. Retained intracorneal glass, generally thought to be completely inert, can be associated with a chronic keratopathy.

  6. Barstow heliostat mirror glass characterization

    SciTech Connect

    Lind, M.A.; Buckwalter, C.Q.

    1980-09-01

    The technical analysis performed on the special run of low iron float glass procured from the Ford Glass Division for the ten megawatt solar thermal/electric pilot power plant to be constructed at Barstow, California is discussed. The topics that are addressed include the optical properties and the relative durability of the glass. Two optical parameters, solar transmittance and optical flatness, were measured as referenced in the specification and found to be better than the stated tolerances. The average solar transmittance exceeded 0.890 transmittance units. The glass also exhibited optical angular flatness deviations less than +-1.0 mrad as required. Both qualitative and quantitative accelerated weathering tests were performed on the glass in order to compare its durability to other soda lime float glass and alternate composition glasses of interest to the solar community. In both the quantitative leaching experiments and the more qualitative room temperature and elevated temperature water vapor exposure experiments the heliostat glass exhibited the same characteristics as the other soda-lime silicate float glasses. As a final test for mirroring compatability, selected samples of the production run of the glass were sent to four different commercial manufacturers for mirror coating. None of the manufacturers reported any difficulty silvering the glass. Based on the tests performed, the glass meets or exceeds all optical specifications for the Barstow heliostat field.

  7. Yesterday's Trash Makes Tomorrow's "Glass"

    ERIC Educational Resources Information Center

    Wayne, Dale

    2010-01-01

    In this article, the author describes a glass art project inspired by Dale Chihuly. This project uses two-liter plastic soda bottles which are cut apart and trimmed. Applying heat using a hair dryer, the plastic curls and takes an uneven blown-glass quality. The "glass" is then painted using acrylic paint. (Contains 2 resources and 1 online…

  8. The association between metabolic rate, immune parameters, and growth performance of rainbow trout, Oncorhynchus mykiss (Walbaum), following the injection of a DNA vaccine alone and concurrently with a polyvalent, oil-adjuvanted vaccine.

    PubMed

    Skinner, Lisa A; Schulte, P M; Balfry, S K; McKinley, R S; LaPatra, S E

    2010-02-01

    This research demonstrates a significant increase in routine metabolic rate (RMR) following injection of a DNA vaccine concurrently with a polyvalent, oil-adjuvanted vaccine. The increase in RMR was transient and associated with increased activity of both the non-specific and specific immune responses. Rainbow trout (Oncorhynchus mykiss) were injected with a DNA vaccine (DV), a commercially available polyvalent, oil-adjuvanted vaccine (AV), or the two vaccines in combination and sampled at 203, 305, and 406 days (dd) post-vaccine injection (pvi) for RMR and key immune parameters (serum lysozyme activity, serum neutralization antibody titres). The RMR of fish that received both the DV and the AV was significantly higher at 203 dd pvi, compared to fish from all other treatment groups which included the control, the AV, and the DV groups. The increased RMR corresponded to elevated levels of serum lysozyme activity and an earlier seroconversion of virus-specific neutralizing antibodies. To determine if growth performance was affected by the transient increase in RMR, specific growth rate (SGR), percent daily weight gain (WG), and feed conversion ratio (FCR) were determined at 798, 1204, and 1610 dd pvi. Although fish in all three vaccine groups showed significant increases in SGR and WG at 798 and 1610 dd pvi compared to the control group, the overall weight of the fish was not different at the end of the experiment. In summary, this study shows that concurrent injection of a DV and an AV transiently increases the RMR of rainbow trout and changes the manner in which the immune response occurs, but does not affect the overall growth performance of the fish.

  9. Water's second glass transition.

    PubMed

    Amann-Winkel, Katrin; Gainaru, Catalin; Handle, Philip H; Seidl, Markus; Nelson, Helge; Böhmer, Roland; Loerting, Thomas

    2013-10-29

    The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water's calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules. This "double Tg scenario" is related to the coexistence of two liquid phases. The calorimetric signature of the second glass transition is much less feeble, with a heat capacity increase at Tg,2 about five times as large as at Tg,1. By using broadband-dielectric spectroscopy we resolve loss peaks yielding relaxation times near 100 s at 126 K for low-density amorphous ice and at 110 K for high-density amorphous ice as signatures of these two distinct glass transitions. Temperature-dependent dielectric data and heating-rate-dependent calorimetric data allow us to construct the relaxation map for the two distinct phases of water and to extract fragility indices m = 14 for the low-density and m = 20-25 for the high-density liquid. Thus, low-density liquid is classified as the strongest of all liquids known ("superstrong"), and also high-density liquid is classified as a strong liquid.

  10. Volcanic glass as a natural analog for borosilicate waste glass

    SciTech Connect

    Morgenstein, M.E.; Shettel, D.L.

    1994-12-31

    Obsidian and basaltic glass are opposite end-members of natural volcanic glass compositions. Syngenetic and diagenetic tensile failure in basaltic glass (low silica glass) is pervasive and provides abundant alteration fronts deep into the glass structure. Perlitic fracturing in obsidian (high silica glass) limits the alteration zones to an {open_quotes}onion skin{close_quotes} geometry. Borosilicate waste glass behaves similarly to the natural analog of basaltic glass (sideromelane). During geologic time, established and tensile fracture networks form glass cells (a three-dimensional reticulated pattern) where the production of new fracture surfaces increases through time by geometric progression. This suggests that borosilicate glass monoliths will eventually become rubble. Rates of reaction appear to double for every 12C{degrees} of temperature increase. Published leach rates suggest that the entire inventory of certain radionuclides may be released during the 10,000 year regulatory time period. Steam alteration prior to liquid attack combined with pervasive deep tensile failure behavior may suggest that the glass waste form is not license defensible without a metallic- and/or ceramic-type composite barrier as an overpack.

  11. Potential utilization of glass experiments in space

    NASA Technical Reports Server (NTRS)

    Kreidl, N. J.

    1984-01-01

    Materials processing in space utilizing the microgravity environment is discussed; glass processing in particular is considered. Attention is given to the processing of glass shells, critical cooling rate and novel glasses, gel synthesis of glasses, immiscibility, surface tension, and glass composites. Soviet glass experiments in space are also enumerated.

  12. Apollo 12 ropy glasses revisited

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Mckay, D. S.; Lindstrom, D. J.; Basu, A.; Martinez, R. R.; Bogard, D. D.; Garrison, D. H.

    1994-01-01

    We analyzed ropy glasses from Apollo 12 soils 12032 and 12033 by a variety of techniques including SEM/EDX, electron microprobe analysis, INAA, and Ar-39-Ar-40 age dating. The ropy glasses have potassium rare earth elements phosphorous (KREEP)-like compositions different from those of local Apollo 12 mare soils; it is likely that the ropy glasses are of exotic origin. Mixing calculations indicate that the ropy glasses formed from a liquid enriched in KREEP and that the ropy glass liquid also contained a significant amount of mare material. The presence of solar Ar and a trace of regolith-derived glass within the ropy glasses are evidence that the ropy glasses contain a small regolith component. Anorthosite and crystalline breccia (KREEP) clasts occur in some ropy glasses. We also found within these glasses clasts of felsite (fine-grained granitic fragments) very similar in texture and composition to the larger Apollo 12 felsites, which have a Ar-39-Ar-40 degassing age of 800 +/- 15 Ma. Measurements of 39-Ar-40-Ar in 12032 ropy glass indicate that it was degassed at the same time as the large felsite although the ropy glass was not completely degassed. The ropy glasses and felsites, therefore, probably came from the same source. Most early investigators suggested that the Apollo 12 ropy glasses were part of the ejecta deposited at the Apollo 12 site from the Copernicus impact. Our new data reinforce this model. If these ropy glasses are from Copernicus, they provide new clues to the nature of the target material at the Copernicus site, a part of the Moon that has not been sampled directly.

  13. Profiles in garbage glass containers

    SciTech Connect

    Miller, C.

    1997-09-01

    Glass containers are made from sand, limestone, soda ash, cullet (crushed bottles), and various additives, including those used to color brown, green, or blue bottles. Sixty percent of the glass used in the US is clear (flint) and one-fourth is brown (amber). Almost half of the green bottles are imported wind and beer bottles. Other glass products include flat glass such as windows; fiberglass insulation; and glassware. These products use different manufacturing processes and different additives than container glass. This profile covers only container glass. Glass bottles are commonly collected in curb-side programs. Losses due to breakage and the abrasiveness of glass during collection and processing offset their low collection and processing costs. Breakage solutions include installation of interior baffles or nets in the collection trucks, special glass-only truck compartments, and limiting the number of times glass is transferred after collection before final processing. Ten states require deposits on glass bottles for beer and soft drinks and related items.

  14. Fluoride glass: Crystallization, surface tension

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1988-01-01

    Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.

  15. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  16. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  17. Breaking the glass ceiling.

    PubMed

    Lazarus, A

    1997-03-01

    The glass ceiling is a form of organizational bias and discrimination that prevents qualified professionals from achieving positions of top governance and leadership. This article examines glass ceiling barriers that keep physicians from the upper reaches of management. While these factors apply mainly to women and minority physicians in academia, and are attributable to sexual harassment and discrimination, physicians as a class are frequently denied executive management positions. Such denial results from inadequate preparation for a career in health care administration. Important issues in the professional development of physician executives include mentoring, training and education, administrative experience, and cultural and personality factors. All of those must be considered when making the transition from medicine to management.

  18. Spin Glass Patch Planting

    NASA Technical Reports Server (NTRS)

    Wang, Wenlong; Mandra, Salvatore; Katzgraber, Helmut G.

    2016-01-01

    In this paper, we propose a patch planting method for creating arbitrarily large spin glass instances with known ground states. The scaling of the computational complexity of these instances with various block numbers and sizes is investigated and compared with random instances using population annealing Monte Carlo and the quantum annealing DW2X machine. The method can be useful for benchmarking tests for future generation quantum annealing machines, classical and quantum mechanical optimization algorithms.

  19. Polyamorphism in metalic glass.

    SciTech Connect

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  20. Picritic glasses from Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Weber, W.S.; Dixon, J.E.

    1991-01-01

    ESTIMATES of the MgO content of primary Hawaiian tholeiitic melts range from 8wt% to as high as 25wt% (refs 1, 2). In general, these estimates are derived from analysis of the whole-rock composition of lavas, coupled with the compositions of the most magnesian olivine phenocrysts observed. But the best estimate of magma composition comes from volcanic glass, as it represents the liquid composition at the time of quenching; minimal changes occur during the quenching process. Here we report the discovery of tholeiitic basalt glasses, recovered offshore of Kilauea volcano, that contain up to 15.0 wt% MgO. To our knowledge, these are the most magnesian glasses, and have the highest eruption temperatures (??? 1,316 ??C), yet found. The existence of these picritic (high-MgO) liquids provides constraints on the temperature structure of the upper mantle, magma transport and the material and thermal budgets of the Hawaiian volcanoes. Furthermore, picritic melts are affected little by magma-reservoir processes, and it is therefore relatively straightforward to extrapolate back to the composition of the primary melt and its volatile contents.

  1. Mixed polyanion glass cathodes: Glass-state conversion reactions

    DOE PAGES

    Kercher, Andrew K.; Kolopus, James A.; Carroll, Kyler; ...

    2015-01-01

    Mixed polyanion (MP) glasses can undergo glass-state conversion (GSC) reactions to provide an alternate class of high-capacity cathode materials. GSC reactions have been demonstrated in phosphate/vanadate glasses with Ag, Co, Cu, Fe, and Ni cations. These MP glasses provided high capacity and good high power performance, but suffer from moderate voltages, large voltage hysteresis, and significant capacity fade with cycling. Details of the GSC reaction have been revealed by x-ray absorption spectroscopy, electron microscopy, and energy dispersive x-ray spectroscopy of ex situ cathodes at key states of charge. Using the Open Quantum Materials Database (OQMD), a computational thermodynamic model hasmore » been developed to predict the near-equilibrium voltages of glass-state conversion reactions in MP glasses.« less

  2. Laser Glass Frit Sealing for Encapsulation of Vacuum Insulation Glasses

    NASA Astrophysics Data System (ADS)

    Kind, H.; Gehlen, E.; Aden, M.; Olowinsky, A.; Gillner, A.

    Laser glass frit sealing is a joining method predestined in electronics for the sealing of engineered materials housings in dimensions of some 1 mm2 to several 10 mm2. The application field ranges from encapsulation of display panels to sensor housings. Laser glass frit sealing enables a hermetical closure excluding humidity and gas penetration. But the seam quality is also interesting for other applications requiring a hermetical sealing. One application is the encapsulation of vacuum insulation glass. The gap between two panes must be evacuated for reducing the thermal conductivity. Only an efficient encapsulating technique ensures durable tight joints of two panes for years. Laser glass frit sealing is an alternative joining method even though the material properties of soda lime glass like sensitivity to thermal stresses are much higher as known from engineered materials. An adapted thermal management of the process is necessary to prevent the thermal stresses within the pane to achieve crack free and tight glass frit seams.

  3. Mixed polyanion glass cathodes: Glass-state conversion reactions

    SciTech Connect

    Kercher, Andrew K.; Kolopus, James A.; Carroll, Kyler; Unocic, Raymond R.; Kirklin, S.; Wolverton, C.; Stooksbury, Shelby L.; Boatner, Lynn A.; Dudney, Nancy J.

    2015-01-01

    Mixed polyanion (MP) glasses can undergo glass-state conversion (GSC) reactions to provide an alternate class of high-capacity cathode materials. GSC reactions have been demonstrated in phosphate/vanadate glasses with Ag, Co, Cu, Fe, and Ni cations. These MP glasses provided high capacity and good high power performance, but suffer from moderate voltages, large voltage hysteresis, and significant capacity fade with cycling. Details of the GSC reaction have been revealed by x-ray absorption spectroscopy, electron microscopy, and energy dispersive x-ray spectroscopy of ex situ cathodes at key states of charge. Using the Open Quantum Materials Database (OQMD), a computational thermodynamic model has been developed to predict the near-equilibrium voltages of glass-state conversion reactions in MP glasses.

  4. Impact resistance of bar glasses.

    PubMed

    Shepherd, J P; Huggett, R H; Kidner, G

    1993-12-01

    Bar glasses are often used as weapons in interpersonal violence. Violence often erupts spontaneously and assailants use objects close to hand as weapons. After an initial national Accident and Emergency Department study to identify glass designs most often implicated in interpersonal violence, the impact resistance of 1-pint beer glasses was tested in a materials laboratory with a Zwick 5102 pendulum impact tester. Both straight-sided (nonik) glasses (annealed and tempered) and handled tankards (annealed) were tested to destruction. The impact resistance of new glasses was compared with that of glasses subjected to wear. The mean impact resistance of new annealed noniks did not differ significantly although new glasses were significantly more resistant than worn glasses (p < 0.01). It was not possible to break any of the tempered glasses with the pendulum used (maximum impact energy, 4 J). When noniks had been scratched at the rim to mimic wear, tempered glasses also had the highest impact resistance (p < 0.01) whereas the mean resistance of the annealed noniks was not significantly different. When tempered glasses failed during testing, they all disintegrated into relatively harmless cubes of glass, particularly the thicker bases of glasses. In contrast, annealed designs fractured leaving sharp shards although the thicker bases remained intact. The mean impact resistance of new annealed noniks was 0.5 J, of worn annealed noniks 0.08 J, of tempered new noniks > 4 J, of worn tempered noniks 0.18 J, and of tankards, 1.7 J.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  6. Analytical Plan for Roman Glasses

    SciTech Connect

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  7. Mixed polyanion glass cathodes: Iron phosphate vanadate glasses

    SciTech Connect

    Kercher, Andrew K; Ramey, Joanne Oxendine; Carroll, Kyler J; Kiggans Jr, James O; Veith, Gabriel M; Meisner, Roberta; Boatner, Lynn A; Dudney, Nancy J

    2014-01-01

    Mixed polyanion (MP) glasses have been investigated for use as cathodes in lithium ion batteries. MP glass cathodes are similar in composition to theoretically promising crystalline polyanionic (CP) cathodes (e.g., lithium cobalt phosphate, lithium manganese silicate), but with proper polyanion substitution, they can be designed to overcome the key shortcomings of CP cathodes, such as poor electrical conductivity and irreversible phase changes. Iron phosphate/vanadate glasses were chosen as a first demonstration of the MP glass concept. Polyanion substitution with vanadate was shown to improve the intercalation capacity of an iron phosphate glass from almost zero to full theoretical capacity. In addition, the MP glass cathodes also exhibited an unexpected second high-capacity electrochemical reaction. X-ray absorption near-edge structure (XANES) and x-ray diffraction (XRD) of cathodes from cells having different states of charge suggested that this second electrochemical reaction is a glass-state conversion reaction. With a first demonstration established, MP glass materials utilizing an intercalation and/or glass-state conversion reaction are promising candidates for future high-energy cathode research.

  8. Fracture mechanics of cellular glass

    NASA Technical Reports Server (NTRS)

    Zwissler, J. G.; Adams, M. A.

    1981-01-01

    The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.

  9. Waste product profile: Glass containers

    SciTech Connect

    Miller, C.

    1995-09-01

    In 1992, Waste Age initiated the Waste Product Profile series -- brief, factual listings of the solid waste management characteristics of materials in the solid waste stream. This popular series of profiles high-lighted a product, explained how it fit into integrated waste management systems, and provided current data on recycling and markets for the product. Glass containers are made from sand, limestone, soda ash, cullet (crushed bottles), and various additives, including those used to produce green, brown, and blue glass. Other glass products include flat glass, such as windows, and fiberglass products, such as insulation and glassware. These products are manufactured using different processes and different additives than container glass. This profile covers only glass containers.

  10. Relaxation Pathways in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Gallino, Isabella; Busch, Ralf

    2017-09-01

    At temperatures below the glass transition temperature, physical properties of metallic glasses, such as density, viscosity, electrical resistivity or enthalpy, slowly evolve with time. This is the process of physical aging that occurs among all types of glasses and leads to structural changes at the microscopic level. Even though the relaxation pathways are ruled by thermodynamics as the glass attempts to re-attain thermodynamic equilibrium, they are steered by sluggish kinetics at the microscopic level. Understanding the structural and dynamic pathways of the relaxing glassy state is still one of the grand challenges in materials physics. We review some of the recent experimental advances made in understanding the nature of the relaxation phenomenon in metallic glasses and its implications to the macroscopic and microscopic properties changes of the relaxing glass.

  11. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. I.

    1977-01-01

    The manner in which the weightless, containerless nature of in-space processing can be successfully utilized to improve the quality of infrared transmitting chalcogenide glasses is determined. The technique of space processing chalcogenide glass was developed, and the process and equipment necessary to do so was defined. Earthbound processing experiments with As2S3 and G28Sb12Se60 glasses were experimented with. Incorporated into these experiments is the use of an acoustic levitation device.

  12. Microsheet Glass In Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1993-01-01

    Microsheet glass used as highly protective covering material for developmental concentrating reflectors for solar power systems. Together with other materials, possible to fabricate lightweight, highly reflective, accurate, and long-lived concentrators. Desirable properties include durability and smoothness. Glass not affected by ultraviolet radiation, and not degraded by atomic oxygen, found in low orbits around Earth. Though concentrators intended for use in outer space, noteworthy that terrestrial concentrator fabricated with glass sheet 0.7 mm thick.

  13. Realization of a Zachariasen glass

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    1983-07-01

    Recent experimental and theoretical studies of oxide and chalcogenide network glasses have shown that their molecular structure is predominantly that of a frozen liquid of partially polymerized clusters. The formation of continuous random networks is predicted at critical compositions by the topological theory of network glass formation. The predicted compositions are in good agreement with recent data on Sn xGe 1- x(S or Se) 2 ternary chalcogenide glass alloys.

  14. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, Manuel Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine Wk; Ma, Beihai; Balachandran, Uthamalingam

    2016-03-29

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  15. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  16. Amplification With Chalcogenide Glass Fiber

    DTIC Science & Technology

    2001-07-12

    34AMPLIFICATION WITH CHALCOGENIDE GLASS FIBER" request for release for publication. REF: (a) NRL Instruction 5510.40C (b) Chapter 6, ONRINST 5870.1C...Serial Number: Patent Application Navy Case Number: 82,848 AMPLIFICATION WITH CFfALCOGENTDE GLASS FIBER Field of the Invention: This invention...pertains to the use of a low phonon energy chalcogenide glass waveguide in conjunction with stimulated Raman scattering to amplify an optical signal

  17. POLYESTER GLASS PLASTICS FOR SHIPBUILDING,

    DTIC Science & Technology

    POLYESTER PLASTICS , SHIP HULLS), (*SHIP HULLS, POLYESTER PLASTICS ), GLASS TEXTILES, REINFORCING MATERIALS, SHIP STRUCTURAL COMPONENTS, COMPOSITE MATERIALS, PROCESSING, CHEMISTRY, HANDBOOKS, BINDERS, USSR

  18. THERMAL STABILITY OF GLASS PLASTICS.

    DTIC Science & Technology

    COMPOSITE MATERIALS, THERMAL STABILITY), (* GLASS TEXTILES, THERMAL STABILITY), (*LAMINATED PLASTICS , THERMAL STABILITY), HEATING, COOLING, MECHANICAL PROPERTIES, FATIGUE(MECHANICS), FLEXURAL STRENGTH, THERMAL STRESSES, USSR

  19. Crystallization of copper metaphosphate glass

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  20. Glass corrosion in natural environment

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.

    1989-01-01

    A series of studies of the effects of solutes which appear in natural aqueous environments, specifically Mg and Al, under controlled conditions, permit characterization of the retardation of silicate glass leaching in water containing such solutes. In the case of Mg the interaction with the glass appears to consist of exchange with alkali ions present in the glass to a depth of several microns. The effect of Al can be observed at much lower levels, indicating that the mechanism in the case of Al involves irreversible formation of aluminosilicate species at the glass surface.

  1. Crystallization of copper metaphosphate glass

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  2. Glass corrosion in natural environments

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  3. Halide laser glasses

    SciTech Connect

    Weber, M.J.

    1982-01-14

    Energy storage and energy extraction are of prime importance for efficient laser action and are affected by the line strengths and linewidths of optical transitions, excited-state lifetimes, nonradiative decay processes, spectroscopic inhomogeneities, nonlinear refractive index, and damage threshold. These properties are all host dependent. To illustrate this, the spectroscopic properties of Nd/sup 3 +/ have been measured in numerous oxide, oxyhalide, and halide glasses. A table summarizes the reported ranges of stimulated emission cross sections, peak wavelengths, linewidths, and radiative lifetimes associated with the /sup 4/F/sub 3/2/ ..-->.. /sup 4/I/sub 11/2/ lasing transition.

  4. Military Specification, Glass, Optical

    DTIC Science & Technology

    1986-12-05

    PPP-B-621 Visual-spring scale ASTM D3951 Visual 12 MIL-G-174B A - Pin hole aperture B - Movable cross slit D - Diffusion screen LI...for level A except that the barrier bag is omitted. 5.1.3 Commercial. Unless otherwise specified, requirements shall be in accordance with ASTM D3951 ...conforming to PPP-B-636, style optional, special requirements. 5.2.4 Commercial. Preserved glass shall be packed in accordance with ASTM D3951 . 5.3

  5. Glass rupture disk

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  6. Solarization of heliostat glasses

    NASA Astrophysics Data System (ADS)

    Vitko, J., Jr.; Shelby, J. E.

    1980-09-01

    A solar-induced decrease in Fe(2+) absorption was observed in heliostat glasses from the solar furnace at Odeillo, France. This decrease occurs throughout the sample and is of sufficient magnitude to result in an increase of 2.5% in solar transmittance in a period of nine years. Optical and ESR studies did not detect a corresponding increase in Fe(3+) concentration. The effect of these results on a microscopic model for the observed solarization is discussed. Solar simulation studies produced changes of magnitude and sign similar to those observed in the field exposed samples, and offer attractive means for screening samples for solarization tendencies.

  7. Compositional threshold for Nuclear Waste Glass Durability

    SciTech Connect

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-04-24

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  8. Method for heating a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  9. Method for heating a glass sheet

    DOEpatents

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  10. Examination of glass-silicon and glass-glass bonding techniques for microfluidic systems

    SciTech Connect

    Raley, N.F.; Davidson, J.C.; Balch, J.W.

    1995-10-23

    We report here on the results of experiments concerning particular bonding processes potentially useful for ultimate miniaturization of microfluidic systems. Direct anodic bonding of continuous thin pyrex glass of 250 {mu}m thickness to silicon substrates gives multiple, large voids in the glass. Etchback of thick glass of 1200 {mu}m thickness bonded to silicon substrates gives thin continuous glass layers of 189 {mu}m thickness without voids over areas of 5 cm {times} 12 cm. Glass was also successfully bonded to glass by thermal bonding at 800{degrees}C over a 5 cm {times} 7 cm area. Anticipated applications include microfabricated DNA sequencing, flow injection analysis, and liquid and gas chromatography microinstruments.

  11. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  12. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  13. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  14. Spheroidization of glass powders for glass ionomer cements.

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  15. Mechanical failure and glass transition in metallic glasses

    SciTech Connect

    Egami, Takeshi

    2011-01-01

    The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  16. Glasses in the D'Orbigny Angrite

    NASA Astrophysics Data System (ADS)

    Varela, M. E.; Kurat, G.; Brandstätter, F.; Bonnin-Mosbah, M.; Metrich, N.

    2001-03-01

    The D'Orbigny angrite contains abundant glasses, a phase which has not been previously reported from any other angrite. Glasses fill in part open druses and intersticial spaces between major silicates, or occur as glass inclusions in olivine.

  17. Degradable borate glass polyalkenoate cements.

    PubMed

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time.

  18. Training Guidelines: Glass Furnace Operators.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    Technological development in the glass industry is constantly directed towards producing high quality glass at low operating costs. Particularly, changes have taken place in melting methods which mean that the modern furnace operator has greater responsibilities than any of his predecessors. The complexity of control systems, melting rates, tank…

  19. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Schramm, S. W.

    1978-01-01

    A program was conducted to develop the technique of space processing for chalcogenide glass, and to define the process and equipment necessary. In the course of this program, successful long term levitation of objects in a 1-g environment was achieved. Glass beads 4 mm diameter were containerless melted and fused together.

  20. Making a Better Beer Glass.

    ERIC Educational Resources Information Center

    Hoffer, Alan R.

    1982-01-01

    A class activity is detailed in which alternative designs for glasses are examined. The goal is to design a glass which is built tilted, so that beer can be poured in without creating a foam problem. The activity is viewed as one leading to interesting questions. (MP)

  1. Holder for rotating glass body

    DOEpatents

    Kolleck, Floyd W.

    1978-04-04

    A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.

  2. Method of determining glass durability

    DOEpatents

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  3. Method of determining glass durability

    DOEpatents

    Jantzen, Carol Maryanne; Pickett, John Butler; Brown, Kevin George; Edwards, Thomas Barry

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  4. Refractory Glass Seals for SOFC

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.

    2011-07-01

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

  5. International Congress on Glass XII

    SciTech Connect

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  6. Glass-An Environmental Protector

    SciTech Connect

    MARRA, JAMES

    2004-11-01

    From asbestos abatement to lead paint removal to nuclear waste stabilization and even to heavy metal removal using microorganisms, glass has great potential as a solution to many environmental problems. The ability to accommodate an array of chemical elements within the glass structure has facilitated the use of glass as a medium for the stabilization of numerous hazardous substances. The resulting glasses have proven to be durable enough for direct land disposal. In many cases, the stabilized forms have been deemed suitable for re-use in other applications. As recycling and hazardous material treatment become even more important in the global materials cycle, it is a certainty that glass will assume a prominent role.

  7. Relaxation in quantum glasses

    NASA Astrophysics Data System (ADS)

    Ancona Torres, Carlos E.

    The Ising model in transverse field provides the simplest description of a quantum glass. I study two systems that are realizations of the Ising model in transverse field, LiHoxY1-- xF4 and Rb1-- x(NH4)xH2PO 4. In the spin glass LiHoxY1-- xF4, applying a magnetic field Ht transverse to the Ising direction introduces tunneling between the bare Ising eigenstates. In addition, the coupling between the transverse dipolar interaction and the transverse field introduces entanglement or tunable random fields depending on the concentration. By comparing the classical and quantum transitions in LiHo0.198Y0.802F4 and LiHo 0.167Y0.833F4, I characterize the crossover from random field dominated behavior in the 19.8% sample to entanglement dominated behavior in the 16.7% sample. The quantum transition in the 19.8% sample is dominated by the limit on its correlation length caused by the random fields, while the dominant effect in the 16.7% sample is the enhanced tunneling rate introduced by entanglement. The proton glass Rb1--x(NH 4)xH2PO4 relaxes through tunneling of protons in the hydrogen bonds of the crystal, yielding an effective Ising model in transverse field. Since this field cannot be tuned directly, I combine bulk dielectric susceptibility measurements with neutron Compton scattering measurements of the local tunneling potential in two different concentrations, x = 35% and 72%. I find that tunneling drives the fastest relaxation processes at temperatures as high as 20 K and explicitly calculate the tunneling rate from the tunneling potential of the hydrogen bond. Moreover, the structural mechanism for the glassy relaxation allows a real-space picture of the relaxation dynamics to be correlated to the free energy description of aging. I find that the glassy relaxation is driven by the sequential diffusion of defects called Takagi configurations with a classical to quantum crossover in the relaxation at 3 K. I relate the relaxation rate to the quantum action of tunneling

  8. From Christmas Ornament to Glass Electrode

    NASA Astrophysics Data System (ADS)

    da Rocha, Rogério T.; Gutz, Ivano G. R.; Do Lago, Claudimir L.

    1995-12-01

    In potentiometric techniques, pH measurements require a costly and fragile accessory: the glass electrode. A glass electrode is difficult to make because the wall of the sensing glass bulb must be very thin, and glass of special composition is required. Although the glass bulb may be made by a skilled glazier, we choose a more impressive and simple way. The glass bulb can be made from a Christmas-tree ornamental ball.

  9. Glass Ceramic Formulation Data Package

    SciTech Connect

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  10. Energetics of glass fragmentation: Experiments on synthetic and natural glasses

    NASA Astrophysics Data System (ADS)

    Kolzenburg, S.; Russell, J. K.; Kennedy, L. A.

    2013-11-01

    Natural silicate glasses are an essential component of many volcanic rock types including coherent and pyroclastic rocks; they span a wide range of compositions, occur in diverse environments, and form under a variety of pressure-temperature conditions. In subsurface volcanic environments (e.g., conduits and feeders), melts intersect the thermodynamically defined glass transition temperature to form glasses at elevated confining pressures and under differential stresses. We present a series of room temperature experiments designed to explore the fundamental mechanical and fragmentation behavior of natural (obsidian) and synthetic glasses (Pyrex™) under confining pressures of 0.1-100 MPa. In each experiment, glass cores are driven to brittle failure under compressive triaxial stress. Analysis of the load-displacement response curves is used to quantify the storage of energy in samples prior to failure, the (brittle) release of elastic energy at failure, and the residual energy stored in the post-failure material. We then establish a relationship between the energy density within the sample at failure and the grain-size distributions (D-values) of the experimental products. The relationship between D-values and energy density for compressive fragmentation is significantly different from relationships established by previous workers for decompressive fragmentation. Compressive fragmentation is found to have lower fragmentation efficiency than fragmentation through decompression (i.e., a smaller change in D-value with increasing energy density). We further show that the stress storage capacity of natural glasses can be enhanced (approaching synthetic glasses) through heat treatment.

  11. Database and Interim Glass Property Models for Hanford HLW Glasses

    SciTech Connect

    Hrma, Pavel R.; Piepel, Gregory F.; Vienna, John D.; Cooley, Scott K.; Kim, Dong-Sang; Russell, Renee L.

    2001-07-24

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

  12. LUBRICATING AND SIZING AGENT FOR GLASS FIBER,

    DTIC Science & Technology

    GLASS TEXTILES, SURFACE PROPERTIES), (*LUBRICANTS, GLASS TEXTILES), FIBERS , POLYVINYL ALCOHOL, STEARATES, CHROMIUM COMPOUNDS, ALUMINUM COMPOUNDS, MIXTURES, LACTATES, TITANIUM COMPOUNDS, MECHANICAL PROPERTIES, USSR

  13. Containerless glass fiber processing

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Naumann, R. J.

    1986-01-01

    An acoustic levitation furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300 C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650 C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.

  14. Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without beta-propiolactone, in the treatment of Bothrops asper bites in Colombia.

    PubMed

    Otero, Rafael; León, Guillermo; Gutiérrez, José María; Rojas, Gustavo; Toro, María Fabiola; Barona, Jacqueline; Rodríguez, Verónica; Díaz, Abel; Núñez, Vitelbina; Quintana, Juan Carlos; Ayala, Shirley; Mosquera, Diana; Conrado, Lesdy L; Fernández, Diego; Arroyo, Yobana; Paniagua, Carlos A; López, Mercedes; Ospina, Carlos E; Alzate, Claudia; Fernández, Jorge; Meza, Jazmín J; Silva, Juan F; Ramírez, Patricia; Fabra, Patricia E; Ramírez, Eugenio; Córdoba, Elkin; Arrieta, Ana B; Warrell, David A; Theakston, R David G

    2006-12-01

    The efficacy and safety of two whole IgG polyvalent antivenoms (A and B) were compared in a randomised, blinded clinical trial in 67 patients systemically envenomed by Bothrops asper in Colombia. Both antivenoms were fractionated by caprylic acid precipitation and had similar neutralising potencies, protein concentrations and aggregate contents. Antivenom B was additionally treated with beta-propiolactone to lower its anticomplementary activity. Analysing all treatment regimens together, there were no significant differences between the two antivenoms (A=34 patients; B=33 patients) in the time taken to reverse venom-induced bleeding and coagulopathy, to restore physiological fibrinogen concentrations and to clear serum venom antigenaemia. Blood coagulability was restored within 6-24 h in 97% of patients, all of whom had normal coagulation and plasma fibrinogen levels 48 h after the start of antivenom treatment. Two patients (3.0%) had recurrent coagulopathy and eight patients suffered recurrence of antigenaemia within 72 h of treatment. None of the dosage regimens of either antivenom used guaranteed resolution of venom-induced coagulopathy within 6 h, nor did they prevent recurrences. A further dose of antivenom at 6 h also did not guarantee resolution of coagulopathy within 12-24 h in all patients. The incidence of early adverse reactions (all mild) was similar for both antivenoms (15% and 24%; P>0.05).

  15. Field evaluation of an open and polyvalent universal HIV-1/SIVcpz/SIVgor quantitative RT-PCR assay for HIV-1 viral load monitoring in comparison to Abbott RealTime HIV-1 in Cameroon.

    PubMed

    Guichet, Emilande; Aghokeng, Avelin; Eymard-Duvernay, Sabrina; Vidal, Nicole; Ayouba, Ahidjo; Mpoudi Ngole, Eitel; Delaporte, Eric; Ciaffi, Laura; Peeters, Martine

    2016-11-01

    With the increasing demand of HIV viral load (VL) tests in resource-limited countries (RLCs) there is a need for assays at affordable cost and able to quantify all known HIV-1 variants. VLs obtained with a recently developed open and polyvalent universal HIV-1/SIVcpz/SIVgor RT-qPCR were compared to Abbott RealTime HIV-1 assay in Cameroon. On 474 plasma samples, characterized by a wide range of VLs and a broad HIV-1 group M genetic diversity, 97.5% concordance was observed when using the lower detection limit of each assay. When using the threshold of 3.00 log10 copies/mL, according to WHO guidelines to define virological failure (VF) in RLCs, the concordance was 94.7%, 360/474 versus 339/474 patients were identified with VF with the new assay and Abbott RealTime HIV-1, respectively. Higher VLs were measured with the new assay, +0.47 log10 copies/mL (95% CI; 0.42-0.52) as shown with Bland-Altman analysis. Eleven samples from patients on VF with drug resistance were not detected by Abbott RealTime HIV-1 versus two only with the new assay. Overall, our study showed that the new assay can be easily implemented in a laboratory in RLCs with VL experience and showed good performance on a wide diversity of HIV-1 group M variants.

  16. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    SciTech Connect

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  17. [Respiratory function in glass blowers].

    PubMed

    Zuskin, E; Butković, D; Mustajbegović, J

    1992-01-01

    The prevalence of chronic and acute respiratory symptoms and diseases and changes in lung function in a group of 80 glass blowers have been investigated. In addition a group of 80 not exposed workers was used as a control group for respiratory symptoms and diseases. In glass blowers, there was significant increase in prevalence of chronic bronchitis, nasal catarrh, and sinusitis than in the controls. Glass blowers exposed for more and less than 10 years had similar prevalences of respiratory symptoms. A large number of glass blowers complained of acute across-shift symptoms. Significant increase in FVC, FEF50 and FEF25 was documented at the end of the work shift. Comparison with predicted normal values showed that glass blowers had FVC and FEF25 significantly lower than predicted. RV and RV/TLC were significantly increased compared with the predicted normal values. DLCO was within the normal values in most glass blowers. It is concluded that work in the glass blower industry is likely to lead the development of chronic respiratory disorders.

  18. Glass ceramic seals to inconel

    DOEpatents

    McCollister, Howard L.; Reed, Scott T.

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  19. Fracture mechanics of cellular glass

    SciTech Connect

    Zwissler, J.G.; Adams, M.A.

    1981-02-01

    Cellular glasses are prime candidate materials for the structural substrate of mirrored glass for solar concentrator reflecting panels. These materials are brittle, however, and susceptible to mechanical failure from slow crack growth caused by a stress corrosion mechanism. The results are detailed of one part of a program established to develop improved cellular glasses and to characterize the behavior of these and commercially available materials. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials are developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region I may be slower, by orders of magnitude, than that found in dense glasses.

  20. Are gel-derived glasses different from ordinary glasses?

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1986-01-01

    A review is presented of some of the previously reported differences and similarities between comparable gel glasses (and gels) and ordinary glasses. In this regard, considerations are made with respect to such factors as structure, physical and thermal properties, and phase transformation behavior. A variety of silicate glass compositions are used for illustrative purposes. The discussion is roughly divided into two sections: low and high temperature behavior. At low temperatures one anticipates that differences between gel and conventional glasses will exist, but such dissimilarities are not expected to persist to high temperatures. However, experimental evidence is presented which indicates the perpetuation of such differences to very high temperatures. A partial resolution for this anomalous behavior is offered.

  1. Glass microspheres for medical applications

    NASA Astrophysics Data System (ADS)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass

  2. Space processing of chalcogenide glasses

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. A.; Crandall, W. B.

    1974-01-01

    Manufacture of chalcogenide glasses in space will eliminate many of the causes of optical non-homogeneity and contamination that are inherent in earth-bound manufacture. A program is outlined to demonstrate the feasibility of various techniques and processes that will be utilized to manufacture chalcogenide glasses in space. Amorphous character, purity, and homogeneity parameters are being investigated at various stages of the glass forming process. These parameters in merit index form will serve to provide guidelines for the design of the actual melting experiment in space, and for the optimization of the exact chalcogenide composition to be included in the space experiments.

  3. Method for manufacturing glass frit

    DOEpatents

    Budrick, Ronald G.; King, Frank T.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method of manufacturing a glass frit for use in the manufacture of uniform glass microspheres to serve as containers for laser fusion fuel to be exposed to laser energy which includes the formation of a glass gel which is then dried, pulverized, and very accurately sized to particles in a range of, for example, 125 to 149 micrometers. The particles contain an occluded material such as urea which expands when heated. The sized particles are washed, dried, and subjected to heat to control the moisture content prior to being introduced into a system to form microspheres.

  4. Recent developments in laser glasses

    SciTech Connect

    Weber, M.J.

    1983-01-10

    The past decade has witnessed a proliferation of new glass-forming compositions including oxides, halides, oxyhalides, and chalcogenides. Many of these glasses are applicable to lasers and have greatly expanded the range of optical properties and spectroscopic parameters available to the laser designer. Our knowledge and understanding of many properties of interest for laser action - transparency, linear and nonlinear refractive indices, and damage threshold of the host glass and the absorption spectrum, radiative and nonradiative transition probabilities, fluorescence wavelength, stimulated emission cross section, and spectroscopic inhomogeneities of the lasing ion Nd/sup 3 +/ - are reviewed.

  5. The molten glass sewing machine.

    PubMed

    Brun, P-T; Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri

    2017-05-13

    We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model-and a methodology-to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'. © 2017 The Author(s).

  6. Zirconia solubility in boroaluminosilicate glass

    SciTech Connect

    Raman, S.V.; Bopp, R.; Batcheller, T.A.; Yan, Q.

    1995-12-31

    In the Idaho Chemical Processing Plant (ICPP) waste streams, zirconia is often the waste load limiting species. It modifies the glass network, enhances durability, increases viscosity and induces crystallization. The limits of its dissolution in boroaluminosilicate glass, with magnesia and soda additions were experimentally determined. A ternary compositional surface is evolved to present the isothermal regimes of liquid, liquid + zircon, liquid + forsterite, and liquid phase sintered ceramic. The potential of partitioning the transuranics, transition elements and solutes in these regimes is discussed. The visible Raman spectroscopic results are presented to elucidate the dependence among glass composition, structure and chemical durability.

  7. [Will broken glass bring luck?].

    PubMed

    Bonani, M; Frei, P; Glaab, R; Lenzlinger, Ph M

    2008-08-27

    A 56 year old female patient presented to the emergency room because of a progressive, painful swelling of her thigh, clinically suspected to be a haematoma. Trauma was denied. Ultrasonography revealed a hyperechogenic structure, which appeared to be an intramuscular foreign body on computed tomography. Intraoperatively, a large piece of glass was found. Glass foreign bodies can be detected by x-rays with a high sensitivity. The threshold to order x-ray for the detection of glass foreign bodies should be low.

  8. The molten glass sewing machine

    NASA Astrophysics Data System (ADS)

    Brun, P.-T.; Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri

    2017-04-01

    We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model-and a methodology-to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'.

  9. Glass-glass transition during aging of a colloidal clay.

    PubMed

    Angelini, Roberta; Zaccarelli, Emanuela; de Melo Marques, Flavio Augusto; Sztucki, Michael; Fluerasu, Andrei; Ruocco, Giancarlo; Ruzicka, Barbara

    2014-06-02

    Colloidal suspensions are characterized by a variety of microscopic interactions, which generate unconventional phase diagrams encompassing fluid, gel and glassy states and offer the possibility to study new phase and/or state transitions. Among these, glass-glass transitions are rare to be found, especially at ambient conditions. Here, through a combination of dilution experiments, X-ray photon correlation spectroscopy, small angle X-ray scattering, rheological measurements and Monte Carlo simulations, we provide evidence of a spontaneous glass-glass transition in a colloidal clay. Two different glassy states are distinguished with evolving waiting time: a first one, dominated by long-range screened Coulombic repulsion (Wigner glass) and a second one, stabilized by orientational attractions (Disconnected House of Cards glass), occurring after a much longer time. These findings may have implications for heterogeneously charged systems out-of-equilibrium and for applications where a fine control of the local order and/or long term stability of the amorphous materials are required.

  10. Galactic Hearts of Glass

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger graph

    This artist's concept shows delicate greenish crystals sprinkled throughout the violent core of a pair of colliding galaxies. The white spots represent a thriving population of stars of all sizes and ages. NASA's Spitzer Space Telescope detected more than 20 bright and dusty galactic mergers like the one depicted here, all teeming with the tiny gem-like crystals.

    When galaxies collide, they trigger the birth of large numbers of massive stars. Astronomers believe these blazing hot stars act like furnaces to produce silicate crystals in the same way that glass is made from sand. The stars probably shed the crystals as they age, and as they blow apart in supernovae explosions.

    At the same time the crystals are being churned out, they are also being destroyed. Fast-moving particles from supernova blasts easily convert silicates crystals back to their amorphous, or shapeless, form.

    How is Spitzer seeing the crystals if they are rapidly disappearing? Astronomers say that, for a short period of time at the beginning of galactic mergers, massive stars might be producing silicate crystals faster than they are eliminating them. When our own galaxy merges with the Andromeda galaxy in a few billion years, a similar burst of massive stars and silicate crystals might occur.

    Crystal Storm in Distant Galaxy The graph (see inset above) of infrared data from NASA's Spitzer Space Telescope tells astronomers that a distant galaxy called IRAS 08752+3915 is experiencing a storm of tiny crystals made up of silicates. The crystals are similar to the glass-like grains of sand found on Earth's many beaches.

    The data were taken by Spitzer's infrared spectrograph, which splits light open to reveal its rainbow-like components. The resulting spectrum shown here reveals the signatures of both crystalline (green) and non-crystalline (brown) silicates.

    Spitzer detected the same

  11. Galactic Hearts of Glass

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger graph

    This artist's concept shows delicate greenish crystals sprinkled throughout the violent core of a pair of colliding galaxies. The white spots represent a thriving population of stars of all sizes and ages. NASA's Spitzer Space Telescope detected more than 20 bright and dusty galactic mergers like the one depicted here, all teeming with the tiny gem-like crystals.

    When galaxies collide, they trigger the birth of large numbers of massive stars. Astronomers believe these blazing hot stars act like furnaces to produce silicate crystals in the same way that glass is made from sand. The stars probably shed the crystals as they age, and as they blow apart in supernovae explosions.

    At the same time the crystals are being churned out, they are also being destroyed. Fast-moving particles from supernova blasts easily convert silicates crystals back to their amorphous, or shapeless, form.

    How is Spitzer seeing the crystals if they are rapidly disappearing? Astronomers say that, for a short period of time at the beginning of galactic mergers, massive stars might be producing silicate crystals faster than they are eliminating them. When our own galaxy merges with the Andromeda galaxy in a few billion years, a similar burst of massive stars and silicate crystals might occur.

    Crystal Storm in Distant Galaxy The graph (see inset above) of infrared data from NASA's Spitzer Space Telescope tells astronomers that a distant galaxy called IRAS 08752+3915 is experiencing a storm of tiny crystals made up of silicates. The crystals are similar to the glass-like grains of sand found on Earth's many beaches.

    The data were taken by Spitzer's infrared spectrograph, which splits light open to reveal its rainbow-like components. The resulting spectrum shown here reveals the signatures of both crystalline (green) and non-crystalline (brown) silicates.

    Spitzer detected the same

  12. 7 CFR 2902.30 - Glass cleaners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Glass cleaners. 2902.30 Section 2902.30 Agriculture... Glass cleaners. (a) Definition. Cleaning products designed specifically for use in cleaning glass... qualifying biobased glass cleaners. By that date, Federal agencies that have the responsibility for drafting...

  13. Apollo applications of beta fiber glass

    NASA Technical Reports Server (NTRS)

    Naimer, J.

    1971-01-01

    The physical characteristics of Beta fiber glass are discussed. The application of Beta fiber glass for fireproofing the interior of spacecraft compartments is described. Tests to determine the flammability of Beta fiber glass are presented. The application of Beta fiber glass for commercial purposes is examined.

  14. Containerless Manufacture of Glass Optical Fibers

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Ethridge, E. C.

    1985-01-01

    Contamination and crystallization reduced in proposed process. Solid optical fiber drawn from an acoustically levitated lump of molten glass. New material added in solid form, melted and then moved into main body of molten glass. Single axis acoustic levitation furnances levitate glass melts at temperature up to about 700 degrees C. Processing in unit limited to low-melting temperature glasses.

  15. 7 CFR 2902.30 - Glass cleaners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Glass cleaners. 2902.30 Section 2902.30 Agriculture... Glass cleaners. (a) Definition. Cleaning products designed specifically for use in cleaning glass... qualifying biobased glass cleaners. By that date, Federal agencies that have the responsibility for...

  16. EVA-glass interface bond stability

    NASA Technical Reports Server (NTRS)

    Koenig, J. L.

    1984-01-01

    The ethylene vinyl acetate/glass interface bond stability was investigated. Special methods to determine the structure of polymer/glass interface were developed. Structural changes related to hydrothermal degradation of polymer/glass interface are examined. Methods to inhibit the degradation reaction which occur at polymer/glass interface are developed.

  17. Properties Of Soda/Yttria/Silica Glasses

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  18. Fast Crystals and Strong Glasses

    SciTech Connect

    Weitz, David

    2009-11-04

    This talk describes new results on model colloid systems that provide insight into the behavior of fundamental problems in colloid physics, and more generally, for other materials as well. By visualizing the nucleation and growth of colloid crystals, we find that the incipient crystallites are much more disordered than expected, leading to a larger diversity of crystal morphologies. When the entropic contribution of these diverse morphologies is included in the free energy, we are able to describe the behavior very well, and can predict the nucleation rate surprisingly accurately. The talk also describes the glass transition in deformable colloidal particles, and will show that when the internal elasticity of the particles is included, the colloidal glass transition mimics that of molecular glass formers much more completely. These results also suggest that the elasticity at the scale of the fundamental unit, either colloid particle or molecule, determines the nature of the glass transition, as described by the "fragility."

  19. High Tech Art: Chameleon Glass

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Dichroic Glass is a technology wherein extremely thin films of metal are vacuum deposited on a glass surface. The coated glass shields spacecraft instruments from cosmic radiation and protects human vision from unfiltered sunlight in space. Because the coating process allows some wavelengths of light and color to reflect and others to pass through, a chameleon effect is produced. Murray Schwartz, a former aerospace engineer, has based his business KROMA on this NASA optical technology. He produces dichroic stained glass windows, mobiles and jewelry. The technique involves deposition of super thin layers of metal oxides applied one layer at a time in a specific order and thickness for the desired effect. His product line is unique and has been very successful.

  20. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  1. Turning nuclear waste into glass

    SciTech Connect

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  2. Surface reactions of natural glasses

    SciTech Connect

    White, A.F.

    1986-12-31

    Reactions at natural glass surfaces are important in studies involving nuclear waste transport due to chemical control on ground water in host rocks such as basalt and tuff, to potential diffusion into natural hydrated glass surfaces and as natural analogs for waste glass stability. Dissolution kinetics can be described by linear surface reaction coupled with cation interdiffusion with resulting rates similar to those of synthetic silicate glasses. Rates of Cs diffusion into hydrated obsidian surfaces between 25{sup 0} and 75{sup 0}C were determined by XPS depth profiles and loss rates from aqueous solutions. Calculated diffusion coefficients were ten others of magnitude more rapid than predicted from an Arrhenius extrapolation of high temperature tracer diffusion data due to surface hydration reactions.

  3. All-glass solar collector

    NASA Technical Reports Server (NTRS)

    Wisnewski, J. P.

    1980-01-01

    Proposed all tempered glass solar collector uses black collection fluid and mirrored bottom to reduce energy loss and overall costs associated with conventional collectors. Collector is more efficient and practically maintenance-free.

  4. Taylor impact of glass bars

    NASA Astrophysics Data System (ADS)

    Murray, Natalie; Bourne, Neil; Field, John

    1997-07-01

    Brar and Bless pioneeered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass. We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test. In this configuration two rods impact one upon the other in a symmetrical version of the Taylor test geometry in which the impact is perfectly rigid in the centre of mass frame. Previous work in the laboratory has characterised the three glass types (float, borosilicate and a high density lead glass). These experiments will identify the 1D stress failure mechanisms from high-speed photography and the stress and particle velocity histories will be interpreted in the light of these results. The differences in response of the three glasses will be highlighted.

  5. Dispersion of barium gallogermanate glass.

    PubMed

    Zelmon, David E; Bayya, Shyam S; Sanghera, Jasbinder S; Aggarwal, Ishwar D

    2002-03-01

    Gallogermanate glasses are the subject of intense study as a result of their unique combination of physical and optical properties, including transmission from 0.4 to beyond 5.0 microm. These glasses can be easily made into large optics with high-index homogeneity for numerous U.S. Department of Defense and commercial visible-IR window applications such as reconnaissance, missile domes, IR countermeasures, avionics, and collision avoidance on automobiles. These applications require a knowledge of the refractive index of glass throughout the region of transmission. Consequently, we have measured the refractive index of BaO-Ga2O3-GeO2 glass from 0.4 to 5.0 microm and calculated the Sellmeier coefficients required for optical device design.

  6. 2012 Problem 13: Misty Glass

    NASA Astrophysics Data System (ADS)

    Huang, Shan; Li, Xiao; Gao, Wenli; Zhou, Huijun

    2015-10-01

    Based on diffraction theory, we propose a model to explain the formation of colorful rings created by a misty glass. The model is verified by examining the relation between the size of the ring and size of the droplets.

  7. Glass-formers vs. Assemblers

    NASA Astrophysics Data System (ADS)

    Glotzer, Sharon

    2015-03-01

    In most instances, the formation of a glass signifies an inability of the constituents of a system to self-organize into a well-defined, thermodynamically preferred ordered structure. Thus good ''assemblers'' may make poor glass-formers, and good glass-formers tend to be poor assemblers. How good or bad a system is in assembling or vitrifying/jamming depends on many features of the constituent building blocks, including shape and interactions. In many cases, building blocks whose shapes make them good glass-formers can, through almost imperceptible perturbations, become good assemblers, and vice versa. We examine these issues through consideration of several model systems, including colloidal ''rocks'' and foldable nets. *with E.R. Chen, P. Damasceno, P. Dodd, M. Engel, A.S. Keys, D. Klotsa, E. Teich, and G. van Anders

  8. Injuring potential of drinking glasses.

    PubMed

    Sterzik, Vera; Kneubuehl, Beat P; Ropohl, Dirk; Bohnert, Michael

    2008-08-06

    At a party of a sports club, an argument started between two groups of young men, in the course of which one of the persons involved threw a beer glass hitting a young man of the other group, who collapsed with a profusely bleeding wound. Although resuscitation measures were initiated immediately, the victim died at the scene due to exsanguination from the completely severed left external carotid artery in combination with the aspiration of blood. Tests with drinking glasses thrown at a skull-neck model suggested that an undamaged beer glass thrown at the head of the victim could not cause the fatal injuries on the neck because of its splintering behaviour. In fact, it seemed that the beer glass had been damaged prior to throwing it and that its sharp edges perforated the skin on hitting the neck.

  9. Fluoride Glass Fibres For Telecommunications

    NASA Astrophysics Data System (ADS)

    Maze, Gwenael; Cardin, Vincent; Poulain, Marcel

    1983-09-01

    Zirconium fluoride glasses are the best known and the most stable beryllium-free glasses. They offer numerous potential uses for I.R.-transmitting fibres and ultra-long repeaterless optical wave-guides. Various problems arise in the manufacturing of fluoride glass fibres, essentially because of the steep viscosity profile and the devitrification phenomena. This paper discusses the processes for manufacturing step-index preforms and for drawing fibres. Optical quality preforms have been obtained and fibres have been drawn over more than 1 km. A spectral loss measurement system has been constructed using fluoride glass optical components. Several curves showing the optical attenuation versus wavelength are presented and discussed. These fibres are now available for optical transmission in infra-red systems.

  10. Fiber glass pulling. [in space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1987-01-01

    Experiments were conducted to determine the viability of performing containerless glass fiber pulling in space. The optical transmission properties and glass-forming capabilities of the heavy metal fluorides are reviewed and the acoustic characteristics required for a molten glass levitation system are examined. The design limitations of, and necessary modifications to the acoustic levitation furnace used in the experiments are discussed in detail. Acoustic levitator force measurements were performed and a thermal map of the furnace was generated from thermocouple data. It was determined that the thermal capability of the furnace was inadequate to melt a glass sample in the center. The substitution of a 10 KW carbon monoxide laser for the original furnace heating elements resulted in improved melt heating.

  11. Imaging spectroscopy based strategies for ceramic glass contaminants removal in glass recycling.

    PubMed

    Bonifazi, Giuseppe; Serranti, Silvia

    2006-01-01

    The presence of ceramic glass contaminants in glass recycling plants reduces production quality and increases production costs. The problem of ceramic glass inspection is related to the fact that its detectable physical and pictorial properties are quite similar to those of glass. As a consequence, at the sorting plant scale, ceramic glass looks like normal glass and is detectable only by specialized personnel. In this paper an innovative approach for ceramic glass recognition, based on imaging spectroscopy, is proposed and investigated. In order to define suitable inspection strategies for the separation between useful (glass) and polluting (ceramic glass) materials, reference samples of glass and ceramic glass presenting different colors, thicknesses, shapes and manufacturing processes have been selected. Reflectance spectra have been obtained using two equipment covering the visible and near infrared wavelength ranges (400-1000 and 1000-1700 nm). Results showed as recognition of glass and ceramic glass is possible using selected wavelength ratios, in both visible and near infrared fields.

  12. Metallic Glass Cooling

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A sample of advanced metallic glass alloy cools down during an experiment with the TEMPUS furnace on STS-94, July 7, 1997, MET:5/23:35 (approximate). The sequence shows the sample glowing, then fading to black as scientists began the process of preserving the liquid state, but lowering the temperature below the normal solidification temperature of the alloy. This process is known as undercooling. (10 second clip covering approximately 50 seconds.) TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station. (354KB JPEG, 2700 x 2038 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300189.html.

  13. Luminescence of powdered uranium glasses

    NASA Technical Reports Server (NTRS)

    Eubanks, A. G.; Mcgarrity, J. M.; Silverman, J.

    1974-01-01

    Measurement of cathodoluminescence and photoluminescence efficiencies in powdered borosilicate glasses having different particle size and different uranium content. Excitation with 100 to 350 keV electrons and with 253.7 nm light was found to produce identical absolute radiant exitance spectra in powdered samples. The most efficient glass was one containing 29.4 wt% B2O3, 58.8 wt% SiO2, 9.8 wt% Na2O and 2.0 wt% UO2.

  14. Luminescence of powdered uranium glasses

    NASA Technical Reports Server (NTRS)

    Eubanks, A. G.; Mcgarrity, J. M.; Silverman, J.

    1974-01-01

    Measurement of cathodoluminescence and photoluminescence efficiencies in powdered borosilicate glasses having different particle size and different uranium content. Excitation with 100 to 350 keV electrons and with 253.7 nm light was found to produce identical absolute radiant exitance spectra in powdered samples. The most efficient glass was one containing 29.4 wt% B2O3, 58.8 wt% SiO2, 9.8 wt% Na2O and 2.0 wt% UO2.

  15. Multimegajoule laser design. [Glass lasers

    SciTech Connect

    Manes, K.R.; Ozarski, R.G.; Hagen, W.F.; Holzrichtr, J.F.

    1985-08-01

    New technologies make multimegajoule glass lasers economically feasible. We have devised new laser architectures using harmonic switchout, target-plane holographic injection, phase conjugation, continuous apodization, and higher amplifier efficiencies. Our plan for building a multimegajoule laser for a recurring cost under $300 million relies on the following manufacturing economies of scale: high-volume glass production, rapid harmonic-crystal growth, capacitor sizing and packing to increase energy capacity, and part standardization.

  16. Driving bubbles out of glass

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1981-01-01

    Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.

  17. Driving bubbles out of glass

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1981-01-01

    Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.

  18. Comparison of Macedon and Darwin glass

    USGS Publications Warehouse

    Chapman, D.R.; Keil, Klaus; Annell, C.

    1967-01-01

    Chemical analyses are presented for major and minor elements in two specimens of natural glass reported from Macedon, Victoria, and are compared with new analyses of glass from Mt. Darwin, Tasmania. One specimen of Macedon glass is dark, the other light; both are spongy with relatively large cavities of size uncommon in Darwin glass. Some of the new analyses of Darwin glass extend considerably the compositional range previously reported for Mg, Ni and Co. The chemical composition of Macedon glass cannot be distinguished from that of Darwin glass for any of twenty-five elements investigated. It appears possible that the two specimens of glass reported from Macedon may represent either two mislabelled pieces of Darwin glass, or else a separate natural occurrence of Darwin glass 560 km north of Mt. Darwin. ?? 1967.

  19. Isoconversion Analysis of the Glass Transition

    NASA Astrophysics Data System (ADS)

    Badrinarayanan, Prashanth; Zheng, Wei; Simon, Sindee

    2007-03-01

    At temperatures below their glass transition temperatures (Tgs), glass forming materials deviate from equilibrium density and form a glass. The kinetic nature of the glass transition process is manifested in the cooling rate dependence of the glass transition temperature and by structural relaxation below Tg. Various facets of the glass transition kinetics have been well described by phenomenological models of the glass transition, such as the TNM and KAHR model. An important yet frequently questioned assumption in these models is that the apparent activation energy, which describes the temperature dependence of the relaxation time, does not vary during the glass transition process. Some recent reports suggest that the activation energy varies significantly during the glass transition process. In this work we apply an isoconversion analysis to data in the glass transition region which was obtained on cooling from capillary dilatometry and differential scanning calorimetry (DSC) in order to determine whether the apparent activation energy increases as the glassy state is approached.

  20. BNFL Report Glass Formers Characterization

    SciTech Connect

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  1. BNFL Report Glass Formers Characterization

    SciTech Connect

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  2. Glasses-free randot stereotest

    NASA Astrophysics Data System (ADS)

    Kim, Jonghyun; Hong, Jong-Young; Hong, Keehoon; Yang, Hee Kyung; Han, Sang Beom; Hwang, Jeong-Min; Lee, Byoungho

    2015-06-01

    We proposed a glasses-free randot stereotest using a multiview display system. We designed a four-view parallax barrier system and proposed the use of a random-dot multigram as a set of view images for the glasses-free randot stereotest. The glasses-free randot stereotest can be used to verify the effect of glasses in a stereopsis experience. Furthermore, the proposed system is convertible between two-view and four-view structures so that the motion parallax effect could be verified within the system. We discussed the design principles and the method used to generate images in detail and implemented a glasses-free randot stereotest system with a liquid crystal display panel and a customized parallax barrier. We also developed graphical user interfaces and a method for their calibration for practical usage. We performed experiments with five adult subjects with normal vision. The experimental results show that the proposed system provides a stereopsis experience to the subjects and is consistent with the glasses-type randot stereotest and the Frisby-Davis test. The implemented system is free from monocular cues and provides binocular disparity only. The crosstalk of the system is about 6.42% for four-view and 4.17% for two-view, the time required for one measurement is less than 20 s, and the minimum angular disparity that the system can provide is about 23 arc sec.

  3. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Ali, M. A.; Larsen, D. C.

    1976-01-01

    The manner in which the weightless, containerless nature of in-space processing can be successfully utilized to improve the quality of infrared transmitting chalcogenide glasses was investigated. The following conclusions were reached: (1) Laboratory experiments have established the techniques, processes and equipment necessary for the production of high purity chalcogenide glasses. (2) Processing techniques have been successfully adopted for Ge28Sb12Se60 glass in a 1-g environment. (3) The Ge28Sb12Se60 glasses that have been processed have optical transmission around 63% (5 mm thick). (4) Laboratory experiments have established that the use of precursor materials in powdered form increases the oxygen contamination of the processed glass. This indicates that high purity precursor materials in bar or pellet form should be used. (5) Modifications were made on the MSFC acoustic levitator in an attempt to improve levitation stability during long-time experiments. Room temperature experiments on As2S3 glasses and high temperature experiments on polystyrene were conducted.

  4. Bioactive Glasses: Frontiers and Challenges.

    PubMed

    Hench, Larry L; Jones, Julian R

    2015-01-01

    Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong, and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980s, it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass(®). The four eras are (a) discovery, (b) clinical application, (c) tissue regeneration, and (d) innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  5. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, W.E.

    1982-09-30

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  6. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, William E.

    1984-01-01

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  7. Downdraw Extrusion of ULE(TM) Glass.

    DTIC Science & Technology

    1984-12-01

    34 diameter orifice and a 7" inner diameter muffle plate. E. Glass Loading After removing the plastic and tissue paper from the cleaned feedstock glass , the...Final Technical Report December 1964 DOWNDRAW EXTRUSION OF ULETM GLASS0 Corning Glass Works P. M. Smith and C. E. Peters APPROVED FOR PUBLIC RELEASE...PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If Gpptieabte ) "Corning Glass Works Rome Air Development Center (OCSE

  8. Glass Membrane For Controlled Diffusion Of Gases

    DOEpatents

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  9. Metastable metallic hydrogen glass

    SciTech Connect

    Nellis, W J

    2001-02-06

    The quest for metallic hydrogen has been going on for over one hundred years. Before hydrogen was first condensed into a liquid in 1898, it was commonly thought that condensed hydrogen would be a metal, like the monatomic alkali metals below hydrogen in the first column of the Periodic Table. Instead, condensed hydrogen turned out to be transparent, like the diatomic insulating halogens in the seventh column of the Periodic Table. Wigner and Huntington predicted in 1935 that solid hydrogen at 0 K would undergo a first-order phase transition from a diatomic to a monatomic crystallographically ordered solid at {approx}25 GPa. This first-order transition would be accompanied by an insulator-metal transition. Though searched for extensively, a first-order transition from an ordered diatomic insulator to a monatomic metal is yet to be observed at pressures up to 120 and 340 GPa using x-ray diffraction and visual inspection, respectively. On the other hand, hydrogen reaches the minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm{sup 3}, and 3000 K. These conditions were achieved using a shock wave reverberating between two stiff sapphire anvils. The shock wave was generated with a two-stage light-gas gun. This temperature exceeds the calculated melting temperature at 140 GPa by a factor of {approx}2, indicating that this metal is in the disordered fluid phase. The disorder permits hydrogen to become metallic via a Mott transition in the liquid at a much smaller pressure than in the solid, which has an electronic bandgap to the highest pressures reached to date. Thus, by using the finite temperature achieved with shock compression to achieve a disordered melt, metallic hydrogen can be achieved at a much lower pressure in a fluid than in a solid. It is not known how, nor even whether, metallic hydrogen can be quenched from a fluid at high pressures to a disordered solid metallic glass at ambient pressure and temperature. Because metallization occurs by simply

  10. HIGH-LEVEL WASTE GLASS FORMULATION MODEL SENSITIVITY STUDY 2009 GLASS FORMULATION MODEL VERSUS 1996 GLASS FORMULATION MODEL

    SciTech Connect

    BELSHER JD; MEINERT FL

    2009-12-07

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  11. Glass matrix composites from coal flyash and waste glass

    SciTech Connect

    Boccaccini, A.R.; Buecker, M.; Bossert, J.; Marszalek, K.

    1997-12-31

    Glass matrix composites have been fabricated from waste materials by means of powder technology. Flyash from coal power stations and waste glass, residue of float glass production, were used. Commercial alumina platelets were employed as the reinforcing component. For flyash contents up to 20% by weight nearly fully dense compacts could be fabricated by using relatively low sintering temperatures (650 C). For higher flyash contents the densification was hindered due to the presence of crystalline particles in the as-received flyash, which jeopardized the viscous flow densification mechanism. The addition of alumina platelets resulted in better mechanical properties of the composites than those of the unreinforced matrix, despite a residual porosity present. Young`s modulus, modulus of rupture, hardness and fracture toughness increase with platelet volume fraction. The low brittleness index of the composites suggests that the materials have good machinability. A qualitative analysis of the wear behavior showed that the composite containing 20% by volume platelet addition has a higher wear resistance than the unreinforced matrix. Overall, the results indicate that the materials may compete with conventional glasses and glass-ceramics in technical applications.

  12. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  13. Characteristic length of glass transition

    NASA Astrophysics Data System (ADS)

    Donth, E.

    1996-03-01

    The characteristic length of the glass transition (ξ _α ) is based on the concept of cooperatively rearranging regions (CRR's) by Adam & Gibbs (1965): ξ _α is the diameter of one CRR. In the theoretical part of the talk a formula is derived how this length can be calculated from calorimetric data of the transformation interval. The approach is based on fluctuations in natural functional subsystems. The corresponding thermodynamics is represented e.g. in a book of the author (E. Donth, Relaxation and Thermodynamics in Polymers. Glass Transition, Akademie-Verlag, Berlin 1992). A typical value for this length is 3 nanometers. In the experimental part several examples are reported to enlarge the experimental evidence for such a length: Squeezing the glass transition in the amorphous layers of partially crystallized PET (C. Schick, Rostock), glass transition of small-molecule glass formers in a series of nanoscaled pores of porous glasses (F. Kremer, Leipzig), comparison with a concentration fluctuation model in homogeneous polymer mixtures (E.W. Fischer, Mainz), and, from our laboratory, backscaling to ξ _α across the main transition from the entanglement spacing in several amorphous polymers such as PVAC, PS, NR, and some polymer networks. Rouse backscaling was possible in the α β splitting region of several poly(n alkyl methacrylates) resulting in small characteristic lengths of order 1 nanometer near the onset of α cooperativity. In a speculative outlook a dynamic density pattern is presented, having a cellular structure with higher density and lower mobility of the cell walls. It will be explained, with the aid of different thermal expansion of wall and clusters, how the clusters within the cells maintain a certain mobility far below the glass temperature.

  14. Multiple reentrant glass transitions in confined hard-sphere glasses

    NASA Astrophysics Data System (ADS)

    Mandal, Suvendu; Lang, Simon; Gross, Markus; Oettel, Martin; Raabe, Dierk; Franosch, Thomas; Varnik, Fathollah

    2014-07-01

    Glass-forming liquids exhibit a rich phenomenology upon confinement. This is often related to the effects arising from wall-fluid interactions. Here we focus on the interesting limit where the separation of the confining walls becomes of the order of a few particle diameters. For a moderately polydisperse, densely packed hard-sphere fluid confined between two smooth hard walls, we show via event-driven molecular dynamics simulations the emergence of a multiple reentrant glass transition scenario upon a variation of the wall separation. Using thermodynamic relations, this reentrant phenomenon is shown to persist also under constant chemical potential. This allows straightforward experimental investigation and opens the way to a variety of applications in micro- and nanotechnology, where channel dimensions are comparable to the size of the contained particles. The results are in line with theoretical predictions obtained by a combination of density functional theory and the mode-coupling theory of the glass transition.

  15. Effects of ionization on silicate glasses. [Silicate glasses

    SciTech Connect

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures.

  16. Mechanical properties of bioactive glasses, glass-ceramics and composites.

    PubMed

    Thompson, I D; Hench, L L

    1998-01-01

    The application of bioactive glass and glass-ceramics has been widely documented over the past twenty years but the high modulus and low fracture toughness has made them less applicable for clinical, load bearing, applications. The development of non-resorbable polyethylene and polysulphone matrices for these materials has improved the mechanical properties. However, the primary concern of whether the bioactivity of the composites is reduced is still unresolved. The more recent development of resorbable carrier systems, dextran and collagen, for bioactive glasses does not introduce such problems, hence making this form of composite suitable for novel soft tissue applications. The development of a simple quality index has enabled some of the materials described within this paper to be ranked by their ability to replace bone, thus enabling possible new research directions to be emphasized.

  17. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Lago, Diana C.; Prado, Miguel O.

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the crystallization kinetics can help to prevent or avoid it, by designing a proper thermal pathway. In this work we studied the crystallization kinetics of YAS and SmAS glasses. It was found that both, YAS and SmAS glasses crystallize from the surface. SmAS glass presented lower densities of nucleation sites. The results also showed that the crystal growth apparent enthalpy is larger for SmAS glasses.

  18. Database for waste glass composition and properties

    SciTech Connect

    Peters, R.D.; Chapman, C.C.; Mendel, J.E.; Williams, C.G.

    1993-09-01

    A database of waste glass composition and properties, called PNL Waste Glass Database, has been developed. The source of data is published literature and files from projects funded by the US Department of Energy. The glass data have been organized into categories and corresponding data files have been prepared. These categories are glass chemical composition, thermal properties, leaching data, waste composition, glass radionuclide composition and crystallinity data. The data files are compatible with commercial database software. Glass compositions are linked to properties across the various files using a unique glass code. Programs have been written in database software language to permit searches and retrievals of data. The database provides easy access to the vast quantities of glass compositions and properties that have been studied. It will be a tool for researchers and others investigating vitrification and glass waste forms.

  19. Mechanisms of Rhyolitic Glass Hydration Below the Glass Transition

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Cole, David R; Fayek, Mostafa

    2008-01-01

    Although a great deal is known about the interaction between water and rhyolitic glasses and melts at temperatures above the glass transition, the nature of this interaction at lower temperatures is much more obscure. Comparisons between high- and low-temperature diffusion studies suggest that several factors play important roles under lower-temperature conditions that are not significant at higher temperatures. Water concentrations in rhyolitic glasses hydrated at low temperatures are significantly greater than in those hydrated at high temperatures and low pressures. Surface concentrations, which equilibrate quickly with the surrounding environment at high temperature, change far more slowly as temperature decreases, and may not equilibrate at room temperature for hundreds or thousands of years. Temperature extrapolations of high- and low-temperature diffusion data are not consistent, suggesting that a change in mechanism occurs. These differences may be due to the inability of "self-stress," caused by the in-diffusing species, to relax at lower temperature. Preliminary calculations suggest that the level of stress caused by glass-water interaction may be greater than the tensile strength of the glass. On a microstuctural scale, extrapolations of high-temperature Fourier transform infrared spectroscopy (FTIR) data to lower temperatures suggests that there should be little or no hydroxyl present in glasses hydrated at low temperature. Comparisons of low-temperature hydration results among SiO2, obsidian, and albite compositions show distinct differences, and features are present in the spectra that do not occur at high temperature. Analysis of H2O and D2O diffusion also suggest that mechanistic differences occur between low- and high-temperature diffusive processes.

  20. Antibacterial effects of glass ionomers.

    PubMed

    DeSchepper, E J; White, R R; von der Lehr, W

    1989-04-01

    Glass ionomer cements have been shown to possess antimicrobial activity. Proposed mechanisms of action include acidity and fluoride. It was the purpose of this study to determine the antimicrobial effect of 11 glass ionomer cements, their individual powder and liquid components and one resin-bonded liner containing high fluoride ionomer glass against Streptococcus mutans #6715. The role of fluoride and pH in the antibacterial activity was also studied. Using agar diffusion assay methodology, the following results were obtained. All of the glass ionomer cements were inhibitory against S. mutans. The antibacterial cements and slurries that were tested for fluoride, released the ion in excess of reported minimum inhibitory values. The antimicrobial activity of the liquid components, that were tested for the effects of pH changes, was totally lost when the pH was adjusted to 5. The resin bonded liner was inactive against S. mutans and did not release inhibitory concentrations of fluoride. These results indicate that freshly-mixed glass ionomer cements are antimicrobial against S. mutans and that the mechanism of action is probably a function of both fluoride and pH although additional factors may be involved.

  1. Bioactive Glasses: Frontiers and Challenges

    PubMed Central

    Hench, Larry L.; Jones, Julian R.

    2015-01-01

    Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong, and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass–ceramics. In the 1980s, it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are (a) discovery, (b) clinical application, (c) tissue regeneration, and (d) innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs. PMID:26649290

  2. Photosensitivity phenomena in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Czachor, K.; Jedrzejewski, K.; Stępień, R.

    2005-09-01

    Low cost, high bandwidth, narrowband and multifunctionality are main targets for new optical devices development. Planar optics is probably the best solution for future telecom long distance and access transmission networks but also for metrology sensing devices. Many different materials can be used for this purpose like PECVD silica, multicomponent glasses or even polymers. Bragg grating inscription in such material is another advantage to achieve narrowband spectral characteristic of device, which is essential in modern systems. The main purpose of presented work was the development in technology and measurement techniques of channels formed on the surface of the glass. Planar couplers and structures that are more complicated can also be made in the same technology in the future. Special multicomponent glasses SiO2-GeO2-B2O3-Na2O-SnO2 with up to 6 %mol of Sn were synthetized and thin rectangular polished plates were prepared. The UV 244 nm 100 mW Coherent argon ion frequency doubled laser was used in our experiments. Surface relief structures similar to the compaction-densification/expansion model of photosensitivity were developed on the glass surface. The optical microscope and alpha-step profiler were used for preliminary tests of photoinduced structures on the glass surface. The ability of the writing possibility in function of Sn content and different laser power levels were analyzed.

  3. Healing of lithographically introduced cracks in glass and glass-containing ceramics

    SciTech Connect

    Ackler, H.D.

    1998-12-01

    The morphological evolution of lithographically defined cracklike flaws in glass and glass-containing ceramics was studied at elevated temperatures. The systems studied have glass contents from 100 to approximately 0.5 vol%, providing insight to the contribution of viscous flow of the glass to crack healing over a range of glass contents spanning many industrial ceramics. Healing behavior is found to be controlled by viscous flow of glass in all cases except the lowest glass content, for which significant mass transport is only accomplished by diffusional mechanisms. This implies a change of mechanism below some critical glass content.

  4. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    SciTech Connect

    Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

    2012-04-02

    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyáš et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

  5. Glass matrix composites. I - Graphite fiber reinforced glass

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Bacon, J. F.

    1978-01-01

    An experimental program is described in which graphite fibers of Hercules HMS and HTS, Thornel 300, and Celanese DG-12 were used to reinforce, both uniaxially and biaxially, borosilicate pyrex glass. Composite flexural strength distribution, strength as a function of test temperature, fracture toughness and oxidative stability were determined and shown to be primarily a function of fiber type and the quality of fiber-matrix bond formed during composite fabrication. It is demonstrated that the graphite fiber reinforced glass system offers unique possibilities as a high performance structural material.

  6. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.

    PubMed

    Mao, Pan; Han, Jongyoon

    2005-08-01

    We have characterized glass-glass and glass-Si bonding processes for the fabrication of wide, shallow nanofluidic channels with depths down to the nanometer scale. Nanochannels on glass or Si substrate are formed by reactive ion etching or a wet etching process, and are sealed with another flat substrate either by glass-glass fusion bonding (550 degrees C) or an anodic bonding process. We demonstrate that glass-glass nanofluidic channels as shallow as 25 nm with low aspect ratio of 0.0005 (depth to width) can be achieved with the developed glass-glass bonding technique. We also find that silicon-glass nanofluidic channels, as shallow as 20 nm with aspect ratio of 0.004, can be reliably obtained with the anodic bonding technique. The thickness uniformity of sealed nanofluidic channels is confirmed by cross-sectional SEM analysis after bonding. It is shown that there is no significant change in the depth of the nanofluidic channels due to anodic bonding and glass-glass fusion bonding processes.

  7. Are people adapted to their own glasses?

    PubMed

    Schot, Willemijn D; Brenner, Eli; Sousa, Rita; Smeets, Jeroen B J

    2012-01-01

    Negative lenses, either in the form of glasses or contact lenses, can correct nearsightedness. Unlike contact lenses, glasses do not only correct, but also induce optic distortions. In the scientific literature, it has often been assumed that people who wear corrective glasses instantaneously account for these distortions when they put their glasses on. We tested this assumption and found that, when people switched between their contact lenses and their glasses, they made the errors that one would predict based on the optics. This shows that people are not immediately adapted to their own glasses when they put them on.

  8. Study Of Phase Separation In Glass

    NASA Technical Reports Server (NTRS)

    Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.

    1989-01-01

    Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.

  9. Electron anions and the glass transition temperature

    PubMed Central

    Sushko, Peter V.; Tomota, Yudai; Hosono, Hideo

    2016-01-01

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32]2+ ⋅ (e–)2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design. PMID:27559083

  10. Study Of Phase Separation In Glass

    NASA Technical Reports Server (NTRS)

    Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.

    1989-01-01

    Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.

  11. Elastic heterogeneity in metallic glasses.

    SciTech Connect

    Dmowski, , W.; Iwashita, T.; Chuang, C.-P.; Almer, J. D; Egami, T.; X-Ray Science Division; Univ. of Tennessee; ORNL

    2010-01-01

    When a stress is applied on a metallic glass it deforms following Hook's law. Therefore it may appear obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density function analysis we show that only about 3/4 in volume fraction of metallic glasses deforms elastically, whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance. We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but this result shows that it is as much as a quarter.

  12. Introduction to glass microstructuring techniques.

    PubMed

    Mazurczyk, Radoslaw; Mansfield, Colin D

    2013-01-01

    In this chapter an overview of manufacturing methods, leading to the fabrication of microstructures in glass substrates, is presented. Glass is a material of excellent optical properties, a very good electric insulator, biocompatible and chemically stable. In addition to its intrinsic qualities, glass can be processed with the use of manufacturing methods originating from the microelectronic industry. In this text two complete manufacturing protocols are described, each composed of standard microfabrication steps; namely, the deposition of masking layers, photolithographic patterning and pattern transfer via wet or dry etching. As a result, a set of building blocks is provided, allowing the manufacture of various microfluidic components that are frequently used in the domain of micro-total analysis system technology.

  13. Processing of bulk metallic glass.

    PubMed

    Schroers, Jan

    2010-04-12

    Bulk metallic glass (BMG) formers are multicomponent alloys that vitrify with remarkable ease during solidification. Technological interest in these materials has been generated by their unique properties, which often surpass those of conventional structural materials. The metastable nature of BMGs, however, has imposed a barrier to broad commercial adoption, particularly where the processing requirements of these alloys conflict with conventional metal processing methods. Research on the crystallization of BMG formers has uncovered novel thermoplastic forming (TPF)-based processing opportunities. Unique among metal processing methods, TPF utilizes the dramatic softening exhibited by a BMG as it approaches its glass-transition temperature and decouples the rapid cooling required to form a glass from the forming step. This article reviews crystallization processes in BMG former and summarizes and compares TPF-based processing methods. Finally, an assessment of scientific and technological advancements required for broader commercial utilization of BMGs will be made.

  14. Elastic Heterogeneity in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Dmowski, W.; Iwashita, T.; Chuang, C.-P.; Almer, J.; Egami, T.

    2010-11-01

    When a stress is applied on a metallic glass it deforms following Hook’s law. Therefore it may appear obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density function analysis we show that only about (3)/(4) in volume fraction of metallic glasses deforms elastically, whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance. We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but this result shows that it is as much as a quarter.

  15. High density fluoride glass calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, Q.; Scheltzbaum, J.; Akgun, U.

    2014-04-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Quartz plates to replace the plastic scintillators in current LHC calorimeters have been proposed in recent reports. Quartz based Cherenkov calorimeters can solve the radiation damage problem, however light production and transfer have proven to be challenging. This report summarizes the results from a computational study on the performance of a high-density glass calorimeter. High-density, scintillating, fluoride glass, CHG3, was used as the active material. This glass has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. Here, the details of a Geant4 model for a sampling calorimeter prototype with 20 layers, and its hadronic as well as electromagnetic performances are reported.

  16. Space processing of chalcogenide glasses

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. A.

    1975-01-01

    Chalcogenide glasses are discussed as good infrared transmitters, possessing the strength, corrosion resistance, and scale-up potential necessary for large 10.6-micron windows. The disadvantage of earth-produced chalcogenide glasses is shown to be an infrared absorption coefficient which is unacceptably high relative to alkali halides. This coefficient is traced to optical nonhomogeneities resulting from environmental and container contamination. Space processing is considered as a means of improving the infrared transmission quality of chalcogenides and of eliminating the following problems: optical inhomogeneities caused by thermal currents and density fluctuation in the l-g earth environment; contamination from the earth-melting crucible by oxygen and other elements deleterious to infrared transmission; and, heterogeneous nucleation at the earth-melting crucible-glass interface.

  17. Crystallization of niobium germanosilicate glasses

    SciTech Connect

    Santos, Rodrigo; Wondraczek, Lothar

    2010-01-15

    Niobium germanosilicate glasses are potential candidates for the fabrication of transparent glass ceramics with interesting non-linear optical properties. A series of glasses in the (Ge,Si)O{sub 2}-Nb{sub 2}O{sub 5}-K{sub 2}O system were prepared by melting and casting and their characteristic temperatures were determined by differential thermal analysis. Progressive replacement of GeO{sub 2} by SiO{sub 2} improved the thermal stability of the glasses. Depending on the composition and the crystallization heat-treatment, different nanocrystalline phases-KNbSi{sub 2}O{sub 7}, K{sub 3}Nb{sub 3}Si{sub 2}O{sub 13} and K{sub 3.8}Nb{sub 5}Ge{sub 3}O{sub 20.4} could be obtained. The identification and characterization of these phases were performed by X-ray diffraction and Raman spectroscopy. The 40 GeO{sub 2}-10 SiO{sub 2}-25 Nb{sub 2}O{sub 5}-25 K{sub 2}O (mol%) composition presented the higher ability for volume crystallization and its nucleation temperature was determined by the Marotta's method. An activation energy for crystal growth of {approx}529 kJ/mol and a nucleation rate of 9.7x10{sup 18} m{sup -3} s{sup -1} was obtained, for this composition. Transparent glass ceramics with a crystalline volume fraction of {approx}57% were obtained after a 2 h heat-treatment at the nucleation temperature, with crystallite sizes of {approx}20 nm as determined by transmission electron microscopy. - Abstract: TEM image and XRD pattern of the glass ceramic produced (circles indicate nanocrystals).

  18. Glasses for seeing beyond visible.

    PubMed

    Zhang, XiangHua; Bureau, Bruno; Lucas, Pierre; Boussard-Pledel, Catherine; Lucas, Jacques

    2008-01-01

    Conventional glasses based on oxides have a transparency limited by phonon absorption in the near IR region and have a limited interest for analyzing information located far beyond the visible. The IR spectral domain is nevertheless of prime interest, since it covers fundamental wavelength ranges used for thermal imaging as well as molecular vibrational signatures. Besides spectacular advances in the field of IR detectors, the main significant progresses are related to the development of IR glass optics, such as lenses or IR optical fibres. The field of IR glasses is almost totally dominated by glasses formed from heavy atoms such as the chalcogens S, Se and Te. Their transparency extends up to 12, 16 and 28 microm for sulfide-, selenide- and the new generation of telluride-based glasses, respectively. They cover the atmospheric transparency domains, 3-5 and 8-13 microm, respectively, at which the IR radiation can propagate allowing thermal imaging and night-vision operations through thick layers of atmosphere. The development of new glass compositions will be discussed on the basis of structural consideration with the objective of moulding low-cost lenses for IR cameras used, for instance, in car-driving assistance. Additionally, multimode, single-index, optical fibres operating in the 3 to 12 microm window developed for in situ remote evanescent-wave IR spectroscopy will also be mentioned. The detection of molecular IR signatures is applied to environmental monitoring for investigating the pollution of underground water with toxic molecules. The extension of this technique to the investigation of biomolecules in three different studies devoted to liver tissues analysis, bio-film formation, and cell metabolism will also be discussed. Finally we will mention the developments in the field of single-mode fibres operating around 10 mum for the Darwin space mission, which is aiming at discovering, signs of biological life in telluric earth-like exoplanets throughout

  19. Manufacturing unique glasses in space

    NASA Technical Reports Server (NTRS)

    Happe, R. P.

    1976-01-01

    An air suspension melting technique is described for making glasses from substances which to date have been observed only in the crystalline condition. A laminar flow vertical wind tunnel was constructed for suspending oxide melts that were melted using the energy from a carbon dioxide laser beam. By this method it is possible to melt many high-melting-point materials without interaction between the melt and crucible material. In addition, space melting permits cooling to suppress crystal growth. If a sufficient amount of under cooling is accompanied by a sufficient increase in viscosity, crystallization will be avoided entirely and glass will result.

  20. Platinum in phosphate laser glasses

    NASA Astrophysics Data System (ADS)

    Click, Carol Ann

    The platinum concentration in phosphate laser glasses has been characterized as a function of composition, melting time and temperature. The highest measured ionic platinum concentration is 2042 ppmw in a potassium-alumino-metaphosphate glass after 24 hours of melting at 900°C. The maximum platinum concentration in a given composition decreases with increasing temperature. The time, temperature and composition dependent platinum concentration in the melt depends on the relative rates of the platinum dissolution from the crucible wall into and platinum oxide volatilization out of the glass melt. As such, the platinum concentration in the melt can be seen to decrease with increasing time under some conditions. The local environment of the ionic platinum in these glasses has been investigated using optical spectroscopy. The ionic platinum is incorporated as Pt4+ ions in a distorted octahedral symmetry. This platinum is characterized by optical absorption occurring at wavelengths less than 500nm (energy > 20,000 cm-1) due to d-d electronic transitions. The addition of chlorine to the system results in an electronic transition shift to greater wavelengths in barium free glasses, which indicates that the chlorine is coordinating to the platinum in the barium free glasses. The effect of platinum on the Nd3+ 4F 3/2 → 4I11/2 fluorescence decay rate in a commercial laser glass has been investigated, and the effect is negligible. However, the effects of hydroxyl concentration and Nd2O3 concentration on the fluorescence decay rate are substantial and have been investigated in potassium-magnesium-aluminometaphosphate glasses with Nd 2O3 contents ranging from 0.5 to 8.0 weight%. The hydroxyl concentration ranged from ˜3 to 43 cm-1 at 3.33 mum, corresponding to hydroxyl concentrations of ˜300 to 4300 ppm. The fluorescence quenching rate of the Nd3+ ions by hydroxyls increases linearly with Nd atomic concentration, and when extrapolated to zero Nd concentration, has a value

  1. Antiferromagnetic inclusions in lunar glass

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Briggs, Charles; Alexander, Corrine

    1974-01-01

    The magnetic susceptibility of 11 glass spherules from the Apollo 15, 16, and 17 fines and two specimens of a relatively large glass spherical shell were studied as a function of temperature from room temperature to liquid helium temperatures. All but one specimen showed the presence of antiferromagnetic inclusions. Closely spaced temperature measurements of the magnetic susceptibility below 77 K on five of the specimens showed antiferromagnetic temperature transitions (Ne??el transitions). With the exception of ilmenite in one specimen, these transitions did not correspond to any transitions in known antiferromagnetic compounds. ?? 1974.

  2. Experimental studies of glass refining

    NASA Technical Reports Server (NTRS)

    Subramanian, R. S.; Cole, R.; Kondos, P.

    1984-01-01

    The basic components of the experimental apparatus were selected and acquired. Techniques were developed for the fabrication of the special crucibles necessary for the experiments. Arrangements were made for the analysis of glass and gas bubble samples for composition information. Donations of major equipment were received for this project from Owens, Illinois where a similar study had been conducted a few year ago. Decisions were made regarding the actual glass composition to be used, the gas to be used in the first experiments, and the temperatures at which the experiments should be conducted. A microcomputer was acquired, and work was begun on interfacing the video analyzer to it.

  3. Properties of unconventional lithium bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Hazra, S.; Mandal, S.; Ghosh, A.

    1997-10-01

    Unconventional bismuthate glasses containing lithium oxide have been prepared by a conventional melt-quench technique. X-ray diffraction, scanning electron microscopy, and differential thermal analysis show that stable binary glasses of composition xLi2O-(100-x)Bi2O3 can be achieved for x=20-35 mol %. Systematic variation of the glass-transition temperature, density, and molar volume observed in these glasses indicates no significant structural change with composition. Differential thermal analysis and optical studies show that the strength of the glass network decreases with the increase of Li2O content in the glass matrix with a small deviation for the extra stable 30Li2O-70Bi2O3 glass composition. Studies of Raman spectra and molar volume ensure that all glasses are built up of [BiO6] octahedral units, while the influence of Li+ ions in the glass matrix is also confirmed from optical, Raman, and electrical studies. Wide transmitting window in the optical region having sharp cutoffs in both ultraviolet-visible and infrared regimes may make these glasses useful in spectral devices. High dielectric values in these glasses compared to glasses formed with conventional glass former can be attributed to the influence of the high polarizability of the unconventional network forming cations, Bi3+.

  4. Glass transition and enthalpy relaxation of amorphous lactose glass.

    PubMed

    Haque, Md Kamrul; Kawai, Kiyoshi; Suzuki, Toru

    2006-08-14

    The glass transition temperature, T(g), and enthalpy relaxation of amorphous lactose glass were investigated by differential scanning calorimetry (DSC) for isothermal aging periods at various temperatures (25, 60, 75, and 90 degrees C) below T(g). Both T(g) and enthalpy relaxation were found to increase with increasing aging time and temperature. The enthalpy relaxation increased approximately exponentially with aging time at a temperature (90 degrees C) close to T(g) (102 degrees C). There was no significant change observed in the enthalpy relaxation around room temperature (25 degrees C) over an aging period of 1month. The Kohlrausch-Williams-Watts (KWW) model was able to fit the experimental enthalpy relaxation data well. The relaxation distribution parameter (beta) was determined to be in the range 0.81-0.89. The enthalpy relaxation time constant (tau) increased with decreasing aging temperature. The observed enthalpy relaxation data showed that molecular mobility in amorphous lactose glass was higher at temperatures closer to T(g). Lactose glass was stable for a long time at 25 degrees C. These findings should be helpful for improving the processing and storage stability of amorphous lactose and lactose containing food and pharmaceutical products.

  5. Dynamics of Spin Glass and Spin Glass-Like Materials.

    NASA Astrophysics Data System (ADS)

    Luo, Weili

    1990-01-01

    In this dissertation extensive research on the dynamics of both metallic and insulating spin glasses is reported. Aging was found in both metallic and insulating spin glass materials. Aging manifests itself through the waiting time dependence of the relaxation rate. Relaxation at a given age can be described by two regimes: a power law for short times, and a stretched exponential (STE) for long times. In the reentrant spin glass Eu_{0.54}Sr _{0.46}S, both regimes are observed, while in the metallic spin glass only STE is present. The time decay of the TRM, _{rm TRM }(t)_{12}, at a given age, is compared with calculation by De Dominicis et al in the frame work of mean field theory. Excellent agreement between the theoretical calculation and the experimental results suggests that mean field theory can provide a qualitative description of the nature of the spin glass phase. If the measurement time is much longer than the waiting time then the relaxation rate will depend on the total age of the system, t+t_{rm w}, where t_{rm w} is the waiting time. This shows up as a deviation from STE at long times, as was observed. Aging is explained by the existence of the complex landscape of free energy. The influence of aging on dynamics is found to decrease with increasing temperature and increasing field. We interpreted this decrease as a simplification of the free energy landscape while the system gets close to the de Almeida - Thouless (AT) line. In the "frustrated ferromagnetic" phase of Eu _{0.54}Sr_ {0.46}S slow decay of TRM is found as well as aging. A new way to determine the phase diagram from the dynamic point of view is presented.

  6. Structures and optical properties of tellurite glasses and glass ceramics

    NASA Astrophysics Data System (ADS)

    Hart, Robert Theodore, Jr.

    The structures and optical properties of (K2O)15(Nb 2O5)15(TeO2)70 glass and glass ceramic have been studied in order to understand the second harmonic generation observed from the glass ceramic. We have used 93Nb NMR, Raman spectroscopy, differential scanning calorimetry, small angle x-ray scattering, transmission electron microscopy, and powder x-ray and neutron scattering. We find that there is a microstructure consistent with binodal phase separation leading to spherical inclusions ˜20 nm in size. Upon heat treatment, these domains become nanocrystals of K2Te 4O9. A theory of optical heterogeneity is used to describe the observed second harmonic generation which is ˜95 times more intense that quartz. The chi(2) value for this material is 3.0 x 10-9 esu. A second project has used 125Te and 17O NMR to study alkali tellurite glasses in the system (M2O) x(TeO2)10-x, where M = Li, Na or K and x = 1, 2 or 3. The 125Te results show that complex models of network modification are needed to explain the resulting spectra that include a distribution of polyhedral tellurite units at all compositions. The 17O results show that there is a clear distinction between bridging and non-bridging oxygen sites in tellurite crystals and that sophisticated NMR experiments should be able to distinguish them in the glasses. Further, we have used Extended Huckel theory tight-binding calculations to predict the 17O NMR shifts of SiO2, GeO 2 and TeO2. We find that these calculations allow accurate predictions of the chemical shifts based solely on the trend in valence orbital size, and that expensive calculations of electron currents need not be used for this application.

  7. High-Intensity Plasma Glass Melter

    SciTech Connect

    2004-01-01

    Modular high-intensity plasma melter promises improved performance, reduced energy use, and lower emissions. The glass industry has used the same basic equipment for melting glass for the past 100 years.

  8. Measurement and Control of Glass Feedstocks

    SciTech Connect

    2005-08-01

    Laser-induced breakdown spectroscopy (LIBS) promises a new way for glass manufacturers to significantly increase productivity. By measuring the chemical makeup in raw materials and recycled glass cullet, LIBS can quickly detect contaminants and batch non...

  9. Biomedical engineering analysis of glass impact injuries.

    PubMed

    Sances, Anthony; Carlin, Fred H; Kumaresan, Srirangam; Enz, Bruce

    2002-01-01

    This article outlines the history, development, and safety aspects of glass and its use in motor vehicles. It traces the manufacture and describes the characteristics of laminated and tempered glass. It further compares the differences in injuries caused by impact with laminated and tempered glass. The development, use, and results of high penetration resistance (HPR) laminated glass for windshields are examined. Head and neck injuries from impact with glass and glazing structures are delineated. Results of studies with laminated and tempered glass are presented. The probability and severity of injuries occurring secondary to partial or full ejection of vehicle occupants are discussed, and the differences between the performance of laminated and tempered glass are highlighted. Current research to quantify head and neck injury parameters caused by glass impact during rollover is described. The biomechanics of head and neck injury assessment and the development of injury prediction parameters and reference values, respectively, are reviewed.

  10. Properties and characteristics of optical glass

    SciTech Connect

    Marker, A.J. III.

    1988-01-01

    This book contains the proceedings of SPIE on properties and characteristics of optical glass. Topics covered include IR reflectance measurement of ion-implanted silica, specifying optical materials, and impurity absorption coefficient measurements in phosphate glass melted under oxidizing conditions.

  11. High modulus high temperature glass fibers

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1973-01-01

    The search for a new high-modulus, high-temperature glass fiber involved the preparation of 500 glass compositions lying in 12 glass fields. These systems consisted primarily of low atomic number oxides and rare-earth oxides. Direct optical measurements of the kinetics of crystallization of the cordierite-rare earth system, for example, showed that the addition of rare-earth oxides decreased the rate of formation of cordierite crystals. Glass samples prepared from these systems proved that the rare-earth oxides made large specific contributions to the Young's modulus of the glasses. The best glasses have moduli greater than 21 million psi, the best glass fibers have moduli greater than 18 million psi, and the best glass fiber-epoxy resin composites have tensile strengths of 298,000 psi, compressive strengths of at least 220,000 psi, flexural strengths of 290,000 psi, and short-beam shear strengths of almost 17,000 psi.

  12. Glass microstructure capping and bonding techniques.

    PubMed

    Mazurczyk, Radoslaw; Mansfield, Colin D; Lygan, Marcin

    2013-01-01

    The capping of microfluidic features fabricated in glass substrates is achievable by various technological methods. Of the entire spectrum of possibilities (gluing, glass bonding via intermediate layers, pressure or plasma-assisted glass bonding, etc.) a detailed description of three techniques is presented here. The first is a low temperature PDMS-glass adhesion bonding, the second is medium temperature pressure assisted glass-glass bonding, and finally, high temperature glass-glass fusion bonding. All these protocols allow completion of the manufacturing process for a fully enclosed microfluidic chip. Nevertheless, as they are complementary rather than competing methods, they effectively extend the range of tools available to fabricate lab-on-a-chip microdevices. Each has its own merits and each could feasibly be used at different developmental stages of a given microfluidic device.

  13. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    SciTech Connect

    Chiu, Janet; Giovambattista, Nicolas; Starr, Francis W.

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  14. 4. View showing underside of wing, looking glass aircraft. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View showing underside of wing, looking glass aircraft. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  15. 5. Headon view of looking glass aircraft. View to southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Head-on view of looking glass aircraft. View to southwest. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  16. 3. General view showing rear of looking glass aircraft. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. General view showing rear of looking glass aircraft. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  17. 24 CFR 3280.113 - Glass and glazed openings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Glass and glazed openings. (a) Windows and sliding glass doors. All windows and sliding glass doors shall meet the requirements of § 3280.403 the “Standard for Windows and Sliding Glass Doors Used in...

  18. Potentially improved glasses from space environment

    NASA Technical Reports Server (NTRS)

    Nichols, R.

    1977-01-01

    The benefits of processing glasses in a low-gravity space environment are examined. Containerless processing, the absence of gravity driven convection, and lack of sedimentation are seen as potential advantages. Potential applications include the formation of glass-ceramics with a high content of active elements for ferromagnetic devices, the production of ultrapure chalcogenide glasses for laser windows and IR fiber optics, and improved glass products for use in optical systems and laser fusion targets.

  19. Volcanic glasses, their origins and alteration processes

    USGS Publications Warehouse

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  20. Germanate Glass Fiber Lasers for High Power

    DTIC Science & Technology

    2016-01-04

    germanate based glasses with a specific focus on glass stability during thermal- cycling which is representative of the steps required to fabricate a doped...evidence of crystallisation after thermal cycling , and is of a low enough loss to realize a fiber laser. The glass stability is demonstrated by...specific focus on glass stability during thermal- cycling which is representative of the steps required to fabricate a doped micro-structured germanate

  1. Granular packing as model glass formers

    NASA Astrophysics Data System (ADS)

    Wang, Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories.

  2. Crystallization of a barium-aluminosilicate glass

    NASA Technical Reports Server (NTRS)

    Drummond, C. H., III; Lee, W. E.; Bansal, N. P.; Hyatt, M. J.

    1989-01-01

    The crystallization of a celsian glass composition was investigated as a possible high-temperature ceramic matrix material. Heat treatments invariably resulted in crystallization of the hexaclesian phase unless a flux, such as lithia, was added or a nucleating agent used (e.g., celsian seeds). TEM analysis revealed complex microstructures. Glasses with Mo additions contained hexacelsian, mullite, and an Mo-rich glass. Li2O additions stabilized celsian but mullite and Mo-rich glass were still present.

  3. Waveguides Based Upon Chalcogenide Glasses

    DTIC Science & Technology

    2001-06-01

    spectroscopic study of extrasolar planets [6]. The second one is environmental metrology. Indeed, the detection of some vibrational modes present in some...chalcogenide glasses in components for two types of applications: spatial interferometry (detection of planets ) and environmental metrology (detection of

  4. Gain saturation in neodymium glasses

    NASA Astrophysics Data System (ADS)

    Brodov, M. E.; Epatko, I. V.; Ivanov, A. V.; Pashinin, P. P.; Serov, R. V.

    1987-12-01

    A theoretical model of gain saturation in Nd glasses is chosen which is based on minimum standard deviation from experimental data. It is shown that the laser-active-medium parameters cannot be determined effectively using this minimization. The possibility of using multipass schemes to choose the theoretical model is assessed.

  5. Thermal rejuvenation in metallic glasses

    PubMed Central

    Saida, Junji; Yamada, Rui; Wakeda, Masato; Ogata, Shigenobu

    2017-01-01

    Abstract Structural rejuvenation in metallic glasses by a thermal process (i.e. through recovery annealing) was investigated experimentally and theoretically for various alloy compositions. An increase in the potential energy, a decrease in the density, and a change in the local structure as well as mechanical softening were observed after thermal rejuvenation. Two parameters, one related to the annealing temperature, T a/T g, and the other related to the cooling rate during the recovery annealing process, V c/V i, were proposed to evaluate the rejuvenation phenomena. A rejuvenation map was constructed using these two parameters. Since the thermal history of metallic glasses is reset above 1.2T g, accompanied by a change in the local structure, it is essential that the condition of T a/T g ≥ 1.2 is satisfied during annealing. The glassy structure transforms into a more disordered state with the decomposition of icosahedral short-range order within this temperature range. Therefore, a new glassy structure (rejuvenation) depending on the subsequent quenching rate is generated. Partial rejuvenation also occurs in a Zr55Al10Ni5Cu30 bulk metallic glass when annealing is performed at a low temperature (T a/T g ~ 1.07) followed by rapid cooling. This behavior probably originates from disordering in the weakly bonded (loosely packed) region. This study provides a novel approach to improving the mechanical properties of metallic glasses by controlling their glassy structure. PMID:28458739

  6. Printing Silver Nanogrids on Glass

    ERIC Educational Resources Information Center

    Sanders, Wesley C.; Valcarce, Ron; Iles, Peter; Smith, James S.; Glass, Gabe; Gomez, Jesus; Johnson, Glen; Johnston, Dan; Morham, Maclaine; Befus, Elliot; Oz, Aimee; Tomaraei, Mohammad

    2017-01-01

    This manuscript describes a laboratory experiment that provides students with an opportunity to create conductive silver nanogrids using polymeric templates. A microcontact-printed polyvinylpyrrolidone grid directs the citrate-induced reduction of silver ions for the fabrication of silver nanogrids on glass substrates. In addition to…

  7. Structural relaxation of acetaminophen glass.

    PubMed

    Gunawan, Lina; Johari, G P; Shanker, Ravi M

    2006-05-01

    The aim is to determine the structural stability of acetaminophen glass with time and temperature change, and to examine the merits of adapting the structural relaxation models of the glassy state for pharmaceuticals. Differential scanning calorimetry technique has been used to study the acetaminophen glass after keeping the samples for various periods at fixed temperatures and after keeping at various temperatures for fixed periods. A general formalism for thermodynamic changes during storage in a temperature fluctuating environment is given and the kinetics of the enthalpy and entropy decrease determined. At a fixed temperature, the decrease occurs according to a non-exponential kinetics. For the same storage time, but at different temperatures, the enthalpy and entropy decrease rises to a maximum value at a certain temperature and then declines. The peak appears at the temperature at which the internally equilibrated state of the sample is reached for a fixed storage time. The change in the normalized heat capacity during the heating of acetaminophen has been analysed in terms of a non-exponential, non-linear enthalpy relaxation model. A single set of parameters that fit the data for unannealed acetaminophen glass does not fit the calorimetric data for annealed glass. Since acetaminophen molecules form intermolecular hydrogen-bonds in the crystal state and likely to form such bonds more easily in the disordered state, effect of such bonds on structural relaxation is likely to be significant.

  8. Digimarc Discover on Google Glass

    NASA Astrophysics Data System (ADS)

    Rogers, Eliot; Rodriguez, Tony; Lord, John; Alattar, Adnan

    2015-03-01

    This paper reports on the implementation of the Digimarc® Discover platform on Google Glass, enabling the reading of a watermark embedded in a printed material or audio. The embedded watermark typically contains a unique code that identifies the containing media or object and a synchronization signal that allows the watermark to be read robustly. The Digimarc Discover smartphone application can read the watermark from a small portion of printed image presented at any orientation or reasonable distance. Likewise, Discover can read the recently introduced Digimarc Barcode to identify and manage consumer packaged goods in the retail channel. The Digimarc Barcode has several advantages over the traditional barcode and is expected to save the retail industry millions of dollars when deployed at scale. Discover can also read an audio watermark from ambient audio captured using a microphone. The Digimarc Discover platform has been widely deployed on the iPad, iPhone and many Android-based devices, but it has not yet been implemented on a head-worn wearable device, such as Google Glass. Implementing Discover on Google Glass is a challenging task due to the current hardware and software limitations of the device. This paper identifies the challenges encountered in porting Discover to the Google Glass and reports on the solutions created to deliver a prototype implementation.

  9. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary...

  10. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sighting ports, tubular gauge glasses, and flat plate... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means... cargo tanks. (c) Plate type gauge glasses must not be liquid level gauges for cargo tanks, except deck...

  11. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sighting ports, tubular gauge glasses, and flat plate... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means... cargo tanks. (c) Plate type gauge glasses must not be liquid level gauges for cargo tanks, except deck...

  12. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sighting ports, tubular gauge glasses, and flat plate... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means... cargo tanks. (c) Plate type gauge glasses must not be liquid level gauges for cargo tanks, except deck...

  13. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sighting ports, tubular gauge glasses, and flat plate... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means... cargo tanks. (c) Plate type gauge glasses must not be liquid level gauges for cargo tanks, except deck...

  14. 7 CFR 3201.30 - Glass cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Glass cleaners. 3201.30 Section 3201.30 Agriculture... Items § 3201.30 Glass cleaners. (a) Definition. Cleaning products designed specifically for use in cleaning glass surfaces, such as windows, mirrors, car windows, and computer monitors. (b) Minimum biobased...

  15. 7 CFR 3201.30 - Glass cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Glass cleaners. 3201.30 Section 3201.30 Agriculture... Items § 3201.30 Glass cleaners. (a) Definition. Cleaning products designed specifically for use in cleaning glass surfaces, such as windows, mirrors, car windows, and computer monitors. (b) Minimum biobased...

  16. 7 CFR 3201.30 - Glass cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Glass cleaners. 3201.30 Section 3201.30 Agriculture... Items § 3201.30 Glass cleaners. (a) Definition. Cleaning products designed specifically for use in cleaning glass surfaces, such as windows, mirrors, car windows, and computer monitors. (b) Minimum biobased...

  17. Method for milling and drilling glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H. (Inventor)

    1980-01-01

    A process for machining glass by placing a rotating carbide working surface under minimum pressure against an area of glass to be worked is described. Concurrently the region between the working surface and the area of glass is wet with a lubricant consisting essentially of a petroleum carrier, a complex mixture of esters and a complex mixture of naturally occurring aromatic oils.

  18. Grinding Glass Disks On A Belt Sander

    NASA Technical Reports Server (NTRS)

    Lyons, James J., III

    1995-01-01

    Small machine attached to table-top belt sander makes possible to use belt sander to grind glass disk quickly to specified diameter within tolerance of about plus or minus 0.002 in. Intended to be used in place of production-shop glass grinder. Held on driveshaft by vacuum, glass disk rotated while periphery ground by continuous sanding belt.

  19. Jagged Edges of the Glass Ceiling

    ERIC Educational Resources Information Center

    Robinson, Victoria L.

    2004-01-01

    Although many aspiring young women might believe the glass ceiling was shattered a decade ago, they still need to understand how that glass ceiling impacted an older generation of women in educational leadership. They also must be aware that some segments of the glass ceiling might still exist. This article provides a historical overview of the…

  20. Classification of oxide glasses: A polarizability approach

    SciTech Connect

    Dimitrov, Vesselin; Komatsu, Takayuki . E-mail: komatsu@chem.nagaokaut.ac.jp

    2005-03-15

    A classification of binary oxide glasses has been proposed taking into account the values obtained on their refractive index-based oxide ion polarizability {alpha}{sub O2-}(n{sub 0}), optical basicity {lambda}(n{sub 0}), metallization criterion M(n{sub 0}), interaction parameter A(n{sub 0}), and ion's effective charges as well as O1s and metal binding energies determined by XPS. Four groups of oxide glasses have been established: glasses formed by two glass-forming acidic oxides; glasses formed by glass-forming acidic oxide and modifier's basic oxide; glasses formed by glass-forming acidic and conditional glass-forming basic oxide; glasses formed by two basic oxides. The role of electronic ion polarizability in chemical bonding of oxide glasses has been also estimated. Good agreement has been found with the previous results concerning classification of simple oxides. The results obtained probably provide good basis for prediction of type of bonding in oxide glasses on the basis of refractive index as well as for prediction of new nonlinear optical materials.

  1. DURABLE GLASS FOR THOUSANDS OF YEARS

    SciTech Connect

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  2. Nickel-iron spherules from aouelloul glass

    USGS Publications Warehouse

    Chao, E.C.T.; Dwornik, E.J.; Merrill, C.W.

    1966-01-01

    Nickel-iron spherules, ranging from less than 0.2 to 50 microns in diameter and containing 1.7 to 9.0 percent Ni by weight, occur in glass associated with the Aouelloul crater. They occur in discrete bands of siliceous glass enriched in dissolved iron. Their discovery is significant tangible evidence that both crater and glass originated from terrestrial impact.

  3. Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass

    PubMed

    Hukushima; Kawamura

    2000-02-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.

  4. Friction behavior of glass and metals in contact with glass in various environments

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.

  5. Analysis of early medieval glass beads - Glass in the transition period

    NASA Astrophysics Data System (ADS)

    Šmit, Žiga; Knific, Timotej; Jezeršek, David; Istenič, Janka

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  6. Structure and the physicochemical properties of glasses and glass melts

    NASA Astrophysics Data System (ADS)

    Kucuk, Ahmet

    1999-11-01

    A user friendly experimental procedure (sessile and pendant drop arrangements) and calculation routine were developed to measure the physicochemical properties such as density, surface tension, and volatilization of glasses and glass melts at the temperature range of 500 to 1500°C. The influence of volatilization on the composition, density and surface tension of potassium, sodium silicate and soda lime silica melts at 1400°C was investigated using the sessile and pendant drop arrangements, diffuse reflectance Fourier transform spectrometry and electronic-balance. Volatilization of alkali from the melts was modeled as a combined mechanism that included diffusion of volatile species from bulk to surface and chemical decomposition reaction of alkali oxide on the surface. The surface tension of experimental and commercial glass melts, some containing iron, was measured under various atmospheres including 4%H 2/96%Ar, dry argon, dry air and wet air using the sessile drop and pendant drop arrangements. In general, the surface tension of the melts decreased in the given order: argon, dry air and wet air. OH groups from water vapor in the atmosphere behave as a surface active species according to the Gibbs adsorption equation and form a mono-layer on the surface with certain number of molecules according to the Langmuir adsorption theorem. The number of OH-like molecules in the monolayer is higher for the melts containing high ionic strength ions. Iron containing melts have higher surface tension and density for higher Fe2+/Fe3+ ratios. The presence of four-coordinated Fe3+ ions rather than six-coordinated Fe 2+ in the surface of iron bearing glass melts was found to be energetically more favorable. The structures of potassium and lithium silicate glasses and melts were modeled using the molecular dynamics simulation at 300 K and 1700 K, respectively. Despite of the excellent agreement between modeled and experimentally determined structure in the short range, modeled

  7. The role of glass composition in the behaviour of glass acetic acid and glass lactic acid cements.

    PubMed

    Shahid, Saroash; Billington, R W; Pearson, G J

    2008-02-01

    Cements have recently been described, made from glass ionomer glass reacted with acetic and lactic acid instead of polymeric carboxylic acid. From their behaviour a theory relating to a possible secondary setting mechanism of glass ionomer has been adduced. However, only one glass (G338) was used throughout. In this study a much simpler glass ionomer glass (MP4) was compared with G338. This produced very different results. With acetic acid G338 formed cement which became resistant to water over a period of hours, as previously reported, MP4 formed cement which was never stable to water. With lactic acid G338 behaved similarly to G338 with acetic acid, again as reported, but MP4 produced a cement which was completely resistant to water at early exposure and unusually became slightly less resistant if exposure was delayed for 6 h or more. These findings indicate that the theories relating to secondary setting in glass ionomer maturation may need revision.

  8. Precision glass molding technology for low Tg glasses

    NASA Astrophysics Data System (ADS)

    Yang, Hong; Wang, Zhibin; Zhang, Yunlong; Zhang, Feng; Tian, Minqiang; Shao, Xinzheng

    2017-02-01

    Precision glass molding (PGM) technology is a cost-effective manufacturing process for high precision optical elements with complex surfaces. With this processing technology, one or more pieces of lenses may be produced through one-step molding. Due to the high efficiency of the replicative process, PGM has found wide applications in high volume production of optical elements. At present, it has been well developed and widely used in mass industry production in Japan and South Korea, but in China PGM technology research is still in the elementary stage. To develop the PGM technology, we need to conquer several technical difficulties, such as the melting technology of low Tg glasses, highprecision mold design and the corresponding machining technology and the coating technology for the molds. In this paper, we discussed the PGM technology as a complete manufacturing process, focused on the technical difficulties mentioned above, and introduced the development directions for this technology in China.

  9. Glass Durability Modeling, Activated Complex Theory (ACT)

    SciTech Connect

    CAROL, JANTZEN

    2005-02-04

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al{sup +3} and Fe{sup +3} in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe{sup +3} rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al{sup +3} rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe{sup +3} rich and some Al{sup +3} rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass

  10. Entropic shrinkage of an oxide glass

    NASA Astrophysics Data System (ADS)

    Inaba, Seiji; Hosono, Hideo; Ito, Setsuro

    2015-03-01

    Entropic elasticity, a property typical of rubbers and well known in organic polymers with appropriate network structures, is not known to occur in oxide glasses. Here, we report the occurrence of entropic elasticity in phosphate-glass fibres with highly anisotropic structures, drawn by mechanical elongation from supercooled liquids. We observed a large lengthwise shrinkage of ~35% for phosphate glasses with an enhanced one-dimensional structure, as well as a distinct endotherm on reheating them up to temperatures between that of the glass transition temperature and the softening temperature. Our results strongly suggest the possibility of designing oxide glasses with a rubbery nature at high temperatures.

  11. Entropic shrinkage of an oxide glass.

    PubMed

    Inaba, Seiji; Hosono, Hideo; Ito, Setsuro

    2015-03-01

    Entropic elasticity, a property typical of rubbers and well known in organic polymers with appropriate network structures, is not known to occur in oxide glasses. Here, we report the occurrence of entropic elasticity in phosphate-glass fibres with highly anisotropic structures, drawn by mechanical elongation from supercooled liquids. We observed a large lengthwise shrinkage of ~35% for phosphate glasses with an enhanced one-dimensional structure, as well as a distinct endotherm on reheating them up to temperatures between that of the glass transition temperature and the softening temperature. Our results strongly suggest the possibility of designing oxide glasses with a rubbery nature at high temperatures.

  12. Photon Interaction Parameters for Some Borate Glasses

    SciTech Connect

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir; Sharma, J. K.; Singh, Parjit S.

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  13. Radiotracer investigation in a glass production unit.

    PubMed

    Pant, H J; Goswami, Sunil; Biswal, Jayashree; Samantaray, J S; Sharma, V K; Singhal, Sorabh

    2016-10-01

    A radiotracer investigation was carried out in a glass production unit in a glass industry. Lanthanum-140 as lanthanium oxide mixed with silica was used as a radiotracer to trace the molten glass in various sections of the unit. Residence time distributions of molten glass were measured and analyzed to identify the flow abnormities. The flow parameters such as breakthrough time, mean residence time, homogenization time, dead volume and flow patterns in different sections of the unit were obtained from the measured RTD data. The results of the investigation were used to improve and optimize the operation of the glass production unit.

  14. Thin glass processing with various laser sources

    NASA Astrophysics Data System (ADS)

    Collins, Adam R.; Milne, David; Prieto, Camilo; O'Connor, Gerard M.

    2015-03-01

    Laser processing of thin glass has proven problematic due to the inefficient coupling of optical energy into glass and the difficulty achieving an economical processing speed while maintaining cut quality. Laser glass processing is pertinent to touch screen display, microfluidic, microoptic and photovoltaic applications. The results of the laser scribing of 110 μm thick alkali free glass with various laser sources are presented. The laser sources include a CO₂ laser, nanosecond UV laser and femtosecond IR laser. The contrasting absorption mechanisms are discussed. Cut quality and processing speed are characterised using SEM and optical microscopy techniques. Alternative laser techniques for thin glass processing are also considered.

  15. Production of glass balloons for laser targets

    SciTech Connect

    Hendricks, C.D.; Dressler, J.L.

    1982-09-28

    An apparatus for producing small quantities of glass balloons for use as laser fusion targets is described. To produce precise quantities of the ingredients of one glass balloon, a jet of an aqueous solution of the glass constituents and a blowing agent is metered into uniformly sized drops by Rayleigh breakup. A small fraction of these uniform drops is then passed through an oven where the water is evaporated, the remaining solid material is fused into glass, and a blowing agent decomposes or water of hydration evolves as a vapor to blow the drop into a balloon. Photographs of the resulting glass balloons are presented.

  16. Dynamics of Glass Relaxation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Welch, Roger C.; Smith, John R.; Potuzak, Marcel; Guo, Xiaoju; Bowden, Bradley F.; Kiczenski, T. J.; Allan, Douglas C.; King, Ellyn A.; Ellison, Adam J.; Mauro, John C.

    2013-06-01

    The problem of glass relaxation under ambient conditions has intrigued scientists and the general public for centuries, most notably in the legend of flowing cathedral glass windows. Here we report quantitative measurement of glass relaxation at room temperature. We find that Corning® Gorilla® Glass shows measurable and reproducible relaxation at room temperature. Remarkably, this relaxation follows a stretched exponential decay rather than simple exponential relaxation, and the value of the stretching exponent (β=3/7) follows a theoretical prediction made by Phillips for homogeneous glasses.

  17. Glass needs for a growing photovoltaics industry

    SciTech Connect

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  18. Major element composition of Luna 20 glasses.

    NASA Technical Reports Server (NTRS)

    Warner, J.; Reid, A. M.; Ridley, W. I.; Brown, R. W.

    1972-01-01

    Ten per cent of the 50 to 150-micron size fraction of Luna 20 soil is glass. A random suite of 270 of these glasses has been analyzed by electron microprobe techniques. The major glass type forms a strong cluster around a mean value corresponding to Highland basalt (anorthositic gabbro) with 70% normative feldspar. Minor glass groups have the compositions of mare basalts and of low-K Fra Mauro type basalts. The glass data indicate that Highland basalt is the major rock type in the highlands north of Mare Fecunditatis.

  19. A new glass option for parenteral packaging.

    PubMed

    Schaut, Robert A; Peanasky, John S; DeMartino, Steven E; Schiefelbein, Susan L

    2014-01-01

    Glass is the ideal material for parenteral packaging because of its chemical durability, hermeticity, strength, cleanliness, and transparency. Alkali borosilicate glasses have been used successfully for a long time, but they do have some issues relating to breakage, delamination, and variation in hydrolytic performance. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the compendial requirements, and to have similar thermal, optical, and mechanical attributes as the current alkali borosilicate glasses. In addition, the alkali aluminosilicate performed as well or better than the current alkali borosilicates in extractables tests and stability studies, which suggests that it would be suitable for use with the studied liquid product formulation. The physical, mechanical, and optical properties of glass make it an ideal material for packaging injectable drugs and biologics. Alkali borosilicate glasses have been used successfully for a long time for these applications, but there are some issues. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the requirements for packaging injectable drugs and biologics, and to be suitable for use with a particular liquid drug. © PDA, Inc. 2014.

  20. Evaluation of Behaviours of Laminated Glass

    NASA Astrophysics Data System (ADS)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  1. Low-thermal expansion infrared glass ceramics

    NASA Astrophysics Data System (ADS)

    Lam, Philip

    2009-05-01

    L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (<0.5 ppm/°C) and high thermal-shock resistance to be used as windows and domes for high speed flight. The material is an inorganic, non-porous glass ceramic, characterized by crystalline phases of evenly distributed nano-crystals in a residual glass phase. The major crystalline phase is zirconium tungstate (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.

  2. Pressurized heat treatment of glass ceramic

    DOEpatents

    Kramer, D.P.

    1984-04-19

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  3. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  4. Neutron diffraction studies of natural glasses

    SciTech Connect

    Wright, A.C.; Erwin Desa, J.A.; Weeks, R.A.; Sinclair, R.N.; Bailey, D.K.

    1983-08-01

    A neutron diffraction investigation has been carried out of the structures of several naturally occurring glasses, viz. Libyan Desert glass, a Fulgurite, Wabar glass, Lechatelierite from Canon Diablo, a Tektite, Obsidian (3 samples), and Macusani glass. Libyan Desert sand has also been examined, together with crystalline ..cap alpha..-quartz and ..cap alpha..-cristobalite. A comparison of data for the natural glasses and synthetic vitreous silica (Spectrosil B) in both reciprocal and real space allows a categorisation into Silicas, which closely resemble synthetic vitreous silica, and Silicates, for which the resemblance to silica is consistently less striking. The data support the view that Libyan Desert glass and sand have a common origin, while the Tektite has a structure similar to that of volcanic glasses.

  5. Glass transition: 'Spin' fluctuations or free volume ?

    NASA Astrophysics Data System (ADS)

    Skomski, R.

    1994-08-01

    Using a simple but statistically well-defined Langevin soft-spin model, the behaviour of suddenly quenched glasses is investigated. The non-equilibrium phase diagram is calculated and utilized to discuss the dependence of the glass-transition temperature on the ground-state properties of the material. The true ground state of the model is ordered, but the glass state remains stable below a non-equilibrium glass-transition temperature T o < T eq, where T eq is the temperature of the accompanying equilibrium phase transition. As opposed to semiphenomenological free-volume theories, it is not necessary to fall back on temperature-dependent energy barriers to explain the glass transition. To rationalize the tendency towards glass formation we derive rules analogous to those known as Zachariasen rules in the case of inorganic glasses.

  6. Durability of Silicate Glasses: An Historical Approach

    SciTech Connect

    Farges, Francois; Etcheverry, Marie-Pierre; Haddi, Amine; Trocellier, Patrick; Curti, Enzo; Brown, Gordon E., Jr.; /SLAC, SSRL

    2007-01-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  7. Glasses, ceramics, and composites from lunar materials

    NASA Astrophysics Data System (ADS)

    Beall, George H.

    1992-02-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  8. A universal description of ultraslow glass dynamics

    PubMed Central

    Martinez-Garcia, Julio Cesar; Rzoska, Sylwester J.; Drozd-Rzoska, Aleksandra; Martinez-Garcia, Jorge

    2013-01-01

    The dynamics of glass is of importance in materials science but its nature has not yet been fully understood. Here we report that a verification of the temperature dependencies of the primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming systems can be carried out via the analysis of the inverse of the Dyre–Olsen temperature index. The subsequent analysis of experimental data indicates the possibility of the self-consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crystals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the prevalence of equations associated with the ‘finite temperature divergence’. All these lead to a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to the dominated local symmetry for a given glass former is identified here. Results obtained show a new relationship between the glass transition and critical phenomena. PMID:23652011

  9. A universal description of ultraslow glass dynamics.

    PubMed

    Martinez-Garcia, Julio Cesar; Rzoska, Sylwester J; Drozd-Rzoska, Aleksandra; Martinez-Garcia, Jorge

    2013-01-01

    The dynamics of glass is of importance in materials science but its nature has not yet been fully understood. Here we report that a verification of the temperature dependencies of the primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming systems can be carried out via the analysis of the inverse of the Dyre-Olsen temperature index. The subsequent analysis of experimental data indicates the possibility of the self-consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crystals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the prevalence of equations associated with the 'finite temperature divergence'. All these lead to a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to the dominated local symmetry for a given glass former is identified here. Results obtained show a new relationship between the glass transition and critical phenomena.

  10. Recirculation bubbler for glass melter apparatus

    DOEpatents

    Guerrero, Hector; Bickford, Dennis

    2007-06-05

    A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.

  11. Recent developments in glass-ceramic materials

    SciTech Connect

    Beall, G.H.

    1993-12-31

    Glass-ceramic materials can be made by sintering and crystallization of fine glass powders or by internal nucleation and crystallization of formed glass articles. In both cases, the final properties are controlled by phase assemblage and microstructure. Transparent glass-ceramics based upon ultra-fine grained {beta}-quartz solid solution have been developed with near-zero thermal expansion coefficient for a variety of consumer and technical products: cookware, stove-tops, telescope mirrors, optical gyroscopes. Fluormica glass-ceramics with a {open_quotes}house-of-cards{close_quotes} microstructure are easily machined and have found wide application in vacuum systems, precision dielectric components, insulators, and medical and dental prostheses. Acicular chain silicate glass-ceramics are strong and tough, and have recently been developed as high performance tableware and magnetic memory disk substrates. Sintered glass-ceramics based on magnesium aluminosilicate frits are the basis of copper-cordierite packaging for advanced IC packaging.

  12. Characterization of Savannah River Plant waste glass

    SciTech Connect

    Plodinec, M J

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria.

  13. Physical aging in a hyperquenched glass

    NASA Astrophysics Data System (ADS)

    Yue, Y. Z.; Jensen, S. L.; deC. Christiansen, J.

    2002-10-01

    We report experimental data on the enthalpy relaxation of a hyperquenched silicate glass subjected to long-time aging (annealing) below the glass-transition temperature (Tg). The relaxation of a hyperquenched glass substantially differs from that of a normally cooled glass. Two mechanisms govern the relaxation of a hyperquenched glass. During relaxation of the first hyperquenched, and afterward aged glass, a relaxation endotherm occurs followed by an exotherm. This is reflected by the occurrence of crossover. By increasing the aging temperature and time, the endotherm becomes more pronounced, while the exotherm gradually disappears. The consequence of this is the shift of the crossover point to higher temperature. The relaxation of the hyperquenched glass at 0.66Tg with the aging time is highly nonexponential.

  14. An investigation of iron phosphate glasses

    NASA Astrophysics Data System (ADS)

    Fang, Xiangyu

    The effect of melting history on the iron redox equilibrium, structure, crystallization and properties of a binary iron phosphate glass with a 40Fe 2O3-60P2O5, mol%, batch composition were investigated. The structure and properties of single and mixed alkali iron phosphate glasses were also studied. Mossbauer, Raman and infrared spectroscopy were used to determine the changes in the concentration of iron ions and phosphate units in the structure. Differential thermal analysis, X-ray diffraction and thermogravimetric analysis were used to investigate crystallization. Density, molar volume, thermal expansion, dc electrical conductivity and dielectric constant and loss tangent were measured. The heat capacity and glass transition behavior of the glasses was also measured by the differential scanning calorimeter method. The effect of the melting temperature is stronger than the melting time on the concentration of Fe2+ ions in iron phosphate glasses. The pyrophosphate network in iron phosphate glasses and their general properties do not change either with melting temperature and time or with adding up to 20 mol% of single and mixed alkali oxides. The dissolution rate (in deionized water) of these glasses is generally very low (˜10-9 g/cm2/min) and nearly independent of the relative concentration of Fe 2+ or Fe3+ ions. The dissolution rate of the iron phosphate glasses containing 20 mol% of single or mixed alkali oxide can be comparable to that of window glass. There is no mixed alkali effect in the iron phosphate glasses. The crystallization tendency indicates that the glass structure becomes closer to that of crystalline Fe3(P2O 7)2 with increasing concentration of Fe2+ ions in the glass. The large fragility parameters indicates that the iron phosphate glasses belong in the category of the fragile glass-forming liquids.

  15. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Nolen, R. L.; Downs, R. L.; Ebner, M. A.

    1982-01-01

    Highly-uniform, hollow glass spheres, which are used for inertial-confinement fusion targets, are formed from metal-organic gel powder feedstock in a drop-tower furnace. The modelling of this gel-to-sphere transformation has consisted of three phases: gel thermochemistry, furnance-to-gel heat transfer, and gravity-driven degradation of the concentricity of the molten shell. The heat transfer from the furnace to the free-falling gel particle was modelled with forced convection. The gel mass, dimensions, and specific heat as well as furnace temperature profile and furnace gas conductivity, were controlled variables. This model has been experimentally verified. In the third phase, a mathematical model was developed to describe the gravity-driven degradation of concentricity in molten glass shells.

  16. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  17. Mercury sulphide dimorphism in glasses

    SciTech Connect

    Kassem, Mohammad; Sokolov, Anton; Cuisset, Arnault; Usuki, Takeshi; Khaoulani, Sohayb; Masselin, Pascal; Le Coq, David; Neuefeind, Joerg C.; Feygenson, Mikhail; Hannon, Alex; Benmore, C. J.; Bychkov, E.

    2016-05-23

    Crystals usually exist in several polymorphic forms in different domains of the P,T-diagram. Glasses and liquids also reveal density- or entropy-driven polyamorphism when e.g. an amorphous molecular solid or liquid transforms into a network polymorph. Using pulsed neutron and high-energy X-ray diffraction, we show that mercury sulphide exists simultaneously in two polymorphic modifications in a glass network forming chain-like and tetrahedral motifs. DFT simulations of 4-fold coordinated mercury species and RMC modelling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 m 6) are acting as a network former while the HgS4/4-related mixed agglomerated units behave as a modifier

  18. Magnetic antenna using metallic glass

    NASA Technical Reports Server (NTRS)

    Desch, Michael D. (Inventor); Farrell, William M. (Inventor); Houser, Jeffrey G. (Inventor)

    1996-01-01

    A lightweight search-coil antenna or sensor assembly for detecting magnetic fields and including a multi-turn electromagnetic induction coil wound on a spool type coil form through which is inserted an elongated coil loading member comprised of metallic glass material wrapped around a dielectric rod. The dielectric rod consists of a plastic or a wooden dowel having a length which is relatively larger than its thickness so as to provide a large length-to-diameter ratio. A tri-axial configuration includes a housing in which is located three substantially identical mutually orthogonal electromagnetic induction coil assemblies of the type described above wherein each of the assemblies include an electromagnetic coil wound on a dielectric spool with an elongated metallic glass coil loading member projecting therethrough.

  19. Mercury sulphide dimorphism in glasses

    DOE PAGES

    Kassem, Mohammad; Sokolov, Anton; Cuisset, Arnault; ...

    2016-05-23

    Crystals usually exist in several polymorphic forms in different domains of the P,T-diagram. Glasses and liquids also reveal density- or entropy-driven polyamorphism when e.g. an amorphous molecular solid or liquid transforms into a network polymorph. Using pulsed neutron and high-energy X-ray diffraction, we show that mercury sulphide exists simultaneously in two polymorphic modifications in a glass network forming chain-like and tetrahedral motifs. DFT simulations of 4-fold coordinated mercury species and RMC modelling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 m 6) are acting as a network former whilemore » the HgS4/4-related mixed agglomerated units behave as a modifier« less

  20. Lid heater for glass melter

    DOEpatents

    Phillips, T.D.

    1993-12-14

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures.

  1. Mercury sulphide dimorphism in glasses

    SciTech Connect

    Kassem, Mohammad; Sokolov, Anton; Cuisset, Arnault; Usuki, Takeshi; Khaoulani, Sohayb; Masselin, Pascal; Le Coq, David; Neuefeind, Joerg C.; Feygenson, Mikhail; Hannon, Alex; Benmore, C. J.; Bychkov, E.

    2016-05-23

    Crystals usually exist in several polymorphic forms in different domains of the P,T-diagram. Glasses and liquids also reveal density- or entropy-driven polyamorphism when e.g. an amorphous molecular solid or liquid transforms into a network polymorph. Using pulsed neutron and high-energy X-ray diffraction, we show that mercury sulphide exists simultaneously in two polymorphic modifications in a glass network forming chain-like and tetrahedral motifs. DFT simulations of 4-fold coordinated mercury species and RMC modelling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 m 6) are acting as a network former while the HgS4/4-related mixed agglomerated units behave as a modifier

  2. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Nolen, R. L.; Downs, R. L.; Ebner, M. A.

    1982-01-01

    Highly-uniform, hollow glass spheres, which are used for inertial-confinement fusion targets, are formed from metal-organic gel powder feedstock in a drop-tower furnace. The modelling of this gel-to-sphere transformation has consisted of three phases: gel thermochemistry, furnance-to-gel heat transfer, and gravity-driven degradation of the concentricity of the molten shell. The heat transfer from the furnace to the free-falling gel particle was modelled with forced convection. The gel mass, dimensions, and specific heat as well as furnace temperature profile and furnace gas conductivity, were controlled variables. This model has been experimentally verified. In the third phase, a mathematical model was developed to describe the gravity-driven degradation of concentricity in molten glass shells.

  3. Lid heater for glass melter

    DOEpatents

    Phillips, Terrance D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

  4. Holmium Oxide Glass Wavelength Standards

    PubMed Central

    Allen, David W.

    2007-01-01

    Holmium oxide glass has been used as a wavelength standard for over four decades. These standards have shown insignificant spectral variation from batch to batch and from one manufacturer to another. The National Institute of Standards and Technology (NIST) has certified and recertified holmium oxide glass samples for over four decades. Over this period of time there has been no recorded instance of a spectral shift of the certified bands for any of the samples measured. Moreover, these samples are known to be robust and relatively insensitive to a normal range of temperature and humidity. Based on the extensive experience that NIST has with this material and its long-term stability, NIST will no longer recommend the recertification of these standards. Furthermore, traceability may be established either through the supplier or by the end user without the need for NIST involvement. PMID:27110474

  5. Lid heater for glass melter

    SciTech Connect

    Phillips, T.D.

    1992-12-31

    This invention is comprised of a glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

  6. Characterization of two polyvalent phages infecting Enterobacteriaceae

    PubMed Central

    Hamdi, Sana; Rousseau, Geneviève M.; Labrie, Simon J.; Tremblay, Denise M.; Kourda, Rim Saïed; Ben Slama, Karim; Moineau, Sylvain

    2017-01-01

    Bacteriophages display remarkable genetic diversity and host specificity. In this study, we explore phages infecting bacterial strains of the Enterobacteriaceae family because of their ability to infect related but distinct hosts. We isolated and characterized two novel virulent phages, SH6 and SH7, using a strain of Shigella flexneri as host bacterium. Morphological and genomic analyses revealed that phage SH6 belongs to the T1virus genus of the Siphoviridae family. Conversely, phage SH7 was classified in the T4virus genus of the Myoviridae family. Phage SH6 had a short latent period of 16 min and a burst size of 103 ± 16 PFU/infected cell while the phage SH7 latent period was 23 min with a much lower burst size of 26 ± 5 PFU/infected cell. Moreover, phage SH6 was sensitive to acidic conditions (pH < 5) while phage SH7 was stable from pH 3 to 11 for 1 hour. Of the 35 bacterial strains tested, SH6 infected its S. flexneri host strain and 8 strains of E. coli. Phage SH7 lysed additionally strains of E. coli O157:H7, Salmonella Paratyphi, and Shigella dysenteriae. The broader host ranges of these two phages as well as their microbiological properties suggest that they may be useful for controlling bacterial populations. PMID:28091598

  7. [Hospital auxiliary staff, between polyvalence and invisibility].

    PubMed

    Veissier, Pascale

    2016-01-01

    Often underestimated, hospital auxiliary staff carry out on a daily basis a professional activity that may be difficult to define and/or recognize. What does their work consist in and what are the boundaries of the scope of their activity? Faced with a growing rate of absenteeism among these members of staff in a nursing home for elderly people attached to a hospital, an issue emerges: does the content of their professional activity have an impact on the causes and evolution of this phenomenon?

  8. Melter Glass Removal and Dismantlement

    SciTech Connect

    Richardson, BS

    2000-10-31

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  9. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  10. Safely splicing glass optical fibers

    NASA Technical Reports Server (NTRS)

    Korbelak, K.

    1980-01-01

    Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight bos filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.

  11. Recycled Glass and Dredged Materials

    DTIC Science & Technology

    2007-03-01

    soft drink, beer , food, wine, and liquor containers collected at residential curbside, drop boxes, trash barrels, deposit stations, or recycling...cullet (for new bottles and other containers) or non-container glass cullet (all other uses), and non-container processed cullet production is...crystal, porcelain, etc.), metal (from bottle caps), organics (from food, paper labels, etc.), and other inorganics (from soil, concrete, bricks, etc

  12. Photosensitivity in Antimony Based Glasses

    DTIC Science & Technology

    2001-06-01

    8217 aLaborat6rio de Materiais Fot6nicos, Instituto de Quimica , UNESP, rua Professor Francisco Degni, Araraquara - SP, Brazil b Laboratoire des Mat~riaux...glasses. Under irradiation, using Ar-laser 350nm wavelength and 50 mW power density, change on the coloration is observed. Structural and electronic...network. On the other hand, XANES spectra, at the L, edge, suggest a change in the oxidation state of Sb atoms. These modifications associated to the

  13. Penetration Physics of Armor Glass

    DTIC Science & Technology

    2009-11-30

    around impact site .....................................5 Figure 3. Off-center section showing in-situ fragments formed by intersecting cone and lateral...Closely-spaced cone cracks beneath the nose of an arrested projectile ....................8 Figure 6. Agglomerated glass fragments attached to a projectile...fragments. All targets showed cone cracks, radial cracks, ring cracks, and lateral cracks typical of particle or rod impact. A cylindrically “tunnel” of

  14. Basic Research on Oxynitride Glasses.

    DTIC Science & Technology

    1982-07-01

    silicates, yttrium-aluminum silicates, or nitrogen apatite (Y4 Si4OllN 2 ). Substitution of nitrogen for oxygen in the crystal- line yttrium silicates may... oxygen in a wide variety of silicate system to produce oxynitride glasses with improved properties. Nitrogen contents as high as 12 at% have been...transition temperature, hardness, fracture toughness, and density all increase, and the thermal expansion coefficient decreases with increased nitrogen content

  15. Acoustic Echoes in Model Glasses

    NASA Astrophysics Data System (ADS)

    Burton, Justin; Nagel, Sidney

    2012-02-01

    At low temperatures, glasses and crystals behave in qualitatively different ways. In particular, glasses have a great many more low-energy excitations that have traditionally been explained in terms of a distribution of dilute, two-level quantum states that are created by clusters of particles tunneling between two nearly degenerate ground states. Strong evidence for this model has come from the saturation effects and acoustic echoes [1] observed in these excitations. We show that, in contrast to conventional wisdom, the quasi-localized, strongly anharmonic, normal modes of jammed systems [2] can produce acoustic echoes due to the shift in the mode frequency with increasing amplitude. We observe this both in jammed packings of spherical particles with finite-range, Hertzian repulsions, and in model glasses interacting with a Lennard-Jones potential. In contrast to pulse echoes in two-level systems, a distinguishing feature of these ``anharmonic echoes'' is the appearance of multiple echoes after two excitation pulses, a feature also observed in experiments [1].[4pt] [1] B. Golding and J. E. Graebner. Phys. Rev. Lett. 37, 852 (1976).[0pt] [2] N. Xu, V. Vitelli, A. J. Liu, and S. R. Nagel. Europhys. Lett. 90, 56001 (2010).

  16. Structural Aspects of Metallic Glasses

    SciTech Connect

    Miracle, Daniel; Egami, Takeshi; Flores, Katharine M; Kelton, Kenneth

    2007-01-01

    A recent structural model reconciles apparently conflicting features of randomness, short-range order, and medium-range order that coexist in metallic glasses. In this efficient cluster packing model, short-range order can be described by efficiently packed solute-centered clusters, producing more than a dozen established atomic clusters, including icosahedra. The observed preference for icosahedral short-range order in metallic glasses is consistent with the theme of efficient atomic packing and is further favored by solvent-centered clusters. Driven by solute-solute avoidance, medium-range order results from the organization in space of overlapping, percolating (via connected pathways), quasi-equivalent clusters. Cubic-like and icosahedral-like organization of these clusters are consistent with measured medium-range order. New techniques such as fluctuation electron microscopy now provide more detailed experimental studies of medium-range order for comparison with model predictions. Microscopic free volume in the efficient cluster packing model is able to represent experimental and computational results, showing free volume complexes ranging from subatomic to atomic-level sizes. Free volume connects static structural models to dynamic processes such as diffusion and deformation. New approaches dealing with 'free' and 'anti-free' microscopic volume and coordinated atomic motion show promise for modeling the complex dynamics of structural relaxations such as the glass transition. Future work unifying static and dynamic structural views is suggested.

  17. Taylor impact of glass rods

    SciTech Connect

    Willmott, G.R.; Radford, D.D.

    2005-05-01

    The deformation and fracture behavior of soda-lime and borosilicate glass rods was examined during classic and symmetric Taylor impact experiments for impact pressures to 4 and 10 GPa, respectively. High-speed photography and piezoresistive gauges were used to measure the failure front velocities in both glasses, and for impact pressures below {approx}2 GPa the failure front velocity increases rapidly with increasing pressure. As the pressure was increased above {approx}3 GPa, the failure front velocities asymptotically approached maximum values between the longitudinal and shear wave velocities of each material; at {approx}4 GPa, the average failure front velocities were 4.7{+-}0.5 and 4.6{+-}0.5 mm {mu}s{sup -1} for the soda-lime and borosilicate specimens, respectively. The observed mechanism of failure in these experiments involved continuous pressure-dependent nucleation and growth of microcracks behind the incident wave. As the impact pressure was increased, there was a decrease in the time to failure. The density of cracks within the failed region was material dependent, with the more open-structured borosilicate glass showing a larger fracture density.

  18. Mozart, dice, and glass selection

    NASA Astrophysics Data System (ADS)

    Tesar, John C.

    2000-10-01

    In a perfect world a good starting point should not be required. A Genetic Algorithm in powerful lens design software should find an optimum solution for us. As a practical matter a good starting point does matter. Time and resources may not be sufficient to generate a good design in a global optimizer quickly. In lens design a small glass catalog combined with the Hammer algorithm in ZEMAX moves the glass selection process in a search around the glass map forcing the design to consider many radically different forms in a short amount of time. From this starting point an expanded search can be undertaken by conventional design methods or in a global search algorithm. There are precedents in other fields for a narrow search method that still yields near infinite numbers of solutions. Mozart invented a game that narrows a search from a blank sheet paper and a set of notes to a single voice minuet by rolling dice. The results can be played and the dynamics manipulated to form the starting points for future compositions. Music composition software has, like lens design software, incorporated many powerful algorithms and search techniques. A simple comparison will be made. It is a long way from a protoplasm to Christie Brinkley. A good starting point means a lot whether you are an optical designer, a composer, or running the universe.

  19. Hollow glass waveguides: New variations

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel Joseph

    This study is an effort to develop new variations on the infrared silver-silver iodide hollow glass waveguide (HGW) with application specific properties. Four variations are presented: a HGW with a long, gradual taper, a HGW with a rectangular cross-section, curved HGW tips and a new all-dielectric hollow waveguide based on photonic bandgap guidance principles. A hollow glass waveguide tapered over its entire length offers ease of coupling at the proximal end and excellent flexibility at the distal end. Waveguides tapered from 1000 to 500 mum and 700 to 500 mum over 1.5 m were fabricated in this study. Compared to similarly sized non-tapered waveguides, laser losses for the tapered guides were high but decreased when bent. This behavior is contrary to that of non-tapered guides and an iterative ray tracing model was also developed to explain the observed loss characteristics of tapered hollow waveguides. Hollow glass waveguides with round profiles do not maintain the polarization state of the delivered radiation to any appreciable degree. HGWs with large- and small-aspect ratio rectangular cross sections were developed and shown to preserve polarization up to 96%, even when bent. The large aspect ratio guide was able to effectively rotate the transmitted polarization when twisted along its axis. Curved distal tips for medical and dental laser applications were developed by removing the low-OH silica fiber from commercially available stainless steel dental tips, and inserting HGWs of various sizes. The optical performances and heating profiles of the various configurations indicate the tips are suitable for certain medical applications, but the minimum bending radius is limited by the mechanical properties of the glass substrate. A small radii bending loss study confirms that propagating modes periodically couple as the radius of curvature is reduced. Through the application of the photonic bandgap (PBG) guidance, hollow waveguides can be made entirely from

  20. Production Of Far Infrared Glass Fiber

    NASA Astrophysics Data System (ADS)

    Hilton, A. Ray; Hilton, A. Ray; McCord, James

    1989-06-01

    Direct application of the experience gained in preparing optical fibers for visual or very near infrared use has not produced good results in the far IR, 8-llμm. Joint efforts between suppliers of infrared transmitting (chalcogenide) glasses and those versed in the production of silicate glass fibers have met with only modest success. Perhaps oxide glass fiber methods are not compatible with the production of chalcogenide glasses. Separation of the glass production from the fiber production across organizational lines is another handicap preventing free flow of information. After participating in two such programs, Amorphous Materials concluded that a successful program would require that both activities be carried out together. This paper reports the results of efforts at Amorphous Materials to produce fibers in a manner compatible with chalcogenide glass production. Areas emphasized and discussed are: (1) Selection of glass composition from the standpoint of glass quality and fiber properties, (2) Fiber production designed to preserve bulk glass quality, (3) Fiber evaluation results, (4) Low level absorption glass production.

  1. Analysis of advanced optical glass and systems

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry; Feng, Chen

    1991-01-01

    Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.

  2. Additive manufacturing of borosilicate glass (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Goldstein, Jonathan T.; Urbas, Augustine M.; Bristow, Douglas A.; Landers, Robert G.; Kinzel, Edward C.

    2017-02-01

    Glasses including have significant scientific and engineering applications including optics, communications, electronics, and hermetic seals. This paper investigates a filament fed process for Additive Manufacturing (AM) of borosilicate glasses. Compared to soda-lime glasses, borosilicate glasses have improved coefficient of thermal expansion (CTE) and are widely used because of thermal shock resistance. In this work, borosilicate glass filaments are fed into a CO2 laser generated melt pool, smoothly depositing material onto the workpiece. Single tracks are printed to explore the effects that different process parameters have on the morphology of printed glass as well as the residual stress trapped in the glass. The transparency of glass allows residual stress to be measured using a polariscope. The effect of the substrate as well and substrate temperature are analyzed. We show that if fracture due to thermal shock can be avoided during deposition, then the residual stress can be relieved with an annealing step, removing birefringence. When combined with progress toward avoiding bubble entrapment in printed glass, we show the AM approach has the potential to produce high quality optically transparent glass for optical applications.

  3. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  4. Manufacturing laser glass by continuous melting

    SciTech Connect

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  5. Specialty glass raw materials: Status and developments

    SciTech Connect

    Bauer, R.J.; Gray, S.L.

    1996-12-31

    The authors highlight several key raw materials used in the specialty glass industry. The focus here is to update changes and shifts underway in the worldwide availability and processes that will impact both costs and efficient use of these products. The glass types that use these materials generally are those other than container, float, and fiber glass. Those high-volume consumers of glass raw materials are discussed in a companion paper in this volume. In the specialty glass field, the batch materials involve minerals, and the chemicals derived from them, which are less readily available domestically. These are much more critically defined by specifications of assay, contamination, and particle size, resulting in their being more expensive. They are seldom commodity products. The scope of materials for this fragmented industry includes those for leads, borosilicates, aluminosilicates, opals, sealing and frit glasses, optical glass, ophthalmic glass, cathode ray tubes (CRTs) for TV and display, and glass-ceramics as major segments. They use lead oxides, nearly all the alkalies and alkaline earth portions of the periodic table, as well as rare earths, transition element oxides, phosphates, boron minerals and chemicals, zircon, zinc, most of the halogens, and many of the anions. They often require very special particle size specifications. The requirements for these batch materials are often based on chemistry, the absence of contaminants that impact melting, very wide ranges of the electromagnetic spectrum, glass homogeneity, and freedom from solid and gaseous inclusions down to ppm levels in both size and number.

  6. Transfer of glass fragments when bottles and drinking glasses are broken.

    PubMed

    Irwin, Margaret

    2011-03-01

    Experiments have been carried out to determine if and how many glass fragments are transferred onto upper garments following breakage of bottles and drinking glasses. In all instances glass was transferred. The numbers of transferred fragments after a bottle is broken ranges from three to twenty five. The numbers of fragments transferred following the breakage of a drinking glass ranges from three to approximately one hundred and twenty. On average three times the amount of glass is transferred following breakage of a drinking glass as compared to breakage of a bottle.

  7. DWPF (Defense Waste Processing Facility) glass composition control based on glass properties

    SciTech Connect

    Carter, J T; Brown, K G; Bickford, D F

    1988-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Plant (SRP) High Level Waste as a durable borosilicate glass for permanent disposal in a civilian repository. The DWPF will be controlled based on glass composition. The waste glass physical and chemical properties, such as viscosity, liquidus temperature, and durability are functions of glass chemistry. Preliminary models have been developed to evaluate the effects of feed composition variability on the glass properties. These properties are presently being related to the waste glass composition in order to develop process control paradigms that include batching algorithms, hold points, and transfer limits. 3 refs., 6 tabs.

  8. Evidence of a glass transition in a ten-state non-mean-field Potts glass.

    PubMed

    Andrist, Ruben S; Larson, Derek; Katzgraber, Helmut G

    2011-03-01

    Potts glasses are prototype models that have been used to understand the structural glass transition. However, in finite space dimensions a glass transition remains to be detected in the 10-state Potts glass. Using a one-dimensional model with long-range power-law interactions we present evidence that a glass transition below the upper critical dimension can exist for short-range systems at low enough temperatures. Gaining insights into the structural glass transition for short-range systems using spin models is thus potentially possible, yet difficult.

  9. DEVELOPMENT OF CRYSTAL-TOLERANT WASTE GLASSES

    SciTech Connect

    Matyas, Josef; Vienna, John D.; Kimura, Akihiko; Schaible, Micah J.; Tate, Rachel M.

    2010-10-26

    The loading of high-level waste in borosilicate glasses is limited by crystallinity constraints that cannot prevent crystal accumulation on the melter bottom and in the glass discharge riser of the melter. Pacific Northwest National Laboratory is studying variations in composition that are designed to constrain high-level waste glass compositions and develop the crystal-tolerant high-level waste glasses. These glasses will allow high waste loading without decreasing the lifetime of the melter by keeping the small spinel crystals suspended in the molten glass. Adding ~1 wt% of NiO to the baseline glass caused large spinel crystals to form up to 210 µm in size and resulted in the highest accumulation rate, ~ 227 mm/year, of all tested glasses. Noble metals that were added to high-Ni glass prevented large spinel crystals from forming and decreased the accumulation rate ~ 8.5 times. Adding ~5 wt% of Fe2O3 to the baseline glass resulted in a high number density of ~10-μm spinel crystals that remained suspended in the glass melt even after 17 days at 850°C. The accumulation rate of spinel crystals in high-chromia crucibles was only slightly higher compared with the accumulation rate in double crucibles. Only baseline glass exhibited about 2.6 times faster accumulation rate because of increased number of bigger crystals. These crystals were the result of glass enrichment with chromium that was leached out from the walls of high-chromia crucibles.

  10. Method for heating, forming and tempering a glass sheet

    DOEpatents

    Boaz, P.T.; Sitzman, G.W.

    1998-10-27

    A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.

  11. Method for heating, forming and tempering a glass sheet

    SciTech Connect

    Boaz, Premakaran Tucker; Sitzman, Gary W.

    1998-01-01

    A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.

  12. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer.

    PubMed

    Khoroushi, Maryam; Keshani, Fateme

    2013-07-01

    Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the "smart" materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI) cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA). Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications.

  13. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    PubMed Central

    Khoroushi, Maryam; Keshani, Fateme

    2013-01-01

    Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the “smart” materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI) cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA). Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications. PMID:24130573

  14. Interfacial investigation and mechanical properties of glass-Al-glass anodic bonding process

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Xue, Yongzhi; Shi, Fangrong

    2017-10-01

    Glass-Al-glass with Al as common anode was successfully bonded together through the anodic bonding process. SEM and EDS were conducted to investigate the interfacial structure of the glass-Al-glass samples. Special attention was given to the element distribution after the bonding process. The element profile of the transitional layer was investigated by glow discharge optical emission microscopy. The results showed that ion migration played an important role during the anodic bonding process, Na+ would precipitate from the back of the glass, and a Na+ depletion region formed at the bonding interface. At the same time, O2‑ diffused into the bonding interface and reacted with the Al, which resulted in a successful bonding process. Furthermore, Al migrated into the glass, which could enhance the bonding process. The peak current of the glass-Al-glass bonding was two times larger than that of the Al-glass bonding, which meant that the glass-Al-glass bonding process could be considered equivalent to two individual Al-glass bonding processes. Tensile strength tests showed that the glass was fractured, and the fractures propagated into the bonding interface, which indicated a reliable bonding process.

  15. Mirror glasses for minimally invasive surgery.

    PubMed

    Ishikawa, Norihiko; Sun, You Su; Nifong, L Wiley; Oda, Makoto; Ohta, Yasuhiko; Watanabe, Go; Chitwood, W Randolph

    2007-07-01

    The operator performing minimally invasive surgery is prevented from seeing the whole field with both eyes by the restricted small thoracotomy incision. To overcome this problem, we developed mirror glasses. Use of these glasses was evaluated in terms of the time required for threading of sutures with endoscopic forceps. Three surgeon ligated thread a suture five times with and without use of the glasses in the box, and the mean time was calculated for each surgeon. The time required for ligation (mean +/- SD) was 24.2 +/- 2.9 s with mirror glasses and 27.0 +/- 2.5 s without the glasses (p = 0.01). The mirror glasses may be found useful for fine manipulation for minimally invasive surgery.

  16. Surface treatment of barium gallogermanate laser glass

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Qian, Qi; Yang, Zhongmin

    2011-01-01

    The surface of barium gallogermanate glass is modified through HCl solution etching to remove the surface defects and contaminations. The etching process and mechanism for barium gallogermanate glass in hydrochloric acid are investigated, and its optimum conditions are determined. However, the HCl etching induces the insoluble etch product containing minute crystal particles on glass surface. By heating BGG glass at the optical fiber drawing temperature, the deposited surface layer turned to be amorphous again and results in the increase of the transmittance of glass. The results indicated that the HCl etching combined with subsequent high-temperature heat treatment is an effective approach to improve the surface quality of barium gallogermanate glass, which would reduce the optical loss of the final optical fiber.

  17. Unusual fast secondary relaxation in metallic glass

    PubMed Central

    Wang, Q.; Zhang, S.T.; Yang, Y.; Dong, Y.D.; Liu, C.T.; Lu, J.

    2015-01-01

    The relaxation spectrum of glassy solids has long been used to probe their dynamic structural features and the fundamental deformation mechanisms. Structurally complicated glasses, such as molecular glasses, often exhibit multiple relaxation processes. By comparison, metallic glasses have a simple atomic structure with dense atomic packing, and their relaxation spectra were commonly found to be simpler than those of molecular glasses. Here we show the compelling evidence obtained across a wide range of temperatures and frequencies from a La-based metallic glass, which clearly shows two peaks of secondary relaxations (fast versus slow) in addition to the primary relaxation peak. The discovery of the unusual fast secondary relaxation unveils the complicated relaxation dynamics in metallic glasses and, more importantly, provides us the clues which help decode the structural features serving as the ‘trigger' of inelasticity on mechanical agitations. PMID:26204999

  18. Integral assembly of photovoltaic arrays using glass

    NASA Technical Reports Server (NTRS)

    Younger, P. R.; Kirkpatrick, A. R.; Maxwell, H. G.; Holtze, R. F.

    1978-01-01

    For a number of reasons glass is an excellent material for encapsulation of solar cell arrays. Glass can be readily available at relatively low cost. It exhibits excellent stability against degradation by solar ultraviolet illumination and atmospheric pollutants. A superior approach results if glass is employed directly as an integral encapsulant without secondary organic materials. A description is presented of a electrostatic bonding process which is being developed for integral assembly of glass encapsulated arrays. Solar cells are placed in contact with the glass surface, temperature is raised until the glass becomes ionically conductive, and an electric field is applied to initiate the bonding action. Silicon solar cells up to 3 inches in diameter have been integrally bonded without degradation.

  19. Microwave melting of ion-conducting glasses

    SciTech Connect

    Duval, D.J.; Terjak, M.J.E.; Risbud, S.H.; Phillips, B.L.

    1996-12-31

    Glasses of the system AgI-Ag{sub 2}O-(0.95B{sub 2}O{sub 3}:0.05SiO{sub 2}) have been formed by microwave processing using a domestic multi-mode oven operating at 900 watts and 2.45 GHz. Microwave heating resulted in rapid melting times with homogeneity in the quenched glasses equivalent to or better than conventional melting at 730 C. The glass forming region in this pseudo-ternary system is compared with the conventionally melted glass forming region in the system AgI-Ag{sub 2}O-B{sub 2}O{sub 3}. A reversible color difference has been observed between glasses conventionally melted and those melted by microwave for all glass compositions in the system.

  20. Li+ ion dynamics in strontium bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Dutta, A.; Ghosh, A.

    2004-11-01

    Ion transport in Li2O-Bi2O3-SrO glasses has been studied in the frequency range 10 Hz-2 MHz and in the temperature range 263-483 K. The variation of the dc conductivity and the activation energy of these glasses with composition has been compared with those of bismuthate and lead bismuthate glasses. The frequency dependent conductivity has been studied using both modulus and conductivity formalisms. We have observed that the variation of the power law exponent with Li2O content is in contrast to that for the Li2O-Bi2O3 and Li2O-Bi2O3-PbO glasses. The values of the non-exponential parameter for the Li2O-Bi2O3-SrO glasses are lower than those for the binary Li2O-Bi2O3 glasses.