Sample records for polyvinyl alcohol-polyacrylamide blends

  1. Investigating the properties and interaction mechanism of nano-silica in polyvinyl alcohol/polyacrylamide blends at an atomic level.

    PubMed

    Wei, Qinghua; Wang, Yanen; Wang, Shuzhi; Zhang, Yingfeng; Chen, Xiongbiao

    2017-11-01

    The nano-silica can be incorporated into polymers for improved mechanical properties. Notably, the interaction between nano-silica and polymer is of a microscopic phenomenon and thus, hard to observe and study by using experimental methods. Based on molecular dynamics, this paper presents a study on the properties and the interaction mechanism of nano-silica in the polyvinyl alcohol (PVA)/polyacrylamide (PAM) blends at an atomic level. Specifically, six blends of PVA/PAM with varying concentrations of nano-silica (0-13wt%) and two interfacial interaction models of polymers on the silica surface were designed and analyzed at an atomic level in terms of concentration profile, mechanical properties, fractional free volume (FFV), dynamic properties of polymers and X-ray diffraction patterns. The concentration profile results and micromorphologies of equilibrium models suggest PAM molecular chains are easier to be adsorbed on the silica surface than PVA molecular chains in blends. The incorporation of nano-silica into the PVA/PAM blends can increase the blend mechanical properties, densities, and semicrystalline character. Meanwhile, the FFV and the mobility of polymer chain decrease with the silica concentration, which agrees with the results of mechanical properties, densities, and semicrystalline character. Our results also illustrate that an analysis of binding energies and pair correlation functions (PCF) allows for the discovery of the interaction mechanism of nano-silica in PVA/PAM blends; and that hydrogen bond interactions between polar functional groups of polymer molecular chains and the hydroxyl groups of the silica surface are involved in adsorption of the polymers on the silica surface, thus affecting the interaction mechanism of nano-silica in PVA/PAM blend systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Experimental investigations on potassium permanganate doped polyvinyl alcohol - polyvinyl pyrrolidone blend

    NASA Astrophysics Data System (ADS)

    Veena, G.; Lobo, Blaise

    2018-04-01

    Potassium permanganate (KMnO4) doped polyvinyl alcohol (PVA) - polyvinyl pyrrolidone (PVP) blend films were prepared by solution casting technique, in the doping range varying from 0.01 wt % up to 4.70 wt %. The microstructural changes caused by doping, and the modified properties of these films were studied using Atomic Force Microscope (AFM) and temperature dependent direct current (DC) electrical measurements. Temperature variation of electrical resistivity was found to obey Arrhenius relation, from which activation energy was determined. The study was supported by AFM scans, which showed an increase in surface roughness and the presence of spike-like structures, due to interaction of dopant with the polymeric blend. Differential Scanning Calorimetry (DSC) scans revealed two stages of degradation in KMnO4 doped PVA - PVP blend films.

  3. Preparation of poly(vinyl alcohol)/chitosan/starch blends and studies on thermal and surface properties

    NASA Astrophysics Data System (ADS)

    Nasalapure, Anand V.; Chalannavar, Raju K.; Malabadi, Ravindra B.

    2018-05-01

    Biopolymers are abundantly available from its natural sources of extraction. Chitosan(CH) is one of the widely used natural polymer which is perspective natural polysaccharide. Natural polymer blend with synthetic polymer enhances property of the material such as polyvinyl alcohol (PVA). PVA is nontoxic degradable synthetic polymer and very good film forming polymer. In this study prepared hybrid based film by adding starch into Chitosan/PVA which slighlty increased the surface and thermal property of ternary blend film.

  4. Water resistance and thermal properties of polyvinyl alcohol-starch fiber blend film

    NASA Astrophysics Data System (ADS)

    Salleh, M. S. N.; Nor, N. N. Mohamed; Mohd, N.; Draman, S. F. Syed

    2017-02-01

    The growing attention of starch fiber (SF) has led to the innovation of Polyvinyl Alcohol-SF (PVA-SF) blends. This blend is regarded as the biodegradable material which aims to reduce the accumulation of synthetic polymer solid waste derived from petroleum. In this study, the thermal blending characterizations of PVA-SF were investigated by differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The water resistance of the blend was also evaluated to study the polarity of the blends. The blend was prepared by plasticizing the polyvinyl alcohol with glycerol and distilled water with the addition of starch fiber. The incorporation of SF to the blends was at 10 wt% to 50 wt% composition. Based on the thermal analysis, PVA-SF blends were suitable for processing at high temperatures, which can be seen by the shifted onset degradation temperature to a higher temperature. This is because cyclic hemiacetals which were provided by SF can act to prevent the thermal attacks. Conversely, increasing the starch fiber proportion to the film blend reduce the endothermic peak amplitude in the DSC thermogram. It was found that PVA-SF blend at the higher composition of SF had the highest water resistance. This may be attributed to the content of fibre in SF which is hydrophilic.

  5. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride).

    PubMed

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2013-01-02

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively.

  6. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride)

    PubMed Central

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2012-01-01

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543

  7. Sensitized green emission of terbium with dibenzoylmethane and 1, 10 phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Kaur, Gagandeep; Rai, S. B.

    2017-12-01

    Tb doped polyvinyl alcohol: polyvinyl pyrrolidone blends with dibenzoylmethane (DBM) and 1, 10 Phenanthroline (Phen) have been prepared by solution cast technique. Bond formation amongst the ligands and Tb3 + ions in the doped polymer has been confirmed employing Fourier Transform Infrared (FTIR) techniques. Optical properties of the Tb3 + ions have been investigated using UV-Vis absorption, excitation and fluorescence studies excited by different radiations. Addition of dimethylbenzoate and 1, 10 Phenanthroline to the polymer blend increases the luminescence from Tb3 + ions along with energy transfer from the polymer blend itself. Luminescence decay curve analysis affirms the non-radiative energy transfer from DBM and Phen to Tb3 + ions, which is identified as the reason behind this enhancement. The fluorescence decay time of PVA-PVP host decreases from 6.02 ns to 2.31 ns showing an evidence of energy transfer from the host blend to the complexed Tb ions. Similarly the lifetime of DBM and Phen and both in the blend reduces in the complexed system showing the feasibility of energy transfer from these excited DBM and Phen to Tb3 + and is proposed as the cause of the above observations. These entire phenomena have been explained by the energy level diagram.

  8. Rheological characterization of solutions and thin films made from amylose-hexadecylammonium chloride inclusion complexes and polyvinyl alcohol

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of aqueous solutions and films made from blends of polyvinyl alcohol (PVOH) and amylose-hexadecylammonium chloride inclusion complexes (Hex-Am) were investigated to better understand the polymer interactions and processing parameters. Aqueous solutions of Hex-Am displayed ...

  9. Electrical study on Carboxymethyl Cellulose-Polyvinyl alcohol based bio-polymer blend electrolytes

    NASA Astrophysics Data System (ADS)

    Saadiah, M. A.; Samsudin, A. S.

    2018-04-01

    The present work deals with the formulation of bio-materials namely carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) for bio-polymer blend electrolytes (BBEs) system which was successfully carried out with different ratio of polymer blend. The biopolymer blend was prepared via economical & classical technique that is solution casting technique and was characterized by using impedance spectroscopy (EIS). The ionic conductivity was achieved to optimum value 9.12 x 10-6 S/cm at room temperature for sample containing ratio 80:20 of CMC:PVA. The highest conducting sample was found to obey the Arrhenius behaviour with a function of temperature. The electrical properties were analyzed using complex permittivity ε* and complex electrical modulus M* for BBEs system and it shows the non-Debye characteristics where no single relaxation time has observed.

  10. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  11. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  12. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2015-05-01

    Poly-vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly-vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo-matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo-bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material. © 2014 Wiley Periodicals, Inc.

  13. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs

    PubMed Central

    Jannesari, Marziyeh; Varshosaz, Jaleh; Morshed, Mohammad; Zamani, Maedeh

    2011-01-01

    The aim of this study was to develop novel biomedicated nanofiber electrospun mats for controlled drug release, especially drug release directly to an injury site to accelerate wound healing. Nanofibers of poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), and a 50:50 composite blend, loaded with ciprofloxacin HCl (CipHCl), were successfully prepared by an electrospinning technique for the first time. The morphology and average diameter of the electrospun nanofibers were investigated by scanning electron microscopy. X-ray diffraction studies indicated an amorphous distribution of the drug inside the nanofiber blend. Introducing the drug into polymeric solutions significantly decreased solution viscosities as well as nanofiber diameter. In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release. Blending PVA and PVAc exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound healing applications. Also, the thickness of the blend nanofiber mats strongly influenced the initial release and rate of drug release. PMID:21720511

  14. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  15. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  16. Studies on the Electrical Properties of Graphene Oxide-Reinforced Poly (4-Styrene Sulfonic Acid) and Polyvinyl Alcohol Blend Composites

    NASA Astrophysics Data System (ADS)

    Deshmukh, Kalim; Sankaran, Sowmya; Basheer Ahamed, M.; Khadheer Pasha, S. K.; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Ali Almaadeed, Mariam; Chidambaram, K.

    In the present study, graphene oxide (GO)-reinforced poly (4-styrenesulfonic acid) (PSSA)/polyvinyl alcohol (PVA) blend composite films were prepared using colloidal blending technique at various concentrations of GO (0-3wt.%). The morphological investigations of the prepared composites were carried out using polarized optical microscopy and scanning electron microscopy. The electrical properties of composites were evaluated using an impedance analyzer in the frequency range 50Hz to 20MHz and temperature in the range 40-150∘C. Morphological studies infer that GO was homogeneously dispersed in the PSSA/PVA blend matrix. Investigations of electrical property indicate that the incorporation of GO into PSSA/PVA blend matrix resulted in the enhancement of the impedance (Z) and the quality factor (Q-factor) values. A maximum impedance of about 4.32×106Ω was observed at 50Hz and 90∘C for PSSA/PVA/GO composites with 3wt.% GO loading. The Q-factor also increased from 8.37 for PSSA/PVA blend to 59.8 for PSSA/PVA/GO composites with 3wt.% GO loading. These results indicate that PSSA/PVA/GO composites can be used for high-Q capacitor applications.

  17. The anaerobic degradability of thermoplastic starch: polyvinyl alcohol blends: potential biodegradable food packaging materials.

    PubMed

    Russo, Melissa A L; O'Sullivan, Cathryn; Rounsefell, Beth; Halley, Peter J; Truss, Rowan; Clarke, William P

    2009-03-01

    A systematic study on the anaerobic degradability of a series of starch:polyvinyl alcohol (TPS:PVOH) blends was performed to determine their fate upon disposal in either anaerobic digesters or bioreactor landfills. The aims of the study were to measure the rate and extent of solubilisation of the plastics. The extent of substrate solubilisation on a COD basis reached 60% for a 90:10 (w/w) blend of TPS:PVOH, 40% for 75:25, 30% for 50:50 and 15% for PVOH only. The rate of substrate solubilisation was most rapid for the 90:10 blend (0.041 h(-1)) and decreased with the amount of starch in the blend in the following order 0.034 h(-1)(75:25); 0.023 h(-1)(50:50). The total solids that remained after 900 h were 10 wt.% (90:10); 23 wt.% (75:25); 55 wt.% (50:50); 90 wt.% (0:100). Starch containing substrates produced a higher concentration of volatile fatty acids (VFAs) and biogas, compared to the 0:100 substrate. The major outcome was that PVOH inhibited the degradation of the starch from the blend.

  18. Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity.

    PubMed

    Tian, Huafeng; Yan, Jiaan; Rajulu, A Varada; Xiang, Aimin; Luo, Xiaogang

    2017-03-01

    In this work, starch/polyvinyl alcohol (PVA) blend films with different compositions were prepared by melt processing. The effect of the composition and relative humidity (RH) on the structure and properties of the resulting blends were investigated. OH groups on starch and PVA formed hydrogen bonding interactions, which could improve the compatibility of the two components. With the increase of starch, the degree of crystallinity of PVA component decreased. The fracture surface of the blend films exhibited rough surface, suggesting the tough fracture. With the increase of starch, the water uptake at equilibrium decreased. With the increase of RH, the water uptake at equilibrium of the resulting blends increased. The tensile strength, elongation at break and Young's modulus decreased with increasing content of starch. However, at 50% starch content, the flexibility of the blend films was still high, with the elongation at break more than 1000% and tensile strength of 9MPa, which was superior to the commonly LDPE package films. The tensile strength and Young's modulus decreased with the increase of RH, while the elongation at break was enhanced dramatically, indicating the improved flexibility. Therefore, these kinds of blend films exhibited wide application potentials as packaging materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Dehydration of dioxane by pervaporation using filled blend membranes of polyvinyl alcohol and sodium alginate.

    PubMed

    Kuila, Sunil Baran; Ray, Samit Kumar

    2014-01-30

    Pervaporation membranes were made by solution blending of polyvinyl alcohol (PVA) and sodium alginate (SA). Accordingly, five different blends with PVA:SA weight ratio of 75:25, 50:50, 25:75, 20:80 and 10:90 designated as PS1, PS2, PS3, PS4 and PS5, respectively, were prepared. Each of these blends was crosslinked with 2, 4 and 6 wt% glutaraldehyde and the resulting fifteen (5 × 3) membranes were used for pervaporative separation of 90 wt% dioxane in water. The membranes made from PS4 and PS5 were not stable during pervaporation experiments. Among the stable membranes PS3 membrane crosslinked with 2 wt% glutaraldehyde showed the best results for flux and selectivity. Thus, it was filled with nano size sodium montmorillonite filler and used for separation of dioxane-water mixtures over the entire concentration range of 80-99.5 wt% dioxane in water. The membranes were also characterized by mechanical properties, FTIR, SEM, DTA-TGA and XRD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends.

    PubMed

    Aydın, Ahmet Alper; Ilberg, Vladimir

    2016-01-20

    A series of gelatinized polyvinyl alcohol (PVA):starch blends were prepared with various polyol-based plasticizers in 5 wt%, 15 wt% and 25 wt% ratios via solution casting method. The obtained films were analyzed by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Remarkable changes have been observed in glass-transition temperature (Tg) and thermal stability of the samples containing varying concentrations of different plasticizers and they have been discussed in detail with respect to the conducted thermal and chemical analyses. The observed order of Tg point depression of the samples containing 15 wt% plasticizer is 1,4-butanediol - 1,2,6-hexanetriol--pentaerythriyol--xylitol--mannitol, which is similar to the sequence of the thermal stability changes of the samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Spectroscopic, thermal, and electrical properties of MgO/ polyvinyl pyrrolidone/ polyvinyl alcohol nanocomposites

    NASA Astrophysics Data System (ADS)

    Mohammed, Gh.; El Sayed, Adel M.; Morsi, W. M.

    2018-04-01

    In this study, we aimed to control the optical and electrical properties of polyvinyl alcohol (PVA) in order to broaden its industrial and technological applications, which we achieved by blending PVA with polyvinyl pyrrolidone (PVP) and adding sol-gel prepared MgO nanopowder. The blended film and nanocomposite films were prepared using the solution casting technique. X-ray diffraction analyses showed that the crystallite size was ∼18.4 nm for MgO and the highest degree of crystallinity (XC) in the films was about 24.34% at 1.0 wt% MgO. High resolution transmission electron microscopy determined the nanoribbon morphology of MgO. Scanning electron microscopy (SEM) indicated the uniform distribution of the MgO nanoribbons on the surfaces of the PVA/PVP films. SEM and Fourier transform infrared spectroscopy also confirmed the interaction between the blend and MgO fillers. The effects of the additives on the glass transition (Tg) and melting (Tm) temperatures were evaluated by differential thermal analysis and differential scanning calorimetry. The appearance of one melting point confirmed the miscibility of the two polymers. According to ultraviolet-visible-near infrared spectroscopy measurements, the optical properties and optical constants of PVA could be adjusted by the addition of PVP and MgO, where the optical band gap (Eg) determined for PVA increased with the PVP content, whereas it decreased to 4.8 eV as the MgO content increased. The DC conductivity (σdc) of the films increased whereas the activation energy (Ea) decreased after the addition of MgO, possibly because the nanoribbon shape fixed the preferred conducting pathways. In addition, MgO could break the H-bond in sbnd OH groups of the blends to allow the free movement of the molecular chains.

  2. Preparation and antibacterial activities of chitosan-gallic acid/polyvinyl alcohol blend film by LED-UV irradiation.

    PubMed

    Yoon, Soon-Do; Kim, Young-Mog; Kim, Boo Il; Je, Jae-Young

    2017-11-01

    Active blend films from chitosan-gallic acid (CGA) and polyvinyl alcohol (PVA) were prepared via a simple mixing and casting method through the addition of citric acid as a plasticizer. The CGA/PVA blend films were characterized using Fourier transform infrared spectroscopy (FT-IR). The mechanical properties including tensile strength (TS) and elongation at break (%E), degree of solubility (S) and swelling behavior (DS), water vapor adsorption, and antimicrobial activities of the CGA/PVA blend films with and without LED (light emitting diode)-UV irradiation were also investigated. The CGA/PVA blend films exposed to UV irradiation exerted a higher TS (43.5MPa) and lower %E (50.40), S (0.38) and DS (2.73) compared to the CGA/PVA blend films (TS=41.7MPa, %E=55.40, S=0.42, and DS=3.16) not exposed LED-UV irradiation, indicating that the cross-linkage between CGA and PVA had been strengthened by LED-UV irradiation. However, the water vapor adsorption in the CGA/PVA blend films increased due to the changes of surface roughness and pore volume after LED-UV irradiation, and all values increased by increasing the CGA concentrations in the CGA/PVA blend films. The antimicrobial activities of the CGA/PVA blend films showed that the efficient concentration of CGA in the CGA/PVA blend films was over 1.0%. Taken together, the CGA/PVA blend films have potential for use as food packing materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  4. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  5. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    PubMed

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemalatha, K.; Gowtham, G. K.; Somashekarappa, H., E-mail: drhssappa@gmail.com

    2016-05-23

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO{sub 4}) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO{sub 4}. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements inmore » these films show that the conductivity increases as the concentration of CuSO{sub 4} increases. These films were suitable for electro chemical applications.« less

  7. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  8. Electrical conductivity studies on (1-x)[PVA/PVP]: x[MgCl2{6H2O}] blend polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Basha, S. K. Shahenoor; Reddy, K. Veera Bhadra; Rao, M. C.

    2018-05-01

    Blend polymer electrolytes of polyvinyl alcohol and polyvinyl pyrrolidone were prepared with different molecular wt% ratios of MgCl2.6H2O by solution cast technique. Electrical conductivity measurements for the prepared films were performed using Keithley electrometer model 6514 and the maximum ionic conductivity was found to be 1.01x10-3 S/cm at 373 K for the prepared composition of 35PVA/35PVP:30MgCl2.6H2O. The maximum ionic conductivity of polymer electrolyte has been used in fabrication of electrochemical cell with the configuration of Mg+/(PVA/PVP+MgCl2.6H2O)/(I2+C+electrolyte).

  9. Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application

    NASA Astrophysics Data System (ADS)

    Kakati, Nitul; Das, Gautam; Yoon, Young Soo

    2016-01-01

    A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.

  10. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    EPA Science Inventory

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  11. Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose.

    PubMed

    Villarruel, S; Giannuzzi, L; Rivero, S; Pinotti, A

    2015-11-01

    This work was focused on: i) developing single and blend films based on carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVOH) studying their properties, ii) analyzing the interactions between CMC and PVOH and their modifications UV-induced in the presence of sodium benzoate (SB), and iii) evaluating the antimicrobial capacity of blend films containing SB with and without UV treatment. Once the blend films with SB were exposed to UV radiation, they exhibited lower moisture content as well as a greater elongation at break and rougher surfaces compared to those without treatment. Considering oxygen barrier properties, the low values obtained would allow their application as packaging with selective oxygen permeability. Moreover, the characteristics of the amorphous phase of the matrix prevailed with a rearrangement of the structure of the polymer chain, causing a decrease of the crystallinity degree. These results were supported by X-rays and DSC analysis. FT-IR spectra reflected some degree of polymer-polymer interaction at a molecular level in the amorphous regions. The incorporation of sodium benzoate combined with UV treatment in blend films was positive from the microbial point of view because of the growth inhibition of a wide spectrum of microorganisms. From a physicochemical perspective, the UV treatment of films also changed their morphology rendering them more insoluble in water, turning the functionalized blend films into a potential material to be applied as food packaging. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions.

    PubMed

    Habiba, Umma; Siddique, Tawsif A; Talebian, Sepehr; Lee, Jacky Jia Li; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M

    2017-12-01

    In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (q m ) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Wound healing potential of a polyvinyl alcohol-blended pectin hydrogel containing Hippophae rahmnoides L. extract in a rat model.

    PubMed

    Kim, Jin; Lee, Chang-Moon

    2017-06-01

    In this study, we investigated the effect of a polyvinyl alcohol-blended pectin hydrogel (PVA-PT HG) containing the extracts of Hippophae rhamnoides L. (H. rhamnoides L.) leaves on wound healing in a rat model. The total phenolic content in the extract solution was 40.64±2.7 GAE mg/g and that of flavonoids was 13.15±1.8 QE mg/g. Of the total flavonoids in HGs, 61.6 and 50.0% were released at pH 5.5 and 7.4 after 60min. In rat acute wound models, the wound size was reduced significantly and the recovery rate was significantly higher after treatment with HG containing the extracts, compared with treatment with the control and HG only. The wound healing effects of the HG containing the extracts were confirmed by histological evaluation of the wound tissue. Therefore, HG containing extracts from H. rhamnoides L. leaves enhanced wound healing effectively, and so may be developed as a cover to promote wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biodegradation behaviors and water adsorption of poly(vinyl alcohol)/starch/carboxymethyl cellulose/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Mohammad Taghi; Sabouri, Narges

    2013-09-01

    The focus of this work is to study the effect of sodium montmorillonite (MMT-Na) clay content on the rate and extent of enzymatic hydrolysis polyvinyl alcohol (PVA)/starch (S)/carboxymethyl cellulose (CMC) blends using enzyme cellulase. The rate of glucose production from each nanocomposite substrates was most rapid for the substrate without MMT-Na and decreased with the addition of MMT-Na for PVA/S/CMC blend (51.5 μg/ml h), PVA/S/CMC/1% MMT (45.4 μg/ml h), PVA/S/CMC/3% MMT (42.8 μg/ml h), and PVA/S/CMC/5% MMT (39.2 μg/ml h). The results of this study have revealed that films with MMT-Na content at 5 wt.% exhibited a significantly reduced rate and extent of hydrolysis. Enzymatic degradation behavior of MMT-Na containing nanocomposites of PVA/S/CMC was based on the determinations of weight loss and the reducing sugars. The degraded residues have been characterized by various analytical techniques, such as Fourier transform infrared spectroscopy, scanning electronic microscopy, and UV-vis spectroscopy.

  15. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water

    PubMed Central

    Maphutha, Selby; Moothi, Kapil; Meyyappan, M.; Iyuke, Sunny E.

    2013-01-01

    A carbon nanotube (CNT) integrated polymer composite membrane with a polyvinyl alcohol barrier layer has been prepared to separate oil from water for treatment of oil-containing waste water. The CNTs were synthesised using chemical vapour deposition, and a phase inversion method was employed for the blending of the CNTs in the polymer composite solution for casting of the membrane. Relative to the baseline polymer, an increase of 119% in the tensile strength, 77% in the Young's modulus and 258% in the toughness is seen for a concentration of 7.5% CNTs in the polymer composite. The permeate through the membrane shows oil concentrations below the acceptable 10 mg/L limit with an excellent throughput and oil rejection of over 95%. PMID:23518875

  16. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  17. Preparation and properties of nanometer silk fibroin peptide/polyvinyl alcohol blend films for cell growth.

    PubMed

    Luo, Qin; Chen, Zhongmin; Hao, Xuefei; Zhu, Qiangsong; Zhou, Yucheng

    2013-10-01

    Nanometer silk fibroin peptide (Nano-SFP) was prepared from silkworm cocoons through the process of dissolution, dialysis and enzymolysis. For comparison, silk fibroin was decomposed with α-chymotrypsin, trypsin and neutrase, respectively. From the SEM and particle size analysis results, the Nano-SFP prepared by neutrase was found to be the most desirable at about 50-200 nm. Nano-SFP/polyvinyl alcohol films (Nano-SFP/PVA) were prepared by blending Nano-SFP and PVA in water with different weight ratios of 10/90, 20/80, 30/70, and 40/60. The films were characterized by IR, SEM, TG, DSC and tensile strength test for investigating their structure, surface morphology, thermostability, and mechanical property. The results showed that Nano-SFP inserted in the PVA films with small linear particles, and Nano-SFP/PVA films exhibited smooth surface, good thermostability and tensile strength. The growth of Chinese hamster ovary (CHO) cells on films with and without Nano-SFP was investigated with MTT colorimetric assay to assess the films' ability to promote cell growth. It was observed that the Nano-SFP improved cell adhesion on the film surface, and the ability of promoting cell growth increased with the increasing content of Nano-SFP in the blend films. Nano-SFP/PVA film with the ratio of 30/70 was concluded to have the best properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Papain wound dressings obtained from poly(vinyl alcohol)/calcium alginate blends as new pharmaceutical dosage form: Preparation and preliminary evaluation.

    PubMed

    Dutra, J A P; Carvalho, S G; Zampirolli, A C D; Daltoé, R D; Teixeira, R M; Careta, F P; Cotrim, M A P; Oréfice, R L; Villanova, J C O

    2017-04-01

    Transparent, soft, flexible, mechanically resistant films, which are ideal for use as wound dressings were prepared in the presence of 2% papain, a proteolytic enzyme that can play a role in the chemical debridement of the skin and can accelerate the healing process. The films, based on poly(vinyl alcohol):calcium alginate blends with increasing concentrations of polysaccharide (10, 20, and 30% v/v), were obtained by casting method. FTIR and DSC analyses were performed to assess the composition and miscibility of blends. Mechanical properties such as tensile strength, elasticity modulus, and elongation at breakpoint were evaluated. The influence of different concentrations of calcium alginate on physical attributes of films like wettability, swelling capacity and mechanical properties was determined. The stability of papain in the films was assessed indirectly by hemolytic activity assay employing direct contact method and confirmed by technique based on blood agar diffusion. Preliminary cytotoxicity was evaluated with the XTT method. The results showed that at the polymer concentrations tested, the blends were miscible. The increase in the content of the calcium alginate increased the wettability and swelling capacity of the films, which is desirable in wound dressings. On the other hand, mechanical resistance decreased without causing breakage of the films during the swelling tests. The hemolytic activity of the films was maintained during the studied period, suggesting the stability of papain in the proposed formulations. Cellular viability indicated that the films were non-toxic. The analysis of the results showed that it is possible to prepare interactive and bioactive wound dressing containing papain from blends of PVA and calcium alginate polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).

    PubMed

    Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.

  20. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends

    Treesearch

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas

    2014-01-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  1. Preparation and characterization of oriented poly(vinyl alcohol)/carbon nanotube composite nanofibers

    NASA Astrophysics Data System (ADS)

    Shimizu, Akikazu; Kato, Hayato; Sato, Taiga; Kushida, Masahito

    2017-07-01

    Oriented nanofiber mats blended with carbon nanotubes (CNTs) are expected to be applied as cell seeding scaffolds. Biomaterials that are often used for cell seeding scaffolds generally have low mechanical strength and low electrical conductivity; thus, it has been difficult to apply them to tissues such as heart and nerve. In this study, we prepared oriented poly(vinyl alcohol) (PVA) nanofiber mats blended with various CNT concentrations (up to 10 wt %) by electrospinning using the parallel plate electrodes as collectors with applied voltage. The morphology, mechanical properties, and electrical properties of the prepared oriented nanofiber mats were measured by using various techniques such as scanning electron microscopy (SEM). The tensile strength of the oriented nanofiber mats in the applied voltage direction increased from 2.5 to 9.7 MPa with CNT concentration. Furthermore, the electrical conductivity of the oriented nanofiber mats in the applied voltage direction increased from 0.67 × 10-7 to 4.3 × 10-7 S·m-1. Also, the mechanical strength and electrical conductivity of the oriented nanofiber mats in the applied voltage direction were 3-4 and 2-3 times higher than those in the perpendicular direction, respectively.

  2. Passive approach for the improved dispersion of polyvinyl alcohol-based functionalized multi-walled carbon nanotubes/Nafion membranes for polymer electrolyte membrane fuel cells.

    PubMed

    Abu Sayeed, M D; Talukdar, Krishan; Kim, Hee Jin; Park, Younjin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2014-12-01

    Multi-walled carbon nanotubes (MWCNTs) are regarded as ideal fillers for Nafion polymer electrolyte membranes (PEMs) for fuel cell applications. The highly aggregated properties of MWCNTs can be overcome by the successful cross-linking with polyvinyl alcohol (PVA) into the MWCNTs/Nafion membrane. In this study, a series of nanocomposite membranes were fabricated with the PVA-influenced functionalized MWCNTs reinforced into the Nafion polymer matrix by a solution casting method. Several different PVA contents were blended to f-MWCNTs/Nafion nanocomposite membranes followed by successful cross-linking by annealing. The surface morphologies and the inner structures of the resulting PVA-MWCNTs/Nafion nanocomposite membranes were then observed by optical microscopy and scanning electron microscopy (SEM) to investigate the dispersion of MWCNTs into the PVA/Nafion composite membranes. After that, the nanocomposite membranes were characterized by thermo-gravimetric analysis (TGA) to observe the thermal enhancement caused by effective cross-linking between the f-MWCNTs with the composite polymer matrixes. Improved water uptake with reduced methanol uptake revealed the successful fabrication of PVA-blended f-MWCNTs/Nafion membranes. In addition, the ion exchange capacity (IEC) was evaluated for PEM fuel cell (PEMFC) applications.

  3. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premalatha, M.; Materials Research Center, Coimbatore-641 045; Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasingmore » temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.« less

  4. Improvement of Starch Digestion Using α-Amylase Entrapped in Pectin-Polyvinyl Alcohol Blend

    PubMed Central

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L−1 sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991

  5. Reverse indentation size effects in gamma irradiated blood compatible blend films of chitosan-poly (vinyl alcohol) for possible medical applications.

    PubMed

    Bisen, D S; Bhatt, Rinkesh; Bajpai, A K; Bajpai, R; Katare, R

    2017-02-01

    In the present work binary blends of polyvinyl alcohol (PVA) and chitosan (CS) were prepared by solution cast method and characterized by analytical methods like FTIR, XRD and SEM for seeking structural and morphological information. The blends were exposed to gamma radiation and evaluated for their improved mechanical strength. It was found that the tensile strength and microhardness increased after irradiation of CS-PVA films. Plastic effect due to absorption of water molecules and scissoring effect due to gamma irradiation were found to decrease the softness or increase the microhardness of the blends. Improved mechanical properties were attributed to intermolecular and intramolecular hydrogen bonds and adhesive nature of the blends also. The blends were also investigated for water intake behavior and in vitro blood compatibility property on the basis of certain in vitro tests like protein adsorption, haemolysis and blood clot formation on the un-irradiated and irradiated blend samples. The increased % swelling with time could be assigned to the fact that increasing water content facilitates the phase separation process within the blend which results in advancement in interstitial nano-void spaces which are occupied by water molecules. The blood compatibility results showed that when the amount of CS was varied from 0.5% to 2%, the amount of blood clot and percent haemolysis decreased while the protein adsorption increased with increasing CS content of the blend films. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The effect of plasma pre-treatment on NaHCO3 desizing of blended sizes on cotton fabrics

    NASA Astrophysics Data System (ADS)

    Li, Xuming; Qiu, Yiping

    2012-03-01

    The influence of the He/O2 atmospheric pressure plasma jet pre-treatment on subsequent NaHCO3 desizing of blends of starch phosphate and poly(vinyl alcohol) on cotton fabrics is investigated. Atomic force microscopy and scanning electron microscopy analysis indicate that the surface topography of the samples has significantly changed and the surface roughness increases with an increase in plasma exposure time. X-ray photoelectron spectroscopy analysis shows that a larger number of oxygen-containing polar groups are formed on the sized fabric surface after the plasma treatment. The results of the percent desizing ratio (PDR) indicate that the plasma pretreatment facilitated the blended sizes removal from the cotton fabrics in subsequent NaHCO3 treatment and the PDR increases with prolonging plasma treatment time. The plasma technology is a promising pretreatment for desizing of blended sizes due to dramatically reduced desizing time.

  7. 76 FR 13982 - Antidumping Duty Order: Polyvinyl Alcohol From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ...: Polyvinyl Alcohol From Taiwan AGENCY: Import Administration, International Trade Administration, Department... on polyvinyl alcohol (PVA) from Taiwan. DATES: Effective Date: March 15, 2011. FOR FURTHER... from Taiwan. See Polyvinyl Alcohol From Taiwan: Final Determination of Sales at Less Than Fair Value...

  8. 78 FR 39256 - Polyvinyl Alcohol From Taiwan: Rescission of Antidumping Duty Administrative Review; 2012-2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-841] Polyvinyl Alcohol From...) is rescinding its administrative review of the antidumping duty order on polyvinyl alcohol (PVA) from... CCPC to the Department, ``Polyvinyl Alcohol from Taiwan: Withdrawal of Administrative Review Request...

  9. 75 FR 38079 - Postponement of Preliminary Determination of Antidumping Duty Investigation: Polyvinyl Alcohol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Determination of Antidumping Duty Investigation: Polyvinyl Alcohol From Taiwan AGENCY: Import Administration... (the Department) initiated the antidumping duty investigation on polyvinyl alcohol from Taiwan. See Initiation of Anti-Dumping Duty Investigation: Polyvinyl Alcohol From Taiwan, 69 FR 59204 (October 4, 2004...

  10. Effects of electron beam irradiation on properties of corn starch undergone periodate oxidation mechanism blended with polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Yap, Bee-Fen; Rahmat, A. R.

    2018-02-01

    This work was performed to examine the properties of pristine PVOH and PVOH-starch blends under exposure of different irradiation dosages. The periodate oxidation method was used to produce dialdehyde starch. The application of low dosages of electron beam irradiation (≤10 kGy) has improved the tensile strength by forming crosslinking networks. However, the tensile strength drastically declined when radiated at 30 kGy due to the reduction of available hydroxyl groups inside polymer matrix for intermolecular interaction. Also, the incorporation of corn starch and dialdehyde starch has significantly reduced the melting temperature and enthalpy of melting of PVOH blends due to cessation of the hydrogen bonding between PVOH and starch molecules. The crystallite size for deflection planes (1 0 1), (1 0 1) and (2 0 0) for all PVOH blends was significant reduced when irradiated. The electron beam irradiation has also weakened the hydrophilic characteristic of all PVOH blends as evidenced in infrared and microscopy analysis.

  11. Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber

    PubMed Central

    Choo, Kaiwen; Ching, Yern Chee; Chuah, Cheng Hock; Julai, Sabariah; Liou, Nai-Shang

    2016-01-01

    In this study microcrystalline cellulose (MCC) was oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The treated cellulose slurry was mechanically homogenized to form a transparent dispersion which consisted of individual cellulose nanofibers with uniform widths of 3–4 nm. Bio-nanocomposite films were then prepared from a polyvinyl alcohol (PVA)-chitosan (CS) polymeric blend with different TEMPO-oxidized cellulose nanofiber (TOCN) contents (0, 0.5, 1.0 and 1.5 wt %) via the solution casting method. The characterizations of pure PVA/CS and PVA/CS/TOCN films were performed in terms of field emission scanning electron microscopy (FESEM), tensile tests, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results from FESEM analysis justified that low loading levels of TOCNs were dispersed uniformly and homogeneously in the PVA-CS blend matrix. The tensile strength and thermal stability of the films were increased with the increased loading levels of TOCNs to a maximum level. The thermal study indicated a slight improvement of the thermal stability upon the reinforcement of TOCNs. As evidenced by the FTIR and XRD, PVA and CS were considered miscible and compatible owing to hydrogen bonding interaction. These analyses also revealed the good dispersion of TOCNs within the PVA/CS polymer matrix. The improved properties due to the reinforcement of TOCNs can be highly beneficial in numerous applications. PMID:28773763

  12. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method.

    PubMed

    Fasihi, Hadi; Fazilati, Mohammad; Hashemi, Mahdi; Noshirvani, Nooshin

    2017-07-01

    The aim of this study was to investigate the possibility of increasing the antimicrobial and antioxidant properties of biodegradable active films stabilized via Pickering emulsions. The blend films were prepared from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), emulsified with oleic acid (OL) and incorporated with rosemary essential oil (REO). Formation of Pickering emulsion was confirmed by scanning electron microscopy (SEM), optical microscopy, mean droplet size and emulsion stability. Morphological, optical, physical, mechanical, thermal, antifungal and antioxidant properties of the films incorporated with different concentrations of REO (0.5, 1.5 and 3%) were determined. The results showed an increase in UV absorbance and elongation at break but, a decrease in tensile strength and thermal stability of the films. Interestingly, films containing REO exhibited considerable antioxidant and antimicrobial properties. In vitro microbial tests exhibited 100% fungal inhibition against Penicillium digitatum in the films containing 3% REO. In addition, no fungal growth were observed after 60days of storage at 25°C in bread slices were stored with active films incorporated with 3% REO, could attributed to the slow and regular release of REO caused by Pickering emulsions. The results of this study suggest that Pickering emulsion is a very promising method, which significantly affects antioxidant and antimicrobial activities of the films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  14. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of this...

  15. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of this...

  16. Blend membrane of succinic acid-crosslinked chitosan grafted with heparin/PVA-PEG (polyvinyl alcohol-polyethylene glycol) and its characterization

    NASA Astrophysics Data System (ADS)

    Sangkota, V. D. A.; Lusiana, R. A.; Astuti, Y.

    2018-04-01

    Crosslinking and grafting reactions are required to modify the functional groups on chitosan to increase the number of its active groups. In this study, crosslinking reaction of succinic acid and grafting reaction of heparin on chitosan were conducted to produce a membrane as a candidate of a hemodialysis membrane. The mole ratio between chitosan and succinate acids was varied to obtain the best composition of modified materials. By blending all the material composition with PVA-PEG, the blend was transformed into a membrane. The resulted membrane was then characterized by various test methods such as tests of thickness, weight, water uptake, pH resistance, tensile strength and membrane hydrophilicity. The results showed that the best composition of the membrane reached in the addition of 0.011 gram of succinic acid proved by its highest mechanical strength compared to the other membranes.

  17. Synthesis and characterization of biopolymer based mixed matrix membranes for pervaporative dehydration.

    PubMed

    Das, Paramita; Ray, Samit Kumar

    2014-03-15

    Several blend membranes were prepared from different weight ratios of polyvinyl alcohol (PVA) and hydroxyethyl cellulose (HEC) and these unfilled membranes were crosslinked with maleic acid. In a similar way mixed matrix blend membranes were also prepared by varying weight ratio of PVA and HEC with micro and nano bentonite filler in each of these blends. These membranes were used for pervaporative dehydration of 89 wt% tetrahydrofuran (THF). Three membranes designated as UF (unfilled), MF2 (containing 2 wt% micro filler) and NF2 (containing 2 wt% nano filler) showing the best results for flux and selectivity were identified. These membranes were characterized by FTIR, UV, XRD and DTA-TG and used for separation of 80-99 wt% THF from water by pervaporation. The NF2 membrane was found to show the best results in terms of flux and separation factor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel

    PubMed Central

    Lee, Jung Min; Sultan, Md. Tipu; Kim, Soon Hee; Kumar, Vijay; Yeon, Yeung Kyu; Lee, Ok Joo; Park, Chan Hum

    2017-01-01

    Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel. PMID:28777314

  19. Tribological properties of PVA/PVP blend hydrogels against articular cartilage.

    PubMed

    Kanca, Yusuf; Milner, Piers; Dini, Daniele; Amis, Andrew A

    2018-02-01

    This research investigated in-vitro tribological performance of the articulation of cartilage-on- polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blend hydrogels using a custom-designed multi-directional wear rig. The hydrogels were prepared by repeated freezing-thawing cycles at different concentrations and PVA to PVP fractions at a given concentration. PVA/PVP blend hydrogels showed low coefficient of friction (COF) values (between 0.12 ± 0.01 and 0.14 ± 0.02) which were closer to the cartilage-on-cartilage articulation (0.03 ± 0.01) compared to the cartilage-on-stainless steel articulation (0.46 ± 0.06). The COF increased with increasing hydrogel concentration (p = 0.03) and decreasing PVP content at a given concentration (p < 0.05). The cartilage-on-hydrogel tests showed only the surface layers of the cartilage being removed (average volume loss of the condyles was 12.5 ± 4.2mm 3 ). However, the hydrogels were found to be worn/deformed. The hydrogels prepared at a higher concentration showed lower apparent volume loss. A strong correlation (R 2 = 0.94) was found between the COF and compressive moduli of the hydrogel groups, resulting from decreasing contact congruency. It was concluded that the hydrogels were promising as hemiarthroplasty materials, but that improved mechanical behaviour was required for clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    NASA Astrophysics Data System (ADS)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  1. 76 FR 13660 - Polyvinyl Alcohol From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1088 (Final)] Polyvinyl Alcohol From Taiwan Determination On the basis of the record \\1\\ developed in the subject investigation, the United... (March 2011), entitled Polyvinyl Alcohol from Taiwan: Investigation No. 731-TA-1088 (Final). By order of...

  2. In situ self cross-linking of polyvinyl alcohol battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1979-01-01

    A battery separator was produced from a polyvinyl alcohol sheet structure which was subjected to an in situ, self crosslinking process by selective oxidation of the 1,2 diol units present in the polyvinyl alcohol sheet structure. The 1,2 diol units were cleaved to form aldehyde end groups which subsequently crosslink through acetalization of the 1,3 diol units of the polyvinyl alcohol. Selective oxidation was achieved using a solution of a suitable oxidizing agent such as periodic acid or lead tetraacetate.

  3. [Preparation and physicochemical property of carboxymethyl-chitosan/hyaluronic acid poly(vinyl alcohol) blend membrane].

    PubMed

    Liu, Wen; Li, Shuning; Chang, Jing; Han, Baoqin; Liu, Wanshun

    2009-08-01

    To prepare carboxymethyl-chitosan/hyaluronic acid/poly(vinyl alcohol) (CHP) blend membrane, evaluate its physicochemical properties and intraocular biocompatibility and to investigate its feasibility to be applied to glaucoma filtering surgery. CHP blend membrane was prepared using solution casting method after blending carboxymethyl-chitosan, HA and poly(vinyl alcohol) in a proportion of 5 : 4 : 1 (M/M). Its water absorption rate, swelling rate, permeability, and mechanical properties were detected. Subconjunctival fibroblasts separated from subconjunctival tissue of New Zealand white rabbits were cultured, and the cells at passage 4 were cultured on cell culture plate with or without the CHP blend membrane, serving as the experimental group and the control group, respectively. Effect of the CHP blend membrane on the subconjunctival fibroblasts was tested by MTT method 24, 48, and 72 hours after culture. Six New Zealand white rabbits were randomly divided into two groups (n = 3 rabbits per group), and the CHP blend membrane and SK gel were implanted into the rabbits' subconjunctival space and anterior chamber in the experimental group and the control group, respectively. Slit lamp observation and binocular reaction record were conducted 1, 3, 5, 9, 11, 20, 30, 45, and 60 days after operation. Corneal tissue harvested from the experimental group was observed using scanning electron microscope 15 days after operation to study ophthalmic biocompatibility and biodegradability. The water absorption rate and the swelling rate of the CHP blend membrane was 83.8% +/- 1.3% and 3.59 +/- 0.50, respectively. The tensile strength of the dry and the wet CHP blend membrane was (20.59 +/- 1.73) and (0.51 +/- 0.13) MPa, respectively. The breaking elongation rate of the dry and the wet CHP blend membrane was 10.69% +/- 1.16% and 53.15% +/- 2.46%, respectively. The CHP blend membrane had good permeability to NaCl and L-tyrosine. Absorbance (A) value of the experimental group 24, 48, and 72 hours after breeding was 0.207 +/- 0.083, 0.174 +/- 0.080, and 0.181 +/- 0.048, respectively, while the A value of the control group was 0.284 +/- 0.011, 0.272 +/- 0.083, and 0.307 +/- 0.056, respectively. Significant difference was evident between two groups (P < 0.05). In the experimental group, a small amount of floccus was exuded around the implanted membrane 1 day after operation; the floccus was absorbed on the third day, and there was no obvious inflammatory reaction occurring on the eleventh day. Most of the membrane degraded on the sixtieth day. Scanning electron microscope observation showed that the hexagonal morphology of the corneal endothelial cells was intact, and no degradation particles adhered to the surface. In the control group, the implantation of SK gel into anterior chamber was unsuccessful because the SK gel was quite soft and easily broken. In the experimental group, mild hyperemia emerged around the implanted membrane 1 day after the subconjunctival implantation of the membrane, and it became normal on the ninth day. No corneal edema and inflammatory reaction of anterior chamber occurred till the sixtieth day. The results in the control group and the experiment group were similar. Due to its good physicochemical properties and biocompatibility, the CHP blend membrane has potential applications in glaucoma filtering surgery.

  4. The effect of thiolated additives on the properties of wheat gluten based plastics, aqueous solutions and electrospun fibers

    NASA Astrophysics Data System (ADS)

    Dong, Jing

    Wheat gluten (WG) is a promising substitute for petroleum-based plastics due to its unique ability to form a cohesive blend with viscoelastic properties once plasticized. Previous work blending WG with thiolated poly(vinyl alcohol) (TPVA) showed that both the strength and elongation of compression molded native WG bars can be improved via thiol/disulfide interchange reactions between WG and TPVA. In this study, the morphology of WG/TPVA blends was investigated by atomic force (AFM) and transmission electron microscopy (TEM), as well as by modulated dynamic scanning calorimetry (MDSC). Consistent with our earlier results, AFM and TEM imaging clearly indicated that TPVA is much more compatible with WG compared with poly(vinyl alcohol) (PVA) although there are still two phases in the blend: one WG rich phase and another TPVA rich phase. TPVA was also blended with WG in an aqueous solvent (1/1 (v/v) water/1-propanol mixture) to improve its solubility and spinnability. Control experiments were conducted with PVA and dithiothreitol (DTT) for comparison purposes. The concentration and the thiolation level of TPVA were also varied to explore the parameter space. The interactions of thiol groups from TPVA and soluble WG were found to be important during electrospinning. The fiber diameter became more uniform and the fiber quality increased very noticeably when TPVA was included. Furthermore, the time-dependent rheology behaviors of TPVA/WG and DTT/WG electrospinning solutions were investigated by using steady shear sweeps, oscillatory frequency sweeps, SE-HPLC and free -SH content determination. A two-step mechanism of interaction was proposed for DTT/WG and TPVA/WG solutions based on current results and other earlier studies. In comparison with WG and PVA/WG solutions, the reduction and reformation of disulfide linkages in both TPVA/WG and DTT/WG solutions were believed to play a key role in determining the rheological properties and molecular weight distribution of WG fractions in the solution. Finally, the effect of thiol groups on the electrospinning behavior of pure TPVA aqueous solution was studied. It has found that the fiber quality was improved obviously within the first few days of solution preparation, while no fiber can be obtained when the viscosity became too high.

  5. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1.

    PubMed

    Mulla, Sikandar I; Talwar, Manjunatha P; Bagewadi, Zabin K; Hoskeri, Robertcyril S; Ninnekar, Harichandra Z

    2013-02-01

    Nitrotoluenes are the toxic pollutants of the environment because of their large scale use in the production of explosives. Biodegradation of such chemicals by microorganisms may provide an effective method for their detoxification. We have studied the degradation of 2-nitrotoluene by cells of Micrococcus sp. strain SMN-1 immobilized in various matrices such as polyurethane foam (PUF), sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), agar and polyacrylamide. The rate of degradation of 15 and 30 mM 2-nitrotoluene by freely suspended cells and immobilized cells in batches and fed-batch with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 15 and 30 mM 2-nitrotoluene than freely suspended cells and the cells immobilized in SA-PVA, polyacrylamide, SA and agar. The PUF-immobilized cells could be reused more than 24 cycles without loosing their degradation capacity and showed more tolerance to pH and temperature changes than freely suspended cells. These results revealed the enhanced rate of degradation of 2-nitrotoluene by PUF-immobilized cells of Micrococcus sp. strain SMN-1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol).

    PubMed

    Sekhavat Pour, Zahra; Makvandi, Pooyan; Ghaemy, Mousa

    2015-09-01

    There has been a growing interest in developing antibacterial polymeric materials. In the present work, novel antibacterial cross-linked blend films were prepared based on polyvinyl alcohol (PVA) and quaternary ammonium starch (ST-GTMAC) using citric acid (CA) as plasticizer and glutaraldehyde (GA) as cross-linker. The ST-GTMAC was successfully synthesized from reaction between water-soluble oxidized starch and glycidyltrimethylammonium chloride (GTMAC). The effect of ST-GTMAC, CA and GA contents on the swelling, solubility, mechanical and thermal properties of the films was investigated. It was found that incorporation of ST-GTMAC reduced UV-transmittance and provided antibacterial properties, increasing GA content increased tensile strength and decreased solubility and swelling degree of the films, while CA acted as plasticizer when its concentration was above 10 wt%. The results showed that ST-GTMAC/PVA/CA/GA film has fair antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. These results suggest that the prepared film might be used as potential antibacterial material in medical and packaging applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  8. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  9. In Situ Cross-Linking of Polyvinyl Alcohol Films

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Shu, L. C.; May, C. E.

    1984-01-01

    Films or impregnated matrices readily made from aqueous polyvinyl alcohol solution. Controlled thickness films made by casting precise quantities of aqueous polymer solution on smooth surface, allowing water to evaporate and then removing film. Composite separators formed in similar fashion by impregnating cloth matrix with polyvinyl alcohol solution and drying composite. Insoluble thin hydrophilic membranes made from aqueous systems, and use of undesirable organic solvents not required.

  10. Preparing oxidized fractions of polyvinyl alcohol of a given molecular mass

    NASA Astrophysics Data System (ADS)

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2016-10-01

    The effect of two oxidizers (an oxygen-ozone mixture and hydrogen peroxide) on the kinetics of the oxidative degradation of polyvinyl alcohol in aqueous solutions is studied. Degradation of the polymer is proved not only by a reduction in the weight of oxidized fractions, but in the intrinsic viscosity of their aqueous solutions as well (and thus the average molecular weight of the resulting fractions). It is shown that the degree of the destructive reactions of polyvinyl alcohol grows along with the duration of the process, increasing the initial concentrations of H2O2 and raising the temperature. These results can be used in obtaining oxidized fractions of polyvinyl alcohol that have predetermined molecular weights.

  11. Investigation of Electrospun Poly Vinyl Alcohol Fibers Towards the Development of Manufacturable Wound Dressings

    NASA Astrophysics Data System (ADS)

    Vora, Asad

    Polymers such as polyvinyl alcohol, chitosan, and starch have excellent bio-compatible and bio-degradable properties. Their applications in drug delivery, wound dressings, artificial cartilage materials have increased dramatically due to their much sought-after renewable and biological properties. Hence, polyvinyl alcohol has been chosen for this study to test the feasibility of polyvinyl alcohol nanofibers towards the manufacturable wound dressings. Polyvinyl alcohol nanofibers are prepared via electrospinning technique, where different wt% polyvinyl alcohol solutions are prepared. The fibers were optimized by varying important electrospninning parameters which include voltage applied, the collector-needle distance and flow rate. Morphology and structure of the electrospun fibers are analysed using scanning electron microscopy and fourier transform infrared respectively. The diameter of fibers obtained was found to be in the range of 100 nm-160 nm. Thermal stability was examined using DSC and TGA characterization technique and fibers are found to be stable up to 220oC. Finally, each weight sample of PVA fibers are analysed by goniometer for wettability and is found to be hydrophilic.

  12. Properties of polyvinyl alcohol/xylan composite films with citric acid.

    PubMed

    Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie

    2014-03-15

    Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming. Copyright © 2013. Published by Elsevier Ltd.

  13. Biodegradable and bioactive CGP/PVA film for fungal growth inhibition.

    PubMed

    Silva, Bárbara Dumas S; Ulhoa, Cirano J; Batista, Karla A; Di Medeiros, Maria Carolina; Da Silva Filho, Rômulo Roosevelt; Yamashita, Fabio; Fernandes, Kátia F

    2012-07-01

    In this study, chitinolytic enzymes produced by Trichoderma asperellum were immobilized on a biodegradable film manufactured with a blend of cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA), and tested as a fungal growth inhibitor. The film was produced by casting a blend of CGP and PVA solution on glass molds. The CGP/PVA film showed 68% water solubility, tensile strength of 23.7 MPa, 187.2% elongation and 52% of mass loss after 90 days in soil. The presence of T-CWD enzymes immobilized by adsorption or covalent attachment resulted in effective inhibition of fungal growth. Sclerotinia sclerotiorum was the most sensitive organism, followed by Aspergillus niger and Penicillium sp. SEM micrograph showed that the presence of immobilized T-CWD enzymes on CGP/PVA film produced morphological modifications on vegetative and germinative structures of the microorganisms, particularly hyphae disruption and changes of spores shape. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Assimilation of NH₄Br in Polyvinyl Alcohol/Poly(N-vinyl pyrrolidone) Polymer Blend-Based Electrolyte and Its Effect on Ionic Conductivity.

    PubMed

    Parameswaran, V; Nallamuthu, N; Devendran, P; Manikandan, A; Nagarajan, E R

    2018-06-01

    Biodegradable polymer blend electrolyte based on ammonium based salt in variation composition consisting of PVA:PVP were prepared by using solution casting technique. The obtained films have been analyzed by various technical methods like as XRD, FT-IR, TG-DSC, SEM analysis and impedance spectroscopy. The XRD and FT-IR analysis exposed the amorphous nature and structural properties of the complex formation between PVA/PVP/NH4Br. Impedance spectroscopy analysis revealed the ionic conductivity and the dielectric properties of PVA/PVP/NH4Br polymer blend electrolyte films. The maximum ionic conductivity was determined to be 6.14 × 10-5 Scm-1 for the composition of 50%PVA: 50%PVP: 10% NH4Br with low activation energy 0.3457 eV at room temperature. Solid state battery is fabricated using highest ionic conducting polymer blend as electrolyte with the configuration Zn/ZnSO4 · 7H2O (anode) ∥ 50%PVA: 50%PVP: 10% NH4Br ∥ Mn2O3 (cathode). The observed open circuit voltage is 1.2 V and its performance has been studied.

  15. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application.

    PubMed

    He, Huawei; Cai, Rui; Wang, Yejing; Tao, Gang; Guo, Pengchao; Zuo, Hua; Chen, Liqun; Liu, Xinyu; Zhao, Ping; Xia, Qingyou

    2017-11-01

    Sericin has great potentials in biomedical applications for its good reactive activity, biocompatibility and biodegradability. However, the undesirable mechanical performance limits its application. Here, we developed a green, facile and economic approach to prepare sericin/polyvinyl alcohol (PVA) blend film. Further, silver nanoparticles (AgNPs) were synthesized in situ on the surface of sericin/PVA film via UV-assisted green synthesis method. Mechanical performance, swelling, mass losing and water retention tests showed the blend film had good mechanical performance, hygroscopicity, water retention capacity and low mass losing ratio. Scanning electron microscopy, fourier transfer infrared spectroscopy, X-ray diffractometry diffraction and X-ray photoelectron spectroscopy indicated the blending of PVA and sericin promoted the formation of hydrogen bond network between sericin and PVA, thus enhanced the mechanical performance and the stability of sericin, as well as the hygroscopicity and water retention capacity. UV irradiation and AgNPs modification did not affect the inner crystalline structure of sericin/PVA blend film. The inhibition zone and bacteria growth curve assay suggested AgNPs-sericin/PVA film had good antibacterial activities against E. coli and S. aureus. This novel AgNPs-sericin/PVA film shows great potentials in biomedical materials such as wound dressing and skin tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Deproteinised natural rubber latex grafted poly(dimethylaminoethyl methacrylate) - poly(vinyl alcohol) blend membranes: Synthesis, properties and application.

    PubMed

    Jayadevan, Janisha; Alex, Rosamma; Gopalakrishnapanicker, Unnikrishnan

    2018-02-01

    Natural rubber latex was initially deproteinised (DNRL) and then subjected to physicochemical modifications to make high functional membranes for drug delivery applications. Initially, DNRL was prepared by incubating with urea, sodiumdodecylsulphate and acetone followed by centrifugation. The deproteinisation was confirmed by CHN analysis. The DNRL was then chemically modified by grafting (dimethylaminoethyl methacrylate) onto NR particles by using a redox initiator system viz; cumene hydroperoxide/tetraethylenepentamine, followed by dialysis for purification. The grafting was confirmed by dynamic light scattering, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The grafted system was blended with a hydrophilic adhesive polymer PVA and casted into membranes. The membranes after blending showed enhanced mechanical properties with a threshold concentration of PVA. The moisture uptake, swelling and water contact angle experiments indicated an increased hydrophilicity with an increased PVA content in the blend membranes. The grafted DNRL possessed significant antibacterial property which has been found to be retained in the blended form. A notable decrease in cytotoxicity was observed for the modified DNRL membranes than the bare DNRL membranes. The in-vitro drug release studies using rhodamine B as a model drug, confirmed the utility of the prepared membranes to function as a drug delivery matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli.

    PubMed

    Mallakpour, Shadpour; Mansourzadeh, Soheila

    2018-05-01

    The aim of this paper was to blend the polymers, poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) to produce a novel composite materials possessing the benefits of both. CuO nanoparticles (NPs) were used as a suitable filler to fabricate the blend nanocomposites (NCs) with desired properties. First, the surface of NPs, was modified with vitamin B 1 (VB 1 ) as a bio-safe coupling agent. Then, the blend NCs with various ratios of modified CuO (3, 5, and 7 wt%) were fabricated under ultrasonic irradiations followed by casting/solvent evaporation method. These processes are fast and green way to disperse the NPs sufficiently. Several techniques were applied for the characterization of the obtained NCs. morphology examination demonstrated the morphology of NCs and compatibility of NPs with the blend polymer. EDX results indicated the weight and atomic percentage of the achieved materials. TGA analysis verified that the NCs show higher thermal properties than the neat blend polymer. Also embedding the modified NPs into the blend polymer had effected on optical absorbance of the obtained NCs. The contact angle measurements confirmed that the hydrophilicity decreased for different proportions of the modified NPs loaded in the blend polymer. Finally, NCs show better bactericidal effects against gram-positive than gram-negative bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ultrasonic-assisted synthesis of novel nanocomposite of poly(vinyl alcohol) and amino-modified MCM-41: A green adsorbent for Cd(II) removal.

    PubMed

    Soltani, Roozbeh; Dinari, Mohammad; Mohammadnezhad, Gholamhossein

    2018-01-01

    Amino-modified MCM-41/poly(vinyl alcohol) nanocomposite (M-MCM-41/PVOH NC) was developed for the adsorption of Cd(II) from aqueous media. M-MCM-41/PVOH NC was prepared through ultrasonic-assisted and simple blending procedure with economical and environmentally friendly polymer. The as-prepared adsorbent was characterized by FT-IR, TEM, FE-SEM and TGA. The contact time, solution pH and initial concentration of Cd(II) were found to affect the adsorption of Cd(II) from aqueous media. Kinetic studies were carried out and pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich, and intra-particle diffusion (IPD) reaction kinetic models were examined. The kinetic results revealed that the adsorption of Cd(II) onto M-MCM-41/PVOH NC followed PSO kinetic model and is a chemical adsorption. The equilibrium adsorption data were evaluated by different isotherms viz. Langmuir, Freundlich, and Dubinin Radushkevich (D-R) equations. The equilibrium data fitted better with the Langmuir isotherm and the maximum adsorption capacity of M-MCM-41/PVOH NC at 298K was calculated to be 46.73mgg -1 for Cd(II) on a typical saturated monomolecular layer with a fixed number of localized adsorption sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency.

    PubMed

    Cazón, Patricia; Vázquez, Manuel; Velazquez, Gonzalo

    2018-09-01

    Nowadays consumers are aware of environmental problems. As an alternative to petrochemical polymers for food packaging, researchers have been focused on biopolymeric materials as raw material. The aim of this study was to evaluate mechanical properties (toughness, burst strength and distance to burst), water adsorption, light-barrier properties and transparency of composite films based on cellulose, glycerol and polyvinyl alcohol. Scanning electron microscopy, spectral analysis (FT-IR and UV-VIS-NIR) and differential scanning calorimetry were performed to explain the morphology, structural and thermal properties of the films. Results showed that polyvinyl alcohol enhances the toughness of films up to 44.30 MJ/m 3 . However, toughness decreases when glycerol concentration is increased (from 23.41 to 10.55 MJ/m 3 ). Water adsorption increased with increasing polyvinyl alcohol concentration up to 222%. Polyvinyl alcohol increased the film thickness. The films showed higher burst strength (up to 12014 g) than other biodegradable films. The films obtained have optimal values of transparency like those values of synthetic polymers. Glycerol produced a UV protective effect in the films, an important effect for food packaging to prevent lipid oxidative deterioration. Results showed that it is feasible to obtain cellulose-glycerol-polyvinyl alcohol composite films with improved properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Studies on the thermal and electrical properties of polyethylene oxide/polyvinyl alcohol blend by incorporating of Cesium Chloride

    NASA Astrophysics Data System (ADS)

    Ragab, H. M.

    The composites PVA/PEO filled with various concentrations of CsCl samples, which were prepared for using a solvent casting technique and studied via Fourier transform infrared spectroscopy (FTIR), ultraviolet - visible (UV-Vis), X-ray spectroscopy, Scanning electron microscopy (SEM), AC conductivity and dielectric properties to use as sensor in electronic devices. The FTIR indicated the interaction between PVA/PEO and CsCl. From data of UV. Vis. was observed band gap (Eg) reduces with addition CsCl to polymer blend. The XRD shows the degree of crystallinity (χ%) decreasing with increasing concentration of CsCl from 2.93 to 2.45. The SEM of the surface of composite PVA/PEO filled with various concentrations of CsCl in magnification 1500 times its change with compare of pure blend. From TGA was observed improvement in the thermal stability of the samples after addition of CsCl. The AC conductivity rise more rapidly with temperature and associated with activation energy Ea, for conduction and enhanced with increasing both temperature and frequency.

  1. Three methods for in situ cross-linking of polyvinyl alcohol films for application as ion-conducting membranes in potassium hydroxide electrolyte. [battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.

    1979-01-01

    Three methods of in situ cross-linking polyvinyl alcohol films are presented. They are: (1) acetalization with a dialdehyde such as glutaraldehyde, (2) acetalization with aldehyde groups formed by selective oxidative cleaving of the few percent of 1,2 diol units present in polyvinyl alcohol, and (3) cross-linking by hydrogen abstraction by reaction with hydrogen atoms and hydroxyl radicals from irradiated water. For the third method, improvement in film conductivity in KOH solution at the expense of mechanical strength is obtained by the presence of polyacrylic acid in the polyvinyl alcohol films. Resistivities in 45 percent KOH are given for in situ cross-linked films prepared by each of the three methods.

  2. Preparation of novel carbon microfiber/carbon nanofiber-dispersed polyvinyl alcohol-based nanocomposite material for lithium-ion electrolyte battery separator.

    PubMed

    Sharma, Ajit K; Khare, Prateek; Singh, Jayant K; Verma, Nishith

    2013-04-01

    A novel nanocomposite polyvinyl alcohol precursor-based material dispersed with the web of carbon microfibers and carbon nanofibers is developed as lithium (Li)-ion electrolyte battery separator. The primary synthesis steps of the separator material consist of esterification of polyvinyl acetate to produce polyvinyl alcohol gel, ball-milling of the surfactant dispersed carbon micro-nanofibers, mixing of the milled micron size (~500 nm) fibers to the reactant mixture at the incipience of the polyvinyl alcohol gel formation, and the mixing of hydrophobic reagents along with polyethylene glycol as a plasticizer, to produce a thin film of ~25 μm. The produced film, uniformly dispersed with carbon micro-nanofibers, has dramatically improved performance as a battery separator, with the ion conductivity of the electrolytes (LiPF6) saturated film measured as 0.119 S-cm(-1), approximately two orders of magnitude higher than that of polyvinyl alcohol. The other primary characteristics of the produced film, such as tensile strength, contact angle, and thermal stability, are also found to be superior to the materials made of other precursors, including polypropylene and polyethylene, discussed in the literature. The method of producing the films in this study is novel, simple, environmentally benign, and economically viable. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Effect of the polymer concentration on the ON/OFF states of a TN-LCD: polyvinyl alcohol vs. soy lecithin

    NASA Astrophysics Data System (ADS)

    de Coss Martinez, Romeo; Gonzalez Murguia, Jose Luis

    2011-03-01

    In this work we study the response of a Twisted Nematic Liquid Crystal Display (TN-LCD) by varying both the concentration and the polymer used for the microgroove. We compare the performance of two polymers: polyvinyl alcohol and soy lecithin. In particular, the light transmission for the ON/OFF states is evaluated. The polyvinyl alcohol is a polymer widely used in LCDs while lecithin soy is a natural polymer.

  4. Novel porous soy protein-based blend structures for biomedical applications: Microstructure, mechanical, and physical properties.

    PubMed

    Barkay-Olami, Hilla; Zilberman, Meital

    2016-08-01

    Use of naturally derived materials for biomedical applications is steadily increasing. Soy protein has advantages over various types of natural proteins employed for biomedical applications due to its low price, nonanimal origin, and relatively long storage time and stability. In the current study, blends of soy protein with other polymers (gelatin, alginate, pectin, polyvinyl alcohol, and polyethylene glycol) were developed and studied. The mechanical tensile properties of dense films were studied in order to select the best secondary polymer for porous three-dimensional structures. The porous soy-gelatin and soy-alginate structures were then studied for physical properties, degradation behavior, and microstructure. The results show that these blends can be assembled into porous three-dimensional structures by combining chemical crosslinking with freeze-drying. The soy-alginate blends are advantageous over soy-gelatin blends, demonstrated better stability, and degradation time along with controlled swelling behavior due to more effective crosslinking and higher water uptake than soy-gelatin blends. Water vapor transmission rate experiments showed that all porous blend structures were in the desired range for burn treatment [2000-2500 g/(m(2) d)] and can be controlled by the crosslinking process. We conclude that these novel porous three-dimensional structures have a high potential for use as scaffolds for tissue engineering, especially for skin regeneration applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1109-1120, 2016. © 2015 Wiley Periodicals, Inc.

  5. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    NASA Astrophysics Data System (ADS)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  6. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  7. Preparation and Characterization of Hydrophilically Modified PVDF Membranes by a Novel Nonsolvent Thermally Induced Phase Separation Method

    PubMed Central

    Hu, Ningen; Xiao, Tonghu; Cai, Xinhai; Ding, Lining; Fu, Yuhua; Yang, Xing

    2016-01-01

    In this study, a nonsolvent thermally-induced phase separation (NTIPS) method was first proposed to fabricate hydrophilically-modified poly(vinylidene fluoride) (PVDF) membranes to overcome the drawbacks of conventional thermally-induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) methods. Hydrophilically-modified PVDF membranes were successfully prepared by blending in hydrophilic polymer polyvinyl alcohol (PVA) at 140 °C. A series of PVDF/PVA blend membranes was prepared at different total polymer concentrations and blend ratios. The morphological analysis via SEM indicated that the formation mechanism of these hydrophilically-modified membranes was a combined NIPS and TIPS process. As the total polymer concentration increased, the tensile strength of the membranes increased; meanwhile, the membrane pore size, porosity and water flux decreased. With the PVDF/PVA blend ratio increased from 10:0 to 8:2, the membrane pore size and water flux increased. The dynamic water contact angle of these membranes showed that the hydrophilic properties of PVDF/PVA blend membranes were prominently improved. The higher hydrophilicity of the membranes resulted in reduced membrane resistance and, hence, higher permeability. The total resistance Rt of the modified PVDF membranes decreased significantly as the hydrophilicity increased. The irreversible fouling related to pore blocking and adsorption fouling onto the membrane surface was minimal, indicating good antifouling properties. PMID:27869711

  8. Preparation and Characterization of Hydrophilically Modified PVDF Membranes by a Novel Nonsolvent Thermally Induced Phase Separation Method.

    PubMed

    Hu, Ningen; Xiao, Tonghu; Cai, Xinhai; Ding, Lining; Fu, Yuhua; Yang, Xing

    2016-11-18

    In this study, a nonsolvent thermally-induced phase separation (NTIPS) method was first proposed to fabricate hydrophilically-modified poly(vinylidene fluoride) (PVDF) membranes to overcome the drawbacks of conventional thermally-induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) methods. Hydrophilically-modified PVDF membranes were successfully prepared by blending in hydrophilic polymer polyvinyl alcohol (PVA) at 140 °C. A series of PVDF/PVA blend membranes was prepared at different total polymer concentrations and blend ratios. The morphological analysis via SEM indicated that the formation mechanism of these hydrophilically-modified membranes was a combined NIPS and TIPS process. As the total polymer concentration increased, the tensile strength of the membranes increased; meanwhile, the membrane pore size, porosity and water flux decreased. With the PVDF/PVA blend ratio increased from 10:0 to 8:2, the membrane pore size and water flux increased. The dynamic water contact angle of these membranes showed that the hydrophilic properties of PVDF/PVA blend membranes were prominently improved. The higher hydrophilicity of the membranes resulted in reduced membrane resistance and, hence, higher permeability. The total resistance R t of the modified PVDF membranes decreased significantly as the hydrophilicity increased. The irreversible fouling related to pore blocking and adsorption fouling onto the membrane surface was minimal, indicating good antifouling properties.

  9. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    NASA Astrophysics Data System (ADS)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  10. Oxidation and Destruction of Polyvinyl Alcohol under the Combined Action of Ozone-Oxygen Mixture and Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2018-03-01

    The oxidative transformations of a polyvinyl alcohol in aqueous solutions are studied under the simultaneous action of the two oxidizing agents, an ozone-oxygen mixture and a hydrogen peroxide. Effective parameters a and b, which characterize the first and second channels of carboxyl group accumulation, respectively, grow linearly upon an increase in the initial concentration of H2O2. After the temperature dependence of a and b parameters (331-363 K) in a PVA + O3 + O2 + H2O2 + H2O reaction system is studied, the parameters of the activation of COOH group accumulation are found (where PVA is a polyvinyl alcohol). New data on the effect process conditions (length of oxidation, temperature, and hydrogen peroxide concentration) have on the degree of destructive transformations of polyvinyl alcohol in the investigated reaction system are obtained.

  11. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    PubMed

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.

  12. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization.

    PubMed

    Chiellini, E; Cinelli, P; Imam, S H; Mao, L

    2001-01-01

    As a part of an ongoing project on the production of composite materials based on poly(vinyl alcohol) (PVA) and polymeric materials from renewable resources, the present paper reports on the incorporation of agricultural waste materials as organic fillers in a film matrix based on PVA as continuous phase. In this study lignocellulosic fibers byproducts, derived from sugar cane (SC) and apple (AP) and orange (OR) fruit juice extraction, were cast from PVA aqueous solutions. The effect of fiber type and composition on the relative properties of cast films was evaluated and compared. OR resulted to be suitable for blending in higher amounts by weight than SC and AP. Glycerol and urea were added as plasticizing agents and were observed to be effective in giving flexible films. Additionally, cornstarch was added to further increase the composition of polymers from renewable resources in cost-effective and ecoefficient composite film formulations. The prepared films resulted sensitive to moisture and water. To reduce water sensitivity, hexamethoxymethylmelamine (HMMM) was tested as a cross-linking agent for the present composite formulations. Cross-linked films exhibited significant improvement in water-resistance that can be taken as a tuneable structural feature for customized applications. The mechanical properties of the prepared composite films (elongation at break, tensile strength, Young modulus) were found to be dependent upon the nature and content of the filler and on environmental conditions.

  13. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Akhtar, Majid Niaz; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Al-Amiery, Ahmed A

    2015-12-19

    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.

  14. Silver/polysaccharide-based nanofibrous materials synthesized from green chemistry approach.

    PubMed

    Martínez-Rodríguez, M A; Garza-Navarro, M A; Moreno-Cortez, I E; Lucio-Porto, R; González-González, V A

    2016-01-20

    In this contribution a novel green chemistry approach for the synthesis of nanofibrous materials based on blends of carboxymethyl-cellulose (CMC)-silver nanoparticles (AgNPs) composite and polyvinyl-alcohol (PVA) is proposed. These nanofibrous materials were obtained from the electrospinning of blends of aqueous solutions of CMC-AgNPs composite and PVA, which were prepared at different CMC/PVA weight ratios in order to electrospin nanofibers applying a constant tension of 15kV. The synthesized materials were characterized by means of transmission electron microscopy, scanning electron microscopy; as well as Fourier-transform infrared, ultraviolet and Raman spectroscopic techniques. Experimental evidence suggests that the diameter of the nanofibers is thinner than any other reported in the literature regarding the electrospinning of CMC. This feature is related to the interactions of AgNPs with carboxyl functional groups of the CMC, which diminish those between the later and acetyl groups of PVA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds.

    PubMed

    Kramschuster, Adam; Turng, Lih-Sheng

    2010-02-01

    In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed.

  16. Development and blood compatibility assessment of electrospun polyvinyl alcohol blended with metallocene polyethylene and plectranthus amboinicus (PVA/mPE/PA) for bone tissue engineering.

    PubMed

    Qi, Jie; Zhang, Huang; Wang, Yingzhou; Mani, Mohan Prasath; Jaganathan, Saravana Kumar

    2018-01-01

    Currently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions. In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites. The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs). The prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.

  17. Host polymer influence on dilute polystyrene segmental dynamics

    NASA Astrophysics Data System (ADS)

    Lutz, T. R.

    2005-03-01

    We have utilized deuterium NMR to investigate the segmental dynamics of dilute (2%) d3-polystyrene (PS) chains in miscible polymer blends with polybutadiene, poly(vinyl ethylene), polyisoprene, poly(vinyl methylether) and poly(methyl methacrylate). In the dilute limit, we find qualitative differences depending upon whether the host polymer has dynamics that are faster or slower than that of pure PS. In blends where PS is the fast (low Tg) component, segmental dynamics are slowed upon blending and can be fit by the Lodge-McLeish model. When PS is the slow (high Tg) component, PS segmental dynamics speed up upon blending, but cannot be fit by the Lodge-McLeish model unless a temperature dependent self-concentration is employed. These results are qualitatively consistent with a recent suggestion by Kant, Kumar and Colby (Macromolecules, 2003, 10087), based upon data at higher concentrations. Furthermore, as the slow component, we find the segmental dynamics of PS has a temperature dependence similar to that of its host. This suggests viewing the high Tg component dynamics in a miscible blend as similar to a polymer in a low molecular weight solvent.

  18. A reduction of diffusion in PVA Fricke hydrogels

    NASA Astrophysics Data System (ADS)

    Smith, S. T.; Masters, K. S.; Hosokawa, K.; Blinco, J.; Crowe, S. B.; Kairn, T.; Trapp, J. V.

    2015-01-01

    A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy-1 and a diffusion rate of 0.133 mm2 h-1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.

  19. Biodegradable Sonobuoy Decelerators

    DTIC Science & Technology

    2015-06-01

    material. Two materials studied were polyvinyl alcohol (PVOH) and polyhydroxyalkanoate (PHA). Single and multilayered PVOH films were evaluated as well...readiness point for technology transition. 15. SUBJECT TERMS biodegrade, decelerator, sonobuoy, polyvinyl alcohol, polyhydroxyalkanoate , marine...Center NGO non-governmental organizations NOAA National Oceanic and Atmospheric Administration PHA polyhydroxyalkanoate PIA Parachute Industry

  20. Electrospun nanofibers of poly(vinyl alcohol)reinforced with cellulose nanofibrils

    USDA-ARS?s Scientific Manuscript database

    In this work, nanofibers of poly(vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on mor...

  1. Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and Opuntia mucilage

    USDA-ARS?s Scientific Manuscript database

    This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as ...

  2. 75 FR 61175 - Polyvinyl Alcohol From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1088 (Final)] Polyvinyl Alcohol From Taiwan AGENCY: United States International Trade Commission. ACTION: Scheduling of the final phase of an... antidumping investigation No. 731-TA-1088 (Final) under section 735(b) of the Tariff Act of 1930 (19 U.S.C...

  3. Synthesis, characterization and DC conductivity studies of conducting polyaniline/PVA/Fly ash polymer composites

    NASA Astrophysics Data System (ADS)

    Revanasiddappa, M.; Swamy, D. Siddalinga; Vinay, K.; Ravikiran, Y. T.; Raghavendra, S. C.

    2018-05-01

    The present work is an investigation of dc conduction behaviour of conducting polyaniline/fly ash nano particles blended in polyvinyl Alcohol (PANI/PVA/FA) synthesized via in-situ polymerization technique using (NH4)2S2O8 as an oxidising agent with varying fly ash cenosphere by 10, 20, 30, 40 and 50 wt%. The structural characterization of the synthesised polymer composites was examined using FT-IR, XRD and SEM techniques. Dc conductivity as a function of temperature has been measured in the temperature range from 302K - 443K. The increase of conductivity with increasing temperature reveals semiconducting behaviour of the composites and shows an evidence for the transport properties of the composites.

  4. 77 FR 14342 - Polyvinyl Alcohol From Taiwan: Correction to Notice of Opportunity To Request Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-841] Polyvinyl Alcohol From Taiwan: Correction to Notice of Opportunity To Request Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce. FOR FURTHER INFORMATION CONTACT: Dustin Ross, AD/CVD Operations, Office 1, Import...

  5. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    USDA-ARS?s Scientific Manuscript database

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  6. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...

  7. Antimicrobial Effect of An Essential Oil Blend on Surface-attached Salmonella on Polyvinyl Chloride

    USDA-ARS?s Scientific Manuscript database

    The majority of drinking water lines for broilers are made of polyvinyl chloride (PVC) and surface attachment of Salmonella on the inner surface of water lines can be the initial stage of biofilm development. These biofilms can be the source of Salmonella infection in water lines and are known to re...

  8. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse.

    PubMed

    El Achaby, Mounir; El Miri, Nassima; Aboulkas, Adil; Zahouily, Mohamed; Bilal, Essaid; Barakat, Abdellatif; Solhy, Abderrahim

    2017-03-01

    Novel synthesis strategy of eco-friendly bio-nanocomposite films have been exploited using cellulose nanocrystals (CNC) and polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) blend matrix as a potential in food packaging application. The CNC were extracted from sugarcane bagasse using sulfuric acid hydrolysis, and they were successfully characterized regarding their morphology, size, crystallinity and thermal stability. Thereafter, PVA/CMC-CNC bio-nanocomposite films, at various CNC contents (0.5-10wt%), were fabricated by the solvent casting method, and their properties were investigated. It was found that the addition of 5wt% CNC within a PVA/CMC increased the tensile modulus and strength by 141% and 83% respectively, and the water vapor permeability was reduced by 87%. Additionally, the bio-nanocomposites maintained the same transparency level of the PVA/CMC blend film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. In these bio-nanocomposites, the adhesion properties and the large number of functional groups that are present in the CNC's surface and the macromolecular chains of the PVA/CMC blend are exploited to improve the interfacial interactions between the CNC and the blend. Consequently, these eco-friendly structured bio-nanocomposites with superior properties are expected to be useful in food packaging applications. Copyright © 2016. Published by Elsevier B.V.

  9. Effect of natural and synthetic organics on the processing of ceramics

    NASA Astrophysics Data System (ADS)

    Schulz, Brett M.

    Dry pressing has been shown to be an efficient and cost effective method of manufacturing ceramic ware. Dry pressed parts are typically manufactured with a low moisture content which has the further advantage of eliminating the drying step that is necessary for plastic formed ware, i.e., jiggered or ram pressed. Problems associated with the use of dry pressing in an industrial setting involve the high loss rate during the bisque firing process and the poor surface finish of the green (unfired) ware. It was the goal of this research to improve the surface finish of dry pressed ware to a level that is satisfactory for decorating of the bisque fired ware. The adsorption of organic additives, specifically dispersants, on the surface of particles is an important aspect of ceramic processing. The interactions between organic additives, specifically sodium poly[acrylic acid] and poly[vinyl alcohol], have been demonstrated to result in phase separation into distinct domains during the spray-drying process. This phase separation leads to a poly[vinyl alcohol]-rich film on the surface of the granulate which will increase the P1 value, the pressure at the onset of granule deformation, of the granulate. This negative interaction between the organics increases the surface roughness of the dry pressed ware. The roughness of the industrially prepared ware was determined using an optical interferometer to set a baseline for improvements in the surface finish of the dry pressed ware. Blending of dried granulate was determined to significantly improve the surface finish of the ware. Alternative binders to replace a plasticized poly[vinyl alcohol] were observed to show improvements in the surface finish of the ware dry pressed in a semi-isostatic die. In summary the most important aspect to improving the surface finish of dry pressed ware, i.e. facilitating compaction, is the selection of the organic additives. Additives which are observed to have a negative interaction, i.e. to phase separate into distinct domains, will result in an organic rich film at the surface of the granule thus increasing the P1 value of the granulate.

  10. Lipogels: surface-adherent composite hydrogels assembled from poly(vinyl alcohol) and liposomes

    NASA Astrophysics Data System (ADS)

    Jensen, Bettina E. B.; Hosta-Rigau, Leticia; Spycher, Philipp R.; Reimhult, Erik; Städler, Brigitte; Zelikin, Alexander N.

    2013-07-01

    Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus illustrating the potential of the lipogels as a drug eluting interface for biomedical applications.Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus illustrating the potential of the lipogels as a drug eluting interface for biomedical applications. Electronic supplementary information (ESI) available: Paclitaxel calibration curve and images of DIC of PLL blended PVA physical hydrogels, lipogel FRAP, and different cell lines attached to lipogels are available. See DOI: 10.1039/c3nr01662e

  11. DFT study of CdS-PVA film

    NASA Astrophysics Data System (ADS)

    Bala, Vaneeta; Tripathi, S. K.; Kumar, Ranjan

    2015-02-01

    Density functional theory has been applied to study cadmium sulphide-polyvinyl alcohol nanocomposite film. Structural models of two isotactic-polyvinyl alcohol (I-PVA) chains around one cadmium sulphide nanoparticle is considered in which each chain consists three monomer units of [-(CH2CH(OH))-]. All of the hydroxyl groups in I-PVA chains are directed to cadmium sulphide nanoparticle. Electronic and structural properties are investigated using ab-intio density functional code, SIESTA. Structural optimizations are done using local density approximations (LDA). The exchange correlation functional of LDA is parameterized by the Ceperley-Alder (CA) approach. The core electrons are represented by improved Troulier-Martins pseudopotentials. Densities of states clearly show the semiconducting nature of cadmium sulphide polyvinyl alcohol nanocomposite.

  12. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane

    Treesearch

    Tianliang Zhai; Qifeng Zheng; Zhiyong Cai; Lih-Sheng Turng; Hesheng Xia; Shaoqin Gong

    2015-01-01

    Superhydrophobic poly(vinyl alcohol) (PVA)/ cellulose nanofibril (CNF) aerogels with a unidirectionally aligned microtubular porous structure were prepared using a unidirectional freeze-drying process, followed by the thermal chemical vapor deposition of methyltrichlorosilane. The silanized aerogels were characterized using various techniques including scanning...

  13. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions

    USDA-ARS?s Scientific Manuscript database

    This work aims to extract and characterize fibrous, rod-like and spherical cellulose nanoparticles (CNs) from cottonseed hull and to investigate the structure-morphology-rheology relationships. The rheological behavior of poly(vinyl alcohol) (PVA)/CNs suspensions was also examined to guide the solve...

  14. Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming

    Treesearch

    Yottha Srithep; Lih-Sheng Turng; Ronald Sabo; Craig Clemons

    2012-01-01

    Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties-such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission...

  15. Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications.

    PubMed

    Musetti, Alessandro; Paderni, Katia; Fabbri, Paola; Pulvirenti, Andrea; Al-Moghazy, Marwa; Fava, Patrizia

    2014-04-01

    This work aimed at developing a thin and water-resistant food-grade poly(vinyl alcohol) (PVOH)-based matrix able to swell when in contact with high moisture content food products without rupturing to release antimicrobial agents onto the food surface. This film was prepared by blending PVOH and 7.20% (wt/wt of PVOH) of poly(ethylene glycol) (PEG) with citric acid as crosslinking agent. The film-forming solution was then casted onto a flat surface and the obtained film was 60 μm in thickness and showed a good transparency (close to T = 100%) in the visible region (400 to 700 nm). After immersion in water for 72 h at room temperature, the crosslinked matrix loses only 19.2% of its original weight (the percentage includes the amount of unreacted crosslinking agent, antimicrobial in itself). Water content, degree of swelling, and crosslinking density of the film prove that the presence of PEG diminishes the hydrophilic behavior of the material. Also the mechanical properties of the wet and dry film were assessed. Alongside this, 2.5% (wt/wt of dry film) of grapefruit seed extract (GSE), an antimicrobial agent, was added to the film-forming solution just before casting and the ability of the plastic matrix to release the additive was then evaluated in vitro against 2 GSE-susceptible microorganisms, Salmonella enteritidis and Listeria innocua. The results indicate that the developed matrix may be a promising food-grade material for the incorporation of active substances. © 2014 Institute of Food Technologists®

  16. Investigating the Synthesis and Characterization of a Novel "Green" H₂O₂-Assisted, Water-Soluble Chitosan/Polyvinyl Alcohol Nanofiber for Environmental End Uses.

    PubMed

    Pervez, Md Nahid; Stylios, George K

    2018-06-01

    The present work highlights the formation of a novel green nanofiber based on H₂O₂-assisted water-soluble chitosan/polyvinyl alcohol (W S CHT/PVA) by using water as an ecofriendly solvent and genipin used as a nontoxic cross-linker. The 20/80 blend ratio was found to have the most optimum uniform fiber morphology. W S CHT retained the same structure as W IS CHT. The prepared nanofibers were characterized by Scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), Thermo gravimetric analysis (TGA), Differential scanning calorimeter (DSC), X-ray diffraction (XRD), Water Contact Angle (WCA) and Ultraviolet-visible spectroscopy (UV-vis). During electrospinning, the crystalline microstructure of the W S CHT/PVA underwent better solidification and after cross-linking there was an increase in the melting temperature of the fiber. Swelling ratio studies revealed noticeable increase in hydrophilicity with increase of W S CHT, which was further demonstrated by the decrease of contact angle from 64.74° to 14.68°. W S CHT/PVA nanofiber mats exhibit excellent UV blocking protection with less than 5% transmittance value and also showed improved in vitro drug release properties with stable release for longer duration (cross-linked fibers) and burst release for shorter duration (uncross linked) fibers. Finally our experimental data demonstrates excellent adsorption ability of Colour Index (C.I.) reactive black 5 (RB5) due to protonated amino groups.

  17. Enhanced Degradation of Polyvinyl Alcohol by Pycnoporus cinnabarinus after Pretreatment with Fenton’s Reagent

    PubMed Central

    Larking, Daniel M.; Crawford, Russell J.; Christie, Gregor B. Y.; Lonergan, Greg T.

    1999-01-01

    Degradation of polyvinyl alcohol (PVA) was investigated by using a combination of chemical treatment with Fenton’s reagent and biological degradation with the white rot fungus Pycnoporus cinnabarinus. Inclusion of the chemical pretreatment resulted in greater degradation of PVA than the degradation observed when biological degradation alone was used. PMID:10103286

  18. Short cellulose nanofribrils as reinforcement in polyvinyl alcohol fiber

    Treesearch

    Jun Peng; Thomas Ellingham; Ron Sabo; Lih-Sheng Turng; Craig M. Clemons

    2014-01-01

    Short cellulose nanofibrils (SCNF) were investigated as reinforcement for polyvinyl alcohol (PVA) fibers. SCNF were mechanically isolated from hard wood pulp after enzymatic pretreatment. Various levels of SCNF were added to an aqueous PVA solution, which was gel-spun into continuous fibers. The molecular orientation of PVA was affected by a combination of wet drawing...

  19. Green Synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents

    Treesearch

    Qifeng Zheng; Zhiyong Cai; Shaoqin Gong

    2014-01-01

    Cross-linked polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid organic aerogels were prepared using an environmentally friendly freeze-drying process. The resulting PVA/CNF aerogel was rendered both superhydrophobic and superoleophilic after being treated with methyltrichlorosilane via a simple thermal chemical vapor deposition process. Successful silanization...

  20. VALIDATION OF AN EPA METHOD FOR THE ION CHROMATOGRAPHIC DETERMINATION OF PERCHLORATE IN FERTILIZERS USING A POLYVINYL ALCOHOL GEL RESIN.

    EPA Science Inventory

    This paper summarizes the key points of a joint study between the EPA and Metrohm-Peak, Inc., on the use of polyvinyl alcohol [PVA] columns for the ion chromatographic determination of percholorate in aqueous leachates or solutions of fertilizers. A series of fertilizer samples ...

  1. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    USDA-ARS?s Scientific Manuscript database

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  2. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  3. Disk Refining and Ultrasonication Treated Sugarcane Bagasse Residues for Poly(Vinyl Alcohol) Bio-composites

    Treesearch

    Qingzheng Cheng; Zhaohui Tong; Luisa Dempere; Lonnie Ingram; Letian Wang; J.Y. Zhu

    2013-01-01

    Disk refining and ultrasonication treated sugarcane bagasse residues reclaimed from the waste stream of a simplified bioethanol process after fermentation were used to fabricate biobased composites with poly(vinyl alcohol) (PVA) by film casting. The morphologies and the size distributions of residue particles were characterized by scanning electronic microscopy and...

  4. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  5. Effect of Poly(Vinyl Alcohol) Addition on the Properties of Hydrothermal Derived Calcium Phosphate Cement for Bone Filling Materials

    NASA Astrophysics Data System (ADS)

    Razali, N. N.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.

    2017-06-01

    The effect of addition of poly(vinyl alcohol) on hydrothermal derived calcium phosphate cement has been studied. The precursors used to prepare the cement were calcium oxide (CaO) and ammonium dihydrogen phosphate (NH4H2PO4); the reaction was conducted in water at 80-100°C. To improve properties of CPC, poly(vinyl alcohol) (PVA) of 1wt% and 2wt% was added to the liquid phase of CPC and the results were compared to CPC without PVA addition. The addition of PVA was proved to bring remarkable effects on cohesion, setting time and mechanical strength of CPC which make it suitable physically for injectable bone filler applications.

  6. 78 FR 37794 - Polyvinyl Alcohol from Taiwan: Final Results of Antidumping Duty Administrative Review; 2010-2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... duty order on polyvinyl alcohol (PVA) from Taiwan. For these final results, we continue to find that... Department published the preliminary results of the administrative review of the antidumping duty order on... review in accordance with section 751 of the Tariff Act of 1930, as amended (the Act). Scope of the Order...

  7. High-Molecular Compounds (Selected Articles).

    DTIC Science & Technology

    1987-08-24

    Polymethacrylic Acid and Polyvinyl Alcohol, by I.F. Yefremov, E.B. D’yakonova, A.A. Spartakov, A.A. Trusov ._’ . Us’yarov...polyoctafluoroamyl methacrylate) was converted into polymethacrylic acid by hydrolysis in an alkaline medium. The poly acid was methylated by diazomethane...Institute im. Lensovet Submitted 25 Apr 66 In a low-concentrated aqueous solution of polymethacrylic acid (PHAK) and polyvinyl alcohol (PVS) mixed

  8. Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium.

    PubMed

    Mola Ali Abasiyan, Sara; Mahdavinia, Gholam Reza

    2018-05-01

    In this study, magnetic nanocomposite hydrogels based on polyvinyl alcohol were synthesized. Magnetic polyvinyl alcohol/laponite RD (PVA-mLap) nanocomposites were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results indicated that PVA-mLap had desirable magnetic-sorption properties and magnetic-laponite nanoparticles were successfully synthesized and added to polyvinyl alcohol. The present nanocomposites were applied to remove Cd 2+ from aqueous solution. The influence of initial Cd 2+ concentration, magnetic-laponite concentration, pH, and ionic strength on adsorption isotherm was investigated. Heterogeneity of adsorption sites was intensified by increasing magnetic concentration of adsorbents and by rising pH value. Results of ionic strength studies indicated that by increasing ionic strength more than four times, the adsorption of Cd 2+ has only decreased around 15%. According to the results, the dominant mechanism of Cd 2+ sorption by the present adsorbents was determined chemical and specific sorption. Therefore, the use of the present nanocomposites as a powerful adsorbent of Cd 2+ in the wastewater treatment is suggested. Isotherm data were described by using Freundlich and Langmuir models, and better fitting was introduced Langmuir model.

  9. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol).

    PubMed

    Congdon, Thomas R; Notman, Rebecca; Gibson, Matthew I

    2016-09-12

    Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications-from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action.

  10. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol)

    PubMed Central

    2016-01-01

    Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications—from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action. PMID:27476873

  11. Evaluation of transport parameters for PVC based polyvinyl alcohol Ce(IV) phosphate composite membrane.

    PubMed

    Khan, Mohammad Mujahid Ali; Rafiuddin; Inamuddin

    2013-05-01

    The aim of this study was to investigate the preparation of novel membrane and the characterization of their properties. A new class of polyvinyl chloride (PVC) based polyvinyl alcohol Ce(IV) phosphate composite membrane was successfully prepared by solution casting method. The structural formation was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and morphological studies. The thermal property was investigated by thermogravimetry analysis (TGA) method. The order of surface charge density for various electrolytes was found to be LiCl

  12. Hydrogel Nanoparticles from Supercritical Technology for Pharmaceutical and Seismological Applications

    NASA Astrophysics Data System (ADS)

    Hemingway, Melinda Graham

    This research focuses on hydrogel nanoparticle formation using miniemulsion polymerization and supercritical carbon dioxide. Hydrogel nanopowder is produced by a novel combination of inverse miniemulsion polymerization and supercritical drying (MPSD) methods. Three drying methods of miniemulsions are examined: (1) a conventional freeze drying technique, and (2) two supercritical drying techniques: (2a) supercritical fluid injection into miniemulsions, and (2b) the polymerized miniemulsion injection into supercritical fluid. Method 2b can produce non-agglomerated hydrogel nanoparticles that are free of solvent or surfactant (Chapter 2). The optimized MPSD method was applied for producing an extended release drug formulation with mucoadhesive properties. Drug nanoparticles of mesalamine, were produced using supercritical antisolvent technology and encapsulation within two hydrogels, polyacrylamide and poly(acrylic acid-co-acrylamide). The encapsulation efficiency and release profile of drug nanoparticles is compared with commercial ground mesalamine particles. The loading efficiency is influenced by morphological compatibility (Chapter 3). The MPSD method was extended for encapsulation of zinc oxide nanoparticles for UV protection in sunscreens (Chapter 4). ZnO was incorporated into the inverse miniemulsion during polymerization. The effect of process parameters are examined on absorbency of ultraviolet light and transparency of visible light. For use of hydrogel nanoparticles in a seismological application, delayed hydration is needed. Supercritical methods extend MPSD so that a hydrophobic coating can be applied on the particle surface (Chapter 5). Multiple analysis methods and coating materials were investigated to elucidate compatibility of coating material to polyacrylamide hydrogel. Coating materials of poly(lactide), poly(sulphone), poly(vinyl acetate), poly(hydroxybutyrate), Geluice 50-13, Span 80, octadecyltrichlorosilane, and perfluorobutane sulfate (PFBS) were tested, out of which Gelucire, perfluorobutane sulfate, and poly(vinyl acetate) materials were able to provide some coating and perfluorobutane sulfate, poly(lactide), poly(vinyl acetate) delayed hydration of hydrogel particles, but not to a sufficient extent. The interactions of the different materials with the hydrogel are examined based on phenomena observed during the production processes and characterization of the particles generated. This work provides understanding into the interactions of polyacrylamide hydrogel particles both internally by encapsulation and externally by coating.

  13. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rottstegge, J.; Arnold, M.; Herschke, L.

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulkmore » composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.« less

  14. Preparation of novel poly(vinyl alcohol)/SiO(2) composite nanofiber membranes with mesostructure and their application for removal of Cu(2+) from waste water.

    PubMed

    Wu, Shengju; Li, Fengting; Wu, Yinan; Xu, Ran; Li, Guangtao

    2010-03-14

    Novel mesoporous poly(vinyl alcohol)/SiO(2) composite nanofiber membranes functionalized with mercapto groups with diameters of 300-500 nm have been fabricated by a sol-gel electrospinning process; they were highly effective at absorbing Cu(ii) ions from waste water. These nanofiber membranes could be regenerated through acidification.

  15. In-situ cross linking of polyvinyl alcohol. [application to battery separator films

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1981-01-01

    A method of producing a crosslinked polyvinyl alcohol structure, such as a battery separator membrane or electrode envelope is described. An aqueous solution of a film-forming polyvinyl alcohol is admixed with an aldehyde crosslinking agent a basic pH to inhibit crosslinking. The crosslinking agent, perferably a dialdehyde such as glutaraldehyde, is used in an amount of from about 1/2 to about 20% of the theoretical amount required to crosslink all of the hydroxyl groups of the polymer. The aqueous admixture is formed into a desired physical shape, such as by casting a sheet of the solution. The sheet is then dried to form a self-supporting film. Crosslinking is then effected by immersing the film in aqueous acid solution. The resultant product has excellent properties for use as a battery separator.

  16. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    PubMed

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Complex Coacervate Core Micelles Containing Poly(vinyl alcohol) Inhibit Ice Recrystallization.

    PubMed

    Sproncken, Christian C M; Surís-Valls, Romà; Cingil, Hande E; Detrembleur, Christophe; Voets, Ilja K

    2018-04-10

    Complex coacervate core micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co-assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on ice growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high ice recrystallization inhibition (IRI) activity. The PVA-based C3Ms are prepared upon co-assembly of poly(4-vinyl-N-methyl-pyridinium iodide) and poly(vinyl alcohol)-block-poly(acrylic acid). Their formation conditions, size, and performance as ice recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10 -3 m. The IRI efficacy of PVA-C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol)

    Treesearch

    Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl

    2013-01-01

    The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...

  19. Polyvinyl alcohol (PVA)-cellulose nanofibril (CNF)-multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties

    Treesearch

    Qifeng Zheng; Alireza Javadi; Ronald Sabo; Zhiyong Cai; Shaoqin Gong

    2013-01-01

    Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels were prepared using an environmentally friendly freeze-drying process with renewable materials. The material properties of these “green” hybrid aerogels were characterized extensively using various techniques. It was found that adding a small amount of CNFs...

  20. Comparison of polyvinyl alcohol and tris-acryl gelatin microsphere materials in embolization for symptomatic leiomyomas: a systematic review.

    PubMed

    Jiang, Wenxiao; Shen, Zhaojun; Luo, Hui; Hu, Xiaoli; Zhu, Xueqiong

    2016-12-01

    Use systematic reviews and meta-analyses to assess the effect of polyvinyl alcohol and tris-acryl gelatin microsphere materials in leiomyoma embolization for symptomatic leiomyomas. We included randomised controlled studies published before January 2015 comparing polyvinyl alcohol and tris-acryl gelatin microsphere materials in uterine leiomyoma embolization for women with symptomatic leiomyomas. The main outcome measures included change of overall quality of life, change of overall symptom severity, changes of uterine and leiomyoma volumes, leiomyoma infarction rate, treatment failure and complications. A total of six randomized controlled studies from 335 studies accounting for 351 women with leiomyomas were identified in this meta-analysis. Compared to polyvinyl alcohol, tris-acryl gelatin microsphere showed a significant benefit in improving the overall quality of life and in reducing uterine volume at three and six months, in reducing overall symptom severity at 6 and 12 months, and furthermore in reducing treatment failure. In addition, tris-acryl gelatin microsphere could significantly reduce leiomyoma volume and decrease <90% complete leiomyoma infarction rate at three months. There were no differences in pain severity, other post-procedural symptoms or medication use in the two groups. A better effect of tris-acryl gelatin microsphere in leiomyoma embolization for patients with symptomatic leiomyoma.

  1. Development, characterization and biocompatibility of chondroitin sulfate/poly(vinyl alcohol)/bovine bone powder porous biocomposite.

    PubMed

    da Silva, Gabriela T; Voss, Guilherme T; Kaplum, Vanessa; Nakamura, Celso V; Wilhelm, Ethel A; Luchese, Cristiane; Fajardo, André R

    2017-03-01

    Chondroitin sulfate (ChS), a sulfated glycosaminoglycan, poly(vinyl alcohol) (PVA) and bovine bone powder (BBP) were blended to form a novel eco-friendly biocomposite through cyclic freeze-thawing under mild conditions. The systematic investigation reveals that the content of BBP has a remarkable effect on the pore size, porosity, mechanical and liquid uptake properties and biodegradability. At 10wt.% BBP the biocomposite exhibited enhanced mechanical properties and biodegradability rate as compared to the pristine sample. Further, different properties of the biocomposite can be tailored according to the content of BBP. In vitro assays showed that ChS/PVA-BBP does not exert cytotoxicity against healthy cells. In vivo and ex vivo experiments revealed that ChS/PVA-BBP biocomposites are biocompatibility materials without exert pro-inflammatory responses. The biocomposite was completely biodegraded and bioresorbed after 15days of treatment. Taken together, BBP is a low-cost source of hydroxyapatite and collagen, which are insurance. All these results suggest that the biocomposite designed in this study is a promising biomaterial for potential skin tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design.

    PubMed

    Lindner, Gabriela da Rocha; Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    Polymeric nanoparticles are colloidal systems that promote protection and modification of physicochemical characteristics of a drug and that also ensure controlled and extended drug release. This paper reports a 2(3) factorial design study to optimize poly(lactide) (PLA) and poly(lactide)-polyethylene glycol (PLA-PEG) blend nanoparticles containing resveratrol (RVT) for prolonged release. The independent variables analyzed were solvent composition, surfactant concentration and ratio of aqueous to organic phase (two levels each factor). Mean particle size and RVT encapsulation efficiency were set as the dependent variables. The selected optimized parameters were set as organic phase comprised of a mixture of dichloromethane and ethyl acetate, 1% of surfactant polyvinyl alcohol and a 3:1 ratio of aqueous to organic phase, for both PLA and PLA-PEG blend nanoparticles. This formulation originated nanoparticles with size of 228 ± 10 nm and 185 ± 70 nm and RVT encapsulation efficiency of 82 ± 10% and 76 ± 7% for PLA and PLA-PEG blend nanoparticles, respectively. The in vitro release study showed a biphasic pattern with prolonged RVT release and PEG did not influence the RVT release. The in vitro release data were in favor of Higuchi-diffusion kinetics for both nanoformulations and the Kossmeyer-Peppas coefficient indicated that anomalous transport was the main release mechanism of RVT. PLA and PLA-PEG blend nanoparticles produced with single emulsion-solvent evaporation technology were found to be a promising approach for the incorporation of RVT and promoted its controlled release. The factorial design is a tool of great value in choosing formulations with optimized parameters.

  3. Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery

    PubMed Central

    Wang, Xiaoqin; Yucel, Tuna; Lu, Qiang; Hu, Xiao; Kaplan, David L.

    2009-01-01

    Silk fibroin protein-based micro- and nanospheres provide new options for drug delivery due to their biocompatibility, biodegradability and their tunable drug loading and release properties. In the present study, we report a new aqueous-based preparation method for silk spheres with controllable sphere size and shape. The preparation was based on phase separation between silk fibroin and polyvinyl alcohol (PVA) at a weight ratio of 1/1 and 1/4. Water-insoluble silk spheres were easily obtained from the blend in a three step process: (1) air-drying the blend solution into a film, (2) film dissolution in water and (3) removal of residual PVA by subsequent centrifugation. In both cases, the spheres had approximately 30% beta-sheet content and less than 5% residual PVA. Spindle-shaped silk particles, as opposed to the spherical particles formed above, were obtained by stretching the blend films before dissolving in water. Compared to the 1/1 ratio sample, the silk spheres prepared from the 1/4 ratio sample showed a more homogeneous size distribution ranging from 300 nm up to 20 μm. Further studies showed that sphere size and polydispersity could be controlled either by changing the concentration of silk and PVA or by applying ultrasonication on the blend solution. Drug loading was achieved by mixing model drugs in the original silk solution. The distribution and loading efficiency of the drug molecules in silk spheres depended on their hydrophobicity and charge, resulting in different drug release profiles. The entire fabrication procedure could be completed within one day. The only chemical used in the preparation except water was PVA, an FDA-approved ingredient in drug formulations. Silk micro- and nanospheres reported have potential as drug delivery carriers in a variety of biomedical applications. PMID:19945157

  4. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  5. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  6. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    PubMed

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  7. Inkjet-printed Polyvinyl Alcohol Multilayers.

    PubMed

    Salaoru, Iulia; Zhou, Zuoxin; Morris, Peter; Gibbons, Gregory J

    2017-05-11

    Inkjet printing is a modern method for polymer processing, and in this work, we demonstrate that this technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. A polyvinyl alcohol aqueous solution was formulated. The intrinsic properties of the ink, such as surface tension, viscosity, pH, and time stability, were investigated. The PVOH-based ink was a neutral solution (pH 6.7) with a surface tension of 39.3 mN/m and a viscosity of 7.5 cP. The ink displayed pseudoplastic (non-Newtonian shear thinning) behavior at low shear rates, and overall, it demonstrated good time stability. The wettability of the ink on different substrates was investigated, and glass was identified as the most suitable substrate in this particular case. A proprietary 3D inkjet printer was employed to manufacture polymer multilayer structures. The morphology, surface profile, and thickness uniformity of inkjet-printed multilayers were evaluated via optical microscopy.

  8. Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications

    PubMed Central

    Tavanai, Hossein; Hilborn, Jöns; Donzel-Gargand, Olivier; Leifer, Klaus; Arpanaei, Ayyoob

    2014-01-01

    Novel nanofibers from blends of polylactic-co-glycolic acid (PLGA) and chitosan have been produced through an emulsion electrospinning process. The spinning solution employed polyvinyl alcohol (PVA) as the emulsifier. PVA was extracted from the electrospun nanofibers, resulting in a final scaffold consisting of a blend of PLGA and chitosan. The fraction of chitosan in the final electrospun mat was adjusted from 0 to 33%. Analyses by scanning and transmission electron microscopy show uniform nanofibers with homogenous distribution of PLGA and chitosan in their cross section. Infrared spectroscopy verifies that electrospun mats contain both PLGA and chitosan. Moreover, contact angle measurements show that the electrospun PLGA/chitosan mats are more hydrophilic than electrospun mats of pure PLGA. Tensile strengths of 4.94 MPa and 4.21 MPa for PLGA/chitosan in dry and wet conditions, respectively, illustrate that the polyblend mats of PLGA/chitosan are strong enough for many biomedical applications. Cell culture studies suggest that PLGA/chitosan nanofibers promote fibroblast attachment and proliferation compared to PLGA membranes. It can be assumed that the nanofibrous composite scaffold of PLGA/chitosan could be potentially used for skin tissue reconstruction. PMID:24689041

  9. Corneal biomechanical parameters and intraocular pressure: the effect of topical anesthesia

    PubMed Central

    Ogbuehi, Kelechi C

    2012-01-01

    Background The intraocular pressures and biomechanical parameters measured by the ocular response analyzer make the analyzer a useful tool for the diagnosis and management of anterior segment disease. This observational study was designed to investigate the effect of topical anesthesia on the parameters measured by the ocular response analyzer: corneal hysteresis, corneal resistance factor, Goldmann-correlated intraocular pressure (IOPg), and corneal-compensated intraocular pressure (IOPcc). Methods Two sets of measurements were made for 78 eyes of 39 subjects, approximately 1 week apart. In session 1, each eye of each subject was randomized into one of three groups: polyvinyl alcohol (0.5%), tetracaine hydrochloride (0.5%), or oxybuprocaine hydrochloride (0.4%). In session 2, eyes that were in the polyvinyl alcohol group in session 1 were assigned to the tetracaine group, those in the tetracaine group in session 1 were assigned to oxybuprocaine group, and those in the oxybuprocaine group in session 1 were assigned to the polyvinyl alcohol group. For both sessions, each subject first had his or her central corneal thickness assessed with a specular microscope, followed by measurements of intraocular pressure and corneal biomechanical parameters with the Ocular Response Analyzer. All measurements were repeated for 2 minutes and 5 minutes following the instillation of either polyvinyl alcohol, tetracaine, or oxybuprocaine. The level of statistical significance was 0.05. Results Polyvinyl alcohol, tetracaine hydrochloride, and oxybuprocaine hydrochloride had no statistically significant (P > 0.05) effect on any of the biomechanical parameters of the cornea. There was no statistically significant effect on either IOPg (P > 0.05) or IOPcc (P > 0.05) 2 minutes after the eye drops were instilled in either session. Five minutes after the eye drops were instilled, polyvinyl alcohol showed no statistically significant effect on either IOPg (P > 0.05) or IOPcc (P > 0.05) in either session. Oxybuprocaine and tetracaine caused statistically significant (P < 0.05) reductions in IOPg in session 1, but only tetracaine had a significant (P < 0.05) effect in session 2. Tetracaine also caused a statistically significant (P < 0.05) reduction in IOPcc in session 1. Conclusion The statistically significant effect of topical anesthesia on IOPg varies with the anesthetic used, and while this effect was statistically significant in this study, the small effect is probably not clinically relevant. There was no effect on any of the biomechanical parameters of the cornea. PMID:22791966

  10. Corneal biomechanical parameters and intraocular pressure: the effect of topical anesthesia.

    PubMed

    Ogbuehi, Kelechi C

    2012-01-01

    The intraocular pressures and biomechanical parameters measured by the ocular response analyzer make the analyzer a useful tool for the diagnosis and management of anterior segment disease. This observational study was designed to investigate the effect of topical anesthesia on the parameters measured by the ocular response analyzer: corneal hysteresis, corneal resistance factor, Goldmann-correlated intraocular pressure (IOPg), and corneal-compensated intraocular pressure (IOPcc). Two sets of measurements were made for 78 eyes of 39 subjects, approximately 1 week apart. In session 1, each eye of each subject was randomized into one of three groups: polyvinyl alcohol (0.5%), tetracaine hydrochloride (0.5%), or oxybuprocaine hydrochloride (0.4%). In session 2, eyes that were in the polyvinyl alcohol group in session 1 were assigned to the tetracaine group, those in the tetracaine group in session 1 were assigned to oxybuprocaine group, and those in the oxybuprocaine group in session 1 were assigned to the polyvinyl alcohol group. For both sessions, each subject first had his or her central corneal thickness assessed with a specular microscope, followed by measurements of intraocular pressure and corneal biomechanical parameters with the Ocular Response Analyzer. All measurements were repeated for 2 minutes and 5 minutes following the instillation of either polyvinyl alcohol, tetracaine, or oxybuprocaine. The level of statistical significance was 0.05. Polyvinyl alcohol, tetracaine hydrochloride, and oxybuprocaine hydrochloride had no statistically significant (P > 0.05) effect on any of the biomechanical parameters of the cornea. There was no statistically significant effect on either IOPg (P > 0.05) or IOPcc (P > 0.05) 2 minutes after the eye drops were instilled in either session. Five minutes after the eye drops were instilled, polyvinyl alcohol showed no statistically significant effect on either IOPg (P > 0.05) or IOPcc (P > 0.05) in either session. Oxybuprocaine and tetracaine caused statistically significant (P < 0.05) reductions in IOPg in session 1, but only tetracaine had a significant (P < 0.05) effect in session 2. Tetracaine also caused a statistically significant (P < 0.05) reduction in IOPcc in session 1. The statistically significant effect of topical anesthesia on IOPg varies with the anesthetic used, and while this effect was statistically significant in this study, the small effect is probably not clinically relevant. There was no effect on any of the biomechanical parameters of the cornea.

  11. Stability of polyvinyl alcohol-coated biochar nanoparticles in brine

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher; Daigle, Hugh

    2017-01-01

    This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from 3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of 500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of 330 nm.

  12. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    PubMed

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCP weight ratio of 60:40 for bone tissue engineering applications.

    PubMed

    Wang, Yanen; Wang, Kai; Li, Xinpei; Wei, Qinghua; Chai, Weihong; Wang, Shuzhi; Che, Yu; Lu, Tingli; Zhang, Bo

    2017-01-01

    A key requirement for three-dimensional printing (3-DP) at room temperature of medical implants depends on the availability of printable and biocompatible binder-powder systems. Different concentration polyvinyl alcohol (PVA) and phosphoric acid solutions were chosen as the binders to make the artificial stent biocompatible with sufficient compressive strength. In order to achieve an optimum balance between the bioceramic powder and binder solution, the biocompatibility and mechanical properties of these artificial stent samples were tested using two kinds of binder solutions. This study demonstrated the printable binder formulation at room temperature for the 3D artificial bone scaffolds. 0.6 wt% PVA solution was ejected easily via inkjet printing, with a supplementation of 0.25 wt% Tween 80 to reduce the surface tension of the polyvinyl alcohol solution. Compared with the polyvinyl alcohol scaffolds, the phosphoric acid scaffolds had better mechanical properties. Though both scaffolds supported the cell proliferation, the absorbance of the polyvinyl alcohol scaffolds was higher than that of the phosphoric acid scaffolds. The artificial stents with a hydroxyapatite/beta-tricalcium phosphate (HA/β-TCP) weight ratios of 60:40 depicted good biocompatibility for both scaffolds. Considering the scaffolds' mechanical and biocompatible properties, the phosphoric acid scaffolds with a HA/β-TCP weight ratio of 60:40 may be the best combination for bone tissue engineering applications.

  14. Enabling thermal processing of ritonavir-polyvinyl alcohol amorphous solid dispersions by KinetiSol® Dispersing.

    PubMed

    LaFountaine, Justin S; Jermain, Scott V; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; Lubda, Dieter; McGinity, James W; Williams, Robert O

    2016-04-01

    Polyvinyl alcohol has received little attention as a matrix polymer in amorphous solid dispersions (ASDs) due to its thermal and rheological limitations in extrusion processing and limited organic solubility in spray drying applications. Additionally, in extrusion processing, the high temperatures required to process often exclude thermally labile APIs. The purpose of this study was to evaluate the feasibility of processing polyvinyl alcohol amorphous solid dispersions utilizing the model compound ritonavir with KinetiSol® Dispersing (KSD) technology. The effects of KSD rotor speed and ejection temperature on the physicochemical properties of the processed material were evaluated. Powder X-ray diffraction and modulated differential scanning calorimetry were used to confirm amorphous conversion. Liquid chromatography-mass spectroscopy was used to characterize and identify degradation pathways of ritonavir during KSD processing and (13)C nuclear magnetic resonance spectroscopy was used to investigate polymer stability. An optimal range of processing conditions was found that resulted in amorphous product and minimal to no drug and polymer degradation. Drug release of the ASD produced from the optimal processing conditions was evaluated using a non-sink, pH-shift dissolution test. The ability to process amorphous solid dispersions with polyvinyl alcohol as a matrix polymer will enable further investigations of the polymer's performance in amorphous systems for poorly water-soluble compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biodegradable poly(vinyl alcohol)/polyoxalate electrospun nanofibers for hydrogen peroxide-triggered drug release.

    PubMed

    Phromviyo, Nutthakritta; Lert-Itthiporn, Aurachat; Swatsitang, Ekaphan; Chompoosor, Apiwat

    2015-01-01

    Release of drugs in a controlled and sustainable manner is of great interest for treating some inflammatory diseases, drug delivery, and cosmetics. In this work, we demonstrated the control release of a drug from composite nanofibers mediated by hydrogen peroxide. Composite nanofibers of polyvinyl alcohol (PVA)/polyoxalate (PVA/POX NFs) blended at various weight ratios were successfully prepared by electrospinning. Rhodamine B (RB) was used as a model of drug and was initially loaded into the POX portion. The morphology of NFs was characterized using scanning electron microscopy (SEM). The functional groups presented in the NFs were characterized using IR spectroscopy. In vitro release behavior and cell toxicity of nanofibers were also investigated using the MTT assay. The results indicated that POX content had a significant effect on the size and release profiles of nanofibers. Microstructure analysis revealed that sizes of PVA/POX NFs increased with increasing POX content, ranging from 214 to 422 nm. Release profiles of RB at 37 °C were non-linear and showed different release mechanisms. The mechanism of drug release depended on the chemical composition of the NFs. RB release from the NFs with highest POX content was caused by the degradation of the nanofiber matrix, whereas the RB release in lower POX content NFs was caused by diffusion. The NFs with POX showed a loss of structural integrity in the presence of hydrogen peroxide as seen using SEM. The MTT assay showed that composite nanofibers had minimal cytotoxicity. We anticipate that nanofibrous PVA/POX can potentially be used to target numerous inflammatory diseases that overproduce hydrogen peroxide and may become a potential candidate for use as a local drug delivery vehicle.

  16. Effect of Hydroxyl Concentration on Chemical Sensitivity of Polyvinyl Alcohol/Carbon-Black Composite Chemiresistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Robert C.; Patel, Sanjay V.; Yelton, W. Graham

    1999-05-19

    The sensitivity and selectivity of polyvinyl alcohol (PVA) / carbon black composite films have been found to vary depending upon the hydroxylation percentage ("-OH") of the polymer. These chemiresistors made from PVA films whose polymer backbone is 88% hydroxylated (PVA88) have a high sensitivity to water, while chemiresistors made from PVA75 have a higher sensitivity to methanol. The minor differences in polymer composition result in films with different Hildebrand volubility parameters. The relative responses of several different PVA-based chemiresistors to solvents with different volubility parameters are presented. In addition, polyvinyl acetate (PVAC) films with PVA88 are used in an arraymore » to distinguish the responses to methanol-water mixtures.« less

  17. Novel preparation and characterization of human hair-based nanofibers using electrospinning process.

    PubMed

    Park, Mira; Shin, Hye Kyoung; Panthi, Gopal; Rabbani, Mohammad Mahbub; Alam, Al-Mahmnur; Choi, Jawun; Chung, Hea-Jong; Hong, Seong-Tshool; Kim, Hak-Yong

    2015-05-01

    Human hair-based biocomposite nanofibers (NFs) have been fabricated by an electrospinning technique. Aqueous keratin extracted from human hair was successfully blended with poly(vinyl alcohol) (PVA). The focus here is on transforming into keratin/PVA nanofibrous membranes and insoluble property of electrospun NFs. The resulting hair-based NFs were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning colorimetry (DSC), and thermogravimetric analysis (TGA). Toward the potential use of these NFs after cross-linking with various weight fractions of glyoxal, its physicochemical properties, such as morphology, mechanical strength, crystallinity, and chemical structure were investigated. Keratin/PVA ratio of 2/1 NFs with 6 wt%-glyoxal showed good uniformity in fiber morphology and suitable mechanical properties, and excellent antibacterial activity providing a potential application of hair-based NFs in biomedical field. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  19. AtomicNuclearProperties

    Science.gov Websites

    ) Polytrifluorochloroethylene [C2F3Cl]n Polyvinylacetate [CH2CHOCOCH3]n Polyvinyl alcohol (C2H3-O-H)n Polyvinyl butyral [C8H1302 other materal for properties of interest in high-energy physics: stopping power (<-dE/dx>) tables (C10H16O) Aniline (C6H5NH2) Anthracene (C14H10) Benzene C6H6 Butane (C4H10) n-Butyl alcohol (C4H9OH) Carbon

  20. Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings.

    PubMed

    Márquez, Andrés; Neipp, Cristian; Beléndez, Augusto; Gallego, Sergi; Ortuño, Manuel; Pascual, Inmaculada

    2003-09-01

    We demonstrate edge-enhanced imaging produced by volume phase gratings recorded on a polyvinyl alcohol/acrylamide photopolymer. Bragg diffraction, exhibited by volume gratings, modifies the impulse response of the imaging system, facilitating spatial filtering operations with no need for a physical Fourier plane. We demonstrate that Kogelnik's coupled-wave theory can be used to calculate the transfer function for the transmitted and the diffracted orders. The experimental and simulated results agree, and they demonstrate the feasibility of our proposal.

  1. Polyvinyl Alcohol Microspheres Reinforced Thermoplastic Starch Composites

    PubMed Central

    Zha, Dongdong; Li, Bengang; Yin, Peng; Li, Panxin

    2018-01-01

    We reported a new method to prepare polyvinyl alcohol (PVA)/thermoplastic starch (TPS) composites by using polyvinyl alcohol microspheres (PVAMS). The PVAMS/TPS composites were characterized using tensile test, scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results exhibited that adding small amounts of PVAMSs can effectively improve the mechanical strength and toughness of the composites, especially for the 1 wt %PVAMS in TPS matrix, with a tensile strength of 3.5 MPa, an elongation at break at 71.73% and an impact strength of 33.4 kJ/m2. Furthermore, the SEM and shift in the tan δ peak (Tα and Tβ) at the maximum value of 69.87 and −36.52 °C indicates that the PVAMS decreased the mobility of the amorphous starch molecules due to the strong intermolecular hydrogen bonds between PVAMS and TPS. The peak temperature of maximum decomposition rate (Tp) of 1 wt % PVAMS/TPS composites increased about 5 °C compared with TPS in TGA curves. PMID:29690506

  2. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    PubMed

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging

    NASA Astrophysics Data System (ADS)

    Surry, K. J. M.; Austin, H. J. B.; Fenster, A.; Peters, T. M.

    2004-12-01

    Poly(vinyl alcohol) cryogel, PVA-C, is presented as a tissue-mimicking material, suitable for application in magnetic resonance (MR) imaging and ultrasound imaging. A 10% by weight poly(vinyl alcohol) in water solution was used to form PVA-C, which is solidified through a freeze-thaw process. The number of freeze-thaw cycles affects the properties of the material. The ultrasound and MR imaging characteristics were investigated using cylindrical samples of PVA-C. The speed of sound was found to range from 1520 to 1540 m s-1, and the attenuation coefficients were in the range of 0.075-0.28 dB (cm MHz)-1. T1 and T2 relaxation values were found to be 718-1034 ms and 108-175 ms, respectively. We also present applications of this material in an anthropomorphic brain phantom, a multi-volume stenosed vessel phantom and breast biopsy phantoms. Some suggestions are made for how best to handle this material in the phantom design and development process.

  4. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    PubMed

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ali, F. M.; Kershi, R. M.; Sayed, M. A.; AbouDeif, Y. M.

    2018-06-01

    Polymer blend films based on Polyvinyl alcohol (PVA)/Poly(vinylpyrrolidone) (PVP) doped with different concentration of cerium ions [(PVA/PVP)-x wt.% Ce3+] (x = 3%, 5%, 10% and 15%) were prepared by the conventional solution casting technique. The characteristics of the prepared polymer composite films were studied using X-ray diffraction (XRD), FT-IR and UV-Vis. spectroscopy. The XRD patterns of the investigated samples revealed a clear reduction on the structural parameters such as crystallinity degree and cluster size D of the doped PVA/PVP blend films compared with the virgin one whereas there is no big difference in the d spacing of the product composite films. Significant changes in FT-IR spectra are observed which reveal an interactions between the cerium ions and PVA/PVP blends. The absorption spectra in the ultraviolet-visible region showed a wide red shift in the fundamental absorption edge of (PVA/PVP)-x wt. % Ce3+ composites. The optical gap Eg gradually decreased from 4.54 eV for the undoped PVA/PVP film to 3.10 eV by increasing Ce3+ ions content. The optical dispersion parameters have been analyzed according to Wemple-Didomenico single oscillator model. The dispersion energy Ed, the single oscillator energy Eo, the average inter-band oscillator wavelength λo and the static refractive index no are strongly affected by cerium ions doping. Cerium ions incorporation in PVA/PVP blend films leads to a significant increase in the refractive index and decrease in the optical gap. These results are likely of great important in varieties of applications including polymer waveguides, organic semiconductors, polymer solar cells and optoelectronics devices.

  6. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  7. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Vasilev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Zhilyaeva, N. A.; Efimov, M. N.; Karpacheva, G. P.

    2018-04-01

    Metal-carbon nanocomposites consisting of FeCo alloy nanoparticles dispersed in a carbon matrix were synthesized by the thermal decomposition method of a precursor based on polyvinyl alcohol and metals salts. The synthesized powders were investigated by X-ray diffraction (XRD), X-ray fluorescent spectrometry (XRFS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Surface characteristics of materials were measured by BET-method. The morphology and dispersity of metal nanoparticles were studied depending on the metals ratio in the composite.

  8. Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl II•6H IIO doped

    NASA Astrophysics Data System (ADS)

    Fontanilla-Urdaneta, R. C.; Hernández-Garay, M. P.; Olivares-Pérez, A.; Páez-Trujillo, G.; Fuentes-Tapia, I.

    2008-02-01

    Experimental results to the saturation and diffraction efficiency from holographic gratings are presented in this investigation. The experiments were carried out during real time holographic gratings formation. Dichromated poly(vinyl alcohol) was doped with nickel(II) chloride hexahydrate and it is used like optical material. The influence of the hologram parameters to get the maximum diffraction efficiency is studied at room conditions. This study contributes to get more information about the behavior of this material for holographic gratings recording.

  9. Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer.

    PubMed

    Fuentes, Rosa; Fernández, Elena; García, Celia; Beléndez, Augusto; Pascual, Inmaculada

    2009-12-01

    High-spatial-frequency fringes associated with reflection holographic optical elements are difficult to obtain with currently available recording materials. In this work, holographic reflection gratings were stored in a polyvinyl alcohol/acrylamide photopolymer. This material is formed of acrylamide photopolymer, which is considered interesting material for optical storage applications such as holographic memories. The experimental procedure for examining the high-spatial-frequency response of this material is explained, and the experimental results obtained are presented. With the aim of obtaining the best results, the performance of different material compositions is compared.

  10. Nanostructured composite layers for electromagnetic shielding in the GHz frequency range

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Tudose, I. V.; Tzagkarakis, G.; Kenanakis, G.; Katharakis, M.; Drakakis, E.; Koudoumas, E.

    2015-10-01

    We report on preliminary results regarding the applicability of nanostructured composite layers for electromagnetic shielding in the frequency range of 4-20 GHz. Various combinations of materials were employed including poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), polyaniline, graphene nanoplatelets, carbon nanotubes, Cu nanoparticles and Poly(vinyl alcohol). As shown, paint-like nanocomposite layers consisting of graphene nanoplatelets, polyaniline PEDOT:PSS and Poly(vinyl alcohol) can offer quite effective electromagnetic shielding, similar or even better than that of commercial products, the response strongly depending on their thickness and resistivity.

  11. Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase.

    PubMed

    Van Noorden, C J

    1984-01-01

    Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity and detection of these early changes in a few cells by histochemical means only, enables prediction of other subsequent abnormal metabolic events. Analysis of glucose-6-phosphate dehydrogenase deficiency in erythrocytes has been improved as well by the development of cytochemical tools. Heterozygous deficiency can now be detected in a reliable way. Cell biological studies of development or maturation of various tissues or cells have profited from the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase activity.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications.

    PubMed

    Luzi, Francesca; Fortunati, Elena; Giovanale, Geremia; Mazzaglia, Angelo; Torre, Luigi; Balestra, Giorgio Mariano

    2017-11-01

    Kiwi Actinidia deliciosa pruning residues were here used for the first time as precursors for the extraction of high performing cellulose nanocrystals (CNC) by applying a bleaching treatment followed by an acidic hydrolysis. The resultant cellulosic nanostructures, obtained by an optimize extraction procedure (0.7% wt/v two times of sodium chlorite NaClO 2 ) followed by an hydrolysis step, were then used as reinforcements phases in poly(vinyl alcohol) (PVA) blended with natural chitosan (CH) based films and also combined, for the first time, with carvacrol used here as active agent. Morphological and optical characteristics, mechanical response, thermal and migration properties, moisture content and antioxidant and antimicrobial assays were conducted. The morphological, optical and colorimetric results underlined that no particular alterations were induced on the transparency and color of PVA and PVA_CH blend by the presence of CNC and carvacrol, while they were able to modulate the mechanical responses, to induce antioxidant activities maintaining the migration levels below the permitted limits and suggesting the possible application in industrial sectors. Finally, inhibitions on bacterial development were detected for multifunctional systems, suggesting their protective function against microorganisms contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Polyvinyl alcohol hydrogels for iontohporesis

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  14. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films

    NASA Astrophysics Data System (ADS)

    Marta, Bogdan; Leordean, Cosmin; Istvan, Todor; Botiz, Ioan; Astilean, Simion

    2016-02-01

    Graphene transfer is a procedure of paramount importance for the production of graphene-based electronic devices. The transfer procedure can affect the electronic properties of the transferred graphene and can be detrimental for possible applications both due to procedure induced defects which can appear and due to scalability of the method. Hence, it is important to investigate new transfer methods for graphene that are less time consuming and show great promise. In the present study we propose an efficient, etching-free transfer method that consists in applying a thin polyvinyl alcohol layer on top of the CVD grown graphene on Cu and then peeling-off the graphene onto the polyvinyl alcohol film. We investigate the quality of the transferred graphene before and after the transfer, using Raman spectroscopy and imaging as well as optical and atomic force microscopy techniques. This simple transfer method is scalable and can lead to complete transfer of graphene onto flexible and transparent polymer support films without affecting the quality of the graphene during the transfer procedure.

  15. Contribution of Charges in Polyvinyl Alcohol Networks to Marine Antifouling.

    PubMed

    Yang, Wufang; Lin, Peng; Cheng, Daocang; Zhang, Longzhou; Wu, Yang; Liu, Yupeng; Pei, Xiaowei; Zhou, Feng

    2017-05-31

    Semi-interpenetrated polyvinyl alcohol polymer networks (SIPNs) were prepared by integrating various charged components into polyvinyl alcohol polymer. Contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and tensile tests were used to characterize the physicochemical properties of the prepared SIPNs. To investigate the contribution of charges to marine antifouling, the adhesion behaviors of green algae Dunaliella tertiolecta and diatoms Navicula sp. in the laboratory and of the actual marine animals in field test were studied for biofouling assays. The results suggest that less algae accumulation densities are observed for neutral-, anionic-, and zwitterionic-component-integrated SIPNs. However, for the cationic SIPNs, despite the hydration shell induced by the ion-dipole interaction, the resistance to biofouling largely depends on the amount of cationic component because of the possible favorable electrostatic attraction between the cationic groups in SIPNs and the negatively charged algae. Considering that the preparation of novel nontoxic antifouling coating is a long-standing and cosmopolitan industrial challenge, the SIPNs may provide a useful reference for marine antifouling and some other relevant fields.

  16. Fabrication of complex nanoscale structures on various substrates

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Lee, Heon

    2007-09-01

    Polymer based complex nanoscale structures were fabricated and transferred to various substrates using reverse nanoimprint lithography. To facilitate the fabrication and transference of the large area of the nanostructured layer to the substrates, a water-soluble polyvinyl alcohol mold was used. After generation and transference of the nanostructured layer, the polyvinyl alcohol mold was removed by dissolving in water. A residue-free, UV-curable, glue layer was formulated and used to bond the nanostructured layer onto the substrates. As a result, nanometer scale patterned polymer layers were bonded to various substrates and three-dimensional nanostructures were also fabricated by stacking of the layers.

  17. PVA with nopal dye as holographic recording material

    NASA Astrophysics Data System (ADS)

    Toxqui-López, S.; Olivares-Pérez, A.; Fuentes-Tapia, I.; Pinto-Iguanero, B.

    2011-09-01

    Cactus nopal dye is introduced into a polyvinyl alcohol matrix achieving a like brown appearance thick film, such that they can be used as a recording medium. This dye material provides excellent property as photosensitizer, i.e., easy handling, low cost and can be used in real time holographic recording applications. The experimental results show the diffraction efficiencies obtained by recording grating patterns induced by a He-Cd laser (442nm). For the samples, a thick film of polyvinyl alcohol and dye from cactus nopal was deposited by the gravity technique on a glass substrate. This mixture dries to form a photosensitive emulsion.

  18. A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2011-07-01

    A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.

  19. Copper Doped Methylene Blue Sensitized Poly(vinyl alcohol)-Acrylamide Films for Stable Diffraction Efficiency

    NASA Astrophysics Data System (ADS)

    John, Beena Mary; Joseph, Rani; Sreekumar, K.; Sudha Kartha, C.

    2006-11-01

    Copper doped methylene blue sensitized poly(vinyl alcohol) (MBPVA)-acrylamide films were fabricated to improve the storage life of recorded gratings. The films were fabricated using gravity settling method and the copper chloride concentration was optimized as 3.18× 10-3 mol/l for a dye concentration of 6.2× 10-4 mol/l. The gratings recorded on the optimized film constitution could be stored for months with stable diffraction efficiency (24%) without any chemical or thermal fixing techniques. The resolution of the material is found to be unaffected with the addition of copper chloride.

  20. Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Bello, Abdulhakeem; Fabiane, Mopeli; Khamlich, Saleh; Momodu, Damilola; Taghizadeh, Fatemeh; Dangbegnon, Julien; Manyala, Ncholu

    2015-02-01

    We report on the synthesis and characterization of electrospun polyvinyl alcohol (PVA)/graphene nanofibers. The samples produced were characterized by Raman spectroscopy for structural and defect density analysis, scanning electron microscopy (SEM) for morphological analysis, and thermogravimetric (TGA) for thermal analysis. SEM measurements show uniform hollow PVA fibers formation and excellent graphene dispersion within the fibers, while TGA measurements show the improved thermal stability of PVA in the presence of graphene. The synthesized polymer reinforced nanofibers have potential to serve in many different applications such as thermal management, supercapacitor electrodes and biomedical materials for drug delivery.

  1. Impact of higher alcohols blended in gasoline on light-duty vehicle exhaust emissions.

    PubMed

    Ratcliff, Matthew A; Luecke, Jon; Williams, Aaron; Christensen, Earl; Yanowitz, Janet; Reek, Aaron; McCormick, Robert L

    2013-12-03

    Certification gasoline was splash blended with alcohols to produce four blends: ethanol (16 vol%), n-butanol (17 vol%), i-butanol (21 vol%), and an i-butanol (12 vol%)/ethanol (7 vol%) mixture; these fuels were tested in a 2009 Honda Odyssey (a Tier 2 Bin 5 vehicle) over triplicate LA92 cycles. Emissions of oxides of nitrogen, carbon monoxide, non-methane organic gases (NMOG), unburned alcohols, carbonyls, and C1-C8 hydrocarbons (particularly 1,3-butadiene and benzene) were determined. Large, statistically significant fuel effects on regulated emissions were a 29% reduction in CO from E16 and a 60% increase in formaldehyde emissions from i-butanol, compared to certification gasoline. Ethanol produced the highest unburned alcohol emissions of 1.38 mg/mile ethanol, while butanols produced much lower unburned alcohol emissions (0.17 mg/mile n-butanol, and 0.30 mg/mile i-butanol); these reductions were offset by higher emissions of carbonyls. Formaldehyde, acetaldehyde, and butyraldehyde were the most significant carbonyls from the n-butanol blend, while formaldehyde, acetone, and 2-methylpropanal were the most significant from the i-butanol blend. The 12% i-butanol/7% ethanol blend was designed to produce no increase in gasoline vapor pressure. This fuel's exhaust emissions contained the lowest total oxygenates among the alcohol blends and the lowest NMOG of all fuels tested.

  2. Characterisation and in vitro stability of low-dose, lidocaine-loaded poly(vinyl alcohol)-tetrahydroxyborate hydrogels.

    PubMed

    Abdelkader, D H; Osman, M A; El-Gizawy, S A; Faheem, A M; McCarron, P A

    2016-03-16

    Poly(vinyl alcohol) hydrogels cross-linked with the tetrahydroxyborate anion possess textural and rheological properties that can be used as novel drug-loaded vehicles for application to traumatic wounds. However, addition of soluble drug substances causes concentration-dependent phase separation and rheological changes. The aim of this work was to investigate the effect of adding a local anaesthetic, but keeping the concentration low in an attempt to prevent these changes. Cross-linked hydrogels prepared from three grades of poly(vinyl alcohol) were characterised rheologically. Temperature sweep studies showed an elevated complex viscosity upon moving from 25°C to 80°C, which remained high for 48 h following completion of the cycle. Adhesion to model dermal surfaces achieved a maximum of 2.62 N cm(-2) and were greater than that observed to epidermal substrates, with a strong dependence on the rate of detachment used during testing. An optimised formulation (6% w/w PVA (31-50; 99) and 2% w/w THB) containing lidocaine hydrochloride loaded to an upper maximum concentration of 1.5% w/w was assessed for phase separation and drug crystallisation. After six months, crystallisation was present in formulations containing 0.7% and 1.5% lidocaine HCl. Changes in pH in response to increases in lidocaine loading were low. Drug release was shown to operate via a non-Fickian process for all three concentrations, with 60% occurring after approximately 24h. It can be concluded that using a low concentration of lidocaine hydrochloride in hydrogels based on poly(vinyl alcohol) will result in crystallisation. Furthermore, these hydrogels are unlikely to induce rapid anaesthesia due to the low loading and slow release kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development and evaluation of polyvinyl-alcohol blend polymer films as battery separators

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.

    1982-01-01

    Several dialdehydes and epoxies were evaluated for their suitability as cross-linkers. Optium concentrations of several cross-linking reagents were determined. A two-step method of cross-linking, which involves treatment of the film in an acid or acid periodate bath, was investigated and dropped in favor of a one-step method in which the acid catalyst, which initiates cross-linking, is added to the PVA - cross-linker solution before casting. The cross-linking was thus achieved during the drying step. This one-step method was much more adaptable to commercial processing. Cross-linked films were characterized as alkaline battery separators. Films were prepared in the lab and tested in cells in order to evaluate the effect of film composition and a number of processing parameters on cell performance. These tests were conducted in order to provide a broader data base from which to select optimum processing parameters. Results of the separator screening tests and the cell tests are discussed.

  4. Carboxymethyl guar gum synthesis in homogeneous phase and macroporous 3D scaffolds design for tissue engineering.

    PubMed

    Kundu, Sonia; Das, Aatrayee; Basu, Aalok; Ghosh, Debjani; Datta, Pallab; Mukherjee, Arup

    2018-07-01

    Guar gum (GG) is a galactomannan obtained directly from the Cyamopsis tetragonoloba seeds pericarb. The biopolymer hydrates hugely in three chain associated coil formations. Chaotropic Hofmeister ion like lithium interacts at the hydrogen bonding sites and render GG homogenization in polar solvents like dimethyl sulfoxide. This phenomenon was used for the first time for galactomannan derivatisations in homogeneous phase. Higher degree of substitution (DS) that was hereto unattainable in GG was achieved due to Hofmeister ion assisted assembly deformations. Furthermore, carboxymethyl guar gum (CMGG, DS = 1.10) blends well in poly-vinyl alcohol (PVA) at 2:1 mass ratio and enabled hydrophilic porous scaffold design for cell propagation. CMGG-PVA scaffolds porosity was 70-90% and the tensile strength was 6.32 MPa. CMGG-PVA scaffolds were useful as cell factories and in tissue engineering. New generation guar gum derivative scaffolds were non cytotoxic and permitted cell propagation in growth medium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    PubMed

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Release behavior of tanshinone IIA sustained-release pellets based on crack formation theory.

    PubMed

    Liu, Pan; Li, Jin; Liu, Jianping; Yang, Jikun; Fan, Yongqing

    2012-08-01

    The objective of this study was to investigate the drug release mechanism and in vivo performance of Tanshinone IIA sustained-release pellets, coated with blends of polyvinyl acetate (PVAc) and poly(vinyl alcohol)-poly(ethylene glycol) (PVA-PEG) graft copolymer. A formulation screening study showed that pellets coated with PVAc-PVA-PEG at a ratio of 70:30 (w/w) succeeded in achieving a 24 h sustained release, irrespective of the coating weight (from 2% to 10%). Both the microscopic observation and mathematical model gave further insight into the underlying release mechanism, indicating that diffusion through water-filled cracks was dominant for the control of drug release. In vivo test showed that the maximum plasma concentration of sustained-release pellets was decreased from 82.13 ± 17.05 to 40.50 ± 11.72 ng mL as that of quick-release pellets. The time of maximum concentration, half time, and mean residence time were all prolonged from 3.80 ± 0.40 to 8.02 ± 0.81 h, 4.28 ± 1.21 to 8.18 ± 2.06 h, and 8.60 ± 1.59 to 17.50 ± 2.78 h, compared with uncoated preparations. A good in vitro-in vivo correlation was characterized by a high coefficient of determination (r = 0.9772). In conclusion, pellets coated with PVAc-PVA-PEG could achieve a satisfactory sustained-release behavior based on crack formation theory. Copyright © 2012 Wiley Periodicals, Inc.

  7. AC-conductance and capacitance measurements for ethanol vapor detection using carbon nanotube-polyvinyl alcohol composite based devices.

    PubMed

    Greenshields, Márcia W C C; Meruvia, Michelle S; Hümmelgen, Ivo A; Coville, Neil J; Mhlanga, Sabelo D; Ceragioli, Helder J; Quispe, Jose C Rojas; Baranauskas, Vitor

    2011-03-01

    We report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency. Ethanol detection at a concentration of 300 ppm in air is demonstrated. More than 80% of the sensor conductance and capacitance variation response occurs in less than 20 s.

  8. Comparison of clinical results for the use of ethyl acetate and diethyl ether in the formalin-ether sedimentation technique performed on polyvinyl alcohol-preserved specimens.

    PubMed Central

    Garcia, L S; Shimizu, R

    1981-01-01

    One hundred fecal specimens preserved in polyvinyl alcohol fixative were examined by the Formalin-ether sedimentation technique with ethyl acetate substituted for diethyl ether. Technical performance of the procedures, appearance and amount of sediment obtained, and organism morphology were comparable. Also, ethyl acetate is less flammable and, therefore, less dangerous to use than diethyl ether. Results of parasite recovery when diethyl ether or ethyl acetate was used revealed few clinical relevant differences, most of which could also have been attributed to other variables inherent in this type of diagnostic testing. PMID:7229014

  9. Repeated courses of transarterial embolization with polyvinyl alcohol particles: 'long life elixir' in a cirrhotic patient with unresectable hepatocellular carcinoma.

    PubMed

    Marelli, Laura; Shusang, Vibhakorn; Senzolo, Marco; Cholongitas, Evangelos; Goode, Antony; Yu, Dominic; Patch, David W; Burroughs, Andrew K

    2007-04-01

    Chemoembolization improves survival in selected cirrhotic patients with hepatocellular carcinoma, but prolonged survival is unusual. In this study, a 70-year-old cirrhotic patient, who had a histologically proven hepatocellular carcinoma of 5 cm diameter, embolization with polyvinyl alcohol particles alone, without chemotherapeutic agent, has resulted in continued survival, of 5 years to date, with virtual elimination of residual hypervascularity following 10 sessions of embolization, and with continued patency of the injected branch of the hepatic artery. Provided liver function is maintained, embolization alone appears a feasible long term and effective therapy for unresectable hepatocellular carcinoma.

  10. Rheological and Performance Research on a Regenerable Polyvinyl Alcohol Fracturing Fluid

    PubMed Central

    Shang, Xiaosen; Ding, Yunhong; Wang, Yonghui; Yang, Lifeng

    2015-01-01

    A regenerable polyvinyl alcohol/organic boron fracturing fluid system with 1.6 wt% polyvinyl alcohol (PVOH) and 1.2 wt% organic boron (OBT) was studied, and its main regeneration mechanism is the reversible cross-linking reaction between B(OH)4 - and hydroxyl groups of PVOH as the change of pH. Results of rheology evaluations show that both the apparent viscosity and the thermal stability of the fracturing fluid decreased with the regeneration number of times increasing. In addition, the apparent viscosity of the fluid which was without regeneration was more sensitive to the shear action compared with that of the fluid with regeneration once or twice. When the fracturing fluid was without regeneration, the elasticity was dominating due to the three-dimensional network structure of the formed gel; the viscosity gradually occupied the advantage when the fracturing fluid was regenerated once or twice. The settling velocity of proppant was accelerated by both the regeneration process and the increasing temperature, but it was decelerated when the proppant ratio increased. Results of core damage tests indicate that less permeability damage was caused by the PVOH/OBT fracturing fluid compared with that caused by the guar gum fracturing fluid after gel breaking. PMID:26641857

  11. Rheological and Performance Research on a Regenerable Polyvinyl Alcohol Fracturing Fluid.

    PubMed

    Shang, Xiaosen; Ding, Yunhong; Wang, Yonghui; Yang, Lifeng

    2015-01-01

    A regenerable polyvinyl alcohol/organic boron fracturing fluid system with 1.6 wt% polyvinyl alcohol (PVOH) and 1.2 wt% organic boron (OBT) was studied, and its main regeneration mechanism is the reversible cross-linking reaction between B(OH)4- and hydroxyl groups of PVOH as the change of pH. Results of rheology evaluations show that both the apparent viscosity and the thermal stability of the fracturing fluid decreased with the regeneration number of times increasing. In addition, the apparent viscosity of the fluid which was without regeneration was more sensitive to the shear action compared with that of the fluid with regeneration once or twice. When the fracturing fluid was without regeneration, the elasticity was dominating due to the three-dimensional network structure of the formed gel; the viscosity gradually occupied the advantage when the fracturing fluid was regenerated once or twice. The settling velocity of proppant was accelerated by both the regeneration process and the increasing temperature, but it was decelerated when the proppant ratio increased. Results of core damage tests indicate that less permeability damage was caused by the PVOH/OBT fracturing fluid compared with that caused by the guar gum fracturing fluid after gel breaking.

  12. Protection of moisture-sensitive drugs with aqueous polymer coatings: importance of coating and curing conditions.

    PubMed

    Bley, O; Siepmann, J; Bodmeier, R

    2009-08-13

    The aim of this study was to better understand the importance of coating and curing conditions of moisture-protective polymer coatings. Tablets containing freeze-dried garlic powder were coated with aqueous solutions/dispersions of hydroxypropyl methylcellulose (HPMC), poly(vinyl alcohol), ethyl cellulose and poly(methacrylate-methylmethacrylates). The water content of the tablets during coating and during storage at different temperatures and relative humidities (RH) was determined gravimetrically. In addition, changes in the allicin (active ingredient in garlic powder) content were monitored. During the coating process, the water uptake was below 2.7% and no drug degradation was detectable. Thermally induced drug degradation occurred only at temperatures above the coating temperatures. Different polymer coatings effectively decreased the rate, but not the extent of water uptake during open storage at room temperature and 75% RH. Tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates) showed the lowest moisture uptake rates (0.49 and 0.57%/d, respectively). Curing at elevated temperature after coating did not improve the moisture-protective ability of the polymeric films, but reduced the water content of the tablets. Drug stability was significantly improved with tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates).

  13. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    PubMed Central

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications. PMID:24387682

  14. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    PubMed

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering.

  15. Antibacterial activity of combination of synthetic and biopolymer non-woven structures.

    PubMed

    Bhullar, Sukhwinder K; Özsel, Burcak Kaya; Yadav, Ramesh; Kaur, Ginpreet; Chintamaneni, Meena; Buttar, Harpal S

    2015-12-01

    Fibrous structures and synthetic polymer blends offer potential usages in making biomedical devices, textiles used in medical practices, food packaging, tissue engineering, environmental applications and biomedical arena. These products are also excellent candidates for building scaffolds to grow stem cells for implantation, to make tissue engineering grafts, to make stents to open up blood vessels caused by atherosclerosis or narrowed by blood clots, for drug delivery systems for micro- to nano-medicines, for transdermal patches, and for healing of wounds and burn care. The current study was designed to evaluate the antimicrobial activity of woven and non-woven forms of nano- and macro-scale blended polymers having biocompatible and biodegradable characteristics. The antimicrobial activity of non-woven fibrous structures created with the combination of synthetic and biopolymer was assessed using Gram-negative, Gram-positive bacteria, such as Staphylococcus aureus, Proteus vulgaris, Escherichia coli and Enterobacter aerogenes using pour plate method. Structural evaluation of the fabricated samples was performed by Fourier transform infrared spectroscopy. Broad spectrum antibacterial activities were found from the tested materials consisting of polyvinyl alcohol (PVA) with chitosan and nylon-6 combined with chitosan and formic acid. The combination of PVA with chitosan was more bactericidal or bacteriostatic than that of nylon-6 combined with chitosan and formic acid. PVA combination with chitosan appears to be a broad-spectrum antimicrobial agent.

  16. Application of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates intradermal macromolecule and nanoparticle delivery.

    PubMed

    Engelke, Laura; Winter, Gerhard; Engert, Julia

    2018-07-01

    The intradermal delivery of biologics has long been recognized as attractive approach for cutaneous immunotherapy, particularly vaccination. Although intradermal (i.d.) or subcutaneous (s.c.) injection provide reproducible dosing and good cost- and delivery efficiency, the major objective to avoid sharps and the need for enhanced storage stability have renewed the interest in alternative needle-free delivery strategies. This study presents a new concept for the delivery of macromolecules and nanoparticles to viable skin layers with a high density of professional antigen-presenting cells (APCs). Stable polyvinyl alcohol (PVA) polymer films as well as PVA blends with carboxymethyl cellulose (CMC) or cross-linked carbomer were prepared using an easily-scalable film casting technique. Fluorescein isothiocyanate (FITC) and rhodamine B-labeled dextrane 70 kDa (RD70), used as small and macromolecular model substances, or polystyrene (PS)-nano- and microparticles with diameters of 0.5 µm and 5 µm were directly incorporated into the polymer formulations at varying concentrations. The assembly of the polymer films with an occlusive backing tape created a film patch that provided a fast drug release upon dissolution of the water-soluble film and facilitated an intradermal drug delivery on laser microporated skin. The minimally-invasive P.L.E.A.S.E.® laser poration system (Pantec Biosolutions, Ruggell, Liechtenstein) provided access to viable skin layers by thermally ablating the superficial tissue with a pulsed Er:YAG laser (λ = 2.94 µm). In our in vitro study using excised pig skin, laser microporation induced a 4- to 5-fold increase of water transport (TEWL) through excised skin in a Franz diffusion cell compared to intact skin. The TEWL values detected were comparable to in vivo human skin. The increased water transport facilitated the dissolution of all topically applied dry PVA-based film formulations within 6 h. No dissolution of the films was seen on intact skin. The incubation of the film patches on laser microporated skin for 24 h led to a considerable intradermal delivery of RD70 or PS-nanoparticles, which was superior for pure PVA films compared to PVA-CMC or PVA-carbomer blend formulations. No intradermal delivery was observed on intact skin or when larger PS-microparticles with a diameter of 5 µm were investigated. The presented concept provides a unique opportunity to exploit the improved storage stability of sensitive drug molecules in dry film formulations while providing protection and functionality. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    PubMed

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  18. Copolymer-in-oil phantom materials for elastography.

    PubMed

    Oudry, J; Bastard, C; Miette, V; Willinger, R; Sandrin, L

    2009-07-01

    Phantoms that mimic mechanical and acoustic properties of soft biological tissues are essential to elasticity imaging investigation and to elastography device characterization. Several materials including agar/gelatin, polyvinyl alcohol and polyacrylamide gels have been used successfully in the past to produce tissue phantoms, as reported in the literature. However, it is difficult to find a phantom material with a wide range of stiffness, good stability over time and high resistance to rupture. We aim at developing and testing a new copolymer-in-oil phantom material for elastography. The phantom is composed of a mixture of copolymer, mineral oil and additives for acoustic scattering. The mechanical properties of phantoms were evaluated with a mechanical test instrument and an ultrasound-based elastography technique. The acoustic properties were investigated using a through-transmission water-substituting method. We showed that copolymer-in-oil phantoms are stable over time. Their mechanical and acoustic properties mimic those of most soft tissues: the Young's modulus ranges from 2.2-150 kPa, the attenuation coefficient from 0.4-4.0 dB.cm(-1) and the ultrasound speed from 1420-1464 m/s. Their density is equal to 0.90 +/- 0.04 g/cm3. The results suggest that copolymer-in-oil phantoms are attractive materials for elastography.

  19. Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance.

    PubMed

    Zhang, Ri-Chao; Sun, Dan; Lu, Ai; Askari, Sadegh; Macias-Montero, Manuel; Joseph, Paul; Dixon, Dorian; Ostrikov, Kostya; Maguire, Paul; Mariotti, Davide

    2016-06-01

    This Research Article reports on the enhancement of the thermal transport properties of nanocomposite materials containing hexagonal boron nitride in poly(vinyl alcohol) through room-temperature atmospheric pressure direct-current microplasma processing. Results show that the microplasma treatment leads to exfoliation of the hexagonal boron nitride in isopropyl alcohol, reducing the number of stacks from >30 to a few or single layers. The thermal diffusivity of the resulting nanocomposites reaches 8.5 mm(2) s(-1), 50 times greater than blank poly(vinyl alcohol) and twice that of nanocomposites containing nonplasma treated boron nitride nanosheets. From TEM analysis, we observe much less aggregation of the nanosheets after plasma processing along with indications of an amorphous carbon interfacial layer, which may contribute to stable dispersion of boron nitride nanosheets in the resulting plasma treated colloids.

  20. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    NASA Astrophysics Data System (ADS)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-03-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties.

  1. Adsorption of poly(vinyl alcohol) from water to a hydrophobic surface: effects of molecular weight, degree of hydrolysis, salt, and temperature.

    PubMed

    Kozlov, Mikhail; McCarthy, Thomas J

    2004-10-12

    The adsorption of poly(vinyl alcohol) (PVOH) from aqueous solutions to a silicon-supported fluoroalkyl monolayer is described. Thickness, wettability, and roughness of adsorbed films are studied as a function of polymer molecular weight, degree of hydrolysis (from the precursor, poly(vinyl acetate)), polymer concentration, salt type and concentration, and temperature. The data suggest a two-stage process for adsorption of the polymer: physisorption due to a hydrophobic effect (decrease in interfacial free energy) and subsequent stabilization of the adsorbed layer due to crystallization of the polymer. Adsorption of lower-molecular-weight polymers results in thicker films than those prepared with a higher molecular weight; this is ascribed to better crystallization of more mobile short chains. Higher contents of unhydrolyzed acetate groups on the poly(vinyl alcohol) chain lead to thicker adsorbed films. Residual acetate groups partition to the outermost surface of the films and determine wettability. Salts, including sodium chloride and sodium sulfate, promote adsorption, which results in thicker films; at the same time, their presence over a wide concentration range leads to formation of rough coatings. Sodium thiocyanate has little effect on PVOH adsorption, only slightly reducing the thickness in a 2 M salt solution. Increased temperature promotes adsorption in the presence of salt, but has little effect on salt-free solutions. Evidently, higher temperatures favor adsorption but cause crystallization to be less thermodynamically favorable. These competing effects result in the smoothest coatings being formed in an intermediate temperature range. Copyright 2004 American Chemical Society

  2. Polyvinyl alcohol coating of polystyrene inertial confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Lee, M. C.; Crawley, R. L.; Downs, R. L.

    1985-01-01

    An inertial confinement fusion (ICF) target made of polystyrene is first levitated in an acoustic field. The surface of the target is then etched using an appropriate solution (e.g., cyclohexane) to enhance the wetting characteristics. A specially prepared polyvinyl alcohol solution is atomized using an acoustic atomizer and deposited on the surface of the target. The solution is air dried to form a thin coating (2 microns) on the target (outside diameter of about 350-850 microns). Thicker coatings are obtained by repeated applications of the coating solutions. Preliminary results indicate that uniform coatings may be achievable on the targets with a background surface smoothness in the order of 1000 A.

  3. Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film

    NASA Astrophysics Data System (ADS)

    Mukherjee, P. S.; Das, A. K.; Dutta, B.; Meikap, A. K.

    2017-12-01

    A comprehensive study on the prevailing conduction mechanism, dielectric relaxation and current voltage behaviour of Polyvinyl alcohol (PVA) - Silver (Ag) nanotube composite film has been reported. Introduction of Ag nanotubes enhances the conductivity and dielectric permittivity of film. Film shows semiconducting behaviour with two activation energies. The dc conductivity of the nanocomposite film obeys the adiabatic small polaron model. The dielectric permittivity can be analysed by modified Cole-Cole model. A non-Debye type asymmetric behaviour has been observed in the sample. The back to back Schottky diode concept has been used to describe the current-voltage characteristic of the composite film.

  4. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    PubMed

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  5. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia Xin; Department of Chemistry, Hexi University, Zhangye 734000; Li Yanfeng

    2008-03-04

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement.

  6. Self-supported fibrin-polyvinyl alcohol interpenetrating polymer networks: an easily handled and rehydratable biomaterial.

    PubMed

    Bidault, Laurent; Deneufchatel, Marie; Vancaeyzeele, Cédric; Fichet, Odile; Larreta-Garde, Véronique

    2013-11-11

    A fibrin hydrogel at physiological concentration (5 mg/mL) was associated with polyvinyl alcohol (PVA) inside an interpenetrating polymer networks (IPN) architecture. Previously, PVA has been modified with methacrylate functions in order to cross-link it by free-radical polymerization. The fibrin network was synthesized by the enzymatic hydrolysis of fibrinogen by thrombin. The resulting self-supported materials simultaneously exhibit the properties of the fibrin hydrogel and those of the synthetic polymer network. Their storage modulus is 50-fold higher than that of the fibrin hydrogel and they are completely rehydratable. These materials are noncytotoxic toward human fibroblast and the fibrin present on the surface of PVAm-based IPNs favors cell development.

  7. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  8. DNA-PCR analysis of bloodstains sampled by the polyvinyl-alcohol method.

    PubMed

    Schyma, C; Huckenbeck, W; Bonte, W

    1999-01-01

    Among the usual techniques of sampling gunshot residues (GSR), the polyvinyl-alcohol method (PVAL) includes the advantage of embedding all particles, foreign bodies and stains on the surface of the shooter's hand in exact and reproducible topographic localization. The aim of the present study on ten persons killed by firearms was to check the possibility of DNA-PCR typing of blood traces embedded in the PVAL gloves in a second step following GSR analysis. The results of these examinations verify that the PVAL technique does not include factors that inhibit successful PCR typing. Thus the PVAL method can be recommended as a combination technique to secure and preserve inorganic and biological traces at the same time.

  9. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging

    NASA Astrophysics Data System (ADS)

    Ranjan, Amalendu P.; Zeglam, Karim; Mukerjee, Anindita; Thamake, Sanjay; Vishwanatha, Jamboor K.

    2011-07-01

    The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 ± 3.7 to 260 ± 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.

  10. Polyethylene Glycol-Poly(2-Methyl-5-Vinyl Tetrazole) Polymer Blend (A desensitizing Binder for Propellants and Explosives)

    DTIC Science & Technology

    1989-03-01

    PVA, CTBN , PBAA, PMMA, etc. As a test of this predictability, we dissolved a vinyl acetate polymer in THF, and then added PMVT, and did succeed in...Polyvinyl acetate CTBN Carboxy terminated butadiene acrylonitrile PBAA Polybutadiene acrylic acid PMMA Polymethyl. methacrylate THF Tetrahydrofuran NMR

  11. Stability of Metronidazole Suspensions.

    PubMed

    Donnelly, Ronald F; Ying, James

    2015-01-01

    Metronidazole is an antiprotozoal agent used in the treatment of bacterial and protozoal anaerobic infections. The objectives of this study were to develop concentrated metronidazole suspensions that are inexpensive and easy to prepare and determine the stability of these suspensions after storage in amber polyvinyl chloride bottles at room temperature (23°C) and under refrigeration (5°C). Metronidazole suspensions (50 mg/mL) were prepared from powder using Ora-Blend or simple syrup as the vehicles. Samples were collected in triplicate from each container on days 0, 7, 14, 28, 56, and 93. Samples were assayed using a high-performance liquid chromatography method that had been validated as stability indicating. Color, change in physical appearance, and pH were also monitored at each time interval. There was no apparent change in color or physical appearance. The pH values changed by less than 0.20 units over the 93 days. The stability of metronidazole suspensions compounded from United States Pharmacopeia powder using Ora-Blend or simple syrup and packaged in amber polyvinyl chloride bottles was determined to be 93 days when stored at either room temperature or under refrigeration.

  12. Harvesting and blending options for lower alcohol wines: a sensory and chemical investigation.

    PubMed

    Longo, Rocco; Blackman, John W; Antalick, Guillaume; Torley, Peter J; Rogiers, Suzy Y; Schmidtke, Leigh M

    2018-01-01

    Lower alcohol wines often have a poor reputation among consumers, in part due to their unsatisfactory flavours such as reduced overall aroma intensity or herbaceous characters. The aim of this study, performed on Verdelho and Petit Verdot, was to quantify the effectiveness of a monovarietal blend in which wines made from less ripe grapes were blended with an equivalent volume of a wine vinified from riper fruit to produce wines with a lower alcohol content and desirable ripe fruit flavours. Eleven and 13 attributes, for Verdelho and Petit Verdot, respectively, were selected during sensory descriptive analysis. Intensities of perceived 'acidity', 'sweetness' and 'alcohol' attributes were significantly different (P ≤ 0.05) between the blend (8.8 ± 0.1% v/v) and mature Verdelho (10.3 ± 0.1% v/v) wines, while no significant differences were found between the Petit Verdot blend (11.0 ± 0.1% v/v) and mature (12.6 ± 0.2% v/v) treatments. Volatile composition of wines was assessed using HS-SPME-GC-MS. Partial least square regression suggested relationships between sensory descriptors and chemical attributes in the wines, as well as the modifications of sensory and compositional profiles following blending. The blending practice described allowed the production of wines with lower alcohol content while retaining similar sensory profiles of the later harvested, riper fruit wines. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. LUBRICATING AND SIZING AGENT FOR GLASS FIBER,

    DTIC Science & Technology

    GLASS TEXTILES, SURFACE PROPERTIES), (*LUBRICANTS, GLASS TEXTILES), FIBERS , POLYVINYL ALCOHOL, STEARATES, CHROMIUM COMPOUNDS, ALUMINUM COMPOUNDS, MIXTURES, LACTATES, TITANIUM COMPOUNDS, MECHANICAL PROPERTIES, USSR

  14. Optimization of Microencapsulation Composition of Menthol, Vanillin, and Benzyl Acetate inside Polyvinyl Alcohol with Coacervation Method for Application in Perfumery

    NASA Astrophysics Data System (ADS)

    Sahlan, Muhamad; Raihani Rahman, Mohammad

    2017-07-01

    One of many applications of essential oils is as fragrance in perfumery. Menthol, benzyl acetate, and vanillin, each represents olfactive characteristic of peppermint leaves, jasmine flowers, and vanilla beans, are commonly used in perfumery. These components are highly volatile, hence the fragrance components will quickly evaporate resulting in short-lasting scent and low shelf life. In this research, said components have been successfully encapsulated simultaneously inside Polyvinyl Alcohol (PVA) using simple coacervation method to increase its shelf life. Optimization has been done using Central Composite Diagram with 4 independent variables, i.e. composition of menthol, benzyl acetate, vanillin, and tergitol 15-S-9 (as emulsifier). Encapsulation efficiency, loading capacity, and microcapsule size have been measured. In optimized composition of menthol (13.98 %w/w), benzyl acetate (14.75 %w/w), vanillin (17.84 %w/w), and tergitol 15-S-9 (13.4 %w/w) encapsulation efficiency of 97,34% and loading capacity of 46,46% have been achieved. Mean diameter of microcapsule is 20,24 μm and within range of 2,011-36,24 μm. Final product was achieved in the form of cross linked polyvinyl alcohol with hydrogel consistency and orange to yellow in color.

  15. Cell adhesion and guidance by micropost-array chemical sensors

    NASA Astrophysics Data System (ADS)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  16. In vitro mechanical fatigue behavior of poly-ɛ-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel.

    PubMed

    Panadero, J A; Vikingsson, L; Gomez Ribelles, J L; Lanceros-Mendez, S; Sencadas, V

    2015-07-01

    Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behavior of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow's criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles. © 2014 Wiley Periodicals, Inc.

  17. Technical Note: Preliminary investigations into the use of a functionalised polymer to reduce diffusion in Fricke gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S. T., E-mail: s164.smith@qut.edu.au; Masters, K.-S.; Hosokawa, K.

    2015-12-15

    Purpose: A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe{sup 3+} diffusion. Methods: The chelating agent, xylenol orange, was chemically bonded to the gelling agent, polyvinyl alcohol (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). Results: This resulted in an optical density dose sensitivity of 0.014 Gy{sup −1}, an auto-oxidation rate of 0.0005 h{sup −1}, and a diffusion rate of 0.129 mm{sup 2}more » h{sup −1}; an 8% reduction compared to the original PVA-FX gel, which in practical terms adds approximately 1 h to the time span between irradiation and accurate read-out. Conclusions: Because this initial method of chemically bonding xylenol orange to polyvinyl alcohol has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alcohol with xylenol orange must be developed for this system to gain clinical relevance.« less

  18. A novel reverse osmosis membrane modified by polyvinyl alcohol with maleic anhydride crosslinking

    NASA Astrophysics Data System (ADS)

    Samnani, Mohit; Rathod, Harshad; Raval, Hiren

    2018-03-01

    In the era of increasing energy crisis, it is inevitable to decrease process energy consumption to increase process viability and curtail green-house gas emission. The Reverse Osmosis plant requires significant energy to transfer water overcoming the osmotic pressure. This paper focuses on increasing the water flux for Thin Film Composite Reverse Osmosis (TFC RO) membrane without compromising salt rejection performance leading to the environmentally friendly and economically attractive process. The virgin TFC RO membrane was exposed to solution of sodium hypochlorite of concentration 2000 mg l-1 for 1 h to activate the surface of the membrane, followed by the treatment with the mixture of polyvinyl alcohol and maleic anhydride with varying concentrations for 1 h and curing in the oven at 80 °C temperature for 10 min. Out of all the treated membranes, the membrane treated with 2000 mg l-1 polyvinyl alcohol and 1000 mg l-1 maleic anhydride demonstrated the highest salt rejection of 96.83 % with 2% increase as compared to the virgin TFC RO membrane. The water flux of the membrane was around 44% higher than the virgin TFC RO membrane. The membrane samples were characterized by atomic force micrographs, ATR-FTIR, Nuclear magnetic resonance and Dynamic mechanical analysis.

  19. Dielectric and electrical studies of PVC-PPy blends in dilute solution of THF

    NASA Astrophysics Data System (ADS)

    Sharma, Deepika; Tripathi, Deepti

    2018-05-01

    An influence of adding Polypyrrole (PPy) which is an intrinsically conducting polymer (ICP), on the dielectric dispersion behavior of Polyvinyl chloride (PVC) in dilute solution of Tetrahydrofuran (THF) at low frequency is reported. The blends of PVC with PPy forms colloidal suspension in THF. The dielectric dispersion study of PVC-PPy blends in THF has been carried out in the frequency range of 20 Hz to 2 MHz at temperature of 303K. The effect of increasing PPy concentration on dielectric and electrical parameters such as complex dielectric function [ɛ*(ω)], loss tangent [tan δ], complex electric modulus [M*(ω)], ac conductivity [σac], and complex impedance [Z*(ω)] of PVC - PPy blends in THF solution were studied. The electrode polarization and ionic conduction appears to have dominant influence on the complex dielectric constant in the low frequency region. The relaxation time values corresponding to these two phenomena are also reported.

  20. An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application.

    PubMed

    Curley, Colin; Hayes, Jennifer C; Rowan, Neil J; Kennedy, James E

    2014-12-01

    The treatment of irreparable knee meniscus tears remains a major challenge for the orthopaedic community. The main purpose of this research was to analyse the mechanical properties and thermal behaviour of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous poly vinyl alcohol was treated with a sodium sulphate solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Physical crosslinks in the form of crystalline regions were induced within the hydrogel structure which resulted in a large increase in mechanical resistance. Results showed that the optimal sodium sulphate addition of 6.6% (w/v) Na2SO4 in 8.33% (w/v) PVA causes the PVA to precipitate out of its solution. The effect of multiple freeze thaw cycles was also investigated. Investigation comprised of a variety of well-established characterisation techniques such as differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), mechanical analysis, rheometry and swelling studies. DSC analysis showed that samples cross-linked using the freeze thaw process display a thermal shift due to increased crosslink density. FTIR analysis confirmed crystallisation is present at 1142cm(-1) and also showed that no chemical alteration occurs when PVA is treated with sodium sulphate. Swelling studies indicated that that PVA/sodium sulphate hydrogels absorb less water than untreated hydrogels due to increased amounts of PVA present. Compressive strength analysis of PVA/sodium sulphate hydrogels prepared at -80°C displayed average maximum loads of 2472N, 2482.4N and 2476N of over 1, 3 and 5 freeze thaw cycles respectively. Mechanical analysis of the hydrogel indicated that the material is thermally stable and resistant to breakdown by compressive force. These properties are crucial for potential use as a meniscus or cartilage replacement. As such, the results of this study indicate that polyvinyl alcohol modified with sodium sulphate may be a suitable material for the construction of an artificial knee meniscus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Fabrication of a novel scaffold of clotrimazole-microemulsion-containing nanofibers using an electrospinning process for oral candidiasis applications.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-02-01

    Clotrimazole (CZ)-loaded microemulsion-containing nanofiber mats were developed as an alternative for oral candidiasis applications. The microemulsion was composed of oleic acid (O), Tween 80 (T80), and a co-surfactant such as benzyl alcohol (BzOH), ethyl alcohol (EtOH) or isopropyl alcohol (IPA). The nanofiber mats were obtained by electrospinning a blended solution of a CZ-loaded microemulsion and a mixed polymer solution of 2% (w/v) chitosan (CS) and 10% (w/v) polyvinyl alcohol (PVA) at a weight ratio of 30:70. The nanofiber mats were characterized using various analytical techniques. The entrapment efficiency, drug release, antifungal activity and cytotoxicity were investigated. The average diameter of the nanofiber mats was in the range of 105.91-125.56 nm. The differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) results revealed the amorphous state of the CZ-loaded microemulsions incorporated into the nanofiber mats. The entrapment efficiency of CZ in the mats was approximately 72.58-98.10%, depended on the microemulsion formulation. The release experiment demonstrated different CZ release characteristics from nanofiber mats prepared using different CZ-loaded microemulsions. The extent of drug release from the fiber mats at 4h was approximately 64.81-74.15%. The release kinetics appeared to follow Higuchi's model. In comparison with CZ lozenges (10mg), the nanofiber mats exhibited more rapid killing activity. Moreover, the nanofiber mats demonstrated desirable mucoadhesive properties and were safe for 2h. Therefore, the nanofiber mats have the potential to be promising candidates for oral candidiasis applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Microwave irradiation induced modifications on the interfaces in SAN/EVA/PVC and PVAc/BPA/PVP ternary polymer blends: Positron lifetime study

    NASA Astrophysics Data System (ADS)

    Dinesh, Meghala; Chikkakuntappa, Ranganathaiah

    2013-09-01

    Ternary polymer blends of poly(styrene-co-acrylonitrile)/poly(ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and poly(vinyl acetate)/bisphenol A/polyvinylpyrrolidone (PVAc/BPA/PVP) with different compositions have been prepared by solvent casting method and characterized by positron lifetime spectroscopy and differential scanning calorimetry DSC. Phase modifications have been induced by irradiating the blends with microwave radiation. These changes have been monitored by measuring the free-volume content in the blends. The results clearly show improved interactions between the constituent polymers of the blends upon microwave irradiation. However, the free-volume data and DSC measurements are found to be inadequate to reveal the changes at the interfaces and the interfaces determine the final properties of the blend. For this we have used hydrodynamic interaction (αij) approach developed by us to measure strength of hydrodynamic interaction at the interfaces. These results show that microwave irradiation stabilizes the interfaces if the blend contains strong polar groups. SAN/EVA/PVC blend shows an increased effective hydrodynamic interaction from -3.18 to -4.85 at composition 50/35/15 upon microwave irradiation and PVAc/BPA/PVP blend shows an increased effective hydrodynamic interaction from -3.81 to -7.57 at composition 20/50/30 after irradiation.

  3. Advances and challenges of wood polymer composites

    Treesearch

    Roger M. Rowell

    2006-01-01

    Wood flour and fiber have been blended with thermoplastic such as polyethylene, polypropylene, polylactic acid and polyvinyl chloride to form wood plastic composites (WPC). WPCs have seen a large growth in the United States in recent years mainly in the residential decking market with the removal of CCA treated wood decking from residential markets. While there are...

  4. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  5. Development and Evaluation of Polyvinyl Alcohol-Hydrogels as an Artificial Atrticular Cartilage for Orthopedic Implants

    PubMed Central

    Kobayashi, Masanori; Hyu, Hyon Suong

    2010-01-01

    Due to its excellent biocompatibility and mechanical properties, various different applications of polyvinyl alcohol-hydrogels (PVA-H) has been attempted in many fields. In the field of orthopedic surgery, we have been engaged for long time in research on the clinical applications of PVA-H as a artificial cartilage, and have performed many basic experiments on the mechanical properties, synthesis of PVA-H, and developed orthopedic implants using PVA-H. From these studies, many applications of artificial articular cartilage, intervertbral disc and artificial meniscus etc. have been developed. This review will present the overview of the applications and recent advances of PVA-H cartilages, and discuss clinical potential of PVA-H for orthopedics implant.

  6. Reentrant behaviour in polyvinyl alcohol-borax hydrogels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2018-01-01

    Polyvinyl alcohol (PVA) hydrogels, cross-linked with varying concentrations of borax, were studied with small angle neutron scattering (SANS), x-ray diffraction (XRD) and differential thermal analysis (DTA). The SANS data satisfy the Ornstein-Zernike approximation. The hydrogels are modelled as PVA chains bound by borate cross-links. Water occupies the spaces within the three-dimensional hydrogel network. The mesh size ξ indicates reentrant behaviour i.e. at first, ξ increases and later decreases as a function of borax concentration. The behaviour is explained on the basis of the balance between the charged di-diol cross-links and the shielding by free ions in the solvent. XRD and DTA show the molecular size of water in the solvent and the glass transition temperature commensurate with reentrant behaviour.

  7. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan Me

    2017-09-01

    Develop green wound dressings which exhibit enhanced wound-healing ability and potent antibacterial effects. Honey, polyvinyl alcohol, chitosan nanofibers were electrospun and loaded with bee venom, propolis and/or bacteriophage against the multidrug-resistant Pseudomonas aeruginosa and examined for their antibacterial, wound-healing ability and cytotoxicity. Among different formulations of nanofibers, honey, polyvinyl alcohol, chitosan-bee venom/bacteriophage exhibited the most potent antibacterial activity against all tested bacterial strains (Gram-positive and -negative strains) and achieved nearly complete killing of multidrug-resistant P. aeruginosa. In vivo testing revealed enhanced wound-healing results and cytotoxicity testing proved improved biocompatibility. The developed biocompatible nanofibers represent competitive wound-healing dressings with potent antibacterial and wound-healing activity.

  8. Degradation of PVC/HC blends. II. Terrestrial plant growth test.

    PubMed

    Pascu, Mihaela; Agafiţei, Gabriela-Elena; Profire, Lenuţa; Vasile, Cornelia

    2009-01-01

    The behavior at degradation by soil burial of some plasticized polyvinyl chloride (PVC) based blends with a variable content of hydrolyzed collagen (HC) has been followed. The modifications induced in the environment by the polymer systems (pH variation, physiologic state of the plants, assimilatory pigments) were studied. Using the growth test of the terrestrial plants, we followed the development of Triticum (wheat), Helianthus annus minimus (little sunflower), Pisum sativum (pea), and Vicia X hybrida hort, during a vegetation cycle. After the harvest, for each plant, the quantities of chlorophyll and carotenoidic pigments and of trace- and macroelements were determined. It was proved that, in the presence of polymer blends, the plants do not suffer morphological and physiological modifications, the products released in the culture soil being not toxic for the plants growth.

  9. 27 CFR 24.213 - Heavy bodied blending wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine is wine made for blending purposes from grapes or other fruit without...

  10. 27 CFR 24.213 - Heavy bodied blending wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine is wine made for blending purposes from grapes or other fruit without...

  11. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  12. Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C.

    PubMed Central

    Shimao, M; Ninomiya, K; Kuno, O; Kato, N; Sakazawa, C

    1986-01-01

    A novel enzyme, pyrroloquinoline quinone (PQQ)-dependent polyvinyl alcohol (PVA) dehydrogenase, was found in and partially purified from the membrane fraction of a PVA-degrading symbiont, Pseudomonas sp. strain VM15C. The enzyme required PQQ for PVA dehydrogenation with phenazine methosulfate, phenazine ethosulfate, and 2,6-dichlorophenolindophenol as electron acceptors and did not show PVA oxidase activity leading to H2O2 formation. The enzyme was active toward low-molecular-weight secondary alcohols rather than primary alcohols. A membrane-bound PVA oxidase was also present in cells of VM15C. Although the purified oxidase showed a substrate specificity similar to that of PQQ-dependent PVA dehydrogenase and about threefold-higher PVA-dehydrogenating activity with phenazine methosulfate or phenazine ethosulfate than PVA oxidase activity with H2O2 formation, it was shown that the enzyme does not contain PQQ as the coenzyme, and PQQ did not affect its activity. Incubation of the membrane fraction of cells with PVA caused a reduction in the cytochrome(s) of the fraction. Images PMID:3513704

  13. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II).

    PubMed

    Zhou, Yiming; Fu, Shiyu; Zhang, Liangliang; Zhan, Huaiyu; Levit, Mikhail V

    2014-01-30

    Novel magnetic hydrogel beads (m-CS/PVA/CCNFs), consisting of carboxylated cellulose nanofibrils (CCNFs), amine-functionalized magnetite nanoparticles and poly(vinyl alcohol) (PVA) blended chitosan (CS), were prepared by an instantaneous gelation method. SEM, XRD, and TGA techniques were applied to investigate the structure of the hydrogel materials. The magnetic hydrogels were employed as absorbents for removal of Pb(II) ions from aqueous solutions and the fundamental adsorption behavior was studied. Experimental results revealed that the m-CS/PVA/CCNFs hydrogels exhibit higher adsorption capacity with the value of 171.0mg/g, and the carboxylate groups on the CCNFs surface play an important role in Pb(II) adsorption. Moreover, adsorption isotherm data were reliably described by the Langmuir model and the adsorption kinetics closely followed pseudo-second order model. Additionally, the Pb(II)-loaded m-CS/PVA/CCNFs hydrogels could be easily regenerated in weak acid solution and the adsorption effectiveness of 90% can be maintained after the 4 cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Silver Nanoparticles Synthesized Using Mint Extract and their Application in Chitosan/Gelatin Composite Packaging Film

    NASA Astrophysics Data System (ADS)

    Bhoir, Shraddha A.; Chawla, S. P.

    The present study reports synthesis of silver nanoparticles (AgNPs) using mint extract (ME) in the presence of polyvinyl alcohol (PVA) as capping material. PVA, ME and silver nitrate at concentration of 1%, 0.01% and 0.02%, respectively were found to be optimum for the synthesis of nanoparticles. The formation of AgNPs was confirmed by measuring surface plasmon resonance (SPR) peak. The intensity of SPR peak remained unaltered thus suggesting stability of colloid without aggregation during storage. The nanoparticles inhibited the growth of food borne bacteria namely Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus. The incorporation of these nanoparticles in chitosan and gelatin blend resulted in homogenous films. Mechanical properties and water vapor transmission rate of chitosan-gelatin films improved due to addition of AgNPs, whereas optical (opacity and UV light transmittance) and oxygen permeability properties remained unchanged. These films had the ability to inhibit growth of 5 log CFU of the above test organisms. These findings suggest that the AgNPs obtained by reduction of silver by ME can be effectively utilized to prepare antibacterial eco-friendly food packaging material.

  15. Effects of Gold Nanoparticles on Pentacene Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Keanchuan; Weis, Martin; Ou-Yang, Wei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-04-01

    The effect of gold nanoparticles (NPs) on pentacene organic field-effect transistors (OFETs) was being investigated by both DC and AC methods, which are current-voltage (I-V) measurements in steady-state and impedance spectroscopy (IS) respectively. Here poly(vinyl alcohol) (PVA) and PVA blended with Au NPs as composite are spin-coated on SiO2 as gate-insulator for top-contact pentacene OFET. The characteristics of the device were being investigated based on the contact resistance, trapped charges, effective mobility and threshold voltage based on transfer characteristics of OFET. Results revealed that OFET with NPs exhibited larger hysteresis and higher contact resistance at high voltage region. IS measurements were performed and the fitting of results by the Maxwell-Wagner equivalent circuit showed that for device with NPs a series of capacitance and resistance which represents trapping must be introduced in order to have agreeable fitting. The fitting had helped to clarify the reason behind the higher contact resistance and bigger hysteresis which was mainly caused by the space charge field formed by the traps when Au NPs were introduced into the device.

  16. Laccase-Catalyzed Synthesis of Low-Molecular-Weight Lignin-Like Oligomers and their Application as UV-Blocking Materials.

    PubMed

    Lim, Jieyan; Sana, Barindra; Krishnan, Ranganathan; Seayad, Jayasree; Ghadessy, Farid J; Jana, Satyasankar; Ramalingam, Balamurugan

    2018-02-02

    The laccase-catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number-average molecular weight (M n ) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C-C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000-38 000 m -1  cm -1 ) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer-embedded PVC films indicated that these lignin-like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV-blocking characteristics and photostability were finally compared with the commercial low-molecular-weight UV stabilizer 2,4-dihydroxybenzophenone. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The effect of bacterial cellulose on the shape memory behavior of polyvinyl alcohol nanocomposite hydrogel

    NASA Astrophysics Data System (ADS)

    Pirahmadi, Pegah; Kokabi, Mehrdad

    2018-01-01

    Most research on shape memory polymers has been confined to neat polymers in their dry state, while, some hydrogel networks are known for their shape memory properties. Hydrogels have low glass transition temperatures which are below 100°C depend on the content of water. But they are usually weak and brittle, and not suitable for structural applications due to their low mechanical strengths because of these materials have large amount of water (>50%), so they could not remember original shape perfectly. Bacterial cellulose nanofibers with perfect properties such as high water holding capacity, high crystallinity, high tensile strength and good biocompatibility can dismiss all the drawbacks. In the present study, polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel prepared by repetitive freezing-thawing method. The bacterial cellulose was used as reinforcement to improve the mechanical properties and stimuli response. Differential scanning calorimetry was employed to obtain the glass transition temperature. Nanocomposite morphology was characterized by field-emission scanning electron microscopy and mechanical properties were investigated by standard tensile test. Finally, the effect of bacterial cellulose nanofiber on shape memory behavior of polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel was investigated. It is found that switching temperature of this system is the glass transition temperature of the nano domains formed within the system. The results also show increase of shape recovery, and shape recovery speed due to presence of bacterial cellulose.

  18. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study.

    PubMed

    Congdon, Thomas; Notman, Rebecca; Gibson, Matthew I

    2013-05-13

    This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins. Here, controlled radical polymerization is used to synthesize well-defined PVA, which has enabled us to obtain the first quantitative structure-activity relationships, to probe the role of molecular weight and comonomers on IRI activity. Crucially, it was found that IRI activity is "switched on" when the polymer chain length increases from 10 and 20 repeat units. Substitution of the polymer side chains with hydrophilic or hydrophobic units was found to diminish activity. Hydrophobic modifications to the backbone were slightly more tolerated than side chain modifications, which implies an unbroken sequence of hydroxyl units is necessary for activity. These results highlight that, although hydrophobic domains are key components of IRI activity, the random inclusion of addition hydrophobic units does not guarantee an increase in activity and that the actual polymer conformation is important.

  19. Clinical Long-Term Outcome and Reinterventional Rate After Uterine Fibroid Embolization with Nonspherical Versus Spherical Polyvinyl Alcohol Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duvnjak, Stevo, E-mail: stevo.duvnjak@rsyd.dk; Ravn, Pernille; Green, Anders

    PurposeThis study was designed to evaluate the long-term clinical outcome and frequency of reinterventions in patients with uterine fibroids treated with embolization at a single center using polyvinyl alcohol microparticles.MethodsThe study included all patients with symptomatic uterine fibroids treated with uterine fibroid embolization (UFE) with spherical (s-PVA) and nonspherical (ns-PVA) polyvinyl alcohol microparticles during the period January 2001 to January 2011. Clinical success and secondary interventions were examined. Hospital records were reviewed during follow-up, and symptom-specific questionnaires were sent to all patients.ResultsIn total, 515 patients were treated with UFE and 350 patients (67 %) were available for long-term clinical follow-up. Medianmore » time of follow-up was 93 (range 76–120.2) months. Eighty-five patients (72 %) had no reinterventions during follow-up in the group embolized with ns-PVA compared with 134 patients (58 %) treated with s-PVA. Thirty-three patients (28 %) underwent secondary interventions in the ns-PVA group compared with 98 patients (42 %) in s-PVA group (χ{sup 2} test, p < 0.01).ConclusionsSpherical PVA particles 500–700 µm showed high reintervention rate at long-term follow-up, and almost one quarter of the patients underwent secondary interventions, suggesting that this type of particle is inappropriate for UFE.« less

  20. Synthesis and Characterization of Fe3O4 Nanoparticles using Polyvinyl Alcohol (PVA) as Capping Agent and Glutaraldehyde (GA) as Crosslinker

    NASA Astrophysics Data System (ADS)

    Budi Hutami Rahayu, Lale; Oktavia Wulandari, Ika; Herry Santjojo, Djoko; Sabarudin, Akhmad

    2018-01-01

    The use of polyvinyl alcohol (PVA) as a capping agent and glutaraldehyde (GA) as a crosslinker for a synthesis of magnetite (Fe3O4) nanoparticles is able to reduce agglomeration of produced Fe3O4. Additionally, oxidation of Fe3O4 by air could be avoided. The synthesis is carried out in two steps: first step, magnetite (Fe3O4) nanoparticles were prepared by dissolving the FeCl3.6H2O and FeCl2.4H2O in alkaline media (NH3.H2O). The second step, magnetite nanoparticles were coated with polyvinyl alcohol (PVA) and glutaraldehyde (GA) to obtain Fe3O4-PVA-GA. The latter material was then characterized by FTIR to determine the typical functional groups of magnetite coated with PVA-GA. X-ray Diffraction analysis was used to determine structure and size of crystal as well as the percentage of magnetite produced. It was found that the produced nanoparticles have crystal sizes around 4-9 nm with the cubic crystal structure. The percentage of magnetite phase increases when the amount of glutaraldehyde increased. SEM-EDX was employed to assess the surface morphology and elemental composition of the resulted nanoparticles. The magnetic character of the magnetite and Fe3O4- PVA-GA were studied using Electron Spin Resonance.

  1. NO2 measurement by chemiluminescence

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Rogowski, R. S.; Richards, R. R.

    1979-01-01

    Compact device monitors specific chemiluminescent reaction of heated solid material such as 3,5 diaminobezoic or polyvinyl alcohol after contact with gas sample to detect and quantify nitrogen dioxide concentration.

  2. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  3. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  4. 75 FR 15726 - Polyvinyl Alcohol From Taiwan; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...\\ Vice Chairman Pearson and Commissioners Okun and Lane dissented, having determined that there is no... remand, Vice Chairman Pearson and Commissioners Okun and Lane reaffirmed their negative preliminary...

  5. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.

  6. Nopal Cactus (Opuntia Ficus-Indica) as a Holographic Material

    PubMed Central

    Olivares-Pérez, Arturo; Toxqui-López, Santa; Padilla-Velasco, Ana L.

    2012-01-01

    The nopal cactus (Opuntia ficus-indica) releases a substance through its mucilage, which comes from the degradation of pectic substances and chlorophyll. Combined in a polyvinyl alcohol matrix, this substance can be used as a recording medium. The resulting extract material has excellent photosensitizer properties, is easy to handle, has a low cost, and low toxicity. This material has the property of self-developing, and it can be used in holographic applications. The polyvinyl alcohol and extract from the nopal cactus was deposited by a gravity technique on a glass substrate, which dried to form a photosensitive emulsion. We show experimental results on a holographic grating using this material, written by a He-Cd laser (442 nm). We obtained diffraction gratings by transmission with a diffraction efficiency of approximately 32.3% to first order.

  7. Non-isothermal crystallization kinetics of eucalyptus lignosulfonate/polyvinyl alcohol composite.

    PubMed

    Ye, De-Zhan; Zhang, Xi; Gu, Shaojin; Zhou, Yingshan; Xu, Weilin

    2017-04-01

    The nonisothermal crystallinization kinetic was performed on Polyvinyl alcohol (PVA) mixed with eucalyptus lignosulfonate calcuim (HLS) as the biobased thermal stabilizer, which was systematically analyzed based on Jeziorny model, Ozawa equation and the Mo method. The results indicated that the entire crystallization process took place through two main stages involving the primary and secondary crystallization processes. The Mo method described nonisothermal crystallization behavior well. Based on the results of the half time for completing crystallization, k c value in Jeziorny model, F(T) value in Mo method and crystallization activation energy, it was concluded that low loading of HLS accelerated PVA crystallization process, however, the growth rate of PVA crystallization was impeded at high content of HLS. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Refractive index investigation of poly(vinyl alcohol) films with TiO2 nanoparticle inclusions.

    PubMed

    Yovcheva, Temenuzhka; Vlaeva, Ivanka; Bodurov, Ivan; Dragostinova, Violeta; Sainov, Simeon

    2012-11-10

    The refractive index (RI) of polymer nanocomposite of poly(vinyl alcohol) films with TiO(2) nanoparticle inclusions with low concentration up to 1.2 wt. % was investigated. Accurate refractometric measurements, by a specially designed laser microrefractometer, were performed at wavelengths 532 and 632.8 nm. The influence of TiO(2) concentration on the RI dispersion curves was predicted based on the well-known Sellmeier model. The theoretical analysis, in a small filling factor approximation, was performed, and a relation between the effective RI of the nanocomposite and weight concentrations of the TiO(2) nanofiller was derived. The experimental values were approximated by two different functions (linear and a quadratic polynom). The polynomial approximation yields better result, where R(2)=0.90.

  9. Method of cross-linking polyvinyl alcohol and other water soluble resins

    NASA Technical Reports Server (NTRS)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  10. Effect of trap states and microstructure on charge carrier conduction mechanism through semicrystalline poly(vinyl alcohol) granular film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Bhowmik, R. N.; Meikap, A. K.

    2018-05-01

    We report a comprehensive study on hysteresis behaviour of current-voltage characteristic and impedance spectroscopy of granular semicrystalline poly(vinyl alcohol) (PVA) film. The charge carrier conduction mechanism and charge traps of granular PVA film by measuring and analyzing the temperature dependent current-voltage characteristic indicate a bi-stable electronic state in the film. A sharp transformation of charge carrier conduction mechanism from Poole-Frenkel emission to space charge limited current mechanism has been observed. An anomalous oscillatory behaviour of current has been observed due to electric pulse effect on the molecular chain of the polymer. Effect of microstructure on charge transport mechanism has been investigated from impedance spectroscopy analysis. An equivalent circuit model has been proposed to explain the result.

  11. Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.

    PubMed

    Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi

    2015-11-05

    Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of interfacial interaction on the properties of poly(vinyl chloride)/styrene-butadiene rubber blends

    NASA Astrophysics Data System (ADS)

    Zhu, Shuihan

    PVC/SBR blends---new thermoplastic elastomer material---were developed. They have potential applications due to low costs and low-temperature elasticity. A unique compatibilization method was employed to enhance the mechanical properties of the materials a compatibilizer miscible with one of the blend components can react chemically with the other component(s). Improvements in tensile and impact behavior were observed as a result of the compatibilization. A novel characterization technique to study the interface of PVC/SBR blends was developed. This technique involves the observation of the unstained sample under electron beam irradiation by a transmission electron microscope (TEM). An enrichment of rubber at the interface between PVC and SBR was detected in the compatiblized PVC/SBR blends. Magnetic relaxation measurements show that the rubber concentration in the proximity of PVC increases with the degree of covulcanization between NBR and SBR. The interface development and the rheological effect during processing were investigated. The interfacial concentration profile and the interfacial thickness were obtained by grayscale measurements on TEM micrographs, evaluation of SIMS images, and measurements of micromechanical properties.

  13. Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films

    USDA-ARS?s Scientific Manuscript database

    Poly (vinyl alcohol) (PVA)/chitosan (CS) blended films plasticized by glycerol were investigated using mechanical testing, atomic force microscopy (AFM), differential scanning calorimetry (DSC) and FTIR spectroscopy, with primary emphasis on the effects of the glycerol content and the molecular weig...

  14. Competing Stereocomplexation and Homocrystallization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture: Effects of Miscible Blending with Other Polymers.

    PubMed

    Bao, Jianna; Xue, Xiaojia; Li, Kai; Chang, Xiaohua; Xie, Qing; Yu, Chengtao; Pan, Pengju

    2017-07-20

    Promoting the stereocomplexation ability of high-molecular-weight poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) is an efficient way to improve the thermal resistance of the resulting materials. Herein, we studied the competing crystallization kinetics, polymorphic crystalline structure, and lamellae structure of the PLLA/PDLA component in its miscible blends with poly(vinyl acetate) (PVAc) and proposed a method to improve the stereocomplexation ability of PLLA and PDLA through miscible blending with the other polymer. Crystallization of the PLLA/PDLA component is suppressed after the addition of PVAc, due to the dilution effect. The stereocomplexation ability of PLLA and PDLA is enhanced by blending with PVAc; this becomes more obvious at a high PVAc content (≥50 wt %) but less significant with the further increase of PLLA, PDLA molecular weights. Almost exclusive formation of SCs is achieved for PLLA and PDLA after blending with a large proportion of PVAc (e.g., 75 wt %). Incorporation of PVAc also facilitates the HC-to-SC structural reorganization upon heating. The increased chain mobility, decreased equilibrium melting point, and enhanced intermolecular interactions may account for the preferential stereocomplexation in PLLA/PDLA/PVAc blends.

  15. Preparation of Syndiotactic Poly(vinyl alcohol)/Poly(vinyl pivalate/vinyl acetate) Microspheres with Radiopacity Using Suspension Copolymerization and Saponification

    NASA Astrophysics Data System (ADS)

    Seok Lyoo, Won; Wook Cha, Jin; Young Kwak, Kun; Jae Lee, Young; Yong Jeon, Han; Sik Chung, Yong; Kyun Noh, Seok

    2010-06-01

    To prepare Poly(vinyl pivalate/vinyl acetate) [P(VPi/VAc)] microspheres with radiopacity, the suspension copolymerization approach in the presence of aqueous radiopaque nanoparticles was used. After, The P(VPi/VAc) microspheres with radiopacity were saponified in heterogeneous system, and then P(VPi/VAc) microspheres without aggregates were converted to s-PVA/P(VPi/VAc) microspheres of skin/core structure through the heterogeneous surface saponification. Radiopacity of microspheres was confirmed with Computed tomography (CT).

  16. 27 CFR 24.213 - Heavy bodied blending wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Heavy bodied blending wine..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine is wine made for blending purposes from grapes or other fruit without...

  17. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Rehfeld, D. W.; And Others

    1988-01-01

    Describes two demonstrations (1) a dust explosion using a coffee can, candle, rubber tubing, and cornstarch and (2) forming a silicate-polyvinyl alcohol polymer which can be pressed into plastic sheets or molded. Gives specific instructions. (MVL)

  18. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... extractives not to exceed 0.078 milligram per square centimeter (0.5 milligram per square inch) of food... the American Society for Testing Materials, 100 Barr Harbor Dr., West Conshohocken, Philadelphia, PA...

  19. Landfill Liners and Covers: Properties and Application to Army Landfills.

    DTIC Science & Technology

    1984-06-01

    polymers, TPE can be seamed by heat techniques. Materials such as thermoplastic EPDM and nitrile rubber /PVC blends are still being tested to determine their...such as polyethylene (PE), polyvinyl chloride (PVC), butyl rubber , ethylene propylene diene monomer ( EPDM ), chlorinated polyethylene (CPE), and others...chlorosulfonated polyethy- lene (CSPE), chlorinated polyethylene (CPE), butyl rubber , ethylene propylene S rubber ( EPDM ), neoprene, high-density polyethylene

  20. HBCU Future Engineering Faculty Fellowship Program

    DTIC Science & Technology

    2009-03-31

    North Carolina Agricultural and Technical State University in Greensboro, North Carolina. He received both his Master of Science and Doctor of...Department of Industrial and Systems Engineering at North Carolina Agricultural and Technical State University since January 2002, Christopher’s...Polyvinyl alcohol Membranes. The overall objective of Felecia Nave’s research is to synthesize and characterize poly vinyl alcohol hydrogels that

  1. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  2. Calcium Stearate as an Effective Alternative to Poly(vinyl alcohol) in Poly-Lactic-co-Glycolic Acid Nanoparticles Synthesis.

    PubMed

    Cella, Claudia; Gerges, Irini; Milani, Paolo; Lenardi, Cristina; Argentiere, Simona

    2017-02-13

    Poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are among the most studied systems for drug and gene targeting. So far, the synthesis of stable and uniform PLGA NPs has involved the use of a large excess of polyvinyl surfactants such as poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP), whose removal requires multistep purification procedures of high ecological and economic impact. Hence the development of environment-friendly and cost-effective synthetic procedures for the synthesis of PLGA NPs would effectively boost their use in clinics. This work aims to address this issue by investigating more efficacious alternatives to the so far employed polyvinyl surfactants. More specifically, we developed an innovative synthetic process to achieve stable and uniformly distributed PLGA NPs that involves the use of calcium stearate (CSt), gaining benefits of its high biocompatibility and efficacy at low concentrations and avoiding consequently expensive purification steps. With the help of minimum quantities of polysorbate 60 and sorbitane monostearate, CSt-stabilized PLGA NPs with different sizes and structures were synthesized. The influence of CSt on the encapsulation efficiency of bioactive molecules has been also investigated. The effective encapsulation of both hydrophobic (curcumin) and hydrophilic (fibrinogen labeled with Alexa647) biomolecules into NPs was demonstrated by confocal microscopy, and their release quantified by spectrofluorimetric analyses. Finally, degradation and cytotoxicity studies showed that CSt stabilized NPs were stable under physiological conditions and with good biocompatibility, thus looking promising for further investigation as controlled release devices.

  3. Stability of Alprostadil in 0.9% Sodium Chloride Stored in Polyvinyl Chloride Containers.

    PubMed

    McCluskey, Susan V; Kirkham, Kylian; Munson, Jessica M

    2017-01-01

    The stability of alprostadil diluted in 0.9% sodium chloride stored in polyvinyl chloride (VIAFLEX) containers at refrigerated temperature, protected from light, is reported. Five solutions of alprostadil 11 mcg/mL were prepared in 250 mL 0.9% sodium chloride polyvinyl chloride (PL146) containers. The final concentration of alcohol was 2%. Samples were stored under refrigeration (2°C to 8°C) with protection from light. Two containers were submitted for potency testing and analyzed in duplicate with the stability-indicating high-performance liquid chromatography assay at specific time points over 14 days. Three containers were submitted for pH and visual testing at specific time points over 14 days. Stability was defined as retention of 90% to 110% of initial alprostadil concentration, with maintenance of the original clear, colorless, and visually particulate-free solution. Study results reported retention of 90% to 110% initial alprostadil concentration at all time points through day 10. One sample exceeded 110% potency at day 14. pH values did not change appreciably over the 14 days. There were no color changes or particle formation detected in the solutions over the study period. This study concluded that during refrigerated, light-protected storage in polyvinyl chloride (VIAFLEX) containers, a commercial alcohol-containing alprostadil formulation diluted to 11 mcg/mL with 0.9% sodium chloride 250 mL was stable for 10 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  4. Piezoresistive Pressure Sensor Based on Synergistical Innerconnect Polyvinyl Alcohol Nanowires/Wrinkled Graphene Film.

    PubMed

    Liu, Weijie; Liu, Nishuang; Yue, Yang; Rao, Jiangyu; Cheng, Feng; Su, Jun; Liu, Zhitian; Gao, Yihua

    2018-04-01

    Piezoresistive sensor is a promising pressure sensor due to its attractive advantages including uncomplicated signal collection, simple manufacture, economical and practical characteristics. Here, a flexible and highly sensitive pressure sensor based on wrinkled graphene film (WGF)/innerconnected polyvinyl alcohol (PVA) nanowires/interdigital electrodes is fabricated. Due to the synergistic effect between WGF and innerconnected PVA nanowires, the as-prepared pressure sensor realizes a high sensitivity of 28.34 kPa -1 . In addition, the device is able to discern lightweight rice about 22.4 mg (≈2.24 Pa) and shows excellent durability and reliability after 6000 repeated loading and unloading cycles. What is more, the device can detect subtle pulse beat and monitor various human movement behaviors in real-time. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, B., E-mail: bkarthik@nitt.edu; Hariharan, S.; Udayabhaskar, R.

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO throughmore » hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.« less

  6. In vitro cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents

    NASA Astrophysics Data System (ADS)

    Tran, Phong A.; Nguyen, Hiep T.; Fox, Kate; Tran, Nhiem

    2018-03-01

    Iron oxide magnetic nanoparticles have significant potential in biomedical applications such as in diagnosis, imaging and therapeutic agent delivery. The choice of stabilizers and surface functionalization is important as it is known to strongly influence the cytotoxicity of the nanoparticles. The present study aimed at investigating the effects of surface charges on the cytotoxicity of iron oxide nanoparticles. We used a co-precipitation method to synthesize iron oxide nanoparticles which were then stabilized with either chitosan (CS) or polyvinyl alcohol (PVA) which have net positive charge and zero charge at physiological pH, respectively. The nanoparticles were characterized in terms of size, charges and chemical oxidation state. Cytotoxicity of the nanoparticles was assessed using mouse fibroblast cells and was correlated with surface charges of the nanoparticles and their aggregation.

  7. The composite hydrogels of polyvinyl alcohol-gellan gum-Ca(2+) with improved network structure and mechanical property.

    PubMed

    Wang, Fei; Wen, Ying; Bai, Tongchun

    2016-12-01

    The composite hydrogels of polyvinyl alcohol (PVA) and gellan gum (GG) are of interesting in the biomaterials application. To improve the structure and mechanical property, in this work, Ca(2+) ion was introduced to crosslink the polymer chain, and the PVA-GG-Ca(2+) hydrogel was formed. By analyzing its structure, mechanical properties, swelling and dehydration kinetics, the effect of molecular interaction on hydrogel structure and properties have been observed. Our result indicates that, as GG is added to hydrogel network, the role of Ca(2+) ion is stand out, it reorganizes the network structure, enhances the mechanical properties, and strengthens the electrolytic and hydrogen bonding interactions in PVA-GG-Ca(2+) hydrogels. These observations will benefit the development of hydrogels in biomaterials application. Copyright © 2016. Published by Elsevier B.V.

  8. The effects of temperature on the surface resistivity of polyvinyl alcohol (PVA) thin films doped with silver nanoparticles and multi-walled carbon-nanotubes for optoelectronic and sensor applications

    NASA Astrophysics Data System (ADS)

    Polius, Jemilia R.

    This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.

  9. Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study

    PubMed Central

    Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna

    2015-01-01

    The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 32 full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device. PMID:27347511

  10. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  11. Activation of Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol) using a Supramolecular Trigger.

    PubMed

    Phillips, Daniel J; Congdon, Thomas R; Gibson, Matthew I

    2016-03-07

    Antifreeze (glyco)proteins (AF(G)Ps) have potent ice recrystallisation inhibition (IRI) activity - a desirable phenomenon in applications such as cryopreservation, frozen food and more. In Nature AF(G)P activity is regulated by protein expression levels in response to an environmental stimulus; temperature. However, this level of regulation is not possible in synthetic systems. Here, a synthetic macromolecular mimic is introduced, using supramolecular assembly to regulate activity. Catechol-terminated poly(vinyl alcohol) was synthesised by RAFT polymerization. Upon addition of Fe 3+ , larger supramolecular star polymers form by assembly with two or three catechols. This increase in molecular weight effectively 'switches on' the IRI activity and is the first example of external control over the function of AFP mimetics. This provides a simple but elegant solution to the challenge of external control of AFP-mimetic function.

  12. Effects of Partial Replacement of Eggshell Powder by Halloysite Nanotubes on the Properties of Polyvinyl Alcohol Composites

    NASA Astrophysics Data System (ADS)

    Alias, N. F.; Ismail, H.

    2018-06-01

    Polyvinyl alcohol (PVA)/eggshell powder (ESP) were prepared via solution casting method. The effects of gradual replacement of ESP by halloysite nanotubes (HNTs) were investigated based on tensile properties, physical properties and biodegradability. The main objective is to study the effect of hybrid fillers and also to compare the properties of PVA/ESP composite with conventional filler, HNT. The tensile properties decreased with increasing HNT loading. Scanning electron microscopy (SEM) studies showed that agglomeration of filler were present throughout the composites. Due to the presence of hydroxyl group on the outer and inner surface of HNT, the water absorption and water vapor transmisibility were found to increase with increasing HNTs loading. The biodegradability of film filled with HNT is lower compared to the film filled with ESP.

  13. Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials

    NASA Astrophysics Data System (ADS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jipa, Iuliana; Dobre, Loredana; Zaharescu, Traian

    2013-03-01

    The aim of this paper is to present the influence of bacterial cellulose microfibrils and γ-radiation dose on poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) composites. Two composite materials were obtained: the first one from PVA aqueous solution 4% and 5% wet bacterial cellulose and the second from the same PVA solution and 10% wet bacterial cellulose. In terms of PVA/dry BC ratios (w/w) for these films the ratios are 1/0.025 and 1/0.050. The obtained composite materials were characterized by infrared spectroscopy with Fourier transform (FT-IR) and UV-vis spectroscopy in order to evaluate the irradiation effect on their stability. The swelling behavior of the polymeric composites was also studied. The composite materials were compared with a film of pure PVA and a dry BC membrane.

  14. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  15. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less

  16. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number “3475...). (3) On a cargo tank containing only fuel oil, if the cargo tank is marked “Fuel Oil” on each side and...

  17. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number “3475...). (3) On a cargo tank containing only fuel oil, if the cargo tank is marked “Fuel Oil” on each side and...

  18. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number “3475...). (3) On a cargo tank containing only fuel oil, if the cargo tank is marked “Fuel Oil” on each side and...

  19. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol.

    PubMed

    Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen

    2010-01-15

    Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Experimental Study on the Distillation Capacity of Alcohol-Gasoline Blends

    NASA Astrophysics Data System (ADS)

    Stan, C.; Andreescu, C.; Dobre, A.; Iozsa, D.

    2017-10-01

    The paper objective is to highlight the consequences of adding different alcohols in gasoline on the distillation characteristics of these blends. Changes of the distillation parameters (ti, t10, t50, t90, tf, E70, E100, E150) have been evaluated and, also, the evolution trends of the distillation curves for different alcohol added in mixture with the gasoline have been estimated. Several types of gasoline sold on the market and methanol, ethanol, i-propanol and butanol were used during the experiments and the corresponding distillation curves have been analyzed. The alcohol fraction in mixtures varied between 5 and 20%. Double blends with alcohol added in gasoline and triple blends with two alcohols added in gasoline were used. The comparison of the distillation curves of the mixtures was done with respect to that of pure gasoline. It was specified how the values of the distillation parameters, E70, E100 and E150, were set within the limits of EN 228. The distillation was made on 100 ml of fuel and the measurements were made on each 10 ml of fuel transformed into vapor state and then condensed. The influence of the alcohols present in these mixtures was manifested by the changes in the shape of the distillation curve. The butanol influence on the distillation temperatures was found lower than that of ethanol, because the physicochemical properties of the butanol are closer to those of gasoline. The molecules of alcohols actively interact with the fractions of gasolines, their combination leading to a conjugate effect and to a modifying the distillation parameters values. The variation of these parameters depends on the alcohol fraction in the mixture.

  1. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    PubMed

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  2. 21 CFR 177.1200 - Cellophane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Clay, natural Coconut oil fatty acid (C12-C18) diethanolamide, coconut oil fatty acid (C12-C18... acetate Do. Polyvinyl alcohol (minimum viscosity of 4 percent aqueous solution at 20 °C of 4 centipoises...

  3. High-alcohol microemulsion fuel performance in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.H.; Compere, A.L.; Griffith, W.L.

    1990-01-01

    Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear,more » stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.« less

  4. Ion exchange polymers and method for making

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)

    1994-01-01

    An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.

  5. Preferential Surface Adsorption in Miscible Blends of Polystyrene and Poly(vinyl methyl ether).

    DTIC Science & Technology

    1988-02-02

    D. J. Phys. Chem. 1973, 74, 356. , c’’ 26~’::~ ~ ~ q,.,rf~.. w KRINMNIMVWU94M ~ ~ W-.TO"Kśtv X"- uV 23 25. Ober, R.; Paz, L.: Taupin , C.; Pincus, P...Boileau, S. Macromolecules 1983, 16 50. 26. DiMeglio, J.M.; Ober, R.; Paz, L.; Taupin , C.; Pincus, P.; Boileau, S. J. Physique 1983,4!, 1035. 27

  6. Thermal degradation of ternary blend films containing PVA/chitosan/vanillin

    NASA Astrophysics Data System (ADS)

    Kasai, Deepak; Chougale, Ravindra; Masti, Saraswati; Narasgoudar, Shivayogi

    2018-05-01

    The ternary chitosan/poly (vinyl alcohol)/vanillin blend films were prepared by solution casting method. The influence of equal weight percent of poly (vinyl alcohol) and vanillin on thermal stability of the chitosan blend films were investigated by using thermogravimetric analysis (TGA). The kinetic parameters such as enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy (ΔG*) in the first and second decomposition steps based on the thermogravimetric data were calculated. The thermal stabilities of the blend films were confirmed by thermodynamic parameters obtained in the activation energies, which indicated that increase in the equal weight percent of PVA/vanillin decreased the thermal stability of the chitosan film.

  7. Understanding How the Presence of Uniform Electric Fields Can Shift the Miscibility of Polystyrene/Poly(vinyl methyl ether) Blends

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Roth, Connie B.

    2015-03-01

    Techniques which can externally control and manipulate the phase behavior of polymeric systems, without altering chemistry on a molecular level, have great practical benefits. One such possible mechanism is the use of electric fields, shown to cause interfacial instabilities, orientation of morphologies, and phase transitions in polymer blends and block copolymers. We have recently demonstrated that the presence of uniform electric fields can also strongly enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether) (PVME) blends [J. Chem. Phys. 2014, 141, 134908]. Using fluorescence to measure the phase separation temperature Ts of PS/PVME blends with and without electric fields, we show that Ts can be reproducibly and reversibly increased by 13.5 +/- 1.4 K for electric fields of 17 kV/mm for this lower critical solution temperature (LCST) blend. This increase in blend miscibility with electric fields represents some of the largest absolute shifts in Ts ever recorded, well outside of experimental error. The best theoretical prediction for the expected shift in Ts with electric field for this system is still two orders of magnitude smaller than that observed experimentally. We discuss the limitations of this theoretical prediction and consider possible factors affecting miscibility that may need to be also included.

  8. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  9. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.

    PubMed

    Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun

    Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Magnetic properties of the Fe{sup II} spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.j; Iguchi, Motoi; Oku, Takeo

    2010-04-15

    Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis ofmore » a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.« less

  11. Hybrid Polyvinyl Alcohol and Cellulose Fiber Pulp Instead of Asbestos Fibers in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.

    2015-05-01

    The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.

  12. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  13. Effect of polyvinyl alcohol on electrochemically deposited ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2017-05-01

    Nanostructures of zinc oxide (ZnO) thin film are electrochemically deposited in the absence and presence of polyvinyl alcohol (PVA) on fluorine doped tin oxide (FTO) substrate. X-ray diffraction (XRD) patterns and Raman spectroscopy confirmed the formation of hexagonal structure of ZnO. The film prepared in the presence of PVA showed a better crystallinity and its crystalline growth along the (002) plane orientation. Field emission scanning electron microscope (FE-SEM) images display nanowire arrays (NWAs) and sponge like morphology for films prepared in the absence and presence of PVA, respectively. Photoluminescence (PL) spectra depict the film prepared in the presence PVA having less atomic defects with good crystal quality compared with other film. Dye sensitized solar cell (DSSC) is constructed using low cost eosin yellow dye and current-voltage (J-V) curve is recorded for optimized sponge like morphology based solar cell.

  14. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization.

    PubMed

    Yue, Yiying; Han, Jingquan; Han, Guangping; French, Alfred D; Qi, Yadong; Wu, Qinglin

    2016-08-20

    Core-shell structured hydrogels consisting of a flexible interpenetrating polymer network (IPN) core and a rigid semi-IPN shell were prepared through chemical crosslinking of polyvinyl alcohol (PVA) and sodium alginate (SA) with Ca(2+) and glutaraldehyde. Short cellulose nanofibers (CNFs) extracted from energycane bagasse were incorporated in the hydrogel. The shell was micro-porous and the core was macro-porous. The hydrogels could be used in multiple adsorption-desorption cycles for dyes, and the maximum methyl blue adsorption capacity had a 10% increase after incorporating CNFs. The homogeneous distribution of CNFs in PVA-SA matrix generated additional hydrogen bonds among the polymer molecular chains, resulting in enhanced density, viscoelasticity, and mechanical strength for the hydrogel. Specifically, the compressive strength of the hydrogel reached 79.5kPa, 3.2 times higher than that of the neat hydrogel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Activation of Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol) using a Supramolecular Trigger†

    PubMed Central

    Phillips, Daniel J.; Congdon, Thomas R.; Gibson, Matthew I.

    2016-01-01

    Antifreeze (glyco)proteins (AF(G)Ps) have potent ice recrystallisation inhibition (IRI) activity – a desirable phenomenon in applications such as cryopreservation, frozen food and more. In Nature AF(G)P activity is regulated by protein expression levels in response to an environmental stimulus; temperature. However, this level of regulation is not possible in synthetic systems. Here, a synthetic macromolecular mimic is introduced, using supramolecular assembly to regulate activity. Catechol-terminated poly(vinyl alcohol) was synthesised by RAFT polymerization. Upon addition of Fe3+, larger supramolecular star polymers form by assembly with two or three catechols. This increase in molecular weight effectively ‘switches on’ the IRI activity and is the first example of external control over the function of AFP mimetics. This provides a simple but elegant solution to the challenge of external control of AFP-mimetic function. PMID:28003855

  16. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity.

    PubMed

    Jiang, Xiancai; Xiang, Nanping; Zhang, Hongxiang; Sun, Yujun; Lin, Zhen; Hou, Linxi

    2018-04-15

    Development of bio-based hydrogels with good mechanical properties and high electrical conductivity is of great importance for their excellent biocompatibility and biodegradability. Novel electrically conducive and tough poly(vinyl alcohol)/sodium alginate (PVA/SA) composite hydrogel was obtained by a simple method in this paper. PVA and SA were firstly dissolved in distilled water to form the composite solution and the pure PVA/SA hydrogel was obtained through the freezing/thawing process. The pure PVA/SA hydrogels were subsequently immersed into the saturated NaCl aqueous solution to increase the gel strength and conductivity. The effect of the immersing time on the thermal and mechanical properties of PVA/SA hydrogel was studied. The swelling properties and the antiseptic properties of the obtained PVA/SA hydrogel were also studied. This paper provided a novel way for the preparation of tough hydrogel electrolyte. Copyright © 2018. Published by Elsevier Ltd.

  17. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment.

    PubMed

    Du, Jennifer R; Peldszus, Sigrid; Huck, Peter M; Feng, Xianshe

    2009-10-01

    A commercial poly(vinylidene fluoride) flat sheet membrane was modified by surface coating with a dilute poly(vinyl alcohol) (PVA) aqueous solution followed by solid-vapor interfacial crosslinking. The resulting PVA layer increased membrane smoothness and hydrophilicity and resulted in comparable pure water permeation between the modified and unmodified membranes. Fouling tests using a 5 mg/L protein solution showed that a short period of coating and crosslinking improved the anti-fouling performance. After 18 h ultrafiltration of a surface water with a TOC of approximately 7 mg C/L, the flux of the modified membrane was twice as high as that of the unmodified membrane. The improved fouling resistance of the modified membrane was related to the membrane physiochemical properties, which were confirmed by pure water permeation, X-ray photoelectron spectroscopy, and contact angle, zeta potential and roughness measurements.

  18. Characterization and application of zeolitic imidazolate framework-8@polyvinyl alcohol nanofibers mats prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoxiao; Yu, Linling; Li, Lianghao; Yang, Cao; Wen, Junjie; Ye, Xiaokun; Cheng, Jianhua; Hu, Yongyou

    2017-02-01

    In this study, Zeolitic imidazolate framework-8@polyvinyl alcohol (ZIF-8@PVA) nanofibers were creatively fabricated by electrospinning technique, and the nanofibers membranes were characterized by SEM, TEM, XRD, FTIR, TG, DSC, DTA, BET. Its thermal stability, mechanical property, water stability and adsorption nature were also performed. The optimized fabrication parameter of the ZIF-8@PVA was 10 wt% and the uniform diameters of the nanofibers has been obtained. In addition, the ZIF-8@PVA nanofibers displayed unique properties such as a water stable and flexible structure. The adsorption test for Congo red treatment revealed that the nanofibers had a great adsorption performance. The results indicated that the nonwoven fiber mats had a great potential as a new type of membrane adsorbents in wastewater purification. The possible mechanism of CR adsorption onto ZIF-8@PVA was researched.

  19. Crystal structures and magnetic properties of magnetite (Fe{sub 3}O{sub 4})/Polyvinyl alcohol (PVA) ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardiyanti, Harlina; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Kato, Takeshi

    2016-04-19

    Ribbon of magnetite (Fe{sub 3}O{sub 4})/Polyvinyl Alcohol (PVA) nanoparticles have been successfully fabricated with various concentration of PVA synthesized by co-precipitation method. Particle size of nanoparticles Fe{sub 3}O{sub 4} sample and ribbon Fe{sub 3}O{sub 4}/PVA 25% sample is about 9.34 nm and 11.29 nm, respectively. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization value decreased from 76.99 emu/g to 15.01 emu/g and coercivity increased from 49.30 Oe to 158.35 Oe as increasing concentration of PVA. Atomic Force Microscopy (AFM) analysis showed that encapsulated PVA given decreasing agglomeration, controlled shape of nanoparticles Fe{sub 3}O{sub 4} more spherical and dispersed. Surfacemore » roughness decreased with increasing concentration of PVA.« less

  20. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors

    NASA Astrophysics Data System (ADS)

    Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.

    2016-10-01

    The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.

  1. Additives affecting properties of β-Li2TiO3 pebbles in a modified indirect wet chemistry process

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Long; Liu, Wei; Yang, Long-Tao; Wang, Dao-Yi; Wu, Kang; Zhang, Zeng-Ping; Wang, Xiu-Feng; Yanagisawa, Kazumichi

    2016-11-01

    Lithium metatitanate (β-Li2TiO3) pebbles were fabricated via the modified indirect wet chemistry method. Effect of varied additives, as polyvinyl alcohol, glycerol, and agar on the properties evolution was investigated. The highest density is obtained by adding 2 wt% (weight percent) polyvinyl alcohol, 3 wt% glycerol, and 3 wt% agar, respectively. β-Li2TiO3 pebbles with relative sintered density of 92.4%T.D. (Theoretical Density), the ratio of the intensity of diffraction peak (002) to that of (-133) of about 2.93, about 1.58 mm in diameter, a better sphericity of 1.02, the particle size of 5-6 μm, and the well-developed surface layered structure are successfully fabricated with 3 wt% glycerol. Glycerol is beneficial to improving the properties by other fabrication method as well.

  2. Study on the performance of eosin-doped poly(vinyl alcohol)/acrylamide photopolymer films for holographic recording using 488-nm wavelength

    NASA Astrophysics Data System (ADS)

    Rajesh, Chelakkal Sukumaran; Sreeroop, Sasidharan Savithrydevi; Pramitha, Vayalamkuzhi; Joseph, Rani; Sreekumar, Krishnapillai; Kartha, Cheranellore Sudha

    2011-12-01

    This article reports a study done on eosin-doped poly(vinyl alcohol)/acrylamide films for holographic recording using 488 nm Ar+ laser. Films were fabricated using gravity settling method at room temperature and were stored under normal laboratory conditions. Ar+ laser (488 nm) was used for fringe recording. Characterization was done by real time transmittance measurement, optical absorption studies, and diffraction efficiency measurements. Various holographic parameters such as exposure energy, recording power, spatial frequency, etc., were optimized so as to ensure maximum performance. More than 85% diffraction efficiency was obtained at an exposure energy of 50 mJ/cm2 in the optimized film. Efforts were taken to study the environmental stability of this self-developing polymeric material by looking at its shelf life and storage life. Compatibility for recording transmission hologram was also checked.

  3. The size-reduced Eudragit® RS microparticles prepared by solvent evaporation method - monitoring the effect of selected variables on tested parameters.

    PubMed

    Vasileiou, Kalliopi; Vysloužil, Jakub; Pavelková, Miroslava; Vysloužil, Jan; Kubová, Kateřina

    2018-01-01

    Size-reduced microparticles were successfully obtained by solvent evaporation method. Different parameters were applied in each sample and their influence on microparticles was evaluated. As a model drug the insoluble ibuprofen was selected for the encapsulation process with Eudragit® RS. The obtained microparticles were inspected by optical microscopy and scanning electron microscopy. The effect of aqueous phase volume (600, 400, 200 ml) and the concentration of polyvinyl alcohol (PVA; 1.0% and 0.1%) were studied. It was evaluated how those variations and also size can affect microparticle characteristics such as encapsulation efficiency, drug loading, burst effect and microparticle morphology. It was observed that the sample prepared with 600 ml aqueous phase and 1% concentration of polyvinyl alcohol gave the most favorable results.Key words: microparticles solvent evaporation sustained drug release Eudragit RS®.

  4. Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications

    PubMed Central

    Zhong, Tuhua; Oporto, Gloria S.; Jaczynski, Jacek; Jiang, Changle

    2015-01-01

    Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reducing agent. The resulting hybrid material was embedded into a polyvinyl alcohol (PVA) matrix using a solvent casting method. The morphology of TNFC-copper nanoparticles was analyzed by transmission electron microscopy (TEM); spherical copper nanoparticles with average size of 9.2 ± 2.0 nm were determined. Thermogravimetric analysis and antimicrobial performance of the films were evaluated. Slight variations in thermal properties between the nanocomposite films and PVA resin were observed. Antimicrobial analysis demonstrated that one-week exposure of nonpathogenic Escherichia coli DH5α to the nanocomposite films results in up to 5-log microbial reduction. PMID:26137482

  5. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol.

    PubMed

    Wang, Hai-Yan; Lu, Shu-Shen; Lun, Zhao-Rong

    2009-02-01

    Knowledge of the glass transition behavior of vitrification solutions is important for research and planning of the cryopreservation of biological materials by vitrification. This brief communication shows the analysis for the glass transition and glass stability of the multi-component vitrification solutions containing propanediol (PE), dimethyl sulfoxide (Me2SO) and polyvinyl alcohol (PVA) by using differential scanning calorimetry (DSC) during the cooling and subsequent warming between 25 and -150 degrees C. The glass formation of the solutions was enhanced by introduction of PVA. Partial glass formed during cooling and the fractions of free water in the partial glass matrix increased with the increasing of PVA concentration, which caused slight decline of glass transition temperature, T(g). Exothermic peaks of devitrification were delayed and broadened, which may result from the inhibition of ice nucleation or recrystallization of PVA.

  6. Influence of Binder in Iron Matrix Composites

    NASA Astrophysics Data System (ADS)

    Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.

    2010-03-01

    The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100° C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.

  7. Influence of Polyvinyl Alcohol (PVA) Addition on Silica Membrane Performance Prepared from Rice Straw

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.

  8. Identification of diffusive transport properties of poly(vinyl alcohol) hydrogels from reservoir test.

    PubMed

    Kazimierska-Drobny, Katarzyna; Kaczmarek, Mariusz

    2013-12-01

    In this paper the identification of diffusion coefficient, retardation factor and surface distribution coefficient for selected salts in poly(vinyl alcohol) hydrogels is performed. The identification of the transport parameters is based on the previously developed inverse problem technique using experimental data from the reservoir test and the solution of the diffusive transport equation with linear equilibrium sorption. The estimated values of diffusion coefficient are: for physiological fluid (6.30±0.10)×10(-10) m(2)/s, for 1 M NaCl (6.42±0.39)×10(-10) m(2)/s, and for 1 M KCl (7.94±0.38)×10(-10) m(2)/s. The retardation factor for all tested materials and salts is equal or close to one. The average value of the effective surface distribution coefficient is equal to 0.5. © 2013 Elsevier B.V. All rights reserved.

  9. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  10. Structural insights into enzymatic degradation of oxidized polyvinyl alcohol.

    PubMed

    Yang, Yu; Ko, Tzu-Ping; Liu, Long; Li, Jianghua; Huang, Chun-Hsiang; Chan, Hsiu-Chien; Ren, Feifei; Jia, Dongxu; Wang, Andrew H-J; Guo, Rey-Ting; Chen, Jian; Du, Guocheng

    2014-09-05

    The ever-increasing production and use of polyvinyl alcohol (PVA) threaten our environment. Yet PVA can be assimilated by microbes in two steps: oxidation and cleavage. Here we report novel α/β-hydrolase structures of oxidized PVA hydrolase (OPH) from two known PVA-degrading organisms, Sphingopyxis sp. 113P3 and Pseudomonas sp. VM15C, including complexes with substrate analogues, acetylacetone and caprylate. The active site is covered by a lid-like β-ribbon. Unlike other esterase and amidase, OPH is unique in cleaving the CC bond of β-diketone, although it has a catalytic triad similar to that of most α/β-hydrolases. Analysis of the crystal structures suggests a double-oxyanion-hole mechanism, previously only found in thiolase cleaving β-ketoacyl-CoA. Three mutations in the lid region showed enhanced activity, with potential in industrial applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dancing on coke: smuggling cocaine dispersed in polyvinyl alcohol.

    PubMed

    van Nuijs, Alexander L N; Maudens, Kristof E; Lambert, Willy E; Van Calenbergh, Serge; Risseeuw, Martijn D P; Van hee, Paul; Covaci, Adrian; Neels, Hugo

    2012-01-01

    Recent trends suggest that cocaine smugglers have become more and more inventive to avoid seizures of large amounts of cocaine transported between countries. We report a case of a mail parcel containing a dance pad which was seized at the Customs Department of Brussels Airport, Belgium. After investigation, the inside of the dance pad was found to contain a thick polymer, which tested positive for cocaine. Analysis was performed using a routine colorimetric swipe test, gas chromatography coupled with mass spectrometry and nuclear magnetic resonance spectroscopy. The polymer was identified as polyvinyl alcohol (PVA) and contained 18% cocaine, corresponding to a street value of € 20,000. Laboratory experiments showed that cocaine could be easily extracted from the PVA matrix. This case report reveals a new smuggling technique for the transportation of large amounts of cocaine from one country to another. © 2011 American Academy of Forensic Sciences.

  12. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  13. Plasma modified nanofibres based on gum kondagogu and their use for collection of nanoparticulate silver, gold and platinum.

    PubMed

    Padil, Vinod Vellora Thekkae; Stuchlík, Martin; Černík, Miroslav

    2015-05-05

    Electrospun nanofibre membranes from blend solutions of deacetylated gum kondagogu and polyvinyl alcohol of various weight proportions were prepared. The electrospun membrane was cross linked by heating at 150°C for 6h and later modified by methane plasma treatment. Membranes were successively used for the removal of nanoparticles (Ag, Au and Pt) from water. Pt nanoparticles with the smallest size (2.4 ± 0.7 nm) has a higher adsorption capacity (270.4 mg/g and 327.2mg/g) compared to Au and Ag nanoparticles with particle sizes 7.8 ± 2.3 nm and 10.5 ± 3.5 nm onto nanofibre membrane (NFM) and methane plasma treated membrane (P-NFM). The extraction efficiency of P-NFM for the removal of nanoparticles in water is higher compared to untreated membranes. The adsorption kinetics were evaluated by pseudo-first order and pseudo-second order models for the extraction of nanoparticles from water, with the pseudo-second order model providing a better fit. The reusability and regeneration of the P-NFM for consecutive adsorption was also established. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Improving agar electrospinnability with choline-based deep eutectic solvents.

    PubMed

    Sousa, Ana M M; Souza, Hiléia K S; Uknalis, Joseph; Liu, Shih-Chuan; Gonçalves, Maria P; Liu, LinShu

    2015-09-01

    Very recently our group has produced novel agar-based fibers by an electrospinning technique using water as solvent and polyvinyl alcohol (PVA) as co-blending polymer. Here, we tested the deep eutectic solvent (DES), (2-hydroxyethyl)trimethylammonium chloride/urea prepared at 1:2 molar ratio, as an alternative solvent medium for agar electrospinning. The electrospun materials were collected with an ethanol bath adapted to a previous electrospinning set-up. One weight percent agar-in-DES showed improved viscoelasticity and hence, spinnability, when compared to 1 wt% agar-in-water and pure agar nanofibers were successfully electrospun if working above the temperature of sol-gel transition (∼80 °C). By changing the solvent medium we decreased the PVA concentration (5 wt% starting solution) and successfully produced composite fibers with high agar contents (50/50 agar/PVA). Best composite fibers were formed with the 50/50 and 30/70 agar/PVA solutions. These fibers were mechanically resistant, showed tailorable surface roughness and diverse size distributions, with most of the diameters falling in the sub-micron range. Both nano and micro forms of agar fibers (used separately or combined) may have potential for the design of new and highly functional agar-based materials. Published by Elsevier B.V.

  15. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.

    PubMed

    Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan

    2017-11-01

    Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

    NASA Astrophysics Data System (ADS)

    Lee, Youngme; Sah, Eric; Sah, Hongkee

    2015-11-01

    The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60-150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5-4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.

  17. Microfluidic solvent extraction of poly(vinyl alcohol) droplets: effect of polymer structure on particle and capsule formation.

    PubMed

    Sharratt, W N; Brooker, A; Robles, E S J; Cabral, J T

    2018-04-26

    We investigate the formation of poly(vinyl alcohol) microparticles by the selective extraction of aqueous polymer solution droplets, templated by microfluidics and subsequently immersed in a non-solvent bath. The role of polymer molecular mass (18-105 kg mol-1), degree of hydrolysis (88-99%) and thus solubility, and initial solution concentration (0.01-10% w/w) are quantified. Monodisperse droplets with radii ranging from 50 to 500 μm were produced at a flow-focusing junction with carrier phase hexadecane and extracted into ethyl acetate. Solvent exchange and extraction result in droplet shrinkage, demixing, coarsening and phase-inversion, yielding polymer microparticles with well-defined dimensions and internal microstructure. Polymer concentration, varied from below the overlap concentration c* to above the concentrated crossover c**, as estimated by viscosity measurements, was found to have the largest impact on the final particle size and extraction timescale, while polymer mass and hydrolysis played a secondary role. These results are consistent with the observation that the average polymer concentration upon solidification greatly exceeds c**, and that the internal microparticle porosity is largely unchanged. However, reducing the initial polymer concentration to well below c* (approximately 100×) and increasing droplet size yields thin-walled (100's of nm) capsules which controllably crumple upon extraction. The symmetry of the process can be readily broken by imposing extraction conditions at an impermeable surface, yielding large, buckled, cavity morphologies. Based on these results, we establish robust design criteria for polymer capsules and particles, demonstrated here for poly(vinyl alcohol), with well-defined shape, dimensions and internal microstructure.

  18. High efficiency preparation and characterization of intact poly(vinyl alcohol) dehydrogenase from Sphingopyxis sp.113P3 in Escherichia coli by inclusion bodies renaturation.

    PubMed

    Jia, Dongxu; Yang, Yu; Peng, Zhengcong; Zhang, Dongxu; Li, Jianghua; Liu, Long; Du, Guocheng; Chen, Jian

    2014-03-01

    Poly(vinyl alcohol) dehydrogenase (PVADH, EC 1.1.99.23) is an enzyme which has potential application in textile industry to degrade the poly(vinyl alcohol) (PVA) in waste water. Previously, a 1,965-bp fragment encoding a PVADH from Sphingopyxis sp. 113P3 was synthesized based on the replacement of the rare codons in Escherichia coli (E. coli). In this work, the deduced mature PVADH (mPVADH) gene of 1,887 bp was amplified by polymerase chain reaction (PCR) and inserted into the site between NcoI and HindIII in pET-32a(+). The constructed recombinant plasmid was transformed into E. coli Rosetta (DE3). In shake flask, the fusion protein of thioredoxin (Trx)-mPVADH was expressed precisely; however, Trx-mPVADH was found to accumulate mainly as inclusion bodies. After isolating, dissolving in buffer containing urea, purification, dialysis renaturation, and digesting with recombinant enterokinase/His (rEK/His), the bioactive mPVADH fragments were obtained with protein concentration of 0.56 g/L and enzymatic activity of 194 U/mL. The K m and V max values for PVA 1799 were 2.33 mg/mL and 15.7 nmol/(min·mg protein), respectively. (1)H-NMR and infrared (IR) spectrum demonstrated that its biological function was oxidizing hydroxyl groups of PVA 1799 to form diketone, and PVA 1799 could be degraded completely by successive treatment with mPVADH and oxidized PVA hydrolase (OPH).

  19. Ultrasonic-microwave assisted synthesis of three-dimensional polyvinyl alcohol carbonate/graphene oxide sponge and studies of surface resistivity and thermal stability.

    PubMed

    Song, Yunna; Li, Yuehai; Li, Jihui; Li, Yongshen; Niu, Shuai; Li, Ning

    2018-04-01

    In the article, graphene oxide (GO) was prepared by flake graphite, nitric acid and peroxyacetic acid via the sonochemical method and characterized, and polyvinyl alcohol carbonate/GO composite (PVAC/GO composite) was synthesized by polyvinyl alcohol (PVA), dimethyl carbonate (DMC) and GO via the approach of transesterification in the case of ultrasonic-microwave synergistic effects and characterized, and three-dimensional PVAC/GO sponge (3D PVAC/GO sponge) was manufactured by PVAC/GO composite via the foaming approach and characterized, and the thermal stability and surface resistivity of 3D PVAC/GO sponge were investigated. Based on those, it had been attested that PVAC polymer was structured by DMC and PVA and had the six-membered lactone rings and the ether bonds, and PVAC/GO composite was constituted by 2D GO lattice and PVAC polymer, and 3D PVAC/GO sponge was constructed by PVAC/GO composite, and the surface resistivity of 3D PVAC/GO sponge with 0.00, 0.60, 1.20, 1.80 and 2.40 g of GO were 9.07  ×  10 7 , 6.02  ×  10 7 , 4.65  ×  10 7 , 2.47  ×  10 7 and 1.06  ×  107 O/sq, and the thermal stability of 3D PVAC/GO sponge had improved. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. UPLC-ESI-Q-TOF-MS(E) and GC-MS identification and quantification of non-intentionally added substances coming from biodegradable food packaging.

    PubMed

    Canellas, Elena; Vera, Paula; Nerín, Cristina

    2015-09-01

    Biodegradable packagings are made by combination of several materials creating a multilayer with the properties needed. Each material, including the adhesive, could contain substances that could migrate to the food. In this work, gas chromatography coupled with mass spectrometry and ultra-high-pressure liquid chromatography coupled with quadrupole time-of-flight mass spectrometry were used to identify the biodegradable adhesive compounds. Five of the 13 compounds identified were nonintentionally added substances; they were neoformed compounds created by the reaction of added compounds in the adhesive. Moreover, the migration of the compounds through four different biodegradable materials-paper, polylactic acid, ecovio®, and polyvinyl alcohol-was studied for the first time. Three of the 13 compounds identified in the adhesive migrated from the adhesive to Tenax®, which was used as a solid food simulant. One of them, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, was an intentionally added substance, and the other two were 1,6-dioxacyclododecane-7,12-dione and 1,6,13,18-tetraoxacyclotetracosane-7,12,19,24-tetraone, which were nonintentionally added substances identified in this work. Higher migration values (ranging from 0.81 to 2.07 mg/kg) were observed for migration through ecovio® than through the multilayer made by combination of ecovio® and polyvinyl alcohol (0.07-0.39 mg/kg) owing to the barrier effect provided by polyvinyl alcohol. The migration values for migration through paper and polylactic acid were below the limits of detection.

  1. Sequestration of dyes from artificially prepared textile effluent using RSM-CCD optimized hybrid backbone based adsorbent-kinetic and equilibrium studies.

    PubMed

    Sukriti; Sharma, Jitender; Chadha, Amritpal Singh; Pruthi, Vaishali; Anand, Prerna; Bhatia, Jaspreet; Kaith, B S

    2017-04-01

    Present work reports the synthesis of semi-Interpenetrating Network Polymer (semi-IPN) using Gelatin-Gum xanthan hybrid backbone and polyvinyl alcohol in presence of l-tartaric acid and ammonium persulphate as the crosslinker-initiator system. Reaction parameters were optimized with Response Surface Methodology (RSM) in order to maximize the percent gel fraction of the synthesized sample. Polyvinyl alcohol, l-Tartaric acid, ammonium persulphate, reaction temperature, time and pH of the reaction medium were found to make an impact on the percentage gel fraction obtained. Incorporation of polyvinyl alcohol chains onto hybrid backbone and crosslinking between the different polymer chains were confirmed through techniques like FTIR, SEM-EDX and XRD. Semi-IPN was found to be very efficient in the removal of cationic dyes rhodamine-B (70%) and auramine-O (63%) from a mixture with an adsorbent dose of 700 mg, initial concentration of rhodamine-B 6 mgL -1 and auramine-O 26 mgL -1 , at an time interval of 22-25 h and 30 °C temp. Further to determine the nature of adsorption Langmuir and Freundlich adsorption isotherm models were studied and it was found that Langmuir adsorption isotherm was the best fit model for the removal of mixture of dyes. Kinetic studies for the sorption of dyes favored the reaction mechanism to occur via a pseudo second order pathway with R 2 value about 0.99. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Novel Elastomeric Closed Cell Foam - Nonwoven Fabric Composite Material (Phase III)

    DTIC Science & Technology

    2008-10-01

    increasing the polymer content of the foam. From laboratory studies, processing was found to improve by using different types of NBR rubber . The AF07 B...Foam Optimization (Task 1) Prior development of fire retarded closed cell foam yielded attractive candidates for scale-up. Nitrile-butadiene rubber ... NBR ) and polyvinyl chloride (PVC) blends provided the most cost effective solutions. Two types of formulas were chosen for optimization. The first

  3. A polyacrylamide-based silica stationary phase for the separation of carbohydrates using alcohols as the weak eluent in hydrophilic interaction liquid chromatography.

    PubMed

    Cai, Jianfeng; Cheng, Lingping; Zhao, Jianchao; Fu, Qing; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao

    2017-11-17

    A hydrophilic interaction liquid chromatography (HILIC) stationary phase was prepared by a two-step synthesis method, immobilizing polyacrylamide on silica sphere particles. The stationary phase (named PA, 5μm dia) was evaluated using a mixture of carbohydrates in HILIC mode and the column efficiency reached 121,000Nm -1 . The retention behavior of carbohydrates on PA stationary phase was investigated with three different organic solvents (acetonitrile, ethanol and methanol) employed as the weak eluent. The strongest hydrophilicity of PA stationary phase was observed in both acetonitrile and methanol as the weak eluent, when compared with another two amide stationary phases. Attributing to its high hydrophilicity, three oligosaccharides (xylooligosaccharide, fructooligosaccharide and chitooligosaccharides) presented good retention on PA stationary phase using alcohols/water as mobile phase. Finally, PA stationary phase was successfully applied for the purification of galactooligosaccharides and saponins of Paris polyphylla. It is feasible to use safer and cheaper alcohols to replace acetonitrile as the weak eluent for green analysis and purification of polar compounds on PA stationary phase. Copyright © 2017. Published by Elsevier B.V.

  4. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warangkhana, Phromma; Rathanawan, Magaraphan, E-mail: rathanawan.k@chula.ac.th; Jana Sadhan, C., E-mail: janas@uakron.edu

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter ledmore » to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness.« less

  5. Topological and morphological analysis of gamma rays irradiated chitosan-poly (vinyl alcohol) blends using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bhatt, Rinkesh; Bisen, D. S.; Bajpai, R.; Bajpai, A. K.

    2017-04-01

    In the present communication, binary blends of poly (vinyl alcohol) (PVA) and chitosan (CS) were prepared by solution cast method and the roughness parameters of PVA, native CS and CS-PVA blend films were determined using atomic force microscopy (AFM). Moreover, the changes in the morphology of the samples were also investigated after irradiation of gamma rays at absorbed dose of 1 Mrad and 10 Mrad for the scanning areas of 5×5 μm2, 10×10 μm2 and 20×20 μm2. Amplitude, statistical and spatial parameters, including line, 3D and 2D image profiles of the experimental surfaces were examined and compared to un-irradiated samples. For gamma irradiated CS-PVA blends the larger waviness over the surface was found as compared to un-irradiated CS-PVA blends but the values of average roughness for both the films were found almost same. The coefficient of skewness was positive for gamma irradiated CS-PVA blends which revealed the presence of more peaks than valleys on the blend surfaces.

  6. PVA fiber reinforced shotcrete for rehabilitation and preventative maintenance of aging culverts.

    DOT National Transportation Integrated Search

    2009-12-01

    The goal of this project was to investigate the potential for using PVA (polyvinyl alcohol) fiber : reinforced mortar for the rehabilitation and preventative maintenance of aging metal highway : drainage culverts using a spray-on liner application ap...

  7. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  8. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  9. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  10. Effect of lower and higher alcohol fuel synergies in biofuel blends and exhaust treatment system on emissions from CI engine.

    PubMed

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Martin, Leenus Jesu; Beddhannan, Nagalingam

    2017-11-01

    The present study deals with performance, emission and combustion studies in a single cylinder CI engine with lower and higher alcohol fuel synergies with biofuel blends and exhaust treatment system. Karanja oil methyl ester (KOME), widely available biofuel in India, and orange oil (ORG), a low carbon biofuel, were taken for this study, and equal volume blend was prepared for testing. Methanol (M) and n-pentanol (P) was taken as lower and higher alcohol and blended 20% by volume with KOME-ORG blend. Activated carbon-based exhaust treatment indigenous system was designed and tested with KOME-ORG + M20 and KOME-ORG + P20 blend. The tests were carried out at various load conditions at a constant speed of 1500 rpm. The study revealed that considering performance, emission and combustion studies, KOME-ORG + M20 + activated carbon are found optimum in reducing NO, smoke and CO 2 emission. Compared to KOME, for KOME-ORG + M20 + activated carbon, NO emission is reduced from 10.25 to 7.85 g/kWh, the smoke emission is reduced from 49.4 to 28.9%, and CO 2 emission is reduced from 1098.84 to 580.68 g/kWh. However, with exhaust treatment system, an increase in HC and CO emissions and reduced thermal efficiency is observed due to backpressure effects.

  11. Metalworking and machining fluids

    DOEpatents

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  12. Multipoint attachment to a support protects enzyme from inactivation by organic solvents: alpha-Chymotrypsin in aqueous solutions of alcohols and diols.

    PubMed

    Mozhaev, V V; Sergeeva, M V; Belova, A B; Khmelnitsky, Y L

    1990-03-25

    Inactivation of alpha-chymotrypsin in aqueous solutions of alcohols and diols proceeds both reversibly and irreversibly. Reversible loss of the specific enzyme activity results from conformational changes (unfolding) of the enzyme detected by fluorescence spectroscopy. Multipoint covalent attachment to the matrix of polyacryl-amide gel by copolymerization method stabilizes alpha-chymotrypsin from denaturation by alcohols, the stabilizing effect increasing with the number of bonds between the protein and the support. Immobilization protects the enzyme also from irreversible inactivation by organic solvents resulting from bimolecular aggregation and autolysis.

  13. Structural, mechanical and electrical properties biopolymer blend nanocomposites derived from poly (vinyl alcohol)/cashew gum/magnetite

    NASA Astrophysics Data System (ADS)

    Ramesan, M. T.; Jayakrishnan, P.; Manojkumar, T. K.; Mathew, G.

    2018-01-01

    Blending of poly vinyl alcohol (PVA) and natural biopolymers such as cashew gum (CG) with magnetite (Fe3O4) nanoparticles has been a promising way for preparing bio-degradable polymeric blend nanocomposites. PVA/CG/Fe3O4 blend nanocomposites have been prepared by a simple solution casting technique using water as the green solvent. The characterization of blend nanocomposites has been carried out by using Fourier transform infrared, UV, x-ray diffraction (XRD), high resolution transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, mechanical properties and electrical conductivity. The interaction between nanoparticles and the blend segments was confirmed from the shift in characteristic absorption peaks of nanocomposites compared to PVA/CG blend. XRD analysis has shown the presence of crystalline peaks of nanoparticles in the blend matrix. The uniform distribution of Fe3O4 nanoparticles in the blend was revealed by TEM and SEM. The strong interaction of nanoparticles with the blend has been confirmed by the increase in glass transition temperature resulting from the reduced flexibility of the blend nanocomposite compared to that of the blend system. An increase in thermal stability and tensile strength and reduction in elongation at break of nanocomposites have been noticed with the increasing loading of nanoparticles. The AC electrical conductivity, dielectric constant and dielectric loss of the nanocomposites have been found to be higher than that of the blend. Generally, it can be stated that the magnetite nanoparticles acts as a potential filler in the PVA/CG blend at 7 wt% loading, giving the best balance of properties.

  14. 27 CFR 24.214 - Spanish type blending sherry.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.214 Spanish type blending sherry. Blending wine made with partially caramelized grape concentrate may be produced... except pursuant to an approved formula or in the further production of this type of wine. (Sec. 201, Pub...

  15. 27 CFR 24.214 - Spanish type blending sherry.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.214 Spanish type blending sherry. Blending wine made with partially caramelized grape concentrate may be produced... except pursuant to an approved formula or in the further production of this type of wine. (Sec. 201, Pub...

  16. 27 CFR 24.214 - Spanish type blending sherry.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Spanish type blending... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.214 Spanish..., produced under this section, is designated “Spanish Type Blending Sherry.” Upon removal, the shipping...

  17. Change spectroscopic studies and optimization electrical properties of PVP/PEO doped copper phthalocyanines

    NASA Astrophysics Data System (ADS)

    Ragab, H. M.; Ahmad, F.; Radwan, Sh. N.

    2016-12-01

    Composite films of polyvinyl pyrrolidone and Polyethylene oxide (PVP/PEO) blend doped with 1, 4 and 12 wt% of copper Phthalocyanines (CuPc) were prepared by casting method. The samples were studied using different techniques. The X-ray (XRD) revealed average crystallite size and X-ray intensity decrease at 1 CuPc %; this implies to an increase on the degree of amorphousity, then increase at CuPc >1%. The change in both the intensity and position of some absorption peaks of the blend with CuPc content were observed in Fourier transform infrared (FTIR) spectroscopy suggest the complexation of polymer blend. The UV-Vis spectroscopy revealed that the optical band gap decreases as well as band tail width increases with increasing CuPc concentration. It may be reflect the role of CuPc in modifying the electronic structure of the polymeric matrix. The charge carrier concentration is responsible for conductivity improvement in electrolytes rather than the mobility.

  18. Biochemistry of microbial polyvinyl alcohol degradation.

    PubMed

    Kawai, Fusako; Hu, Xiaoping

    2009-08-01

    Effect of minor chemical structures such as 1,2-diol content, ethylene content, tacticity, a degree of polymerization, and a degree of saponification of the main chain on biodegradability of polyvinyl alcohol (PVA) is summarized. Most PVA-degraders are Gram-negative bacteria belonging to the Pseudomonads and Sphingomonads, but Gram-positive bacteria also have PVA-degrading abilities. Several examples show symbiotic degradation of PVA by different mechanisms. Penicillium sp. is the only reported eukaryotic degrader. A vinyl alcohol oligomer-utilizing fungus, Geotrichum fermentans WF9101, has also been reported. Lignolytic fungi have displayed non-specific degradation of PVA. Extensive published studies have established a two-step process for the biodegradation of PVA. Some bacteria excrete extracellular PVA oxidase to yield oxidized PVA, which is partly under spontaneous depolymerization and is further metabolized by the second step enzyme (hydrolase). On the other hand, PVA (whole and depolymerized to some extent) must be taken up into the periplasmic space of some Gram-negative bacteria, where PVA is oxidized by PVA dehydrogenase, coupled to a respiratory chain. The complete pva operon was identified in Sphingopyxis sp. 113P3. Anaerobic biodegradability of PVA has also been suggested.

  19. Electrospun polymer nanofibers reinforced by tannic acid/Fe+++ complexes

    USDA-ARS?s Scientific Manuscript database

    Nanofibers and fibrous mats of polyvinyl alcohol (PVA) loaded with tannic acid (TA) and ferric ion (Fe+++) complexes (TA-Fe+++) were synthesized by the electrospinning technique. The spinning solutions were characterized for surface tension, electrical conductivity, and viscosity. It was found that ...

  20. Assessment of n-pentanol/Calophyllum inophyllum/diesel blends on the performance, emission, and combustion characteristics of a constant-speed variable compression ratio direct injection diesel engine.

    PubMed

    Ramakrishnan, Purnachandran; Kasimani, Ramesh; Peer, Mohamed Shameer; Rajamohan, Sakthivel

    2018-05-01

    Alcohol is used as an additive for a long time with the petroleum-based fuels. In this study, the higher alcohol, n-pentanol, was used as an additive to Calophyllum inophyllum (CI) biodiesel/diesel blends at 10, 15, and 20% by volume. In all blends, the ratio of CI was maintained at 20% by volume. The engine characteristics of the pentanol fuel blends were compared with the diesel and CI20 (Calophyllum inophyllum 20% and diesel 80%) biodiesel blend. The nitrogen oxide (NO) emission of the pentanol fuel blends showed an increased value than CI20 and neat diesel fuel. The carbon dioxide (CO 2 ) also increased with increase in pentanol addition with the fuel blends than CI20 fuel blend and diesel. The carbon monoxide (CO) and hydrocarbon (HC) emissions were decreased with increase in pentanol proportion in the blend than the CI20 fuel and diesel. The smoke emission was reduced and the combustion characteristics of the engine were also improved by using pentanol blended fuels. From this investigation, it is suggested that 20% pentanol addition with the biodiesel/diesel fuel is suitable for improved performance and combustion characteristics of a diesel engine without any engine modifications, whereas CO 2 and NO emissions increased with addition of pentanol due to effective combustion.

  1. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications.

    PubMed

    Datta, Pallab; Chatterjee, Jyotirmoy; Dhara, Santanu

    2013-01-01

    Polyvinyl alcohol (PVA) and polylactic acids (PLA) are biocompatible materials possessing some inherent contrasting limitations which have reduced the scope of their individual applicability. Specifically, overcoming strong hydrophobicity and introducing chemical groups for biofunctionalization are unmet challenges for PLA whilst chemical endeavors to render adequate aqueous stability and cell adhesion properties to PVA have not produced completely intended results. Objective of the present work is to explore synthesis of a graft polymer as an approach towards coupling biofunctional groups with PLA materials. In a two-step reaction, PPVA (phosphorylated polyvinyl alcohol or PVA pre-functionalized with phosphate) is esterified with lactic acid followed by polymerization into PLA in presence of stannous chloride as catalyst to obtain phosphorylated polyvinyl alcohol-graft-polylactic acid (PPVA-g-LA) copolymer. Product is characterized by nuclear magnetic resonance, X-ray diffraction, and thermogravimetric analysis. PPVA-g-LA shows an increase in uniaxial elongation compared to parent PPVA under condition of tensile loading. The graft copolymer also exhibits higher water contact angles compared to PPVA, but a more hydrophilic surface compared to PLA. Culture of MG-63 cells on solvent cast films of polymers demonstrates that PPVA-g-LA as a cell substrate can significantly (p < 0.05) improve proliferation and differentiation of cells compared to PPVA substrate whereas in comparison to PLA can significantly ameliorate osteoblast function of cultured cells. Overall, results illustrate the feasibility of PVA to act as a carrier for biofunctional agents to be coupled to lactic acid-based biomaterials with subsequent improvement in cell response on the polymers. In this attempt, it also affords materials with tunable surface or bulk properties of relevance for tissue engineering applications.

  2. Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity.

    PubMed

    Li, Xin-Gui; Li, Ang; Huang, Mei-Rong

    2008-01-01

    Chemical oxidative polymerization at 15 degrees C was used for the simple and productive synthesis of polyaniline (PAN) nanosticks. The effect of polymerization media on the yield, size, stability, and electrical conductivity of the PAN nanosticks was studied by changing the concentration and nature of the acid medium and oxidant and by introducing organic solvent. Molecular and supramolecular structure, size, and size distribution of the PAN nanosticks were characterized by UV/Vis and IR spectroscopy, X-ray diffraction, laser particle-size analysis, and transmission electron microscopy. Introduction of organic solvent is advantageous for enhancing the yield of PAN nanosticks but disadvantageous for formation of PAN nanosticks with small size and high conductivity. The concentration and nature of the acid medium have a major influence on the polymerization yield and conductivity of the nanosized PAN. The average diameter and length of PAN nanosticks produced with 2 M HNO(3) and 0.5 M H(2)SO(4) as acid media are about 40 and 300 nm, respectively. The PAN nanosticks obtained in an optimal medium (i.e., 2 M HNO(3)) exhibit the highest conductivity of 2.23 S cm(-1) and the highest yield of 80.7 %. A mechanism of formation of nanosticks instead of nanoparticles is proposed. Nanocomposite films of the PAN nanosticks with poly(vinyl alcohol) show a low percolation threshold of 0.2 wt %, at which the film retains almost the same transparency and strength as pure poly(vinyl alcohol) but 262 000 times the conductivity of pure poly(vinyl alcohol) film. The present synthesis of PAN nanosticks requires no external stabilizer and provides a facile and direct route for fabrication of PAN nanosticks with high yield, controllable size, intrinsic self-stability, strong redispersibility, high purity, and optimizable conductivity.

  3. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid.

    PubMed

    Keum, Chang-Gu; Noh, Young-Wook; Baek, Jong-Suep; Lim, Ji-Ho; Hwang, Chan-Ju; Na, Young-Guk; Shin, Sang-Chul; Cho, Cheong-Weon

    2011-01-01

    Nanoparticles fabricated from the biodegradable and biocompatible polymer, polylactic-co-glycolic acid (PLGA), are the most intensively investigated polymers for drug delivery systems. The objective of this study was to explore fully the development of a PLGA nanoparticle drug delivery system for alternative preparation of a commercial formulation. In our nanoparticle fabrication, our purpose was to compare various preparation parameters. Docetaxel-loaded PLGA nanoparticles were prepared by a single emulsion technique and solvent evaporation. The nanoparticles were characterized by various techniques, including scanning electron microscopy for surface morphology, dynamic light scattering for size and zeta potential, x-ray photoelectron spectroscopy for surface chemistry, and high-performance liquid chromatography for in vitro drug release kinetics. To obtain a smaller particle, 0.2% polyvinyl alcohol, 0.03% D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), 2% Poloxamer 188, a five-minute sonication time, 130 W sonication power, evaporation with magnetic stirring, and centrifugation at 8000 rpm were selected. To increase encapsulation efficiency in the nanoparticles, certain factors were varied, ie, 2-5 minutes of sonication time, 70-130 W sonication power, and 5-25 mg drug loading. A five-minute sonication time, 130 W sonication power, and a 10 mg drug loading amount were selected. Under these conditions, the nanoparticles reached over 90% encapsulation efficiency. Release kinetics showed that 20.83%, 40.07%, and 51.5% of the docetaxel was released in 28 days from nanoparticles containing Poloxamer 188, TPGS, or polyvinyl alcohol, respectively. TPGS and Poloxamer 188 had slower release kinetics than polyvinyl alcohol. It was predicted that there was residual drug remaining on the surface from x-ray photoelectron spectroscopy. Our research shows that the choice of surfactant is important for controlled release of docetaxel.

  4. Nanocolloid substrate for surface enhanced Raman scattering sensor for biological applications

    USDA-ARS?s Scientific Manuscript database

    Biopolymer encapsulated with silver nanoparticle (BeSN) substrate was prepared by chemical reduction method with silver nitrate, trisodium citrate in addition to polyvinyl alcohol. Optical properties of BeSN were analyzed with UV/Vis spectroscopy and hyperspectral microscope imaging. UV/Visible spec...

  5. Effect of electron beam irradiation on the structural properties of poly(vinyl alcohol) formulations with triphenyl tetrazolium chloride dye (TTC)

    NASA Astrophysics Data System (ADS)

    Ali, Z. I.; Said, Hossam M.; Ali, H. E.

    2006-01-01

    Films of poly(vinyl alcohol) (PVA) composites with triphenyl tetrazolium chloride (TTC) dye were prepared and exposed to various radiation doses delivered by accelerated electrons. The results showed that at a low dose of 50 kGy, the colour difference (Δ E*) of PVA/TTC films was increased by ˜10 times of the initial value. However, the change in colour differences did not go systematically with increasing the TTC content, in which the composite with 1.5 wt% displayed higher value than that with 3.5 wt%. The differential scanning calorimetry (DSC) showed that the presence of the TTC dye caused a depression in the melting point ( Tm) and heat of fusion (Δ Hf) of the PVA bulk polymer. However, the thermogravimetric analysis (TGA) showed that the presence of the TTC dye improved the thermal stability of PVA. Also, the tensile strength at break of PVA/TTC composites was improved after electron beam irradiation.

  6. Surface-coated fly ash reinforced biodegradable poly(vinyl alcohol) composite films: part 2-analysis and characterization

    NASA Astrophysics Data System (ADS)

    Nath, D. C. D.; Bandyopadhyay, S.; Campbell, J.; Yu, A.; Blackburn, D.; White, C.

    2010-12-01

    Composite films of poly(vinyl alcohol) (PVA) reinforced with 5, 10, 15, 20 and 25 wt.% surface-coated fly ash by surfactant, sodium lauryl sulphate (SLS-FA) along with 1 wt.% cross-linking agent, glutaraldehyde (GLA) were prepared by aqueous casting method. The tensile strengths of the composite films were increased proportionally with the addition of SLS-FA. The maximum 75% higher strength of the composite with 20 wt.% was achieved compared to that of neat PVA. The modulus of the composites was also increased proportionally with SLS-FA and the maximum 218% reached in composite with 20 wt.%, but the strain at break was decreased with addition of SLS-FA. Changes in FTIR spectra reflect the chemical and/or physical bonding in the ternary PVA, SLS-FA and GLA component systems. In the study of surface morphology, the connectivity was visualized in SEM images along with interstitial voids. The films with SLS-FA show 53% smoother surface calculated with AFM compared to unmodified FA composite films.

  7. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Chien, Wen-Chen; Chiu, Sheng-Shin

    The quaternized poly(vinyl alcohol)/alumina (designated as QPVA/Al 2O 3) nanocomposite polymer membrane was prepared by a solution casting method. The characteristic properties of the QPVA/Al 2O 3 nanocomposite polymer membranes were investigated using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), micro-Raman spectroscopy, and AC impedance method. Alkaline direct methanol fuel cell (ADMFC) comprised of the QPVA/Al 2O 3 nanocomposite polymer membrane were assembled and examined. Experimental results indicate that the DMFC employing a cheap non-perfluorinated (QPVA/Al 2O 3) nanocomposite polymer membrane shows excellent electrochemical performances. The peak power densities of the DMFC with 4 M KOH + 1 M CH 3OH, 2 M CH 3OH, and 4 M CH 3OH solutions are 28.33, 32.40, and 36.15 mW cm -2, respectively, at room temperature and in ambient air. The QPVA/Al 2O 3 nanocomposite polymer membranes constitute a viable candidate for applications on alkaline DMFC.

  8. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO 2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH 3OH solution is about 11.48 mW cm -2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.

  9. The actuation of a biomimetic poly(vinyl alcohol)poly(acrylic acid) gel.

    PubMed

    Marra, S P; Ramesh, K T; Douglas, A S

    2002-02-15

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as biomimetic actuators and "artificial muscles". In previous work, a thermodynamically consistent finite-elastic constitutive model has been developed to describe the mechanical and actuation behaviours of active polymer gels. The mechanical properties were characterized by a free-energy function, and the model uses an evolving internal variable to describe the actuation state. In this work, an evolution law for the internal variable is determined from free actuation experiments on a poly(vinyl alcohol)poly(acrylic acid) (PVAPAA) gel. The complete finite-elastic/evolution law constitutive model is then used to predict the response of the PVA-PAA gel to isotonic and isometric loading and actuation. The model is shown to give relatively good agreement with experimental results.

  10. Characterization of ferrous-methylthymol blue-polyvinyl alcohol gel dosimeters using nuclear magnetic resonance and optical techniques

    NASA Astrophysics Data System (ADS)

    Rabaeh, Khalid A.; Eyadeh, Molham M.; Hailat, Tariq F.; Aldweri, Feras M.; Alheet, Samer M.; Eid, Rania M.

    2018-07-01

    A new composition of Ferrous sulphate-Metheylthymol blue (MTB)-Polyvinyl alcohol (PVA) dosimeter is introduced in this work and evaluated using nuclear magnetic resonance (NMR) and absorbance spectrophotometry techniques. The Fricke-MTB-PVA dosimeters were irradiated using a medical linear accelerator in a cubic water phantom. The dose response of the dosimeters was investigated using NMR in terms of spin-spin relaxation rate (R2), and ultraviolet and visible regions (UV-Vis) spectrophotometry in terms of absorbance. The dosimeter presents a linear dose response for doses up to 20 Gy with UV-Vis and 40 Gy with NMR method. The sample with 0.1 mM MTB, 5% PVA by weight showed highest dose sensitivity for both techniques. The Fricke-MTB-PVA dosimeter developed in this work has a significant advance over the Fricke-MTB-gelatin system: the NMR sensitivity was remarkably improved; the auto-oxidation rate was seven times lower, and no significant dose rate or photon energy effects were observed.

  11. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    PubMed

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  12. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.

    PubMed

    Li, Wanwan; Gao, Fengxian; Wang, Xiaoqian; Zhang, Ning; Ma, Mingming

    2016-08-01

    We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid-state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline-polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g(-1) ). The flexible solid-state supercapacitor based on PPH provides a large capacitance (306 mF cm(-2) and 153 F g(-1) ) and a high energy density of 13.6 Wh kg(-1) , superior to other flexible supercapacitors. The robustness of the PPH-based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge-discharge cycles. The high activity and robustness enable the PPH-based supercapacitor as a promising power device for flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.

    2017-04-01

    Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.

  14. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties.

    PubMed

    Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A

    2015-09-16

    Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.

  15. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanaya, T.; Takahashi, N.; Nishida, K.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does includemore » only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.« less

  16. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    NASA Astrophysics Data System (ADS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  17. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  18. Thermodynamic and spectroscopic analysis of the conformational transition of poly(vinyl alcohol) by temperature-dependent FTIR

    NASA Astrophysics Data System (ADS)

    Han, Shan; Luan, Ye-Mei; Pang, Shu-Feng; Zhang, Yun-Hong

    2015-03-01

    The conformational change of poly(vinyl alcohol) has been studied by Fourier transform infrared spectroscopy at various temperatures in the 4000-400 cm-1 region. The molecular motion and the trans/gauche content are sensitive to the Csbnd H, Csbnd C stretching modes. FTIR spectra show that the I2920/I2849 decreases from 1.84 to 1.0 with increasing temperature, companying the decrease in I1047/I1095 from 0.78 to 0.58, implying the conformational transition from trans to gauche in alkyl chain. Based on the van't Hoff relation, the enthalpies and entropies have been calculated in different temperatures, which are 4.61 kJ mol-1 and 15.23 J mol-1 K-1, respectively, in the region of 80-140 °C. From the Cdbnd O stretching mode and Osbnd H band, it can be concluded that the intermolecular hydrogen bonds decrease owing to elevating temperature, which leads to more gauche conformers.

  19. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.

    2016-10-01

    Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.

  20. Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment.

    PubMed

    Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J

    2011-12-01

    The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Flame-retardant polyvinyl alcohol membrane with high transparency based on a reactive phosphorus-containing compound

    NASA Astrophysics Data System (ADS)

    Peng, Sha; Zhou, Ming; Liu, Feiyan; Zhang, Chang; Liu, Xueqing; Liu, Jiyan; Zou, Liyong; Chen, Jia

    2017-08-01

    Flame-retardant polyvinyl alcohol (PVA) membranes with high transparency and flexibility were prepared by mixing an aqueous solution of a phosphorus-containing acrylic acid (AOPA) with PVA. The reaction between AOPA and PVA, the transparency, the crystallinity and the flexibility of the membrane were investigated with Fourier transform infrared spectrometry (FTIR), UV-vis light transmittance, X-ray diffraction and tensile tests, respectively. The limited oxygen index (LOI) and vertical flame (UL 94 VTM), microscale combustion calorimetry, thermogravimetric analysis (TGA) and TGA-FTIR were employed to evaluate the flame retardancy as well as to reveal the corresponding mechanisms. Results showed that PVA containing 30 wt% of AOPA can reach the UL 94 VTM V0 rating with an LOI of 27.3% and retain 95% of the original transparency of pure PVA. Adding AOPA reduces crystallinity of PVA, while the flexibility is increased. AOPA depresses the thermal degradation of PVA and promotes char formation during combustion. The proposed decomposition mechanism indicates that AOPA acts mainly in the condensed phase.

  2. Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol.

    PubMed

    Riahi Samani, Majid; Ebrahimbabaie, Parisa; Vafaei Molamahmood, Hamed

    2016-11-01

    Over the past few years, heavy metals have been proved to be one of the most important contaminants in industrial wastewater. Chromium is one of these heavy metals, which is being utilized in several industries such as textile, finishing and leather industries. Since hexavalent chromium is highly toxic to human health, removal of it from the wastewater is essential for human safety. One of the techniques for removing chromium (VI) is the use of different adsorbents such as polyaniline. In this study, composites of polyaniline (PANi) were synthesized with various amounts of polyvinyl alcohol (PVA). The results showed that PANi/PVA removed around 76% of chromium at a pH of 6.5; the PVA has altered the morphology of the composites and increased the removal efficiency. Additionally, synthesis of 20 mg/L of PVA by PANi composite showed the best removal efficiency, and the optimal stirring time was calculated as 30 minutes. Moreover, the chromium removal efficiency was increased by decreasing the pH, initial chromium concentration and increasing stirring time.

  3. End-of-life of starch-polyvinyl alcohol biopolymers.

    PubMed

    Guo, M; Stuckey, D C; Murphy, R J

    2013-01-01

    This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Modification of polyvinyl alcohol surface properties by ion implantation

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Kurzina, I. A.; Savkin, K. P.; Laput, O. A.; Oks, E. M.

    2017-05-01

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (sbnd Cdbnd O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  5. Antioxidation performance of poly(vinyl alcohol) modified poly(vinylidene fluoride) membranes

    NASA Astrophysics Data System (ADS)

    Wang, Daohui; Li, Xianfeng; Li, Qing; Liu, Zhen; Li, Nana; Huang, Qinglin; Zhang, Yufeng; Xiao, Changfa

    2018-03-01

    Commercial poly(vinylidene fluoride) (PVDF) membranes were modified by dip-coating and crosslinking hydrophilic poly(vinyl alcohol) (PVA) on the membrane surface. The antioxidation performance of the modified PVDF membranes was evaluated via exposing the modified membranes to sodium hypochlorite and potassium permanganate solutions for 5-30 days, respectively. The evaluation was based on the influences of the two oxidants on the permeability, rejection, and hydrophility of the modified membranes, which were characterized by water flux, ink rejection, water contact angle, x-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and x-ray diffraction (XRD) measurements. The XPS and water contact angle results show that the hydrophilicity of PVDF membranes was significantly improved when PVA was crosslinked on the surface of PVDF membranes. When the modified membranes had been treated with sodium hypochlorite or potassium permanganate for 30 days, the permeability and hydrophilicity were basically maintained and the rejection was slightly decreased. XPS and XRD indicated that some of PVAs coated on the membrane surface could be oxidized and peeled.

  6. Physicochemical properties of manganese oxides obtained via the sol-gel method: The reduction of potassium permanganate by polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Ivanets, A. I.; Prozorovich, V. G.; Krivoshapkina, E. F.; Kuznetsova, T. F.; Krivoshapkin, P. V.; Katsoshvili, L. L.

    2017-08-01

    Experimental data on the sol-gel synthesis of manganese oxides formed during the reduction of potassium permanganate by polyvinyl alcohol in an aqueous medium are presented. The physicochemical properties of the obtained manganese oxide systems that depend on the conditions of the synthesis are studied by means of DTA, XRD, SEM, and the low temperature adsorption-desorption of nitrogen. It is found that the obtained samples have a mesoporous structure and predominantly consist of double potassium-manganese oxide K2Mn4O8 with a tunnel structure and impurities of oxides such as α-MnO2, MnO, α-Mn2O3, and Mn5O8. It is shown that the proposed method of synthesis allows us to regulate the size and volume of mesopores and, to a lesser extent, the texture of the obtained oxides, which can be considered promising sorbents for the selective extraction of strontium and cesium ions from multicomponent aqueous solutions.

  7. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    NASA Astrophysics Data System (ADS)

    Junaidi, Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  8. PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method

    PubMed Central

    Van Ngoc, Huynh; Qian, Yongteng; Han, Suk Kil; Kang, Dae Joon

    2016-01-01

    We have explored a facile technique to transfer large area 2-Dimensional (2D) materials grown by chemical vapor deposition method onto various substrates by adding a water-soluble Polyvinyl Alcohol (PVA) layer between the polymethyl-methacrylate (PMMA) and the 2D material film. This technique not only allows the effective transfer to an arbitrary target substrate with a high degree of freedom, but also avoids PMMA etching thereby maintaining the high quality of the transferred 2D materials with minimum contamination. We applied this method to transfer various 2D materials grown on different rigid substrates of general interest, such as graphene on copper foil, h-BN on platinum and MoS2 on SiO2/Si. This facile transfer technique has great potential for future research towards the application of 2D materials in high performance optical, mechanical and electronic devices. PMID:27616038

  9. Developing of a magnetite film of carboxymethyl cellulose grafted carboxymethyl polyvinyl alcohol (CMC-g-CMPVA) for copper removal.

    PubMed

    Dahlan, Nuraina Anisa; Veeramachineni, Anand Kumar; Langford, Steven James; Pushpamalar, Janarthanan

    2017-10-01

    Crosslinked carboxymethyl cellulose grafted carboxymethyl polyvinyl alcohol (CMC-g-CMPVA) was loaded with modified magnetite iron oxide (Fe 3 O 4 ) nanoparticles to synthesise a new and easily separable adsorbent for the removal of copper (II) ions from water. The novel adsorbents were characterised by the presence of the functional group, surface morphology, crystallinity and magnetic property. The equilibrium time from the adsorption studies was found to be less than 240min for both film and bead forms while the rate of Cu 2+ removal decreased as the initial Cu 2+ concentration increased. In addition, CMC-g-CMPVA film loaded with Fe 3 O 4 /SiO 2 nanoparticles was the best adsorbent with maximum adsorption capacity of 35.34mg/g and exhibited a reusable potential. The properties exhibited by the new heterogeneous material is a promising adsorbent for the removal and recovery of copper (II) from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of hydrogen peroxide feeding strategies on the photochemical degradation of polyvinyl alcohol.

    PubMed

    Hamad, Dina; Dhib, Ramdhane; Mehrvar, Mehrab

    2016-11-01

    The performance of batch and fed-batch photoreactors with that of continuous photoreactor for the treatment of aqueous polyvinyl alcohol (PVA) solutions is compared. Hydrogen peroxide feeding strategies, residence time, and [H2O2]/[PVA] mass ratio are examined for their impacts on the molecular weight distribution (MWD) of PVA and the total organic carbon (TOC) removal. The results prove that a continuous addition of H2O2 during the degradation reaction ensures the utilization of the produced radicals to minimize the oxidant consumption and maximize the TOC removal and the PVA degradation in a short irradiation time. Also, the MWD of PVA is found to be bimodal and shifted towards lower molecular weights with small shoulder peak indicating a progressive disappearance of the higher molecular weight fractions that is in accordance with the random chains scission mechanism. Besides, the hydrogen peroxide feeding strategies are found to have a great effect on the reduction in H2O2 residuals in the effluent.

  11. Electroactive Film of Myoglobin Incorporated in a 3D-porous Calcium Alginate Film with Polyvinyl Alcohol, Glycerin and Gelatin.

    PubMed

    Zheng, Xueqin; Sun, Hong; Hou, Shifeng

    2015-01-01

    In this work, an electroactive porous Mb-CA's composite film was fabricated by incorporating myoglobin (Mb) in a three-dimension (3D) porous calcium alginate (CA) film with polyvinyl alcohol, glycerol, and gelatin. The porous Mb-CA's film modified electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about -0.37 V vs. SCE in pH 7.0 buffers, characteristic of Mb heme Fe((III))/Fe((II)) redox couples. The electrochemical parameters, such as formal potentials (E(o')) and apparent heterogeneous electron-transfer rate constants (ks), were estimated by square-wave voltammetry with nonlinear regression analysis. The porous CA's composite film could form hydrogel in aqueous solution. The positions of the Soret absorbance band suggest that Mb in the CA's composite film kept its native states in the medium pH range. Hydrogen peroxide, oxygen, and nitrite were electrochemically catalyzed by the Mb-CA's composite film with significant lowering of the reduction overpotential.

  12. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    PubMed

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  13. Spectral-Polarization Properties and Light Resistance of Polyvinyl-Alcohol Films Colored With Disazo Dyes

    NASA Astrophysics Data System (ADS)

    Fillipovich, L. N.; Ariko, N. G.; Agabekov, V. E.; Malashko, P. M.

    2005-09-01

    Polarizers containing disazo dyes from the group of azobenzene-azonaphthalene have been developed. It has been established that their polarizing ability is determined by the mutual disposition of the azo group and electron-donor substituents in the naphthalene ring. On diazo coupling of γ acid into the α position relative to the oxy group, the M1 and M3 dyes are formed, the polarizing ability of which in uniaxially oriented polyvinyl-alcohol films is higher than in the M2 dye produced as a result of diazo coupling into the α position relative to the amino group. On irradiation by UV light, the dyes are subjected to photodestruction, which, in the case of M2, proceeds through trans-cis-isomerization. The rate of photodestruction depends on the aggregation of the dye molecules, and it increases in the presence of a free-radical initiator. The UV absorber (substituted benzotriazole) and the uniaxial orientation of the film retard this process.

  14. New multifunctional materials obtained by the intercalation of anionic dyes into layered zinc hydroxide nitrate followed by dispersion into poly(vinyl alcohol) (PVA).

    PubMed

    Marangoni, Rafael; Ramos, Luiz Pereira; Wypych, Fernando

    2009-02-15

    Different anionic blue and orange dyes have been immobilized on a zinc hydroxide nitrate (Zn(5)(OH)(8)(NO(3))(2)nH(2)O--Zn-OH-NO(3)) by anion exchange with interlayer and/or outer surface nitrate ions of the layered matrix. Orange G (OG) was totally intercalated, orange II (OII) was partially intercalated, while Niagara blue 3B (NB) and Evans blue (EV) were only adsorbed at the outer surface. Several composite films of poly(vinyl alcohol)--PVA were prepared by casting through the dispersion of the hybrid material (Zn-OH-OG) into a PVA aqueous solution and evaporation of water in a vacuum oven. The obtained composite films were transparent, colored, and capable of absorbing UV radiation. Improved mechanical properties were also obtained in relation to the nonfilled PVA films. These results demonstrate the onset of a new range of potential applications for layered hydroxide salts in the preparation of polymer composite multifunctional materials.

  15. Synthesis of Degradable Poly(vinyl alcohol) by Radical Ring-Opening Copolymerization and Ice Recrystallization Inhibition Activity.

    PubMed

    Hedir, Guillaume; Stubbs, Christopher; Aston, Phillip; Dove, Andrew P; Gibson, Matthew I

    2017-12-19

    Poly(vinyl alcohol) (PVA) is the most active synthetic mimic of antifreeze proteins and has extremely high ice recrystallization inhibition (IRI) activity. Addition of PVA to cellular cryopreservation solutions increases the number of recovered viable cells due to its potent IRI, but it is intrinsically nondegradable in vivo . Here we report the synthesis, characterization, and IRI activity of PVA containing degradable ester linkages. Vinyl chloroacetate (VClAc) was copolymerized with 2-methylene-1,3-dioxepane (MDO) which undergoes radical ring-opening polymerization to install main-chain ester units. The use of the chloroacetate monomer enabled selective deacetylation with retention of esters within the polymer backbone. Quantitative IRI assays revealed that the MDO content had to be finely tuned to retain IRI activity, with higher loadings (24 mol %) resulting in complete loss of IRI activity. These degradable materials will help translate PVA, which is nontoxic and biocompatible, into a range of biomedical applications.

  16. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Chetan P.; Singh, Krishan K.; Kumar, Manmohan, E-mail: manmoku@barc.gov.in

    2010-01-15

    A simple wet chemical method has been developed to synthesize selenium nanoparticles (size 100-200 nm), by reaction of sodium selenosulphate precursor with different vinyl monomers, such as acrylamide, N,N'-dimethylene bis acrylamide, methyl methacrylate, sodium acrylate, etc., in aqueous medium, under ambient conditions. Polyvinyl alcohol has been used to stabilize the selenium nanoparticles. Average size of the synthesized selenium nanoparticles can be controlled by adjusting concentration of both the precursors and the stabilizer. Rate of the reaction as well as size of the resultant selenium nanoparticles have been correlated with the functional groups of the different monomers. UV-vis optical absorption spectroscopy,more » X-ray diffraction, energy dispersive X-rays, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques have been employed to characterize the synthesized selenium nanoparticles. Gas chromatographic analysis of the reaction mixture established the non-catalytic role of the vinyl monomers, which were found to be consumed during the course of the reaction.« less

  17. Facile and green fabrication of electrospun poly(vinyl alcohol) nanofibrous mats doped with narrowly dispersed silver nanoparticles.

    PubMed

    Lin, Song; Wang, Run-Ze; Yi, Ying; Wang, Zheng; Hao, Li-Mei; Wu, Jin-Hui; Hu, Guo-Han; He, Hua

    2014-01-01

    Submicrometer-scale poly(vinyl alcohol) (PVA) nanofibrous mats loaded with aligned and narrowly dispersed silver nanoparticles (AgNPs) are obtained via the electrospinning process from pure water. This facile and green procedure did not need any other chemicals or organic solvents. The doped AgNPs are narrowly distributed, 4.3±0.7 nm and their contents on the nanofabric mats can be easily tuned via in situ ultraviolet light irradiation or under preheating conditions, but with different particle sizes and size distributions. The morphology, loading concentrations, and dispersities of AgNPs embedded within PVA nanofiber mats are characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. Moreover, the biocidal activities and cytotoxicity of the electrospun nanofiber mats are determined by zone of inhibition, dynamic shaking method, and cell counting kit (CCK)-8 assay tests.

  18. Alcohol-to-Jet (ATJ) Fuel Blending Study

    DTIC Science & Technology

    2015-09-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The U.S. Army sought to study the effect of blending highly iso-paraffinic ATJ blending...stock into JP-8 in order to understand the effect ATJ fuel blends will have on ground vehicle engines and support equipment. This subtask under Work... Synthetic Fuel, JP-8, diesel engine, combustion 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  19. Fabrication of antibacterial blend film from poly (vinyl alcohol) and quaternized chitosan for packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dongying; Wang, Lijuan, E-mail: donglinwlj@163.com

    Highlights: • HTCC/PVA blend films were prepared through a simple mixing method. • The blend films had greater elongation at break and good optical transmittance. • The blend films had low oxygen permeability and water vapor permeability. • The films had good activity against Escherichia coli and Staphylococcus aureus. - Abstract: Blend films from poly (vinyl alcohol) (PVA) containing N-(2-hydroxy) propyl-3-trimethyl ammonium chloride chitosan (HTCC) were prepared via a simple mixing and casting method. The films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction measurements (XRD), scanning electron microscopy and ultraviolet-visible measurements (UV–vis). The effects of HTCC amountmore » on mechanical properties, oxygen permeability, water vapor permeation, and antibacterial properties against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) of the films were investigated. FTIR and XRD analysis show that HTCC and PVA in the blend films interacted by hydrogen bonding. SEM and UV–vis analysis reveal the good compatibility between HTCC and PVA. Compared with pure PVA film, the blend films had greater elongation at break, lower water permeability, and higher antibacterial activity. The HTCC addition decreased the tensile strength and the light transmittance. The results suggest that HTCC/PVA blend films have a potential as packaging materials.« less

  20. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    PubMed

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  1. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  2. Synthesis of Novel Ferrite Based Recyclable Catalyst Used to Clean Dye and Emerging Contaminates from Water

    EPA Science Inventory

    Herein, we describe synthesis of novel palladium, copper, cobalt and vanadium ferrites. The ferrites were synthesized by combustion method using polyvinyl alcohol. The particles phases were confirmed using X-ray diffraction and sizes were determined using particle size analyzer. ...

  3. Surface enhaced raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    A biopolymer encapsulated with silver nanoparticles was prepared using polyvinyl alcohol (PVA) solution, silver nitrate, and trisodium citrate. Biopolymer based nanosubstrates were deposited on a mica sheet for SERS. Fresh cultures of Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus a...

  4. Thermodynamics properties and combustion performance investigation of higher chain alcohol-RON 92 gasoline system

    NASA Astrophysics Data System (ADS)

    Oktavian, Rama; Darmawan, Rhezaldian Eka; Diarahmawati, Ayu; Kartiko, Intan Dyah; Rachmawati, Rizqi Tri

    2017-03-01

    The increasing consumption of fossil fuel in Indonesia is not followed by the rising on domestic oil production. This will lead to the depletion of fossil fuel reserves that will affect the availability of energy resources. Biofuel is considered as the critical solution to solve this problem in Indonesia. In recent years, alcohol produced from biomass has been used as an oxygenated compound in gasoline to increase the octane number and reduce pollutants resulting from motor vehicle exhaust emissions. However, the use of alcohol as an additive compounds is still limited to ethanol. In fact, the use of higher-chain alcohol such as 1-butanol offers more benefits over ethanol due to its higher calorific value. 1-butanol also has good characteristics for gasoline mixture such as less corrosive than ethanol, more resistant to water contamination, its low vapor pressure which leads to more safety application. This work investigated the effect of 1-butanol addition on the thermodynamic properties of gasoline-ethanol blend, in the form of density values, isobaric expansion coefficient, and the calorific value. The addition of 1-butanol up to 15% weight (80% RON 92-5% ethanol-15% 1-butanol) gives higher density to alcohol-gasoline blend up to 2% compared with pure RON 92 gasoline. Moreover, this addition produces the calorific value of gasoline blend of 11,313 cal/gr compared to pure RON 92 gasoline with the calorific value of 12,117 cal/gram. This blend can reduce the RON 92 gasoline consumption up to 15% from calorific value perspective.

  5. Role of Thickness Confinement on Relaxations of the Fast Component in a Miscible A/B Blend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Peter; Sharma, Ravi P.; Dong, Ban Xuan

    Spatial compositional heterogeneity strongly influences the dynamics of the A and B components of bulk miscible blends. Its effects are especially apparent in mixtures, such as poly(vinyl methyl ether) (PVME)/polystyrene (PS), where there exist significant disparities between the component glass transition temperatures (Tgs) and relaxation times. The relaxation processes characterized by distinct temperature dependencies and relaxation rates manifest different local compositional environments for temperatures above and below the glass transition temperature of the miscible blend. This same behavior is shown to exist in miscible PS/PVME films as thin as 100 nm. Moreover, in thin films, the characteristic segmental relaxation timesmore » t of the PVME component of miscible PVME/PS blends confined between aluminum (Al) substrates decrease with increasing molecular weight M of the PS component. These relaxation rates are film thickness dependent, in films up to a few hundred nanometers in thickness. This is in remarkable contrast to homopolymer films, where thickness confinement effects are apparent only on length scales on the order of nanometers. These surprisingly large length scales and M dependence are associated with the preferential interfacial enrichment - wetting layer formation - of the PVME component at the external Al interfaces, which alters the local spatial blend composition within the interior of the film. The implications are that the dynamics of miscible thin film blends are dictated in part by component Tg differences, disparities in component relaxation rates, component-substrate interactions, and chain lengths (entropy of mixing).« less

  6. PERFORMANCE OF POLYVINYL ALCOHOL GEL COLUMNS ON THE ION CHROMATOGRAPHIC DETERMINATION OF PERCHLORATE IN FERTILIZERS

    EPA Science Inventory

    Interest in possible sources of perchlorate (ClO4-) that could lead to environmental release has been heightened since the EPA placed this anion on its Contaminant Candidate List (CCL) for drinking water. Besides its association with defense and aerospace activities, perchlorate ...

  7. Humidity Effects on Soluble Core Mechanical and Thermal Properties (Polyvinyl Alcohol/Microballoon Composite)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties. This report describes test results, procedures employed, and any unusual occurrences or specific observations associated with this test program.

  8. Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films

    USDA-ARS?s Scientific Manuscript database

    Polyvinyl alcohols-based nanocomposite films were fabricated with four types of montmorillonite (MMT) nanoclay, including 18-amino stearic acid (I.24TL), methyl, bis hydroxyethyl, octadecyl ammonium (I.34TCN), di-methyl, di-hydrogenated tallow ammonium/siloxane (I.44PSS) organically modified MMT, an...

  9. Livestock air treatment using PVA-coated powdered activated carbon biofilter

    USDA-ARS?s Scientific Manuscript database

    The efficacy of polyvinyl alcohol (PVA) biofilters was studied using bench-scale biofilters and air from aerobically-treated swine manure. The PVA-coated powdered activated carbon particles showed excellent properties as a biofiltration medium: water holding capacity of 1.39 g H2O/g-dry PVA; wet por...

  10. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced raman scattering (SERS)

    USDA-ARS?s Scientific Manuscript database

    Silver/biopolymer nanoparticles were prepared by adding 100 mg silver nitrate to 2% polyvinyl alcohol solution and reduced the silver nitrate into silver ion using 2 % trisodium citrate for high performance Surface Enhanced Raman Scattering (SERS) substrates. Optical properties of nanoparticle were ...

  11. Using Greener Gels to Explore Rheology

    ERIC Educational Resources Information Center

    Garrett, Brendan; Matharu, Avtar S.; Hurst, Glenn A.

    2017-01-01

    A laboratory experiment was developed to investigate the rheological properties of a green calcium-cross-linked alginate gel as an alternative to the traditional borax-cross-linked poly(vinyl alcohol) gel. As borax is suspected of damaging fertility and the unborn child, a safe, green alternative is necessary. The rheological properties of a…

  12. How to Learn and Have Fun with Poly(Vinyl Alcohol) and White Glue.

    ERIC Educational Resources Information Center

    de Zea Bermudez, V.; Passos de Almeida, P.; Feria Seita, J.

    1998-01-01

    Presents a classroom guide for a simple theoretical approach to the study of certain fluids. Discusses background information, followed by experimental procedures for the preparation of two popular viscoelastic materials ("Slime" and "Silly Putty") that exhibit unusual flow properties. Also lists student discussion questions…

  13. Bimodal porous TiO2 structures templated by graft copolymer/homopolymer blend for dye-sensitized solar cells with polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Kim, Jin Kyu; Lee, Chang Soo; Lee, Sang-Yup; Cho, Hyung Hee; Kim, Jong Hak

    2016-12-01

    Bimodal porous TiO2 (BP-TiO2) with large surface area, high porosity, good interconnectivity, and excellent light-scattering ability are synthesized via a facile one-step method using a self-assembled blend template consisting of an amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer and a hydrophobic poly(vinyl chloride) (PVC) homopolymer. The hydrophilically surface-modified TiO2 nanoparticles selectively interact with the hydrophilic POEM chains, while the addition of the PVC homopolymer increases the hydrophobic domain size, resulting in the formation of dual pores (i.e., macropores and mesopores). The sizes and numbers of macropores can easily be controlled by changing the molecular weight and amount of the PVC homopolymer. The polymer electrolyte dye-sensitized solar cells (DSSCs) fabricated with BP-TiO2 photoanodes exhibited energy conversion efficiencies of up to 7.6% at 100 mW cm-2, which is much higher than those of mesoporous TiO2 (5.8%) with PVC-g-POEM only and conventional nanocrystalline TiO2 (4.9%) with commercial Dyesol paste. The enhanced energy conversion efficiencies mostly resulted from the light-scattering effects of the macropores, which increased the light-harvesting efficiencies. The improved light-harvesting and photovoltaic performances of the DSSCs were characterized by UV-vis spectroscopy, incident photon-to-current conversion efficiency analysis, electrochemical impedance spectroscopy, intensity-modulated photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy.

  14. Enhancement of the optical, thermal and electrical properties of PEO/PAM:Li polymer electrolyte films doped with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Morsi, M. A.; El-Khodary, Sherif A.; Rajeh, A.

    2018-06-01

    Both lithium bromide (LiBr) and biosynthesized silver nanoparticles (Ag NPs) with average size 2-30 nm have been incorporated into the polymeric matrix of polyethylene oxide and polyacrylamide (PEO/PAM) blend by the casting method. FT-IR analysis indicates the formation of hydrogen bond between the blend components. Also, LiBr and Ag NPs interact with the functional groups of PEO/PAM matrix. The results of XRD analysis depict the semi-crystalline nature of these polymer samples and the degree of crystallinity is decreased due to the addition process. The values of optical energy gap from UV-Vis. data are decreased from 3.55 eV for blend to 3.26 for the nanocomposite sample in the indirect transition. LiBr/Ag NPs assist the improvement of the thermal stability of the PEO/PAM blend, as evidenced by TGA and DTA techniques. Upon the addition of LiBr and Ag NPs, an improvement for the conductivity, dielectric permittivity (έ) and dielectric loss (ἕ) of PEO/PAM solid polymer electrolytes are observed. It's clear that the improvement of the electrical conductivity and dielectric parameters for PEO/PAM: Li+/Ag NPs polymer electrolyte system makes it as a promising candidate for solid-state Li battery applications.

  15. Ultrafast, efficient separations of large-sized dsDNA in a blended polymer matrix by microfluidic chip electrophoresis: A Design of Experiments approach

    PubMed Central

    Sun, Mingyun; Lin, Jennifer S.

    2012-01-01

    Double-stranded (ds) DNA fragments over a wide size range were successfully separated in blended polymer matrices by microfluidic chip electrophoresis. Novel blended polymer matrices composed of two types of polymers with three different molar masses were developed to provide improved separations of large dsDNA without negatively impacting the separation of small dsDNA. Hydroxyethyl celluloses (HECs) with average molar masses of ~27 kDa and ~1 MDa were blended with a second class of polymer, high-molar mass (~7 MDa) linear polyacrylamide (LPA). Fast and highly efficient separations of commercially available DNA ladders were achieved on a borosilicate glass microchip. A distinct separation of a 1 Kb DNA extension ladder (200 bp to 40,000 bp) was completed in 2 minutes. An orthogonal Design of Experiments (DOE) was used to optimize experimental parameters for DNA separations over a wide size range. We find that the two dominant factors are the applied electric field strength and the inclusion of a high concentration of low-molar mass polymer in the matrix solution. These two factors exerted different effects on the separations of small dsDNA fragments below 1 kbp, medium dsDNA fragments between 1 kbp and 10 kbp, and large dsDNA fragments above 10 kbp. PMID:22009451

  16. EPA may modify Du Pont waiver for methanol fuel blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.V.

    1985-09-02

    The Environmental Protection Agency (EPA) granted a Clean Air ACt waiver to DuPont's blendstock of methanol and other cosolvent alcohols for use in unleaded gasoline. The waiver included some stringent fuel volatility requirements to control evaporative emissions that have kept the waiver from becoming the marketing tool for fuel alcohols that everyone expected it to be. EPA seems willing to amend the waiver as long as evaporative emissions controls are kept, but there are some difficult procedural issues to resolve first. To date, only small amounts of alcohol blends have been sold under the DuPont waiver because the blendstock tendsmore » to increase the volatility of gasoline.« less

  17. Method to blend separator powders

    DOEpatents

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  18. Label-free potentiometric biosensor based on solid-contact for determination of total phenols in honey and propolis.

    PubMed

    Draghi, Patrícia Ferrante; Fernandes, Julio Cesar Bastos

    2017-03-01

    We developed a label-free potentiometric biosensor using tyrosinase extracted from Musa acuminata and immobilized by covalent bond on a surface of a solid-contact transducer. The transducer was manufactured containing two layers. The first layer contained a blend of poly(vinyl) chloride carboxylated (PVC-COOH), graphite and potassium permanganate. On this layer, we deposited a second layer containing just a mixture of poly(vinyl chloride) carboxylated and graphite. On the last layer of the transducer, we immobilized the tyrosinase enzyme by reaction with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride. The solid-contact potentiometric biosensor presented at low detection limit of 7.3×10 -7 M and a linear range to catechol concentration between 9.3×10 -7 M and 8.3×10 -2 M. This biosensor was applied to determine the amount of total phenols in different samples of honey and propolis. The results agreed with the Folin-Ciocalteu method. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of polyvinyl alcohol on in vitro rooting capacity of shoots in pear clones (Pyrus communis L.) of different ploidy

    USDA-ARS?s Scientific Manuscript database

    Poor adventitious root formation is a major obstacle in micropropagation. In this study, intense efforts have been made for improvement of rooting procedures for triploid, tetraploid, and mixploid clones of the pear cultivar, 'Fertility', obtained by in vitro colchicine treatment. An efficient roo...

  20. An Extraordinary Sulfonated-Graphenal-Polymer-Based Electrolyte Separator for All-Solid-State Supercapacitors.

    PubMed

    Liu, Xubo; Men, Chuanling; Zhang, Xiaohua; Li, Qingwen

    2016-09-01

    Sulfonated graphenal polymers can be assembled up by poly(vinyl alcohol) adhesion. The porous assembly structure results in a remarkably improved ionic conductivity and thus enhances electrochemical performances such as specific capacitance, capacitance retention, and cycling stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Gelation of Polyvinyl Alcohol with Borax: A Novel Class Participation Experiment Involving the Preparation and Properties of a "Slime."

    ERIC Educational Resources Information Center

    Casassa, E. Z.; And Others

    1986-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students prepare and study the characteristics of a "slime." A list of general, inorganic, and polymer chemistry concepts fostered in the experiment is included. (JN)

  2. Lignin-Based Electrospun Nanofibers Reinforced with Cellulose Nanocrystals

    Treesearch

    Mariko Ago; Kunihiko Okajima; Joseph E. Jakes; Park Sunkyu; Orlando J. Rojas

    2012-01-01

    Lignin-based fibers were produced by electrospinning aqueous dispersions of lignin, poly(vinyl alcohol) (PVA), and cellulose nanocrystals (CNCs). Defect-free nanofibers with up to 90 wt % lignin and 15% CNCs were achieved. The properties of the aqueous dispersions, including viscosity, electrical conductivity, and surface tension, were examined and correlated to the...

  3. Parameters optimization for the fabrication of phosphate glass/hydroxyapatite nanocomposite scaffold

    NASA Astrophysics Data System (ADS)

    Govindan, R.; Girija, E. K.

    2015-06-01

    Three-dimensional, highly porous, bioactive and biodegradable phosphate glass and nanohydroxyapatite (n-HA) composite scaffolds was fabricated by the polymer foam replication technique. Polyurethane foam (PU) and polyvinyl alcohol (PVA) were used as template and binder, respectively. Optimization of composition and sintering temperature is carried out for tissue engineering scaffold fabrication.

  4. Conductive hydrogel containing 3-ionene

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor)

    1977-01-01

    Cationic polyelectrolytes formed by the polymerization in absence of oxygen of a monomer of the general formula: dispersed ##STR1## where x is 3 or more than 6 and Z is I, Br or Cl to form high charge density linear polymers are dispered in a water-soluble polymer such as polyvinyl alcohol to form a conductive hydrogel.

  5. Synthesizing and Playing with Magnetic Nanoparticles: A Comprehensive Approach to Amazing Magnetic Materials

    ERIC Educational Resources Information Center

    Dalverny, Anne-Laure; Leyral, Géraldine; Rouessac, Florence; Bernaud, Laurent; Filhol, Jean-Sébastien

    2018-01-01

    Magnetic iron oxide nanoparticles were synthesized and stabilized using ammonium cations or poly(vinyl alcohol) to produce amazing materials such as safer aqueous ferrofluids, ferrogels, ferromagnetic inks, plastics, and nanopowders illustrating how versatile materials can be produced just by simple modifications. The synthesis is fast, reliable,…

  6. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... tables 1 and 2 of § 176.170(c) of this chapter, yields total extractives not to exceed 0.078 milligram per square centimeter (0.5 milligram per square inch) of food-contact surface when tested by ASTM... Materials,” which is incorporated by reference. Copies may be obtained from the American Society for Testing...

  7. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... tables 1 and 2 of § 176.170(c) of this chapter, yields total extractives not to exceed 0.078 milligram per square centimeter (0.5 milligram per square inch) of food-contact surface when tested by ASTM... Materials,” which is incorporated by reference. Copies may be obtained from the American Society for Testing...

  8. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities.

    PubMed

    Hoskins, Daniel L; Zhang, Xiaoyuan; Hickner, Michael A; Logan, Bruce E

    2014-11-01

    Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444±8mW/m(2)) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Flame-retardant polyvinyl alcohol membrane with high transparency based on a reactive phosphorus-containing compound.

    PubMed

    Peng, Sha; Zhou, Ming; Liu, Feiyan; Zhang, Chang; Liu, Xueqing; Liu, Jiyan; Zou, Liyong; Chen, Jia

    2017-08-01

    Flame-retardant polyvinyl alcohol (PVA) membranes with high transparency and flexibility were prepared by mixing an aqueous solution of a phosphorus-containing acrylic acid (AOPA) with PVA. The reaction between AOPA and PVA, the transparency, the crystallinity and the flexibility of the membrane were investigated with Fourier transform infrared spectrometry (FTIR), UV-vis light transmittance, X-ray diffraction and tensile tests, respectively. The limited oxygen index (LOI) and vertical flame (UL 94 VTM), microscale combustion calorimetry, thermogravimetric analysis (TGA) and TGA-FTIR were employed to evaluate the flame retardancy as well as to reveal the corresponding mechanisms. Results showed that PVA containing 30 wt% of AOPA can reach the UL 94 VTM V0 rating with an LOI of 27.3% and retain 95% of the original transparency of pure PVA. Adding AOPA reduces crystallinity of PVA, while the flexibility is increased. AOPA depresses the thermal degradation of PVA and promotes char formation during combustion. The proposed decomposition mechanism indicates that AOPA acts mainly in the condensed phase.

  10. Radiation sensitive indicator based on tetrabromophenol blue dyed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Beshir, W. B.

    2013-05-01

    Radiation sensitive indicators based on dyed polyvinyl alcohol (PVA) containing acid- sensitive dye (tetrabromophenol blue, TBPB) and chloral hydrate (CCl3·CH·(OH)2, 2,2,2-trichloroethane-1,1-diol) have been developed. These plastic film dosimeters undergo color change from blue (the alkaline form of TBPB) to yellow (the acidic form of TBPB), indicating acid formation. The concentration of radiation formed acids in the films containing different concentrations of chloral hydrate was calculated at different doses. These films can be used as dosimeters for food irradiation applications where the maximum of the useful dose ranges are between 1 and 8 kGy depending on chloral hydrate concentration in the film. The films have the advantage of negligible humidity effects on response in the intermediate range of relative humidity from 0 to 70% as good post irradiation stability when stored in the dark at room temperature. The overall combined uncertainty (at 2σ) associated with measurement of response (ΔA mm-1) at 623 nm for dose range 1-8 kGy is 4.53%.

  11. Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium.

    PubMed

    Nogi, Yuichi; Yoshizumi, Masaki; Miyazaki, Masayuki

    2014-04-01

    A polyvinyl-alcohol-degrading marine bacterium was isolated from plastic rope litter found in Tokyo Bay, Japan. The isolated strain, Zumi 95(T), was a Gram-reaction-negative, non-spore-forming and facultatively anaerobic chemo-organotroph. The major respiratory quinone was Q-10. The predominant fatty acids were C18 : 1ω7c and C16 : 0. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Thalassospira in the class Alphaproteobacteria. The DNA G+C content of the novel strain was 55.1 mol%. The hybridization values for DNA-DNA relatedness between this strain and four reference strains representing species of the genus Thalassospira were significantly lower than that accepted as the phylogenetic definition of a species. On the basis of differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Thalassospira for which the name Thalassospira povalilytica sp. nov. (type strain Zumi 95(T) = JCM 18746(T) = DSM 26719(T)) is proposed.

  12. Use of Polyvinyl Alcohol as a Solubility-Enhancing Polymer for Poorly Water Soluble Drug Delivery (Part 1).

    PubMed

    Brough, Chris; Miller, Dave A; Keen, Justin M; Kucera, Shawn A; Lubda, Dieter; Williams, Robert O

    2016-02-01

    Polyvinyl alcohol (PVAL) has not been investigated in a binary formulation as a concentration-enhancing polymer owing to its high melting point/high viscosity and poor organic solubility. Due to the unique attributes of the KinetiSol® dispersing (KSD) technology, PVAL has been enabled for this application and it is the aim of this paper to investigate various grades for improvement of the solubility and bioavailability of poorly water soluble active pharmaceutical ingredients. Solid amorphous dispersions were created with the model drug, itraconazole (ITZ), at a selected drug loading of 20%. Polymer grades were chosen with variation in molecular weight and degree of hydroxylation to determine the effects on performance. Differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, size exclusion chromatography, and dissolution testing were used to characterize the amorphous dispersions. An in vivo pharmacokinetic study in rats was also conducted to compare the selected formulation to current market formulations of ITZ. The 4-88 grade of PVAL was determined to be effective at enhancing solubility and bioavailability of itraconazole.

  13. Application Research on Stabilizing Treatment of Dredged Sediment

    NASA Astrophysics Data System (ADS)

    Yannan, Shi; Chaojie, Zhang; Jiongqi, Yu; Mingli, Tang

    2018-06-01

    In order to improve water quality, to ensure the capacity of normal flood discharge and river transport, it carried out a lot of dredging work across the country recently. For harmful sediment's second pollution and recycling use, this study selected five kinds of sediment. And point A was determined as the research object by using the geo-accumulation index to evaluate the heavy metal. Then the sediment was mixed with lime, fly ash, kaolin clay, sodium silicate, sodium carbonate and polyvinyl alcohol as mud stabilizing materials. Experimental research shows that, copper loss of stabilized soil's toxicity leaching agent reaches more than 95%, and the permeability coefficient was 10-5 cm/s orders of magnitude. In this paper, it ensures GW7 as the best choice of plants experiments, which are 5% fly ash, 1% lime, 3% kaolin clay, 3% sodium silicate, 3% sodium carbonate and 1% polyvinyl alcohol, through the ways of permeability, water retention, SEM and XRD. The scheme effectively stabilizes copper, and keeps the plants as better form than others. But it has different effect on different plants. Thus it should consider planting varieties optimization in actual applications.

  14. Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication.

    PubMed

    Xiao, Shaoliang; Gao, Runan; Gao, LiKun; Li, Jian

    2016-01-20

    This work was aimed at fabricating and characterizing poly(vinyl alcohol) films that were reinforced by nanofibrillated corn husk celluloses using a combination of chemical pretreatments and ultrasonication. The obtained nanofibrillated celluloses (NFCs) possessed a narrow width ranging from 50 to 250 nm and a high aspect ratio (394). The crystalline type of NFC was cellulose I type. Compared with the original corn husks, the NCF crystallinity and thermal stability increased due to the removal of the hemicelluloses and lignin. PVA films containing different NFC concentrations (0.5%, 1%, 3%, 5%, 7% and 9%, w/w, dry basis) were examined. The 1% PVA/NFC reinforced films exhibited a highly visible light transmittance of 80%, and its tensile strength and the tensile strain at break were increased by 1.47 and 1.80 times compared to that of the pure PVA film, respectively. The NFC with high aspect ratio and high crystallinity is beneficial to the improvement of the mechanical strength and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Photoemission and energy gap of MgWO4 particles connecting as nanofibers synthesized by electrospinning-calcination combinations

    NASA Astrophysics Data System (ADS)

    Wannapop, Surangkana; Thongtem, Titipun; Thongtem, Somchai

    2012-03-01

    Mixtures of magnesium acetate tetrahydrate ((CH3COO)2Mg·4H2O), ammonium tungstate tetrahydrate ((NH4)6W7O24·4H2O), and poly(vinyl alcohol) with the molecular weight of 72,000 were electrospun through a +15 kV direct voltage to form fibers on ground flat aluminum foils. The electrospun fibers of 1.5, 3.0, and 4.5 mmol of each starting material containing 1.3 g poly(vinyl alcohol) were further calcined at 500-700 °C for 3 h constant length of time. At 500 and 600 °C calcination, both monoclinic and anorthic phases of MgWO4 particles with different sizes connecting as fibrous assemblies were detected. Upon increasing the calcination temperature to 700 °C, only monoclinic phase of facet nanoparticles interconnecting along the fibrous axes with 4.19 eV indirect band gap and 461 nm photoemission was synthesized. In the present research, formation of MgWO4 molecules as well as nucleation and growth of nanoparticles was also proposed.

  16. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Khatri, Zeeshan; Ali, Shamshad; Khatri, Imran; Mayakrishnan, Gopiraman; Kim, Seong Hun; Kim, Ick-Soo

    2015-07-01

    We report UV-responsive polyvinyl alcohol (PVA) nanofibers for potential application for recording and erasing quick response (QR) codes. We incorporate 1‧-3‧-dihydro-8-methoxy-1‧,3‧,3‧-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2‧-(2H)-indole] (indole) and,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3‧-[3H] phenanthr [9,10-b] (1,4) oxazine] (oxazine) into PVA polymer matrix via electrospinning technique. The resultant nanofibers were measured for recording-erasing, photo-coloration and thermal reversibility. The rate of photo-coloration of PVA-indole nanofibers was five times higher than the PVA-oxazine nanofibers, whereas the thermal reversibility found to be more than twice as fast as PVA-oxazine nanofibers. Results showed that the resultant nanofibers have very good capability of recording QR codes multiple times. The FTIR spectroscopy and SEM were employed to characterize the electrospun nanofibers. The UV-responsive PVA nanofibers have great potentials as a light-driven nanomaterials incorporated within sensors, sensitive displays and in optical devices such as erasable and rewritable optical storage.

  17. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-06-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  18. A scalable ultrasonic-assisted and foaming combination method preparation polyvinyl alcohol/phytic acid polymer sponge with thermal stability and conductive capability.

    PubMed

    Li, Yongshen; Song, Yunna; Li, Jihui; Li, Yuehai; Li, Ning; Niu, Shuai

    2018-04-01

    In this article, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) is synthesized from PVA and PA via the esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation, and PVA/PA polymer sponge is prepared via foaming PVA/PA polymer in the presence of n-pentane and ammonium bicarbonate, and the structure of PVA/PA polymer and the structure, morphology and crystallinity of PVA/PA polymer sponge are characterized, and the thermal stability and surface resistivity of PVA/PA polymer sponge are investigated. Based on these, it has been attested that PVA/PA polymer synthesized under the acidity and ultrasound irradiation and PVA/PA polymer sponge are structured by the chain of PVA and the cricoid PA connected in the form of ether bonds and phosphonate bonds, and the thermal stability of PVA/PA polymer sponge attains 416.5 °C, and the surface resistivity of PVA/PA polymer sponge reaches 5.76 × 10 4  ohms/sq. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electrospun polyvinyl alcohol ultra-thin layer chromatography of amino acids.

    PubMed

    Lu, Tian; Olesik, Susan V

    2013-01-01

    Electrospun polyvinyl alcohol (PVA) ultrathin layer chromatographic (UTLC) plates were fabricated using in situ crosslinking electrospinning technique. The value of these ULTC plates were characterized using the separation of fluorescein isothiocyanate (FITC) labeled amino acids and the separation of amino acids followed visualization using ninhydrin. The in situ crosslinked electrospun PVA plates showed enhanced stability in water and were stable when used for the UTLC study. The selectivity of FITC labeled amino acids on PVA plate was compared with that on commercial Si-Gel plate. The efficiency of the separation varied with analyte concentration, size of capillary analyte applicator, analyte volume, and mat thickness. The concentration of 7mM or less, 50μm i.d. capillary applicator, minimum volume of analyte solution and three-layered mat provides the best efficiency of FITC-labeled amino acids on PVA UTLC plate. The efficiency on PVA plate was greatly improved compared to the efficiency on Si-Gel HPTLC plate. The hydrolysis products of aspartame in diet coke, aspartic acid and phenylalanine, were also successfully analyzed using PVA-UTLC plate. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    NASA Astrophysics Data System (ADS)

    Junaidi, Yunus, Muhammad; Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  1. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-10-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I- V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  2. Optical and structural behaviors of crosslinked polyvinyl alcohol thin films

    NASA Astrophysics Data System (ADS)

    Pandit, Subhankar; Kundu, Sarathi

    2018-04-01

    Polyvinyl Alcohol (PVA) has excellent properties like uniaxial tensile stress, chemical resistance, biocompatibility, etc. The properties of PVA further can be tuned by crosslinking process. In this work, a simple heat treatment method is used to find out the optimum crosslinking of PVA and the corresponding structural and optical responses are explored. The PVA crosslinking is done by exposing the films at different temperatures and time intervals. The optical property of pure and heat treated PVA films are investigated by UV-Vis absorption and photoluminescence emission spectroscopy and structural modifications are studied by Fourier Transform Infrared Spectroscopy (FTIR). The absorption peaks of pure PVA are observed at ≈ 280 and 335 nm and the corresponding emission is observed at ≈ 424 nm. The pure PVA showed modified optical behaviors after the heat treatment. In addition, dipping the PVA films in hot water (85°C) for nearly 20 minutes also show impact on both structural and optical properties. From FTIR spectroscopy, the changes in vibrational band positions confirm the structural modifications of PVA films.

  3. Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber

    NASA Astrophysics Data System (ADS)

    Cao, Liming; Li, Xing; Zhang, Rui; Wu, Duanduan; Dai, Shixun; Peng, Jian; Weng, Jian; Nie, Qiuhua

    2018-03-01

    We have designed an all-fiber passive mode-locking thulium-doped fiber laser that uses molybdenum disulfide (MoS2) as a saturable absorber (SA) material. A free-standing few-layer MoS2-polyvinyl alcohol (PVA) film is fabricated by liquid phase exfoliation (LPE) and is then transferred onto the end face of a fiber connector. The excellent saturable absorption of the fabricated MoS2-based SA allows the laser to output soliton pulses at a pump power of 500 mW. Fundamental frequency mode-locking is realized at a repetition frequency of 13.9 MHz. The central wavelength is 1926 nm, the 3 dB spectral bandwidth is 2.86 nm and the pulse duration is 1.51 ps. Additionally, third-order harmonic mode-locking of the laser is also achieved. The pulse duration is 1.33 ps, which is slightly narrower than the fundamental frequency mode-locking bandwidth. The experimental results demonstrate that the few-layer MoS2-PVA SA is promising for use in 2 μm laser systems.

  4. Chromaticity and color saturation of ultraviolet irradiated poly(vinyl alcohol)-anthocyanin coatings

    NASA Astrophysics Data System (ADS)

    Mat Nor, N. A.; Aziz, N.; Mohd-Adnan, A. F.; Taha, R. M.; Arof, A. K.

    2016-06-01

    The purpose of this paper is to evaluate the chromaticity and color saturation of anthocyanin extraction from fruit pericarps of Ixora siamensis in a poly(vinyl alcohol) (PVA) matrix. The colored PVA matrix was exposed to UV-B irradiation for 93 days at UV intensity of 17.55 lux. Anthocyanin colorant has been extracted using methanol acidified with 0.5% trifluoroacetic acid (TFA). Different concentrations of ferulic acid (FA) (0, 1, 2, 3, 4 and 5 wt.%) have been added to the anthocyanin extractions before mixing with PVA to form a coating system. The PVA-anthocyanin-FA mixtures have been coated on glass slides and kept overnight in the dark for curing before exposure to UV-B irradiation. The FA-free sample undergoes more color degradation compared to samples containing FA. The coating with 2% FA has the most stable color with chromaticity of 41% and color saturation of 0.88 compared to other FA containing coats. The FA-free coat exhibits 29% chromaticity and color saturation of 0.38 at the end of the experiment.

  5. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment

    NASA Astrophysics Data System (ADS)

    Peng, Shujing; Liu, Xiulan; Sun, Jie; Gao, Zhiqiang; Yao, Lan; Qiu, Yiping

    2010-04-01

    This paper studies the influence of moisture absorption of cotton fabrics on the effectiveness of atmospheric pressure plasma jet (APPJ) on desizing of polyvinyl alcohol (PVA). Cotton fabrics with three different moisture regains (MR), namely 1.8%, 7.3%, and 28.4% corresponding to 10%, 65%, and 98% of relative humidity respectively, are treated for 16 s, 32 s, 48 s, and 64 s. X-ray photoelectron spectroscopy analysis indicates that the plasma treated PVA has higher oxygen concentration than the control. Mass loss results show that the fabric with the highest MR has the largest mass loss after 64 s plasma exposure. Solubility measurement reveals that the sample with the lowest MR has the highest desizing efficacy and the percent desizing ratio reaches 96% after 64 s exposure plus a 20 min hot wash, which is shown as clean as the unsized sample through scanning electron microscopy analysis. The yarn tensile strength test results show that APPJ has no negative effect on fabric tensile strength.

  6. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

    PubMed Central

    Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Bin Hussein, Mohd Zobir; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2014-01-01

    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG. PMID:24737969

  7. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junaidi; Departement of Physics, Lampung University, Bandar Lampung; Triyana, Kuwat, E-mail: triyana@ugm.ac.id

    2016-04-19

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able tomore » control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less

  8. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Department of Physics, Lampung University, Bandar Lampung; Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were alsomore » able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less

  9. Evaluation of polyvinyl alcohols as mucoadhesive polymers for mucoadhesive buccal tablets prepared by direct compression.

    PubMed

    Ikeuchi-Takahashi, Yuri; Ishihara, Chizuko; Onishi, Hiraku

    2017-09-01

    The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs. The highest values of the tensile strength and the in vitro adhesive force were observed for PVAs with a medium viscosity and small particle size. The optimal PVA was identified by a factorial design analysis. Mucoadhesive tablets containing the optimal PVA were compared with carboxyvinyl polymer and hydroxypropyl cellulose formulations. The optimal PVA gives a high adhesive force, has a low viscosity, and resulted in relatively rapid drug release. Formulations containing carboxyvinyl polymer had high tensile strengths but short disintegration times. Higher hydroxypropyl cellulose concentration formulations had good adhesion forces and very long disintegration times. We identified the optimal characteristics of PVA, and the usefulness of mucoadhesive buccal tablets containing this PVA was suggested from their formulation properties.

  10. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method.

    PubMed

    Su, Cui; Su, Yunlan; Li, Zhiyong; Haq, Muhammad Abdul; Zhou, Yong; Wang, Dujin

    2017-08-01

    Bilayered poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogels with anisotropic and gradient mechanical properties were prepared by the combination of directional freezing-thawing (DFT) and electrophoresis method. Firstly, PVA hydrogels with aligned channel structure were prepared by the DFT method. Then, HA nanoparticles were in situ synthesized within the PVA hydrogels via electrophoresis. By controlling the time of the electrophoresis process, a bilayered gradient hydrogel containing HA particles in only half of the gel region was obtained. The PVA/HA composite hydrogel exhibited gradient mechanical strength depending on the distance to the cathode. The gradient initial tensile modulus ranging from 0.18MPa to 0.27MPa and the gradient initial compressive modulus from 0.33MPa to 0.51MPa were achieved. The binding strength of the two regions was relatively high and no apparent internal stress or defect was observed at the boundary. The two regions of the bilayered hydrogel also showed different osteoblast cell adhesion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [The effect of long-term preservation of microbial cells immobilized in poly(vinyl alcohol) cryogel on their viability and biosynthesis of target metabolites].

    PubMed

    Efremenko, E N; Tatarinova, N Iu

    2007-01-01

    The effect of cell storage at -18 degrees C for 18-24 months on reproductive capacity was investigated for various microorganisms (gram-positive and gram-negative bacteria, yeasts, and filamentous fungi) immobilized in poly(vinyl alcohol) cryogel. To examine the viability of immobilized cells after defrosting, the bioluminescent method of intracellular ATP determination was used. A high level of metabolic activity of immobilized cells after various periods of storage was recorded for Streptomyces anulatus, Rhizopus orvzae, and Escherichia coli, which are producers of the antibiotic aurantin, L(+)-lactic acid, and the recombinant enzyme organophosphate hydrolase, respectively. It was shown that the initial concentration of immobilized cells in cryogel granules plays an important role in the survival of Str. anulatus and Pseudomonas putida after 1.5 years of storage. It was found that, after slow defrosting in the storage medium at 50C for 18 h of immobilized cells of the yeast Saccharomvces cerevisiae that had been stored for nine months, the number of reproductive cells increased due to the formation of ascospores.

  12. Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range.

    PubMed

    Gallego, Sergi; Márquez, André; Méndez, David; Marini, Stephan; Beléndez, Augusto; Pascual, Inmaculada

    2009-08-01

    Photopolymers are appealing materials for the fabrication of diffractive optical elements (DOEs). We evaluate the possibilities of polyvinyl-alcohol/acrylamide-based photopolymers to store diffractive elements with low spatial frequencies. We record gratings with different spatial frequencies in the material and analyze the material behavior measuring the transmitted and the reflected orders as a function of exposition. We study two different compositions for the photopolymer, with and without a cross-linker. The values of diffraction efficiency achieved for both compositions make the material suitable to record DOEs with long spatial periods. Assuming a Fermi-Dirac-function-based profile, we fitted the diffracted intensities (up to the eighth order) to obtain the phase profile of the recorded gratings. This analysis shows that it is possible to achieve a phase shift larger than 2pi rad with steep edges in the periodic phase profile. In the case of the measurements in reflection, we have obtained information dealing with the surface profile, which show that it has a smooth shape with an extremely large phase-modulation depth.

  13. Effects of Blending Alcohols with Poultry Fat Methyl Esters on Cold Flow Properties

    USDA-ARS?s Scientific Manuscript database

    The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol in a linear fashion with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols t...

  14. 27 CFR 19.378 - Formula requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formula requirements. 19.378 Section 19.378 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... may blend, mix, purify, refine, compound or treat spirits in any manner which results in a change of...

  15. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose.

    PubMed

    Sanaeifar, Niuosha; Rabiee, Mohammad; Abdolrahim, Mojgan; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2017-02-15

    In this research, a new electrochemical biosensor was constructed for the glucose detection. Iron oxide nanoparticles (Fe 3 O 4 ) were synthesized through co-precipitation method. Polyvinyl alcohol-Fe 3 O 4 nanocomposite was prepared by dispersing synthesized nanoparticles in the polyvinyl alcohol (PVA) solution. Glucose oxidase (GOx) was immobilized on the PVA-Fe 3 O 4 nanocomposite via physical adsorption. The mixture of PVA, Fe 3 O 4 nanoparticles and GOx was drop cast on a tin (Sn) electrode surface (GOx/PVA-Fe 3 O 4 /Sn). The Fe 3 O 4 nanoparticles were characterized by X-ray diffraction (XRD). Also, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) techniques were utilized to evaluate the PVA-Fe 3 O 4 and GOx/PVA-Fe 3 O 4 nanocomposites. The electrochemical performance of the modified biosensor was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Presence of Fe 3 O 4 nanoparticles in the PVA matrix enhanced the electron transfer between enzyme and electrode surface and the immobilized GOx showed excellent catalytic characteristic toward glucose. The GOx/PVA-Fe 3 O 4 /Sn bioelectrode could measure glucose in the range from 5 × 10 -3 to 30 mM with a sensitivity of 9.36 μA mM -1 and exhibited a lower detection limit of 8 μM at a signal-to-noise ratio of 3. The value of Michaelis-Menten constant (K M ) was calculated as 1.42 mM. The modified biosensor also has good anti-interfering ability during the glucose detection, fast response (10 s), good reproducibility and satisfactory stability. Finally, the results demonstrated that the GOx/PVA-Fe 3 O 4 /Sn bioelectrode is promising in biosensor construction. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Biodesulphurization of gasoline by Rhodococcus erythropolis supported on polyvinyl alcohol.

    PubMed

    Fatahi, A; Sadeghi, S

    2017-05-01

    A new biodesulphurization (BDS) method has been considered using Rhodococcus erythropolis supported on polyvinyl alcohol (PVA) for BDS of thiophene as a gasoline sulphur model compound in n-hexane as the solvent, subsequently this biocatalyst has been applied to BDS of gasoline samples. The obtained results according to UV-Spectrophotometer analysis at 240 nm showed that 97·41% of thiophene at the optimum condition of primary concentration 80 mg l -1 , pH = 7, by 0·1 g of biocatalyst in 30°C and after 20 h of contact time has been degraded. These optimum conditions have been applied to gasoline BDS and the biodegradation of gasoline thiophenic compounds have been investigated by gas chromatography-mass spectrometry (GC-MS). According to GC-MS, thiophene and its 2-methyl, 3-methyl and 2- ethyl derivatives had acceptable biodegradation efficiencies of about 26·67, 21·03, 23·62% respectively. Also, benzothiophene that has been detected in a gasoline sample had 38·89% biodegradation efficiency at optimum conditions, so biomodification of PVA by R. erythropolis produces biocatalysts with an active metabolism that facilitates the interaction of bacterial strain with gasoline thiophenic compounds. The morphology and surface functional groups of supported R. erythropolis on PVA have been investigated by scanning electron microscope (SEM) and FT-IR spectroscopy respectively. SEM images suggest some regular layered shape for the supported bacteria. FT-IR spectra indicate a desirable interaction between bacterial cells and polymer supports. Also, the recovery of biocatalyst has been investigated and after three times of using in BDS activity, its biocatalytic ability had no significant decreases. The biomodification of polyvinyl alcohol by Rhodococcus erythropolis described herein produces a new biocatalyst which can be used for significantly reducing the thiophenic compounds of gasoline and other fossil fuels. The immobilization process is to increase the biodegradation efficiency of cells and accelerating the biodesulphurization process. © 2017 The Society for Applied Microbiology.

  17. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    NASA Astrophysics Data System (ADS)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  18. Wetting-Dewetting and Dispersion-Aggregation Transitions Are Distinct for Polymer Grafted Nanoparticles in Chemically Dissimilar Polymer Matrix.

    PubMed

    Martin, Tyler B; Mongcopa, Katrina Irene S; Ashkar, Rana; Butler, Paul; Krishnamoorti, Ramanan; Jayaraman, Arthi

    2015-08-26

    Simulations and experiments are conducted on mixtures containing polymer grafted nanoparticles in a chemically distinct polymer matrix, where the graft and matrix polymers exhibit attractive enthalpic interactions at low temperatures that become progressively repulsive as temperature is increased. Both coarse-grained molecular dynamics simulations, and X-ray scattering and neutron scattering experiments with deuterated polystyrene (dPS) grafted silica and poly(vinyl methyl ether) PVME matrix show that the sharp phase transition from (mixed) dispersed to (demixed) aggregated morphologies due to the increasingly repulsive effective interactions between the blend components is distinct from the continuous wetting-dewetting transition. Strikingly, this is unlike the extensively studied chemically identical graft-matrix composites, where the two transitions have been considered to be synonymous, and is also unlike the free (ungrafted) blends of the same graft and matrix homopolymers, where the wetting-dewetting is a sharp transition coinciding with the macrophase separation.

  19. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    PubMed

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Accelerated Thermal Depolymerization of Cyclic Polyphthalaldehyde with a Polymeric Thermoacid Generator.

    PubMed

    Lopez Hernandez, Hector; Lee, Olivia P; Possanza, Catherine; Kaitz, Joshua A; Park, Chan Woo; Plantz, Christopher L; Moore, Jeffrey S; White, Scott R

    2018-04-30

    Thermally triggerable polymer films that degrade at modest temperatures (≈85 °C) are created from a blend of cyclic polyphthalaldehyde (cPPA) and a polymeric thermoacid generator, poly(vinyl tert-butyl carbonate sulfone) (PVtBCS). PVtBCS depolymerizes when heated, generating acid which initiates the depolymerization of cPPA into volatile byproducts. The mass loss onset for 2 wt% PVtBCS/cPPA is 22 °C lower than the onset for neat cPPA alone in dynamic thermogravimetric analysis experiments. Increased concentrations of PVtBCS increase the rate of depolymerization of cPPA. Raman spectroscopy reveals that the monomer, o-phthalaldehyde, is the main depolymerization product of the acid-catalyzed depolymerization of cPPA. The PVtBCS/cPPA blend is a promising material for the design and manufacture of transient electronic packaging and polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  2. 76 FR 6342 - n-Octyl Alcohol and n-Decyl Alcohol; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... produce sensitization in guinea pigs. A 90-day dermal toxicity study in rats with fatty alcohol blend (56... pesticide manufacturer. Potentially affected entities may include, but are not limited to: Crop production (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide...

  3. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.

    PubMed

    Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D

    2007-01-01

    Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.

  4. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds.

    PubMed

    Siritienthong, Tippawan; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2012-12-15

    Silk sericin has been recently reported for its advantageous biological properties to promote wound healing. In this study, we established that the ethyl alcohol (EtOH) could be used to precipitate sericin and form the stable sericin/polyvinyl alcohol (PVA) scaffolds without the crosslinking. The sericin/PVA scaffolds were fabricated via freeze-drying and subsequently precipitating in various concentrations of EtOH. The EtOH-precipitated sericin/PVA scaffolds showed denser structure, higher compressive modulus, but lower water swelling ability than the non-precipitated scaffolds. Sericin could be released from the EtOH-precipitated sericin/PVA scaffolds in a sustained manner. After cultured with L929 mouse fibroblasts, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed the highest potential to promote cell proliferation. After applied to the full-thickness wounds of rats, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed significantly higher percentage of wound size reduction and higher extent of type III collagen formation and epithelialization, compared with the control scaffolds without sericin. The accelerated wound healing by the 70 vol% EtOH-precipitated sericin/PVA scaffolds was possibly due to (1) the bioactivity of sericin itself to promote wound healing, (2) the sustained release of precipitated sericin from the scaffolds, and (3) the activation and recruitment of wound healing-macrophages by sericin to the wounds. This finding suggested that the EtOH-precipitated sericin/PVA scaffolds were more effective for the wound healing, comparing with the EtOH-precipitated PVA scaffolds without sericin. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Evaluation of physicochemical and biological properties of chitosan/poly (vinyl alcohol) polymer blend membranes and their correlation for Vero cell growth.

    PubMed

    Sharma, Parul; Mathur, Garima; Dhakate, Sanjay R; Chand, Subhash; Goswami, Navendu; Sharma, Sanjeev K; Mathur, Ashwani

    2016-02-10

    The blend membranes with varying weight ratios of chitosan/poly (vinyl alcohol) (CS/PVA) (1:0, 1:1, 1:2.5, 1.5:1, 1.5: 2.5) were prepared using solvent casting method and were evaluated for their potential application in single-use membrane bioreactors (MBRs). The physicochemical properties of the prepared membranes were investigated for chemical interactions (FTIR), surface morphology (SEM), water uptake, protein sorption (qe), ammonia sorption and growth kinetics of Vero cells. CS/PVA blend membrane having weight ratio of 1.5:1 had shown enhanced membrane flexibility, reduced water uptake, less protein sorption and no ammonium sorption compared to CS membrane. This blend membrane also showed comparatively enhanced higher specific growth rate (0.82/day) of Vero cells. Improved physicochemical properties and growth kinetics obtrude CS/PVA (1.5:1) as a potential surface for adhesion and proliferation with possible application in single use membrane bioreactors. Additionally, new insight explaining correlation between water holding (%) of CS/PVA (1.5:1) blend membrane and doubling time (td) of Vero cells is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. L-band ultrafast fiber laser mode locked by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Rozhin, A. G.; Wang, F.; Scardaci, V.; Milne, W. I.; White, I. H.; Hennrich, F.; Ferrari, A. C.

    2008-08-01

    We fabricate a nanotube-polyvinyl alcohol saturable absorber with a broad absorption at 1.6 μm. We demonstrate a pulsed fiber laser working in the telecommunication L band by using this composite as a mode locker. This gives ˜498±16 fs pulses at 1601 nm with a 26.7 MHz repetition rate.

  7. Interfacial Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals

    Treesearch

    Mariko Ago; Joseph E. Jakes; Leena-Sisko Johansson; Sunkyu Park; Orlando J. Rojas

    2012-01-01

    Sub-100 nm resolution local thermal analysis, X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA) measurements were used to relate surface polymer distribution with the composition of electrospun fiber mats and spin coated films obtained from aqueous dispersions of lignin, polyvinyl alcohol (PVA), and cellulose nanocrystal (CNC). Defect-free lignin/...

  8. Higher value films prepared from poly(vinyl alcohol) and amylose-fatty acid derivatives inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Water soluble amylose fatty acid and fatty ammonium salt inclusion complexes (AIC) were prepared by jet cooked high amylose corn starch with water soluble salts of long chain fatty acids or fatty amines. The formation of AIC was confirmed by X-ray diffraction of freeze-dried samples. After dissoluti...

  9. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... percent. (2) Hydroxyethyl cellulose, 0.2 to 2.5 percent. (3) Hypromellose, 0.2 to 2.5 percent. (4...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  10. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... percent. (2) Hydroxyethyl cellulose, 0.2 to 2.5 percent. (3) Hypromellose, 0.2 to 2.5 percent. (4...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  11. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    NASA Technical Reports Server (NTRS)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  12. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  13. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    The use of starch in polymer composites for film production has been studied extensively for increasing biodegradability, improving film properties and reducing cost. Starch nanoparticles have received much attention, primarily those obtained by acid hydrolysis of starch granules. In this study, nan...

  14. 76 FR 5562 - Polyvinyl Alcohol From Taiwan: Final Determination of Sales at Less Than Fair Value

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... Taiwan: Final Determination of Sales at Less Than Fair Value AGENCY: Import Administration, International... United States at less than fair value (LTFV), as provided in section 735 of the Tariff Act of 1930, as... Taiwan: Preliminary Determination of Sales at Less Than Fair Value and Postponement of Final...

  15. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    USDA-ARS?s Scientific Manuscript database

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  16. Radiation processing of thermoplastic starch by blending aromatic additives: Effect of blend composition and radiation parameters

    NASA Astrophysics Data System (ADS)

    Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Coqueret, Xavier

    2013-03-01

    This paper reports on the effects of electron beam (EB) irradiation on poly α-1,4-glucose oligomers (maltodextrins) in the presence of water and of various aromatic additives, as model blends for gaining a better understanding at a molecular level the modifications occurring in amorphous starch-lignin blends submitted to ionizing irradiation for improving the properties of this type of bio-based thermoplastic material. A series of aromatic compounds, namely p-methoxy benzyl alcohol, benzene dimethanol, cinnamyl alcohol and some related carboxylic acids namely cinnamic acid, coumaric acid, and ferulic acid, was thus studied for assessing the ability of each additive to counteract chain scission of the polysaccharide and induce interchain covalent linkages. Gel formation in EB-irradiated blends comprising of maltodextrin was shown to be dependent on three main factors: the type of aromatic additive, presence of glycerol, and irradiation dose. The chain scission versus grafting phenomenon as a function of blend composition and dose were studied using Size Exclusion Chromatography by determining the changes in molecular weight distribution (MWD) from Refractive Index (RI) chromatograms and the presence of aromatic grafts onto the maltodextrin chains from UV chromatograms. The occurrence of crosslinking was quantified by gel fraction measurements allowing for ranking the cross-linking efficiency of the additives. When applying the method to destructurized starch blends, gel formation was also shown to be strongly affected by the moisture content of the sample submitted to irradiation. The results demonstrate the possibility to tune the reactivity of tailored blend for minimizing chain degradation and control the degree of cross-linking.

  17. Preparation and in vitro evaluation of a new fentanyl patch based on acrylic/silicone pressure-sensitive adhesive blends.

    PubMed

    Taghizadeh, Seyed Mojtaba; Soroushnia, Arezou; Mirzadeh, Hamid; Barikani, Mehdi

    2009-04-01

    In this study, the influence of the ratio of silicone (Si) to acrylic pressure-sensitive adhesive (PSA), polyvinyl pyrrolidone (PVP), and lauryl alcohol (LA) % (wt/wt) on the properties of a drug in adhesive patch containing 4% (wt/wt) fentanyl as model drug was evaluated. The dependent variables selected were drug solubility, in vitro drug release in the platforms as well as adhesion properties including peel strength and tack value. By using the central composite design of Design Expert software, it was found that the effect of each factor was different, yet all had influenced dependent variables significantly (p < .05). Quadratic model generated for various response variables using backward regression analysis was found to be statistically significant (p < .05). It was deduced that the presence of PVP and Si displayed similar trends on drug solubility and release. Each role played by Si with LA and PVP in release rate was separately investigated, and it was found that the presence of PVP and LA in lowering the amount of drug released was more dominant compared with that of Si. The release patterns at the early and later stages follow the Higuchi and semiempirical models, respectively. Effect of PVP as well as Si and LA were similar on tack value. The influence of LA compared to peeling characteristics of Si system was more pronounced.

  18. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin.

    PubMed

    Anjum, Sadiya; Gupta, Amlan; Sharma, Deepika; Gautam, Deepti; Bhan, Surya; Sharma, Anupama; Kapil, Arti; Gupta, Bhuvanesh

    2016-07-01

    This study is aimed at the development of a composite material for wound dressing containing nanosilver nanohydrogels (nSnH) along with Aloe vera and curcumin that promote antimicrobial nature, wound healing and infection control. Nanosliver nanohydrogels were synthesized by nanoemulsion polymerization of methacrylic acid (MAA) followed by subsequent crosslinking and silver reduction under irradiation. Both the polymerization and irradiation time had significant influence on the nanoparticle shape, size and its formation. Polyvinyl alcohol/polyethylene oxide/carboxymethyl cellulose matrix was used as gel system to blend with nSnH, A. vera, curcumin and coat it on the hydrolysed PET fabric to develop antimicrobial dressings. The cumulative release of silver from the dressing was found to be ~42% of the total loading after 48h. The antimicrobial activity of the dressings was studied against both Staphylococcus aureus and Escherichia coli. In vivo wound healing studies were carried out over a period of 16d on full-thickness skin wounds created on Swiss albino mice. Fast healing was observed in Gel/nSnH/Aloe treated wounds with minimum scarring, as compared to other groups. The histological studies showed A. vera based dressings to be the most optimum one. These results suggest that nSnH along with A. vera based dressing material could be promising candidates for wound dressings. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mixed alkyl esters from cottonseed oil: Improved biodiesel properties and blends with ultra-low sulfur diesel fuel

    USDA-ARS?s Scientific Manuscript database

    Transesterification of refined cottonseed oil was carried out with methanol, ethanol, 1-butanol, and various mixtures of these alcohols at constant volume ratio of alcohol to oil (1:2) using KOH (1 wt%) as catalyst to produce biodiesel. In the mixed alcohol transesterifications, the formation of met...

  20. Shifting the Phase Boundary with Electric Fields to Jump In and Out of the Phase Diagram at Constant Temperature

    NASA Astrophysics Data System (ADS)

    Roth, Connie B.; Kriisa, Annika

    Understanding the phase behavior of polymer blends and block copolymers under the presence of electric fields is important for advanced applications containing electrodes such as organic photovoltaics and batteries, as well as for field-directed assembly and alignment of domains. We have recently demonstrated that electric fields enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether blends) (PVME) blends, shifting the phase separation temperature Ts(E) up by 13.5 +/- 1.4 K for electric field strengths of E = 1.7 MV/m. Experimentally this effect is much larger than the traditional predictions from adding the standard electrostatic energy term for mixtures to the free energy of mixing. However, accounting for the energy penalty of dielectric interfaces between domains created during phase separation, the primary factor that drives alignment of domains, may also be responsible for the change in miscibility. Here we investigate the dynamics of repeatedly jumping the system from the one-phase to the two-phase region and demonstrate that this can be done at a constant temperature simply by turning the electric field on and off, illustrating electric-field-induced remixing in the two-phase region.

  1. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the wheat gluten/basalt composite and wheat gluten/clay composite materials. Their mechanical properties and biodegradation behaviors were determined.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The objective of Task I is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extenders and octane enhancers. In Task 1, during this reporting period, we encountered and solved a problem in the analysis of the reaction products containing a small amount of heavy components. Subsequently, we continued with the major thrusts of the program. We analyzed the results from our preliminary studies on the packed-bed membrane reactor using the BASF methanol synthesis catalyst. We developed a quantitative model to describe the performance of the reactor.more » The effect of varying permeances and the effect of catalyst aging are being incorporated into the model. Secondly, we resumed our more- detailed parametric studies on selected non-sulfide Mo-based catalysts. Finally, we continue with the analysis of data from the kinetic study of a sulfided carbon-supported potassium-doped molybdenum-cobalt catalyst in the Rotoberty reactor. We have completed catalyst screening at UCC. The complete characterization of selected catalysts has been started. In Task 2, the fuel blends of alcohol and unleaded test gas 96 (UTG 96) have been made and tests have been completed. The testing includes knock resistance tests and emissions tests. Emissions tests were conducted when the engine was optimized for the particular blend being tested (i.e. where the engine produced the most power when running on the blend in question). The data shows that the presence of alcohol in the fuel increases the fuel`s ability to resist knock. Because of this, when the engine was optimized for use with alcohol blends, the engine produced more power and lower emission rates.« less

  3. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor.

    PubMed

    Chen, Cheng; Zhu, Yihua; Bao, Hua; Shen, Jianhua; Jiang, Hongliang; Peng, Liming; Yang, Xiaoling; Li, Chunzhong; Chen, Guorong

    2011-05-21

    An ethanol-assisted method is utilized to generate a robust gelated crystalline colloidal array (GCCA) photonic crystal sensor. The functionalized sensor efficiently diffracts the visible light and responds to various stimuli involving solvent, pH, cation, and compressive strain; the related color change can be easily distinguished by the naked eye. © The Royal Society of Chemistry 2011

  4. 75 FR 55552 - Polyvinyl Alcohol From Taiwan: Preliminary Determination of Sales at Less Than Fair Value and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ...-grade low-ash PVA are not included in the scope of this investigation. PVB-grade low-ash PVA is defined... amended the scope of the petition and the definition of the domestic like product to exclude ``PVB-grade... that fall within or that are functionally equivalent to and commercially competitive with products that...

  5. Thermomechanical Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals: A Dynamic Mechanical and Nanoindentation Study

    Treesearch

    Mariko Ago; Joseph E. Jakes; Orlando J. Rojas

    2013-01-01

    We produced defect-free electrospun fibers from aqueous dispersions of lignin, poly(vinyl alcohol) (PVA), and cellulose nanocrystals (CNCs), which were used as reinforcing nanoparticles. The thermomechanical performance of the lignin-based electrospun fibers and the spin-coated thin films was improved when they were embedded with CNCs. Isochronal dynamic mechanical...

  6. Polymer/boron nitride nanocomposite materials for superior thermal transport performance.

    PubMed

    Song, Wei-Li; Wang, Ping; Cao, Li; Anderson, Ankoma; Meziani, Mohammed J; Farr, Andrew J; Sun, Ya-Ping

    2012-06-25

    Boron nitride nanosheets were dispersed in polymers to give composite films with excellent thermal transport performances approaching the record values found in polymer/graphene nanocomposites. Similarly high performance at lower BN loadings was achieved by aligning the nanosheets in poly(vinyl alcohol) matrix by simple mechanical stretching (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 78 FR 20890 - Polyvinyl Alcohol From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ...) of the Act, we disregarded certain sales by CCPC in the home market which were made at below-cost... after publication of the final results of this review. Cash Deposit Requirements The following deposit... publication as provided by section 751(a)(2) of the Act: (1) The cash deposit rate for CCPC will be the rate...

  8. Demonstration of the Coagulation and Diffusion of Homemade Slime Prepared under Acidic Conditions without Borate

    ERIC Educational Resources Information Center

    Isokawa, Naho; Fueda, Kazuki; Miyagawa, Korin; Kanno, Kenichi

    2015-01-01

    Poly(vinyl alcohol) (PVA) precipitates in many kinds of aqueous salt solutions. While sodium sulfate, a coagulant for PVA fiber, precipitates PVA to yield a white rigid gel, coagulation of PVA with aluminum sulfate, a coagulant for water treatment, yields a slime-like viscoelastic fluid. One type of homemade slime is prepared under basic…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woon Hyuk Chung

    Polyvinyl alcohol films containing congo red are useful as gamma and electron radiation dosimeters. Absorbed doses should not exceed 500 kGy. The dose response is rather linear in a higher range, e.g., 100 to 500 kGy. The film is relatively stable before and after irradiation for quite a long time against fading, for example, a change of [approximately]10% in 1 yr following irradiation at room temperature.

  10. Topologically Micropatterned Collagen and Poly(ε-caprolactone) Struts Fabricated Using the Poly(vinyl alcohol) Fibrillation/Leaching Process To Develop Efficiently Engineered Skeletal Muscle Tissue.

    PubMed

    Kim, Minseong; Kim, WonJin; Kim, GeunHyung

    2017-12-20

    Optimally designed three-dimensional (3D) biomedical scaffolds for skeletal muscle tissue regeneration pose significant research challenges. Currently, most studies on scaffolds focus on the two-dimensional (2D) surface structures that are patterned in the micro-/nanoscales with various repeating sizes and shapes to induce the alignment of myoblasts and myotube formation. The 2D patterned surface clearly provides effective analytical results of pattern size and shape of the myoblast alignment and differentiation. However, it is inconvenient in terms of the direct application for clinical usage due to the limited thickness and 3D shapeability. Hence, the present study suggests an innovative hydrogel or synthetic structure that consists of uniaxially surface-patterned cylindrical struts for skeleton muscle regeneration. The alignment of the pattern on the hydrogel (collagen) and poly(ε-caprolactone) struts was attained with the fibrillation of poly(vinyl alcohol) and the leaching process. Various cell culture results indicate that the C2C12 cells on the micropatterned collagen structure were fully aligned, and that a significantly high level of myotube formation was achieved when compared to the collagen structures that were not treated with the micropatterning process.

  11. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.

    PubMed

    Zarei, Ali Reza; Ghazanchayi, Behnam

    2016-04-01

    The present study developed a new optical chemical sensor for detection of nitroaromatic explosives in liquid phase. The method is based on the fluorescence quenching of phenol red as fluorophore in a poly(vinyl alcohol) (PVA) membrane in the presence of nitroaromatic explosives as quenchers, e.g., 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 4-nitrotoluene (4-NT), 2,4,6-trinitrobenzene (TNB), and nitrobenzene (NB). For chemical immobilization of phenol red in PVA, phenol red reacted with formaldehyde to produce hydroxymethyl groups and then attached to PVA membrane through the hydroxymethyl groups. The optical sensor showed strong quenching of nitroaromatic explosives. A Stern-Volmer graph for each explosive was constructed and showed that the range of concentration from 5.0 × 10(-6) to 2.5 × 10(-4) mol L(-1) was linear for each explosive and sensitivity varied as TNB >TNT>2,4-DNT>NB>4-NT. The response time of the sensor was within 1 min. The proposed sensor showed good reversibility and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. One-Step Synthesis of Silver Nanoparticles on Polydopamine-Coated Sericin/Polyvinyl Alcohol Composite Films for Potential Antimicrobial Applications.

    PubMed

    Cai, Rui; Tao, Gang; He, Huawei; Song, Kai; Zuo, Hua; Jiang, Wenchao; Wang, Yejing

    2017-04-30

    Silk sericin has great potential as a biomaterial for biomedical applications due to its good hydrophilicity, reactivity, and biodegradability. To develop multifunctional sericin materials for potential antibacterial application, a one-step synthesis method for preparing silver nanoparticles (AgNPs) modified on polydopamine-coated sericin/polyvinyl alcohol (PVA) composite films was developed. Polydopamine (PDA) acted as both metal ion chelating and reducing agent to synthesize AgNPs in situ on the sericin/PVA composite film. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed that polydopamine could effectively facilitate the high-density growth of AgNPs as a 3-D matrix. X-ray diffractometry studies suggested the synthesized AgNPs formed good face-centered cubic crystalline structures. Contact angle measurement and mechanical test indicated AgNPs modified PDA-sericin/PVA composite film had good hydrophilicity and mechanical property. The bacterial growth curve and inhibition zone assays showed the AgNPs modified PDA-sericin/PVA composite film had long-term antibacterial activities. This work develops a new method for the preparation of AgNPs modified PDA-sericin/PVA film with good hydrophilicity, mechanical performance and antibacterial activities for the potential antimicrobial application in biomedicine.

  13. Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics.

    PubMed

    Yoon, Jinsu; Han, Jungmin; Choi, Bongsik; Lee, Yongwoo; Kim, Yeamin; Park, Jinhee; Lim, Meehyun; Kang, Min-Ho; Kim, Dae Hwan; Kim, Dong Myong; Kim, Sungho; Choi, Sung-Jin

    2018-05-25

    Electronics that degrade after stable operation for a desired operating time, called transient electronics, are of great interest in many fields, including biomedical implants, secure memory devices, and environmental sensors. Thus, the development of transient materials is critical for the advancement of transient electronics and their applications. However, previous reports have mostly relied on achieving transience in aqueous solutions, where the transience time is largely predetermined based on the materials initially selected at the beginning of the fabrication. Therefore, accurate control of the transience time is difficult, thereby limiting their application. In this work, we demonstrate transient electronics based on a water-soluble poly(vinyl alcohol) (PVA) substrate on which carbon nanotube (CNT)-based field-effect transistors were fabricated. We regulated the structural parameters of the PVA substrate using a three-dimensional (3D) printer to accurately control and program the transience time of the PVA substrate in water. The 3D printing technology can produce complex objects directly, thus enabling the efficient fabrication of a transient substrate with a prescribed and controlled transience time. In addition, the 3D printer was used to develop a facile method for the selective and partial destruction of electronics.

  14. A new polyvinyl alcohol hydrogel vascular model (KEZLEX) for microvascular anastomosis training

    PubMed Central

    Mutoh, Tatsushi; Ishikawa, Tatsuya; Ono, Hidenori; Yasui, Nobuyuki

    2010-01-01

    Background: Microvascular anastomosis is a challenging neurosurgical technique that requires extensive training for one to master it. We developed a new vascular model (KEZLEX, Ono and Co., Ltd., Tokyo, Japan) as a non-animal, realistic tool for practicing microvascular anastomosis under realistic circumstances. Methods: The model was manufactured from polyvinyl alcohol hydrogel to provide 1.0–3.0 mm diameter (available for 0.5-mm pitch), 6–8 cm long tubes that have qualitatively similar surface characteristics, visibility, and stiffness to human donor and recipient arteries for various bypass surgeries based on three-dimensional computed tomography/magnetic resonance imaging scanning data reconstruction using visible human data set and vessel casts. Results: Trainees can acquire basic microsuturing techniques for end-to-end, end-to-side, and side-to-side anastomoses with handling similar to that for real arteries. To practice standard deep bypass techniques under realistic circumstances, the substitute vessel can be fixed to specific locations of a commercially available brain model with pins. Conclusion: Our vascular prosthesis model is simple and easy to set up for repeated practice, and will contribute to facilitate “off-the-job” training by trainees. PMID:21170365

  15. Negative pressure wound therapy using polyvinyl alcohol foam to bolster full-thickness mesh skin grafts in dogs.

    PubMed

    Or, Matan; Van Goethem, Bart; Kitshoff, Adriaan; Koenraadt, Annika; Schwarzkopf, Ilona; Bosmans, Tim; de Rooster, Hilde

    2017-04-01

    To report the use of negative pressure wound therapy (NPWT) with polyvinyl alcohol (PVA) foam to bolster full-thickness mesh skin grafts in dogs. Retrospective case series. Client-owned dogs (n = 8). Full-thickness mesh skin graft was directly covered with PVA foam. NPWT was maintained for 5 days (in 1 or 2 cycles). Grafts were evaluated on days 2, 5, 10, 15, and 30 for graft appearance and graft take, granulation tissue formation, and complications. Firm attachment of the graft to the recipient bed was accomplished in 7 dogs with granulation tissue quickly filling the mesh holes, and graft take considered excellent. One dog had bandage complications after cessation of the NPWT, causing partial graft loss. The PVA foam did not adhere to the graft or damage the surrounding skin. The application of NPWT with a PVA foam after full-thickness mesh skin grafting in dogs provides an effective method for securing skin grafts, with good graft acceptance. PVA foam can be used as a primary dressing for skin grafts, obviating the need for other interposing materials to protect the graft and the surrounding skin. © 2017 The American College of Veterinary Surgeons.

  16. Synthesis and characterization of poly(vinyl alcohol) membranes with quaternary ammonium groups for wound dressing.

    PubMed

    Chen, Kuo-Yu; Lin, Yu-Sheng; Yao, Chun-Hsu; Li, Ming-Hsien; Lin, Jui-Che

    2010-01-01

    2-[(acryloyloxy)ethyl]Trimethylammonium chloride (AETMAC) was grafted onto poly(vinyl alcohol) (PVA) using ceric ammonium nitrate (CAN) as a redox initiator. A series of graft co-polymer (PVA-g-PAETMAC) membranes with different contents of AETMAC were prepared with a casting method. The incorporation of AETMAC into PVA chains was confirmed by element analysis and Fourier transform infrared spectroscopy. The effects of grafting on the thermal properties, water take, water vapor transmission rate (WVTR), contact angle, antibacterial activity and cytotoxicity of PVA-g-PAETMAC membranes were investigated. The experiment results showed that PVA-g-PAETMAC membrane has a higher equilibrium swelling ratio, surface hydrophilicity and WVTR than pure PVA membrane. Moreover, the higher the content of AETMAC, the higher were equilibrium swelling ratio, surface hydrophilicity and WVTR. In vitro bacterial adhesion study demonstrated a significantly reduced number of Staphylococcus aureus and Escherichia coli on PVA-g-PAETMAC surfaces when compared to PVA surface. In addition, no significant difference in the in vitro cytotoxicity was observed between PVA and PVA-g-PAETMAC membranes. The presence of quaternary ammonium groups did not reduce L929 cell growth. Therefore, the PVA-g-PAETMAC membranes have the potential for wound-dressing application.

  17. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    NASA Astrophysics Data System (ADS)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  18. Development of hydroxyapatite/polyvinyl alcohol bionanocomposite for prosthesis implants

    NASA Astrophysics Data System (ADS)

    Karthik, V.; Pabi, S. K.; Chowdhury, S. K. Roy

    2018-02-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) has similar structural and chemical properties of natural bone mineral and hence widely used as a bone replacement substitute. Natural bone consists of hydroxyapatite and collagen. For mimicking the natural, in the present work, a sintered porous hydroxyapatite component has been vacuum impregnated with Polyvinyl alcohol (PVA), which has better properties like biocompatibility, biodegradability and water- solubility. Hydroxyapatite powders have been made into nanosize to reduce the melting point and hence the sintering temperature. In the present investigation high energy ball mill is used to produce nano-hydroxyapatite powders in bulk quantity by optimizing the milling parameters using stainless steel grinding media. Pellets of 10 mm diameter have been produced from nano- hydroxyapatite powders under different uniaxial compaction pressures. The pellets have been sintered to form porous compacts. The vacuum impregnation of sintered pallets with PVA solution of different strength has been done to find the optimum impregnation condition. Microhardness, compressive strength, wear loss and haemocompatibility of hydroxyapatite ceramics have been studied before and after impregnation of PVA. The nano- hydroxyapatite/PVA composites have superior mechanical properties and reduced wear loss than the non-impregnated porous nano-hydroxyapatite ceramics.

  19. Kinetic evaluation study on the bioactivity of silver doped hydroxyapatite-polyvinyl alcohol nanocomposites.

    PubMed

    Mostafa, Amany A; Oudadesse, Hassane; El Sayed, Mayyada M H; Kamal, Gehan; Kamel, Mohamed; Foad, Enas

    2014-12-01

    This work investigates the effect of adding silver nanoparticles (NPs) in ppm on the bioactivity of hydroxyapatite/polyvinyl alcohol nanocomposites (HAV). HAV prepared by an in situ biomimetic approach was doped with different concentrations of silver NPs (HAV-Ag), and the formed powder samples were characterized by different techniques such as Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-EOS), X-ray diffraction, transmission electron microscope, and Fourier Transform Infrared Spectroscopy. Bioactivity was evaluated in simulated body fluid through studying the kinetics of Ca and P uptake onto the different HAV-Ag nanocomposites. Uptake profiles of Ca and P were well described by a pseudo-second order kinetic model, and the obtained kinetic parameters confirmed that the highest uptake capacities were achieved by adding less than 0.001 ppm of silver NPs which is an amount not detectable by ICP. Furthermore, HAV-Ag nanocomposites were shown to be non-toxic as well as have a strong antibacterial effect. Silver NPs significantly enhanced the bioactivity of HAV nanocomposites and thus the developed nanocomposites promise to be excellent biomaterials for bone and reconstructive surgery applications. © 2014 Wiley Periodicals, Inc.

  20. Development of porous structured polyvinyl alcohol/zeolite/carbon composites as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Sudibandriyo, M.; Saputra, A. H.; Haryono, A.

    2017-05-01

    Adsorption is a separation process that has higher energy efficiency than others. Analyzing the nature of the adsorbate and the selection of suitable adsorbent are key success in adsorption. The performance of the adsorbent can be modified either physically or chemically to obtain the efficiency and effectiveness of the adsorption, this can be facilitated by using a composite adsorbent. In this study, we have conducted the preparation process of a polyvinyl alcohol (PVA)/zeolite/carbon composites. The resulting adsorbent composites are dedicated for ethanol - water dehydration proposes. The composites were prepared using cross-linked polymerization method followed by supercritical fluid extraction (SFE) to obtain the porous structured upon drying process. The characterization of the functional groups and morphology were performed by using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscopy (SEM), respectively. The FTIR analysis showed that composite prepared by SFE method formed hydrogen bonding confirmed by the appearance of peaks at 2950 - 3000 cm-1 compared to composite without SFE method, whereas, the results of SEM study showed the formation of three layered structures. On basis of the obtained results, it can be shown that PVA/zeolite/carbon has high potential to be develop further as an adsorbent composite.

  1. Solution spinning of a high-? oxide superconductor: the effect of poly(vinyl alcohol) spinning medium on the critical current density of melt-processed ? superconducting filaments

    NASA Astrophysics Data System (ADS)

    Tomita, Hisayo; Sunohara, Makoto; Goto, Tomoko; Takahashi, Kiyohisa

    1996-12-01

    The precursor 0953-2048/9/12/014/img9 filament was prepared by solution spinning through a homogeneous aqueous poly(vinyl alcohol) (PVA) solution of Y, Ba and Cu acetates. The solution spinning was successfully performed using PVA with degrees of polymerization (DP) of 1700 and 2450 and a degree of saponification of 85 mol%. The as-drawn filament was heated to remove volatile components and partially melted to generate a superconducting phase. The effects of the DP of PVA and a content of mixed acetates in the precursor filament on the critical current density 0953-2048/9/12/014/img10 of the melt-processed filament were examined. The higher 0953-2048/9/12/014/img11 was obtained for the filament spun from PVA solution of higher DP and lower acetate content. The highest 0953-2048/9/12/014/img11 value of 0953-2048/9/12/014/img13 at 77 K and 0 T was achieved for the filament spun from the DP 2450 PVA with an acetate to PVA ratio of two.

  2. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers.

    PubMed

    Congdon, Thomas; Dean, Bethany T; Kasperczak-Wright, James; Biggs, Caroline I; Notman, Rebecca; Gibson, Matthew I

    2015-09-14

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL(-1). Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes.

  3. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers

    PubMed Central

    2015-01-01

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL–1. Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes PMID:26258729

  4. Fabrication of multicolor fluorescent polyvinyl alcohol through surface modification with conjugated polymers by oxidative polymerization

    NASA Astrophysics Data System (ADS)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-06-01

    A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.

  5. Influence of Food with High Moisture Content on Oxygen Barrier Property of Polyvinyl Alcohol (PVA)/Vermiculite Nanocomposite Coated Multilayer Packaging Film.

    PubMed

    Kim, Jung Min; Lee, Min Hyeock; Ko, Jung A; Kang, Dong Ho; Bae, Hojae; Park, Hyun Jin

    2018-02-01

    This study investigates the potential complications in applying nanoclay-based waterborne coating to packaging films for food with high moisture content. Multilayer packaging films were prepared by dry laminating commercially available polyvinyl alcohol (PVA)/vermiculite nanocomposite coating films and linear low-density polyethylene film, and the changes in oxygen barrier properties were investigated according to different relative humidity using 3 types of food simulants. When the relative humidity was above 60%, the oxygen permeability increased sharply, but this was reversible. Deionized water and 3% acetic acid did not cause any large structural change in the PVA/vermiculite nanocomposite but caused a reversible deterioration of the oxygen barrier properties. In contrast, 50% ethanol, a simulant for the semifatty food, induced irreversible structural changes with deterioration of the oxygen barrier property. These changes are due to the characteristics of PVA rather than vermiculite. We believe this manuscript would be of interest to the wide group of researchers, organizations, and companies in the field of developing nanoclay-based gas barrier packaging for foods with high moisture content. Hence, we wish to diffuse our knowledge to the scientific community. © 2018 Institute of Food Technologists®.

  6. A comparative study of nano-SiO2 and nano-TiO2 fillers on proton conductivity and dielectric response of a silicotungstic acid-H3PO4-poly(vinyl alcohol) polymer electrolyte.

    PubMed

    Gao, Han; Lian, Keryn

    2014-01-08

    The effects of nano-SiO2 and nano-TiO2 fillers on a thin film silicotungstic acid (SiWA)-H3PO4-poly(vinyl alcohol) (PVA) proton conducting polymer electrolyte were studied and compared with respect to their proton conductivity, environmental stability, and dielectric properties, across a temperature range from 243 to 323 K. Three major effects of these fillers have been identified: (a) barrier effect; (b) intrinsic dielectric constant effect; and (c) water retention effect. Dielectric analyses were used to differentiate these effects on polymer electrolyte-enabled capacitors. Capacitor performance was correlated to electrolyte properties through dielectric constant and dielectric loss spectra. Using a single-ion approach, proton density and proton mobility of each polymer electrolyte were derived as a function of temperature. The results allow us to deconvolute the different contributions to proton conductivity in SiWA-H3PO4-PVA-based electrolytes, especially in terms of the effects of fillers on the dynamic equilibrium of free protons and protonated water in the electrolytes.

  7. Nanostructured starch combined with hydroxytyrosol in poly(vinyl alcohol) based ternary films as active packaging system.

    PubMed

    Luzi, Francesca; Fortunati, Elena; Di Michele, Alessandro; Pannucci, Elisa; Botticella, Ermelinda; Santi, Luca; Kenny, José Maria; Torre, Luigi; Bernini, Roberta

    2018-08-01

    Novel ternary films have been realized by using poly(vinyl alcohol) (PVA) as polymeric matrix, nanostructured starch as reinforcement phase and hydroxytyrosol (HTyr), a low-molecular phenolic compound present in olive oil, as antioxidant agent. Nanostructured starch, in the form of starch nanocrystals (NC) and nanoparticles (NP) obtained by acid hydrolysis and ultrasound irradiation of starch derived from the bread wheat variety Cadenza (WT, amylose content 33%) and a derived-high amylose line (HA, amylose content 75%), was considered. The developed multifunctional films were characterized in terms of morphological, thermal and optical properties, water absorption capacity, overall and specific migration into a food simulant and antioxidant properties. Experimental data showed a prolonged release of HTyr from all ternary films and the released HTyr retained a strong antioxidant activity. The data, compared to those of PVA/HTyr binary films, demonstrated the key role of nanostructured starch in the ternary formulations in promoting a gradual release of HTyr. Overall, PVA fillm combined with nanoparticles from low amylose starch and hydroxytyrosol resulted as the most promising ternary formulation for food packaging applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  9. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    PubMed

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers.

  10. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor.

    PubMed

    Shao, Yu; Wang, Ying; Cao, Shaoqing; Huang, Yijian; Zhang, Longfei; Zhang, Feng; Liao, Changrui; Wang, Yiping

    2018-06-25

    A surface plasmon resonance (SPR) sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA) is demonstrated for relative humidity (RH) sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  11. Negligible seeding source effect on the final ANAMMOX community under steady and high nitrogen loading rate after enrichment using poly(vinyl alcohol) gel carriers.

    PubMed

    Cho, Kyungjin; Choi, Minkyu; Lee, Seockheon; Bae, Hyokwan

    2018-05-26

    This study investigated the effect of seeding source on the mature anaerobic ammonia oxidation (ANAMMOX) bacterial community niche in continuous poly(vinyl alcohol) (PVA) gel systems operated under high nitrogen loading rate (NLR) condition. Four identical column reactors packed with PVA gels were operated for 182 d using different seeding sources which had distinct community structures. The ANAMMOX reaction was achieved in all the bioreactors with comparable total and ANAMMOX bacterial 16S rRNA gene quantities. The bacterial community structure of the bioreactors became similar during operation; some major bacteria were commonly found. Interestingly, one ANAMMOX species, "Candidatus Brocadia sinica", was conclusively predominant in all the bioreactors, even though different seeding sludges were used as inoculum source, possibly due to the unique physiological characteristics of "Ca. Brocadia sinica" and the operating conditions (i.e., PVA gel-based continuous system and 1.0 kg-N/(m 3 ·d) of NLR). The results clearly suggest that high NLR condition is a more significant factor determining the final ANAMMOX community niche than is the type of seeding source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of oil palm empty fruit bunch-grafted-polyvinyl alcohol (OPEFB-g-PVA) hydrogel for removal of copper ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wen, Soh Jing; Rabat, Nurul Ekmi; Osman, Noridah

    2017-12-01

    Oil palm empty fruit bunch (OPEFB) fiber is a natural polymer which is potentially used as efficient adsorbents for heavy metal cations. The main objective of this research is to synthesize OPEFB grafted polyvinyl alcohol (PVA) hydrogel by using ammonium persulfate (APS) as initiator and gelatin as crosslinking agent. The grafting temperature, amounts of cross linking agent, initiator and concentration of OPEFB were manipulated in order to optimize the swelling capability of the hydrogel. Comparison of heavy metal adsorption performance between pure PVA hydrogel and optimized OPEFB-g-PVA hydrogel was evaluated by using copper ions solution. The characteristics and structure of the optimized OPEFB-g-PVA hydrogel was studied by using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) while Thermogravimetric Analysis (TGA) was used to study its thermal stability. The presence of band at 1088 and 1047cm-1 corresponds to C-O was observed as strong evidence of grafting. Water uptake capacity was evaluated and the maximum water absorption capacity was obtained at 180.67 g/g. PVA hydrogel with OPEFB proved to have better copper ion absorbency and thermal properties compared to pure PVA hydrogel.

  13. Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2018-04-01

    Wurtzite ZnO nanoparticles, as a nanofiller, were incorporated in a poly(vinyl alcohol) (PVA) matrix to prepare multipurpose nanocomposite films using a solution casting approach. Some advanced analytical techniques were used to investigate the properties of prepared nanocomposite films. The mediation of ZnO nanofillers resulted in modification of structural, optical and mechanical properties of nanocomposite films. A comprehensive band structure investigation might be useful for designing technological applications like in optoelectronic devices. The experimental results were found to be closely dependent on the nanofiller contents. Some theoretical models like Tauc's and Wemple-DiDomenico, were employed to investigate the band structure parameters. The imaginary part of the dielectric constant was used to investigate the band gap. Then, the Helpin-Tsai model was employed to predict Young's moduli of the prepared nanocomposite films. On 3 wt.% ZnO nanofiller loading, the optical band gap of the PVA-based nanocomposite film was decreased from 5.26 eV to 3 eV, the tensile strength increased from 25.3 MPa to 48 MPa and Young's modulus increased from 144 MPa to 544 MPa.

  14. Cold Spray Coating of Submicronic Ceramic Particles on Poly(vinyl alcohol) in Dry and Hydrogel States

    NASA Astrophysics Data System (ADS)

    Moreau, David; Borit, François; Corté, Laurent; Guipont, Vincent

    2017-06-01

    We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.

  15. Controlled release of tetracycline-HCl from halloysite-polymer composite films.

    PubMed

    Ward, Christopher J; Song, Shang; Davis, Edward W

    2010-10-01

    The first direct comparison between two common methods for loading halloysite with a small molecule for controlled release is presented. While the methods differ in the degree of simplicity, they provide essentially the same level of loading and release kinetics. A tentative explanation of the "burst" effect often seen in the release of low molecular weight molecules from halloysite is provided. The ability of halloysite to mediate the release rate of a water soluble drug, tetracycline, from solution cast polyvinyl alcohol and polymethyl methacrylate films was evaluated. In some films, montmorillonite was also incorporated. The addition of montmorillonite to solutions used to cast tetracycline containing films significantly reduced the release rate from the dried films. The same overall effect was seen when the drug was loaded into halloysite prior to preparation of the films. In both cases, the release was best fit with the simple Higuchi model. However, when montmorillonite was added to solutions of polyvinyl alcohol and drug loaded halloysite the release profiles were better fit by the Ritgar-Peppas model for anomalous transport. Release from polymethyl methacrylate was reduced by a factor of three by incorporating the drug in halloysite prior to producing the films.

  16. Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2018-07-01

    Wurtzite ZnO nanoparticles, as a nanofiller, were incorporated in a poly(vinyl alcohol) (PVA) matrix to prepare multipurpose nanocomposite films using a solution casting approach. Some advanced analytical techniques were used to investigate the properties of prepared nanocomposite films. The mediation of ZnO nanofillers resulted in modification of structural, optical and mechanical properties of nanocomposite films. A comprehensive band structure investigation might be useful for designing technological applications like in optoelectronic devices. The experimental results were found to be closely dependent on the nanofiller contents. Some theoretical models like Tauc's and Wemple-DiDomenico, were employed to investigate the band structure parameters. The imaginary part of the dielectric constant was used to investigate the band gap. Then, the Helpin-Tsai model was employed to predict Young's moduli of the prepared nanocomposite films. On 3 wt.% ZnO nanofiller loading, the optical band gap of the PVA-based nanocomposite film was decreased from 5.26 eV to 3 eV, the tensile strength increased from 25.3 MPa to 48 MPa and Young's modulus increased from 144 MPa to 544 MPa.

  17. Sugar-Responsive Layer-by-Layer Film Composed of Phenylboronic Acid-Appended Insulin and Poly(vinyl alcohol).

    PubMed

    Takei, Chihiro; Ohno, Yui; Seki, Tomohiro; Miki, Ryotaro; Seki, Toshinobu; Egawa, Yuya

    2018-01-01

    Previous studies have shown that reversible chemical bond formation between phenylboronic acid (PBA) and 1,3-diol can be utilized as the driving force for the preparation of layer-by-layer (LbL) films. The LbL films composed of a PBA-appended polymer and poly(vinyl alcohol) (PVA) disintegrated in the presence of sugar. This type of LbL films has been recognized as a promising approach for sugar-responsive drug release systems, but an issue preventing the practical application of LbL films is combining them with insulin. In this report, we have proposed a solution for this issue by using PBA-appended insulin as a component of the LbL film. We prepared two kinds of PBA-appended insulin derivatives and confirmed that they retained their hypoglycemic activity. The LbL films composed of PBA-appended insulin and PVA were successfully prepared through reversible chemical bond formation between the boronic acid moiety and the 1,3-diol of PVA. The LbL film disintegrated upon treatment with sugars. Based on the results presented herein, we discuss the suitability of the PBA moiety with respect to hypoglycemic activity, binding ability, and selectivity for D-glucose.

  18. [Antimicrobial Effects of Iodine-Polyvinyl Alcohol Ophthalmic and Eye Washing Solution (PA * IODO) with Special Reference to its Temperature, Concentration and Time and its Preservation Stability].

    PubMed

    Hatano, Hiroshi; Sakamoto, Masako; Hayashi, Kazuo; Kamiya, Seigo

    2015-08-01

    Temperature, concentration and time are the three factors that affect the inactivation capacity of iodine antiseptics. We investigated the effect of these factors on the microbe inactivation of Iodine-Polyvinyl Alcohol ophthalmic and eye washing solution (PA * IODO), and also investigated the preservation conditions on stability of the inactivation activity of the PA * IODO. Test microbes were mixed with PA * IODO, varying the three factors. The live microbes were counted after each reaction. The effects of plugging and preservation temperature were investigated to determine the preserving stability. The inactivation capacity of PA * IODO tended to decrease in almost all microbes tested at 4 degrees C. Twenty times or less diluted PA * IODO killed almost all microbes completely. The time effect was more marked in viruses. Plugging and low-temperature made iodine concentration in diluted PA * IODO remain relatively high. The concentration of PA * IODO affected the inactivation ability more than the temperature and time, although all the three factors correlated positively to the inactivation. For preservation the diluted PA * IODO needed plugging and low temperature.

  19. Development of a test method for distillation of diesel-biodiesel-alcohols mixtures at reduced pressure

    NASA Astrophysics Data System (ADS)

    Niculescu, R.; Iosub, I.; Clenci, A.; Zaharia, C.; Iorga-Simăn, V.

    2017-10-01

    Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility. Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.

  20. 77 FR 66074 - Regulation of Fuel and Fuel Additives: Modification to Octamix Waiver (TOLAD MFA-10A)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... Texas Methanol's gasoline-alcohol fuel, OCTAMIX. This correction notice explains that TOLAD MFA-10A is... inhibitor, TOLAD TM MFA-10A, at a concentration of 42 mg/l, in the OCTAMIX gasoline-alcohol fuel blend which... corrosion inhibitor in Texas Methanol's gasoline- alcohol fuel, OCTAMIX.\\2\\ \\1\\ EPA-HQ-OAR-2011-0894-0001...

Top